Example 3 The region \(R \) enclosed by curves \(y = \sqrt{x} \) and \(y = x^2 \) is rotated about the \(x \)-axis. Find the volume of the resulting solid.

A cylindrical cross-section is a circular washer.

\[
A(x) = \pi \left(\sqrt{x} \right)^2 - \pi (x^2)^2
= \pi (x - x^4)
\]

\[
V = \int_0^1 \pi (x-x^4) \, dx = \pi \left[\frac{1}{2} x^2 - \frac{1}{5} x^5 \right]_0^1
= \pi \left[\frac{1}{2} - \frac{1}{5} \right]
= \frac{3\pi}{10}
\]

So if cross section is a washer w/ some inner and outer radius,

\[
A = \pi \left[\text{outer radius}^2 - \text{inner radius}^2 \right]
\]
Example 4. Find the volume obtained by rotating the region in
Example 3 about \(y = 2 \).

\[A(x) = \pi \left[(2-x)^2 - (2-\sqrt{x})^2 \right] \]
\[= \pi \left[4 - 4x^2 + x^4 - (4 - 4\sqrt{x} + x) \right] \]
\[= \pi \left[x^4 - 4x^2 + x + 4\sqrt{x} \right] \]

\[V = \int_0^1 A(x) \, dx \]
\[= \int_0^1 \pi \left[x^4 - 4x^2 + x + 4\sqrt{x} \right] \, dx \]
\[= \pi \left[\frac{1}{5}x^5 - \frac{4}{3}x^3 - \frac{1}{2}x^2 + \frac{8}{3}x^{3/2} \right]_0^1 \]
\[= \pi \left[\frac{1}{5} - \frac{4}{3} - \frac{1}{2} + \frac{8}{3} \right] \]
\[= \frac{31}{30} \]
Example 5

Volume of solid obtained by revolving a region bounded by
\[
\begin{cases}
y = 1 + \sec x \\
y = 3
\end{cases}
\]

Points of intersection
\[
3 = 1 + \sec x \\
2 = \sec x \\
\frac{1}{2} = \cos x \\
-\frac{\pi}{3} \leq x \leq \frac{\pi}{3}
\]

Outer radius 2
Inner Radius \(\sec x \)

\[A(x) = \pi (2^2 - \sec^2 x)\]

\[
V = \int_{-\pi/3}^{\pi/3} \pi (4 - \sec^2 x) \, dx \\
= 2\pi \int_{0}^{\pi/3} (4 - \sec^2 x) \, dx \\
= 2\pi \left[4x - \tan x \right]_{0}^{\pi/3} \\
= 2\pi \left[\frac{4\pi}{3} - \sqrt{3} \right]
\]
Quirky cross-sectional areas

Suppose we don't have a solid of revolution but we do have some data on what the cross-sections of a shape look like. Then we can still make some headway.

Example:

Find the volume of a solid with base a circle of radius 2 and cross-sections perpendicular to the base equilateral triangles.

So \(A(x) = \text{(area of triangle)} \)
\[
= \frac{1}{2} (2y) (\sqrt{3}y)
= \sqrt{3} y^2
= \sqrt{3} (4-x^2)
\]

\[
V = \int_{x=-2}^{x=2} \sqrt{3} (4-x^2) \, dx
= 2 \sqrt{3} \int_{0}^{2} (4-x^2) \, dx
= 2 \sqrt{3} \left(4x - \frac{1}{3} x^3 \right)_{0}^{2}
= 2 \sqrt{3} \left(8 - \frac{8}{3} \right)
= \frac{32}{3} \sqrt{3}
\]
Example 2

Find the volume of a pyramid whose base is a square w/ side L and whose height is h.

Doesn't come w/ coordinates, so we choose some.

Cross sections are squares of side lengths.

Looking at similar triangles in xy plane gives:

\[
\frac{\frac{L}{2}}{x} = \frac{\frac{L}{2}}{h}
\]

\[
S = \frac{Lx}{h}
\]

\[
A(x) = \frac{L^2}{h^2} x^2
\]

Volume = \[
\int_{x=0}^{x=h} \frac{L^2}{h^2} x^2 \, dx
\]

\[
= \frac{L^2}{h^2} \left[\frac{1}{3} x^3 \right]_0^h
\]

\[
= \frac{L^2}{h^2} \left[\frac{1}{3} h^3 \right]
\]

\[
= \frac{L^2 h}{3}
\]
Example 3 (More exciting)

A wedge is cut out of a circular cylinder of radius 4 by two planes. One plane is perpendicular to the axis of the cylinder. The other intersects the first at an angle of 30° along a diameter of the cylinder. Find the volume of the wedge.

\[
A(x) = \frac{1}{2} (y)(y \tan \frac{\pi}{3})
\]

\[
= \frac{1}{2} y^2 \left(\frac{1}{\sqrt{3}} \right)
\]

\[
= \frac{16 - x^2}{2 \sqrt{3}}
\]

\[
V = \int_{-4}^{4} \frac{16 - x^2}{2 \sqrt{3}} \, dx
= \frac{2}{2 \sqrt{3}} \int_{0}^{4} (16 - x^2) \, dx
\]

\[
= \frac{1}{\sqrt{3}} \left[16x - \frac{1}{3} x^3 \right]_{0}^{4}
\]

\[
= \frac{1}{\sqrt{3}} \left[64 - \frac{64}{3} \right]
\]

\[
= \frac{128}{3 \sqrt{3}}
\]
Problem: Find the volume obtained by rotating the region bounded by $y = 3x^2 - x^3$ and $y = 0$ about the y-axis.

