G. NAGY - ODE SEPTEMBER 4, 2018 1

1.3. QUALITATIVE ANALYSIS

Section Objective(s):
e The Existence of Solutions Theorem.
e Direction Fields.
e Autonomous Equations.

Remarks:
e If the equation is , then solutions.
e However, there is for the solutions of
differential equations.
e The we know are

to write their solutions.

e Simple functions are

e There are more than

needed to write their solutions.

o [t is to study

to describe solutions to differential equations.

e We get information about the of differential equations

the equation.

(a) , works with

equations.

(b) , works

with equations.
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1.3.1. The Existence of Solutions Theorem.

Theorem 1.3.1. (Picard-Lindel6f) Consider the initial value problem

If the function f and its partial derivative 0, f are continuous on some rectangle on
the ty-plane containing the point (o, y,) in its interior,

then of the initial value

problem above on an open interval I containing the point ¢,.

Remarks:
(1) An means to find a solution to
a differential equation and an initial condition.
(2) There is for the solution in this Theorem.
(3) Results with are still

ExaMpPLE 1.3.1: Determine whether the
functions y; and y» given by their graphs
in Fig. 1 can be solutions of the same
differential equation satisfying the hy-
potheses in the Picard-Lindelof Theo-
rem.

FIGURE 1. The graph of two functions.

SOLUTION:
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1.3.2. Direction Fields.

Remark: We interpret f(¢,y) at each point (¢,y) on the ty-plane as

Definition 1.6.3. The direction field of the differential equation

is the graph on the of f(t,y)
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Find the direction field of the equation y’ = sin(y), and sketch a few

solutions to the differential equation for different initial conditions.

EXAMPLE 1.6.11:

SOLUTION:
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FIGURE 2. Direction field for the equation y' = sin(y).
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1.3.3. Autonomous Equations.

Definition 6.1.1. A first order equation is iff

?

d,
where 3’ = d_zt/’ and the function f depend explicitly on .

Remark: An important example of an autonomous equation is

Remark: The can be solved exactly.

EXAMPLE 6.1.7: Sketch a qualitative graph of solutions of

SOLUTION:
(1) Graph

(2) Find the critical points:
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(3) Find the increasing-decreasing intervals of f.

fy

(4) We can skip the concavity regions.
(5) Move the horizontal y-axis into a vertical axis, and add a horizontal t-axis.

yh




