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7.3.3. The IBVP: Neumann Conditions.

Theorem 7.3.3. The BVP for the one-space dimensional heat equation,

∂tu = k ∂2
xu , BC: ∂xu(t, 0) = 0 , ∂xu(t, L) = 0 ,

where k > 0, L > 0 are constants, has infinitely many solutions

u(t, x) =
c0
2
+

∞!

n=1

cn e
−k(nπ

L )2t cos
"nπx

L

#
, cn ∈ R .

Furthermore, for every continuous function f on [0, L] satisfying

f ′(0) = f ′(L) = 0 , there is a unique solution u of the boundary value

problem above that also satisfies the initial condition

u(0, x) = f(x) .

This solution u is given by the expression above, where the coefficients cn are

cn =
2

L

$ L

0

f(x) cos
"nπx

L

#
dx, n = 0, 1, 2, · · · .

Remarks:

(a) This is an Initial-Boundary Value Problem (IBVP).

(b) The boundary conditions are called Neumann boundary conditions.

Remark: The physical meaning of the initial-boundary conditions is simple.

(1) The boundary conditions is to keep the heat flux at the sides of the bar is

constant .

(2) The initial condition is the initial temperature on the whole bar.

Remark: One can use Dirichlet conditions on one side and Neumann

on the other side. This is called a mixed boundary condition.

Remark: The proof is based on the separation of variables method .
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Proof of the Theorem: First look for simple solutions of the heat equation given by

u(t, x) = v(t)w(x).

So we look for solutions having the variables separated into two functions. Introduce this

particular function in the heat equation,

v̇(t)w(x) = k v(t)w′′(x) ⇒ 1

k

v̇(t)

v(t)
=

w′′(x)

w(x)
,

where we used the notation v̇ = dv/dt and w′ = dw/dx. The separation of variables in the

function u implies a separation of variables in the heat equation. The left hand side in the

last equation above depends only on t and the right hand side depends only on x. The only

possible solution is that both sides are equal the same constant, call it −λ. So we end up

with two equations

1

k

v̇(t)

v(t)
= −λ, and

w′′(x)

w(x)
= −λ.

The equation on the left is first order and simple to solve. The solution depends on λ,

vλ(t) = cλ e
−kλt, cλ = vλ(0).

The second equation leads to an eigenfunction problem for w once boundary conditions are

provided. These boundary conditions come from the heat equation boundary conditions,

∂xu(t, 0) = v(t)w′(0) = 0 for all t ! 0

∂xu(t, L) = v(t)w′(L) = 0 for all t ! 0

⎫
⎪⎬

⎪⎭
⇒ w′(0) = w′(L) = 0.

So we need to solve the following BVP for w;

w′′ + λw = 0, w′(0) = w′(L) = 0.

This is an eigenfunction problem, which has solutions only for λ > 0, because in that case

the asociated characteristic polynomial has complex roots. If we write λ = µ2, for µ > 0,

we get the general solution

w(x) = c1 cos(µx) + c2 sin(µx).
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If we prescribe the cn we get a solution u that at t = 0 is given by the previous formula. Is

it the converse true? The answer is “yes”. Given f(x) = u(0, x), where f ′(0) = f ′(L) = 0,

we can find all the coefficients cn. Here is how: Given f on [0, L], extend it to the domain

[−L,L] as an even function,

feven(x) = f(x) and feven(−x) = f(x), x ∈ [0, L]

We get that feven is continuous on [−L,L]. So feven has a Fourier series expansion. Since

feven is even, the Fourier series is a cosine series

feven(x) =
a0

2
+

∞!

n=1

an cos
"nπx

L

#

and the coefficients are given by the formula

an =
1

L

$ L

−L

feven(x) cos
"nπx

L

#
dx =

2

L

$ L

0

f(x) cos
"nπx

L

#
dx, n = 0, 1, 2, · · · .

Since feven(x) = f(x) for x ∈ [0, L], then cn = an. This establishes the Theorem.
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Example 7.3.2: Find the solution to the initial-boundary value problem

∂tu = ∂2
xu, t > 0, x ∈ [0, 3],

with initial and boundary conditions given by

IC: u(0, x) =

⎧
⎪⎨

⎪⎩

7 x ∈
[3
2
, 3
]
,

0 x ∈
[
0,

3

2

)
,

BC:

{
u′(t, 0) = 0,

u′(t, 3) = 0.

