Boundary Value Problems (Sect. 6.1).

- Two-point BVP.
- Example from physics.
- Comparison: IVP vs BVP.
- Existence, uniqueness of solutions to BVP.
- Particular case of BVP: Eigenvalue-eigenfunction problem.

Two-point Boundary Value Problem.

Definition

A two-point $B V P$ is the following: Given functions p, q, g, and constants

$$
x_{1}<x_{2}, \quad y_{1}, y_{2}, \quad b_{1}, b_{2}, \quad \tilde{b}_{1}, \tilde{b}_{2}
$$

find a function y solution of the differential equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=g(x)
$$

together with the extra, boundary conditions,

$$
\begin{aligned}
& b_{1} y\left(x_{1}\right)+b_{2} y^{\prime}\left(x_{1}\right)=y_{1}, \\
& \tilde{b}_{1} y\left(x_{2}\right)+\tilde{b}_{2} y^{\prime}\left(x_{2}\right)=y_{2} .
\end{aligned}
$$

Two-point Boundary Value Problem.

Definition

A two-point BVP is the following: Given functions p, q, g, and constants

$$
x_{1}<x_{2}, \quad y_{1}, y_{2}, \quad b_{1}, b_{2}, \quad \tilde{b}_{1}, \tilde{b}_{2}
$$

find a function y solution of the differential equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=g(x)
$$

together with the extra, boundary conditions,

$$
\begin{aligned}
& b_{1} y\left(x_{1}\right)+b_{2} y^{\prime}\left(x_{1}\right)=y_{1}, \\
& \tilde{b}_{1} y\left(x_{2}\right)+\tilde{b}_{2} y^{\prime}\left(x_{2}\right)=y_{2} .
\end{aligned}
$$

Remarks:

- Both y and y^{\prime} might appear in the boundary condition, evaluated at the same point.

Two-point Boundary Value Problem.

Definition

A two-point BVP is the following: Given functions p, q, g, and constants

$$
x_{1}<x_{2}, \quad y_{1}, y_{2}, \quad b_{1}, b_{2}, \quad \tilde{b}_{1}, \tilde{b}_{2}
$$

find a function y solution of the differential equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=g(x)
$$

together with the extra, boundary conditions,

$$
\begin{aligned}
& b_{1} y\left(x_{1}\right)+b_{2} y^{\prime}\left(x_{1}\right)=y_{1}, \\
& \tilde{b}_{1} y\left(x_{2}\right)+\tilde{b}_{2} y^{\prime}\left(x_{2}\right)=y_{2} .
\end{aligned}
$$

Remarks:

- Both y and y^{\prime} might appear in the boundary condition, evaluated at the same point.
- In this notes we only study the case of constant coefficients,

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(x)
$$

Two-point Boundary Value Problem.

Example

Examples of BVP.

Two-point Boundary Value Problem.

Example

Examples of BVP. Assume $x_{1} \neq x_{2}$.
(1) Find y solution of

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(x), \quad y\left(x_{1}\right)=y_{1}, \quad y\left(x_{2}\right)=y_{2} .
$$

Two-point Boundary Value Problem.

Example

Examples of BVP. Assume $x_{1} \neq x_{2}$.
(1) Find y solution of

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(x), \quad y\left(x_{1}\right)=y_{1}, \quad y\left(x_{2}\right)=y_{2} .
$$

(2) Find y solution of

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(x), \quad y^{\prime}\left(x_{1}\right)=y_{1}, \quad y^{\prime}\left(x_{2}\right)=y_{2} .
$$

Two-point Boundary Value Problem.

Example

Examples of BVP. Assume $x_{1} \neq x_{2}$.
(1) Find y solution of

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(x), \quad y\left(x_{1}\right)=y_{1}, \quad y\left(x_{2}\right)=y_{2} .
$$

(2) Find y solution of

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(x), \quad y^{\prime}\left(x_{1}\right)=y_{1}, \quad y^{\prime}\left(x_{2}\right)=y_{2} .
$$

(3) Find y solution of

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(x), \quad y\left(x_{1}\right)=y_{1}, \quad y^{\prime}\left(x_{2}\right)=y_{2} .
$$

Boundary Value Problems (Sect. 6.1).

- Two-point BVP.
- Example from physics.
- Comparison: IVP vs BVP.
- Existence, uniqueness of solutions to BVP.
- Particular case of BVP: Eigenvalue-eigenfunction problem.

Example from physics.

Problem: The equilibrium (time independent) temperature of a bar of length L with insulated horizontal sides and the bar vertical extremes kept at fixed temperatures T_{0}, T_{L} is the solution of the BVP:

$$
T^{\prime \prime}(x)=0, \quad x \in(0, L), \quad T(0)=T_{0}, \quad T(L)=T_{L},
$$

Example from physics.

Problem: The equilibrium (time independent) temperature of a bar of length L with insulated horizontal sides and the bar vertical extremes kept at fixed temperatures T_{0}, T_{L} is the solution of the BVP:

$$
T^{\prime \prime}(x)=0, \quad x \in(0, L), \quad T(0)=T_{0}, \quad T(L)=T_{L},
$$

Boundary Value Problems (Sect. 6.1).

- Two-point BVP.
- Example from physics.
- Comparison: IVP vs BVP.
- Existence, uniqueness of solutions to BVP.
- Particular case of BVP: Eigenvalue-eigenfunction problem.

Comparison: IVP vs BVP.

Review: IVP:
Find the function values $y(t)$ solutions of the differential equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(t)
$$

together with the initial conditions

$$
y\left(t_{0}\right)=y_{1}, \quad y^{\prime}\left(t_{0}\right)=y_{2} .
$$

Comparison: IVP vs BVP.

Review: IVP:
Find the function values $y(t)$ solutions of the differential equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(t)
$$

together with the initial conditions

$$
y\left(t_{0}\right)=y_{1}, \quad y^{\prime}\left(t_{0}\right)=y_{2} .
$$

Remark: In physics:

- $y(t)$: Position at time t.

Comparison: IVP vs BVP.

Review: IVP:
Find the function values $y(t)$ solutions of the differential equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(t)
$$

together with the initial conditions

$$
y\left(t_{0}\right)=y_{1}, \quad y^{\prime}\left(t_{0}\right)=y_{2} .
$$

Remark: In physics:

- $y(t)$: Position at time t.
- Initial conditions: Position and velocity at the initial time t_{0}.

Comparison: IVP vs BVP.

Review: BVP:
Find the function values $y(x)$ solutions of the differential equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(x)
$$

together with the initial conditions

$$
y\left(x_{1}\right)=y_{1}, \quad y\left(x_{2}\right)=y_{2} .
$$

Comparison: IVP vs BVP.

Review: BVP:
Find the function values $y(x)$ solutions of the differential equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(x)
$$

together with the initial conditions

$$
y\left(x_{1}\right)=y_{1}, \quad y\left(x_{2}\right)=y_{2} .
$$

Remark: In physics:

- $y(x)$: A physical quantity (temperature) at a position x.

Comparison: IVP vs BVP.

Review: BVP:
Find the function values $y(x)$ solutions of the differential equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(x)
$$

together with the initial conditions

$$
y\left(x_{1}\right)=y_{1}, \quad y\left(x_{2}\right)=y_{2} .
$$

Remark: In physics:

- $y(x)$: A physical quantity (temperature) at a position x.
- Boundary conditions: Conditions at the boundary of the object under study, where $x_{1} \neq x_{2}$.

Boundary Value Problems (Sect. 6.1).

- Two-point BVP.
- Example from physics.
- Comparison: IVP vs BVP.
- Existence, uniqueness of solutions to BVP.
- Particular case of BVP: Eigenvalue-eigenfunction problem.

Existence, uniqueness of solutions to BVP.

Review: The initial value problem.
Theorem (IVP)
Consider the homogeneous initial value problem:

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0, \quad y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{1}
$$

and let $r_{ \pm}$be the roots of the characteristic polynomial

$$
p(r)=r^{2}+a_{1} r+a_{0}
$$

If $r_{+} \neq r_{-}$, real or complex, then for every choice of y_{0}, y_{1}, there exists a unique solution y to the initial value problem above.

Existence, uniqueness of solutions to BVP.

Review: The initial value problem.

Theorem (IVP)

Consider the homogeneous initial value problem:

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0, \quad y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{1}
$$

and let $r_{ \pm}$be the roots of the characteristic polynomial

$$
p(r)=r^{2}+a_{1} r+a_{0}
$$

If $r_{+} \neq r_{-}$, real or complex, then for every choice of y_{0}, y_{1}, there exists a unique solution y to the initial value problem above.

Summary: The IVP above always has a unique solution, no matter what y_{0} and y_{1} we choose.

Existence, uniqueness of solutions to BVP.

Theorem (BVP)

Consider the homogeneous boundary value problem:

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0, \quad y(0)=y_{0}, \quad y(L)=y_{1}
$$

and let $r_{ \pm}$be the roots of the characteristic polynomial

$$
p(r)=r^{2}+a_{1} r+a_{0}
$$

(A) If $r_{+} \neq r_{-}$, real, then for every choice of $L \neq 0$ and y_{0}, y_{1}, there exists a unique solution y to the BVP above.
(B) If $r_{ \pm}=\alpha \pm i \beta$, with $\beta \neq 0$, and $\alpha, \beta \in \mathbb{R}$, then the solutions to the BVP above belong to one of these possibilities:
(1) There exists a unique solution.
(2) There exists no solution.
(3) There exist infinitely many solutions.

Existence, uniqueness of solutions to BVP.
Proof of IVP: We study the case $r_{+} \neq r_{-}$.

Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_{+} \neq r_{-}$. The general solution is

$$
y(t)=c_{1} e^{r_{-} t}+c_{2} e^{r_{+} t}
$$

Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_{+} \neq r_{-}$. The general solution is

$$
y(t)=c_{1} e^{r_{-} t}+c_{2} e^{r_{+} t}, \quad c_{1}, c_{2} \in \mathbb{R} .
$$

Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_{+} \neq r_{-}$. The general solution is

$$
y(t)=c_{1} e^{r_{-} t}+c_{2} e^{r_{+} t}, \quad c_{1}, c_{2} \in \mathbb{R} .
$$

The initial conditions determine c_{1} and c_{2}

Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_{+} \neq r_{-}$. The general solution is

$$
y(t)=c_{1} e^{r_{-} t}+c_{2} e^{r_{+} t}, \quad c_{1}, c_{2} \in \mathbb{R} .
$$

The initial conditions determine c_{1} and c_{2} as follows:

$$
y_{0}=y\left(t_{0}\right)
$$

Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_{+} \neq r_{-}$. The general solution is

$$
y(t)=c_{1} e^{r_{-} t}+c_{2} e^{r_{+} t}, \quad c_{1}, c_{2} \in \mathbb{R} .
$$

The initial conditions determine c_{1} and c_{2} as follows:

$$
y_{0}=y\left(t_{0}\right)=c_{1} e^{r_{-} t_{0}}+c_{2} e^{r_{+} t_{0}}
$$

Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_{+} \neq r_{-}$. The general solution is

$$
y(t)=c_{1} e^{r_{-} t}+c_{2} e^{r_{+} t}, \quad c_{1}, c_{2} \in \mathbb{R} .
$$

The initial conditions determine c_{1} and c_{2} as follows:

$$
\begin{aligned}
& y_{0}=y\left(t_{0}\right)=c_{1} e^{r-t_{0}}+c_{2} e^{r_{+} t_{0}} \\
& y_{1}=y^{\prime}\left(t_{0}\right)
\end{aligned}
$$

Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_{+} \neq r_{-}$. The general solution is

$$
y(t)=c_{1} e^{r_{-} t}+c_{2} e^{r_{+} t}, \quad c_{1}, c_{2} \in \mathbb{R} .
$$

The initial conditions determine c_{1} and c_{2} as follows:

$$
\begin{gathered}
y_{0}=y\left(t_{0}\right)=c_{1} e^{r_{-} t_{0}}+c_{2} e^{r_{+} t_{0}} \\
y_{1}=y^{\prime}\left(t_{0}\right)=c_{1} r_{-} e^{r_{-} t_{0}}+c_{2} r_{+} e^{r_{+} t_{0}}
\end{gathered}
$$

Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_{+} \neq r_{-}$. The general solution is

$$
y(t)=c_{1} e^{r_{-} t}+c_{2} e^{r_{+} t}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

The initial conditions determine c_{1} and c_{2} as follows:

$$
\begin{gathered}
y_{0}=y\left(t_{0}\right)=c_{1} e^{r_{-} t_{0}}+c_{2} e^{r_{+} t_{0}} \\
y_{1}=y^{\prime}\left(t_{0}\right)=c_{1} r_{-} e^{r_{-} t_{0}}+c_{2} r_{+} e^{r_{+} t_{0}}
\end{gathered}
$$

Using matrix notation,

$$
\left[\begin{array}{cc}
e^{r_{-} t_{0}} & e^{r_{+} t_{0}} \\
r_{-} e^{r_{-} t_{0}} & r_{+} e^{r_{+} t_{0}}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right] .
$$

Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_{+} \neq r_{-}$. The general solution is

$$
y(t)=c_{1} e^{r_{-} t}+c_{2} e^{r_{+} t}, \quad c_{1}, c_{2} \in \mathbb{R} .
$$

The initial conditions determine c_{1} and c_{2} as follows:

$$
\begin{gathered}
y_{0}=y\left(t_{0}\right)=c_{1} e^{r_{-} t_{0}}+c_{2} e^{r_{+} t_{0}} \\
y_{1}=y^{\prime}\left(t_{0}\right)=c_{1} r_{-} e^{r_{-} t_{0}}+c_{2} r_{+} e^{r_{+} t_{0}}
\end{gathered}
$$

Using matrix notation,

$$
\left[\begin{array}{cc}
e^{r_{-} t_{0}} & e^{r_{+} t_{0}} \\
r_{-} e^{r_{-} t_{0}} & r_{+} e^{r_{+} t_{0}}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right] .
$$

The linear system above has a unique solution c_{1} and c_{2} for every constants y_{0} and y_{1} iff

Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_{+} \neq r_{-}$. The general solution is

$$
y(t)=c_{1} e^{r_{-} t}+c_{2} e^{r_{+} t}, \quad c_{1}, c_{2} \in \mathbb{R} .
$$

The initial conditions determine c_{1} and c_{2} as follows:

$$
\begin{gathered}
y_{0}=y\left(t_{0}\right)=c_{1} e^{r_{-} t_{0}}+c_{2} e^{r_{+} t_{0}} \\
y_{1}=y^{\prime}\left(t_{0}\right)=c_{1} r_{-} e^{r_{-} t_{0}}+c_{2} r_{+} e^{r_{+} t_{0}}
\end{gathered}
$$

Using matrix notation,

$$
\left[\begin{array}{cc}
e^{r_{-} t_{0}} & e^{r_{+} t_{0}} \\
r_{-} e^{r_{-} t_{0}} & r_{+} e^{r_{+} t_{0}}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right] .
$$

The linear system above has a unique solution c_{1} and c_{2} for every constants y_{0} and y_{1} iff the $\operatorname{det}(Z) \neq 0$,

Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_{+} \neq r_{-}$. The general solution is

$$
y(t)=c_{1} e^{r_{-} t}+c_{2} e^{r_{+} t}, \quad c_{1}, c_{2} \in \mathbb{R} .
$$

The initial conditions determine c_{1} and c_{2} as follows:

$$
\begin{gathered}
y_{0}=y\left(t_{0}\right)=c_{1} e^{r_{-} t_{0}}+c_{2} e^{r_{+} t_{0}} \\
y_{1}=y^{\prime}\left(t_{0}\right)=c_{1} r_{-} e^{r_{-} t_{0}}+c_{2} r_{+} e^{r_{+} t_{0}}
\end{gathered}
$$

Using matrix notation,

$$
\left[\begin{array}{cc}
e^{r_{-} t_{0}} & e^{r_{+} t_{0}} \\
r_{-} e^{r_{-} t_{0}} & r_{+} e^{r_{+} t_{0}}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right] .
$$

The linear system above has a unique solution c_{1} and c_{2} for every constants y_{0} and y_{1} iff the $\operatorname{det}(Z) \neq 0$, where

$$
Z=\left[\begin{array}{cc}
e^{r_{-} t_{0}} & e^{r_{+} t_{0}} \\
r_{-} e^{r_{-} t_{0}} & r_{+} e^{r_{+} t_{0}}
\end{array}\right]
$$

Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_{+} \neq r_{-}$. The general solution is

$$
y(t)=c_{1} e^{r_{-} t}+c_{2} e^{r_{+} t}, \quad c_{1}, c_{2} \in \mathbb{R} .
$$

The initial conditions determine c_{1} and c_{2} as follows:

$$
\begin{gathered}
y_{0}=y\left(t_{0}\right)=c_{1} e^{r_{-} t_{0}}+c_{2} e^{r_{+} t_{0}} \\
y_{1}=y^{\prime}\left(t_{0}\right)=c_{1} r_{-} e^{r_{-} t_{0}}+c_{2} r_{+} e^{r_{+} t_{0}}
\end{gathered}
$$

Using matrix notation,

$$
\left[\begin{array}{cc}
e^{r_{-} t_{0}} & e^{r_{+} t_{0}} \\
r_{-} e^{r_{-} t_{0}} & r_{+} e^{r_{+} t_{0}}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right] .
$$

The linear system above has a unique solution c_{1} and c_{2} for every constants y_{0} and y_{1} iff the $\operatorname{det}(Z) \neq 0$, where

$$
Z=\left[\begin{array}{cc}
e^{r_{-} t_{0}} & e^{r_{+} t_{0}} \\
r_{-} e^{r_{-} t_{0}} & r_{+} e^{r_{+} t_{0}}
\end{array}\right] \quad \Rightarrow \quad Z\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right] .
$$

Existence, uniqueness of solutions to BVP.

Proof of IVP:
Recall: $Z=\left[\begin{array}{cc}e^{r_{-}-t_{0}} & e^{r_{+} t_{0}} \\ r_{-} & e^{r_{-} t_{0}} \\ r_{+} & e^{r_{+}+t_{0}}\end{array}\right] \Rightarrow \quad Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.

Existence, uniqueness of solutions to BVP.

Proof of IVP:
Recall: $Z=\left[\begin{array}{cc}e^{r_{-}-t_{0}} & e^{r_{+} t_{0}} \\ r_{-}-e^{r_{-} t_{0}} & r_{+} e^{r_{+} t_{0}}\end{array}\right] \Rightarrow \quad Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.
A simple calculation shows

$$
\operatorname{det}(Z)=\left(r_{+}-r_{-}\right) e^{\left(r_{+}+r_{-}\right) t_{0}}
$$

Existence, uniqueness of solutions to BVP.

Proof of IVP:
Recall: $Z=\left[\begin{array}{cc}e^{r_{-}-t_{0}} & e^{r_{+} t_{0}} \\ r_{-}-e^{r_{-} t_{0}} & r_{+}+e^{r_{+} t_{0}}\end{array}\right] \Rightarrow \quad Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.
A simple calculation shows

$$
\operatorname{det}(Z)=\left(r_{+}-r_{-}\right) e^{\left(r_{+}+r_{-}\right) t_{0}} \neq 0 \quad \Leftrightarrow \quad r_{+} \neq r_{-} .
$$

Existence, uniqueness of solutions to BVP.

Proof of IVP:
Recall: $Z=\left[\begin{array}{cc}e^{r_{-}-t_{0}} & e^{r_{+} t_{0}} \\ r_{-}-e^{r_{-} t_{0}} & r_{+}+r^{r_{+} t_{0}}\end{array}\right] \Rightarrow \quad Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.
A simple calculation shows

$$
\operatorname{det}(Z)=\left(r_{+}-r_{-}\right) e^{\left(r_{+}+r_{-}\right) t_{0}} \neq 0 \quad \Leftrightarrow \quad r_{+} \neq r_{-}
$$

Since $r_{+} \neq r_{-}$, the matrix Z is invertible

Existence, uniqueness of solutions to BVP.

Proof of IVP:
Recall: $Z=\left[\begin{array}{cc}e^{r_{-}-t_{0}} & e^{r_{+} t_{0}} \\ r_{-}-e^{r_{-} t_{0}} & r_{+}+r^{r_{+} t_{0}}\end{array}\right] \Rightarrow \quad Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.
A simple calculation shows

$$
\operatorname{det}(Z)=\left(r_{+}-r_{-}\right) e^{\left(r_{+}+r_{-}\right) t_{0}} \neq 0 \quad \Leftrightarrow \quad r_{+} \neq r_{-}
$$

Since $r_{+} \neq r_{-}$, the matrix Z is invertible and so

$$
\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=Z^{-1}\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right] .
$$

Existence, uniqueness of solutions to BVP.

Proof of IVP:
Recall: $Z=\left[\begin{array}{cc}e^{r_{-}-t_{0}} & e^{r+t_{0}} \\ r_{-}-e^{r_{-} t_{0}} & r_{+}+e^{r_{r}+t_{0}}\end{array}\right] \Rightarrow \quad Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.
A simple calculation shows

$$
\operatorname{det}(Z)=\left(r_{+}-r_{-}\right) e^{\left(r_{+}+r_{-}\right) t_{0}} \neq 0 \quad \Leftrightarrow \quad r_{+} \neq r_{-} .
$$

Since $r_{+} \neq r_{-}$, the matrix Z is invertible and so

$$
\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=Z^{-1}\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right] .
$$

We conclude that for every choice of y_{0} and y_{1}, there exist a unique value of c_{1} and c_{2}, so the IVP above has a unique solution.

Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

$$
y(x)=c_{1} e^{r_{-} x}+c_{2} e^{r_{+} x}
$$

Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

$$
y(x)=c_{1} e^{r_{-} x}+c_{2} e^{r_{+} x}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

$$
y(x)=c_{1} e^{r_{-} x}+c_{2} e^{r+x}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

The boundary conditions determine c_{1} and c_{2}

Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

$$
y(x)=c_{1} e^{r_{-} x}+c_{2} e^{r_{+} x}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

The boundary conditions determine c_{1} and c_{2} as follows:

$$
y_{0}=y(0)
$$

Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

$$
y(x)=c_{1} e^{r_{-} x}+c_{2} e^{r_{+} x}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

The boundary conditions determine c_{1} and c_{2} as follows:

$$
y_{0}=y(0)=c_{1}+c_{2} .
$$

Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

$$
y(x)=c_{1} e^{r-x}+c_{2} e^{r_{+} x}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

The boundary conditions determine c_{1} and c_{2} as follows:

$$
\begin{aligned}
& \quad y_{0}=y(0)=c_{1}+c_{2} . \\
& y_{1}=y(L)
\end{aligned}
$$

Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

$$
y(x)=c_{1} e^{r_{-} x}+c_{2} e^{r_{+} x}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

The boundary conditions determine c_{1} and c_{2} as follows:

$$
\begin{gathered}
y_{0}=y(0)=c_{1}+c_{2} . \\
y_{1}=y(L)=c_{1} e^{r_{-} L}+c_{2} e^{r_{+} L}
\end{gathered}
$$

Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

$$
y(x)=c_{1} e^{r_{-} x}+c_{2} e^{r_{+} x}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

The boundary conditions determine c_{1} and c_{2} as follows:

$$
\begin{gathered}
y_{0}=y(0)=c_{1}+c_{2} . \\
y_{1}=y(L)=c_{1} e^{r_{-} L}+c_{2} e^{r_{+} L}
\end{gathered}
$$

Using matrix notation,

$$
\left[\begin{array}{cc}
1 & 1 \\
e^{r_{-} L} & e^{r_{+} L}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right] .
$$

Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

$$
y(x)=c_{1} e^{r-x}+c_{2} e^{r+x}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

The boundary conditions determine c_{1} and c_{2} as follows:

$$
\begin{gathered}
y_{0}=y(0)=c_{1}+c_{2} . \\
y_{1}=y(L)=c_{1} e^{r_{-} L}+c_{2} e^{r_{+} L}
\end{gathered}
$$

Using matrix notation,

$$
\left[\begin{array}{cc}
1 & 1 \\
e^{r_{-} L} & e^{r_{+} L}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right]
$$

The linear system above has a unique solution c_{1} and c_{2} for every constants y_{0} and y_{1} iff

Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

$$
y(x)=c_{1} e^{r-x}+c_{2} e^{r+x}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

The boundary conditions determine c_{1} and c_{2} as follows:

$$
\begin{gathered}
y_{0}=y(0)=c_{1}+c_{2} \\
y_{1}=y(L)=c_{1} e^{r_{-} L}+c_{2} e^{r_{+} L}
\end{gathered}
$$

Using matrix notation,

$$
\left[\begin{array}{cc}
1 & 1 \\
e^{r_{-} L} & e^{r_{+} L}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right]
$$

The linear system above has a unique solution c_{1} and c_{2} for every constants y_{0} and y_{1} iff the $\operatorname{det}(Z) \neq 0$,

Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

$$
y(x)=c_{1} e^{r-x}+c_{2} e^{r+x}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

The boundary conditions determine c_{1} and c_{2} as follows:

$$
\begin{gathered}
y_{0}=y(0)=c_{1}+c_{2} \\
y_{1}=y(L)=c_{1} e^{r_{-} L}+c_{2} e^{r_{+} L}
\end{gathered}
$$

Using matrix notation,

$$
\left[\begin{array}{cc}
1 & 1 \\
e^{r_{-} L} & e^{r_{+} L}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right]
$$

The linear system above has a unique solution c_{1} and c_{2} for every constants y_{0} and y_{1} iff the $\operatorname{det}(Z) \neq 0$, where

$$
Z=\left[\begin{array}{cc}
1 & 1 \\
e^{r_{-} L} & e^{r_{+} L}
\end{array}\right]
$$

Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

$$
y(x)=c_{1} e^{r_{-} x}+c_{2} e^{r_{+} x}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

The boundary conditions determine c_{1} and c_{2} as follows:

$$
\begin{gathered}
y_{0}=y(0)=c_{1}+c_{2} . \\
y_{1}=y(L)=c_{1} e^{r_{-} L}+c_{2} e^{r_{+} L}
\end{gathered}
$$

Using matrix notation,

$$
\left[\begin{array}{cc}
1 & 1 \\
e^{r_{-} L} & e^{r_{+} L}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right] .
$$

The linear system above has a unique solution c_{1} and c_{2} for every constants y_{0} and y_{1} iff the $\operatorname{det}(Z) \neq 0$, where

$$
Z=\left[\begin{array}{cc}
1 & 1 \\
e^{r_{-} L} & e^{r_{+} L}
\end{array}\right] \quad \Rightarrow \quad Z\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right] .
$$

Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: $Z=\left[\begin{array}{cc}1 & 1 \\ e^{r-L} & e^{r_{+}} L\end{array}\right] \quad \Rightarrow \quad Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.

Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: $Z=\left[\begin{array}{cc}1 & 1 \\ e^{r-L} & e^{r_{+}}\end{array}\right] \quad \Rightarrow \quad Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.
A simple calculation shows

$$
\operatorname{det}(Z)=e^{r_{+} L}-e^{r_{-} L}
$$

Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: $Z=\left[\begin{array}{cc}1 & 1 \\ e^{r_{-} L} & e^{r_{+}}\end{array}\right] \quad \Rightarrow \quad Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.
A simple calculation shows

$$
\operatorname{det}(Z)=e^{r+L}-e^{r-L} \neq 0 \quad \Leftrightarrow \quad e^{r+L} \neq e^{r-L} .
$$

Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: $Z=\left[\begin{array}{cc}1 & 1 \\ e^{r-L} & e^{r_{+}}\end{array}\right] \quad \Rightarrow \quad Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.
A simple calculation shows

$$
\operatorname{det}(Z)=e^{r_{+} L}-e^{r_{-} L} \neq 0 \quad \Leftrightarrow \quad e^{r_{+} L} \neq e^{r_{-} L}
$$

(A) If $r_{+} \neq r_{-}$and real-valued,

Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: $Z=\left[\begin{array}{cc}1 & 1 \\ e^{r-L} & e^{r+L}\end{array}\right] \quad \Rightarrow \quad Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.
A simple calculation shows

$$
\operatorname{det}(Z)=e^{r_{+} L}-e^{r_{-} L} \neq 0 \quad \Leftrightarrow \quad e^{r_{+} L} \neq e^{r_{-} L}
$$

(A) If $r_{+} \neq r_{-}$and real-valued, then $\operatorname{det}(Z) \neq 0$.

Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: $Z=\left[\begin{array}{cc}1 & 1 \\ e^{r-L} & e^{r_{+}}\end{array}\right] \quad \Rightarrow \quad Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.
A simple calculation shows

$$
\operatorname{det}(Z)=e^{r_{+} L}-e^{r_{-} L} \neq 0 \quad \Leftrightarrow \quad e^{r_{+} L} \neq e^{r_{-} L}
$$

(A) If $r_{+} \neq r_{-}$and real-valued, then $\operatorname{det}(Z) \neq 0$.

We conclude: For every choice of y_{0} and y_{1}, there exist a unique value of c_{1} and c_{2}, so the BVP in (A) above has a unique solution.

Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: $Z=\left[\begin{array}{cc}1 & 1 \\ e^{r-L} & e^{r_{+}} L\end{array}\right] \quad \Rightarrow \quad Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.
A simple calculation shows

$$
\operatorname{det}(Z)=e^{r+L}-e^{r-L} \neq 0 \quad \Leftrightarrow \quad e^{r+L} \neq e^{r-L} .
$$

(A) If $r_{+} \neq r_{-}$and real-valued, then $\operatorname{det}(Z) \neq 0$.

We conclude: For every choice of y_{0} and y_{1}, there exist a unique value of c_{1} and c_{2}, so the BVP in (A) above has a unique solution.
(B) If $r_{ \pm}=\alpha \pm i \beta$, with $\alpha, \beta \in \mathbb{R}$ and $\beta \neq 0$,

Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: $Z=\left[\begin{array}{cc}1 & 1 \\ e^{r-L} & e^{r_{+}} L\end{array}\right] \quad \Rightarrow \quad Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.
A simple calculation shows

$$
\operatorname{det}(Z)=e^{r_{+} L}-e^{r_{-} L} \neq 0 \quad \Leftrightarrow \quad e^{r_{+} L} \neq e^{r_{-} L}
$$

(A) If $r_{+} \neq r_{-}$and real-valued, then $\operatorname{det}(Z) \neq 0$.

We conclude: For every choice of y_{0} and y_{1}, there exist a unique value of c_{1} and c_{2}, so the BVP in (A) above has a unique solution.
(B) If $r_{ \pm}=\alpha \pm i \beta$, with $\alpha, \beta \in \mathbb{R}$ and $\beta \neq 0$, then

$$
\operatorname{det}(Z)=e^{\alpha L}\left(e^{i \beta L}-e^{-i \beta L}\right)
$$

Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: $Z=\left[\begin{array}{cc}1 & 1 \\ e^{r_{-} L} & e^{r_{+}} L\end{array}\right] \Rightarrow \quad Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.
A simple calculation shows

$$
\operatorname{det}(Z)=e^{r_{+} L}-e^{r_{-} L} \neq 0 \quad \Leftrightarrow \quad e^{r_{+} L} \neq e^{r_{-} L}
$$

(A) If $r_{+} \neq r_{-}$and real-valued, then $\operatorname{det}(Z) \neq 0$.

We conclude: For every choice of y_{0} and y_{1}, there exist a unique value of c_{1} and c_{2}, so the BVP in (A) above has a unique solution.
(B) If $r_{ \pm}=\alpha \pm i \beta$, with $\alpha, \beta \in \mathbb{R}$ and $\beta \neq 0$, then

$$
\operatorname{det}(Z)=e^{\alpha L}\left(e^{i \beta L}-e^{-i \beta L}\right) \Rightarrow \operatorname{det}(Z)=2 i e^{\alpha L} \sin (\beta L)
$$

Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: $Z=\left[\begin{array}{cc}1 & 1 \\ e^{r_{-} L} & e^{r_{+}}\end{array}\right] \quad \Rightarrow \quad Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.
A simple calculation shows

$$
\operatorname{det}(Z)=e^{r_{+} L}-e^{r_{-} L} \neq 0 \quad \Leftrightarrow \quad e^{r_{+} L} \neq e^{r_{-} L}
$$

(A) If $r_{+} \neq r_{-}$and real-valued, then $\operatorname{det}(Z) \neq 0$.

We conclude: For every choice of y_{0} and y_{1}, there exist a unique value of c_{1} and c_{2}, so the BVP in (A) above has a unique solution.
(B) If $r_{ \pm}=\alpha \pm i \beta$, with $\alpha, \beta \in \mathbb{R}$ and $\beta \neq 0$, then

$$
\operatorname{det}(Z)=e^{\alpha L}\left(e^{i \beta L}-e^{-i \beta L}\right) \Rightarrow \operatorname{det}(Z)=2 i e^{\alpha L} \sin (\beta L) .
$$

Since $\operatorname{det}(Z)=0$ iff $\beta L=n \pi$, with n integer,

Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: $Z=\left[\begin{array}{cc}1 & 1 \\ e^{r_{-} L} & e^{r_{+}} L\end{array}\right] \Rightarrow \quad Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.
A simple calculation shows

$$
\operatorname{det}(Z)=e^{r_{+} L}-e^{r_{-} L} \neq 0 \quad \Leftrightarrow \quad e^{r_{+} L} \neq e^{r_{-} L}
$$

(A) If $r_{+} \neq r_{-}$and real-valued, then $\operatorname{det}(Z) \neq 0$.

We conclude: For every choice of y_{0} and y_{1}, there exist a unique value of c_{1} and c_{2}, so the BVP in (A) above has a unique solution.
(B) If $r_{ \pm}=\alpha \pm i \beta$, with $\alpha, \beta \in \mathbb{R}$ and $\beta \neq 0$, then

$$
\operatorname{det}(Z)=e^{\alpha L}\left(e^{i \beta L}-e^{-i \beta L}\right) \Rightarrow \operatorname{det}(Z)=2 i e^{\alpha L} \sin (\beta L)
$$

Since $\operatorname{det}(Z)=0$ iff $\beta L=n \pi$, with n integer,
(1) If $\beta L \neq n \pi$, then BVP has a unique solution.

Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: $Z=\left[\begin{array}{cc}1 & 1 \\ e^{r_{-} L} & e^{r_{+}}\end{array}\right] \quad \Rightarrow \quad Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.
A simple calculation shows

$$
\operatorname{det}(Z)=e^{r+L}-e^{r-L} \neq 0 \quad \Leftrightarrow \quad e^{r+L} \neq e^{r-L} .
$$

(A) If $r_{+} \neq r_{-}$and real-valued, then $\operatorname{det}(Z) \neq 0$.

We conclude: For every choice of y_{0} and y_{1}, there exist a unique value of c_{1} and c_{2}, so the BVP in (A) above has a unique solution.
(B) If $r_{ \pm}=\alpha \pm i \beta$, with $\alpha, \beta \in \mathbb{R}$ and $\beta \neq 0$, then

$$
\operatorname{det}(Z)=e^{\alpha L}\left(e^{i \beta L}-e^{-i \beta L}\right) \Rightarrow \operatorname{det}(Z)=2 i e^{\alpha L} \sin (\beta L) .
$$

Since $\operatorname{det}(Z)=0$ iff $\beta L=n \pi$, with n integer,
(1) If $\beta L \neq n \pi$, then BVP has a unique solution.
(2) If $\beta L=n \pi$ then BVP either has no solutions or it has infinitely many solutions.

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi)=-1
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi)=-1
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi)=-1
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi)=-1
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x) .
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi)=-1
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x)
$$

The boundary conditions are

$$
1=y(0)=c_{1},
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi)=-1
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x)
$$

The boundary conditions are

$$
1=y(0)=c_{1}, \quad-1=y(\pi)=-c_{1}
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi)=-1
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x)
$$

The boundary conditions are

$$
1=y(0)=c_{1}, \quad-1=y(\pi)=-c_{1} \quad \Rightarrow \quad c_{1}=1, \quad c_{2} \text { free. }
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi)=-1
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x)
$$

The boundary conditions are

$$
1=y(0)=c_{1}, \quad-1=y(\pi)=-c_{1} \quad \Rightarrow \quad c_{1}=1, \quad c_{2} \text { free. }
$$

We conclude: $y(x)=\cos (x)+c_{2} \sin (x)$, with $c_{2} \in \mathbb{R}$.

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi)=-1
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x) .
$$

The boundary conditions are

$$
1=y(0)=c_{1}, \quad-1=y(\pi)=-c_{1} \quad \Rightarrow \quad c_{1}=1, \quad c_{2} \text { free. }
$$

We conclude: $y(x)=\cos (x)+c_{2} \sin (x)$, with $c_{2} \in \mathbb{R}$.
The BVP has infinitely many solutions.

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi)=0
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi)=0
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi)=0
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi)=0
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x)
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi)=0
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x)
$$

The boundary conditions are

$$
1=y(0)=c_{1},
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi)=0
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x)
$$

The boundary conditions are

$$
1=y(0)=c_{1}, \quad 0=y(\pi)=-c_{1}
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi)=0 .
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i .
$$

The general solution is

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x) .
$$

The boundary conditions are

$$
1=y(0)=c_{1}, \quad 0=y(\pi)=-c_{1}
$$

The BVP has no solution.

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi / 2)=1
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi / 2)=1 .
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi / 2)=1
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi / 2)=1
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x) .
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi / 2)=1
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x)
$$

The boundary conditions are

$$
1=y(0)=c_{1},
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi / 2)=1
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x)
$$

The boundary conditions are

$$
1=y(0)=c_{1}, \quad 1=y(\pi / 2)=c_{2}
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi / 2)=1
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x)
$$

The boundary conditions are

$$
1=y(0)=c_{1}, \quad 1=y(\pi / 2)=c_{2} \quad \Rightarrow \quad c_{1}=c_{2}=1
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi / 2)=1
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x)
$$

The boundary conditions are

$$
1=y(0)=c_{1}, \quad 1=y(\pi / 2)=c_{2} \quad \Rightarrow \quad c_{1}=c_{2}=1
$$

We conclude: $\quad y(x)=\cos (x)+\sin (x)$.

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi / 2)=1 .
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x)
$$

The boundary conditions are

$$
1=y(0)=c_{1}, \quad 1=y(\pi / 2)=c_{2} \quad \Rightarrow \quad c_{1}=c_{2}=1
$$

We conclude: $\quad y(x)=\cos (x)+\sin (x)$.
The BVP has a unique solution.

Boundary Value Problems (Sect. 6.1).

- Two-point BVP.
- Example from physics.
- Comparison: IVP vs BVP.
- Existence, uniqueness of solutions to BVP.
- Particular case of BVP: Eigenvalue-eigenfunction problem.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Problem:
Find a number λ and a non-zero function y solutions to the boundary value problem

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Problem:
Find a number λ and a non-zero function y solutions to the boundary value problem

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Remark: This problem is similar to the eigenvalue-eigenvector problem in Linear Algebra:

Particular case of BVP: Eigenvalue-eigenfunction problem.

Problem:
Find a number λ and a non-zero function y solutions to the boundary value problem

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Remark: This problem is similar to the eigenvalue-eigenvector problem in Linear Algebra: Given an $n \times n$ matrix A, find λ and a non-zero n-vector \mathbf{v} solutions of

$$
A \mathbf{v}-\lambda \mathbf{v}=\mathbf{0} .
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Problem:
Find a number λ and a non-zero function y solutions to the boundary value problem

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Remark: This problem is similar to the eigenvalue-eigenvector problem in Linear Algebra: Given an $n \times n$ matrix A, find λ and a non-zero n-vector \mathbf{v} solutions of

$$
A \mathbf{v}-\lambda \mathbf{v}=\mathbf{0}
$$

Differences:
$-A \longrightarrow\left\{\begin{array}{l}\text { computing a second derivative and } \\ \text { applying the boundary conditions. }\end{array}\right\}$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Problem:
Find a number λ and a non-zero function y solutions to the boundary value problem

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Remark: This problem is similar to the eigenvalue-eigenvector problem in Linear Algebra: Given an $n \times n$ matrix A, find λ and a non-zero n-vector \mathbf{v} solutions of

$$
A \mathbf{v}-\lambda \mathbf{v}=\mathbf{0}
$$

Differences:
$\triangleright \rightarrow \longrightarrow\left\{\begin{array}{l}\text { computing a second derivative and } \\ \text { applying the boundary conditions. }\end{array}\right\}$

- v $\longrightarrow \quad\{$ a function $y\}$.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Remarks: We will show that:

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Remarks: We will show that:
(1) If $\lambda \leqslant 0$, then the BVP has no solution.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Remarks: We will show that:
(1) If $\lambda \leqslant 0$, then the BVP has no solution.
(2) If $\lambda>0$, then there exist infinitely many eigenvalues λ_{n} and eigenfunctions y_{n}, with n any positive integer,

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Remarks: We will show that:
(1) If $\lambda \leqslant 0$, then the BVP has no solution.
(2) If $\lambda>0$, then there exist infinitely many eigenvalues λ_{n} and eigenfunctions y_{n}, with n any positive integer, given by

$$
\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}, \quad y_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Remarks: We will show that:
(1) If $\lambda \leqslant 0$, then the BVP has no solution.
(2) If $\lambda>0$, then there exist infinitely many eigenvalues λ_{n} and eigenfunctions y_{n}, with n any positive integer, given by

$$
\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}, \quad y_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)
$$

(3) Analogous results can be proven for the same equation but with different types of boundary conditions.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Remarks: We will show that:
(1) If $\lambda \leqslant 0$, then the BVP has no solution.
(2) If $\lambda>0$, then there exist infinitely many eigenvalues λ_{n} and eigenfunctions y_{n}, with n any positive integer, given by

$$
\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}, \quad y_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)
$$

(3) Analogous results can be proven for the same equation but with different types of boundary conditions. For example, for $y(0)=0, y^{\prime}(L)=0$;

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Remarks: We will show that:
(1) If $\lambda \leqslant 0$, then the BVP has no solution.
(2) If $\lambda>0$, then there exist infinitely many eigenvalues λ_{n} and eigenfunctions y_{n}, with n any positive integer, given by

$$
\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}, \quad y_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)
$$

(3) Analogous results can be proven for the same equation but with different types of boundary conditions. For example, for $y(0)=0, y^{\prime}(L)=0$; or for $y^{\prime}(0)=0, y^{\prime}(L)=0$.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda=0$.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda=0$. The equation is

$$
y^{\prime \prime}=0
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda=0$. The equation is

$$
y^{\prime \prime}=0 \Rightarrow y(x)=c_{1}+c_{2} x
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda=0$. The equation is

$$
y^{\prime \prime}=0 \Rightarrow y(x)=c_{1}+c_{2} x
$$

The boundary conditions imply

$$
0=y(0)
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda=0$. The equation is

$$
y^{\prime \prime}=0 \Rightarrow y(x)=c_{1}+c_{2} x
$$

The boundary conditions imply

$$
0=y(0)=c_{1},
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda=0$. The equation is

$$
y^{\prime \prime}=0 \Rightarrow y(x)=c_{1}+c_{2} x
$$

The boundary conditions imply

$$
0=y(0)=c_{1}, \quad 0=c_{1}+c_{2} L
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda=0$. The equation is

$$
y^{\prime \prime}=0 \Rightarrow y(x)=c_{1}+c_{2} x
$$

The boundary conditions imply

$$
0=y(0)=c_{1}, \quad 0=c_{1}+c_{2} L \quad \Rightarrow \quad c_{1}=c_{2}=0
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda=0$. The equation is

$$
y^{\prime \prime}=0 \Rightarrow y(x)=c_{1}+c_{2} x
$$

The boundary conditions imply

$$
0=y(0)=c_{1}, \quad 0=c_{1}+c_{2} L \quad \Rightarrow \quad c_{1}=c_{2}=0 .
$$

Since $y=0$, there are NO non-zero solutions for $\lambda=0$.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda<0$.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda<0$. Introduce the notation $\lambda=-\mu^{2}$.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda<0$. Introduce the notation $\lambda=-\mu^{2}$. The characteristic equation is

$$
p(r)=r^{2}-\mu^{2}=0
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda<0$. Introduce the notation $\lambda=-\mu^{2}$. The characteristic equation is

$$
p(r)=r^{2}-\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu .
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda<0$. Introduce the notation $\lambda=-\mu^{2}$. The characteristic equation is

$$
p(r)=r^{2}-\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu .
$$

The general solution is

$$
y(x)=c_{1} e^{\mu x}+c_{2} e^{-\mu x} .
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda<0$. Introduce the notation $\lambda=-\mu^{2}$. The characteristic equation is

$$
p(r)=r^{2}-\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu .
$$

The general solution is

$$
y(x)=c_{1} e^{\mu x}+c_{2} e^{-\mu x} .
$$

The boundary condition are

$$
0=y(0)
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda<0$. Introduce the notation $\lambda=-\mu^{2}$. The characteristic equation is

$$
p(r)=r^{2}-\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu .
$$

The general solution is

$$
y(x)=c_{1} e^{\mu x}+c_{2} e^{-\mu x} .
$$

The boundary condition are

$$
0=y(0)=c_{1}+c_{2},
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda<0$. Introduce the notation $\lambda=-\mu^{2}$. The characteristic equation is

$$
p(r)=r^{2}-\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu .
$$

The general solution is

$$
y(x)=c_{1} e^{\mu x}+c_{2} e^{-\mu x} .
$$

The boundary condition are

$$
\begin{gathered}
0=y(0)=c_{1}+c_{2} \\
0=y(L)=c_{1} e^{\mu L}+c_{2} e^{-\mu L}
\end{gathered}
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Recall: $y(x)=c_{1} e^{\mu x}+c_{2} e^{\mu x}$ and

$$
c_{1}+c_{2}=0, \quad c_{1} e^{\mu L}+c_{2} e^{-\mu L}=0 .
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Recall: $y(x)=c_{1} e^{\mu x}+c_{2} e^{\mu x}$ and

$$
c_{1}+c_{2}=0, \quad c_{1} e^{\mu L}+c_{2} e^{-\mu L}=0 .
$$

We need to solve the linear system
$\left[\begin{array}{cc}1 & 1 \\ e^{\mu L} & e^{-\mu L}\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Recall: $y(x)=c_{1} e^{\mu x}+c_{2} e^{\mu x}$ and

$$
c_{1}+c_{2}=0, \quad c_{1} e^{\mu L}+c_{2} e^{-\mu L}=0 .
$$

We need to solve the linear system
$\left[\begin{array}{cc}1 & 1 \\ e^{\mu L} & e^{-\mu L}\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Leftrightarrow Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$,

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Recall: $y(x)=c_{1} e^{\mu x}+c_{2} e^{\mu x}$ and

$$
c_{1}+c_{2}=0, \quad c_{1} e^{\mu L}+c_{2} e^{-\mu L}=0 .
$$

We need to solve the linear system

$$
\left[\begin{array}{cc}
1 & 1 \\
e^{\mu L} & e^{-\mu L}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Leftrightarrow Z\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \quad Z=\left[\begin{array}{cc}
1 & 1 \\
e^{\mu L} & e^{-\mu L}
\end{array}\right]
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Recall: $y(x)=c_{1} e^{\mu x}+c_{2} e^{\mu x}$ and

$$
c_{1}+c_{2}=0, \quad c_{1} e^{\mu L}+c_{2} e^{-\mu L}=0
$$

We need to solve the linear system

$$
\left[\begin{array}{cc}
1 & 1 \\
e^{\mu L} & e^{-\mu L}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Leftrightarrow Z\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \quad Z=\left[\begin{array}{cc}
1 & 1 \\
e^{\mu L} & e^{-\mu L}
\end{array}\right]
$$

Since $\operatorname{det}(Z)=e^{-\mu L}-e^{\mu L} \neq 0$ for $L \neq 0$, matrix Z is invertible, so the linear system above has a unique solution $c_{1}=0$ and $c_{2}=0$.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Recall: $y(x)=c_{1} e^{\mu x}+c_{2} e^{\mu x}$ and

$$
c_{1}+c_{2}=0, \quad c_{1} e^{\mu L}+c_{2} e^{-\mu L}=0
$$

We need to solve the linear system

$$
\left[\begin{array}{cc}
1 & 1 \\
e^{\mu L} & e^{-\mu L}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Leftrightarrow Z\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \quad Z=\left[\begin{array}{cc}
1 & 1 \\
e^{\mu L} & e^{-\mu L}
\end{array}\right]
$$

Since $\operatorname{det}(Z)=e^{-\mu L}-e^{\mu L} \neq 0$ for $L \neq 0$, matrix Z is invertible, so the linear system above has a unique solution $c_{1}=0$ and $c_{2}=0$.

