Section Objective(s):

- The Existence of Solutions Theorem.
- Direction Fields.
- Autonomous Equations.

Remarks:

- If the equation is ______, then ______solutions.
- However, there is ______ for the solutions of

d	ifferential	equations
---	-------------	-----------

- The _____ we know are _____
- Simple functions are
- There are more _____ than _____

• It is _____ to study _____

to describe solutions to differential equations.

- We get information about the ______ of differential equations ______ the equation.
 - (a) ______, works with ______
 (b) , works
 - with ______ equations.

1.3.1. The Existence of Solutions Theorem.

Theorem 1.3.1. (Picard-Lindelöf) Consider the initial value problem If the function f and its partial derivative $\partial_y f$ are continuous on some rectangle on the ty-plane containing the point (t_0, y_0) in its interior, then ______ of the initial value problem above on an open interval I containing the point t_0 .

Remarks:

- (1) An _____ means to find a solution to ______ a differential equation and an initial condition.
- (2) There is ______ for the solution in this Theorem.
- (3) Results with _____ are still _____

EXAMPLE 1.3.1: Determine whether the functions y_1 and y_2 given by their graphs in Fig. 1 can be solutions of the same differential equation satisfying the hypotheses in the Picard-Lindelöf Theorem.

FIGURE 1. The graph of two functions.

SOLUTION:

1.3.2. Direction Fields.

Remark: We interpret f(t, y) at each point (t, y) on the ty-plane as

Definition 1.6.3. The *direction field* of the differential equation

is the graph on the _____ of f(t, y)

•

EXAMPLE 1.6.11: Find the direction field of the equation $y' = \sin(y)$, and sketch a few solutions to the differential equation for different initial conditions.

SOLUTION:

FIGURE 2. Direction field for the equation $y' = \sin(y)$.

 \triangleleft

1.3.3. Autonomous Equations.

Remark: An important example of an autonomous equation is

Remark: The _____ can be solved exactly.

EXAMPLE 6.1.7: Sketch a qualitative graph of solutions of

(2) Find the critical points:

(3) Find the increasing-decreasing intervals of f.

- (4) We can skip the concavity regions.
- (5) Move the horizontal y-axis into a vertical axis, and add a horizontal t-axis.