Solution: We look for simple solutions of the form u(t, x) = v(t)w(x),

w(x)
dv

dt
(t) = v(t)

d2w

dx2
(x) ⇒ v̇(t)

v(t)
=

w′′(x)

w(x)
= −λ.

So, the equations for v and w are

v̇(t) = −λ v(t), w′′(x) + λw(x) = 0.

The solution for v depends on λ, and is given by

vλ(t) = cλ e
−λt, cλ = vλ(0).

Next we turn to the the equation for w, and we solve the BVP

w′′(x) + λw(x) = 0, with BC w′(0) = w′(3) = 0.

This is an eigenfunction problem for w and λ. This problem has solution only for λ > 0,

since only in that case the characteristic polynomial has complex roots. Let λ = µ2, then

p(r) = r2 + µ2 = 0 ⇒ r± = ±µ i.

The general solution of the differential equation is

wn(x) = c1 cos(µx) + c2 sin(µx).

Its derivative is

w′(x) = −µ c1 sin(µx) + µ c2 cos(µx).

The first boundary conditions on w implies

0 = w′(0) = µ c2, ⇒ c2 = 0 ⇒ w(x) = c1 cos(µx).
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The second boundary condition on w implies

0 = w′(3) = −µ c1 sin(µ3), c1 ∕= 0, ⇒ sin(µ3) = 0.

Then, µn3 = nπ, that is, µn =
nπ

3
. Choosing c2 = 1, we conclude,

λn =
(nπ

3

)2

, wn(x) = cos
(nπx

3

)
, n = 1, 2, · · · .

Using the values of λn found above in the formula for vλ we get

vn(t) = cn e
−(nπ

3 )2t, cn = vn(0).

Therefore, we get

u(t, x) =
c0
2
+

∞∑

n=1

cn e
−(nπ

3 )2t cos
(nπx

2

)
,

where we have added the trivial constant solution written as c0/2. The initial condition is

f(x) = u(0, x) =

⎧
⎪⎨

⎪⎩

7 x ∈
[3
2
, 3
]
,

0 x ∈
[
0,

3

2

)
,

We extend f to [−3, 3] as an even function

feven(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

7 x ∈
[3
2
, 3
]
,

0 x ∈
[
−3

2
,
3

2

)
,

7 x ∈
[
−3,−3

2

]
.

Since frmeven is even, its Fourier expansion is a cosine series

feven(x) =
a0

2
+

∞∑

n=1

an cos
(nπx

3

)
.

The coefficient a0 is given by

a0 =
2

3

∫ 3

0

f(x) dx =
2

3

∫ 3

3/2

7 dx =
2

3
7
3

2
⇒ a0 = 7.
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Now the coefficients an for n ! 1 are given by

an =
2

3

! 3

0

f(x) cos
"nπx

3

#
dx

=
2

3

! 3

3/2

7 cos
"nπx

3

#
dx

=
2

3
7

3

nπ
sin

"nπx
3

#$$$
3

3/2

=
2

3
7

3

nπ

"
0− sin

"nπ
2

##

= −7
2

nπ
sin(nπ).

But for n = 2k we have that sin(2kπ/2) = sin(kπ) = 0, while for n = 2k − 1 we have that

sin((2k − 1)π/2) = (−1)k−1. Therefore

a2k = 0, a2k−1 = 7
2(−1)k

(2k − 1)π
, k = 1, 2, · · · .

We then obtain the Fourier series expansion of feven,

feven(x) =
7

2
+

∞%

k=1

7
2(−1)k

(2k − 1)π
cos

" (2k − 1)πx

3

#

But the function f has exactly the same Fourier expansion on [0, 3], which means that

c0 = 7, c2k = 0, c(2k−1) = 7
2(−1)k

(2k − 1)π
.

So the solution of the initial-boundary value problem for the heat equation is

u(t, x) =
7

2
+ 7

∞%

k=1

2(−1)k

(2k − 1)π
e−(

(2k−1)π
3 )2t cos

" (2k − 1)πx

3

#
.

⊳
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