Since $y=0$, there are NO non-zero solutions for $\lambda<0$.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda>0$.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda>0$. Introduce the notation $\lambda=\mu^{2}$.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda>0$. Introduce the notation $\lambda=\mu^{2}$. The characteristic equation is

$$
p(r)=r^{2}+\mu^{2}=0
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda>0$. Introduce the notation $\lambda=\mu^{2}$. The characteristic equation is

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu i
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda>0$. Introduce the notation $\lambda=\mu^{2}$. The characteristic equation is

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu i
$$

The general solution is

$$
y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda>0$. Introduce the notation $\lambda=\mu^{2}$. The characteristic equation is

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu i
$$

The general solution is

$$
y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)
$$

The boundary condition are

$$
0=y(0)
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda>0$. Introduce the notation $\lambda=\mu^{2}$. The characteristic equation is

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu i
$$

The general solution is

$$
y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)
$$

The boundary condition are

$$
0=y(0)=c_{1},
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda>0$. Introduce the notation $\lambda=\mu^{2}$. The characteristic equation is

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu i
$$

The general solution is

$$
y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)
$$

The boundary condition are

$$
0=y(0)=c_{1}, \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x)
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda>0$. Introduce the notation $\lambda=\mu^{2}$. The characteristic equation is

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu i
$$

The general solution is

$$
y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)
$$

The boundary condition are

$$
\begin{aligned}
& 0=y(0)=c_{1}, \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x) . \\
& 0=y(L)=c_{2} \sin (\mu L)
\end{aligned}
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda>0$. Introduce the notation $\lambda=\mu^{2}$. The characteristic equation is

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu i
$$

The general solution is

$$
y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)
$$

The boundary condition are

$$
\begin{gathered}
0=y(0)=c_{1}, \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x) . \\
0=y(L)=c_{2} \sin (\mu L), \quad c_{2} \neq 0
\end{gathered}
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda>0$. Introduce the notation $\lambda=\mu^{2}$. The characteristic equation is

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu i
$$

The general solution is

$$
y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)
$$

The boundary condition are

$$
\begin{gathered}
0=y(0)=c_{1}, \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x) \\
0=y(L)=c_{2} \sin (\mu L), \quad c_{2} \neq 0 \quad \Rightarrow \quad \sin (\mu L)=0 .
\end{gathered}
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Recall: $\quad c_{1}=0, \quad c_{2} \neq 0$, and $\sin (\mu L)=0$.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Recall: $\quad c_{1}=0, \quad c_{2} \neq 0$, and $\sin (\mu L)=0$.
The non-zero solution condition is the reason for $c_{2} \neq 0$.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Recall: $\quad c_{1}=0, \quad c_{2} \neq 0$, and $\sin (\mu L)=0$.
The non-zero solution condition is the reason for $c_{2} \neq 0$. Hence

$$
\sin (\mu L)=0
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Recall: $\quad c_{1}=0, \quad c_{2} \neq 0$, and $\sin (\mu L)=0$.
The non-zero solution condition is the reason for $c_{2} \neq 0$. Hence

$$
\sin (\mu L)=0 \quad \Rightarrow \quad \mu_{n} L=n \pi
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Recall: $\quad c_{1}=0, \quad c_{2} \neq 0$, and $\sin (\mu L)=0$.
The non-zero solution condition is the reason for $c_{2} \neq 0$. Hence

$$
\sin (\mu L)=0 \quad \Rightarrow \quad \mu_{n} L=n \pi \quad \Rightarrow \quad \mu_{n}=\frac{n \pi}{L} .
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Recall: $c_{1}=0, \quad c_{2} \neq 0$, and $\sin (\mu L)=0$.
The non-zero solution condition is the reason for $c_{2} \neq 0$. Hence

$$
\sin (\mu L)=0 \quad \Rightarrow \quad \mu_{n} L=n \pi \quad \Rightarrow \quad \mu_{n}=\frac{n \pi}{L}
$$

Recalling that $\lambda_{n}=\mu_{n}^{2}$, and choosing $c_{2}=1$,

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Recall: $\quad c_{1}=0, \quad c_{2} \neq 0$, and $\sin (\mu L)=0$.
The non-zero solution condition is the reason for $c_{2} \neq 0$. Hence

$$
\sin (\mu L)=0 \quad \Rightarrow \quad \mu_{n} L=n \pi \quad \Rightarrow \quad \mu_{n}=\frac{n \pi}{L}
$$

Recalling that $\lambda_{n}=\mu_{n}^{2}$, and choosing $c_{2}=1$, we conclude

$$
\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}, \quad y_{n}(x)=\sin \left(\frac{n \pi x}{L}\right) .
$$

Overview of Fourier Series (Sect. 6.2).

- Periodic functions.
- Orthogonality of Sines and Cosines.
- The Fourier Theorem: Continuous case.
- Example: Using the Fourier Theorem.
- The Fourier Theorem: Piecewise continuous case.
- Example: Using the Fourier Theorem.

Periodic functions.

Definition
A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called periodic iff there exists $\tau>0$ such that for all $x \in \mathbb{R}$ holds

$$
f(x+\tau)=f(x)
$$

Periodic functions.

Definition
A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called periodic iff there exists $\tau>0$ such that for all $x \in \mathbb{R}$ holds

$$
f(x+\tau)=f(x)
$$

Remark: f is invariant under translations by τ.

Periodic functions.

Definition

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called periodic iff there exists $\tau>0$ such that for all $x \in \mathbb{R}$ holds

$$
f(x+\tau)=f(x)
$$

Remark: f is invariant under translations by τ.

Definition

A period T of a periodic function f is the smallest value of τ such that $f(x+\tau)=f(x)$ holds.

Periodic functions.

Definition

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called periodic iff there exists $\tau>0$ such that for all $x \in \mathbb{R}$ holds

$$
f(x+\tau)=f(x)
$$

Remark: f is invariant under translations by τ.

Definition

A period T of a periodic function f is the smallest value of τ such that $f(x+\tau)=f(x)$ holds.

Notation:
A periodic function with period T is also called T-periodic.

Periodic functions.

Example

The following functions are periodic, with period T,

$$
\begin{aligned}
f(x)=\sin (x), & T=2 \pi \\
f(x)=\cos (x), & T=2 \pi \\
f(x)=\tan (x), & T=\pi \\
f(x)=\sin (a x), & T=\frac{2 \pi}{a}
\end{aligned}
$$

Periodic functions.

Example

The following functions are periodic, with period T,

$$
\begin{aligned}
f(x)=\sin (x), & T=2 \pi \\
f(x)=\cos (x), & T=2 \pi \\
f(x)=\tan (x), & T=\pi \\
f(x)=\sin (a x), & T=\frac{2 \pi}{a}
\end{aligned}
$$

The proof of the latter statement is the following:

Periodic functions.

Example

The following functions are periodic, with period T,

$$
\begin{aligned}
f(x)=\sin (x), & T=2 \pi \\
f(x)=\cos (x), & T=2 \pi \\
f(x)=\tan (x), & T=\pi \\
f(x)=\sin (a x), & T=\frac{2 \pi}{a}
\end{aligned}
$$

The proof of the latter statement is the following:

$$
f\left(x+\frac{2 \pi}{a}\right)
$$

Periodic functions.

Example

The following functions are periodic, with period T,

$$
\begin{aligned}
f(x)=\sin (x), & T=2 \pi \\
f(x)=\cos (x), & T=2 \pi \\
f(x)=\tan (x), & T=\pi \\
f(x)=\sin (a x), & T=\frac{2 \pi}{a}
\end{aligned}
$$

The proof of the latter statement is the following:

$$
f\left(x+\frac{2 \pi}{a}\right)=\sin \left(a x+a \frac{2 \pi}{a}\right)
$$

Periodic functions.

Example

The following functions are periodic, with period T,

$$
\begin{aligned}
f(x)=\sin (x), & T=2 \pi \\
f(x)=\cos (x), & T=2 \pi \\
f(x)=\tan (x), & T=\pi \\
f(x)=\sin (a x), & T=\frac{2 \pi}{a}
\end{aligned}
$$

The proof of the latter statement is the following:

$$
f\left(x+\frac{2 \pi}{a}\right)=\sin \left(a x+a \frac{2 \pi}{a}\right)=\sin (a x+2 \pi)
$$

Periodic functions.

Example

The following functions are periodic, with period T,

$$
\begin{aligned}
f(x)=\sin (x), & T=2 \pi \\
f(x)=\cos (x), & T=2 \pi \\
f(x)=\tan (x), & T=\pi \\
f(x)=\sin (a x), & T=\frac{2 \pi}{a}
\end{aligned}
$$

The proof of the latter statement is the following:

$$
f\left(x+\frac{2 \pi}{a}\right)=\sin \left(a x+a \frac{2 \pi}{a}\right)=\sin (a x+2 \pi)=\sin (a x)
$$

Periodic functions.

Example

The following functions are periodic, with period T,

$$
\begin{aligned}
f(x)=\sin (x), & T=2 \pi \\
f(x)=\cos (x), & T=2 \pi \\
f(x)=\tan (x), & T=\pi \\
f(x)=\sin (a x), & T=\frac{2 \pi}{a}
\end{aligned}
$$

The proof of the latter statement is the following:

$$
f\left(x+\frac{2 \pi}{a}\right)=\sin \left(a x+a \frac{2 \pi}{a}\right)=\sin (a x+2 \pi)=\sin (a x)=f(x)
$$

Periodic functions.

Example

Show that the function below is periodic, and find its period,

$$
f(x)=e^{x}, \quad x \in[0,2), \quad f(x-2)=f(x) .
$$

Periodic functions.

Example

Show that the function below is periodic, and find its period,

$$
f(x)=e^{x}, \quad x \in[0,2), \quad f(x-2)=f(x) .
$$

Solution: We just graph the function,

Periodic functions.

Example

Show that the function below is periodic, and find its period,

$$
f(x)=e^{x}, \quad x \in[0,2), \quad f(x-2)=f(x)
$$

Solution: We just graph the function,

So the function is periodic with period $T=2$.

Overview of Fourier Series (Sect. 6.2).

- Periodic functions.
- Orthogonality of Sines and Cosines.
- The Fourier Theorem: Continuous case.
- Example: Using the Fourier Theorem.
- The Fourier Theorem: Piecewise continuous case.
- Example: Using the Fourier Theorem.

Orthogonality of Sines and Cosines.

Remark:
From now on we work on the following domain: $[-L, L]$.

Orthogonality of Sines and Cosines.

Remark:
From now on we work on the following domain: $[-L, L]$.

Orthogonality of Sines and Cosines.

Theorem (Orthogonality)
The following relations hold for all $n, m \in \mathbb{N}$,

$$
\begin{aligned}
& \int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0 & n \neq m \\
L & n=m \neq 0 \\
2 L & n=m=0\end{cases} \\
& \int_{-L}^{L} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0 & n \neq m \\
L & n=m\end{cases} \\
& \int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x=0
\end{aligned}
$$

Orthogonality of Sines and Cosines.

Theorem (Orthogonality)

The following relations hold for all $n, m \in \mathbb{N}$,

$$
\begin{aligned}
& \int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0 & n \neq m \\
L & n=m \neq 0 \\
2 L & n=m=0\end{cases} \\
& \int_{-L}^{L} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0 & n \neq m \\
L & n=m\end{cases} \\
& \int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x=0
\end{aligned}
$$

Remark:

- The operation $f \cdot g=\int_{-L}^{L} f(x) g(x) d x$ is an inner product in the vector space of functions.

Orthogonality of Sines and Cosines.

Theorem (Orthogonality)

The following relations hold for all $n, m \in \mathbb{N}$,

$$
\begin{aligned}
& \int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0 & n \neq m \\
L & n=m \neq 0 \\
2 L & n=m=0\end{cases} \\
& \int_{-L}^{L} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0 & n \neq m \\
L & n=m\end{cases} \\
& \int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x=0
\end{aligned}
$$

Remark:

- The operation $f \cdot g=\int_{-L}^{L} f(x) g(x) d x$ is an inner product in the vector space of functions. Like the dot product is in \mathbb{R}^{2}.

Orthogonality of Sines and Cosines.

Theorem (Orthogonality)

The following relations hold for all $n, m \in \mathbb{N}$,

$$
\begin{aligned}
& \int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0 & n \neq m \\
L & n=m \neq 0 \\
2 L & n=m=0\end{cases} \\
& \int_{-L}^{L} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0 & n \neq m \\
L & n=m\end{cases} \\
& \int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x=0
\end{aligned}
$$

Remark:

- The operation $f \cdot g=\int_{-L}^{L} f(x) g(x) d x$ is an inner product in the vector space of functions. Like the dot product is in \mathbb{R}^{2}.
- Two functions f, g, are orthogonal iff $f \cdot g=0$.

Orthogonality of Sines and Cosines.
Recall: $\quad \cos (\theta) \cos (\phi)=\frac{1}{2}[\cos (\theta+\phi)+\cos (\theta-\phi)] ;$

$$
\begin{aligned}
& \sin (\theta) \sin (\phi)=\frac{1}{2}[\cos (\theta-\phi)-\cos (\theta+\phi)] ; \\
& \sin (\theta) \cos (\phi)=\frac{1}{2}[\sin (\theta+\phi)+\sin (\theta-\phi)] .
\end{aligned}
$$

Orthogonality of Sines and Cosines.

Recall: $\quad \cos (\theta) \cos (\phi)=\frac{1}{2}[\cos (\theta+\phi)+\cos (\theta-\phi)] ;$

$$
\begin{aligned}
& \sin (\theta) \sin (\phi)=\frac{1}{2}[\cos (\theta-\phi)-\cos (\theta+\phi)] ; \\
& \sin (\theta) \cos (\phi)=\frac{1}{2}[\sin (\theta+\phi)+\sin (\theta-\phi)] .
\end{aligned}
$$

Proof: First formula:

Orthogonality of Sines and Cosines.

Recall: $\quad \cos (\theta) \cos (\phi)=\frac{1}{2}[\cos (\theta+\phi)+\cos (\theta-\phi)] ;$

$$
\begin{aligned}
& \sin (\theta) \sin (\phi)=\frac{1}{2}[\cos (\theta-\phi)-\cos (\theta+\phi)] ; \\
& \sin (\theta) \cos (\phi)=\frac{1}{2}[\sin (\theta+\phi)+\sin (\theta-\phi)] .
\end{aligned}
$$

Proof: First formula: If $n=m=0$, it is simple to see that

$$
\int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x=\int_{-L}^{L} d x=2 L .
$$

Orthogonality of Sines and Cosines.

Recall: $\quad \cos (\theta) \cos (\phi)=\frac{1}{2}[\cos (\theta+\phi)+\cos (\theta-\phi)] ;$

$$
\begin{aligned}
& \sin (\theta) \sin (\phi)=\frac{1}{2}[\cos (\theta-\phi)-\cos (\theta+\phi)] ; \\
& \sin (\theta) \cos (\phi)=\frac{1}{2}[\sin (\theta+\phi)+\sin (\theta-\phi)] .
\end{aligned}
$$

Proof: First formula: If $n=m=0$, it is simple to see that

$$
\int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x=\int_{-L}^{L} d x=2 L .
$$

In the case where one of n or m is non-zero, use the relation

$$
\begin{aligned}
\int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) & \cos \left(\frac{m \pi x}{L}\right) d x=\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n+m) \pi x}{L}\right] d x \\
& +\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x .
\end{aligned}
$$

Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero,

Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero, holds

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n+m) \pi x}{L}\right] d x=\left.\frac{L}{2(n+m) \pi} \sin \left[\frac{(n+m) \pi x}{L}\right]\right|_{-L} ^{L}=0
$$

Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero, holds

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n+m) \pi x}{L}\right] d x=\left.\frac{L}{2(n+m) \pi} \sin \left[\frac{(n+m) \pi x}{L}\right]\right|_{-L} ^{L}=0
$$

We obtain that

$$
\int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x=\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x
$$

Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero, holds

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n+m) \pi x}{L}\right] d x=\left.\frac{L}{2(n+m) \pi} \sin \left[\frac{(n+m) \pi x}{L}\right]\right|_{-L} ^{L}=0
$$

We obtain that

$$
\int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x=\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x .
$$

If we further restrict $n \neq m$, then

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x=\left.\frac{L}{2(n-m) \pi} \sin \left[\frac{(n-m) \pi x}{L}\right]\right|_{-L} ^{L}=0
$$

Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero, holds

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n+m) \pi x}{L}\right] d x=\left.\frac{L}{2(n+m) \pi} \sin \left[\frac{(n+m) \pi x}{L}\right]\right|_{-L} ^{L}=0
$$

We obtain that

$$
\int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x=\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x .
$$

If we further restrict $n \neq m$, then

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x=\left.\frac{L}{2(n-m) \pi} \sin \left[\frac{(n-m) \pi x}{L}\right]\right|_{-L} ^{L}=0
$$

If $n=m \neq 0$, we have that

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x=\frac{1}{2} \int_{-L}^{L} d x=L
$$

Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero, holds

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n+m) \pi x}{L}\right] d x=\left.\frac{L}{2(n+m) \pi} \sin \left[\frac{(n+m) \pi x}{L}\right]\right|_{-L} ^{L}=0
$$

We obtain that

$$
\int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x=\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x .
$$

If we further restrict $n \neq m$, then

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x=\left.\frac{L}{2(n-m) \pi} \sin \left[\frac{(n-m) \pi x}{L}\right]\right|_{-L} ^{L}=0
$$

If $n=m \neq 0$, we have that

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x=\frac{1}{2} \int_{-L}^{L} d x=L
$$

This establishes the first equation in the Theorem. The remaining equations are proven in a similar way.

Overview of Fourier Series (Sect. 6.2).

- Periodic functions.
- Orthogonality of Sines and Cosines.
- The Fourier Theorem: Continuous case.
- Example: Using the Fourier Theorem.
- The Fourier Theorem: Piecewise continuous case.
- Example: Using the Fourier Theorem.

The Fourier Theorem: Continuous case.

Theorem (Fourier Series)
If the function $f:[-L, L] \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous, then f can be expressed as an infinite series

$$
\begin{equation*}
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] \tag{1}
\end{equation*}
$$

with the constants a_{n} and b_{n} given by

$$
\begin{array}{ll}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 0, \\
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 1 .
\end{array}
$$

Furthermore, the Fourier series in Eq. (1) provides a $2 L$-periodic extension of function f from the domain $[-L, L] \subset \mathbb{R}$ to \mathbb{R}.

The Fourier Theorem: Continuous case.

Sketch of the Proof:

- Define the partial sum functions

$$
f_{N}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{N}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]
$$

The Fourier Theorem: Continuous case.
Sketch of the Proof:

- Define the partial sum functions

$$
f_{N}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{N}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]
$$

with a_{n} and b_{n} given by

$$
\begin{array}{ll}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 0, \\
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 1 .
\end{array}
$$

The Fourier Theorem: Continuous case.

Sketch of the Proof:

- Define the partial sum functions

$$
f_{N}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{N}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]
$$

with a_{n} and b_{n} given by

$$
\begin{array}{ll}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 0, \\
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 1 .
\end{array}
$$

- Express f_{N} as a convolution of Sine, Cosine, functions and the original function f.

The Fourier Theorem: Continuous case.

Sketch of the Proof:

- Define the partial sum functions

$$
f_{N}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{N}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]
$$

with a_{n} and b_{n} given by

$$
\begin{array}{ll}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 0, \\
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 1 .
\end{array}
$$

- Express f_{N} as a convolution of Sine, Cosine, functions and the original function f.
- Use the convolution properties to show that

$$
\lim _{N \rightarrow \infty} f_{N}(x)=f(x), \quad x \in[-L, L]
$$

Overview of Fourier Series (Sect. 6.2).

- Periodic functions.
- Orthogonality of Sines and Cosines.
- The Fourier Theorem: Continuous case.
- Example: Using the Fourier Theorem.
- The Fourier Theorem: Piecewise continuous case.
- Example: Using the Fourier Theorem.

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: In this case $L=1$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: In this case $L=1$. The Fourier series expansion is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x)\right]
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: In this case $L=1$. The Fourier series expansion is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x)\right],
$$

where the a_{n}, b_{n} are given in the Theorem.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: In this case $L=1$. The Fourier series expansion is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x)\right],
$$

where the a_{n}, b_{n} are given in the Theorem. We start with a_{0},

$$
a_{0}=\int_{-1}^{1} f(x) d x
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: In this case $L=1$. The Fourier series expansion is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x)\right]
$$

where the a_{n}, b_{n} are given in the Theorem. We start with a_{0},

$$
a_{0}=\int_{-1}^{1} f(x) d x=\int_{-1}^{0}(1+x) d x+\int_{0}^{1}(1-x) d x
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: In this case $L=1$. The Fourier series expansion is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x)\right]
$$

where the a_{n}, b_{n} are given in the Theorem. We start with a_{0},

$$
\begin{aligned}
& a_{0}=\int_{-1}^{1} f(x) d x=\int_{-1}^{0}(1+x) d x+\int_{0}^{1}(1-x) d x \\
& a_{0}=\left.\left(x+\frac{x^{2}}{2}\right)\right|_{-1} ^{0}+\left.\left(x-\frac{x^{2}}{2}\right)\right|_{0} ^{1}
\end{aligned}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0), \\ 1-x & x \in[0,1] .\end{cases}
$$

Solution: In this case $L=1$. The Fourier series expansion is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x)\right],
$$

where the a_{n}, b_{n} are given in the Theorem. We start with a_{0},

$$
\begin{gathered}
a_{0}=\int_{-1}^{1} f(x) d x=\int_{-1}^{0}(1+x) d x+\int_{0}^{1}(1-x) d x . \\
a_{0}=\left.\left(x+\frac{x^{2}}{2}\right)\right|_{-1} ^{0}+\left.\left(x-\frac{x^{2}}{2}\right)\right|_{0} ^{1}=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{2}\right)
\end{gathered}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: In this case $L=1$. The Fourier series expansion is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x)\right]
$$

where the a_{n}, b_{n} are given in the Theorem. We start with a_{0},

$$
\begin{gathered}
a_{0}=\int_{-1}^{1} f(x) d x=\int_{-1}^{0}(1+x) d x+\int_{0}^{1}(1-x) d x \\
a_{0}=\left.\left(x+\frac{x^{2}}{2}\right)\right|_{-1} ^{0}+\left.\left(x-\frac{x^{2}}{2}\right)\right|_{0} ^{1}=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{2}\right)
\end{gathered}
$$

We obtain: $a_{0}=1$.

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $a_{0}=1$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $a_{0}=1$. Similarly, the rest of the a_{n} are given by,

$$
a_{n}=\int_{-1}^{1} f(x) \cos (n \pi x) d x
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $a_{0}=1$. Similarly, the rest of the a_{n} are given by,

$$
\begin{gathered}
a_{n}=\int_{-1}^{1} f(x) \cos (n \pi x) d x \\
a_{n}=\int_{-1}^{0}(1+x) \cos (n \pi x) d x+\int_{0}^{1}(1-x) \cos (n \pi x) d x
\end{gathered}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $a_{0}=1$. Similarly, the rest of the a_{n} are given by,

$$
\begin{gathered}
a_{n}=\int_{-1}^{1} f(x) \cos (n \pi x) d x \\
a_{n}=\int_{-1}^{0}(1+x) \cos (n \pi x) d x+\int_{0}^{1}(1-x) \cos (n \pi x) d x
\end{gathered}
$$

Recall the integrals $\int \cos (n \pi x) d x=\frac{1}{n \pi} \sin (n \pi x)$,

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $a_{0}=1$. Similarly, the rest of the a_{n} are given by,

$$
\begin{gathered}
a_{n}=\int_{-1}^{1} f(x) \cos (n \pi x) d x \\
a_{n}=\int_{-1}^{0}(1+x) \cos (n \pi x) d x+\int_{0}^{1}(1-x) \cos (n \pi x) d x
\end{gathered}
$$

Recall the integrals $\int \cos (n \pi x) d x=\frac{1}{n \pi} \sin (n \pi x)$, and

$$
\int x \cos (n \pi x) d x=\frac{x}{n \pi} \sin (n \pi x)+\frac{1}{n^{2} \pi^{2}} \cos (n \pi x)
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: It is not difficult to see that

$$
\begin{aligned}
a_{n} & =\left.\frac{1}{n \pi} \sin (n \pi x)\right|_{-1} ^{0}+\left.\left[\frac{x}{n \pi} \sin (n \pi x)+\frac{1}{n^{2} \pi^{2}} \cos (n \pi x)\right]\right|_{-1} ^{0} \\
& +\left.\frac{1}{n \pi} \sin (n \pi x)\right|_{0} ^{1}-\left.\left[\frac{x}{n \pi} \sin (n \pi x)+\frac{1}{n^{2} \pi^{2}} \cos (n \pi x)\right]\right|_{0} ^{1}
\end{aligned}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: It is not difficult to see that

$$
\begin{aligned}
a_{n} & =\left.\frac{1}{n \pi} \sin (n \pi x)\right|_{-1} ^{0}+\left.\left[\frac{x}{n \pi} \sin (n \pi x)+\frac{1}{n^{2} \pi^{2}} \cos (n \pi x)\right]\right|_{-1} ^{0} \\
& +\left.\frac{1}{n \pi} \sin (n \pi x)\right|_{0} ^{1}-\left.\left[\frac{x}{n \pi} \sin (n \pi x)+\frac{1}{n^{2} \pi^{2}} \cos (n \pi x)\right]\right|_{0} ^{1} \\
a_{n} & =\left[\frac{1}{n^{2} \pi^{2}}-\frac{1}{n^{2} \pi^{2}} \cos (-n \pi)\right]-\left[\frac{1}{n^{2} \pi^{2}} \cos (n \pi)-\frac{1}{n^{2} \pi^{2}}\right] .
\end{aligned}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: It is not difficult to see that

$$
\begin{aligned}
a_{n} & =\left.\frac{1}{n \pi} \sin (n \pi x)\right|_{-1} ^{0}+\left.\left[\frac{x}{n \pi} \sin (n \pi x)+\frac{1}{n^{2} \pi^{2}} \cos (n \pi x)\right]\right|_{-1} ^{0} \\
& +\left.\frac{1}{n \pi} \sin (n \pi x)\right|_{0} ^{1}-\left.\left[\frac{x}{n \pi} \sin (n \pi x)+\frac{1}{n^{2} \pi^{2}} \cos (n \pi x)\right]\right|_{0} ^{1} \\
a_{n} & =\left[\frac{1}{n^{2} \pi^{2}}-\frac{1}{n^{2} \pi^{2}} \cos (-n \pi)\right]-\left[\frac{1}{n^{2} \pi^{2}} \cos (n \pi)-\frac{1}{n^{2} \pi^{2}}\right] .
\end{aligned}
$$

We then conclude that $a_{n}=\frac{2}{n^{2} \pi^{2}}[1-\cos (n \pi)]$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $a_{0}=1$, and $a_{n}=\frac{2}{n^{2} \pi^{2}}[1-\cos (n \pi)]$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0), \\ 1-x & x \in[0,1] .\end{cases}
$$

Solution: Recall: $a_{0}=1$, and $a_{n}=\frac{2}{n^{2} \pi^{2}}[1-\cos (n \pi)]$.
Finally, we must find the coefficients b_{n}.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $a_{0}=1$, and $a_{n}=\frac{2}{n^{2} \pi^{2}}[1-\cos (n \pi)]$.
Finally, we must find the coefficients b_{n}.
A similar calculation shows that $b_{n}=0$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $a_{0}=1$, and $a_{n}=\frac{2}{n^{2} \pi^{2}}[1-\cos (n \pi)]$.
Finally, we must find the coefficients b_{n}.
A similar calculation shows that $b_{n}=0$.
Then, the Fourier series of f is given by

$$
f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}[1-\cos (n \pi)] \cos (n \pi x)
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}[1-\cos (n \pi)] \cos (n \pi x)$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}[1-\cos (n \pi)] \cos (n \pi x)$.
We can obtain a simpler expression for the Fourier coefficients a_{n}.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}[1-\cos (n \pi)] \cos (n \pi x)$.
We can obtain a simpler expression for the Fourier coefficients a_{n}.
Recall the relations $\cos (n \pi)=(-1)^{n}$,

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}[1-\cos (n \pi)] \cos (n \pi x)$.
We can obtain a simpler expression for the Fourier coefficients a_{n}.
Recall the relations $\cos (n \pi)=(-1)^{n}$, then

$$
f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1-(-1)^{n}\right] \cos (n \pi x) .
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0), \\ 1-x & x \in[0,1] .\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}[1-\cos (n \pi)] \cos (n \pi x)$.
We can obtain a simpler expression for the Fourier coefficients a_{n}. Recall the relations $\cos (n \pi)=(-1)^{n}$, then

$$
\begin{aligned}
& f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1-(-1)^{n}\right] \cos (n \pi x) \\
& f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)
\end{aligned}
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$,

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$, so n is even,

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$, so n is even, so $n+1=2 k+1$ is odd,

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$, so n is even, so $n+1=2 k+1$ is odd, then

$$
a_{2 k}=\frac{2}{(2 k)^{2} \pi^{2}}(1-1)
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$, so n is even, so $n+1=2 k+1$ is odd, then

$$
a_{2 k}=\frac{2}{(2 k)^{2} \pi^{2}}(1-1) \quad \Rightarrow \quad a_{2 k}=0
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$, so n is even, so $n+1=2 k+1$ is odd, then

$$
a_{2 k}=\frac{2}{(2 k)^{2} \pi^{2}}(1-1) \quad \Rightarrow \quad a_{2 k}=0
$$

If $n=2 k-1$,

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$, so n is even, so $n+1=2 k+1$ is odd, then

$$
a_{2 k}=\frac{2}{(2 k)^{2} \pi^{2}}(1-1) \quad \Rightarrow \quad a_{2 k}=0
$$

If $n=2 k-1$, so n is odd,

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$, so n is even, so $n+1=2 k+1$ is odd, then

$$
a_{2 k}=\frac{2}{(2 k)^{2} \pi^{2}}(1-1) \quad \Rightarrow \quad a_{2 k}=0
$$

If $n=2 k-1$, so n is odd, so $n+1=2 k$ is even,

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$, so n is even, so $n+1=2 k+1$ is odd, then

$$
a_{2 k}=\frac{2}{(2 k)^{2} \pi^{2}}(1-1) \quad \Rightarrow \quad a_{2 k}=0
$$

If $n=2 k-1$, so n is odd, so $n+1=2 k$ is even, then

$$
a_{2 k-1}=\frac{2}{(2 k-1)^{2} \pi^{2}}(1+1)
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$, so n is even, so $n+1=2 k+1$ is odd, then

$$
a_{2 k}=\frac{2}{(2 k)^{2} \pi^{2}}(1-1) \quad \Rightarrow \quad a_{2 k}=0
$$

If $n=2 k-1$, so n is odd, so $n+1=2 k$ is even, then

$$
a_{2 k-1}=\frac{2}{(2 k-1)^{2} \pi^{2}}(1+1) \quad \Rightarrow \quad a_{2 k-1}=\frac{4}{(2 k-1)^{2} \pi^{2}} .
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution:
Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$, and

$$
a_{2 k}=0, \quad a_{2 k-1}=\frac{4}{(2 k-1)^{2} \pi^{2}}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution:
Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$, and

$$
a_{2 k}=0, \quad a_{2 k-1}=\frac{4}{(2 k-1)^{2} \pi^{2}} .
$$

We conclude: $\quad f(x)=\frac{1}{2}+\sum_{k=1}^{\infty} \frac{4}{(2 k-1)^{2} \pi^{2}} \cos ((2 k-1) \pi x) . \quad \triangleleft$

Overview of Fourier Series (Sect. 6.2).

- Periodic functions.
- Orthogonality of Sines and Cosines.
- The Fourier Theorem: Continuous case.
- Example: Using the Fourier Theorem.
- The Fourier Theorem: Piecewise continuous case.
- Example: Using the Fourier Theorem.

The Fourier Theorem: Piecewise continuous case.

Recall:

Definition
A function $f:[a, b] \rightarrow \mathbb{R}$ is called piecewise continuous iff holds,
(a) $[a, b]$ can be partitioned in a finite number of sub-intervals such that f is continuous on the interior of these sub-intervals.
(b) f has finite limits at the endpoints of all sub-intervals.

The Fourier Theorem: Piecewise continuous case.

Theorem (Fourier Series)
If $f:[-L, L] \subset \mathbb{R} \rightarrow \mathbb{R}$ is piecewise continuous, then the function

$$
f_{F}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]
$$

where a_{n} and b_{n} given by

$$
\begin{array}{ll}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 0, \\
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 1 .
\end{array}
$$

satisfies that:
(a) $f_{F}(x)=f(x)$ for all x where f is continuous;
(b) $f_{F}\left(x_{0}\right)=\frac{1}{2}\left[\lim _{x \rightarrow x_{0}^{+}} f(x)+\lim _{x \rightarrow x_{0}^{-}} f(x)\right]$ for all x_{0} where f is discontinuous.

Overview of Fourier Series (Sect. 6.2).

- Periodic functions.
- Orthogonality of Sines and Cosines.
- The Fourier Theorem: Continuous case.
- Example: Using the Fourier Theorem.
- The Fourier Theorem: Piecewise continuous case.
- Example: Using the Fourier Theorem.

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: We start computing the Fourier coefficients b_{n};

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: We start computing the Fourier coefficients b_{n};

$$
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: We start computing the Fourier coefficients b_{n};

$$
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, \quad L=1
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: We start computing the Fourier coefficients b_{n};

$$
\begin{gathered}
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, \quad L=1, \\
b_{n}=\int_{-1}^{0}(-1) \sin (n \pi x) d x+\int_{0}^{1}(1) \sin (n \pi x) d x
\end{gathered}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: We start computing the Fourier coefficients b_{n};

$$
\begin{gathered}
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, \quad L=1, \\
b_{n}=\int_{-1}^{0}(-1) \sin (n \pi x) d x+\int_{0}^{1}(1) \sin (n \pi x) d x, \\
b_{n}=\frac{(-1)}{n \pi}\left[-\left.\cos (n \pi x)\right|_{-1} ^{0}\right]+\frac{1}{n \pi}\left[-\left.\cos (n \pi x)\right|_{0} ^{1}\right],
\end{gathered}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: We start computing the Fourier coefficients b_{n};

$$
\begin{gathered}
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, \quad L=1, \\
b_{n}=\int_{-1}^{0}(-1) \sin (n \pi x) d x+\int_{0}^{1}(1) \sin (n \pi x) d x, \\
b_{n}=\frac{(-1)}{n \pi}\left[-\left.\cos (n \pi x)\right|_{-1} ^{0}\right]+\frac{1}{n \pi}\left[-\left.\cos (n \pi x)\right|_{0} ^{1}\right], \\
b_{n}= \\
\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1] .
\end{gathered}
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

$$
b_{n}=\frac{1}{n \pi}[1-\cos (-n \pi)-\cos (n \pi)+1]
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.
Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

$$
b_{n}=\frac{1}{n \pi}[1-\cos (-n \pi)-\cos (n \pi)+1]=\frac{2}{n \pi}[1-\cos (n \pi)],
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

$$
b_{n}=\frac{1}{n \pi}[1-\cos (-n \pi)-\cos (n \pi)+1]=\frac{2}{n \pi}[1-\cos (n \pi)],
$$

We obtain: $\quad b_{n}=\frac{2}{n \pi}\left[1-(-1)^{n}\right]$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

$$
b_{n}=\frac{1}{n \pi}[1-\cos (-n \pi)-\cos (n \pi)+1]=\frac{2}{n \pi}[1-\cos (n \pi)],
$$

We obtain: $\quad b_{n}=\frac{2}{n \pi}\left[1-(-1)^{n}\right]$.
If $n=2 k$,

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

$$
b_{n}=\frac{1}{n \pi}[1-\cos (-n \pi)-\cos (n \pi)+1]=\frac{2}{n \pi}[1-\cos (n \pi)],
$$

We obtain: $\quad b_{n}=\frac{2}{n \pi}\left[1-(-1)^{n}\right]$.
If $n=2 k$, then $b_{2 k}=\frac{2}{2 k \pi}\left[1-(-1)^{2 k}\right]$,

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

$$
b_{n}=\frac{1}{n \pi}[1-\cos (-n \pi)-\cos (n \pi)+1]=\frac{2}{n \pi}[1-\cos (n \pi)],
$$

We obtain: $\quad b_{n}=\frac{2}{n \pi}\left[1-(-1)^{n}\right]$.
If $n=2 k$, then $b_{2 k}=\frac{2}{2 k \pi}\left[1-(-1)^{2 k}\right]$, hence $b_{2 k}=0$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

$$
b_{n}=\frac{1}{n \pi}[1-\cos (-n \pi)-\cos (n \pi)+1]=\frac{2}{n \pi}[1-\cos (n \pi)],
$$

We obtain: $\quad b_{n}=\frac{2}{n \pi}\left[1-(-1)^{n}\right]$.
If $n=2 k$, then $b_{2 k}=\frac{2}{2 k \pi}\left[1-(-1)^{2 k}\right]$, hence $b_{2 k}=0$.
If $n=2 k-1$,

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

$$
b_{n}=\frac{1}{n \pi}[1-\cos (-n \pi)-\cos (n \pi)+1]=\frac{2}{n \pi}[1-\cos (n \pi)],
$$

We obtain: $\quad b_{n}=\frac{2}{n \pi}\left[1-(-1)^{n}\right]$.
If $n=2 k$, then $b_{2 k}=\frac{2}{2 k \pi}\left[1-(-1)^{2 k}\right]$, hence $b_{2 k}=0$.
If $n=2 k-1$, then $b_{2 k-1}=\frac{2}{(2 k-1) \pi}\left[1-(-1)^{2 k-1}\right]$,

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

$$
b_{n}=\frac{1}{n \pi}[1-\cos (-n \pi)-\cos (n \pi)+1]=\frac{2}{n \pi}[1-\cos (n \pi)],
$$

We obtain: $\quad b_{n}=\frac{2}{n \pi}\left[1-(-1)^{n}\right]$.
If $n=2 k$, then $b_{2 k}=\frac{2}{2 k \pi}\left[1-(-1)^{2 k}\right]$, hence $b_{2 k}=0$.
If $n=2 k-1$, then $b_{2 k-1}=\frac{2}{(2 k-1) \pi}\left[1-(-1)^{2 k-1}\right]$,
hence $\quad b_{2 k}=\frac{4}{(2 k-1) \pi}$.

Example: Using the Fourier Theorem.

Example
Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: Recall: $\quad b_{2 k}=0$, and $\quad b_{2 k}=\frac{4}{(2 k-1) \pi}$.

Example: Using the Fourier Theorem.

Example
Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: Recall: $\quad b_{2 k}=0$, and $\quad b_{2 k}=\frac{4}{(2 k-1) \pi}$.

$$
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: Recall: $\quad b_{2 k}=0$, and $\quad b_{2 k}=\frac{4}{(2 k-1) \pi}$.

$$
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, \quad L=1
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: Recall: $\quad b_{2 k}=0$, and $\quad b_{2 k}=\frac{4}{(2 k-1) \pi}$.

$$
\begin{gathered}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, \quad L=1, \\
a_{n}=\int_{-1}^{0}(-1) \cos (n \pi x) d x+\int_{0}^{1}(1) \cos (n \pi x) d x
\end{gathered}
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) \text {. }\end{array}\right.$ and periodic with period $T=2$.