Washer method is not great since we have to work out two strange functions of y, and also find maximum.

Since we can't approximate by cross-sections, we instead approximate by cylindrical shells.

Take a rectangle parallel to the axis and rotate it around the axis.

Volume cylinder = Volume outer cylinder - Volume inner cylinder

$$= \pi r_1^2 h - \pi r_2^2 h$$

$$= \pi h [r_1^2 - r_2^2]$$

$$= \pi h \left[r_1 + r_2 \right] \left[r_1 - r_2 \right]$$

$$= 2\pi h \left[\frac{r_1 + r_2}{2} \right] \Delta r$$

Average radius of shell.
e.g. Volume = "circumference" * "thickness"

In our example: \(r = x_i \star \)
\(h = f(x_i \star) \)
\(\Delta r = Ax \)

\[
\text{Volume}_{\text{cylindrical shell}} = 2\pi \left(f(x_i \star) \right) x_i \star \Delta x
\]

\[
\text{Volume}_{\text{solid}} = \lim_{n \to \infty} \sum_{i=1}^{n} 2\pi \cdot f(x_i \star) x_i \star \Delta x
\]

\[
= \int_{0}^{2} 2\pi f(x) x \, dx
\]

\[
= 2\pi \int_{0}^{2} (2x^2 - x^3) \, dx
\]

\[
= 2\pi \left[\frac{3}{4} x^4 - \frac{1}{5} x^5 \right]_0
\]

\[
= 2\pi \left[\frac{243}{4} - \frac{243}{5} \right]
\]

\[
= 2\pi \frac{243}{20}
\]

\[
= \frac{243\pi}{10}
\]

So we can approximate a volume by taking a rectangle parallel to the axis of rotation, using it to generate a cylindrical shell whose volume is \(2\pi r h \Delta x \), where \(r \) is the distance from the axis of rotation to the rectangle, \(h \) is the height of the rectangle (usually \(dx \) or \(dy \)).
2) Find the volume of the solid obtained by rotating the region bounded by \(xy = 1 \), \(x = 0 \), \(y = 1 \), and \(y = 3 \) about the \(x \)-axis.

\[
V_{\text{cylinder}} = 2\pi rh \tag{3}
\]

\[
= 2\pi \left[\frac{y_i^*}{y_i} \right] \frac{1}{y_i} dy
\]

Volume \(= \lim_{n \to \infty} \sum_{i=0}^{n} 2\pi y_i^* \frac{1}{y_i} \Delta y \)

\[
= \int_{y=1}^{y=3} 2\pi y \, dy
\]

\[
= 2\pi \left[\frac{y^2}{2} \right]_{1}^{3}
\]

\[
= 4\pi
\]
3. Find the volume of the solid generated by rotating the region bounded by $x = y^2 + 1$ and $x = 2$ about $y = -2$.

$$V_{cylinder} = 2\pi h r t = \frac{2\pi}{3} \int_{-1}^{1} (y^2 + 2 - y^3) dy$$

$$= 2\pi \int_{-1}^{1} \left[y + 2 - \frac{y^3}{3} - 2y^2\right] dy$$

$$= 2\pi \left[2 - \frac{2}{3} \right]$$

$$= \frac{16\pi}{3}$$
Volumes of solids

General

Place on axis, find cross-sectional area

Solids of Revolution

<table>
<thead>
<tr>
<th>Disk/Washer</th>
<th>$V = \int x^2 - r^2 , dx$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximate by spinning a rectangle perpendicular to axis of rotation</td>
<td></td>
</tr>
</tbody>
</table>

Cylindrical shells

Approximate by spinning a rectangle parallel to axis of rotation

$V = \int 2\pi rh \, dx$

$V = \int 2\pi rh \, dy$

Example 4

Set up integrals to find the volume of the solids given by rotating the region bounded by $y = -x^2 + 6x - 8$ and $y = 0$ about the x-axis and y-axis.

$0 = -x^2 + 6x - 8$
$0 = x^2 - 6x + 8$
$(x-4)(x-2)$

Vertex at 3

$-9 + 18 - 8 = 1$

x-axis: Disk method $r = y = -x^2 + 6x - 8$

$V = \int_2^4 \left(-x^2 + 6x - 8\right)^2 \, dx$
\(V = \int_2^4 2\pi x \left[-x^2 + 6x - 8 \right] dx \)

y-axis: cylindrical shells \(r = x \) \(h = y = -x^2 + 6x - 8 \)