Solution: Recall: $\quad b_{2 k}=0$, and $\quad b_{2 k}=\frac{4}{(2 k-1) \pi}$.

$$
\begin{gathered}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, \quad L=1, \\
a_{n}=\int_{-1}^{0}(-1) \cos (n \pi x) d x+\int_{0}^{1}(1) \cos (n \pi x) d x, \\
a_{n}=\frac{(-1)}{n \pi}\left[\left.\sin (n \pi x)\right|_{-1} ^{0}\right]+\frac{1}{n \pi}\left[\left.\sin (n \pi x)\right|_{0} ^{1}\right],
\end{gathered}
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) \text {. }\end{array}\right.$ and periodic with period $T=2$.

Solution: Recall: $\quad b_{2 k}=0$, and $\quad b_{2 k}=\frac{4}{(2 k-1) \pi}$.

$$
\begin{gathered}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, \quad L=1, \\
a_{n}=\int_{-1}^{0}(-1) \cos (n \pi x) d x+\int_{0}^{1}(1) \cos (n \pi x) d x, \\
a_{n}=\frac{(-1)}{n \pi}\left[\left.\sin (n \pi x)\right|_{-1} ^{0}\right]+\frac{1}{n \pi}\left[\left.\sin (n \pi x)\right|_{0} ^{1}\right], \\
a_{n}=\frac{(-1)}{n \pi}[0-\sin (-n \pi)]+\frac{1}{n \pi}[\sin (n \pi)-0]
\end{gathered}
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) \text {. }\end{array}\right.$ and periodic with period $T=2$.

Solution: Recall: $\quad b_{2 k}=0$, and $\quad b_{2 k}=\frac{4}{(2 k-1) \pi}$.

$$
\begin{gathered}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, \quad L=1, \\
a_{n}=\int_{-1}^{0}(-1) \cos (n \pi x) d x+\int_{0}^{1}(1) \cos (n \pi x) d x, \\
a_{n}=\frac{(-1)}{n \pi}\left[\left.\sin (n \pi x)\right|_{-1} ^{0}\right]+\frac{1}{n \pi}\left[\left.\sin (n \pi x)\right|_{0} ^{1}\right], \\
a_{n}=\frac{(-1)}{n \pi}[0-\sin (-n \pi)]+\frac{1}{n \pi}[\sin (n \pi)-0] \Rightarrow a_{n}=0 .
\end{gathered}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: Recall: $\quad b_{2 k}=0, \quad b_{2 k}=\frac{4}{(2 k-1) \pi}, \quad$ and $\quad a_{n}=0$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: Recall: $\quad b_{2 k}=0, \quad b_{2 k}=\frac{4}{(2 k-1) \pi}, \quad$ and $\quad a_{n}=0$.
Therefore, we conclude that

$$
f_{F}(x)=\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{1}{(2 k-1)} \sin ((2 k-1) \pi x) .
$$

Solving the Heat Equation (Sect. 6.3).

- Review: The Stationary Heat Equation.
- The Heat Equation.
- The Initial-Boundary Value Problem.
- The separation of variables method.
- An example of separation of variables.

Review: The Stationary Heat Equation.

Review: The Stationary Heat Equation describes the temperature distribution in a solid material in thermal equilibrium. The temperature is time-independent.

Review: The Stationary Heat Equation.

Review: The Stationary Heat Equation describes the temperature distribution in a solid material in thermal equilibrium. The temperature is time-independent.

Problem: The time-independent temperature, T, of a bar of length L with insulated horizontal sides and vertical extremes kept at fixed temperatures T_{0}, T_{L}, is the solution of the BVP:

$$
T^{\prime \prime}(x)=0, \quad x \in(0, L), \quad T(0)=T_{0}, \quad T(L)=T_{L},
$$

Review: The Stationary Heat Equation.

Review: The Stationary Heat Equation describes the temperature distribution in a solid material in thermal equilibrium. The temperature is time-independent.

Problem: The time-independent temperature, T, of a bar of length L with insulated horizontal sides and vertical extremes kept at fixed temperatures T_{0}, T_{L}, is the solution of the BVP:

$$
T^{\prime \prime}(x)=0, \quad x \in(0, L), \quad T(0)=T_{0}, \quad T(L)=T_{L}
$$

Review: The Stationary Heat Equation.

Review: The Stationary Heat Equation describes the temperature distribution in a solid material in thermal equilibrium. The temperature is time-independent.

Problem: The time-independent temperature, T, of a bar of length L with insulated horizontal sides and vertical extremes kept at fixed temperatures T_{0}, T_{L}, is the solution of the BVP:

$$
T^{\prime \prime}(x)=0, \quad x \in(0, L), \quad T(0)=T_{0}, \quad T(L)=T_{L}
$$

Remark: The heat transfer occurs only along the x-axis.

Solving the Heat Equation (Sect. 6.3).

- Review: The Stationary Heat Equation.
- The Heat Equation.
- The Initial-Boundary Value Problem.
- The separation of variables method.
- An example of separation of variables.

The Heat Equation.

Remarks:

- The unknown of the problem is $u(t, x)$, the temperature of the bar at the time t and position x.

The Heat Equation.

Remarks:

- The unknown of the problem is $u(t, x)$, the temperature of the bar at the time t and position x.
- The temperature does not depend on y or z.

The Heat Equation.

Remarks:

- The unknown of the problem is $u(t, x)$, the temperature of the bar at the time t and position x.
- The temperature does not depend on y or z.
- The one-dimensional Heat Equation is:

$$
\partial_{t} u(t, x)=k \partial_{x}^{2} u(t, x)
$$

The Heat Equation.

Remarks:

- The unknown of the problem is $u(t, x)$, the temperature of the bar at the time t and position x.
- The temperature does not depend on y or z.
- The one-dimensional Heat Equation is:

$$
\partial_{t} u(t, x)=k \partial_{x}^{2} u(t, x)
$$

where $k>0$ is the heat conductivity,

The Heat Equation.

Remarks:

- The unknown of the problem is $u(t, x)$, the temperature of the bar at the time t and position x.
- The temperature does not depend on y or z.
- The one-dimensional Heat Equation is:

$$
\partial_{t} u(t, x)=k \partial_{x}^{2} u(t, x)
$$

where $k>0$ is the heat conductivity, units: $[k]=\frac{(\text { distance })^{2}}{(\text { time })}$.

The Heat Equation.

Remarks:

- The unknown of the problem is $u(t, x)$, the temperature of the bar at the time t and position x.
- The temperature does not depend on y or z.
- The one-dimensional Heat Equation is:

$$
\partial_{t} u(t, x)=k \partial_{x}^{2} u(t, x)
$$

where $k>0$ is the heat conductivity, units: $[k]=\frac{(\text { distance })^{2}}{(\text { time })}$.

- The Heat Equation is a Partial Differential Equation, PDE.

The Heat Equation.

Remarks:

- The unknown of the problem is $u(t, x)$, the temperature of the bar at the time t and position x.
- The temperature does not depend on y or z.
- The one-dimensional Heat Equation is:

$$
\partial_{t} u(t, x)=k \partial_{x}^{2} u(t, x)
$$

where $k>0$ is the heat conductivity, units: $[k]=\frac{(\text { distance })^{2}}{(\text { time })}$.

- The Heat Equation is a Partial Differential Equation, PDE.

Solving the Heat Equation (Sect. 6.3).

- Review: The Stationary Heat Equation.
- The Heat Equation.
- The Initial-Boundary Value Problem.
- The separation of variables method.
- An example of separation of variables.

The Initial-Boundary Value Problem.

Definition
The IBVP for the one-dimensional Heat Equation is the following: Given a constant $k>0$ and a function $f:[0, L] \rightarrow \mathbb{R}$ with $f(0)=f(L)=0$, find $u:[0, \infty) \times[0, L] \rightarrow \mathbb{R}$ solution of

$$
\partial_{t} u(t, x)=k \partial_{x}^{2} u(t, x)
$$

The Initial-Boundary Value Problem.

Definition
The IBVP for the one-dimensional Heat Equation is the following: Given a constant $k>0$ and a function $f:[0, L] \rightarrow \mathbb{R}$ with $f(0)=f(L)=0$, find $u:[0, \infty) \times[0, L] \rightarrow \mathbb{R}$ solution of

$$
\begin{gathered}
\partial_{t} u(t, x)=k \partial_{x}^{2} u(t, x), \\
\text { I.C.: } u(0, x)=f(x),
\end{gathered}
$$

The Initial-Boundary Value Problem.

Definition
The IBVP for the one-dimensional Heat Equation is the following: Given a constant $k>0$ and a function $f:[0, L] \rightarrow \mathbb{R}$ with $f(0)=f(L)=0$, find $u:[0, \infty) \times[0, L] \rightarrow \mathbb{R}$ solution of

$$
\begin{gathered}
\partial_{t} u(t, x)=k \partial_{x}^{2} u(t, x), \\
\text { I.C.: } u(0, x)=f(x) \text {, } \\
\text { B.C.: } u(t, 0)=0, \quad u(t, L)=0 .
\end{gathered}
$$

The Initial-Boundary Value Problem.

Definition

The IBVP for the one-dimensional Heat Equation is the following: Given a constant $k>0$ and a function $f:[0, L] \rightarrow \mathbb{R}$ with $f(0)=f(L)=0$, find $u:[0, \infty) \times[0, L] \rightarrow \mathbb{R}$ solution of

$$
\begin{gathered}
\partial_{t} u(t, x)=k \partial_{x}^{2} u(t, x), \\
\text { I.C.: } u(0, x)=f(x), \\
\text { B.C.: } u(t, 0)=0, \quad u(t, L)=0 .
\end{gathered}
$$

Solving the Heat Equation (Sect. 6.3).

- Review: The Stationary Heat Equation.
- The Heat Equation.
- The Initial-Boundary Value Problem.
- The separation of variables method.
- An example of separation of variables.

The separation of variables method.

Summary: IBVP for the Heat Equation.
Propose:

$$
u(t, x)=\sum_{n=1}^{\infty} c_{n} v_{n}(t) w_{n}(x)
$$

The separation of variables method.

Summary: IBVP for the Heat Equation.
Propose:

$$
u(t, x)=\sum_{n=1}^{\infty} c_{n} v_{n}(t) w_{n}(x)
$$

where

- v_{n} : Solution of an IVP.

The separation of variables method.

Summary: IBVP for the Heat Equation.

Propose:

$$
u(t, x)=\sum_{n=1}^{\infty} c_{n} v_{n}(t) w_{n}(x)
$$

where

- v_{n} : Solution of an IVP.
- w_{n} : Solution of a BVP, an eigenvalue-eigenfunction problem.

The separation of variables method.

Summary: IBVP for the Heat Equation.
Propose:

$$
u(t, x)=\sum_{n=1}^{\infty} c_{n} v_{n}(t) w_{n}(x)
$$

where

- v_{n} : Solution of an IVP.
- w_{n} : Solution of a BVP, an eigenvalue-eigenfunction problem.
- c_{n} : Fourier Series coefficients.

The separation of variables method.

Summary: IBVP for the Heat Equation.
Propose:

$$
u(t, x)=\sum_{n=1}^{\infty} c_{n} v_{n}(t) w_{n}(x)
$$

where

- v_{n} : Solution of an IVP.
- w_{n} : Solution of a BVP, an eigenvalue-eigenfunction problem.
- c_{n} : Fourier Series coefficients.

Remark:
The separation of variables method does not work for every PDE.

The separation of variables method.

Summary:

- The idea is to transform the PDE into infinitely many ODEs.

The separation of variables method.

Summary:

- The idea is to transform the PDE into infinitely many ODEs.
- We describe this method in 6 steps.

The separation of variables method.

Summary:

- The idea is to transform the PDE into infinitely many ODEs.
- We describe this method in 6 steps.

Step 1:
One looks for solutions u given by an infinite series of simpler functions, u_{n},

The separation of variables method.

Summary:

- The idea is to transform the PDE into infinitely many ODEs.
- We describe this method in 6 steps.

Step 1:
One looks for solutions u given by an infinite series of simpler functions, u_{n}, that is,

$$
u(t, x)=\sum_{n=1}^{\infty} c_{n} u_{n}(t, x)
$$

The separation of variables method.

Summary:

- The idea is to transform the PDE into infinitely many ODEs.
- We describe this method in 6 steps.

Step 1:
One looks for solutions u given by an infinite series of simpler functions, u_{n}, that is,

$$
u(t, x)=\sum_{n=1}^{\infty} c_{n} u_{n}(t, x),
$$

where u_{n} is simpler than u is the sense,

$$
u_{n}(t, x)=v_{n}(t) w_{n}(x) .
$$

The separation of variables method.

Summary:

- The idea is to transform the PDE into infinitely many ODEs.
- We describe this method in 6 steps.

Step 1:
One looks for solutions u given by an infinite series of simpler functions, u_{n}, that is,

$$
u(t, x)=\sum_{n=1}^{\infty} c_{n} u_{n}(t, x)
$$

where u_{n} is simpler than u is the sense,

$$
u_{n}(t, x)=v_{n}(t) w_{n}(x) .
$$

Here c_{n} are constants, $n=1,2, \cdots$.

The separation of variables method.

Step 2:
Introduce the series expansion for u into the Heat Equation,

$$
\partial_{t} u-k \partial_{x}^{2} u=0
$$

The separation of variables method.

Step 2:
Introduce the series expansion for u into the Heat Equation,

$$
\partial_{t} u-k \partial_{x}^{2} u=0 \Rightarrow \sum_{n=1}^{\infty} c_{n}\left[\partial_{t} u_{n}-k \partial_{x}^{2} u_{n}\right]=0
$$

The separation of variables method.

Step 2:
Introduce the series expansion for u into the Heat Equation,

$$
\partial_{t} u-k \partial_{x}^{2} u=0 \Rightarrow \sum_{n=1}^{\infty} c_{n}\left[\partial_{t} u_{n}-k \partial_{x}^{2} u_{n}\right]=0
$$

A sufficient condition for the equation above is:

The separation of variables method.

Step 2:
Introduce the series expansion for u into the Heat Equation,

$$
\partial_{t} u-k \partial_{x}^{2} u=0 \Rightarrow \sum_{n=1}^{\infty} c_{n}\left[\partial_{t} u_{n}-k \partial_{x}^{2} u_{n}\right]=0
$$

A sufficient condition for the equation above is: To find u_{n}, for $n=1,2, \cdots$,

The separation of variables method.

Step 2:
Introduce the series expansion for u into the Heat Equation,

$$
\partial_{t} u-k \partial_{x}^{2} u=0 \Rightarrow \sum_{n=1}^{\infty} c_{n}\left[\partial_{t} u_{n}-k \partial_{x}^{2} u_{n}\right]=0
$$

A sufficient condition for the equation above is: To find u_{n}, for $n=1,2, \cdots$, solutions of

$$
\partial_{t} u_{n}-k \partial_{x}^{2} u_{n}=0
$$

The separation of variables method.

Step 2:
Introduce the series expansion for u into the Heat Equation,

$$
\partial_{t} u-k \partial_{x}^{2} u=0 \Rightarrow \sum_{n=1}^{\infty} c_{n}\left[\partial_{t} u_{n}-k \partial_{x}^{2} u_{n}\right]=0
$$

A sufficient condition for the equation above is: To find u_{n}, for $n=1,2, \cdots$, solutions of

$$
\partial_{t} u_{n}-k \partial_{x}^{2} u_{n}=0
$$

Step 3:
Find $u_{n}(t, x)=v_{n}(t) w_{n}(x)$ solution of the IBVP

$$
\partial_{t} u_{n}-k \partial_{x}^{2} u_{n}=0
$$

The separation of variables method.

Step 2:
Introduce the series expansion for u into the Heat Equation,

$$
\partial_{t} u-k \partial_{x}^{2} u=0 \Rightarrow \sum_{n=1}^{\infty} c_{n}\left[\partial_{t} u_{n}-k \partial_{x}^{2} u_{n}\right]=0
$$

A sufficient condition for the equation above is: To find u_{n}, for $n=1,2, \cdots$, solutions of

$$
\partial_{t} u_{n}-k \partial_{x}^{2} u_{n}=0
$$

Step 3:
Find $u_{n}(t, x)=v_{n}(t) w_{n}(x)$ solution of the IBVP

$$
\begin{gathered}
\partial_{t} u_{n}-k \partial_{x}^{2} u_{n}=0 . \\
\text { I.C.: } \quad u_{n}(0, x)=w_{n}(x)
\end{gathered}
$$

The separation of variables method.

Step 2:
Introduce the series expansion for u into the Heat Equation,

$$
\partial_{t} u-k \partial_{x}^{2} u=0 \Rightarrow \sum_{n=1}^{\infty} c_{n}\left[\partial_{t} u_{n}-k \partial_{x}^{2} u_{n}\right]=0
$$

A sufficient condition for the equation above is: To find u_{n}, for $n=1,2, \cdots$, solutions of

$$
\partial_{t} u_{n}-k \partial_{x}^{2} u_{n}=0
$$

Step 3:
Find $u_{n}(t, x)=v_{n}(t) w_{n}(x)$ solution of the IBVP

$$
\begin{gathered}
\partial_{t} u_{n}-k \partial_{x}^{2} u_{n}=0 . \\
\text { I.C.: } \quad u_{n}(0, x)=w_{n}(x), \\
\text { B.C.: } \quad u_{n}(t, 0)=0, \quad u_{n}(t, L)=0 .
\end{gathered}
$$

The separation of variables method.
Step 4: (Key step.)
Transform the IBVP for u_{n} into:

The separation of variables method.

Step 4: (Key step.)
Transform the IBVP for u_{n} into: (a) IVP for v_{n};

The separation of variables method.

Step 4: (Key step.)
Transform the IBVP for u_{n} into: (a) IVP for v_{n}; (b) BVP for w_{n}.

The separation of variables method.

Step 4: (Key step.)
Transform the IBVP for u_{n} into: (a) IVP for v_{n}; (b) BVP for w_{n}. Notice:

$$
\partial_{t} u_{n}(t, x)
$$

The separation of variables method.

Step 4: (Key step.)
Transform the IBVP for u_{n} into: (a) IVP for v_{n}; (b) BVP for w_{n}. Notice:

$$
\partial_{t} u_{n}(t, x)=\partial_{t}\left[v_{n}(t) w_{n}(x)\right]
$$

The separation of variables method.

Step 4: (Key step.)
Transform the IBVP for u_{n} into: (a) IVP for v_{n}; (b) BVP for w_{n}.
Notice:

$$
\partial_{t} u_{n}(t, x)=\partial_{t}\left[v_{n}(t) w_{n}(x)\right]=w_{n}(x) \frac{d v_{n}}{d t}(t)
$$

The separation of variables method.

Step 4: (Key step.)
Transform the IBVP for u_{n} into: (a) IVP for v_{n}; (b) BVP for w_{n}.
Notice:

$$
\begin{aligned}
& \partial_{t} u_{n}(t, x)=\partial_{t}\left[v_{n}(t) w_{n}(x)\right]=w_{n}(x) \frac{d v_{n}}{d t}(t) \\
& \partial_{x}^{2} u_{n}(t, x)
\end{aligned}
$$

The separation of variables method.

Step 4: (Key step.)
Transform the IBVP for u_{n} into: (a) IVP for v_{n}; (b) BVP for w_{n}.
Notice:

$$
\begin{aligned}
& \partial_{t} u_{n}(t, x)=\partial_{t}\left[v_{n}(t) w_{n}(x)\right]=w_{n}(x) \frac{d v_{n}}{d t}(t) . \\
& \partial_{x}^{2} u_{n}(t, x)=\partial_{x}^{2}\left[v_{n}(t) w_{n}(x)\right]
\end{aligned}
$$

The separation of variables method.

Step 4: (Key step.)
Transform the IBVP for u_{n} into: (a) IVP for v_{n}; (b) BVP for w_{n}.
Notice:

$$
\begin{gathered}
\partial_{t} u_{n}(t, x)=\partial_{t}\left[v_{n}(t) w_{n}(x)\right]=w_{n}(x) \frac{d v_{n}}{d t}(t) . \\
\partial_{x}^{2} u_{n}(t, x)=\partial_{x}^{2}\left[v_{n}(t) w_{n}(x)\right]=v_{n}(t) \frac{d^{2} w_{n}}{d x^{2}}(x) .
\end{gathered}
$$

The separation of variables method.

Step 4: (Key step.)
Transform the IBVP for u_{n} into: (a) IVP for v_{n}; (b) BVP for w_{n}.
Notice:

$$
\begin{aligned}
\partial_{t} u_{n}(t, x) & =\partial_{t}\left[v_{n}(t) w_{n}(x)\right]=w_{n}(x) \frac{d v_{n}}{d t}(t) \\
\partial_{x}^{2} u_{n}(t, x) & =\partial_{x}^{2}\left[v_{n}(t) w_{n}(x)\right]=v_{n}(t) \frac{d^{2} w_{n}}{d x^{2}}(x)
\end{aligned}
$$

Therefore, the equation $\partial_{t} u_{n}=k \partial_{x}^{2} u_{n}$

The separation of variables method.

Step 4: (Key step.)
Transform the IBVP for u_{n} into: (a) IVP for v_{n}; (b) BVP for w_{n}.
Notice:

$$
\begin{aligned}
\partial_{t} u_{n}(t, x) & =\partial_{t}\left[v_{n}(t) w_{n}(x)\right]=w_{n}(x) \frac{d v_{n}}{d t}(t) \\
\partial_{x}^{2} u_{n}(t, x) & =\partial_{x}^{2}\left[v_{n}(t) w_{n}(x)\right]=v_{n}(t) \frac{d^{2} w_{n}}{d x^{2}}(x)
\end{aligned}
$$

Therefore, the equation $\partial_{t} u_{n}=k \partial_{x}^{2} u_{n}$ is given by

$$
w_{n}(x) \frac{d v_{n}}{d t}(t)=k v_{n}(t) \frac{d^{2} w_{n}}{d x^{2}}(x)
$$

The separation of variables method.

Step 4: (Key step.)
Transform the IBVP for u_{n} into: (a) IVP for v_{n}; (b) BVP for w_{n}.
Notice:

$$
\begin{aligned}
\partial_{t} u_{n}(t, x) & =\partial_{t}\left[v_{n}(t) w_{n}(x)\right]=w_{n}(x) \frac{d v_{n}}{d t}(t) \\
\partial_{x}^{2} u_{n}(t, x) & =\partial_{x}^{2}\left[v_{n}(t) w_{n}(x)\right]=v_{n}(t) \frac{d^{2} w_{n}}{d x^{2}}(x)
\end{aligned}
$$

Therefore, the equation $\partial_{t} u_{n}=k \partial_{x}^{2} u_{n}$ is given by

$$
\begin{aligned}
w_{n}(x) \frac{d v_{n}}{d t}(t) & =k v_{n}(t) \frac{d^{2} w_{n}}{d x^{2}}(x) \\
\frac{1}{k v_{n}(t)} \frac{d v_{n}}{d t}(t) & =\frac{1}{w_{n}(x)} \frac{d^{2} w_{n}}{d x^{2}}(x)
\end{aligned}
$$

The separation of variables method.

Step 4: (Key step.)
Transform the IBVP for u_{n} into: (a) IVP for v_{n}; (b) BVP for w_{n}.
Notice:

$$
\begin{aligned}
\partial_{t} u_{n}(t, x) & =\partial_{t}\left[v_{n}(t) w_{n}(x)\right]=w_{n}(x) \frac{d v_{n}}{d t}(t) \\
\partial_{x}^{2} u_{n}(t, x) & =\partial_{x}^{2}\left[v_{n}(t) w_{n}(x)\right]=v_{n}(t) \frac{d^{2} w_{n}}{d x^{2}}(x)
\end{aligned}
$$

Therefore, the equation $\partial_{t} u_{n}=k \partial_{x}^{2} u_{n}$ is given by

$$
\begin{aligned}
& w_{n}(x) \frac{d v_{n}}{d t}(t)=k v_{n}(t) \frac{d^{2} w_{n}}{d x^{2}}(x) \\
& \frac{1}{k v_{n}(t)} \frac{d v_{n}}{d t}(t)=\frac{1}{w_{n}(x)} \frac{d^{2} w_{n}}{d x^{2}}(x)
\end{aligned}
$$

Depends only on t

The separation of variables method.

Step 4: (Key step.)
Transform the IBVP for u_{n} into: (a) IVP for v_{n}; (b) BVP for w_{n}.
Notice:

$$
\begin{gathered}
\partial_{t} u_{n}(t, x)=\partial_{t}\left[v_{n}(t) w_{n}(x)\right]=w_{n}(x) \frac{d v_{n}}{d t}(t) . \\
\partial_{x}^{2} u_{n}(t, x)=\partial_{x}^{2}\left[v_{n}(t) w_{n}(x)\right]=v_{n}(t) \frac{d^{2} w_{n}}{d x^{2}}(x) .
\end{gathered}
$$

Therefore, the equation $\partial_{t} u_{n}=k \partial_{x}^{2} u_{n}$ is given by

$$
\begin{aligned}
& w_{n}(x) \frac{d v_{n}}{d t}(t)=k v_{n}(t) \frac{d^{2} w_{n}}{d x^{2}}(x) \\
& \frac{1}{k v_{n}(t)} \frac{d v_{n}}{d t}(t)=\frac{1}{w_{n}(x)} \frac{d^{2} w_{n}}{d x^{2}}(x)
\end{aligned}
$$

Depends only on $t=$ Depends only on x.

The separation of variables method.
Recall:

$$
\frac{1}{k v_{n}(t)} \frac{d v_{n}}{d t}(t)=\frac{1}{w_{n}(x)} \frac{d^{2} w_{n}}{d x^{2}}(x)
$$

Depends only on $t=$ Depends only on x.

The separation of variables method.

Recall:

$$
\frac{1}{k v_{n}(t)} \frac{d v_{n}}{d t}(t)=\frac{1}{w_{n}(x)} \frac{d^{2} w_{n}}{d x^{2}}(x)
$$

Depends only on $t=$ Depends only on x.

- The Heat Equation has the following property: The left-hand side depends only on t, while the right-hand side depends only on x.

The separation of variables method.

Recall:

$$
\frac{1}{k v_{n}(t)} \frac{d v_{n}}{d t}(t)=\frac{1}{w_{n}(x)} \frac{d^{2} w_{n}}{d x^{2}}(x)
$$

Depends only on $t=$ Depends only on x.

- The Heat Equation has the following property: The left-hand side depends only on t, while the right-hand side depends only on x.
- When this happens in a PDE, one can use the separation of variables method on that PDE.

The separation of variables method.

Recall:

$$
\frac{1}{k v_{n}(t)} \frac{d v_{n}}{d t}(t)=\frac{1}{w_{n}(x)} \frac{d^{2} w_{n}}{d x^{2}}(x)
$$

Depends only on $t=$ Depends only on x.

- The Heat Equation has the following property: The left-hand side depends only on t, while the right-hand side depends only on x.
- When this happens in a PDE, one can use the separation of variables method on that PDE.
- We conclude that for appropriate constants λ_{m} holds

$$
\frac{1}{k v_{n}(t)} \frac{d v_{n}}{d t}(t)=-\lambda_{n}
$$

The separation of variables method.

Recall:

$$
\frac{1}{k v_{n}(t)} \frac{d v_{n}}{d t}(t)=\frac{1}{w_{n}(x)} \frac{d^{2} w_{n}}{d x^{2}}(x)
$$

Depends only on $t=$ Depends only on x.

- The Heat Equation has the following property: The left-hand side depends only on t, while the right-hand side depends only on x.
- When this happens in a PDE, one can use the separation of variables method on that PDE.
- We conclude that for appropriate constants λ_{m} holds

$$
\frac{1}{k v_{n}(t)} \frac{d v_{n}}{d t}(t)=-\lambda_{n}, \quad \frac{1}{w_{n}(x)} \frac{d^{2} w_{n}}{d x^{2}}(x)=-\lambda_{n}
$$

The separation of variables method.

Recall:

$$
\frac{1}{k v_{n}(t)} \frac{d v_{n}}{d t}(t)=\frac{1}{w_{n}(x)} \frac{d^{2} w_{n}}{d x^{2}}(x)
$$

Depends only on $t=$ Depends only on x.

- The Heat Equation has the following property: The left-hand side depends only on t, while the right-hand side depends only on x.
- When this happens in a PDE, one can use the separation of variables method on that PDE.
- We conclude that for appropriate constants λ_{m} holds

$$
\frac{1}{k v_{n}(t)} \frac{d v_{n}}{d t}(t)=-\lambda_{n}, \quad \frac{1}{w_{n}(x)} \frac{d^{2} w_{n}}{d x^{2}}(x)=-\lambda_{n} .
$$

- We have transformed the original PDE into infinitely many ODEs parametrized by n, positive integer.

The separation of variables method.

Summary Step 4: The original IBVP for the Heat Equation, PDE, can transformed into:

The separation of variables method.

Summary Step 4: The original IBVP for the Heat Equation, PDE, can transformed into:
(a) We choose to solve the following IVP for v_{n},

$$
\frac{1}{k v_{n}(t)} \frac{d v_{n}}{d t}(t)=-\lambda_{n},
$$

The separation of variables method.

Summary Step 4: The original IBVP for the Heat Equation, PDE, can transformed into:
(a) We choose to solve the following IVP for v_{n},

$$
\frac{1}{k v_{n}(t)} \frac{d v_{n}}{d t}(t)=-\lambda_{n}, \quad \text { I.C.: } \quad v_{n}(0)=1 .
$$

The separation of variables method.

Summary Step 4: The original IBVP for the Heat Equation, PDE, can transformed into:
(a) We choose to solve the following IVP for v_{n},

$$
\frac{1}{k v_{n}(t)} \frac{d v_{n}}{d t}(t)=-\lambda_{n}, \quad \text { I.C.: } \quad v_{n}(0)=1 .
$$

Remark: This choice of I.C. simplifies the problem.

The separation of variables method.

Summary Step 4: The original IBVP for the Heat Equation, PDE, can transformed into:
(a) We choose to solve the following IVP for v_{n},

$$
\frac{1}{k v_{n}(t)} \frac{d v_{n}}{d t}(t)=-\lambda_{n}, \quad \text { I.C.: } \quad v_{n}(0)=1 .
$$

Remark: This choice of I.C. simplifies the problem.
(b) The BVP for w_{n},

$$
\frac{1}{w_{n}(x)} \frac{d^{2} w_{n}}{d x^{2}}(x)=-\lambda_{n}
$$

The separation of variables method.

Summary Step 4: The original IBVP for the Heat Equation, PDE, can transformed into:
(a) We choose to solve the following IVP for v_{n},

$$
\frac{1}{k v_{n}(t)} \frac{d v_{n}}{d t}(t)=-\lambda_{n}, \quad \text { I.C.: } \quad v_{n}(0)=1 .
$$

Remark: This choice of I.C. simplifies the problem.
(b) The BVP for w_{n},

$$
\frac{1}{w_{n}(x)} \frac{d^{2} w_{n}}{d x^{2}}(x)=-\lambda_{n}, \quad \text { B.C. }: \quad w_{n}(0)=0, \quad w_{n}(L)=0
$$

The separation of variables method.

Summary Step 4: The original IBVP for the Heat Equation, PDE, can transformed into:
(a) We choose to solve the following IVP for v_{n},

$$
\frac{1}{k v_{n}(t)} \frac{d v_{n}}{d t}(t)=-\lambda_{n}, \quad \text { I.C.: } \quad v_{n}(0)=1 .
$$

Remark: This choice of I.C. simplifies the problem.
(b) The BVP for w_{n},

$$
\frac{1}{w_{n}(x)} \frac{d^{2} w_{n}}{d x^{2}}(x)=-\lambda_{n}, \quad \text { B.C.: } \quad w_{n}(0)=0, \quad w_{n}(L)=0 .
$$

Step 5:
(a) Solve the IVP for v_{n}.
(b) Solve the BVP for w_{n}.

The separation of variables method.

Step 5(a): Solving the IVP for v_{n}.

$$
v_{n}^{\prime}(t)+k \lambda_{n} v_{n}(t)=0
$$

The separation of variables method.

Step 5(a): Solving the IVP for v_{n}.

$$
v_{n}^{\prime}(t)+k \lambda_{n} v_{n}(t)=0, \quad \text { I.C.: } \quad v_{n}(0)=1 .
$$

The separation of variables method.

Step 5(a): Solving the IVP for v_{n}.

$$
v_{n}^{\prime}(t)+k \lambda_{n} v_{n}(t)=0, \quad \text { I.C.: } \quad v_{n}(0)=1 .
$$

The integrating factor method implies that $\mu(t)=e^{k \lambda_{n} t}$.

$$
e^{k \lambda_{n} t} v_{n}^{\prime}(t)+k \lambda_{n} e^{k \lambda_{n} t} v_{n}(t)=0
$$

The separation of variables method.

Step 5(a): Solving the IVP for v_{n}.

$$
v_{n}^{\prime}(t)+k \lambda_{n} v_{n}(t)=0, \quad \text { I.C.: } \quad v_{n}(0)=1 .
$$

The integrating factor method implies that $\mu(t)=e^{k \lambda_{n} t}$.

$$
e^{k \lambda_{n} t} v_{n}^{\prime}(t)+k \lambda_{n} e^{k \lambda_{n} t} v_{n}(t)=0 \quad \Rightarrow \quad\left[e^{k \lambda_{n} t} v_{n}(t)\right]^{\prime}=0 .
$$

The separation of variables method.

Step 5(a): Solving the IVP for v_{n}.

$$
v_{n}^{\prime}(t)+k \lambda_{n} v_{n}(t)=0, \quad \text { I.C.: } \quad v_{n}(0)=1 .
$$

The integrating factor method implies that $\mu(t)=e^{k \lambda_{n} t}$.

$$
\begin{gathered}
e^{k \lambda_{n} t} v_{n}^{\prime}(t)+k \lambda_{n} e^{k \lambda_{n} t} v_{n}(t)=0 \Rightarrow\left[e^{k \lambda_{n} t} v_{n}(t)\right]^{\prime}=0 \\
e^{k \lambda_{n} t} v_{n}(t)=c_{n}
\end{gathered}
$$

The separation of variables method.

Step 5(a): Solving the IVP for v_{n}.

$$
v_{n}^{\prime}(t)+k \lambda_{n} v_{n}(t)=0, \quad \text { I.C.: } \quad v_{n}(0)=1 .
$$

The integrating factor method implies that $\mu(t)=e^{k \lambda_{n} t}$.

$$
\begin{gathered}
e^{k \lambda_{n} t} v_{n}^{\prime}(t)+k \lambda_{n} e^{k \lambda_{n} t} v_{n}(t)=0 \quad \Rightarrow \quad\left[e^{k \lambda_{n} t} v_{n}(t)\right]^{\prime}=0 . \\
e^{k \lambda_{n} t} v_{n}(t)=c_{n} \quad \Rightarrow \quad v_{n}(t)=c_{n} e^{-k \lambda_{n} t}
\end{gathered}
$$

The separation of variables method.

Step 5(a): Solving the IVP for v_{n}.

$$
v_{n}^{\prime}(t)+k \lambda_{n} v_{n}(t)=0, \quad \text { I.C.: } \quad v_{n}(0)=1 .
$$

The integrating factor method implies that $\mu(t)=e^{k \lambda_{n} t}$.

$$
\begin{gathered}
e^{k \lambda_{n} t} v_{n}^{\prime}(t)+k \lambda_{n} e^{k \lambda_{n} t} v_{n}(t)=0 \Rightarrow\left[e^{k \lambda_{n} t} v_{n}(t)\right]^{\prime}=0 . \\
e^{k \lambda_{n} t} v_{n}(t)=c_{n} \Rightarrow v_{n}(t)=c_{n} e^{-k \lambda_{n} t} \\
1=v_{n}(0)=c
\end{gathered}
$$

The separation of variables method.

Step 5(a): Solving the IVP for v_{n}.

$$
v_{n}^{\prime}(t)+k \lambda_{n} v_{n}(t)=0, \quad \text { I.C.: } \quad v_{n}(0)=1 .
$$

The integrating factor method implies that $\mu(t)=e^{k \lambda_{n} t}$.

$$
\begin{gathered}
e^{k \lambda_{n} t} v_{n}^{\prime}(t)+k \lambda_{n} e^{k \lambda_{n} t} v_{n}(t)=0 \quad \Rightarrow \quad\left[e^{k \lambda_{n} t} v_{n}(t)\right]^{\prime}=0 . \\
e^{k \lambda_{n} t} v_{n}(t)=c_{n} \quad \Rightarrow \quad v_{n}(t)=c_{n} e^{-k \lambda_{n} t} \\
1=v_{n}(0)=c \quad \Rightarrow \quad v_{n}(t)=e^{-k \lambda_{n} t}
\end{gathered}
$$

The separation of variables method.
Step 5(a): Recall: $v_{n}(t)=e^{-k \lambda_{n} t}$.

The separation of variables method.

Step 5(a): Recall: $v_{n}(t)=e^{-k \lambda_{n} t}$.
Step 5(b): Eigenvalue-eigenvector problem for w_{n} :

The separation of variables method.

Step 5(a): Recall: $v_{n}(t)=e^{-k \lambda_{n} t}$.
Step 5(b): Eigenvalue-eigenvector problem for w_{n} :
Find the eigenvalues λ_{n} and the non-zero eigenfunctions w_{n} solutions of the BVP

$$
w_{n}^{\prime \prime}(x)+\lambda_{n} w_{n}(x)=0
$$

The separation of variables method.

Step 5(a): Recall: $v_{n}(t)=e^{-k \lambda_{n} t}$.
Step 5(b): Eigenvalue-eigenvector problem for w_{n} :
Find the eigenvalues λ_{n} and the non-zero eigenfunctions w_{n} solutions of the BVP

$$
w_{n}^{\prime \prime}(x)+\lambda_{n} w_{n}(x)=0 \quad \text { B.C. }: \quad w_{n}(0)=0, \quad w_{n}(L)=0 .
$$

The separation of variables method.

Step 5(a): Recall: $v_{n}(t)=e^{-k \lambda_{n} t}$.
Step 5(b): Eigenvalue-eigenvector problem for w_{n} :
Find the eigenvalues λ_{n} and the non-zero eigenfunctions w_{n} solutions of the BVP

$$
w_{n}^{\prime \prime}(x)+\lambda_{n} w_{n}(x)=0 \quad \text { B.C. }: \quad w_{n}(0)=0, \quad w_{n}(L)=0 .
$$

We know that this problem has solution only for $\lambda_{n}>0$.

The separation of variables method.

Step 5(a): Recall: $v_{n}(t)=e^{-k \lambda_{n} t}$.
Step 5(b): Eigenvalue-eigenvector problem for w_{n} :
Find the eigenvalues λ_{n} and the non-zero eigenfunctions w_{n} solutions of the BVP

$$
w_{n}^{\prime \prime}(x)+\lambda_{n} w_{n}(x)=0 \quad \text { B.C. }: \quad w_{n}(0)=0, \quad w_{n}(L)=0 .
$$

We know that this problem has solution only for $\lambda_{n}>0$.
Denote: $\lambda_{n}=\mu_{n}^{2}$.

The separation of variables method.

Step 5(a): Recall: $v_{n}(t)=e^{-k \lambda_{n} t}$.
Step 5(b): Eigenvalue-eigenvector problem for w_{n} :
Find the eigenvalues λ_{n} and the non-zero eigenfunctions w_{n} solutions of the BVP

$$
w_{n}^{\prime \prime}(x)+\lambda_{n} w_{n}(x)=0 \quad \text { B.C. }: \quad w_{n}(0)=0, \quad w_{n}(L)=0 .
$$

We know that this problem has solution only for $\lambda_{n}>0$.
Denote: $\lambda_{n}=\mu_{n}^{2}$. Proposing $w_{n}(x)=e^{r_{n} x}$,

The separation of variables method.

Step 5(a): Recall: $v_{n}(t)=e^{-k \lambda_{n} t}$.
Step 5(b): Eigenvalue-eigenvector problem for w_{n} :
Find the eigenvalues λ_{n} and the non-zero eigenfunctions w_{n} solutions of the BVP

$$
w_{n}^{\prime \prime}(x)+\lambda_{n} w_{n}(x)=0 \quad \text { B.C. }: \quad w_{n}(0)=0, \quad w_{n}(L)=0 .
$$

We know that this problem has solution only for $\lambda_{n}>0$.
Denote: $\lambda_{n}=\mu_{n}^{2}$. Proposing $w_{n}(x)=e^{r_{n} x}$, we get that

$$
p\left(r_{n}\right)=r_{n}^{2}+\mu_{n}^{2}=0
$$

The separation of variables method.

Step 5(a): Recall: $v_{n}(t)=e^{-k \lambda_{n} t}$.
Step 5(b): Eigenvalue-eigenvector problem for w_{n} :
Find the eigenvalues λ_{n} and the non-zero eigenfunctions w_{n} solutions of the BVP

$$
w_{n}^{\prime \prime}(x)+\lambda_{n} w_{n}(x)=0 \quad \text { B.C. }: \quad w_{n}(0)=0, \quad w_{n}(L)=0 .
$$

We know that this problem has solution only for $\lambda_{n}>0$.
Denote: $\lambda_{n}=\mu_{n}^{2}$. Proposing $w_{n}(x)=e^{r_{n} x}$, we get that

$$
p\left(r_{n}\right)=r_{n}^{2}+\mu_{n}^{2}=0 \quad \Rightarrow \quad r_{n \pm}= \pm \mu_{n} i
$$

The separation of variables method.

Step 5(a): Recall: $v_{n}(t)=e^{-k \lambda_{n} t}$.
Step 5(b): Eigenvalue-eigenvector problem for w_{n} :
Find the eigenvalues λ_{n} and the non-zero eigenfunctions w_{n} solutions of the BVP

$$
w_{n}^{\prime \prime}(x)+\lambda_{n} w_{n}(x)=0 \quad \text { B.C. }: \quad w_{n}(0)=0, \quad w_{n}(L)=0 .
$$

We know that this problem has solution only for $\lambda_{n}>0$.
Denote: $\lambda_{n}=\mu_{n}^{2}$. Proposing $w_{n}(x)=e^{r_{n} x}$, we get that

$$
p\left(r_{n}\right)=r_{n}^{2}+\mu_{n}^{2}=0 \quad \Rightarrow \quad r_{n \pm}= \pm \mu_{n} i
$$

The real-valued general solution is

$$
w_{n}(x)=c_{1} \cos \left(\mu_{n} x\right)+c_{2} \sin \left(\mu_{n} x\right) .
$$

The separation of variables method.

Recall: $\quad v_{n}(t)=e^{-k \lambda_{n} t}, \quad w_{n}(x)=c_{1} \cos \left(\mu_{n} x\right)+c_{2} \sin \left(\mu_{n} x\right)$.

The separation of variables method.

Recall: $\quad v_{n}(t)=e^{-k \lambda_{n} t}, \quad w_{n}(x)=c_{1} \cos \left(\mu_{n} x\right)+c_{2} \sin \left(\mu_{n} x\right)$.
The boundary conditions imply,

$$
0=w_{n}(0)
$$

The separation of variables method.

Recall: $\quad v_{n}(t)=e^{-k \lambda_{n} t}, \quad w_{n}(x)=c_{1} \cos \left(\mu_{n} x\right)+c_{2} \sin \left(\mu_{n} x\right)$.
The boundary conditions imply,

$$
0=w_{n}(0)=c_{1}
$$

The separation of variables method.

Recall: $\quad v_{n}(t)=e^{-k \lambda_{n} t}, \quad w_{n}(x)=c_{1} \cos \left(\mu_{n} x\right)+c_{2} \sin \left(\mu_{n} x\right)$.
The boundary conditions imply,

$$
0=w_{n}(0)=c_{1} \quad \Rightarrow \quad w_{n}(x)=c_{2} \sin \left(\mu_{n} x\right)
$$

The separation of variables method.

Recall: $\quad v_{n}(t)=e^{-k \lambda_{n} t}, \quad w_{n}(x)=c_{1} \cos \left(\mu_{n} x\right)+c_{2} \sin \left(\mu_{n} x\right)$.
The boundary conditions imply,

$$
\begin{aligned}
& \quad 0=w_{n}(0)=c_{1} \quad \Rightarrow \quad w_{n}(x)=c_{2} \sin \left(\mu_{n} x\right) . \\
& 0=w_{n}(L)
\end{aligned}
$$

The separation of variables method.

Recall: $\quad v_{n}(t)=e^{-k \lambda_{n} t}, \quad w_{n}(x)=c_{1} \cos \left(\mu_{n} x\right)+c_{2} \sin \left(\mu_{n} x\right)$.
The boundary conditions imply,

$$
\begin{aligned}
& 0=w_{n}(0)=c_{1} \quad \Rightarrow \quad w_{n}(x)=c_{2} \sin \left(\mu_{n} x\right) . \\
& 0=w_{n}(L)=c_{2} \sin \left(\mu_{n} L\right),
\end{aligned}
$$

The separation of variables method.

Recall: $\quad v_{n}(t)=e^{-k \lambda_{n} t}, \quad w_{n}(x)=c_{1} \cos \left(\mu_{n} x\right)+c_{2} \sin \left(\mu_{n} x\right)$.
The boundary conditions imply,

$$
\begin{aligned}
& 0=w_{n}(0)=c_{1} \quad \Rightarrow \quad w_{n}(x)=c_{2} \sin \left(\mu_{n} x\right) . \\
& 0=w_{n}(L)=c_{2} \sin \left(\mu_{n} L\right), \quad c_{2} \neq 0,
\end{aligned}
$$

The separation of variables method.

Recall: $\quad v_{n}(t)=e^{-k \lambda_{n} t}, \quad w_{n}(x)=c_{1} \cos \left(\mu_{n} x\right)+c_{2} \sin \left(\mu_{n} x\right)$.
The boundary conditions imply,

$$
\begin{gathered}
0=w_{n}(0)=c_{1} \quad \Rightarrow \quad w_{n}(x)=c_{2} \sin \left(\mu_{n} x\right) . \\
0=w_{n}(L)=c_{2} \sin \left(\mu_{n} L\right), \quad c_{2} \neq 0, \quad \Rightarrow \quad \sin \left(\mu_{n} L\right)=0 .
\end{gathered}
$$

The separation of variables method.

Recall: $\quad v_{n}(t)=e^{-k \lambda_{n} t}, \quad w_{n}(x)=c_{1} \cos \left(\mu_{n} x\right)+c_{2} \sin \left(\mu_{n} x\right)$.
The boundary conditions imply,

$$
\begin{aligned}
& 0=w_{n}(0)=c_{1} \quad \Rightarrow \quad w_{n}(x)=c_{2} \sin \left(\mu_{n} x\right) . \\
& 0=w_{n}(L)=c_{2} \sin \left(\mu_{n} L\right), \quad c_{2} \neq 0, \quad \Rightarrow \quad \sin \left(\mu_{n} L\right)=0 . \\
& \mu_{n} L=n \pi
\end{aligned}
$$

The separation of variables method.

Recall: $\quad v_{n}(t)=e^{-k \lambda_{n} t}, \quad w_{n}(x)=c_{1} \cos \left(\mu_{n} x\right)+c_{2} \sin \left(\mu_{n} x\right)$.
The boundary conditions imply,

$$
\begin{gathered}
0=w_{n}(0)=c_{1} \quad \Rightarrow \quad w_{n}(x)=c_{2} \sin \left(\mu_{n} x\right) . \\
0=w_{n}(L)=c_{2} \sin \left(\mu_{n} L\right), \quad c_{2} \neq 0, \quad \Rightarrow \quad \sin \left(\mu_{n} L\right)=0 . \\
\mu_{n} L=n \pi \quad \Rightarrow \quad \mu_{n}=\frac{n \pi}{L}
\end{gathered}
$$

The separation of variables method.

Recall: $\quad v_{n}(t)=e^{-k \lambda_{n} t}, \quad w_{n}(x)=c_{1} \cos \left(\mu_{n} x\right)+c_{2} \sin \left(\mu_{n} x\right)$.
The boundary conditions imply,

$$
\begin{gathered}
0=w_{n}(0)=c_{1} \quad \Rightarrow \quad w_{n}(x)=c_{2} \sin \left(\mu_{n} x\right) . \\
0=w_{n}(L)=c_{2} \sin \left(\mu_{n} L\right), \quad c_{2} \neq 0, \quad \Rightarrow \quad \sin \left(\mu_{n} L\right)=0 . \\
\mu_{n} L=n \pi \Rightarrow \mu_{n}=\frac{n \pi}{L} \Rightarrow \lambda_{n}=\left(\frac{n \pi}{L}\right)^{2} .
\end{gathered}
$$

The separation of variables method.

Recall: $\quad v_{n}(t)=e^{-k \lambda_{n} t}, \quad w_{n}(x)=c_{1} \cos \left(\mu_{n} x\right)+c_{2} \sin \left(\mu_{n} x\right)$.
The boundary conditions imply,

$$
\begin{gathered}
0=w_{n}(0)=c_{1} \quad \Rightarrow \quad w_{n}(x)=c_{2} \sin \left(\mu_{n} x\right) . \\
0=w_{n}(L)=c_{2} \sin \left(\mu_{n} L\right), \quad c_{2} \neq 0, \quad \Rightarrow \quad \sin \left(\mu_{n} L\right)=0 . \\
\mu_{n} L=n \pi \Rightarrow \mu_{n}=\frac{n \pi}{L} \Rightarrow \lambda_{n}=\left(\frac{n \pi}{L}\right)^{2} .
\end{gathered}
$$

Choosing $c_{2}=1$, we get $w_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)$.

The separation of variables method.

Recall: $\quad v_{n}(t)=e^{-k \lambda_{n} t}, \quad w_{n}(x)=c_{1} \cos \left(\mu_{n} x\right)+c_{2} \sin \left(\mu_{n} x\right)$.
The boundary conditions imply,

$$
\begin{gathered}
0=w_{n}(0)=c_{1} \quad \Rightarrow \quad w_{n}(x)=c_{2} \sin \left(\mu_{n} x\right) . \\
0=w_{n}(L)=c_{2} \sin \left(\mu_{n} L\right), \quad c_{2} \neq 0, \quad \Rightarrow \quad \sin \left(\mu_{n} L\right)=0 . \\
\mu_{n} L=n \pi \Rightarrow \mu_{n}=\frac{n \pi}{L} \Rightarrow \lambda_{n}=\left(\frac{n \pi}{L}\right)^{2} .
\end{gathered}
$$

Choosing $c_{2}=1$, we get $w_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)$.
We conclude that: $\quad u_{n}(t, x)=e^{-k\left(\frac{n \pi}{L}\right)^{2} t} \sin \left(\frac{n \pi x}{L}\right), n=1,2, \cdots$.

The separation of variables method.
Step 6: Recall: $u_{n}(t, x)=e^{-k\left(\frac{n \pi}{L}\right)^{2} t} \sin \left(\frac{n \pi x}{L}\right)$.

The separation of variables method.

Step 6: Recall: $u_{n}(t, x)=e^{-k\left(\frac{n \pi}{L}\right)^{2} t} \sin \left(\frac{n \pi x}{L}\right)$.
Compute the solution to the IBVP for the Heat Equation,

$$
u(t, x)=\sum_{n=1}^{\infty} c_{n} u_{n}(t, x)
$$

The separation of variables method.

Step 6: Recall: $u_{n}(t, x)=e^{-k\left(\frac{n \pi}{L}\right)^{2} t} \sin \left(\frac{n \pi x}{L}\right)$.
Compute the solution to the IBVP for the Heat Equation,

$$
\begin{gathered}
u(t, x)=\sum_{n=1}^{\infty} c_{n} u_{n}(t, x) . \\
u(t, x)=\sum_{n=1}^{\infty} c_{n} e^{-k\left(\frac{n \pi}{L}\right)^{2} t} \sin \left(\frac{n \pi x}{L}\right) .
\end{gathered}
$$

The separation of variables method.

Step 6: Recall: $u_{n}(t, x)=e^{-k\left(\frac{n \pi}{L}\right)^{2} t} \sin \left(\frac{n \pi x}{L}\right)$.
Compute the solution to the IBVP for the Heat Equation,

$$
\begin{gathered}
u(t, x)=\sum_{n=1}^{\infty} c_{n} u_{n}(t, x) \\
u(t, x)=\sum_{n=1}^{\infty} c_{n} e^{-k\left(\frac{n \pi}{L}\right)^{2} t} \sin \left(\frac{n \pi x}{L}\right) .
\end{gathered}
$$

By construction, this solution satisfies the boundary conditions,

$$
u(t, 0)=0, \quad u(t, L)=0
$$

The separation of variables method.

Step 6: Recall: $u_{n}(t, x)=e^{-k\left(\frac{n \pi}{L}\right)^{2} t} \sin \left(\frac{n \pi x}{L}\right)$.
Compute the solution to the IBVP for the Heat Equation,

$$
\begin{gathered}
u(t, x)=\sum_{n=1}^{\infty} c_{n} u_{n}(t, x) \\
u(t, x)=\sum_{n=1}^{\infty} c_{n} e^{-k\left(\frac{n \pi}{L}\right)^{2} t} \sin \left(\frac{n \pi x}{L}\right) .
\end{gathered}
$$

By construction, this solution satisfies the boundary conditions,

$$
u(t, 0)=0, \quad u(t, L)=0
$$

Given a function f with $f(0)=f(L)=0$, the solution u above satisfies the initial condition $f(x)=u(0, x)$ iff holds

The separation of variables method.

Step 6: Recall: $u_{n}(t, x)=e^{-k\left(\frac{n \pi}{L}\right)^{2} t} \sin \left(\frac{n \pi x}{L}\right)$.
Compute the solution to the IBVP for the Heat Equation,

$$
\begin{gathered}
u(t, x)=\sum_{n=1}^{\infty} c_{n} u_{n}(t, x) \\
u(t, x)=\sum_{n=1}^{\infty} c_{n} e^{-k\left(\frac{n \pi}{L}\right)^{2} t} \sin \left(\frac{n \pi x}{L}\right) .
\end{gathered}
$$

By construction, this solution satisfies the boundary conditions,

$$
u(t, 0)=0, \quad u(t, L)=0
$$

Given a function f with $f(0)=f(L)=0$, the solution u above satisfies the initial condition $f(x)=u(0, x)$ iff holds

$$
f(x)=\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

The separation of variables method.
Recall:

$$
u(t, x)=\sum_{n=1}^{\infty} c_{n} e^{-k\left(\frac{n \pi}{L}\right)^{2} t} \sin \left(\frac{n \pi x}{L}\right), \quad f(x)=\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n \pi x}{L}\right) .
$$

The separation of variables method.

Recall:

$u(t, x)=\sum_{n=1}^{\infty} c_{n} e^{-k\left(\frac{n \pi}{L}\right)^{2} t} \sin \left(\frac{n \pi x}{L}\right), f(x)=\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n \pi x}{L}\right)$.
This is a Sine Series for f. The coefficients c_{n} are computed in the usual way.

The separation of variables method.

Recall:

$u(t, x)=\sum_{n=1}^{\infty} c_{n} e^{-k\left(\frac{n \pi}{L}\right)^{2} t} \sin \left(\frac{n \pi x}{L}\right), f(x)=\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n \pi x}{L}\right)$.
This is a Sine Series for f. The coefficients c_{n} are computed in the usual way. Recall the orthogonality relation

$$
\int_{0}^{L} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0, & m \neq n, \\ \frac{L}{2}, & m=n .\end{cases}
$$

The separation of variables method.

Recall:

$u(t, x)=\sum_{n=1}^{\infty} c_{n} e^{-k\left(\frac{n \pi}{L}\right)^{2} t} \sin \left(\frac{n \pi x}{L}\right), f(x)=\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n \pi x}{L}\right)$.
This is a Sine Series for f. The coefficients c_{n} are computed in the usual way. Recall the orthogonality relation

$$
\int_{0}^{L} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0, & m \neq n, \\ \frac{L}{2}, & m=n .\end{cases}
$$

Multiply the equation for u by $\sin \left(\frac{m \pi x}{L}\right)$ nd integrate,

$$
\sum_{n=1}^{\infty} c_{n} \int_{0}^{L} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x=\int_{0}^{L} f(x) \sin \left(\frac{m \pi x}{L}\right) d x .
$$

The separation of variables method.

Recall:

$u(t, x)=\sum_{n=1}^{\infty} c_{n} e^{-k\left(\frac{n \pi}{L}\right)^{2} t} \sin \left(\frac{n \pi x}{L}\right), f(x)=\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n \pi x}{L}\right)$.
This is a Sine Series for f. The coefficients c_{n} are computed in the usual way. Recall the orthogonality relation

$$
\int_{0}^{L} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0, & m \neq n, \\ \frac{L}{2}, & m=n .\end{cases}
$$

Multiply the equation for u by $\sin \left(\frac{m \pi x}{L}\right)$ nd integrate,

$$
\begin{aligned}
& \sum_{n=1}^{\infty} c_{n} \int_{0}^{L} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x=\int_{0}^{L} f(x) \sin \left(\frac{m \pi x}{L}\right) d x . \\
& c_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, \quad u(t, x)=\sum_{n=1}^{\infty} c_{n} e^{-k\left(\frac{n \pi}{L}\right)^{2} t} \sin \left(\frac{n \pi x}{L}\right) .
\end{aligned}
$$

The separation of variables method.

Summary: IBVP for the Heat Equation.
Propose:

$$
u(t, x)=\sum_{n=1}^{\infty} c_{n} v_{n}(t) w_{n}(x)
$$

The separation of variables method.

Summary: IBVP for the Heat Equation.
Propose:

$$
u(t, x)=\sum_{n=1}^{\infty} c_{n} v_{n}(t) w_{n}(x)
$$

where

- v_{n} : Solution of an IVP.

The separation of variables method.

Summary: IBVP for the Heat Equation.

Propose:

$$
u(t, x)=\sum_{n=1}^{\infty} c_{n} v_{n}(t) w_{n}(x)
$$

where

- v_{n} : Solution of an IVP.
- w_{n} : Solution of a BVP, an eigenvalue-eigenfunction problem.

The separation of variables method.

Summary: IBVP for the Heat Equation.
Propose:

$$
u(t, x)=\sum_{n=1}^{\infty} c_{n} v_{n}(t) w_{n}(x)
$$

where

- v_{n} : Solution of an IVP.
- w_{n} : Solution of a BVP, an eigenvalue-eigenfunction problem.
- c_{n} : Fourier Series coefficients.

The separation of variables method.

Summary: IBVP for the Heat Equation.
Propose:

$$
u(t, x)=\sum_{n=1}^{\infty} c_{n} v_{n}(t) w_{n}(x)
$$

where

- v_{n} : Solution of an IVP.
- w_{n} : Solution of a BVP, an eigenvalue-eigenfunction problem.
- c_{n} : Fourier Series coefficients.

Remark:
The separation of variables method does not work for every PDE.

Solving the Heat Equation (Sect. 6.3).

- Review: The Stationary Heat Equation.
- The Heat Equation.
- The Initial-Boundary Value Problem.
- The separation of variables method.
- An example of separation of variables.

An example of separation of variables.
Example
Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: Let $u_{n}(t, x)=v_{n}(t) w_{n}(x)$.

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: Let $u_{n}(t, x)=v_{n}(t) w_{n}(x)$. Then

$$
4 w_{n}(x) \frac{d v}{d t}(t)=v_{n}(t) \frac{d^{2} w}{d x^{2}}(x)
$$

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: Let $u_{n}(t, x)=v_{n}(t) w_{n}(x)$. Then

$$
4 w_{n}(x) \frac{d v}{d t}(t)=v_{n}(t) \frac{d^{2} w}{d x^{2}}(x) \quad \Rightarrow \quad \frac{4 v_{n}^{\prime}(t)}{v_{n}(t)}=\frac{w_{n}^{\prime \prime}(x)}{w_{n}(x)}=-\lambda_{n} .
$$

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: Let $u_{n}(t, x)=v_{n}(t) w_{n}(x)$. Then

$$
4 w_{n}(x) \frac{d v}{d t}(t)=v_{n}(t) \frac{d^{2} w}{d x^{2}}(x) \quad \Rightarrow \quad \frac{4 v_{n}^{\prime}(t)}{v_{n}(t)}=\frac{w_{n}^{\prime \prime}(x)}{w_{n}(x)}=-\lambda_{n} .
$$

The equations for v_{n} and w_{n} are

$$
v_{n}^{\prime}(t)+\frac{\lambda_{n}}{4} v_{n}(t)=0
$$

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: Let $u_{n}(t, x)=v_{n}(t) w_{n}(x)$. Then

$$
4 w_{n}(x) \frac{d v}{d t}(t)=v_{n}(t) \frac{d^{2} w}{d x^{2}}(x) \Rightarrow \frac{4 v_{n}^{\prime}(t)}{v_{n}(t)}=\frac{w_{n}^{\prime \prime}(x)}{w_{n}(x)}=-\lambda_{n} .
$$

The equations for v_{n} and w_{n} are

$$
v_{n}^{\prime}(t)+\frac{\lambda_{n}}{4} v_{n}(t)=0, \quad w_{n}^{\prime \prime}(x)+\lambda_{n} w_{n}(x)=0
$$

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: Let $u_{n}(t, x)=v_{n}(t) w_{n}(x)$. Then

$$
4 w_{n}(x) \frac{d v}{d t}(t)=v_{n}(t) \frac{d^{2} w}{d x^{2}}(x) \quad \Rightarrow \quad \frac{4 v_{n}^{\prime}(t)}{v_{n}(t)}=\frac{w_{n}^{\prime \prime}(x)}{w_{n}(x)}=-\lambda_{n} .
$$

The equations for v_{n} and w_{n} are

$$
v_{n}^{\prime}(t)+\frac{\lambda_{n}}{4} v_{n}(t)=0, \quad w_{n}^{\prime \prime}(x)+\lambda_{n} w_{n}(x)=0
$$

We solve for v_{n} with the initial condition $v_{n}(0)=1$.

$$
e^{\frac{\lambda_{n}}{4} t} v_{n}^{\prime}(t)+\frac{\lambda_{n}}{4} e^{\frac{\lambda_{n}}{4} t} v_{n}(t)=0
$$

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0 .
$$

Solution: Let $u_{n}(t, x)=v_{n}(t) w_{n}(x)$. Then

$$
4 w_{n}(x) \frac{d v}{d t}(t)=v_{n}(t) \frac{d^{2} w}{d x^{2}}(x) \quad \Rightarrow \quad \frac{4 v_{n}^{\prime}(t)}{v_{n}(t)}=\frac{w_{n}^{\prime \prime}(x)}{w_{n}(x)}=-\lambda_{n} .
$$

The equations for v_{n} and w_{n} are

$$
v_{n}^{\prime}(t)+\frac{\lambda_{n}}{4} v_{n}(t)=0, \quad w_{n}^{\prime \prime}(x)+\lambda_{n} w_{n}(x)=0
$$

We solve for v_{n} with the initial condition $v_{n}(0)=1$.

$$
e^{\frac{\lambda_{n}}{4} t} v_{n}^{\prime}(t)+\frac{\lambda_{n}}{4} e^{\frac{\lambda_{n}}{4} t} v_{n}(t)=0 \quad \Rightarrow \quad\left[e^{\frac{\lambda_{n}}{4} t} v_{n}(t)\right]^{\prime}=0
$$

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: Recall: $\left[e^{\frac{\lambda_{n}}{4} t} v_{n}(t)\right]^{\prime}=0$.

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: Recall: $\left[e^{\frac{\lambda_{n}}{4} t} v_{n}(t)\right]^{\prime}=0$. Therefore,

$$
v_{n}(t)=c e^{-\frac{\lambda_{n}}{4} t}
$$

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: Recall: $\left[e^{\frac{\lambda_{n}}{4} t} v_{n}(t)\right]^{\prime}=0$. Therefore,

$$
v_{n}(t)=c e^{-\frac{\lambda_{n}}{4} t}, \quad 1=v_{n}(0)
$$

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: Recall: $\left[e^{\frac{\lambda_{n}}{4} t} v_{n}(t)\right]^{\prime}=0$. Therefore,

$$
v_{n}(t)=c e^{-\frac{\lambda_{n}}{4} t}, \quad 1=v_{n}(0)=c
$$

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: Recall: $\left[e^{\frac{\lambda_{n}}{4} t} v_{n}(t)\right]^{\prime}=0$. Therefore,

$$
v_{n}(t)=c e^{-\frac{\lambda_{n}}{4} t}, \quad 1=v_{n}(0)=c \quad \Rightarrow \quad v_{n}(t)=e^{-\frac{\lambda_{n}}{4} t} .
$$

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: Recall: $\left[e^{\frac{\lambda_{n}}{4} t} v_{n}(t)\right]^{\prime}=0$. Therefore,

$$
v_{n}(t)=c e^{-\frac{\lambda_{n}}{4} t}, \quad 1=v_{n}(0)=c \quad \Rightarrow \quad v_{n}(t)=e^{-\frac{\lambda_{n}}{4} t} .
$$

Next the BVP: $w_{n}^{\prime \prime}(x)+\lambda_{n} w_{n}(x)=0$, with $w_{n}(0)=w_{n}(L)=0$.

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: Recall: $\left[e^{\frac{\lambda_{n}}{4} t} v_{n}(t)\right]^{\prime}=0$. Therefore,

$$
v_{n}(t)=c e^{-\frac{\lambda_{n}}{4} t}, \quad 1=v_{n}(0)=c \quad \Rightarrow \quad v_{n}(t)=e^{-\frac{\lambda_{n}}{4} t} .
$$

Next the BVP: $w_{n}^{\prime \prime}(x)+\lambda_{n} w_{n}(x)=0$, with $w_{n}(0)=w_{n}(L)=0$.
Since $\lambda_{n}>0$, introduce $\lambda_{n}=\mu_{n}^{2}$.

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: Recall: $\left[e^{\frac{\lambda_{n}}{4} t} v_{n}(t)\right]^{\prime}=0$. Therefore,

$$
v_{n}(t)=c e^{-\frac{\lambda_{n}}{4} t}, \quad 1=v_{n}(0)=c \quad \Rightarrow \quad v_{n}(t)=e^{-\frac{\lambda_{n}}{4} t} .
$$

Next the BVP: $w_{n}^{\prime \prime}(x)+\lambda_{n} w_{n}(x)=0$, with $w_{n}(0)=w_{n}(L)=0$.
Since $\lambda_{n}>0$, introduce $\lambda_{n}=\mu_{n}^{2}$. The characteristic polynomial is

$$
p(r)=r^{2}+\mu_{n}^{2}
$$

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: Recall: $\left[e^{\frac{\lambda_{n}}{4} t} v_{n}(t)\right]^{\prime}=0$. Therefore,

$$
v_{n}(t)=c e^{-\frac{\lambda_{n}}{4} t}, \quad 1=v_{n}(0)=c \quad \Rightarrow \quad v_{n}(t)=e^{-\frac{\lambda_{n}}{4} t} .
$$

Next the BVP: $w_{n}^{\prime \prime}(x)+\lambda_{n} w_{n}(x)=0$, with $w_{n}(0)=w_{n}(L)=0$.
Since $\lambda_{n}>0$, introduce $\lambda_{n}=\mu_{n}^{2}$. The characteristic polynomial is

$$
p(r)=r^{2}+\mu_{n}^{2}=0
$$

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: Recall: $\left[e^{\frac{\lambda_{n}}{4} t} v_{n}(t)\right]^{\prime}=0$. Therefore,

$$
v_{n}(t)=c e^{-\frac{\lambda_{n}}{4} t}, \quad 1=v_{n}(0)=c \quad \Rightarrow \quad v_{n}(t)=e^{-\frac{\lambda_{n}}{4} t} .
$$

Next the BVP: $w_{n}^{\prime \prime}(x)+\lambda_{n} w_{n}(x)=0$, with $w_{n}(0)=w_{n}(L)=0$.
Since $\lambda_{n}>0$, introduce $\lambda_{n}=\mu_{n}^{2}$. The characteristic polynomial is

$$
p(r)=r^{2}+\mu_{n}^{2}=0 \quad \Rightarrow \quad r_{n \pm}= \pm \mu_{n} i
$$

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: Recall: $\left[e^{\frac{\lambda_{n}}{4} t} v_{n}(t)\right]^{\prime}=0$. Therefore,

$$
v_{n}(t)=c e^{-\frac{\lambda_{n}}{4} t}, \quad 1=v_{n}(0)=c \quad \Rightarrow \quad v_{n}(t)=e^{-\frac{\lambda_{n}}{4} t} .
$$

Next the BVP: $w_{n}^{\prime \prime}(x)+\lambda_{n} w_{n}(x)=0$, with $w_{n}(0)=w_{n}(L)=0$.
Since $\lambda_{n}>0$, introduce $\lambda_{n}=\mu_{n}^{2}$. The characteristic polynomial is

$$
p(r)=r^{2}+\mu_{n}^{2}=0 \quad \Rightarrow \quad r_{n \pm}= \pm \mu_{n} i
$$

The general solution, $w_{n}(x)=c_{1} \cos \left(\mu_{n} x\right)+c_{2} \sin \left(\mu_{n} x\right)$.

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: Recall: $\left[e^{\frac{\lambda_{n}}{4} t} v_{n}(t)\right]^{\prime}=0$. Therefore,

$$
v_{n}(t)=c e^{-\frac{\lambda_{n}}{4} t}, \quad 1=v_{n}(0)=c \quad \Rightarrow \quad v_{n}(t)=e^{-\frac{\lambda_{n}}{4} t} .
$$

Next the BVP: $w_{n}^{\prime \prime}(x)+\lambda_{n} w_{n}(x)=0$, with $w_{n}(0)=w_{n}(L)=0$.
Since $\lambda_{n}>0$, introduce $\lambda_{n}=\mu_{n}^{2}$. The characteristic polynomial is

$$
p(r)=r^{2}+\mu_{n}^{2}=0 \quad \Rightarrow \quad r_{n \pm}= \pm \mu_{n} i .
$$

The general solution, $w_{n}(x)=c_{1} \cos \left(\mu_{n} x\right)+c_{2} \sin \left(\mu_{n} x\right)$.
The boundary conditions imply

$$
0=w_{n}(0)=c_{1},
$$

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: Recall: $\left[e^{\frac{\lambda_{n}}{4} t} v_{n}(t)\right]^{\prime}=0$. Therefore,

$$
v_{n}(t)=c e^{-\frac{\lambda_{n}}{4} t}, \quad 1=v_{n}(0)=c \quad \Rightarrow \quad v_{n}(t)=e^{-\frac{\lambda_{n}}{4} t} .
$$

Next the BVP: $w_{n}^{\prime \prime}(x)+\lambda_{n} w_{n}(x)=0$, with $w_{n}(0)=w_{n}(L)=0$.
Since $\lambda_{n}>0$, introduce $\lambda_{n}=\mu_{n}^{2}$. The characteristic polynomial is

$$
p(r)=r^{2}+\mu_{n}^{2}=0 \quad \Rightarrow \quad r_{n \pm}= \pm \mu_{n} i .
$$

The general solution, $w_{n}(x)=c_{1} \cos \left(\mu_{n} x\right)+c_{2} \sin \left(\mu_{n} x\right)$.
The boundary conditions imply

$$
0=w_{n}(0)=c_{1}, \quad \Rightarrow \quad w_{n}(x)=c_{2} \sin \left(\mu_{n} x\right)
$$

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: Recall: $v_{n}(t)=e^{-\frac{\lambda_{n}}{4} t}$, and $w_{n}(x)=c_{2} \sin \left(\mu_{n} x\right)$.

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: Recall: $v_{n}(t)=e^{-\frac{\lambda_{n}}{4} t}$, and $w_{n}(x)=c_{2} \sin \left(\mu_{n} x\right)$.

$$
0=w_{n}(2)=c_{2} \sin \left(\mu_{n} 2\right)
$$

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: Recall: $\quad v_{n}(t)=e^{-\frac{\lambda_{n}}{4} t}$, and $w_{n}(x)=c_{2} \sin \left(\mu_{n} x\right)$.

$$
0=w_{n}(2)=c_{2} \sin \left(\mu_{n} 2\right), \quad c_{2} \neq 0
$$

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: Recall: $v_{n}(t)=e^{-\frac{\lambda_{n}}{4} t}$, and $w_{n}(x)=c_{2} \sin \left(\mu_{n} x\right)$.

$$
0=w_{n}(2)=c_{2} \sin \left(\mu_{n} 2\right), \quad c_{2} \neq 0, \quad \Rightarrow \quad \sin \left(\mu_{n} 2\right)=0 .
$$

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: Recall: $v_{n}(t)=e^{-\frac{\lambda_{n}}{4} t}$, and $w_{n}(x)=c_{2} \sin \left(\mu_{n} x\right)$.

$$
0=w_{n}(2)=c_{2} \sin \left(\mu_{n} 2\right), \quad c_{2} \neq 0, \quad \Rightarrow \quad \sin \left(\mu_{n} 2\right)=0 .
$$

Then, $\mu_{n} 2=n \pi$,

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: Recall: $v_{n}(t)=e^{-\frac{\lambda_{n}}{4} t}$, and $w_{n}(x)=c_{2} \sin \left(\mu_{n} x\right)$.

$$
0=w_{n}(2)=c_{2} \sin \left(\mu_{n} 2\right), \quad c_{2} \neq 0, \quad \Rightarrow \quad \sin \left(\mu_{n} 2\right)=0 .
$$

Then, $\mu_{n} 2=n \pi$, that is, $\mu_{n}=\frac{n \pi}{2}$.

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: Recall: $v_{n}(t)=e^{-\frac{\lambda_{n}}{4} t}$, and $w_{n}(x)=c_{2} \sin \left(\mu_{n} x\right)$.

$$
0=w_{n}(2)=c_{2} \sin \left(\mu_{n} 2\right), \quad c_{2} \neq 0, \quad \Rightarrow \quad \sin \left(\mu_{n} 2\right)=0 .
$$

Then, $\mu_{n} 2=n \pi$, that is, $\mu_{n}=\frac{n \pi}{2}$. Choosing $c_{2}=1$, we conclude,

$$
\lambda_{m}=\left(\frac{n \pi}{2}\right)^{2}, \quad w_{n}(x)=\sin \left(\frac{n \pi x}{2}\right)
$$

An example of separation of variables.

Example
Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: Recall: $v_{n}(t)=e^{-\frac{\lambda_{n}}{4} t}$, and $w_{n}(x)=c_{2} \sin \left(\mu_{n} x\right)$.

$$
0=w_{n}(2)=c_{2} \sin \left(\mu_{n} 2\right), \quad c_{2} \neq 0, \quad \Rightarrow \quad \sin \left(\mu_{n} 2\right)=0 .
$$

Then, $\mu_{n} 2=n \pi$, that is, $\mu_{n}=\frac{n \pi}{2}$. Choosing $c_{2}=1$, we conclude,

$$
\begin{gathered}
\lambda_{m}=\left(\frac{n \pi}{2}\right)^{2}, \quad w_{n}(x)=\sin \left(\frac{n \pi x}{2}\right) . \\
u(t, x)=\sum_{n=1}^{\infty} c_{n} e^{-\left(\frac{n \pi}{4}\right)^{2} t} \sin \left(\frac{n \pi x}{2}\right)
\end{gathered}
$$

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: Recall: $u(t, x)=\sum_{n=1}^{\infty} c_{n} e^{-\left(\frac{n \pi}{4}\right)^{2} t} \sin \left(\frac{n \pi x}{2}\right)$.

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: Recall: $u(t, x)=\sum_{n=1}^{\infty} c_{n} e^{-\left(\frac{n \pi}{4}\right)^{2} t} \sin \left(\frac{n \pi x}{2}\right)$.
The initial condition is $3 \sin \left(\frac{\pi x}{2}\right)=\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n \pi x}{2}\right)$.

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0 .
$$

Solution: Recall: $u(t, x)=\sum_{n=1}^{\infty} c_{n} e^{-\left(\frac{n \pi}{4}\right)^{2} t} \sin \left(\frac{n \pi x}{2}\right)$.
The initial condition is $3 \sin \left(\frac{\pi x}{2}\right)=\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n \pi x}{2}\right)$.
The orthogonality of the sine functions implies

$$
3 \int_{0}^{2} \sin \left(\frac{\pi x}{2}\right) \sin \left(\frac{m \pi x}{2}\right) d x=\sum_{n=1}^{\infty} \int_{0}^{2} \sin \left(\frac{n \pi x}{2}\right) \sin \left(\frac{m \pi x}{2}\right) d x
$$

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0 .
$$

Solution: Recall: $u(t, x)=\sum_{n=1}^{\infty} c_{n} e^{-\left(\frac{n \pi}{4}\right)^{2} t} \sin \left(\frac{n \pi x}{2}\right)$.
The initial condition is $3 \sin \left(\frac{\pi x}{2}\right)=\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n \pi x}{2}\right)$.
The orthogonality of the sine functions implies
$3 \int_{0}^{2} \sin \left(\frac{\pi x}{2}\right) \sin \left(\frac{m \pi x}{2}\right) d x=\sum_{n=1}^{\infty} \int_{0}^{2} \sin \left(\frac{n \pi x}{2}\right) \sin \left(\frac{m \pi x}{2}\right) d x$.
If $m \neq 1$, then $0=c_{m} \frac{2}{2}$,

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0 .
$$

Solution: Recall: $u(t, x)=\sum_{n=1}^{\infty} c_{n} e^{-\left(\frac{n \pi}{4}\right)^{2} t} \sin \left(\frac{n \pi x}{2}\right)$.
The initial condition is $3 \sin \left(\frac{\pi x}{2}\right)=\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n \pi x}{2}\right)$.
The orthogonality of the sine functions implies
$3 \int_{0}^{2} \sin \left(\frac{\pi x}{2}\right) \sin \left(\frac{m \pi x}{2}\right) d x=\sum_{n=1}^{\infty} \int_{0}^{2} \sin \left(\frac{n \pi x}{2}\right) \sin \left(\frac{m \pi x}{2}\right) d x$.
If $m \neq 1$, then $0=c_{m} \frac{2}{2}$, that is, $c_{m}=0$ for $m \neq 1$.

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0 .
$$

Solution: Recall: $u(t, x)=\sum_{n=1}^{\infty} c_{n} e^{-\left(\frac{n \pi}{4}\right)^{2} t} \sin \left(\frac{n \pi x}{2}\right)$.
The initial condition is $3 \sin \left(\frac{\pi x}{2}\right)=\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n \pi x}{2}\right)$.
The orthogonality of the sine functions implies
$3 \int_{0}^{2} \sin \left(\frac{\pi x}{2}\right) \sin \left(\frac{m \pi x}{2}\right) d x=\sum_{n=1}^{\infty} \int_{0}^{2} \sin \left(\frac{n \pi x}{2}\right) \sin \left(\frac{m \pi x}{2}\right) d x$.
If $m \neq 1$, then $0=c_{m} \frac{2}{2}$, that is, $c_{m}=0$ for $m \neq 1$. Therefore,

$$
3 \sin \left(\frac{\pi x}{2}\right)=c_{1} \sin \left(\frac{\pi x}{2}\right)
$$

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0 .
$$

Solution: Recall: $u(t, x)=\sum_{n=1}^{\infty} c_{n} e^{-\left(\frac{n \pi}{4}\right)^{2} t} \sin \left(\frac{n \pi x}{2}\right)$.
The initial condition is $3 \sin \left(\frac{\pi x}{2}\right)=\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n \pi x}{2}\right)$.
The orthogonality of the sine functions implies
$3 \int_{0}^{2} \sin \left(\frac{\pi x}{2}\right) \sin \left(\frac{m \pi x}{2}\right) d x=\sum_{n=1}^{\infty} \int_{0}^{2} \sin \left(\frac{n \pi x}{2}\right) \sin \left(\frac{m \pi x}{2}\right) d x$.
If $m \neq 1$, then $0=c_{m} \frac{2}{2}$, that is, $c_{m}=0$ for $m \neq 1$. Therefore,

$$
3 \sin \left(\frac{\pi x}{2}\right)=c_{1} \sin \left(\frac{\pi x}{2}\right) \quad \Rightarrow \quad c_{1}=3
$$

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0 .
$$

Solution: We conclude that

$$
u(t, x)=3 e^{-\left(\frac{\pi}{4}\right)^{2} t} \sin \left(\frac{\pi x}{2}\right)
$$

Review for Final Exam.

- Exam is cumulative.
- Heat equation and Fourier Series not included.
- 10-12 problems.
- Two hours.
- Integration and Laplace Transform tables included.
- Not in the exam: Fourier Series expansions (Chptr.6).
- Eigenvalue-Eigenfunction BVP (Chptr. 6).
- Systems of linear Equations (Chptr. 5).
- Laplace transforms (Chptr. 4).
- Power Series Methods (Chptr. 3).
- Second order linear equations (Chptr. 2).
- First order differential equations (Chptr. 1).

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=1$ for $x \in(-1,0)$, and then find the Fourier Series of this extension.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=1$ for $x \in(-1,0)$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=1$ for $x \in(-1,0)$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]
$$

Since f is odd and periodic,

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=1$ for $x \in(-1,0)$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is odd and periodic, then the Fourier Series is a Sine Series,

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=1$ for $x \in(-1,0)$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_{n}=0$.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=1$ for $x \in(-1,0)$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_{n}=0$.

$$
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=1$ for $x \in(-1,0)$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_{n}=0$.

$$
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x .
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=1$ for $x \in(-1,0)$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_{n}=0$.

$$
\begin{aligned}
b_{n} & =\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x . \\
b_{n} & =2 \int_{0}^{1}(-1) \sin (n \pi x) d x
\end{aligned}
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=1$ for $x \in(-1,0)$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_{n}=0$.

$$
\begin{gathered}
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x . \\
b_{n}=2 \int_{0}^{1}(-1) \sin (n \pi x) d x=\left.(-2) \frac{(-1)}{n \pi} \cos (n \pi x)\right|_{0} ^{1},
\end{gathered}
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=1$ for $x \in(-1,0)$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_{n}=0$.

$$
\begin{aligned}
b_{n} & =\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x . \\
b_{n} & =2 \int_{0}^{1}(-1) \sin (n \pi x) d x=\left.(-2) \frac{(-1)}{n \pi} \cos (n \pi x)\right|_{0} ^{1} \\
b_{n} & =\frac{2}{n \pi}[\cos (n \pi)-1]
\end{aligned}
$$

Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of $f(x)=1$ for $x \in(-1,0)$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_{n}=0$.

$$
\begin{aligned}
& b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x . \\
& b_{n}=2 \int_{0}^{1}(-1) \sin (n \pi x) d x=\left.(-2) \frac{(-1)}{n \pi} \cos (n \pi x)\right|_{0} ^{1}, \\
& b_{n}=\frac{2}{n \pi}[\cos (n \pi)-1] \Rightarrow b_{n}=\frac{2}{n \pi}\left[(-1)^{n}-1\right] \text {. }
\end{aligned}
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=1$ for $x \in(-1,0)$, and then find the Fourier Series of this extension.

Solution: Recall: $\quad b_{n}=\frac{2}{n \pi}\left[(-1)^{n}-1\right]$.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=1$ for $x \in(-1,0)$, and then find the Fourier Series of this extension.

Solution: Recall: $\quad b_{n}=\frac{2}{n \pi}\left[(-1)^{n}-1\right]$.

If $n=2 k$,

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=1$ for $x \in(-1,0)$, and then find the Fourier Series of this extension.

Solution: Recall: $\quad b_{n}=\frac{2}{n \pi}\left[(-1)^{n}-1\right]$.
If $n=2 k$, then $b_{2 k}=\frac{2}{2 k \pi}\left[(-1)^{2 k}-1\right]$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=1$ for $x \in(-1,0)$, and then find the Fourier Series of this extension.

Solution: Recall: $\quad b_{n}=\frac{2}{n \pi}\left[(-1)^{n}-1\right]$.
If $n=2 k$, then $b_{2 k}=\frac{2}{2 k \pi}\left[(-1)^{2 k}-1\right]=0$.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=1$ for $x \in(-1,0)$, and then find the Fourier Series of this extension.

Solution: Recall: $\quad b_{n}=\frac{2}{n \pi}\left[(-1)^{n}-1\right]$.
If $n=2 k$, then $b_{2 k}=\frac{2}{2 k \pi}\left[(-1)^{2 k}-1\right]=0$.
If $n=2 k-1$,

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=1$ for $x \in(-1,0)$, and then find the Fourier Series of this extension.

Solution: Recall: $\quad b_{n}=\frac{2}{n \pi}\left[(-1)^{n}-1\right]$.
If $n=2 k$, then $b_{2 k}=\frac{2}{2 k \pi}\left[(-1)^{2 k}-1\right]=0$.
If $n=2 k-1$,
$b_{(2 k-1)}=\frac{2}{(2 k-1) \pi}\left[(-1)^{2 k-1}-1\right]$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=1$ for $x \in(-1,0)$, and then find the Fourier Series of this extension.

Solution: Recall: $\quad b_{n}=\frac{2}{n \pi}\left[(-1)^{n}-1\right]$.
If $n=2 k$, then $b_{2 k}=\frac{2}{2 k \pi}\left[(-1)^{2 k}-1\right]=0$.
If $n=2 k-1$,
$b_{(2 k-1)}=\frac{2}{(2 k-1) \pi}\left[(-1)^{2 k-1}-1\right]=-\frac{4}{(2 k-1) \pi}$.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=1$ for $x \in(-1,0)$, and then find the Fourier Series of this extension.

Solution: Recall: $\quad b_{n}=\frac{2}{n \pi}\left[(-1)^{n}-1\right]$.
If $n=2 k$, then $b_{2 k}=\frac{2}{2 k \pi}\left[(-1)^{2 k}-1\right]=0$.
If $n=2 k-1$,
$b_{(2 k-1)}=\frac{2}{(2 k-1) \pi}\left[(-1)^{2 k-1}-1\right]=-\frac{4}{(2 k-1) \pi}$.
We conclude: $f(x)=-\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{1}{(2 k-1)} \sin [(2 k-1) \pi x]$.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]
$$

Since f is odd and periodic,

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is odd and periodic, then the Fourier Series is a Sine Series,

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_{n}=0$.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]
$$

Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_{n}=0$.

$$
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_{n}=0$.

$$
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x,
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_{n}=0$.

$$
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, L=2,
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_{n}=0$.

$$
\begin{gathered}
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, L=2, \\
b_{n}=\int_{0}^{2}(2-x) \sin \left(\frac{n \pi x}{2}\right) d x . a
\end{gathered}
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.
Solution: $b_{n}=2 \int_{0}^{2} \sin \left(\frac{n \pi x}{2}\right) d x-\int_{0}^{2} x \sin \left(\frac{n \pi x}{2}\right) d x$.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.
Solution: $b_{n}=2 \int_{0}^{2} \sin \left(\frac{n \pi x}{2}\right) d x-\int_{0}^{2} x \sin \left(\frac{n \pi x}{2}\right) d x$.

$$
\int \sin \left(\frac{n \pi x}{2}\right) d x=\frac{-2}{n \pi} \cos \left(\frac{n \pi x}{2}\right),
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.
Solution: $b_{n}=2 \int_{0}^{2} \sin \left(\frac{n \pi x}{2}\right) d x-\int_{0}^{2} x \sin \left(\frac{n \pi x}{2}\right) d x$.

$$
\int \sin \left(\frac{n \pi x}{2}\right) d x=\frac{-2}{n \pi} \cos \left(\frac{n \pi x}{2}\right),
$$

The other integral is done by parts,

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.
Solution: $b_{n}=2 \int_{0}^{2} \sin \left(\frac{n \pi x}{2}\right) d x-\int_{0}^{2} x \sin \left(\frac{n \pi x}{2}\right) d x$.

$$
\int \sin \left(\frac{n \pi x}{2}\right) d x=\frac{-2}{n \pi} \cos \left(\frac{n \pi x}{2}\right),
$$

The other integral is done by parts,

$$
I=\int x \sin \left(\frac{n \pi x}{2}\right) d x
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.
Solution: $b_{n}=2 \int_{0}^{2} \sin \left(\frac{n \pi x}{2}\right) d x-\int_{0}^{2} x \sin \left(\frac{n \pi x}{2}\right) d x$.

$$
\int \sin \left(\frac{n \pi x}{2}\right) d x=\frac{-2}{n \pi} \cos \left(\frac{n \pi x}{2}\right),
$$

The other integral is done by parts,

$$
I=\int x \sin \left(\frac{n \pi x}{2}\right) d x, \quad\left\{\quad u=x, \quad v^{\prime}=\sin \left(\frac{n \pi x}{2}\right)\right.
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.
Solution: $b_{n}=2 \int_{0}^{2} \sin \left(\frac{n \pi x}{2}\right) d x-\int_{0}^{2} x \sin \left(\frac{n \pi x}{2}\right) d x$.

$$
\int \sin \left(\frac{n \pi x}{2}\right) d x=\frac{-2}{n \pi} \cos \left(\frac{n \pi x}{2}\right),
$$

The other integral is done by parts,

$$
I=\int x \sin \left(\frac{n \pi x}{2}\right) d x, \quad\left\{\begin{array}{r}
u=x, \quad v^{\prime}=\sin \left(\frac{n \pi x}{2}\right) \\
u^{\prime}=1, \quad v=-\frac{2}{n \pi} \cos \left(\frac{n \pi x}{2}\right)
\end{array}\right.
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.
Solution: $b_{n}=2 \int_{0}^{2} \sin \left(\frac{n \pi x}{2}\right) d x-\int_{0}^{2} x \sin \left(\frac{n \pi x}{2}\right) d x$.

$$
\int \sin \left(\frac{n \pi x}{2}\right) d x=\frac{-2}{n \pi} \cos \left(\frac{n \pi x}{2}\right),
$$

The other integral is done by parts,

$$
\begin{aligned}
& I=\int x \sin \left(\frac{n \pi x}{2}\right) d x, \quad\left\{\begin{array}{c}
u=x, \quad v^{\prime}=\sin \left(\frac{n \pi x}{2}\right) \\
u^{\prime}=1, \quad v=-\frac{2}{n \pi} \cos \left(\frac{n \pi x}{2}\right)
\end{array}\right. \\
& I=\frac{-2 x}{n \pi} \cos \left(\frac{n \pi x}{2}\right)-\int\left(\frac{-2}{n \pi}\right) \cos \left(\frac{n \pi x}{2}\right) d x .
\end{aligned}
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.

Solution: $I=\frac{-2 x}{n \pi} \cos \left(\frac{n \pi x}{2}\right)-\int\left(\frac{-2}{n \pi}\right) \cos \left(\frac{n \pi x}{2}\right) d x$.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.
Solution: $I=\frac{-2 x}{n \pi} \cos \left(\frac{n \pi x}{2}\right)-\int\left(\frac{-2}{n \pi}\right) \cos \left(\frac{n \pi x}{2}\right) d x$.
$I=-\frac{2 x}{n \pi} \cos \left(\frac{n \pi x}{2}\right)+\left(\frac{2}{n \pi}\right)^{2} \sin \left(\frac{n \pi x}{2}\right)$.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.
Solution: $I=\frac{-2 x}{n \pi} \cos \left(\frac{n \pi x}{2}\right)-\int\left(\frac{-2}{n \pi}\right) \cos \left(\frac{n \pi x}{2}\right) d x$.
$I=-\frac{2 x}{n \pi} \cos \left(\frac{n \pi x}{2}\right)+\left(\frac{2}{n \pi}\right)^{2} \sin \left(\frac{n \pi x}{2}\right)$. So, we get

$$
b_{n}=\left.2\left[\frac{-2}{n \pi} \cos \left(\frac{n \pi x}{2}\right)\right]\right|_{0} ^{2}+\left.\left[\frac{2 x}{n \pi} \cos \left(\frac{n \pi x}{2}\right)\right]\right|_{0} ^{2}-\left.\left(\frac{2}{n \pi}\right)^{2} \sin \left(\frac{n \pi x}{2}\right)\right|_{0} ^{2}
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.
Solution: $I=\frac{-2 x}{n \pi} \cos \left(\frac{n \pi x}{2}\right)-\int\left(\frac{-2}{n \pi}\right) \cos \left(\frac{n \pi x}{2}\right) d x$.
$I=-\frac{2 x}{n \pi} \cos \left(\frac{n \pi x}{2}\right)+\left(\frac{2}{n \pi}\right)^{2} \sin \left(\frac{n \pi x}{2}\right)$. So, we get
$b_{n}=\left.2\left[\frac{-2}{n \pi} \cos \left(\frac{n \pi x}{2}\right)\right]\right|_{0} ^{2}+\left.\left[\frac{2 x}{n \pi} \cos \left(\frac{n \pi x}{2}\right)\right]\right|_{0} ^{2}-\left.\left(\frac{2}{n \pi}\right)^{2} \sin \left(\frac{n \pi x}{2}\right)\right|_{0} ^{2}$
$b_{n}=\frac{-4}{n \pi}[\cos (n \pi)-1]+\left[\frac{4}{n \pi} \cos (n \pi)-0\right]$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.
Solution: $I=\frac{-2 x}{n \pi} \cos \left(\frac{n \pi x}{2}\right)-\int\left(\frac{-2}{n \pi}\right) \cos \left(\frac{n \pi x}{2}\right) d x$.
$I=-\frac{2 x}{n \pi} \cos \left(\frac{n \pi x}{2}\right)+\left(\frac{2}{n \pi}\right)^{2} \sin \left(\frac{n \pi x}{2}\right)$. So, we get
$b_{n}=\left.2\left[\frac{-2}{n \pi} \cos \left(\frac{n \pi x}{2}\right)\right]\right|_{0} ^{2}+\left.\left[\frac{2 x}{n \pi} \cos \left(\frac{n \pi x}{2}\right)\right]\right|_{0} ^{2}-\left.\left(\frac{2}{n \pi}\right)^{2} \sin \left(\frac{n \pi x}{2}\right)\right|_{0} ^{2}$

$$
b_{n}=\frac{-4}{n \pi}[\cos (n \pi)-1]+\left[\frac{4}{n \pi} \cos (n \pi)-0\right] \Rightarrow b_{n}=\frac{4}{n \pi} .
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.

Solution: $I=\frac{-2 x}{n \pi} \cos \left(\frac{n \pi x}{2}\right)-\int\left(\frac{-2}{n \pi}\right) \cos \left(\frac{n \pi x}{2}\right) d x$.
$I=-\frac{2 x}{n \pi} \cos \left(\frac{n \pi x}{2}\right)+\left(\frac{2}{n \pi}\right)^{2} \sin \left(\frac{n \pi x}{2}\right)$. So, we get
$b_{n}=\left.2\left[\frac{-2}{n \pi} \cos \left(\frac{n \pi x}{2}\right)\right]\right|_{0} ^{2}+\left.\left[\frac{2 x}{n \pi} \cos \left(\frac{n \pi x}{2}\right)\right]\right|_{0} ^{2}-\left.\left(\frac{2}{n \pi}\right)^{2} \sin \left(\frac{n \pi x}{2}\right)\right|_{0} ^{2}$

$$
b_{n}=\frac{-4}{n \pi}[\cos (n \pi)-1]+\left[\frac{4}{n \pi} \cos (n \pi)-0\right] \Rightarrow b_{n}=\frac{4}{n \pi} .
$$

We conclude: $f(x)=\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \left(\frac{n \pi x}{2}\right)$.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is even and periodic,

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is even and periodic, then the Fourier Series is a Cosine Series,

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is even and periodic, then the Fourier Series is a Cosine Series, that is, $b_{n}=0$.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is even and periodic, then the Fourier Series is a Cosine Series, that is, $b_{n}=0$.

$$
a_{0}=\frac{1}{2} \int_{-2}^{2} f(x) d x
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is even and periodic, then the Fourier Series is a Cosine Series, that is, $b_{n}=0$.

$$
a_{0}=\frac{1}{2} \int_{-2}^{2} f(x) d x=\int_{0}^{2}(2-x) d x
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is even and periodic, then the Fourier Series is a Cosine Series, that is, $b_{n}=0$.

$$
a_{0}=\frac{1}{2} \int_{-2}^{2} f(x) d x=\int_{0}^{2}(2-x) d x=\frac{\text { base } \times \text { height }}{2}
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is even and periodic, then the Fourier Series is a Cosine Series, that is, $b_{n}=0$.

$$
a_{0}=\frac{1}{2} \int_{-2}^{2} f(x) d x=\int_{0}^{2}(2-x) d x=\frac{\text { base } x \text { height }}{2} \Rightarrow a_{0}=2 .
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is even and periodic, then the Fourier Series is a Cosine Series, that is, $b_{n}=0$.

$$
\begin{aligned}
& a_{0}=\frac{1}{2} \int_{-2}^{2} f(x) d x=\int_{0}^{2}(2-x) d x=\frac{\text { base } x \text { height }}{2} \Rightarrow a_{0}=2 . \\
& a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x
\end{aligned}
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is even and periodic, then the Fourier Series is a Cosine Series, that is, $b_{n}=0$.

$$
\begin{aligned}
& a_{0}=\frac{1}{2} \int_{-2}^{2} f(x) d x=\int_{0}^{2}(2-x) d x=\frac{\text { base } x \text { height }}{2} \Rightarrow a_{0}=2 . \\
& a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x,
\end{aligned}
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is even and periodic, then the Fourier Series is a Cosine Series, that is, $b_{n}=0$.

$$
\begin{aligned}
& a_{0}=\frac{1}{2} \int_{-2}^{2} f(x) d x=\int_{0}^{2}(2-x) d x=\frac{\text { base } x \text { height }}{2} \Rightarrow a_{0}=2 . \\
& a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, L=2,
\end{aligned}
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is even and periodic, then the Fourier Series is a Cosine Series, that is, $b_{n}=0$.

$$
\begin{gathered}
a_{0}=\frac{1}{2} \int_{-2}^{2} f(x) d x=\int_{0}^{2}(2-x) d x=\frac{\text { base } x \text { height }}{2} \Rightarrow a_{0}=2 . \\
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, L=2, \\
a_{n}=\int_{0}^{2}(2-x) \cos \left(\frac{n \pi x}{2}\right) d x .
\end{gathered}
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.

Solution: $a_{n}=2 \int_{0}^{2} \cos \left(\frac{n \pi x}{2}\right) d x-\int_{0}^{2} x \cos \left(\frac{n \pi x}{2}\right) d x$.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: $a_{n}=2 \int_{0}^{2} \cos \left(\frac{n \pi x}{2}\right) d x-\int_{0}^{2} x \cos \left(\frac{n \pi x}{2}\right) d x$.

$$
\int \cos \left(\frac{n \pi x}{2}\right) d x=\frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right)
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: $a_{n}=2 \int_{0}^{2} \cos \left(\frac{n \pi x}{2}\right) d x-\int_{0}^{2} x \cos \left(\frac{n \pi x}{2}\right) d x$.

$$
\int \cos \left(\frac{n \pi x}{2}\right) d x=\frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right),
$$

The other integral is done by parts,

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: $a_{n}=2 \int_{0}^{2} \cos \left(\frac{n \pi x}{2}\right) d x-\int_{0}^{2} x \cos \left(\frac{n \pi x}{2}\right) d x$.

$$
\int \cos \left(\frac{n \pi x}{2}\right) d x=\frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right),
$$

The other integral is done by parts,

$$
I=\int x \cos \left(\frac{n \pi x}{2}\right) d x
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: $a_{n}=2 \int_{0}^{2} \cos \left(\frac{n \pi x}{2}\right) d x-\int_{0}^{2} x \cos \left(\frac{n \pi x}{2}\right) d x$.

$$
\int \cos \left(\frac{n \pi x}{2}\right) d x=\frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right),
$$

The other integral is done by parts,

$$
I=\int x \cos \left(\frac{n \pi x}{2}\right) d x, \quad\left\{\begin{array}{l}
u=x, \quad v^{\prime}=\cos \left(\frac{n \pi x}{2}\right) \\
\end{array}\right.
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: $a_{n}=2 \int_{0}^{2} \cos \left(\frac{n \pi x}{2}\right) d x-\int_{0}^{2} x \cos \left(\frac{n \pi x}{2}\right) d x$.

$$
\int \cos \left(\frac{n \pi x}{2}\right) d x=\frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right),
$$

The other integral is done by parts,

$$
I=\int x \cos \left(\frac{n \pi x}{2}\right) d x, \quad\left\{\begin{array}{cc}
u=x, & v^{\prime}=\cos \left(\frac{n \pi x}{2}\right) \\
u^{\prime}=1, & v=\frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right)
\end{array}\right.
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: $a_{n}=2 \int_{0}^{2} \cos \left(\frac{n \pi x}{2}\right) d x-\int_{0}^{2} x \cos \left(\frac{n \pi x}{2}\right) d x$.

$$
\int \cos \left(\frac{n \pi x}{2}\right) d x=\frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right),
$$

The other integral is done by parts,

$$
\begin{gathered}
I=\int x \cos \left(\frac{n \pi x}{2}\right) d x, \quad\left\{\begin{array}{cc}
u=x, & v^{\prime}=\cos \left(\frac{n \pi x}{2}\right) \\
u^{\prime}=1, & v=\frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right)
\end{array}\right. \\
I=\frac{2 x}{n \pi} \sin \left(\frac{n \pi x}{2}\right)-\int \frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right) d x .
\end{gathered}
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: Recall: $\quad I=\frac{2 x}{n \pi} \sin \left(\frac{n \pi x}{2}\right)-\int \frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right) d x$.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: Recall: $I=\frac{2 x}{n \pi} \sin \left(\frac{n \pi x}{2}\right)-\int \frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right) d x$.
$I=\frac{2 x}{n \pi} \sin \left(\frac{n \pi x}{2}\right)+\left(\frac{2}{n \pi}\right)^{2} \cos \left(\frac{n \pi x}{2}\right)$.

Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: Recall: $I=\frac{2 x}{n \pi} \sin \left(\frac{n \pi x}{2}\right)-\int \frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right) d x$.
$I=\frac{2 x}{n \pi} \sin \left(\frac{n \pi x}{2}\right)+\left(\frac{2}{n \pi}\right)^{2} \cos \left(\frac{n \pi x}{2}\right)$. So, we get
$a_{n}=\left.2\left[\frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right)\right]\right|_{0} ^{2}-\left.\left[\frac{2 x}{n \pi} \sin \left(\frac{n \pi x}{2}\right)\right]\right|_{0} ^{2}-\left.\left(\frac{2}{n \pi}\right)^{2} \cos \left(\frac{n \pi x}{2}\right)\right|_{0} ^{2}$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: Recall: $I=\frac{2 x}{n \pi} \sin \left(\frac{n \pi x}{2}\right)-\int \frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right) d x$.
$I=\frac{2 x}{n \pi} \sin \left(\frac{n \pi x}{2}\right)+\left(\frac{2}{n \pi}\right)^{2} \cos \left(\frac{n \pi x}{2}\right)$. So, we get
$a_{n}=\left.2\left[\frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right)\right]\right|_{0} ^{2}-\left.\left[\frac{2 x}{n \pi} \sin \left(\frac{n \pi x}{2}\right)\right]\right|_{0} ^{2}-\left.\left(\frac{2}{n \pi}\right)^{2} \cos \left(\frac{n \pi x}{2}\right)\right|_{0} ^{2}$
$a_{n}=0-0-\frac{4}{n^{2} \pi^{2}}[\cos (n \pi)-1]$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: Recall: $I=\frac{2 x}{n \pi} \sin \left(\frac{n \pi x}{2}\right)-\int \frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right) d x$.
$I=\frac{2 x}{n \pi} \sin \left(\frac{n \pi x}{2}\right)+\left(\frac{2}{n \pi}\right)^{2} \cos \left(\frac{n \pi x}{2}\right)$. So, we get
$a_{n}=\left.2\left[\frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right)\right]\right|_{0} ^{2}-\left.\left[\frac{2 x}{n \pi} \sin \left(\frac{n \pi x}{2}\right)\right]\right|_{0} ^{2}-\left.\left(\frac{2}{n \pi}\right)^{2} \cos \left(\frac{n \pi x}{2}\right)\right|_{0} ^{2}$

$$
a_{n}=0-0-\frac{4}{n^{2} \pi^{2}}[\cos (n \pi)-1] \quad \Rightarrow \quad a_{n}=\frac{4}{n^{2} \pi^{2}}\left[1-(-1)^{n}\right]
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.

Solution: Recall: $\quad b_{n}=0, \quad a_{0}=2, \quad a_{n}=\frac{4}{n^{2} \pi^{2}}\left[1-(-1)^{n}\right]$.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.

Solution: Recall: $\quad b_{n}=0, \quad a_{0}=2, \quad a_{n}=\frac{4}{n^{2} \pi^{2}}\left[1-(-1)^{n}\right]$.

If $n=2 k$,

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.

Solution: Recall: $\quad b_{n}=0, \quad a_{0}=2, \quad a_{n}=\frac{4}{n^{2} \pi^{2}}\left[1-(-1)^{n}\right]$.
If $n=2 k$, then $a_{2 k}=\frac{4}{(2 k)^{2} \pi^{2}}\left[1-(-1)^{2 k}\right]$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.

Solution: Recall: $\quad b_{n}=0, \quad a_{0}=2, \quad a_{n}=\frac{4}{n^{2} \pi^{2}}\left[1-(-1)^{n}\right]$.
If $n=2 k$, then $a_{2 k}=\frac{4}{(2 k)^{2} \pi^{2}}\left[1-(-1)^{2 k}\right]=0$.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.

Solution: Recall: $\quad b_{n}=0, \quad a_{0}=2, \quad a_{n}=\frac{4}{n^{2} \pi^{2}}\left[1-(-1)^{n}\right]$.
If $n=2 k$, then $a_{2 k}=\frac{4}{(2 k)^{2} \pi^{2}}\left[1-(-1)^{2 k}\right]=0$.
If $n=2 k-1$,

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: Recall: $\quad b_{n}=0, \quad a_{0}=2, \quad a_{n}=\frac{4}{n^{2} \pi^{2}}\left[1-(-1)^{n}\right]$.
If $n=2 k$, then $a_{2 k}=\frac{4}{(2 k)^{2} \pi^{2}}\left[1-(-1)^{2 k}\right]=0$.
If $n=2 k-1$, then we obtain
$a_{(2 k-1)}=\frac{4}{(2 k-1)^{2} \pi^{2}}\left[1-(-1)^{2 k-1}\right]$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: Recall: $\quad b_{n}=0, \quad a_{0}=2, \quad a_{n}=\frac{4}{n^{2} \pi^{2}}\left[1-(-1)^{n}\right]$.
If $n=2 k$, then $a_{2 k}=\frac{4}{(2 k)^{2} \pi^{2}}\left[1-(-1)^{2 k}\right]=0$.
If $n=2 k-1$, then we obtain
$a_{(2 k-1)}=\frac{4}{(2 k-1)^{2} \pi^{2}}\left[1-(-1)^{2 k-1}\right]=\frac{8}{(2 k-1)^{2} \pi^{2}}$.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: Recall: $\quad b_{n}=0, \quad a_{0}=2, \quad a_{n}=\frac{4}{n^{2} \pi^{2}}\left[1-(-1)^{n}\right]$.
If $n=2 k$, then $a_{2 k}=\frac{4}{(2 k)^{2} \pi^{2}}\left[1-(-1)^{2 k}\right]=0$.
If $n=2 k-1$, then we obtain
$a_{(2 k-1)}=\frac{4}{(2 k-1)^{2} \pi^{2}}\left[1-(-1)^{2 k-1}\right]=\frac{8}{(2 k-1)^{2} \pi^{2}}$.
We conclude: $f(x)=1+\frac{8}{\pi^{2}} \sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{2}} \cos \left(\frac{(2 k-1) \pi x}{2}\right) \cdot \triangleleft$

Review for Final Exam.

- Fourier Series expansions (Chptr.6).
- Eigenvalue-Eigenfunction BVP (Chptr. 6).
- Systems of linear Equations (Chptr. 5).
- Laplace transforms (Chptr. 4).
- Power Series Methods (Chptr. 3).
- Second order linear equations (Chptr. 2).
- First order differential equations (Chptr. 1).

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(8)=0 .
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(8)=0 .
$$

Solution: Since $\lambda>0$,

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(8)=0 .
$$

Solution: Since $\lambda>0$, introduce $\lambda=\mu^{2}$,

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(8)=0 .
$$

Solution: Since $\lambda>0$, introduce $\lambda=\mu^{2}$, with $\mu>0$.

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(8)=0
$$

Solution: Since $\lambda>0$, introduce $\lambda=\mu^{2}$, with $\mu>0$. $y(x)=e^{r x}$ implies that r is solution of

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(8)=0
$$

Solution: Since $\lambda>0$, introduce $\lambda=\mu^{2}$, with $\mu>0$. $y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(8)=0
$$

Solution: Since $\lambda>0$, introduce $\lambda=\mu^{2}$, with $\mu>0$. $y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu i .
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(8)=0
$$

Solution: Since $\lambda>0$, introduce $\lambda=\mu^{2}$, with $\mu>0$. $y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu i .
$$

The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(8)=0
$$

Solution: Since $\lambda>0$, introduce $\lambda=\mu^{2}$, with $\mu>0$.
$y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu i .
$$

The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
The boundary conditions imply:

$$
0=y(0)
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(8)=0
$$

Solution: Since $\lambda>0$, introduce $\lambda=\mu^{2}$, with $\mu>0$.
$y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu i .
$$

The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
The boundary conditions imply:

$$
0=y(0)=c_{1}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(8)=0
$$

Solution: Since $\lambda>0$, introduce $\lambda=\mu^{2}$, with $\mu>0$.
$y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu i .
$$

The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
The boundary conditions imply:

$$
0=y(0)=c_{1} \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x)
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(8)=0
$$

Solution: Since $\lambda>0$, introduce $\lambda=\mu^{2}$, with $\mu>0$.
$y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu i .
$$

The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
The boundary conditions imply:

$$
\begin{aligned}
& 0=y(0)=c_{1} \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x) \\
& 0=y(8)=c_{2} \sin (\mu 8)
\end{aligned}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(8)=0
$$

Solution: Since $\lambda>0$, introduce $\lambda=\mu^{2}$, with $\mu>0$.
$y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu i .
$$

The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
The boundary conditions imply:

$$
\begin{gathered}
0=y(0)=c_{1} \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x) . \\
0=y(8)=c_{2} \sin (\mu 8), \quad c_{2} \neq 0
\end{gathered}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(8)=0
$$

Solution: Since $\lambda>0$, introduce $\lambda=\mu^{2}$, with $\mu>0$.
$y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu i .
$$

The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
The boundary conditions imply:

$$
\begin{gathered}
0=y(0)=c_{1} \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x) \\
0=y(8)=c_{2} \sin (\mu 8), \quad c_{2} \neq 0 \quad \Rightarrow \quad \sin (\mu 8)=0 .
\end{gathered}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(8)=0
$$

Solution: Since $\lambda>0$, introduce $\lambda=\mu^{2}$, with $\mu>0$.
$y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu i .
$$

The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
The boundary conditions imply:

$$
\begin{aligned}
& 0=y(0)=c_{1} \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x) . \\
& 0=y(8)=c_{2} \sin (\mu 8), \quad c_{2} \neq 0 \Rightarrow \sin (\mu 8)=0 . \\
& \mu=\frac{n \pi}{8},
\end{aligned}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(8)=0
$$

Solution: Since $\lambda>0$, introduce $\lambda=\mu^{2}$, with $\mu>0$.
$y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu i .
$$

The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
The boundary conditions imply:

$$
\begin{gathered}
0=y(0)=c_{1} \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x) . \\
0=y(8)=c_{2} \sin (\mu 8), \quad c_{2} \neq 0 \Rightarrow \sin (\mu 8)=0 . \\
\mu=\frac{n \pi}{8}, \quad \lambda=\left(\frac{n \pi}{8}\right)^{2},
\end{gathered}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(8)=0
$$

Solution: Since $\lambda>0$, introduce $\lambda=\mu^{2}$, with $\mu>0$.
$y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \Rightarrow r_{ \pm}= \pm \mu i .
$$

The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
The boundary conditions imply:

$$
\begin{gathered}
0=y(0)=c_{1} \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x) \\
0=y(8)=c_{2} \sin (\mu 8), \quad c_{2} \neq 0 \quad \Rightarrow \quad \sin (\mu 8)=0 . \\
\mu=\frac{n \pi}{8}, \quad \lambda=\left(\frac{n \pi}{8}\right)^{2}, \quad y_{n}(x)=\sin \left(\frac{n \pi x}{8}\right), \quad n=1,2, \cdots \triangleleft
\end{gathered}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y^{\prime}(8)=0
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y^{\prime}(8)=0
$$

Solution: The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y^{\prime}(8)=0
$$

Solution: The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
The boundary conditions imply:

$$
0=y(0)
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y^{\prime}(8)=0
$$

Solution: The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
The boundary conditions imply:

$$
0=y(0)=c_{1}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y^{\prime}(8)=0
$$

Solution: The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
The boundary conditions imply:

$$
0=y(0)=c_{1} \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x)
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y^{\prime}(8)=0
$$

Solution: The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
The boundary conditions imply:

$$
\begin{aligned}
& 0=y(0)=c_{1} \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x) . \\
& 0=y^{\prime}(8)=c_{2} \mu \cos (\mu 8)
\end{aligned}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y^{\prime}(8)=0
$$

Solution: The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
The boundary conditions imply:

$$
\begin{aligned}
& 0=y(0)=c_{1} \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x) . \\
& 0=y^{\prime}(8)=c_{2} \mu \cos (\mu 8), \quad c_{2} \neq 0
\end{aligned}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y^{\prime}(8)=0
$$

Solution: The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
The boundary conditions imply:

$$
\begin{gathered}
0=y(0)=c_{1} \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x) . \\
0=y^{\prime}(8)=c_{2} \mu \cos (\mu 8), \quad c_{2} \neq 0 \quad \Rightarrow \quad \cos (\mu 8)=0
\end{gathered}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y^{\prime}(8)=0
$$

Solution: The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
The boundary conditions imply:

$$
\begin{aligned}
& 0=y(0)=c_{1} \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x) . \\
& 0=y^{\prime}(8)=c_{2} \mu \cos (\mu 8), \quad c_{2} \neq 0 \quad \Rightarrow \quad \cos (\mu 8)=0 . \\
& 8 \mu=(2 n+1) \frac{\pi}{2}
\end{aligned}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y^{\prime}(8)=0
$$

Solution: The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
The boundary conditions imply:

$$
\begin{gathered}
0=y(0)=c_{1} \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x) . \\
0=y^{\prime}(8)=c_{2} \mu \cos (\mu 8), \quad c_{2} \neq 0 \quad \Rightarrow \quad \cos (\mu 8)=0 . \\
8 \mu=(2 n+1) \frac{\pi}{2}, \quad \Rightarrow \quad \mu=\frac{(2 n+1) \pi}{16} .
\end{gathered}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y^{\prime}(8)=0
$$

Solution: The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
The boundary conditions imply:

$$
\begin{gathered}
0=y(0)=c_{1} \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x) . \\
0=y^{\prime}(8)=c_{2} \mu \cos (\mu 8), \quad c_{2} \neq 0 \quad \Rightarrow \quad \cos (\mu 8)=0 . \\
8 \mu=(2 n+1) \frac{\pi}{2}, \quad \Rightarrow \quad \mu=\frac{(2 n+1) \pi}{16} .
\end{gathered}
$$

Then, for $n=1,2, \cdots$ holds

$$
\lambda=\left[\frac{(2 n+1) \pi}{16}\right]^{2}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunction of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y^{\prime}(8)=0
$$

Solution: The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
The boundary conditions imply:

$$
\begin{gathered}
0=y(0)=c_{1} \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x) . \\
0=y^{\prime}(8)=c_{2} \mu \cos (\mu 8), \quad c_{2} \neq 0 \quad \Rightarrow \quad \cos (\mu 8)=0 . \\
8 \mu=(2 n+1) \frac{\pi}{2}, \quad \Rightarrow \quad \mu=\frac{(2 n+1) \pi}{16} .
\end{gathered}
$$

Then, for $n=1,2, \cdots$ holds

$$
\lambda=\left[\frac{(2 n+1) \pi}{16}\right]^{2}, \quad y_{n}(x)=\sin \left(\frac{(2 n+1) \pi x}{16}\right) .
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: Case $\lambda>0$.

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: Case $\lambda>0$. Then, $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: Case $\lambda>0$. Then, $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
Then, $y^{\prime}(x)=-c_{1} \mu \sin (\mu x)+c_{2} \mu \cos (\mu x)$.

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: Case $\lambda>0$. Then, $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
Then, $y^{\prime}(x)=-c_{1} \mu \sin (\mu x)+c_{2} \mu \cos (\mu x)$. The B.C. imply:

$$
0=y^{\prime}(0)
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: Case $\lambda>0$. Then, $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
Then, $y^{\prime}(x)=-c_{1} \mu \sin (\mu x)+c_{2} \mu \cos (\mu x)$. The B.C. imply:

$$
0=y^{\prime}(0)=c_{2}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: Case $\lambda>0$. Then, $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
Then, $y^{\prime}(x)=-c_{1} \mu \sin (\mu x)+c_{2} \mu \cos (\mu x)$. The B.C. imply:

$$
0=y^{\prime}(0)=c_{2} \Rightarrow y(x)=c_{1} \cos (\mu x)
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: Case $\lambda>0$. Then, $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
Then, $y^{\prime}(x)=-c_{1} \mu \sin (\mu x)+c_{2} \mu \cos (\mu x)$. The B.C. imply:

$$
0=y^{\prime}(0)=c_{2} \Rightarrow y(x)=c_{1} \cos (\mu x), y^{\prime}(x)=-c_{1} \mu \sin (\mu x)
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: Case $\lambda>0$. Then, $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
Then, $y^{\prime}(x)=-c_{1} \mu \sin (\mu x)+c_{2} \mu \cos (\mu x)$. The B.C. imply:

$$
\begin{aligned}
0= & y^{\prime}(0)=c_{2} \Rightarrow y(x)=c_{1} \cos (\mu x), y^{\prime}(x)=-c_{1} \mu \sin (\mu x) \\
& 0=y^{\prime}(8)=c_{1} \mu \sin (\mu 8),
\end{aligned}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: Case $\lambda>0$. Then, $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
Then, $y^{\prime}(x)=-c_{1} \mu \sin (\mu x)+c_{2} \mu \cos (\mu x)$. The B.C. imply:

$$
\begin{aligned}
& 0=y^{\prime}(0)=c_{2} \Rightarrow y(x)=c_{1} \cos (\mu x), y^{\prime}(x)=-c_{1} \mu \sin (\mu x) \\
& 0=y^{\prime}(8)=c_{1} \mu \sin (\mu 8), \quad c_{1} \neq 0
\end{aligned}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: Case $\lambda>0$. Then, $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
Then, $y^{\prime}(x)=-c_{1} \mu \sin (\mu x)+c_{2} \mu \cos (\mu x)$. The B.C. imply:

$$
\begin{gathered}
0=y^{\prime}(0)=c_{2} \Rightarrow y(x)=c_{1} \cos (\mu x), y^{\prime}(x)=-c_{1} \mu \sin (\mu x) . \\
0=y^{\prime}(8)=c_{1} \mu \sin (\mu 8), \quad c_{1} \neq 0 \quad \Rightarrow \quad \sin (\mu 8)=0 .
\end{gathered}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: Case $\lambda>0$. Then, $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
Then, $y^{\prime}(x)=-c_{1} \mu \sin (\mu x)+c_{2} \mu \cos (\mu x)$. The B.C. imply:

$$
\begin{gathered}
0=y^{\prime}(0)=c_{2} \Rightarrow y(x)=c_{1} \cos (\mu x), \quad y^{\prime}(x)=-c_{1} \mu \sin (\mu x) . \\
0=y^{\prime}(8)=c_{1} \mu \sin (\mu 8), \quad c_{1} \neq 0 \quad \Rightarrow \quad \sin (\mu 8)=0 .
\end{gathered}
$$

$$
8 \mu=n \pi
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: Case $\lambda>0$. Then, $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
Then, $y^{\prime}(x)=-c_{1} \mu \sin (\mu x)+c_{2} \mu \cos (\mu x)$. The B.C. imply:

$$
\begin{gathered}
0=y^{\prime}(0)=c_{2} \Rightarrow y(x)=c_{1} \cos (\mu x), \quad y^{\prime}(x)=-c_{1} \mu \sin (\mu x) . \\
0=y^{\prime}(8)=c_{1} \mu \sin (\mu 8), \quad c_{1} \neq 0 \quad \Rightarrow \quad \sin (\mu 8)=0 . \\
8 \mu=n \pi, \quad \Rightarrow \quad \mu=\frac{n \pi}{8} .
\end{gathered}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: Case $\lambda>0$. Then, $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
Then, $y^{\prime}(x)=-c_{1} \mu \sin (\mu x)+c_{2} \mu \cos (\mu x)$. The B.C. imply:

$$
\begin{gathered}
0=y^{\prime}(0)=c_{2} \Rightarrow y(x)=c_{1} \cos (\mu x), \quad y^{\prime}(x)=-c_{1} \mu \sin (\mu x) . \\
0=y^{\prime}(8)=c_{1} \mu \sin (\mu 8), \quad c_{1} \neq 0 \quad \Rightarrow \quad \sin (\mu 8)=0 . \\
8 \mu=n \pi, \quad \Rightarrow \quad \mu=\frac{n \pi}{8} .
\end{gathered}
$$

Then, choosing $c_{1}=1$, for $n=1,2, \cdots$ holds

$$
\lambda=\left(\frac{n \pi}{8}\right)^{2}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: Case $\lambda>0$. Then, $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
Then, $y^{\prime}(x)=-c_{1} \mu \sin (\mu x)+c_{2} \mu \cos (\mu x)$. The B.C. imply:

$$
\begin{gathered}
0=y^{\prime}(0)=c_{2} \Rightarrow y(x)=c_{1} \cos (\mu x), \quad y^{\prime}(x)=-c_{1} \mu \sin (\mu x) . \\
0=y^{\prime}(8)=c_{1} \mu \sin (\mu 8), \quad c_{1} \neq 0 \quad \Rightarrow \quad \sin (\mu 8)=0 . \\
8 \mu=n \pi, \quad \Rightarrow \quad \mu=\frac{n \pi}{8} .
\end{gathered}
$$

Then, choosing $c_{1}=1$, for $n=1,2, \cdots$ holds

$$
\lambda=\left(\frac{n \pi}{8}\right)^{2}, \quad y_{n}(x)=\cos \left(\frac{n \pi x}{8}\right) .
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: The case $\lambda=0$. The general solution is

$$
y(x)=c_{1}+c_{2} x
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: The case $\lambda=0$. The general solution is

$$
y(x)=c_{1}+c_{2} x
$$

The B.C. imply:

$$
0=y^{\prime}(0)
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: The case $\lambda=0$. The general solution is

$$
y(x)=c_{1}+c_{2} x
$$

The B.C. imply:

$$
0=y^{\prime}(0)=c_{2}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: The case $\lambda=0$. The general solution is

$$
y(x)=c_{1}+c_{2} x
$$

The B.C. imply:

$$
0=y^{\prime}(0)=c_{2} \quad \Rightarrow \quad y(x)=c_{1}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0 .
$$

Solution: The case $\lambda=0$. The general solution is

$$
y(x)=c_{1}+c_{2} x
$$

The B.C. imply:

$$
0=y^{\prime}(0)=c_{2} \quad \Rightarrow \quad y(x)=c_{1}, \quad y^{\prime}(x)=0
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: The case $\lambda=0$. The general solution is

$$
y(x)=c_{1}+c_{2} x
$$

The B.C. imply:

$$
\begin{gathered}
0=y^{\prime}(0)=c_{2} \quad \Rightarrow \quad y(x)=c_{1}, \quad y^{\prime}(x)=0 . \\
0=y^{\prime}(8)
\end{gathered}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0 .
$$

Solution: The case $\lambda=0$. The general solution is

$$
y(x)=c_{1}+c_{2} x
$$

The B.C. imply:

$$
\begin{gathered}
0=y^{\prime}(0)=c_{2} \quad \Rightarrow \quad y(x)=c_{1}, \quad y^{\prime}(x)=0 . \\
0=y^{\prime}(8)=0 .
\end{gathered}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: The case $\lambda=0$. The general solution is

$$
y(x)=c_{1}+c_{2} x
$$

The B.C. imply:

$$
\begin{gathered}
0=y^{\prime}(0)=c_{2} \quad \Rightarrow \quad y(x)=c_{1}, \quad y^{\prime}(x)=0 . \\
0=y^{\prime}(8)=0 .
\end{gathered}
$$

Then, choosing $c_{1}=1$, holds,

$$
\lambda=0
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunction of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: The case $\lambda=0$. The general solution is

$$
y(x)=c_{1}+c_{2} x
$$

The B.C. imply:

$$
\begin{gathered}
0=y^{\prime}(0)=c_{2} \quad \Rightarrow \quad y(x)=c_{1}, \quad y^{\prime}(x)=0 . \\
0=y^{\prime}(8)=0 .
\end{gathered}
$$

Then, choosing $c_{1}=1$, holds,

$$
\lambda=0, \quad y_{0}(x)=1
$$

A Boundary Value Problem.

Example

Find the solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y^{\prime}(0)=1, \quad y(\pi / 3)=0
$$

A Boundary Value Problem.

Example

Find the solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y^{\prime}(0)=1, \quad y(\pi / 3)=0
$$

Solution: $y(x)=e^{r x}$ implies that r is solution of

A Boundary Value Problem.

Example

Find the solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y^{\prime}(0)=1, \quad y(\pi / 3)=0
$$

Solution: $y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0
$$

A Boundary Value Problem.

Example

Find the solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y^{\prime}(0)=1, \quad y(\pi / 3)=0
$$

Solution: $y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

A Boundary Value Problem.

Example

Find the solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y^{\prime}(0)=1, \quad y(\pi / 3)=0
$$

Solution: $y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \Rightarrow r_{ \pm}= \pm i
$$

The general solution is $y(x)=c_{1} \cos (x)+c_{2} \sin (x)$.

A Boundary Value Problem.

Example

Find the solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y^{\prime}(0)=1, \quad y(\pi / 3)=0
$$

Solution: $y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is $y(x)=c_{1} \cos (x)+c_{2} \sin (x)$.
Then, $y^{\prime}(x)=-c_{1} \sin (x)+c_{2} \cos (x)$.

A Boundary Value Problem.

Example

Find the solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y^{\prime}(0)=1, \quad y(\pi / 3)=0
$$

Solution: $y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is $y(x)=c_{1} \cos (x)+c_{2} \sin (x)$.
Then, $y^{\prime}(x)=-c_{1} \sin (x)+c_{2} \cos (x)$. The B.C. imply:

$$
1=y^{\prime}(0)
$$

A Boundary Value Problem.

Example

Find the solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y^{\prime}(0)=1, \quad y(\pi / 3)=0
$$

Solution: $y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is $y(x)=c_{1} \cos (x)+c_{2} \sin (x)$.
Then, $y^{\prime}(x)=-c_{1} \sin (x)+c_{2} \cos (x)$. The B.C. imply:

$$
1=y^{\prime}(0)=c_{2}
$$

A Boundary Value Problem.

Example

Find the solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y^{\prime}(0)=1, \quad y(\pi / 3)=0
$$

Solution: $y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is $y(x)=c_{1} \cos (x)+c_{2} \sin (x)$.
Then, $y^{\prime}(x)=-c_{1} \sin (x)+c_{2} \cos (x)$. The B.C. imply:

$$
1=y^{\prime}(0)=c_{2} \quad \Rightarrow \quad y(x)=c_{1} \cos (x)+\sin (x)
$$

A Boundary Value Problem.

Example

Find the solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y^{\prime}(0)=1, \quad y(\pi / 3)=0
$$

Solution: $y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is $y(x)=c_{1} \cos (x)+c_{2} \sin (x)$.
Then, $y^{\prime}(x)=-c_{1} \sin (x)+c_{2} \cos (x)$. The B.C. imply:

$$
\begin{aligned}
& \quad 1=y^{\prime}(0)=c_{2} \quad \Rightarrow \quad y(x)=c_{1} \cos (x)+\sin (x) . \\
& 0=y(\pi / 3)
\end{aligned}
$$

A Boundary Value Problem.

Example

Find the solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y^{\prime}(0)=1, \quad y(\pi / 3)=0
$$

Solution: $y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is $y(x)=c_{1} \cos (x)+c_{2} \sin (x)$.
Then, $y^{\prime}(x)=-c_{1} \sin (x)+c_{2} \cos (x)$. The B.C. imply:

$$
\begin{aligned}
& 1=y^{\prime}(0)=c_{2} \quad \Rightarrow \quad y(x)=c_{1} \cos (x)+\sin (x) . \\
& 0=y(\pi / 3)=c_{1} \cos (\pi / 3)+\sin (\pi / 3)
\end{aligned}
$$

A Boundary Value Problem.

Example

Find the solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y^{\prime}(0)=1, \quad y(\pi / 3)=0
$$

Solution: $y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is $y(x)=c_{1} \cos (x)+c_{2} \sin (x)$.
Then, $y^{\prime}(x)=-c_{1} \sin (x)+c_{2} \cos (x)$. The B.C. imply:

$$
\begin{gathered}
1=y^{\prime}(0)=c_{2} \Rightarrow y(x)=c_{1} \cos (x)+\sin (x) \\
0=y(\pi / 3)=c_{1} \cos (\pi / 3)+\sin (\pi / 3) \Rightarrow c_{1}=-\frac{\sin (\pi / 3)}{\cos (\pi / 3)}
\end{gathered}
$$

A Boundary Value Problem.

Example

Find the solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y^{\prime}(0)=1, \quad y(\pi / 3)=0
$$

Solution: $y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is $y(x)=c_{1} \cos (x)+c_{2} \sin (x)$.
Then, $y^{\prime}(x)=-c_{1} \sin (x)+c_{2} \cos (x)$. The B.C. imply:

$$
\begin{aligned}
& 1=y^{\prime}(0)=c_{2} \Rightarrow y(x)=c_{1} \cos (x)+\sin (x) \\
& 0=y(\pi / 3)=c_{1} \cos (\pi / 3)+\sin (\pi / 3) \Rightarrow c_{1}=-\frac{\sin (\pi / 3)}{\cos (\pi / 3)} \\
& c_{1}=-\frac{\sqrt{3} / 2}{1 / 2}
\end{aligned}
$$

A Boundary Value Problem.

Example

Find the solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y^{\prime}(0)=1, \quad y(\pi / 3)=0
$$

Solution: $y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is $y(x)=c_{1} \cos (x)+c_{2} \sin (x)$.
Then, $y^{\prime}(x)=-c_{1} \sin (x)+c_{2} \cos (x)$. The B.C. imply:

$$
\begin{gathered}
1=y^{\prime}(0)=c_{2} \Rightarrow y(x)=c_{1} \cos (x)+\sin (x) \\
0=y(\pi / 3)=c_{1} \cos (\pi / 3)+\sin (\pi / 3) \Rightarrow c_{1}=-\frac{\sin (\pi / 3)}{\cos (\pi / 3)} \\
c_{1}=-\frac{\sqrt{3} / 2}{1 / 2}=-\sqrt{3}
\end{gathered}
$$

A Boundary Value Problem.

Example

Find the solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y^{\prime}(0)=1, \quad y(\pi / 3)=0
$$

Solution: $y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is $y(x)=c_{1} \cos (x)+c_{2} \sin (x)$.
Then, $y^{\prime}(x)=-c_{1} \sin (x)+c_{2} \cos (x)$. The B.C. imply:

$$
\begin{gathered}
1=y^{\prime}(0)=c_{2} \Rightarrow y(x)=c_{1} \cos (x)+\sin (x) \\
0=y(\pi / 3)=c_{1} \cos (\pi / 3)+\sin (\pi / 3) \Rightarrow c_{1}=-\frac{\sin (\pi / 3)}{\cos (\pi / 3)} \\
c_{1}=-\frac{\sqrt{3} / 2}{1 / 2}=-\sqrt{3} \Rightarrow y(x)=-\sqrt{3} \cos (x)+\sin (x)
\end{gathered}
$$

Review for Final Exam.

- Fourier Series expansions (Chptr.6).
- Eigenvalue-Eigenfunction BVP (Chptr. 6).
- Systems of linear Equations (Chptr. 5).
- Laplace transforms (Chptr. 4).
- Power Series Methods (Chptr. 3).
- Second order linear equations (Chptr. 2).
- First order differential equations (Chptr. 1).

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(a) If $\lambda_{1} \neq \lambda_{2}$, real,

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(a) If $\lambda_{1} \neq \lambda_{2}$, real, then $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ are linearly independent,

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(a) If $\lambda_{1} \neq \lambda_{2}$, real, then $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ are linearly independent, and the general solution is $\mathbf{x}(x)=c_{1} \mathbf{v}^{(1)} e^{\lambda_{1} t}+c_{2} \mathbf{v}^{(2)} e^{\lambda_{2} t}$.

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(a) If $\lambda_{1} \neq \lambda_{2}$, real, then $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ are linearly independent, and the general solution is $\mathbf{x}(x)=c_{1} \mathbf{v}^{(1)} e^{\lambda_{1} t}+c_{2} \mathbf{v}^{(2)} e^{\lambda_{2} t}$.
(b) If $\lambda_{1} \neq \lambda_{2}$, complex,

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(a) If $\lambda_{1} \neq \lambda_{2}$, real, then $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ are linearly independent, and the general solution is $\mathbf{x}(x)=c_{1} \mathbf{v}^{(1)} e^{\lambda_{1} t}+c_{2} \mathbf{v}^{(2)} e^{\lambda_{2} t}$.
(b) If $\lambda_{1} \neq \lambda_{2}$, complex, then denoting $\lambda_{ \pm}=\alpha \pm \beta i$ and $\mathbf{v}^{(\pm)}=\mathbf{a} \pm \mathbf{b} i$,

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(a) If $\lambda_{1} \neq \lambda_{2}$, real, then $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ are linearly independent, and the general solution is $\mathbf{x}(x)=c_{1} \mathbf{v}^{(1)} e^{\lambda_{1} t}+c_{2} \mathbf{v}^{(2)} e^{\lambda_{2} t}$.
(b) If $\lambda_{1} \neq \lambda_{2}$, complex, then denoting $\lambda_{ \pm}=\alpha \pm \beta i$ and $\mathbf{v}^{(\pm)}=\mathbf{a} \pm \mathbf{b}$ i, the complex-valued fundamental solutions

$$
\mathbf{x}^{(\pm)}=(\mathbf{a} \pm \mathbf{b} i) e^{(\alpha \pm \beta i) t}
$$

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(a) If $\lambda_{1} \neq \lambda_{2}$, real, then $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ are linearly independent, and the general solution is $\mathbf{x}(x)=c_{1} \mathbf{v}^{(1)} e^{\lambda_{1} t}+c_{2} \mathbf{v}^{(2)} e^{\lambda_{2} t}$.
(b) If $\lambda_{1} \neq \lambda_{2}$, complex, then denoting $\lambda_{ \pm}=\alpha \pm \beta i$ and $\mathbf{v}^{(\pm)}=\mathbf{a} \pm \mathbf{b}$ i, the complex-valued fundamental solutions

$$
\begin{gathered}
\mathbf{x}^{(\pm)}=(\mathbf{a} \pm \mathbf{b} i) e^{(\alpha \pm \beta i) t} \\
\mathbf{x}^{(\pm)}=e^{\alpha t}(\mathbf{a} \pm \mathbf{b} i)[\cos (\beta t)+i \sin (\beta t)]
\end{gathered}
$$

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(a) If $\lambda_{1} \neq \lambda_{2}$, real, then $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ are linearly independent, and the general solution is $\mathbf{x}(x)=c_{1} \mathbf{v}^{(1)} e^{\lambda_{1} t}+c_{2} \mathbf{v}^{(2)} e^{\lambda_{2} t}$.
(b) If $\lambda_{1} \neq \lambda_{2}$, complex, then denoting $\lambda_{ \pm}=\alpha \pm \beta i$ and $\mathbf{v}^{(\pm)}=\mathbf{a} \pm \mathbf{b} \boldsymbol{i}$, the complex-valued fundamental solutions

$$
\begin{gathered}
\mathbf{x}^{(\pm)}=(\mathbf{a} \pm \mathbf{b} \boldsymbol{i}) e^{(\alpha \pm \beta i) t} \\
\mathbf{x}^{(\pm)}=e^{\alpha t}(\mathbf{a} \pm \mathbf{b} i)[\cos (\beta t)+i \sin (\beta t)]
\end{gathered}
$$

$$
\mathbf{x}^{(\pm)}=e^{\alpha t}[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] \pm i e^{\alpha t}[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)]
$$

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(a) If $\lambda_{1} \neq \lambda_{2}$, real, then $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ are linearly independent, and the general solution is $\mathbf{x}(x)=c_{1} \mathbf{v}^{(1)} e^{\lambda_{1} t}+c_{2} \mathbf{v}^{(2)} e^{\lambda_{2} t}$.
(b) If $\lambda_{1} \neq \lambda_{2}$, complex, then denoting $\lambda_{ \pm}=\alpha \pm \beta i$ and $\mathbf{v}^{(\pm)}=\mathbf{a} \pm \mathbf{b}$ i, the complex-valued fundamental solutions

$$
\begin{gathered}
\mathbf{x}^{(\pm)}=(\mathbf{a} \pm \mathbf{b} \boldsymbol{i}) e^{(\alpha \pm \beta i) t} \\
\mathbf{x}^{(\pm)}=e^{\alpha t}(\mathbf{a} \pm \mathbf{b} \boldsymbol{i})[\cos (\beta t)+i \sin (\beta t)] \\
\mathbf{x}^{(\pm)}=e^{\alpha t}[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] \pm i e^{\alpha t}[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)]
\end{gathered}
$$

Real-valued fundamental solutions are

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(a) If $\lambda_{1} \neq \lambda_{2}$, real, then $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ are linearly independent, and the general solution is $\mathbf{x}(x)=c_{1} \mathbf{v}^{(1)} e^{\lambda_{1} t}+c_{2} \mathbf{v}^{(2)} e^{\lambda_{2} t}$.
(b) If $\lambda_{1} \neq \lambda_{2}$, complex, then denoting $\lambda_{ \pm}=\alpha \pm \beta i$ and $\mathbf{v}^{(\pm)}=\mathbf{a} \pm \mathbf{b}$ i, the complex-valued fundamental solutions

$$
\begin{gathered}
\mathbf{x}^{(\pm)}=(\mathbf{a} \pm \mathbf{b} \boldsymbol{i}) e^{(\alpha \pm \beta i) t} \\
\mathbf{x}^{(\pm)}=e^{\alpha t}(\mathbf{a} \pm \mathbf{b} \boldsymbol{i})[\cos (\beta t)+i \sin (\beta t)] \\
\mathbf{x}^{(\pm)}=e^{\alpha t}[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] \pm i e^{\alpha t}[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)]
\end{gathered}
$$

Real-valued fundamental solutions are

$$
\mathbf{x}^{(1)}=e^{\alpha t}[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)]
$$

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(a) If $\lambda_{1} \neq \lambda_{2}$, real, then $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ are linearly independent, and the general solution is $\mathbf{x}(x)=c_{1} \mathbf{v}^{(1)} e^{\lambda_{1} t}+c_{2} \mathbf{v}^{(2)} e^{\lambda_{2} t}$.
(b) If $\lambda_{1} \neq \lambda_{2}$, complex, then denoting $\lambda_{ \pm}=\alpha \pm \beta i$ and $\mathbf{v}^{(\pm)}=\mathbf{a} \pm \mathbf{b}$ i, the complex-valued fundamental solutions

$$
\begin{gathered}
\mathbf{x}^{(\pm)}=(\mathbf{a} \pm \mathbf{b} i) e^{(\alpha \pm \beta i) t} \\
\mathbf{x}^{(\pm)}=e^{\alpha t}(\mathbf{a} \pm \mathbf{b} i)[\cos (\beta t)+i \sin (\beta t)] \\
\mathbf{x}^{(\pm)}=e^{\alpha t}[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] \pm i e^{\alpha t}[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)]
\end{gathered}
$$

Real-valued fundamental solutions are

$$
\begin{aligned}
& \mathbf{x}^{(1)}=e^{\alpha t}[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] \\
& \mathbf{x}^{(2)}=e^{\alpha t}[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)]
\end{aligned}
$$

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(c) If $\lambda_{1}=\lambda_{2}=\lambda$, real,

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(c) If $\lambda_{1}=\lambda_{2}=\lambda$, real, and their eigenvectors $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ are linearly independent,

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(c) If $\lambda_{1}=\lambda_{2}=\lambda$, real, and their eigenvectors $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ are linearly independent, then the general solution is

$$
\mathbf{x}(x)=c_{1} \mathbf{v}^{(1)} e^{\lambda t}+c_{2} \mathbf{v}^{(2)} e^{\lambda t}
$$

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(c) If $\lambda_{1}=\lambda_{2}=\lambda$, real, and their eigenvectors $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ are linearly independent, then the general solution is

$$
\mathbf{x}(x)=c_{1} \mathbf{v}^{(1)} e^{\lambda t}+c_{2} \mathbf{v}^{(2)} e^{\lambda t}
$$

(d) If $\lambda_{1}=\lambda_{2}=\lambda$, real,

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(c) If $\lambda_{1}=\lambda_{2}=\lambda$, real, and their eigenvectors $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ are linearly independent, then the general solution is

$$
\mathbf{x}(x)=c_{1} \mathbf{v}^{(1)} e^{\lambda t}+c_{2} \mathbf{v}^{(2)} e^{\lambda t}
$$

(d) If $\lambda_{1}=\lambda_{2}=\lambda$, real, and there is only one eigendirection \mathbf{v},

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(c) If $\lambda_{1}=\lambda_{2}=\lambda$, real, and their eigenvectors $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ are linearly independent, then the general solution is

$$
\mathbf{x}(x)=c_{1} \mathbf{v}^{(1)} e^{\lambda t}+c_{2} \mathbf{v}^{(2)} e^{\lambda t}
$$

(d) If $\lambda_{1}=\lambda_{2}=\lambda$, real, and there is only one eigendirection \mathbf{v}, then find \mathbf{w} solution of $(A-\lambda /) \mathbf{w}=\mathbf{v}$.

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(c) If $\lambda_{1}=\lambda_{2}=\lambda$, real, and their eigenvectors $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ are linearly independent, then the general solution is

$$
\mathbf{x}(x)=c_{1} \mathbf{v}^{(1)} e^{\lambda t}+c_{2} \mathbf{v}^{(2)} e^{\lambda t}
$$

(d) If $\lambda_{1}=\lambda_{2}=\lambda$, real, and there is only one eigendirection \mathbf{v}, then find \mathbf{w} solution of $(A-\lambda /) \mathbf{w}=\mathbf{v}$. Then fundamental solutions to the differential equation are given by

$$
\mathbf{x}^{(1)}=\mathbf{v} e^{\lambda t},
$$

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(c) If $\lambda_{1}=\lambda_{2}=\lambda$, real, and their eigenvectors $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ are linearly independent, then the general solution is

$$
\mathbf{x}(x)=c_{1} \mathbf{v}^{(1)} e^{\lambda t}+c_{2} \mathbf{v}^{(2)} e^{\lambda t}
$$

(d) If $\lambda_{1}=\lambda_{2}=\lambda$, real, and there is only one eigendirection \mathbf{v}, then find \mathbf{w} solution of $(A-\lambda /) \mathbf{w}=\mathbf{v}$. Then fundamental solutions to the differential equation are given by

$$
\mathbf{x}^{(1)}=\mathbf{v} e^{\lambda t}, \quad \mathbf{x}^{(2)}=(\mathbf{v} t+\mathbf{w}) e^{\lambda t} .
$$

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(c) If $\lambda_{1}=\lambda_{2}=\lambda$, real, and their eigenvectors $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ are linearly independent, then the general solution is

$$
\mathbf{x}(x)=c_{1} \mathbf{v}^{(1)} e^{\lambda t}+c_{2} \mathbf{v}^{(2)} e^{\lambda t}
$$

(d) If $\lambda_{1}=\lambda_{2}=\lambda$, real, and there is only one eigendirection \mathbf{v}, then find \mathbf{w} solution of $(A-\lambda /) \mathbf{w}=\mathbf{v}$. Then fundamental solutions to the differential equation are given by

$$
\mathbf{x}^{(1)}=\mathbf{v} e^{\lambda t}, \quad \mathbf{x}^{(2)}=(\mathbf{v} t+\mathbf{w}) e^{\lambda t} .
$$

Then, the general solution is

$$
\mathbf{x}=c_{1} \mathbf{v} e^{\lambda t}+c_{2}(\mathbf{v} t+\mathbf{w}) e^{\lambda t}
$$

Systems of linear Equations.

Example
Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$.

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$. Solution:

$$
p(\lambda)=\left|\begin{array}{cc}
(1-\lambda) & 4 \\
2 & (-1-\lambda)
\end{array}\right|
$$

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$. Solution:

$$
p(\lambda)=\left|\begin{array}{cc}
(1-\lambda) & 4 \\
2 & (-1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+1)-8
$$

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$. Solution:

$$
p(\lambda)=\left|\begin{array}{cc}
(1-\lambda) & 4 \\
2 & (-1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+1)-8=\lambda^{2}-1-8,
$$

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$. Solution:

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(1-\lambda) & 4 \\
2 & (-1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+1)-8=\lambda^{2}-1-8, \\
p(\lambda)=\lambda^{2}-9=0
\end{gathered}
$$

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$.
Solution:

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(1-\lambda) & 4 \\
2 & (-1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+1)-8=\lambda^{2}-1-8 \\
p(\lambda)=\lambda^{2}-9=0 \quad \Rightarrow \quad \lambda_{ \pm}= \pm 3
\end{gathered}
$$

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$.
Solution:

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(1-\lambda) & 4 \\
2 & (-1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+1)-8=\lambda^{2}-1-8, \\
p(\lambda)=\lambda^{2}-9=0 \quad \Rightarrow \quad \lambda_{ \pm}= \pm 3 .
\end{gathered}
$$

Case $\lambda_{+}=3$,

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$. Solution:

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(1-\lambda) & 4 \\
2 & (-1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+1)-8=\lambda^{2}-1-8, \\
p(\lambda)=\lambda^{2}-9=0 \quad \Rightarrow \quad \lambda_{ \pm}= \pm 3 .
\end{gathered}
$$

Case $\lambda_{+}=3$,
$A-31$

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$. Solution:

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(1-\lambda) & 4 \\
2 & (-1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+1)-8=\lambda^{2}-1-8, \\
p(\lambda)=\lambda^{2}-9=0 \quad \Rightarrow \quad \lambda_{ \pm}= \pm 3 .
\end{gathered}
$$

Case $\lambda_{+}=3$,

$$
A-3 I=\left[\begin{array}{cc}
-2 & 4 \\
2 & -4
\end{array}\right]
$$

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$.
Solution:

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(1-\lambda) & 4 \\
2 & (-1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+1)-8=\lambda^{2}-1-8 \\
p(\lambda)=\lambda^{2}-9=0 \quad \Rightarrow \quad \lambda_{ \pm}= \pm 3
\end{gathered}
$$

Case $\lambda_{+}=3$,

$$
A-3 I=\left[\begin{array}{cc}
-2 & 4 \\
2 & -4
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right]
$$

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$.
Solution:

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(1-\lambda) & 4 \\
2 & (-1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+1)-8=\lambda^{2}-1-8 \\
p(\lambda)=\lambda^{2}-9=0 \quad \Rightarrow \quad \lambda_{ \pm}= \pm 3
\end{gathered}
$$

Case $\lambda_{+}=3$,

$$
A-3 I=\left[\begin{array}{cc}
-2 & 4 \\
2 & -4
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right] \Rightarrow v_{1}=2 v_{2}
$$

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$.
Solution:

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(1-\lambda) & 4 \\
2 & (-1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+1)-8=\lambda^{2}-1-8 \\
p(\lambda)=\lambda^{2}-9=0 \quad \Rightarrow \quad \lambda_{ \pm}= \pm 3
\end{gathered}
$$

Case $\lambda_{+}=3$,

$$
A-3 I=\left[\begin{array}{cc}
-2 & 4 \\
2 & -4
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right] \Rightarrow v_{1}=2 v_{2} \Rightarrow \mathbf{v}^{(+)}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$. Solution:

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(1-\lambda) & 4 \\
2 & (-1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+1)-8=\lambda^{2}-1-8 \\
p(\lambda)=\lambda^{2}-9=0 \quad \Rightarrow \quad \lambda_{ \pm}= \pm 3
\end{gathered}
$$

Case $\lambda_{+}=3$,

$$
A-3 I=\left[\begin{array}{cc}
-2 & 4 \\
2 & -4
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right] \Rightarrow v_{1}=2 v_{2} \Rightarrow \mathbf{v}^{(+)}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Case $\lambda_{-}=-3$,

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$.
Solution:

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(1-\lambda) & 4 \\
2 & (-1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+1)-8=\lambda^{2}-1-8 \\
p(\lambda)=\lambda^{2}-9=0 \quad \Rightarrow \quad \lambda_{ \pm}= \pm 3
\end{gathered}
$$

Case $\lambda_{+}=3$,

$$
A-3 I=\left[\begin{array}{cc}
-2 & 4 \\
2 & -4
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right] \Rightarrow v_{1}=2 v_{2} \Rightarrow \mathbf{v}^{(+)}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Case $\lambda_{-}=-3$,

$$
A+3 I
$$

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$. Solution:

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(1-\lambda) & 4 \\
2 & (-1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+1)-8=\lambda^{2}-1-8 \\
p(\lambda)=\lambda^{2}-9=0 \quad \Rightarrow \quad \lambda_{ \pm}= \pm 3
\end{gathered}
$$

Case $\lambda_{+}=3$,

$$
A-3 I=\left[\begin{array}{cc}
-2 & 4 \\
2 & -4
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right] \Rightarrow v_{1}=2 v_{2} \Rightarrow \mathbf{v}^{(+)}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Case $\lambda_{-}=-3$,

$$
A+3 I=\left[\begin{array}{ll}
4 & 4 \\
2 & 2
\end{array}\right]
$$

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$. Solution:

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(1-\lambda) & 4 \\
2 & (-1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+1)-8=\lambda^{2}-1-8 \\
p(\lambda)=\lambda^{2}-9=0 \quad \Rightarrow \quad \lambda_{ \pm}= \pm 3
\end{gathered}
$$

Case $\lambda_{+}=3$,

$$
A-3 I=\left[\begin{array}{cc}
-2 & 4 \\
2 & -4
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right] \Rightarrow v_{1}=2 v_{2} \Rightarrow \mathbf{v}^{(+)}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Case $\lambda_{-}=-3$,

$$
A+3 I=\left[\begin{array}{ll}
4 & 4 \\
2 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]
$$

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$. Solution:

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(1-\lambda) & 4 \\
2 & (-1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+1)-8=\lambda^{2}-1-8 \\
p(\lambda)=\lambda^{2}-9=0 \quad \Rightarrow \quad \lambda_{ \pm}= \pm 3
\end{gathered}
$$

Case $\lambda_{+}=3$,

$$
A-3 I=\left[\begin{array}{cc}
-2 & 4 \\
2 & -4
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right] \Rightarrow v_{1}=2 v_{2} \Rightarrow \mathbf{v}^{(+)}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Case $\lambda_{-}=-3$,

$$
A+3 I=\left[\begin{array}{ll}
4 & 4 \\
2 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \Rightarrow v_{1}=-v_{2}
$$

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$. Solution:

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(1-\lambda) & 4 \\
2 & (-1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+1)-8=\lambda^{2}-1-8 \\
p(\lambda)=\lambda^{2}-9=0 \quad \Rightarrow \quad \lambda_{ \pm}= \pm 3
\end{gathered}
$$

Case $\lambda_{+}=3$,

$$
A-3 I=\left[\begin{array}{cc}
-2 & 4 \\
2 & -4
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right] \Rightarrow v_{1}=2 v_{2} \Rightarrow \mathbf{v}^{(+)}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Case $\lambda_{-}=-3$,

$$
A+3 I=\left[\begin{array}{ll}
4 & 4 \\
2 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \Rightarrow v_{1}=-v_{2} \Rightarrow \mathbf{v}^{(-)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Systems of linear Equations.

Example
Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$.
Solution: Recall: $\lambda_{ \pm}= \pm 3, \mathbf{v}^{(+)}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \mathbf{v}^{(-)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.

Systems of linear Equations.

Example
Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$.
Solution: Recall: $\lambda_{ \pm}= \pm 3, \mathbf{v}^{(+)}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \mathbf{v}^{(-)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.
The general solution is $\mathbf{x}(t)=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right] e^{3 t}+c_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-3 t}$.

Systems of linear Equations.

Example
Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$.
Solution: Recall: $\lambda_{ \pm}= \pm 3, \mathbf{v}^{(+)}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \mathbf{v}^{(-)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.
The general solution is $\mathbf{x}(t)=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right] e^{3 t}+c_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-3 t}$.
The initial condition implies,

$$
\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\mathbf{x}(0)
$$

Systems of linear Equations.

Example
Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$.
Solution: Recall: $\lambda_{ \pm}= \pm 3, \mathbf{v}^{(+)}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \mathbf{v}^{(-)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.
The general solution is $\mathbf{x}(t)=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right] e^{3 t}+c_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-3 t}$.
The initial condition implies,

$$
\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\mathbf{x}(0)=c_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Systems of linear Equations.

Example
Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$.
Solution: Recall: $\lambda_{ \pm}= \pm 3, \mathbf{v}^{(+)}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \mathbf{v}^{(-)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.
The general solution is $\mathbf{x}(t)=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right] e^{3 t}+c_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-3 t}$.
The initial condition implies,

$$
\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\mathbf{x}(0)=c_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$.
Solution: Recall: $\lambda_{ \pm}= \pm 3, \mathbf{v}^{(+)}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \mathbf{v}^{(-)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.
The general solution is $\mathbf{x}(t)=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right] e^{3 t}+c_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-3 t}$. The initial condition implies,

$$
\begin{gathered}
{\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\mathbf{x}(0)=c_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right]} \\
{\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\frac{1}{(2+1)}\left[\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
3 \\
2
\end{array}\right]}
\end{gathered}
$$

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$.
Solution: Recall: $\lambda_{ \pm}= \pm 3, \mathbf{v}^{(+)}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \mathbf{v}^{(-)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.
The general solution is $\mathbf{x}(t)=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right] e^{3 t}+c_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-3 t}$. The initial condition implies,

$$
\begin{gathered}
{\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\mathbf{x}(0)=c_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right] .} \\
{\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\frac{1}{(2+1)}\left[\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
3 \\
2
\end{array}\right] \Rightarrow\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{l}
5 \\
1
\end{array}\right] .}
\end{gathered}
$$

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$.
Solution: Recall: $\lambda_{ \pm}= \pm 3, \mathbf{v}^{(+)}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \mathbf{v}^{(-)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.
The general solution is $\mathbf{x}(t)=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right] e^{3 t}+c_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-3 t}$. The initial condition implies,

$$
\begin{gathered}
{\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\mathbf{x}(0)=c_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right] .} \\
{\left[\begin{array}{l}
l_{1} \\
c_{2}
\end{array}\right]=\frac{1}{(2+1)}\left[\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
3 \\
2
\end{array}\right] \Rightarrow\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{l}
5 \\
1
\end{array}\right] .}
\end{gathered}
$$

We conclude: $\mathbf{x}(t)=\frac{5}{3}\left[\begin{array}{l}2 \\ 1\end{array}\right] e^{3 t}+\frac{1}{3}\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-3 t}$.

Review for Final Exam.

- Fourier Series expansions (Chptr.6).
- Eigenvalue-Eigenfunction BVP (Chptr. 6).
- Systems of linear Equations (Chptr. 5).
- Laplace transforms (Chptr. 4).
- Power Series Methods (Chptr. 3).
- Second order linear equations (Chptr. 2).
- First order differential equations (Chptr. 1).

Laplace transforms.

Summary:

- Main Properties:

Laplace transforms.

Summary:

- Main Properties:

$$
\begin{equation*}
\mathcal{L}\left[f^{(n)}(t)\right]=s^{n} \mathcal{L}[f(t)]-s^{(n-1)} f(0)-\cdots-f^{(n-1)}(0) ; \tag{18}
\end{equation*}
$$

Laplace transforms.

Summary:

- Main Properties:

$$
\begin{align*}
& \mathcal{L}\left[f^{(n)}(t)\right]=s^{n} \mathcal{L}[f(t)]-s^{(n-1)} f(0)-\cdots-f^{(n-1)}(0) \tag{18}\\
& e^{-c s} \mathcal{L}[f(t)]=\mathcal{L}\left[u_{c}(t) f(t-c)\right] \tag{13}
\end{align*}
$$

Laplace transforms.

Summary:

- Main Properties:

$$
\begin{align*}
& \mathcal{L}\left[f^{(n)}(t)\right]=s^{n} \mathcal{L}[f(t)]-s^{(n-1)} f(0)-\cdots-f^{(n-1)}(0) \tag{18}\\
& e^{-c s} \mathcal{L}[f(t)]=\mathcal{L}\left[u_{c}(t) f(t-c)\right] \tag{13}\\
& \left.\mathcal{L}[f(t)]\right|_{(s-c)}=\mathcal{L}\left[e^{c t} f(t)\right] \tag{14}
\end{align*}
$$

Laplace transforms.

Summary:

- Main Properties:

$$
\begin{align*}
& \mathcal{L}\left[f^{(n)}(t)\right]=s^{n} \mathcal{L}[f(t)]-s^{(n-1)} f(0)-\cdots-f^{(n-1)}(0) \tag{18}\\
& e^{-c s} \mathcal{L}[f(t)]=\mathcal{L}\left[u_{c}(t) f(t-c)\right] \tag{13}\\
& \left.\mathcal{L}[f(t)]\right|_{(s-c)}=\mathcal{L}\left[e^{c t} f(t)\right] \tag{14}
\end{align*}
$$

- Convolutions:

Laplace transforms.

Summary:

- Main Properties:

$$
\begin{align*}
& \mathcal{L}\left[f^{(n)}(t)\right]=s^{n} \mathcal{L}[f(t)]-s^{(n-1)} f(0)-\cdots-f^{(n-1)}(0) \tag{18}\\
& e^{-c s} \mathcal{L}[f(t)]=\mathcal{L}\left[u_{c}(t) f(t-c)\right] \tag{13}\\
& \left.\mathcal{L}[f(t)]\right|_{(s-c)}=\mathcal{L}\left[e^{c t} f(t)\right] \tag{14}
\end{align*}
$$

- Convolutions:

$$
\mathcal{L}[(f * g)(t)]=\mathcal{L}[f(t)] \mathcal{L}[g(t)]
$$

Laplace transforms.

Summary:

- Main Properties:

$$
\begin{align*}
& \mathcal{L}\left[f^{(n)}(t)\right]=s^{n} \mathcal{L}[f(t)]-s^{(n-1)} f(0)-\cdots-f^{(n-1)}(0) \tag{18}\\
& e^{-c s} \mathcal{L}[f(t)]=\mathcal{L}\left[u_{c}(t) f(t-c)\right] \tag{13}\\
& \left.\mathcal{L}[f(t)]\right|_{(s-c)}=\mathcal{L}\left[e^{c t} f(t)\right] \tag{14}
\end{align*}
$$

- Convolutions:

$$
\mathcal{L}[(f * g)(t)]=\mathcal{L}[f(t)] \mathcal{L}[g(t)]
$$

- Partial fraction decompositions, completing the squares.

Laplace transforms.

Example
Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2
$$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2 .
$$

Solution: Compute $\mathcal{L}\left[y^{\prime \prime}\right]+9 \mathcal{L}[y]=\mathcal{L}\left[u_{5}(t)\right]$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2 .
$$

Solution: Compute $\mathcal{L}\left[y^{\prime \prime}\right]+9 \mathcal{L}[y]=\mathcal{L}\left[u_{5}(t)\right]=\frac{e^{-5 s}}{s}$,

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2
$$

Solution: Compute $\mathcal{L}\left[y^{\prime \prime}\right]+9 \mathcal{L}[y]=\mathcal{L}\left[u_{5}(t)\right]=\frac{e^{-5 s}}{s}$, and recall,
$\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]-s y(0)-y^{\prime}(0)$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2
$$

Solution: Compute $\mathcal{L}\left[y^{\prime \prime}\right]+9 \mathcal{L}[y]=\mathcal{L}\left[u_{5}(t)\right]=\frac{e^{-5 s}}{s}$, and recall,
$\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]-s y(0)-y^{\prime}(0) \quad \Rightarrow \quad \mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]-3 s-2$.

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2
$$

Solution: Compute $\mathcal{L}\left[y^{\prime \prime}\right]+9 \mathcal{L}[y]=\mathcal{L}\left[u_{5}(t)\right]=\frac{e^{-5 s}}{s}$, and recall,

$$
\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]-s y(0)-y^{\prime}(0) \quad \Rightarrow \quad \mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]-3 s-2 .
$$

$$
\left(s^{2}+9\right) \mathcal{L}[y]-3 s-2=\frac{e^{-5 s}}{s}
$$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2
$$

Solution: Compute $\mathcal{L}\left[y^{\prime \prime}\right]+9 \mathcal{L}[y]=\mathcal{L}\left[u_{5}(t)\right]=\frac{e^{-5 s}}{s}$, and recall,

$$
\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]-s y(0)-y^{\prime}(0) \quad \Rightarrow \quad \mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]-3 s-2 .
$$

$$
\begin{gathered}
\left(s^{2}+9\right) \mathcal{L}[y]-3 s-2=\frac{e^{-5 s}}{s} \\
\mathcal{L}[y]=\frac{(3 s+2)}{\left(s^{2}+9\right)}+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}
\end{gathered}
$$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2 .
$$

Solution: Compute $\mathcal{L}\left[y^{\prime \prime}\right]+9 \mathcal{L}[y]=\mathcal{L}\left[u_{5}(t)\right]=\frac{e^{-5 s}}{s}$, and recall,

$$
\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]-s y(0)-y^{\prime}(0) \quad \Rightarrow \quad \mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]-3 s-2 .
$$

$$
\begin{gathered}
\left(s^{2}+9\right) \mathcal{L}[y]-3 s-2=\frac{e^{-5 s}}{s} \\
\mathcal{L}[y]=\frac{(3 s+2)}{\left(s^{2}+9\right)}+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)} . \\
\mathcal{L}[y]=3 \frac{s}{\left(s^{2}+9\right)}+\frac{2}{3} \frac{3}{\left(s^{2}+9\right)}+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)} .
\end{gathered}
$$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2 .
$$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2 .
$$

Solution: Recall $\mathcal{L}[y]=3 \frac{s}{\left(s^{2}+9\right)}+\frac{2}{3} \frac{3}{\left(s^{2}+9\right)}+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}$.

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2
$$

Solution: Recall $\mathcal{L}[y]=3 \frac{s}{\left(s^{2}+9\right)}+\frac{2}{3} \frac{3}{\left(s^{2}+9\right)}+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}$.

$$
\mathcal{L}[y]=3 \mathcal{L}[\cos (3 t)]+\frac{2}{3} \mathcal{L}[\sin (3 t)]+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}
$$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2
$$

Solution: Recall $\mathcal{L}[y]=3 \frac{s}{\left(s^{2}+9\right)}+\frac{2}{3} \frac{3}{\left(s^{2}+9\right)}+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}$.

$$
\mathcal{L}[y]=3 \mathcal{L}[\cos (3 t)]+\frac{2}{3} \mathcal{L}[\sin (3 t)]+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}
$$

Partial fractions on

$$
H(s)=\frac{1}{s\left(s^{2}+9\right)}
$$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2
$$

Solution: Recall $\mathcal{L}[y]=3 \frac{s}{\left(s^{2}+9\right)}+\frac{2}{3} \frac{3}{\left(s^{2}+9\right)}+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}$.

$$
\mathcal{L}[y]=3 \mathcal{L}[\cos (3 t)]+\frac{2}{3} \mathcal{L}[\sin (3 t)]+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}
$$

Partial fractions on

$$
H(s)=\frac{1}{s\left(s^{2}+9\right)}=\frac{a}{s}+\frac{(b s+c)}{\left(s^{2}+9\right)}
$$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2
$$

Solution: Recall $\mathcal{L}[y]=3 \frac{s}{\left(s^{2}+9\right)}+\frac{2}{3} \frac{3}{\left(s^{2}+9\right)}+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}$.

$$
\mathcal{L}[y]=3 \mathcal{L}[\cos (3 t)]+\frac{2}{3} \mathcal{L}[\sin (3 t)]+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}
$$

Partial fractions on

$$
H(s)=\frac{1}{s\left(s^{2}+9\right)}=\frac{a}{s}+\frac{(b s+c)}{\left(s^{2}+9\right)}=\frac{a\left(s^{2}+9\right)+(b s+c) s}{s\left(s^{2}+9\right)}
$$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2
$$

Solution: Recall $\mathcal{L}[y]=3 \frac{s}{\left(s^{2}+9\right)}+\frac{2}{3} \frac{3}{\left(s^{2}+9\right)}+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}$.

$$
\mathcal{L}[y]=3 \mathcal{L}[\cos (3 t)]+\frac{2}{3} \mathcal{L}[\sin (3 t)]+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}
$$

Partial fractions on

$$
\begin{aligned}
H(s)= & \frac{1}{s\left(s^{2}+9\right)}=\frac{a}{s}+\frac{(b s+c)}{\left(s^{2}+9\right)}=\frac{a\left(s^{2}+9\right)+(b s+c) s}{s\left(s^{2}+9\right)} \\
1 & =a s^{2}+9 a+b s^{2}+c s
\end{aligned}
$$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2
$$

Solution: Recall $\mathcal{L}[y]=3 \frac{s}{\left(s^{2}+9\right)}+\frac{2}{3} \frac{3}{\left(s^{2}+9\right)}+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}$.

$$
\mathcal{L}[y]=3 \mathcal{L}[\cos (3 t)]+\frac{2}{3} \mathcal{L}[\sin (3 t)]+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}
$$

Partial fractions on

$$
\begin{gathered}
H(s)=\frac{1}{s\left(s^{2}+9\right)}=\frac{a}{s}+\frac{(b s+c)}{\left(s^{2}+9\right)}=\frac{a\left(s^{2}+9\right)+(b s+c) s}{s\left(s^{2}+9\right)} \\
1=a s^{2}+9 a+b s^{2}+c s=(a+b) s^{2}+c s+9 a
\end{gathered}
$$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2
$$

Solution: Recall $\mathcal{L}[y]=3 \frac{s}{\left(s^{2}+9\right)}+\frac{2}{3} \frac{3}{\left(s^{2}+9\right)}+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}$.

$$
\mathcal{L}[y]=3 \mathcal{L}[\cos (3 t)]+\frac{2}{3} \mathcal{L}[\sin (3 t)]+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}
$$

Partial fractions on

$$
\begin{aligned}
H(s)= & \frac{1}{s\left(s^{2}+9\right)}=\frac{a}{s}+\frac{(b s+c)}{\left(s^{2}+9\right)}=\frac{a\left(s^{2}+9\right)+(b s+c) s}{s\left(s^{2}+9\right)} \\
1= & a s^{2}+9 a+b s^{2}+c s=(a+b) s^{2}+c s+9 a \\
& a=\frac{1}{9}
\end{aligned}
$$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2
$$

Solution: Recall $\mathcal{L}[y]=3 \frac{s}{\left(s^{2}+9\right)}+\frac{2}{3} \frac{3}{\left(s^{2}+9\right)}+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}$.

$$
\mathcal{L}[y]=3 \mathcal{L}[\cos (3 t)]+\frac{2}{3} \mathcal{L}[\sin (3 t)]+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}
$$

Partial fractions on

$$
\begin{aligned}
& H(s)= \frac{1}{s\left(s^{2}+9\right)}=\frac{a}{s}+\frac{(b s+c)}{\left(s^{2}+9\right)}=\frac{a\left(s^{2}+9\right)+(b s+c) s}{s\left(s^{2}+9\right)} \\
& 1=a s^{2}+9 a+b s^{2}+c s=(a+b) s^{2}+c s+9 a \\
& a=\frac{1}{9}, \quad c=0
\end{aligned}
$$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2
$$

Solution: Recall $\mathcal{L}[y]=3 \frac{s}{\left(s^{2}+9\right)}+\frac{2}{3} \frac{3}{\left(s^{2}+9\right)}+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}$.

$$
\mathcal{L}[y]=3 \mathcal{L}[\cos (3 t)]+\frac{2}{3} \mathcal{L}[\sin (3 t)]+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}
$$

Partial fractions on

$$
\begin{gathered}
H(s)=\frac{1}{s\left(s^{2}+9\right)}=\frac{a}{s}+\frac{(b s+c)}{\left(s^{2}+9\right)}=\frac{a\left(s^{2}+9\right)+(b s+c) s}{s\left(s^{2}+9\right)} \\
1=a s^{2}+9 a+b s^{2}+c s=(a+b) s^{2}+c s+9 a \\
a=\frac{1}{9}, \quad c=0, \quad b=-a
\end{gathered}
$$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2
$$

Solution: Recall $\mathcal{L}[y]=3 \frac{s}{\left(s^{2}+9\right)}+\frac{2}{3} \frac{3}{\left(s^{2}+9\right)}+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}$.

$$
\mathcal{L}[y]=3 \mathcal{L}[\cos (3 t)]+\frac{2}{3} \mathcal{L}[\sin (3 t)]+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}
$$

Partial fractions on

$$
\begin{gathered}
H(s)=\frac{1}{s\left(s^{2}+9\right)}=\frac{a}{s}+\frac{(b s+c)}{\left(s^{2}+9\right)}=\frac{a\left(s^{2}+9\right)+(b s+c) s}{s\left(s^{2}+9\right)} \\
1=a s^{2}+9 a+b s^{2}+c s=(a+b) s^{2}+c s+9 a \\
a=\frac{1}{9}, \quad c=0, \quad b=-a \quad \Rightarrow \quad b=-\frac{1}{9}
\end{gathered}
$$

Laplace transforms.

Example
Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2 .
$$

Solution: So, $\mathcal{L}[y]=3 \mathcal{L}[\cos (3 t)]+\frac{2}{3} \mathcal{L}[\sin (3 t)]+e^{-5 s} H(s)$, and

$$
H(s)=\frac{1}{s\left(s^{2}+9\right)}=\frac{1}{9}\left[\frac{1}{s}-\frac{s}{s^{2}+9}\right]
$$

Laplace transforms.

Example
Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2 .
$$

Solution: So, $\mathcal{L}[y]=3 \mathcal{L}[\cos (3 t)]+\frac{2}{3} \mathcal{L}[\sin (3 t)]+e^{-5 s} H(s)$, and

$$
H(s)=\frac{1}{s\left(s^{2}+9\right)}=\frac{1}{9}\left[\frac{1}{s}-\frac{s}{s^{2}+9}\right]=\frac{1}{9}(\mathcal{L}[u(t)]-\mathcal{L}[\cos (3 t)])
$$

Laplace transforms.

Example
Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2 .
$$

Solution: So, $\mathcal{L}[y]=3 \mathcal{L}[\cos (3 t)]+\frac{2}{3} \mathcal{L}[\sin (3 t)]+e^{-5 s} H(s)$, and

$$
\begin{aligned}
& H(s)= \frac{1}{s\left(s^{2}+9\right)}=\frac{1}{9}\left[\frac{1}{s}-\frac{s}{s^{2}+9}\right]=\frac{1}{9}(\mathcal{L}[u(t)]-\mathcal{L}[\cos (3 t)]) \\
& e^{-5 s} H(s)=\frac{1}{9}\left(e^{-5 s} \mathcal{L}[u(t)]-e^{-5 s} \mathcal{L}[\cos (3 t)]\right)
\end{aligned}
$$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2
$$

Solution: So, $\mathcal{L}[y]=3 \mathcal{L}[\cos (3 t)]+\frac{2}{3} \mathcal{L}[\sin (3 t)]+e^{-5 s} H(s)$, and

$$
\begin{aligned}
& H(s)= \frac{1}{s\left(s^{2}+9\right)}=\frac{1}{9}\left[\frac{1}{s}-\frac{s}{s^{2}+9}\right]=\frac{1}{9}(\mathcal{L}[u(t)]-\mathcal{L}[\cos (3 t)]) \\
& e^{-5 s} H(s)=\frac{1}{9}\left(e^{-5 s} \mathcal{L}[u(t)]-e^{-5 s} \mathcal{L}[\cos (3 t)]\right) \\
& e^{-5 s} H(s)=\frac{1}{9}\left(\mathcal{L}\left[u_{5}(t)\right]-\mathcal{L}\left[u_{5}(t) \cos (3(t-5))\right]\right) .
\end{aligned}
$$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2
$$

Solution: So, $\mathcal{L}[y]=3 \mathcal{L}[\cos (3 t)]+\frac{2}{3} \mathcal{L}[\sin (3 t)]+e^{-5 s} H(s)$, and

$$
\begin{gathered}
H(s)=\frac{1}{s\left(s^{2}+9\right)}=\frac{1}{9}\left[\frac{1}{s}-\frac{s}{s^{2}+9}\right]=\frac{1}{9}(\mathcal{L}[u(t)]-\mathcal{L}[\cos (3 t)]) \\
e^{-5 s} H(s)=\frac{1}{9}\left(e^{-5 s} \mathcal{L}[u(t)]-e^{-5 s} \mathcal{L}[\cos (3 t)]\right) \\
e^{-5 s} H(s)=\frac{1}{9}\left(\mathcal{L}\left[u_{5}(t)\right]-\mathcal{L}\left[u_{5}(t) \cos (3(t-5))\right]\right) \\
\mathcal{L}[y]=3 \mathcal{L}[\cos (3 t)]+\frac{2}{3} \mathcal{L}[\sin (3 t)]+\frac{1}{9}\left(\mathcal{L}\left[u_{5}(t)\right]-\mathcal{L}\left[u_{5}(t) \cos (3(t-5))\right]\right) .
\end{gathered}
$$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2
$$

Solution:
$\mathcal{L}[y]=3 \mathcal{L}[\cos (3 t)]+\frac{2}{3} \mathcal{L}[\sin (3 t)]+\frac{1}{9}\left(\mathcal{L}\left[u_{5}(t)\right]-\mathcal{L}\left[u_{5}(t) \cos (3(t-5))\right]\right)$.

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2
$$

Solution:

$$
\mathcal{L}[y]=3 \mathcal{L}[\cos (3 t)]+\frac{2}{3} \mathcal{L}[\sin (3 t)]+\frac{1}{9}\left(\mathcal{L}\left[u_{5}(t)\right]-\mathcal{L}\left[u_{5}(t) \cos (3(t-5))\right]\right)
$$

Therefore, we conclude that,

$$
y(t)=3 \cos (3 t)+\frac{2}{3} \sin (3 t)+\frac{u_{5}(t)}{9}[1-\cos (3(t-5))] .
$$

Review for Final Exam.

- Fourier Series expansions (Chptr.6).
- Eigenvalue-Eigenfunction BVP (Chptr. 6).
- Systems of linear Equations (Chptr. 5).
- Laplace transforms (Chptr. 4).
- Power Series Methods (Chptr. 3).
- Second order linear equations (Chptr. 2).
- First order differential equations (Chptr. 1).

Power series solutions (Chptr. 3).

Summary: Solve: $a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$ near x_{0}.

Power series solutions (Chptr. 3).

Summary: Solve: $a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$ near x_{0}.
(a) If x_{0} is a regular point,

Power series solutions (Chptr. 3).

Summary: Solve: $a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$ near x_{0}.
(a) If x_{0} is a regular point, then $y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$.

Power series solutions (Chptr. 3).

Summary: Solve: $a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$ near x_{0}.
(a) If x_{0} is a regular point, then $y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$.

Find a recurrence relation for a_{n}.

Power series solutions (Chptr. 3).

Summary: Solve: $a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$ near x_{0}.
(a) If x_{0} is a regular point, then $y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$.

Find a recurrence relation for a_{n}.
(b) If x_{0} is a regular-singular point,

Power series solutions (Chptr. 3).

Summary: Solve: $a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$ near x_{0}.
(a) If x_{0} is a regular point, then $y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$.

Find a recurrence relation for a_{n}.
(b) If x_{0} is a regular-singular point, $y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{(n+r)}$.

Power series solutions (Chptr. 3).

Summary: Solve: $a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$ near x_{0}.
(a) If x_{0} is a regular point, then $y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$.

Find a recurrence relation for a_{n}.
(b) If x_{0} is a regular-singular point, $y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{(n+r)}$.

Find a recurrence relation for a_{n} and indicial equation for r.

Power series solutions (Chptr. 3).

Summary: Solve: $a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$ near x_{0}.
(a) If x_{0} is a regular point, then $y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$.

Find a recurrence relation for a_{n}.
(b) If x_{0} is a regular-singular point, $y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{(n+r)}$.

Find a recurrence relation for a_{n} and indicial equation for r.
(c) Euler equation: $\left(x-x_{0}\right)^{2} y^{\prime \prime}+\alpha\left(x-x_{0}\right) y^{\prime}+\beta y=0$.

Power series solutions (Chptr. 3).

Summary: Solve: $a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$ near x_{0}.
(a) If x_{0} is a regular point, then $y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$.

Find a recurrence relation for a_{n}.
(b) If x_{0} is a regular-singular point, $y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{(n+r)}$.

Find a recurrence relation for a_{n} and indicial equation for r.
(c) Euler equation: $\left(x-x_{0}\right)^{2} y^{\prime \prime}+\alpha\left(x-x_{0}\right) y^{\prime}+\beta y=0$.

Solutions: If $y(x)=\left|x-x_{0}\right|^{r}$,

Power series solutions (Chptr. 3).

Summary: Solve: $a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$ near x_{0}.
(a) If x_{0} is a regular point, then $y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$.

Find a recurrence relation for a_{n}.
(b) If x_{0} is a regular-singular point, $y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{(n+r)}$.

Find a recurrence relation for a_{n} and indicial equation for r.
(c) Euler equation: $\left(x-x_{0}\right)^{2} y^{\prime \prime}+\alpha\left(x-x_{0}\right) y^{\prime}+\beta y=0$.

Solutions: If $y(x)=\left|x-x_{0}\right|^{r}$, then r is solution of the indicial equation $p(r)=r(r-1)+\alpha r+\beta=0$.

Power series solutions (Chptr. 3).

Summary: Solving the Euler equation

$$
\left(x-x_{0}\right)^{2} y^{\prime \prime}+\alpha\left(x-x_{0}\right) y^{\prime}+\beta y=0 .
$$

Power series solutions (Chptr. 3).

Summary: Solving the Euler equation

$$
\left(x-x_{0}\right)^{2} y^{\prime \prime}+\alpha\left(x-x_{0}\right) y^{\prime}+\beta y=0 .
$$

(i) If $r_{1} \neq r_{2}$, reals,

Power series solutions (Chptr. 3).

Summary: Solving the Euler equation

$$
\left(x-x_{0}\right)^{2} y^{\prime \prime}+\alpha\left(x-x_{0}\right) y^{\prime}+\beta y=0 .
$$

(i) If $r_{1} \neq r_{2}$, reals, then the general solution is

$$
y(x)=c_{1}\left|x-x_{0}\right|^{r_{1}}+c_{2}\left|x-x_{0}\right|^{r_{2}} .
$$

Power series solutions (Chptr. 3).

Summary: Solving the Euler equation

$$
\left(x-x_{0}\right)^{2} y^{\prime \prime}+\alpha\left(x-x_{0}\right) y^{\prime}+\beta y=0 .
$$

(i) If $r_{1} \neq r_{2}$, reals, then the general solution is

$$
y(x)=c_{1}\left|x-x_{0}\right|^{r_{1}}+c_{2}\left|x-x_{0}\right|^{r_{2}} .
$$

(ii) If $r_{1} \neq r_{2}$, complex,

Power series solutions (Chptr. 3).

Summary: Solving the Euler equation

$$
\left(x-x_{0}\right)^{2} y^{\prime \prime}+\alpha\left(x-x_{0}\right) y^{\prime}+\beta y=0 .
$$

(i) If $r_{1} \neq r_{2}$, reals, then the general solution is

$$
y(x)=c_{1}\left|x-x_{0}\right|^{r_{1}}+c_{2}\left|x-x_{0}\right|^{r_{2}} .
$$

(ii) If $r_{1} \neq r_{2}$, complex, denote them as $r_{ \pm}=\lambda \pm \mu i$.

Power series solutions (Chptr. 3).

Summary: Solving the Euler equation

$$
\left(x-x_{0}\right)^{2} y^{\prime \prime}+\alpha\left(x-x_{0}\right) y^{\prime}+\beta y=0 .
$$

(i) If $r_{1} \neq r_{2}$, reals, then the general solution is

$$
y(x)=c_{1}\left|x-x_{0}\right|^{r_{1}}+c_{2}\left|x-x_{0}\right|^{r_{2}} .
$$

(ii) If $r_{1} \neq r_{2}$, complex, denote them as $r_{ \pm}=\lambda \pm \mu i$. Then, the real-valued general solution is

$$
\begin{aligned}
y(x)= & c_{1}\left|x-x_{0}\right|^{\lambda} \cos \left(\mu \ln \left|x-x_{0}\right|\right) \\
& +c_{2}\left|x-x_{0}\right|^{\lambda} \sin \left(\mu \ln \left|x-x_{0}\right|\right) .
\end{aligned}
$$

Power series solutions (Chptr. 3).

Summary: Solving the Euler equation

$$
\left(x-x_{0}\right)^{2} y^{\prime \prime}+\alpha\left(x-x_{0}\right) y^{\prime}+\beta y=0 .
$$

(i) If $r_{1} \neq r_{2}$, reals, then the general solution is

$$
y(x)=c_{1}\left|x-x_{0}\right|^{r_{1}}+c_{2}\left|x-x_{0}\right|^{r_{2}} .
$$

(ii) If $r_{1} \neq r_{2}$, complex, denote them as $r_{ \pm}=\lambda \pm \mu i$. Then, the real-valued general solution is

$$
\begin{aligned}
y(x)= & c_{1}\left|x-x_{0}\right|^{\lambda} \cos \left(\mu \ln \left|x-x_{0}\right|\right) \\
& +c_{2}\left|x-x_{0}\right|^{\lambda} \sin \left(\mu \ln \left|x-x_{0}\right|\right) .
\end{aligned}
$$

(iii) If $r_{1}=r_{2}=r$, real,

Power series solutions (Chptr. 3).

Summary: Solving the Euler equation

$$
\left(x-x_{0}\right)^{2} y^{\prime \prime}+\alpha\left(x-x_{0}\right) y^{\prime}+\beta y=0 .
$$

(i) If $r_{1} \neq r_{2}$, reals, then the general solution is

$$
y(x)=c_{1}\left|x-x_{0}\right|^{r_{1}}+c_{2}\left|x-x_{0}\right|^{r_{2}} .
$$

(ii) If $r_{1} \neq r_{2}$, complex, denote them as $r_{ \pm}=\lambda \pm \mu i$. Then, the real-valued general solution is

$$
\begin{aligned}
y(x)= & c_{1}\left|x-x_{0}\right|^{\lambda} \cos \left(\mu \ln \left|x-x_{0}\right|\right) \\
& +c_{2}\left|x-x_{0}\right|^{\lambda} \sin \left(\mu \ln \left|x-x_{0}\right|\right) .
\end{aligned}
$$

(iii) If $r_{1}=r_{2}=r$, real, then the general solution is

$$
y(x)=\left(c_{1}+c_{2} \ln \left|x-x_{0}\right|\right)\left|x-x_{0}\right|^{r} .
$$

Power series solutions (Chptr. 3).

Example

Find the recurrence relation for the coefficients of the power series solution centered at $x_{0}=0$ of the equation $y^{\prime \prime}-3 y^{\prime}+x y=0$.

Power series solutions (Chptr. 3).

Example

Find the recurrence relation for the coefficients of the power series solution centered at $x_{0}=0$ of the equation $y^{\prime \prime}-3 y^{\prime}+x y=0$.

Solution: $x_{0}=0$ is a regular point of the differential equation.

Power series solutions (Chptr. 3).

Example

Find the recurrence relation for the coefficients of the power series solution centered at $x_{0}=0$ of the equation $y^{\prime \prime}-3 y^{\prime}+x y=0$.

Solution: $x_{0}=0$ is a regular point of the differential equation.
Therefore, $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$

Power series solutions (Chptr. 3).

Example

Find the recurrence relation for the coefficients of the power series solution centered at $x_{0}=0$ of the equation $y^{\prime \prime}-3 y^{\prime}+x y=0$.

Solution: $x_{0}=0$ is a regular point of the differential equation.
Therefore, $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \Rightarrow x y=\sum_{n=0}^{\infty} a_{n} x^{(n+1)}$.

Power series solutions (Chptr. 3).

Example

Find the recurrence relation for the coefficients of the power series solution centered at $x_{0}=0$ of the equation $y^{\prime \prime}-3 y^{\prime}+x y=0$.

Solution: $x_{0}=0$ is a regular point of the differential equation.
Therefore, $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \Rightarrow x y=\sum_{n=0}^{\infty} a_{n} x^{(n+1)}$.

$$
y^{\prime}(x)=\sum_{n=0}^{\infty} n a_{n} x^{(n-1)}
$$

Power series solutions (Chptr. 3).

Example

Find the recurrence relation for the coefficients of the power series solution centered at $x_{0}=0$ of the equation $y^{\prime \prime}-3 y^{\prime}+x y=0$.

Solution: $x_{0}=0$ is a regular point of the differential equation.
Therefore, $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \Rightarrow x y=\sum_{n=0}^{\infty} a_{n} x^{(n+1)}$.

$$
y^{\prime}(x)=\sum_{n=0}^{\infty} n a_{n} x^{(n-1)} \quad \Rightarrow \quad-3 y=\sum_{n=0}^{\infty}(-3 n) a_{n} x^{(n-1)} .
$$

Power series solutions (Chptr. 3).

Example

Find the recurrence relation for the coefficients of the power series solution centered at $x_{0}=0$ of the equation $y^{\prime \prime}-3 y^{\prime}+x y=0$.

Solution: $x_{0}=0$ is a regular point of the differential equation.
Therefore, $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \Rightarrow x y=\sum_{n=0}^{\infty} a_{n} x^{(n+1)}$.

$$
\begin{gathered}
y^{\prime}(x)=\sum_{n=0}^{\infty} n a_{n} x^{(n-1)} \Rightarrow-3 y=\sum_{n=0}^{\infty}(-3 n) a_{n} x^{(n-1)} . \\
y^{\prime \prime}(x)=\sum_{n=0}^{\infty} n(n-1) a_{n} x^{(n-2)} .
\end{gathered}
$$

Power series solutions (Chptr. 3).

Example

Find the recurrence relation for the coefficients of the power series solution centered at $x_{0}=0$ of the equation $y^{\prime \prime}-3 y^{\prime}+x y=0$.

Solution: $x_{0}=0$ is a regular point of the differential equation.
Therefore, $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \Rightarrow x y=\sum_{n=0}^{\infty} a_{n} x^{(n+1)}$.

$$
\begin{gathered}
y^{\prime}(x)=\sum_{n=0}^{\infty} n a_{n} x^{(n-1)} \Rightarrow-3 y=\sum_{n=0}^{\infty}(-3 n) a_{n} x^{(n-1)} . \\
y^{\prime \prime}(x)=\sum_{n=0}^{\infty} n(n-1) a_{n} x^{(n-2)} . \\
\sum_{n=0}^{\infty} n(n-1) a_{n} x^{(n-2)}+\sum_{n=0}^{\infty}(-3 n) a_{n} x^{(n-1)}+\sum_{n=0}^{\infty} a_{n} x^{(n+1)}=0 .
\end{gathered}
$$

Power series solutions (Chptr. 3).

Example

Find the recurrence relation for the coefficients of the power series solution centered at $x_{0}=0$ of the equation $y^{\prime \prime}-3 y^{\prime}+x y=0$.

Solution:

$$
\sum_{n=0}^{\infty} n(n-1) a_{n} x^{(n-2)}+\sum_{n=0}^{\infty}(-3 n) a_{n} x^{(n-1)}+\sum_{n=0}^{\infty} a_{n} x^{(n+1)}=0
$$

Power series solutions (Chptr. 3).

Example

Find the recurrence relation for the coefficients of the power series solution centered at $x_{0}=0$ of the equation $y^{\prime \prime}-3 y^{\prime}+x y=0$.

Solution:

$$
\begin{aligned}
& \sum_{n=0}^{\infty} n(n-1) a_{n} x^{(n-2)}+\sum_{n=0}^{\infty}(-3 n) a_{n} x^{(n-1)}+\sum_{n=0}^{\infty} a_{n} x^{(n+1)}=0 . \\
& \sum_{n=2}^{\infty} n(n-1) a_{n} x^{(n-2)}+\sum_{n=1}^{\infty}(-3 n) a_{n} x^{(n-1)}+\sum_{n=0}^{\infty} a_{n} x^{(n+1)}=0 .
\end{aligned}
$$

Power series solutions (Chptr. 3).

Example

Find the recurrence relation for the coefficients of the power series solution centered at $x_{0}=0$ of the equation $y^{\prime \prime}-3 y^{\prime}+x y=0$.

Solution:

$$
\begin{aligned}
& \sum_{n=0}^{\infty} n(n-1) a_{n} x^{(n-2)}+\sum_{n=0}^{\infty}(-3 n) a_{n} x^{(n-1)}+\sum_{n=0}^{\infty} a_{n} x^{(n+1)}=0 . \\
& \sum_{n=2}^{\infty} n(n-1) a_{n} x^{(n-2)}+\sum_{n=1}^{\infty}(-3 n) a_{n} x^{(n-1)}+\sum_{n=0}^{\infty} a_{n} x^{(n+1)}=0 .
\end{aligned}
$$

$$
\begin{gathered}
m=n-2 \\
m \rightarrow n
\end{gathered}
$$

Power series solutions (Chptr. 3).

Example

Find the recurrence relation for the coefficients of the power series solution centered at $x_{0}=0$ of the equation $y^{\prime \prime}-3 y^{\prime}+x y=0$.

Solution:

$$
\begin{aligned}
& \sum_{n=0}^{\infty} n(n-1) a_{n} x^{(n-2)}+\sum_{n=0}^{\infty}(-3 n) a_{n} x^{(n-1)}+\sum_{n=0}^{\infty} a_{n} x^{(n+1)}=0 . \\
& \sum_{n=2}^{\infty} n(n-1) a_{n} x^{(n-2)}+\sum_{n=1}^{\infty}(-3 n) a_{n} x^{(n-1)}+\sum_{n=0}^{\infty} a_{n} x^{(n+1)}=0 .
\end{aligned}
$$

$$
\begin{array}{cc}
m=n-2 & m=n-1 \\
m \rightarrow n & m \rightarrow n
\end{array}
$$

Power series solutions (Chptr. 3).

Example

Find the recurrence relation for the coefficients of the power series solution centered at $x_{0}=0$ of the equation $y^{\prime \prime}-3 y^{\prime}+x y=0$.

Solution:

$$
\begin{aligned}
& \sum_{n=0}^{\infty} n(n-1) a_{n} x^{(n-2)}+\sum_{n=0}^{\infty}(-3 n) a_{n} x^{(n-1)}+\sum_{n=0}^{\infty} a_{n} x^{(n+1)}=0 . \\
& \sum_{n=2}^{\infty} n(n-1) a_{n} x^{(n-2)}+\sum_{n=1}^{\infty}(-3 n) a_{n} x^{(n-1)}+\sum_{n=0}^{\infty} a_{n} x^{(n+1)}=0 .
\end{aligned}
$$

$$
\begin{array}{ccc}
m=n-2 & m=n-1 & m=n+1 \\
m \rightarrow n & m \rightarrow n & m \rightarrow n
\end{array}
$$

Power series solutions (Chptr. 3).

Example

Find the recurrence relation for the coefficients of the power series solution centered at $x_{0}=0$ of the equation $y^{\prime \prime}-3 y^{\prime}+x y=0$.

Solution:

$$
\left.\begin{array}{cc}
\sum_{n=0}^{\infty} n(n-1) a_{n} x^{(n-2)}+\sum_{n=0}^{\infty}(-3 n) a_{n} x^{(n-1)}+\sum_{n=0}^{\infty} a_{n} x^{(n+1)}=0 \\
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{(n-2)}+\sum_{n=1}^{\infty}(-3 n) a_{n} x^{(n-1)}+\sum_{n=0}^{\infty} a_{n} x^{(n+1)}=0 \\
m=n-2 & m=n-1 \\
m \rightarrow n & m=n \\
m \rightarrow n
\end{array}\right] \begin{gathered}
m \rightarrow n \\
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+\sum_{n=0}^{\infty}(-3)(n+1) a_{n+1} x^{n}+\sum_{n=1}^{\infty} a_{n-1} x^{n}=0 .
\end{gathered}
$$

Power series solutions (Chptr. 3).

Example

Find the recurrence relation for the coefficients of the power series solution centered at $x_{0}=0$ of the equation $y^{\prime \prime}-3 y^{\prime}+x y=0$.

Solution:
$\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+\sum_{n=0}^{\infty}(-3)(n+1) a_{n+1} x^{n}+\sum_{n=1}^{\infty} a_{n-1} x^{n}=0$.

Power series solutions (Chptr. 3).

Example

Find the recurrence relation for the coefficients of the power series solution centered at $x_{0}=0$ of the equation $y^{\prime \prime}-3 y^{\prime}+x y=0$.

Solution:
$\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+\sum_{n=0}^{\infty}(-3)(n+1) a_{n+1} x^{n}+\sum_{n=1}^{\infty} a_{n-1} x^{n}=0$.
$(2)(1) a_{2}+(-3)(1) a_{1}+$

$$
\sum_{n=1}^{\infty}\left[(n+2)(n+1) a_{n+2}-3(n+1) a_{n+1}+a_{n-1}\right] x^{n}=0
$$

Power series solutions (Chptr. 3).

Example

Find the recurrence relation for the coefficients of the power series solution centered at $x_{0}=0$ of the equation $y^{\prime \prime}-3 y^{\prime}+x y=0$.

Solution:
$\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+\sum_{n=0}^{\infty}(-3)(n+1) a_{n+1} x^{n}+\sum_{n=1}^{\infty} a_{n-1} x^{n}=0$.
$(2)(1) a_{2}+(-3)(1) a_{1}+$

$$
\sum_{n=1}^{\infty}\left[(n+2)(n+1) a_{n+2}-3(n+1) a_{n+1}+a_{n-1}\right] x^{n}=0
$$

We conclude: $2 a_{2}-3 a_{1}=0$, and

$$
(n+2)(n+1) a_{n+2}-3(n+1) a_{n+1}+a_{n-1}=0, \quad n \geqslant 1 .
$$

Power series solutions (Chptr. 3).

Example

Find the first two terms on the power series expansion around $x_{0}=0$ of each fundamental solution of $y^{\prime \prime}-3 y^{\prime}+x y=0$.

Power series solutions (Chptr. 3).

Example

Find the first two terms on the power series expansion around $x_{0}=0$ of each fundamental solution of $y^{\prime \prime}-3 y^{\prime}+x y=0$.

Solution: Recall: $2 a_{2}-3 a_{1}=0$, and

$$
(n+2)(n+1) a_{n+2}-3(n+1) a_{n+1}+a_{n-1}=0, \quad n \geqslant 1 .
$$

Power series solutions (Chptr. 3).

Example

Find the first two terms on the power series expansion around $x_{0}=0$ of each fundamental solution of $y^{\prime \prime}-3 y^{\prime}+x y=0$.

Solution: Recall: $2 a_{2}-3 a_{1}=0$, and

$$
(n+2)(n+1) a_{n+2}-3(n+1) a_{n+1}+a_{n-1}=0, \quad n \geqslant 1 .
$$

Therefore, $a_{2}=\frac{3}{2} a_{1}$,

Power series solutions (Chptr. 3).

Example

Find the first two terms on the power series expansion around $x_{0}=0$ of each fundamental solution of $y^{\prime \prime}-3 y^{\prime}+x y=0$.

Solution: Recall: $2 a_{2}-3 a_{1}=0$, and

$$
(n+2)(n+1) a_{n+2}-3(n+1) a_{n+1}+a_{n-1}=0, \quad n \geqslant 1 .
$$

Therefore, $a_{2}=\frac{3}{2} a_{1}$, and $n=1$ in the other equation implies

Power series solutions (Chptr. 3).

Example

Find the first two terms on the power series expansion around $x_{0}=0$ of each fundamental solution of $y^{\prime \prime}-3 y^{\prime}+x y=0$.

Solution: Recall: $2 a_{2}-3 a_{1}=0$, and

$$
(n+2)(n+1) a_{n+2}-3(n+1) a_{n+1}+a_{n-1}=0, \quad n \geqslant 1 .
$$

Therefore, $a_{2}=\frac{3}{2} a_{1}$, and $n=1$ in the other equation implies

$$
(3)(2) a_{3}-3(2) a_{2}+a_{0}=0
$$

Power series solutions (Chptr. 3).

Example

Find the first two terms on the power series expansion around $x_{0}=0$ of each fundamental solution of $y^{\prime \prime}-3 y^{\prime}+x y=0$.

Solution: Recall: $2 a_{2}-3 a_{1}=0$, and

$$
(n+2)(n+1) a_{n+2}-3(n+1) a_{n+1}+a_{n-1}=0, \quad n \geqslant 1 .
$$

Therefore, $a_{2}=\frac{3}{2} a_{1}$, and $n=1$ in the other equation implies

$$
(3)(2) a_{3}-3(2) a_{2}+a_{0}=0 \quad \Rightarrow \quad a_{3}=a_{2}-\frac{a_{0}}{6} .
$$

Power series solutions (Chptr. 3).

Example

Find the first two terms on the power series expansion around $x_{0}=0$ of each fundamental solution of $y^{\prime \prime}-3 y^{\prime}+x y=0$.

Solution: Recall: $2 a_{2}-3 a_{1}=0$, and

$$
(n+2)(n+1) a_{n+2}-3(n+1) a_{n+1}+a_{n-1}=0, \quad n \geqslant 1 .
$$

Therefore, $a_{2}=\frac{3}{2} a_{1}$, and $n=1$ in the other equation implies

$$
(3)(2) a_{3}-3(2) a_{2}+a_{0}=0 \quad \Rightarrow \quad a_{3}=a_{2}-\frac{a_{0}}{6} .
$$

Using the equation for a_{2} we obtain

Power series solutions (Chptr. 3).

Example

Find the first two terms on the power series expansion around $x_{0}=0$ of each fundamental solution of $y^{\prime \prime}-3 y^{\prime}+x y=0$.

Solution: Recall: $2 a_{2}-3 a_{1}=0$, and

$$
(n+2)(n+1) a_{n+2}-3(n+1) a_{n+1}+a_{n-1}=0, \quad n \geqslant 1 .
$$

Therefore, $a_{2}=\frac{3}{2} a_{1}$, and $n=1$ in the other equation implies

$$
(3)(2) a_{3}-3(2) a_{2}+a_{0}=0 \quad \Rightarrow \quad a_{3}=a_{2}-\frac{a_{0}}{6} .
$$

Using the equation for a_{2} we obtain $a_{3}=\frac{3}{2} a_{1}-\frac{a_{0}}{6}$.

Power series solutions (Chptr. 3).

Example

Find the first two terms on the power series expansion around $x_{0}=0$ of each fundamental solution of $y^{\prime \prime}-3 y^{\prime}+x y=0$.

Solution: Recall: $2 a_{2}-3 a_{1}=0$, and

$$
(n+2)(n+1) a_{n+2}-3(n+1) a_{n+1}+a_{n-1}=0, \quad n \geqslant 1 .
$$

Therefore, $a_{2}=\frac{3}{2} a_{1}$, and $n=1$ in the other equation implies

$$
(3)(2) a_{3}-3(2) a_{2}+a_{0}=0 \quad \Rightarrow \quad a_{3}=a_{2}-\frac{a_{0}}{6} .
$$

Using the equation for a_{2} we obtain $a_{3}=\frac{3}{2} a_{1}-\frac{a_{0}}{6}$.

$$
y(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
$$

Power series solutions (Chptr. 3).

Example

Find the first two terms on the power series expansion around $x_{0}=0$ of each fundamental solution of $y^{\prime \prime}-3 y^{\prime}+x y=0$.

Solution: Recall: $2 a_{2}-3 a_{1}=0$, and

$$
(n+2)(n+1) a_{n+2}-3(n+1) a_{n+1}+a_{n-1}=0, \quad n \geqslant 1 .
$$

Therefore, $a_{2}=\frac{3}{2} a_{1}$, and $n=1$ in the other equation implies

$$
(3)(2) a_{3}-3(2) a_{2}+a_{0}=0 \quad \Rightarrow \quad a_{3}=a_{2}-\frac{a_{0}}{6} .
$$

Using the equation for a_{2} we obtain $a_{3}=\frac{3}{2} a_{1}-\frac{a_{0}}{6}$.

$$
\begin{gathered}
y(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots \\
y(x)=a_{0}+a_{1} x+\frac{3}{2} a_{1} x^{2}+\left(\frac{3}{2} a_{1}-\frac{a_{0}}{6}\right) x^{3}+\cdots
\end{gathered}
$$

Power series solutions (Chptr. 3).

Example

Find the first two terms on the power series expansion around $x_{0}=0$ of each fundamental solution of $y^{\prime \prime}-3 y^{\prime}+x y=0$.

Solution: Recall: $y(x)=a_{0}+a_{1} x+\frac{3}{2} a_{1} x^{2}+\left(\frac{3}{2} a_{1}-\frac{a_{0}}{6}\right) x^{3}+\cdots$.

Power series solutions (Chptr. 3).

Example

Find the first two terms on the power series expansion around $x_{0}=0$ of each fundamental solution of $y^{\prime \prime}-3 y^{\prime}+x y=0$.
Solution: Recall: $y(x)=a_{0}+a_{1} x+\frac{3}{2} a_{1} x^{2}+\left(\frac{3}{2} a_{1}-\frac{a_{0}}{6}\right) x^{3}+\cdots$.

$$
y(x)=a_{0}\left(1-\frac{1}{6} x^{3}+\cdots\right)+a_{1}\left(x+\frac{3}{2} x^{2}+\frac{3}{2} x^{3}+\cdots\right),
$$

Power series solutions (Chptr. 3).

Example

Find the first two terms on the power series expansion around $x_{0}=0$ of each fundamental solution of $y^{\prime \prime}-3 y^{\prime}+x y=0$.

Solution: Recall: $y(x)=a_{0}+a_{1} x+\frac{3}{2} a_{1} x^{2}+\left(\frac{3}{2} a_{1}-\frac{a_{0}}{6}\right) x^{3}+\cdots$.

$$
y(x)=a_{0}\left(1-\frac{1}{6} x^{3}+\cdots\right)+a_{1}\left(x+\frac{3}{2} x^{2}+\frac{3}{2} x^{3}+\cdots\right),
$$

We conclude that:

$$
\begin{gathered}
y_{1}(x)=1-\frac{1}{6} x^{3}+\cdots \\
y_{2}(x)=x+\frac{3}{2} x^{2}+\frac{3}{2} x^{3}+\cdots
\end{gathered}
$$

Review for Final Exam.

- Fourier Series expansions (Chptr. 6).
- Eigenvalue-Eigenfunction BVP (Chptr. 6).
- Systems of linear Equations (Chptr. 5).
- Laplace transforms (Chptr. 4).
- Power Series Methods (Chptr. 3).
- Second order linear equations (Chptr. 2).
- First order differential equations (Chptr. 1).

Second order linear equations.

Summary: Solve $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(t)$.

Second order linear equations.

Summary: Solve $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(t)$.
First find fundamental solutions $y(t)=e^{r t}$ to the case $g=0$,

Second order linear equations.

Summary: Solve $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(t)$.
First find fundamental solutions $y(t)=e^{r t}$ to the case $g=0$, where r is a root of $p(r)=r^{2}+a_{1} r+a_{0}$.

Second order linear equations.

Summary: Solve $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(t)$.
First find fundamental solutions $y(t)=e^{r t}$ to the case $g=0$, where r is a root of $p(r)=r^{2}+a_{1} r+a_{0}$.
(a) If $r_{1} \neq r_{2}$, real,

Second order linear equations.

Summary: Solve $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(t)$.
First find fundamental solutions $y(t)=e^{r t}$ to the case $g=0$, where r is a root of $p(r)=r^{2}+a_{1} r+a_{0}$.
(a) If $r_{1} \neq r_{2}$, real, then the general solution is

$$
y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t} .
$$

Second order linear equations.

Summary: Solve $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(t)$.
First find fundamental solutions $y(t)=e^{r t}$ to the case $g=0$, where r is a root of $p(r)=r^{2}+a_{1} r+a_{0}$.
(a) If $r_{1} \neq r_{2}$, real, then the general solution is

$$
y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t} .
$$

(b) If $r_{1} \neq r_{2}$, complex,

Second order linear equations.

Summary: Solve $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(t)$.
First find fundamental solutions $y(t)=e^{r t}$ to the case $g=0$, where r is a root of $p(r)=r^{2}+a_{1} r+a_{0}$.
(a) If $r_{1} \neq r_{2}$, real, then the general solution is

$$
y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t} .
$$

(b) If $r_{1} \neq r_{2}$, complex, then denoting $r_{ \pm}=\alpha \pm \beta i$,

Second order linear equations.

Summary: Solve $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(t)$.
First find fundamental solutions $y(t)=e^{r t}$ to the case $g=0$, where r is a root of $p(r)=r^{2}+a_{1} r+a_{0}$.
(a) If $r_{1} \neq r_{2}$, real, then the general solution is

$$
y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t} .
$$

(b) If $r_{1} \neq r_{2}$, complex, then denoting $r_{ \pm}=\alpha \pm \beta i$, complex-valued fundamental solutions are

$$
y_{ \pm}(t)=e^{(\alpha \pm \beta i) t}
$$

Second order linear equations.

Summary: Solve $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(t)$.
First find fundamental solutions $y(t)=e^{r t}$ to the case $g=0$, where r is a root of $p(r)=r^{2}+a_{1} r+a_{0}$.
(a) If $r_{1} \neq r_{2}$, real, then the general solution is

$$
y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t} .
$$

(b) If $r_{1} \neq r_{2}$, complex, then denoting $r_{ \pm}=\alpha \pm \beta i$, complex-valued fundamental solutions are

$$
y_{ \pm}(t)=e^{(\alpha \pm \beta i) t} \quad \Leftrightarrow \quad y_{ \pm}(t)=e^{\alpha t}[\cos (\beta t) \pm i \sin (\beta t)]
$$

Second order linear equations.

Summary: Solve $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(t)$.
First find fundamental solutions $y(t)=e^{r t}$ to the case $g=0$, where r is a root of $p(r)=r^{2}+a_{1} r+a_{0}$.
(a) If $r_{1} \neq r_{2}$, real, then the general solution is

$$
y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}
$$

(b) If $r_{1} \neq r_{2}$, complex, then denoting $r_{ \pm}=\alpha \pm \beta i$, complex-valued fundamental solutions are

$$
y_{ \pm}(t)=e^{(\alpha \pm \beta i) t} \quad \Leftrightarrow \quad y_{ \pm}(t)=e^{\alpha t}[\cos (\beta t) \pm i \sin (\beta t)]
$$

and real-valued fundamental solutions are

Second order linear equations.

Summary: Solve $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(t)$.
First find fundamental solutions $y(t)=e^{r t}$ to the case $g=0$, where r is a root of $p(r)=r^{2}+a_{1} r+a_{0}$.
(a) If $r_{1} \neq r_{2}$, real, then the general solution is

$$
y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}
$$

(b) If $r_{1} \neq r_{2}$, complex, then denoting $r_{ \pm}=\alpha \pm \beta i$, complex-valued fundamental solutions are

$$
y_{ \pm}(t)=e^{(\alpha \pm \beta i) t} \quad \Leftrightarrow \quad y_{ \pm}(t)=e^{\alpha t}[\cos (\beta t) \pm i \sin (\beta t)]
$$

and real-valued fundamental solutions are

$$
y_{1}(t)=e^{\alpha t} \cos (\beta t)
$$

Second order linear equations.

Summary: Solve $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(t)$.
First find fundamental solutions $y(t)=e^{r t}$ to the case $g=0$, where r is a root of $p(r)=r^{2}+a_{1} r+a_{0}$.
(a) If $r_{1} \neq r_{2}$, real, then the general solution is

$$
y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}
$$

(b) If $r_{1} \neq r_{2}$, complex, then denoting $r_{ \pm}=\alpha \pm \beta i$, complex-valued fundamental solutions are

$$
y_{ \pm}(t)=e^{(\alpha \pm \beta i) t} \quad \Leftrightarrow \quad y_{ \pm}(t)=e^{\alpha t}[\cos (\beta t) \pm i \sin (\beta t)]
$$

and real-valued fundamental solutions are

$$
y_{1}(t)=e^{\alpha t} \cos (\beta t), \quad y_{2}(t)=e^{\alpha t} \sin (\beta t)
$$

Second order linear equations.

Summary: Solve $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(t)$.
First find fundamental solutions $y(t)=e^{r t}$ to the case $g=0$, where r is a root of $p(r)=r^{2}+a_{1} r+a_{0}$.
(a) If $r_{1} \neq r_{2}$, real, then the general solution is

$$
y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}
$$

(b) If $r_{1} \neq r_{2}$, complex, then denoting $r_{ \pm}=\alpha \pm \beta i$, complex-valued fundamental solutions are

$$
y_{ \pm}(t)=e^{(\alpha \pm \beta i) t} \quad \Leftrightarrow \quad y_{ \pm}(t)=e^{\alpha t}[\cos (\beta t) \pm i \sin (\beta t)]
$$

and real-valued fundamental solutions are

$$
y_{1}(t)=e^{\alpha t} \cos (\beta t), \quad y_{2}(t)=e^{\alpha t} \sin (\beta t)
$$

If $r_{1}=r_{2}=r$, real,

Second order linear equations.

Summary: Solve $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(t)$.
First find fundamental solutions $y(t)=e^{r t}$ to the case $g=0$, where r is a root of $p(r)=r^{2}+a_{1} r+a_{0}$.
(a) If $r_{1} \neq r_{2}$, real, then the general solution is

$$
y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t} .
$$

(b) If $r_{1} \neq r_{2}$, complex, then denoting $r_{ \pm}=\alpha \pm \beta i$, complex-valued fundamental solutions are

$$
y_{ \pm}(t)=e^{(\alpha \pm \beta i) t} \quad \Leftrightarrow \quad y_{ \pm}(t)=e^{\alpha t}[\cos (\beta t) \pm i \sin (\beta t)]
$$

and real-valued fundamental solutions are

$$
y_{1}(t)=e^{\alpha t} \cos (\beta t), \quad y_{2}(t)=e^{\alpha t} \sin (\beta t)
$$

If $r_{1}=r_{2}=r$, real, then the general solution is

$$
y(t)=\left(c_{1}+c_{2} t\right) e^{r t}
$$

Second order linear equations.

Remark: Case (c) is solved using the reduction of order method.

Second order linear equations.

Remark: Case (c) is solved using the reduction of order method. See page 170 in the textbook.

Second order linear equations.

Remark: Case (c) is solved using the reduction of order method. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Second order linear equations.

Remark: Case (c) is solved using the reduction of order method. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:
Non-homogeneous equations: $g \neq 0$.

Second order linear equations.

Remark: Case (c) is solved using the reduction of order method. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:
Non-homogeneous equations: $g \neq 0$.
(i) Undetermined coefficients:

Second order linear equations.

Remark: Case (c) is solved using the reduction of order method. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:
Non-homogeneous equations: $g \neq 0$.
(i) Undetermined coefficients: Guess the particular solution y_{p}

Second order linear equations.

Remark: Case (c) is solved using the reduction of order method. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:
Non-homogeneous equations: $g \neq 0$.
(i) Undetermined coefficients: Guess the particular solution y_{p} using the guessing table, $g \rightarrow y_{p}$.

Second order linear equations.

Remark: Case (c) is solved using the reduction of order method. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:
Non-homogeneous equations: $g \neq 0$.
(i) Undetermined coefficients: Guess the particular solution y_{p} using the guessing table, $g \rightarrow y_{p}$.
(ii) Variation of parameters:

Second order linear equations.

Remark: Case (c) is solved using the reduction of order method. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:
Non-homogeneous equations: $g \neq 0$.
(i) Undetermined coefficients: Guess the particular solution y_{p} using the guessing table, $g \rightarrow y_{p}$.
(ii) Variation of parameters: If y_{1} and y_{2} are fundamental solutions to the homogeneous equation,

Second order linear equations.

Remark: Case (c) is solved using the reduction of order method. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:
Non-homogeneous equations: $g \neq 0$.
(i) Undetermined coefficients: Guess the particular solution y_{p} using the guessing table, $g \rightarrow y_{p}$.
(ii) Variation of parameters: If y_{1} and y_{2} are fundamental solutions to the homogeneous equation, and W is their Wronskian,

Second order linear equations.

Remark: Case (c) is solved using the reduction of order method. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:
Non-homogeneous equations: $g \neq 0$.
(i) Undetermined coefficients: Guess the particular solution y_{p} using the guessing table, $g \rightarrow y_{p}$.
(ii) Variation of parameters: If y_{1} and y_{2} are fundamental solutions to the homogeneous equation, and W is their Wronskian, then $y_{p}=u_{1} y_{1}+u_{2} y_{2}$,

Second order linear equations.

Remark: Case (c) is solved using the reduction of order method. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:
Non-homogeneous equations: $g \neq 0$.
(i) Undetermined coefficients: Guess the particular solution y_{p} using the guessing table, $g \rightarrow y_{p}$.
(ii) Variation of parameters: If y_{1} and y_{2} are fundamental solutions to the homogeneous equation, and W is their Wronskian, then $y_{p}=u_{1} y_{1}+u_{2} y_{2}$, where

$$
u_{1}^{\prime}=-\frac{y_{2} g}{W},
$$

Second order linear equations.

Remark: Case (c) is solved using the reduction of order method. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:
Non-homogeneous equations: $g \neq 0$.
(i) Undetermined coefficients: Guess the particular solution y_{p} using the guessing table, $g \rightarrow y_{p}$.
(ii) Variation of parameters: If y_{1} and y_{2} are fundamental solutions to the homogeneous equation, and W is their Wronskian, then $y_{p}=u_{1} y_{1}+u_{2} y_{2}$, where

$$
u_{1}^{\prime}=-\frac{y_{2} g}{W}, \quad u_{2}^{\prime}=\frac{y_{1} g}{W}
$$

Second order linear equations.

Example

Knowing that $y_{1}(x)=x^{2}$ solves $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$, with $x>0$, find a second solution y_{2} not proportional to y_{1}.

Second order linear equations.

Example

Knowing that $y_{1}(x)=x^{2}$ solves $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$, with $x>0$, find a second solution y_{2} not proportional to y_{1}.

Solution: Use the reduction of order method.

Second order linear equations.

Example

Knowing that $y_{1}(x)=x^{2}$ solves $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$, with $x>0$, find a second solution y_{2} not proportional to y_{1}.

Solution: Use the reduction of order method. We verify that $y_{1}=x^{2}$ solves the equation,

Second order linear equations.

Example

Knowing that $y_{1}(x)=x^{2}$ solves $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$, with $x>0$, find a second solution y_{2} not proportional to y_{1}.

Solution: Use the reduction of order method. We verify that $y_{1}=x^{2}$ solves the equation,

$$
x^{2}(2)-4 x(2 x)+6 x^{2}=0
$$

Second order linear equations.

Example

Knowing that $y_{1}(x)=x^{2}$ solves $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$, with $x>0$, find a second solution y_{2} not proportional to y_{1}.

Solution: Use the reduction of order method. We verify that $y_{1}=x^{2}$ solves the equation,

$$
x^{2}(2)-4 x(2 x)+6 x^{2}=0
$$

Look for a solution $y_{2}(x)=v(x) y_{1}(x)$,

Second order linear equations.

Example

Knowing that $y_{1}(x)=x^{2}$ solves $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$, with $x>0$, find a second solution y_{2} not proportional to y_{1}.

Solution: Use the reduction of order method. We verify that $y_{1}=x^{2}$ solves the equation,

$$
x^{2}(2)-4 x(2 x)+6 x^{2}=0
$$

Look for a solution $y_{2}(x)=v(x) y_{1}(x)$, and find an equation for v.

Second order linear equations.

Example

Knowing that $y_{1}(x)=x^{2}$ solves $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$, with $x>0$, find a second solution y_{2} not proportional to y_{1}.

Solution: Use the reduction of order method. We verify that $y_{1}=x^{2}$ solves the equation,

$$
x^{2}(2)-4 x(2 x)+6 x^{2}=0
$$

Look for a solution $y_{2}(x)=v(x) y_{1}(x)$, and find an equation for v.

$$
y_{2}=x^{2} v
$$

Second order linear equations.

Example

Knowing that $y_{1}(x)=x^{2}$ solves $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$, with $x>0$, find a second solution y_{2} not proportional to y_{1}.

Solution: Use the reduction of order method. We verify that $y_{1}=x^{2}$ solves the equation,

$$
x^{2}(2)-4 x(2 x)+6 x^{2}=0
$$

Look for a solution $y_{2}(x)=v(x) y_{1}(x)$, and find an equation for v.

$$
y_{2}=x^{2} v, \quad y_{2}^{\prime}=x^{2} v^{\prime}+2 x v
$$

Second order linear equations.

Example

Knowing that $y_{1}(x)=x^{2}$ solves $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$, with $x>0$, find a second solution y_{2} not proportional to y_{1}.

Solution: Use the reduction of order method. We verify that $y_{1}=x^{2}$ solves the equation,

$$
x^{2}(2)-4 x(2 x)+6 x^{2}=0
$$

Look for a solution $y_{2}(x)=v(x) y_{1}(x)$, and find an equation for v.

$$
y_{2}=x^{2} v, \quad y_{2}^{\prime}=x^{2} v^{\prime}+2 x v, \quad y_{2}^{\prime \prime}=x^{2} v^{\prime \prime}+4 x v^{\prime}+2 v .
$$

Second order linear equations.

Example

Knowing that $y_{1}(x)=x^{2}$ solves $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$, with $x>0$, find a second solution y_{2} not proportional to y_{1}.

Solution: Use the reduction of order method. We verify that $y_{1}=x^{2}$ solves the equation,

$$
x^{2}(2)-4 x(2 x)+6 x^{2}=0
$$

Look for a solution $y_{2}(x)=v(x) y_{1}(x)$, and find an equation for v.

$$
\begin{aligned}
& y_{2}=x^{2} v, \quad y_{2}^{\prime}=x^{2} v^{\prime}+2 x v, \quad y_{2}^{\prime \prime}=x^{2} v^{\prime \prime}+4 x v^{\prime}+2 v . \\
& x^{2}\left(x^{2} v^{\prime \prime}+4 x v^{\prime}+2 v\right)-4 x\left(x^{2} v^{\prime}+2 x v\right)+6\left(x^{2} v\right)=0 .
\end{aligned}
$$

Second order linear equations.

Example

Knowing that $y_{1}(x)=x^{2}$ solves $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$, with $x>0$, find a second solution y_{2} not proportional to y_{1}.

Solution: Use the reduction of order method. We verify that $y_{1}=x^{2}$ solves the equation,

$$
x^{2}(2)-4 x(2 x)+6 x^{2}=0
$$

Look for a solution $y_{2}(x)=v(x) y_{1}(x)$, and find an equation for v.

$$
\begin{gathered}
y_{2}=x^{2} v, \quad y_{2}^{\prime}=x^{2} v^{\prime}+2 x v, \quad y_{2}^{\prime \prime}=x^{2} v^{\prime \prime}+4 x v^{\prime}+2 v . \\
x^{2}\left(x^{2} v^{\prime \prime}+4 x v^{\prime}+2 v\right)-4 x\left(x^{2} v^{\prime}+2 x v\right)+6\left(x^{2} v\right)=0 . \\
x^{4} v^{\prime \prime}+\left(4 x^{3}-4 x^{3}\right) v^{\prime}+\left(2 x^{2}-8 x^{2}+6 x^{2}\right) v=0 .
\end{gathered}
$$

Second order linear equations.

Example

Knowing that $y_{1}(x)=x^{2}$ solves $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$, with $x>0$, find a second solution y_{2} not proportional to y_{1}.

Solution: Use the reduction of order method. We verify that $y_{1}=x^{2}$ solves the equation,

$$
x^{2}(2)-4 x(2 x)+6 x^{2}=0
$$

Look for a solution $y_{2}(x)=v(x) y_{1}(x)$, and find an equation for v.

$$
\begin{aligned}
& y_{2}=x^{2} v, \quad y_{2}^{\prime}=x^{2} v^{\prime}+2 x v, \quad y_{2}^{\prime \prime}=x^{2} v^{\prime \prime}+4 x v^{\prime}+2 v . \\
& x^{2}\left(x^{2} v^{\prime \prime}+4 x v^{\prime}+2 v\right)-4 x\left(x^{2} v^{\prime}+2 x v\right)+6\left(x^{2} v\right)=0 . \\
& \quad x^{4} v^{\prime \prime}+\left(4 x^{3}-4 x^{3}\right) v^{\prime}+\left(2 x^{2}-8 x^{2}+6 x^{2}\right) v=0 . \\
& v^{\prime \prime}=0
\end{aligned}
$$

Second order linear equations.

Example

Knowing that $y_{1}(x)=x^{2}$ solves $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$, with $x>0$, find a second solution y_{2} not proportional to y_{1}.

Solution: Use the reduction of order method. We verify that $y_{1}=x^{2}$ solves the equation,

$$
x^{2}(2)-4 x(2 x)+6 x^{2}=0
$$

Look for a solution $y_{2}(x)=v(x) y_{1}(x)$, and find an equation for v.

$$
\begin{aligned}
& y_{2}=x^{2} v, \quad y_{2}^{\prime}=x^{2} v^{\prime}+2 x v, \quad y_{2}^{\prime \prime}=x^{2} v^{\prime \prime}+4 x v^{\prime}+2 v . \\
& x^{2}\left(x^{2} v^{\prime \prime}+4 x v^{\prime}+2 v\right)-4 x\left(x^{2} v^{\prime}+2 x v\right)+6\left(x^{2} v\right)=0 . \\
& x^{4} v^{\prime \prime}+\left(4 x^{3}-4 x^{3}\right) v^{\prime}+\left(2 x^{2}-8 x^{2}+6 x^{2}\right) v=0 . \\
& v^{\prime \prime}=0 \Rightarrow \quad \Rightarrow=c_{1}+c_{2} x
\end{aligned}
$$

Second order linear equations.

Example

Knowing that $y_{1}(x)=x^{2}$ solves $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$, with $x>0$, find a second solution y_{2} not proportional to y_{1}.

Solution: Use the reduction of order method. We verify that $y_{1}=x^{2}$ solves the equation,

$$
x^{2}(2)-4 x(2 x)+6 x^{2}=0
$$

Look for a solution $y_{2}(x)=v(x) y_{1}(x)$, and find an equation for v.

$$
\begin{aligned}
& y_{2}=x^{2} v, \quad y_{2}^{\prime}=x^{2} v^{\prime}+2 x v, \quad y_{2}^{\prime \prime}=x^{2} v^{\prime \prime}+4 x v^{\prime}+2 v . \\
& x^{2}\left(x^{2} v^{\prime \prime}+4 x v^{\prime}+2 v\right)-4 x\left(x^{2} v^{\prime}+2 x v\right)+6\left(x^{2} v\right)=0 . \\
& x^{4} v^{\prime \prime}+\left(4 x^{3}-4 x^{3}\right) v^{\prime}+\left(2 x^{2}-8 x^{2}+6 x^{2}\right) v=0 . \\
& v^{\prime \prime}=0 \quad \Rightarrow \quad v=c_{1}+c_{2} x \quad \Rightarrow \quad y_{2}=c_{1} y_{1}+c_{2} x y_{1} .
\end{aligned}
$$

Second order linear equations.

Example

Knowing that $y_{1}(x)=x^{2}$ solves $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$, with $x>0$, find a second solution y_{2} not proportional to y_{1}.

Solution: Use the reduction of order method. We verify that $y_{1}=x^{2}$ solves the equation,

$$
x^{2}(2)-4 x(2 x)+6 x^{2}=0
$$

Look for a solution $y_{2}(x)=v(x) y_{1}(x)$, and find an equation for v.

$$
\begin{gathered}
y_{2}=x^{2} v, \quad y_{2}^{\prime}=x^{2} v^{\prime}+2 x v, \quad y_{2}^{\prime \prime}=x^{2} v^{\prime \prime}+4 x v^{\prime}+2 v . \\
x^{2}\left(x^{2} v^{\prime \prime}+4 x v^{\prime}+2 v\right)-4 x\left(x^{2} v^{\prime}+2 x v\right)+6\left(x^{2} v\right)=0 . \\
x^{4} v^{\prime \prime}+\left(4 x^{3}-4 x^{3}\right) v^{\prime}+\left(2 x^{2}-8 x^{2}+6 x^{2}\right) v=0 . \\
v^{\prime \prime}=0 \quad \Rightarrow \quad v=c_{1}+c_{2} x \quad \Rightarrow \quad y_{2}=c_{1} y_{1}+c_{2} x y_{1} .
\end{gathered}
$$

Choose $c_{1}=0, c_{2}=1$.

Second order linear equations.

Example

Knowing that $y_{1}(x)=x^{2}$ solves $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$, with $x>0$, find a second solution y_{2} not proportional to y_{1}.

Solution: Use the reduction of order method. We verify that $y_{1}=x^{2}$ solves the equation,

$$
x^{2}(2)-4 x(2 x)+6 x^{2}=0
$$

Look for a solution $y_{2}(x)=v(x) y_{1}(x)$, and find an equation for v.

$$
\begin{gathered}
y_{2}=x^{2} v, \quad y_{2}^{\prime}=x^{2} v^{\prime}+2 x v, \quad y_{2}^{\prime \prime}=x^{2} v^{\prime \prime}+4 x v^{\prime}+2 v . \\
x^{2}\left(x^{2} v^{\prime \prime}+4 x v^{\prime}+2 v\right)-4 x\left(x^{2} v^{\prime}+2 x v\right)+6\left(x^{2} v\right)=0 . \\
x^{4} v^{\prime \prime}+\left(4 x^{3}-4 x^{3}\right) v^{\prime}+\left(2 x^{2}-8 x^{2}+6 x^{2}\right) v=0 . \\
v^{\prime \prime}=0 \quad \Rightarrow \quad v=c_{1}+c_{2} x \quad \Rightarrow \quad y_{2}=c_{1} y_{1}+c_{2} x y_{1} .
\end{gathered}
$$

Choose $c_{1}=0, c_{2}=1$. Hence $y_{2}(x)=x^{3}$, and $y_{1}(x)=x^{2}$.

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4}
$$

Solution: (1) Solve the homogeneous equation.

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4}
$$

Solution: (1) Solve the homogeneous equation.

$$
y(t)=e^{r t}
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: (1) Solve the homogeneous equation.

$$
y(t)=e^{r t}, \quad p(r)=r^{2}-2 r-3
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: (1) Solve the homogeneous equation.

$$
y(t)=e^{r t}, \quad p(r)=r^{2}-2 r-3=0 .
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4}
$$

Solution: (1) Solve the homogeneous equation.

$$
\begin{aligned}
& \quad y(t)=e^{r t}, \quad p(r)=r^{2}-2 r-3=0 . \\
& r_{ \pm}=\frac{1}{2}[2 \pm \sqrt{4+12}]
\end{aligned}
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: (1) Solve the homogeneous equation.

$$
\begin{gathered}
y(t)=e^{r t}, \quad p(r)=r^{2}-2 r-3=0 . \\
r_{ \pm}=\frac{1}{2}[2 \pm \sqrt{4+12}]=\frac{1}{2}[2 \pm \sqrt{16}]
\end{gathered}
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: (1) Solve the homogeneous equation.

$$
\begin{array}{r}
y(t)=e^{r t}, \quad p(r)=r^{2}-2 r-3=0 . \\
r_{ \pm}=\frac{1}{2}[2 \pm \sqrt{4+12}]=\frac{1}{2}[2 \pm \sqrt{16}]=1 \pm 2
\end{array}
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4}
$$

Solution: (1) Solve the homogeneous equation.

$$
\begin{gathered}
y(t)=e^{r t}, \quad p(r)=r^{2}-2 r-3=0 . \\
r_{ \pm}=\frac{1}{2}[2 \pm \sqrt{4+12}]=\frac{1}{2}[2 \pm \sqrt{16}]=1 \pm 2 \Rightarrow\left\{\begin{array}{l}
r_{+}=3, \\
r_{-}=-1 .
\end{array}\right.
\end{gathered}
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: (1) Solve the homogeneous equation.

$$
\begin{gathered}
y(t)=e^{r t}, \quad p(r)=r^{2}-2 r-3=0 . \\
r_{ \pm}=\frac{1}{2}[2 \pm \sqrt{4+12}]=\frac{1}{2}[2 \pm \sqrt{16}]=1 \pm 2 \Rightarrow\left\{\begin{array}{l}
r_{+}=3 \\
r_{-}=-1 .
\end{array}\right.
\end{gathered}
$$

Fundamental solutions: $y_{1}(t)=e^{3 t}$ and $y_{2}(t)=e^{-t}$.

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: (1) Solve the homogeneous equation.

$$
\begin{gathered}
y(t)=e^{r t}, \quad p(r)=r^{2}-2 r-3=0 . \\
r_{ \pm}=\frac{1}{2}[2 \pm \sqrt{4+12}]=\frac{1}{2}[2 \pm \sqrt{16}]=1 \pm 2 \Rightarrow\left\{\begin{array}{l}
r_{+}=3, \\
r_{-}=-1 .
\end{array}\right.
\end{gathered}
$$

Fundamental solutions: $y_{1}(t)=e^{3 t}$ and $y_{2}(t)=e^{-t}$.
(2) Guess y_{p}.

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: (1) Solve the homogeneous equation.

$$
\begin{gathered}
y(t)=e^{r t}, \quad p(r)=r^{2}-2 r-3=0 . \\
r_{ \pm}=\frac{1}{2}[2 \pm \sqrt{4+12}]=\frac{1}{2}[2 \pm \sqrt{16}]=1 \pm 2 \Rightarrow\left\{\begin{array}{l}
r_{+}=3, \\
r_{-}=-1 .
\end{array}\right.
\end{gathered}
$$

Fundamental solutions: $y_{1}(t)=e^{3 t}$ and $y_{2}(t)=e^{-t}$.
(2) Guess y_{p}. Since $g(t)=3 e^{-t}$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: (1) Solve the homogeneous equation.

$$
\begin{gathered}
y(t)=e^{r t}, \quad p(r)=r^{2}-2 r-3=0 . \\
r_{ \pm}=\frac{1}{2}[2 \pm \sqrt{4+12}]=\frac{1}{2}[2 \pm \sqrt{16}]=1 \pm 2 \Rightarrow\left\{\begin{array}{l}
r_{+}=3, \\
r_{-}=-1 .
\end{array}\right.
\end{gathered}
$$

Fundamental solutions: $y_{1}(t)=e^{3 t}$ and $y_{2}(t)=e^{-t}$.
(2) Guess y_{p}. Since $g(t)=3 e^{-t} \quad \Rightarrow \quad y_{p}(t)=k e^{-t}$.

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: (1) Solve the homogeneous equation.

$$
\begin{gathered}
y(t)=e^{r t}, \quad p(r)=r^{2}-2 r-3=0 . \\
r_{ \pm}=\frac{1}{2}[2 \pm \sqrt{4+12}]=\frac{1}{2}[2 \pm \sqrt{16}]=1 \pm 2 \Rightarrow\left\{\begin{array}{l}
r_{+}=3, \\
r_{-}=-1 .
\end{array}\right.
\end{gathered}
$$

Fundamental solutions: $y_{1}(t)=e^{3 t}$ and $y_{2}(t)=e^{-t}$.
(2) Guess y_{p}. Since $g(t)=3 e^{-t} \quad \Rightarrow \quad y_{p}(t)=k e^{-t}$.

But this $y_{p}=k e^{-t}$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4}
$$

Solution: (1) Solve the homogeneous equation.

$$
\begin{gathered}
y(t)=e^{r t}, \quad p(r)=r^{2}-2 r-3=0 . \\
r_{ \pm}=\frac{1}{2}[2 \pm \sqrt{4+12}]=\frac{1}{2}[2 \pm \sqrt{16}]=1 \pm 2 \Rightarrow\left\{\begin{array}{l}
r_{+}=3 \\
r_{-}=-1
\end{array}\right.
\end{gathered}
$$

Fundamental solutions: $y_{1}(t)=e^{3 t}$ and $y_{2}(t)=e^{-t}$.
(2) Guess y_{p}. Since $g(t)=3 e^{-t} \quad \Rightarrow \quad y_{p}(t)=k e^{-t}$.

But this $y_{p}=k e^{-t}$ is solution of the homogeneous equation.

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4}
$$

Solution: (1) Solve the homogeneous equation.

$$
\begin{gathered}
y(t)=e^{r t}, \quad p(r)=r^{2}-2 r-3=0 . \\
r_{ \pm}=\frac{1}{2}[2 \pm \sqrt{4+12}]=\frac{1}{2}[2 \pm \sqrt{16}]=1 \pm 2 \Rightarrow\left\{\begin{array}{l}
r_{+}=3 \\
r_{-}=-1
\end{array}\right.
\end{gathered}
$$

Fundamental solutions: $y_{1}(t)=e^{3 t}$ and $y_{2}(t)=e^{-t}$.
(2) Guess y_{p}. Since $g(t)=3 e^{-t} \quad \Rightarrow \quad y_{p}(t)=k e^{-t}$.

But this $y_{p}=k e^{-t}$ is solution of the homogeneous equation.
Then propose $y_{p}(t)=k t e^{-t}$.

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4}
$$

Solution: Recall: $\quad y_{p}(t)=k t e^{-t}$.

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4}
$$

Solution: Recall: $y_{p}(t)=k t e^{-t}$. This is correct, since $t e^{-t}$ is not solution of the homogeneous equation.

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4}
$$

Solution: Recall: $y_{p}(t)=k t e^{-t}$. This is correct, since $t e^{-t}$ is not solution of the homogeneous equation.
(3) Find the undetermined coefficient k.

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4}
$$

Solution: Recall: $y_{p}(t)=k t e^{-t}$. This is correct, since $t e^{-t}$ is not solution of the homogeneous equation.
(3) Find the undetermined coefficient k.

$$
y_{p}^{\prime}=k e^{-t}-k t e^{-t}
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4}
$$

Solution: Recall: $y_{p}(t)=k t e^{-t}$. This is correct, since $t e^{-t}$ is not solution of the homogeneous equation.
(3) Find the undetermined coefficient k.

$$
y_{p}^{\prime}=k e^{-t}-k t e^{-t}, \quad y_{p}^{\prime \prime}=-2 k e^{-t}+k t e^{-t}
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4}
$$

Solution: Recall: $y_{p}(t)=k t e^{-t}$. This is correct, since $t e^{-t}$ is not solution of the homogeneous equation.
(3) Find the undetermined coefficient k.

$$
\begin{gathered}
y_{p}^{\prime}=k e^{-t}-k t e^{-t}, \quad y_{p}^{\prime \prime}=-2 k e^{-t}+k t e^{-t} . \\
\left(-2 k e^{-t}+k t e^{-t}\right)-2\left(k e^{-t}-k t e^{-t}\right)-3\left(k t e^{-t}\right)=3 e^{-t}
\end{gathered}
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4}
$$

Solution: Recall: $y_{p}(t)=k t e^{-t}$. This is correct, since $t e^{-t}$ is not solution of the homogeneous equation.
(3) Find the undetermined coefficient k.

$$
\begin{gathered}
y_{p}^{\prime}=k e^{-t}-k t e^{-t}, \quad y_{p}^{\prime \prime}=-2 k e^{-t}+k t e^{-t} \\
\left(-2 k e^{-t}+k t e^{-t}\right)-2\left(k e^{-t}-k t e^{-t}\right)-3\left(k t e^{-t}\right)=3 e^{-t} \\
(-2+t-2+2 t-3 t) k e^{-t}=3 e^{-t}
\end{gathered}
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4}
$$

Solution: Recall: $y_{p}(t)=k t e^{-t}$. This is correct, since $t e^{-t}$ is not solution of the homogeneous equation.
(3) Find the undetermined coefficient k.

$$
\begin{gathered}
y_{p}^{\prime}=k e^{-t}-k t e^{-t}, \quad y_{p}^{\prime \prime}=-2 k e^{-t}+k t e^{-t} \\
\left(-2 k e^{-t}+k t e^{-t}\right)-2\left(k e^{-t}-k t e^{-t}\right)-3\left(k t e^{-t}\right)=3 e^{-t} \\
(-2+t-2+2 t-3 t) k e^{-t}=3 e^{-t} \Rightarrow-4 k=3
\end{gathered}
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4}
$$

Solution: Recall: $y_{p}(t)=k t e^{-t}$. This is correct, since $t e^{-t}$ is not solution of the homogeneous equation.
(3) Find the undetermined coefficient k.

$$
\begin{gathered}
y_{p}^{\prime}=k e^{-t}-k t e^{-t}, \quad y_{p}^{\prime \prime}=-2 k e^{-t}+k t e^{-t} \\
\left(-2 k e^{-t}+k t e^{-t}\right)-2\left(k e^{-t}-k t e^{-t}\right)-3\left(k t e^{-t}\right)=3 e^{-t} \\
(-2+t-2+2 t-3 t) k e^{-t}=3 e^{-t} \Rightarrow-4 k=3 \Rightarrow k=-\frac{3}{4} .
\end{gathered}
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4}
$$

Solution: Recall: $y_{p}(t)=k t e^{-t}$. This is correct, since $t e^{-t}$ is not solution of the homogeneous equation.
(3) Find the undetermined coefficient k.

$$
\begin{gathered}
y_{p}^{\prime}=k e^{-t}-k t e^{-t}, \quad y_{p}^{\prime \prime}=-2 k e^{-t}+k t e^{-t} . \\
\left(-2 k e^{-t}+k t e^{-t}\right)-2\left(k e^{-t}-k t e^{-t}\right)-3\left(k t e^{-t}\right)=3 e^{-t} \\
(-2+t-2+2 t-3 t) k e^{-t}=3 e^{-t} \Rightarrow-4 k=3 \Rightarrow k=-\frac{3}{4} .
\end{gathered}
$$

We obtain: $\quad y_{p}(t)=-\frac{3}{4} t e^{-t}$.

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4}
$$

Solution: Recall: $\quad y_{p}(t)=-\frac{3}{4} t e^{-t}$.

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4}
$$

Solution: Recall: $\quad y_{p}(t)=-\frac{3}{4} t e^{-t}$.
(4) Find the general solution:

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4}
$$

Solution: Recall: $\quad y_{p}(t)=-\frac{3}{4} t e^{-t}$.
(4) Find the general solution: $y(t)=c_{1} e^{3 t}+c_{2} e^{-t}-\frac{3}{4} t e^{-t}$.

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: Recall: $\quad y_{p}(t)=-\frac{3}{4} t e^{-t}$.
(4) Find the general solution: $y(t)=c_{1} e^{3 t}+c_{2} e^{-t}-\frac{3}{4} t e^{-t}$.
(5) Impose the initial conditions.

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: Recall: $\quad y_{p}(t)=-\frac{3}{4} t e^{-t}$.
(4) Find the general solution: $y(t)=c_{1} e^{3 t}+c_{2} e^{-t}-\frac{3}{4} t e^{-t}$.
(5) Impose the initial conditions. The derivative function is

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: Recall: $\quad y_{p}(t)=-\frac{3}{4} t e^{-t}$.
(4) Find the general solution: $y(t)=c_{1} e^{3 t}+c_{2} e^{-t}-\frac{3}{4} t e^{-t}$.
(5) Impose the initial conditions. The derivative function is

$$
y^{\prime}(t)=3 c_{1} e^{3 t}-c_{2} e^{-t}-\frac{3}{4}\left(e^{-t}-t e^{-t}\right) .
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: Recall: $\quad y_{p}(t)=-\frac{3}{4} t e^{-t}$.
(4) Find the general solution: $y(t)=c_{1} e^{3 t}+c_{2} e^{-t}-\frac{3}{4} t e^{-t}$.
(5) Impose the initial conditions. The derivative function is

$$
\begin{aligned}
& y^{\prime}(t)=3 c_{1} e^{3 t}-c_{2} e^{-t}-\frac{3}{4}\left(e^{-t}-t e^{-t}\right) . \\
1= & y(0)
\end{aligned}
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: Recall: $\quad y_{p}(t)=-\frac{3}{4} t e^{-t}$.
(4) Find the general solution: $y(t)=c_{1} e^{3 t}+c_{2} e^{-t}-\frac{3}{4} t e^{-t}$.
(5) Impose the initial conditions. The derivative function is

$$
\begin{aligned}
& y^{\prime}(t)= 3 c_{1} e^{3 t}-c_{2} e^{-t}-\frac{3}{4}\left(e^{-t}-t e^{-t}\right) . \\
& 1=y(0)=c_{1}+c_{2},
\end{aligned}
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: Recall: $\quad y_{p}(t)=-\frac{3}{4} t e^{-t}$.
(4) Find the general solution: $y(t)=c_{1} e^{3 t}+c_{2} e^{-t}-\frac{3}{4} t e^{-t}$.
(5) Impose the initial conditions. The derivative function is

$$
\begin{aligned}
y^{\prime}(t) & =3 c_{1} e^{3 t}-c_{2} e^{-t}-\frac{3}{4}\left(e^{-t}-t e^{-t}\right) . \\
1=y(0) & =c_{1}+c_{2}, \quad \frac{1}{4}=y^{\prime}(0)
\end{aligned}
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: Recall: $\quad y_{p}(t)=-\frac{3}{4} t e^{-t}$.
(4) Find the general solution: $y(t)=c_{1} e^{3 t}+c_{2} e^{-t}-\frac{3}{4} t e^{-t}$.
(5) Impose the initial conditions. The derivative function is

$$
\begin{gathered}
y^{\prime}(t)=3 c_{1} e^{3 t}-c_{2} e^{-t}-\frac{3}{4}\left(e^{-t}-t e^{-t}\right) . \\
1=y(0)=c_{1}+c_{2}, \quad \frac{1}{4}=y^{\prime}(0)=3 c_{1}-c_{2}-\frac{3}{4} .
\end{gathered}
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: Recall: $\quad y_{p}(t)=-\frac{3}{4} t e^{-t}$.
(4) Find the general solution: $y(t)=c_{1} e^{3 t}+c_{2} e^{-t}-\frac{3}{4} t e^{-t}$.
(5) Impose the initial conditions. The derivative function is

$$
\left.\begin{array}{l}
y^{\prime}(t)=3 c_{1} e^{3 t}-c_{2} e^{-t}-\frac{3}{4}\left(e^{-t}-t e^{-t}\right) . \\
1=y(0)=c_{1}+c_{2}, \quad \frac{1}{4}=y^{\prime}(0)=3 c_{1}-c_{2}-\frac{3}{4} . \\
c_{1}+c_{2}=1, \\
3_{1}-c_{2}=1
\end{array}\right\} .
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: Recall: $\quad y_{p}(t)=-\frac{3}{4} t e^{-t}$.
(4) Find the general solution: $y(t)=c_{1} e^{3 t}+c_{2} e^{-t}-\frac{3}{4} t e^{-t}$.
(5) Impose the initial conditions. The derivative function is

$$
\begin{aligned}
& y^{\prime}(t)=3 c_{1} e^{3 t}-c_{2} e^{-t}-\frac{3}{4}\left(e^{-t}-t e^{-t}\right) . \\
& 1=y(0)=c_{1}+c_{2}, \quad \frac{1}{4}=y^{\prime}(0)=3 c_{1}-c_{2}-\frac{3}{4} . \\
& \left.\begin{array}{l}
c_{1}+c_{2}=1 \\
3_{1}-c_{2}=1
\end{array}\right\} \Rightarrow\left[\begin{array}{rr}
1 & 1 \\
3 & -1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
\end{aligned}
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: Recall: $y(t)=c_{1} e^{3 t}+c_{2} e^{-t}-\frac{3}{4} t e^{-t}$, and

$$
\left[\begin{array}{cc}
1 & 1 \\
3 & -1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: Recall: $y(t)=c_{1} e^{3 t}+c_{2} e^{-t}-\frac{3}{4} t e^{-t}$, and

$$
\left[\begin{array}{rr}
1 & 1 \\
3 & -1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\frac{1}{-4}\left[\begin{array}{cc}
-1 & -1 \\
-3 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: Recall: $y(t)=c_{1} e^{3 t}+c_{2} e^{-t}-\frac{3}{4} t e^{-t}$, and

$$
\left[\begin{array}{cc}
1 & 1 \\
3 & -1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\frac{1}{-4}\left[\begin{array}{cc}
-1 & -1 \\
-3 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\frac{1}{4}\left[\begin{array}{l}
2 \\
2
\end{array}\right] .
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: Recall: $y(t)=c_{1} e^{3 t}+c_{2} e^{-t}-\frac{3}{4} t e^{-t}$, and

$$
\left[\begin{array}{rr}
1 & 1 \\
3 & -1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\frac{1}{-4}\left[\begin{array}{cc}
-1 & -1 \\
-3 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\frac{1}{4}\left[\begin{array}{l}
2 \\
2
\end{array}\right] .
$$

Since $c_{1}=\frac{1}{2}$ and $c_{2}=\frac{1}{2}$,

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: Recall: $y(t)=c_{1} e^{3 t}+c_{2} e^{-t}-\frac{3}{4} t e^{-t}$, and

$$
\left[\begin{array}{cc}
1 & 1 \\
3 & -1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\frac{1}{-4}\left[\begin{array}{cc}
-1 & -1 \\
-3 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\frac{1}{4}\left[\begin{array}{l}
2 \\
2
\end{array}\right] .
$$

Since $c_{1}=\frac{1}{2}$ and $c_{2}=\frac{1}{2}$, we obtain,

$$
y(t)=\frac{1}{2}\left(e^{3 t}+e^{-t}\right)-\frac{3}{4} t e^{-t} .
$$

Review for Final Exam.

- Fourier Series expansions (Chptr.6).
- Eigenvalue-Eigenfunction BVP (Chptr. 6).
- Systems of linear Equations (Chptr. 5).
- Laplace transforms (Chptr. 4).
- Power Series Methods (Chptr. 3).
- Second order linear equations (Chptr. 2).
- First order differential equations (Chptr. 1).

First order differential equations.

Summary:

- Linear, first order equations: $y^{\prime}+p(t) y=q(t)$.

First order differential equations.

Summary:

- Linear, first order equations: $y^{\prime}+p(t) y=q(t)$.

Use the integrating factor method: $\mu(t)=e^{\int p(t) d t}$.

First order differential equations.

Summary:

- Linear, first order equations: $y^{\prime}+p(t) y=q(t)$.

Use the integrating factor method: $\mu(t)=e^{\int p(t) d t}$.

- Separable, non-linear equations: $h(y) y^{\prime}=g(t)$.

First order differential equations.

Summary:

- Linear, first order equations: $y^{\prime}+p(t) y=q(t)$.

Use the integrating factor method: $\mu(t)=e^{\int p(t) d t}$.

- Separable, non-linear equations: $h(y) y^{\prime}=g(t)$. Integrate with the substitution: $u=y(t), d u=y^{\prime}(t) d t$,

First order differential equations.

Summary:

- Linear, first order equations: $y^{\prime}+p(t) y=q(t)$.

Use the integrating factor method: $\mu(t)=e^{\int p(t) d t}$.

- Separable, non-linear equations: $h(y) y^{\prime}=g(t)$. Integrate with the substitution: $u=y(t), d u=y^{\prime}(t) d t$, that is,

$$
\int h(u) d u=\int g(t) d t+c
$$

First order differential equations.

Summary:

- Linear, first order equations: $y^{\prime}+p(t) y=q(t)$.

Use the integrating factor method: $\mu(t)=e^{\int p(t) d t}$.

- Separable, non-linear equations: $h(y) y^{\prime}=g(t)$. Integrate with the substitution: $u=y(t), d u=y^{\prime}(t) d t$, that is,

$$
\int h(u) d u=\int g(t) d t+c
$$

The solution can be found in implicit of explicit form.

First order differential equations.

Summary:

- Linear, first order equations: $y^{\prime}+p(t) y=q(t)$.

Use the integrating factor method: $\mu(t)=e^{\int p(t) d t}$.

- Separable, non-linear equations: $h(y) y^{\prime}=g(t)$. Integrate with the substitution: $u=y(t), d u=y^{\prime}(t) d t$, that is,

$$
\int h(u) d u=\int g(t) d t+c
$$

The solution can be found in implicit of explicit form.

- Homogeneous equations can be converted into separable equations.

First order differential equations.

Summary:

- Linear, first order equations: $y^{\prime}+p(t) y=q(t)$.

Use the integrating factor method: $\mu(t)=e^{\int p(t) d t}$.

- Separable, non-linear equations: $h(y) y^{\prime}=g(t)$. Integrate with the substitution: $u=y(t), d u=y^{\prime}(t) d t$, that is,

$$
\int h(u) d u=\int g(t) d t+c
$$

The solution can be found in implicit of explicit form.

- Homogeneous equations can be converted into separable equations.
- Applications: Modeling problems from Sect. 2.3.

First order differential equations.

Summary:

- Bernoulli equations: $y^{\prime}+p(t) y=q(t) y^{n}$, with $n \in \mathbb{R}$.

First order differential equations.

Summary:

- Bernoulli equations: $y^{\prime}+p(t) y=q(t) y^{n}$, with $n \in \mathbb{R}$.

Read page 77 in the textbook,

First order differential equations.

Summary:

- Bernoulli equations: $y^{\prime}+p(t) y=q(t) y^{n}$, with $n \in \mathbb{R}$.

Read page 77 in the textbook, page 11 in the Lecture Notes.

First order differential equations.

Summary:

- Bernoulli equations: $y^{\prime}+p(t) y=q(t) y^{n}$, with $n \in \mathbb{R}$. Read page 77 in the textbook, page 11 in the Lecture Notes.

A Bernoulli equation for y can be converted into a linear equation for

First order differential equations.

Summary:

- Bernoulli equations: $y^{\prime}+p(t) y=q(t) y^{n}$, with $n \in \mathbb{R}$. Read page 77 in the textbook, page 11 in the Lecture Notes.

A Bernoulli equation for y can be converted into a linear equation for $v=\frac{1}{y^{n-1}}$.

First order differential equations.

Summary:

- Bernoulli equations: $y^{\prime}+p(t) y=q(t) y^{n}$, with $n \in \mathbb{R}$. Read page 77 in the textbook, page 11 in the Lecture Notes.

A Bernoulli equation for y can be converted into a linear equation for $v=\frac{1}{y^{n-1}}$.

- Exact equations and integrating factors.

First order differential equations.

Summary:

- Bernoulli equations: $y^{\prime}+p(t) y=q(t) y^{n}$, with $n \in \mathbb{R}$.

Read page 77 in the textbook, page 11 in the Lecture Notes.
A Bernoulli equation for y can be converted into a linear equation for $v=\frac{1}{y^{n-1}}$.

- Exact equations and integrating factors.

$$
N(x, y) y^{\prime}+M(x, y)=0
$$

First order differential equations.

Summary:

- Bernoulli equations: $y^{\prime}+p(t) y=q(t) y^{n}$, with $n \in \mathbb{R}$.

Read page 77 in the textbook, page 11 in the Lecture Notes.
A Bernoulli equation for y can be converted into a linear equation for $v=\frac{1}{y^{n-1}}$.

- Exact equations and integrating factors.

$$
N(x, y) y^{\prime}+M(x, y)=0
$$

The equation is exact iff $\partial_{x} N=\partial_{y} M$.

First order differential equations.

Summary:

- Bernoulli equations: $y^{\prime}+p(t) y=q(t) y^{n}$, with $n \in \mathbb{R}$.

Read page 77 in the textbook, page 11 in the Lecture Notes.
A Bernoulli equation for y can be converted into a linear equation for $v=\frac{1}{y^{n-1}}$.

- Exact equations and integrating factors.

$$
N(x, y) y^{\prime}+M(x, y)=0
$$

The equation is exact iff $\partial_{x} N=\partial_{y} M$.
If the equation is exact, then there is a potential function ψ,

First order differential equations.

Summary:

- Bernoulli equations: $y^{\prime}+p(t) y=q(t) y^{n}$, with $n \in \mathbb{R}$.

Read page 77 in the textbook, page 11 in the Lecture Notes.
A Bernoulli equation for y can be converted into a linear equation for $v=\frac{1}{y^{n-1}}$.

- Exact equations and integrating factors.

$$
N(x, y) y^{\prime}+M(x, y)=0
$$

The equation is exact iff $\partial_{x} N=\partial_{y} M$.
If the equation is exact, then there is a potential function ψ, such that $N=\partial_{y} \psi$

First order differential equations.

Summary:

- Bernoulli equations: $y^{\prime}+p(t) y=q(t) y^{n}$, with $n \in \mathbb{R}$.

Read page 77 in the textbook, page 11 in the Lecture Notes.
A Bernoulli equation for y can be converted into a linear equation for $v=\frac{1}{y^{n-1}}$.

- Exact equations and integrating factors.

$$
N(x, y) y^{\prime}+M(x, y)=0
$$

The equation is exact iff $\partial_{x} N=\partial_{y} M$.
If the equation is exact, then there is a potential function ψ, such that $N=\partial_{y} \psi$ and $M=\partial_{x} \psi$.

First order differential equations.

Summary:

- Bernoulli equations: $y^{\prime}+p(t) y=q(t) y^{n}$, with $n \in \mathbb{R}$.

Read page 77 in the textbook, page 11 in the Lecture Notes.
A Bernoulli equation for y can be converted into a linear equation for $v=\frac{1}{y^{n-1}}$.

- Exact equations and integrating factors.

$$
N(x, y) y^{\prime}+M(x, y)=0
$$

The equation is exact iff $\partial_{x} N=\partial_{y} M$.
If the equation is exact, then there is a potential function ψ, such that $N=\partial_{y} \psi$ and $M=\partial_{x} \psi$.
The solution of the differential equation is

$$
\psi(x, y(x))=c
$$

First order differential equations.

Advice: In order to find out what type of equation is the one you have to solve, check from simple types to the more difficult types:

First order differential equations.

Advice: In order to find out what type of equation is the one you have to solve, check from simple types to the more difficult types:

1. Linear equations.
(Just by looking at it: $y^{\prime}+a(t) y=b(t)$.)

First order differential equations.

Advice: In order to find out what type of equation is the one you have to solve, check from simple types to the more difficult types:

1. Linear equations.
(Just by looking at it: $y^{\prime}+a(t) y=b(t)$.)
2. Bernoulli equations.
(Just by looking at it: $y^{\prime}+a(t) y=b(t) y^{n}$.)

First order differential equations.

Advice: In order to find out what type of equation is the one you have to solve, check from simple types to the more difficult types:

1. Linear equations.
(Just by looking at it: $y^{\prime}+a(t) y=b(t)$.)
2. Bernoulli equations.
(Just by looking at it: $y^{\prime}+a(t) y=b(t) y^{n}$.)
3. Separable equations.
(Few manipulations: $h(y) y^{\prime}=g(t)$.)

First order differential equations.

Advice: In order to find out what type of equation is the one you have to solve, check from simple types to the more difficult types:

1. Linear equations.
(Just by looking at it: $y^{\prime}+a(t) y=b(t)$.)
2. Bernoulli equations.
(Just by looking at it: $y^{\prime}+a(t) y=b(t) y^{n}$.)
3. Separable equations.
(Few manipulations: $h(y) y^{\prime}=g(t)$.)
4. Homogeneous equations.
(Several manipulations: $y^{\prime}=F(y / t)$.)

First order differential equations.

Advice: In order to find out what type of equation is the one you have to solve, check from simple types to the more difficult types:

1. Linear equations.
(Just by looking at it: $y^{\prime}+a(t) y=b(t)$.)
2. Bernoulli equations.
(Just by looking at it: $y^{\prime}+a(t) y=b(t) y^{n}$.)
3. Separable equations.
(Few manipulations: $h(y) y^{\prime}=g(t)$.)
4. Homogeneous equations.
(Several manipulations: $y^{\prime}=F(y / t)$.)
5. Exact equations.
(Check one equation: $N y^{\prime}+M=0$, and $\partial_{t} N=\partial_{y} M$.)

First order differential equations.

Advice: In order to find out what type of equation is the one you have to solve, check from simple types to the more difficult types:

1. Linear equations.
(Just by looking at it: $y^{\prime}+a(t) y=b(t)$.)
2. Bernoulli equations.
(Just by looking at it: $y^{\prime}+a(t) y=b(t) y^{n}$.)
3. Separable equations.
(Few manipulations: $h(y) y^{\prime}=g(t)$.)
4. Homogeneous equations.
(Several manipulations: $y^{\prime}=F(y / t)$.)
5. Exact equations.
(Check one equation: $N y^{\prime}+M=0$, and $\partial_{t} N=\partial_{y} M$.)
6. Exact equation with integrating factor.
(Very complicated to check.)

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: The sum of the powers in x and y on every term is the same number,

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: The sum of the powers in x and y on every term is the same number, two in this example.

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: The sum of the powers in x and y on every term is the same number, two in this example. The equation is homogeneous.

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: The sum of the powers in x and y on every term is the same number, two in this example. The equation is homogeneous.

$$
y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y} \frac{\left(1 / x^{2}\right)}{\left(1 / x^{2}\right)}
$$

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: The sum of the powers in x and y on every term is the same number, two in this example. The equation is homogeneous.

$$
y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y} \frac{\left(1 / x^{2}\right)}{\left(1 / x^{2}\right)} \Rightarrow \quad y^{\prime}=\frac{1+\left(\frac{y}{x}\right)+\left(\frac{y}{x}\right)^{2}}{\left(\frac{y}{x}\right)} .
$$

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: The sum of the powers in x and y on every term is the same number, two in this example. The equation is homogeneous.

$$
\begin{gathered}
y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y} \frac{\left(1 / x^{2}\right)}{\left(1 / x^{2}\right)} \Rightarrow y^{\prime}=\frac{1+\left(\frac{y}{x}\right)+\left(\frac{y}{x}\right)^{2}}{\left(\frac{y}{x}\right)} . \\
v(x)=\frac{y}{x}
\end{gathered}
$$

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: The sum of the powers in x and y on every term is the same number, two in this example. The equation is homogeneous.

$$
\begin{gathered}
y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y} \frac{\left(1 / x^{2}\right)}{\left(1 / x^{2}\right)} \Rightarrow y^{\prime}=\frac{1+\left(\frac{y}{x}\right)+\left(\frac{y}{x}\right)^{2}}{\left(\frac{y}{x}\right)} . \\
v(x)=\frac{y}{x} \Rightarrow y^{\prime}=\frac{1+v+v^{2}}{v} .
\end{gathered}
$$

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: The sum of the powers in x and y on every term is the same number, two in this example. The equation is homogeneous.

$$
\begin{aligned}
& y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y} \frac{\left(1 / x^{2}\right)}{\left(1 / x^{2}\right)} \Rightarrow y^{\prime}=\frac{1+\left(\frac{y}{x}\right)+\left(\frac{y}{x}\right)^{2}}{\left(\frac{y}{x}\right)} . \\
& v(x)=\frac{y}{x} \Rightarrow y^{\prime}=\frac{1+v+v^{2}}{v} . \\
& y=x v,
\end{aligned}
$$

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: The sum of the powers in x and y on every term is the same number, two in this example. The equation is homogeneous.

$$
\begin{gathered}
y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y} \frac{\left(1 / x^{2}\right)}{\left(1 / x^{2}\right)} \Rightarrow y^{\prime}=\frac{1+\left(\frac{y}{x}\right)+\left(\frac{y}{x}\right)^{2}}{\left(\frac{y}{x}\right)} . \\
v(x)=\frac{y}{x} \Rightarrow y^{\prime}=\frac{1+v+v^{2}}{v} . \\
y=x v, \quad y^{\prime}=x v^{\prime}+v
\end{gathered}
$$

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: The sum of the powers in x and y on every term is the same number, two in this example. The equation is homogeneous.

$$
\begin{gathered}
y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y} \frac{\left(1 / x^{2}\right)}{\left(1 / x^{2}\right)} \Rightarrow y^{\prime}=\frac{1+\left(\frac{y}{x}\right)+\left(\frac{y}{x}\right)^{2}}{\left(\frac{y}{x}\right)} . \\
v(x)=\frac{y}{x} \Rightarrow \quad y^{\prime}=\frac{1+v+v^{2}}{v} . \\
y=x v, \quad y^{\prime}=x v^{\prime}+v \quad x v^{\prime}+v=\frac{1+v+v^{2}}{v} .
\end{gathered}
$$

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: The sum of the powers in x and y on every term is the same number, two in this example. The equation is homogeneous.

$$
\begin{gathered}
y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y} \frac{\left(1 / x^{2}\right)}{\left(1 / x^{2}\right)} \Rightarrow y^{\prime}=\frac{1+\left(\frac{y}{x}\right)+\left(\frac{y}{x}\right)^{2}}{\left(\frac{y}{x}\right)} . \\
v(x)=\frac{y}{x} \Rightarrow \quad y^{\prime}=\frac{1+v+v^{2}}{v} . \\
y=x v, \quad y^{\prime}=x v^{\prime}+v \quad x v^{\prime}+v=\frac{1+v+v^{2}}{v} . \\
x v^{\prime}=\frac{1+v+v^{2}}{v}-v
\end{gathered}
$$

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: The sum of the powers in x and y on every term is the same number, two in this example. The equation is homogeneous.

$$
\begin{gathered}
y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y} \frac{\left(1 / x^{2}\right)}{\left(1 / x^{2}\right)} \Rightarrow \quad y^{\prime}=\frac{1+\left(\frac{y}{x}\right)+\left(\frac{y}{x}\right)^{2}}{\left(\frac{y}{x}\right)} . \\
v(x)=\frac{y}{x} \Rightarrow \quad y^{\prime}=\frac{1+v+v^{2}}{v} . \\
y=x v, \quad y^{\prime}=x v^{\prime}+v \quad x v^{\prime}+v=\frac{1+v+v^{2}}{v} . \\
x v^{\prime}=\frac{1+v+v^{2}}{v}-v=\frac{1+v+v^{2}-v^{2}}{v}
\end{gathered}
$$

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: The sum of the powers in x and y on every term is the same number, two in this example. The equation is homogeneous.

$$
\begin{gathered}
y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y} \frac{\left(1 / x^{2}\right)}{\left(1 / x^{2}\right)} \Rightarrow y^{\prime}=\frac{1+\left(\frac{y}{x}\right)+\left(\frac{y}{x}\right)^{2}}{\left(\frac{y}{x}\right)} . \\
v(x)=\frac{y}{x} \Rightarrow \quad y^{\prime}=\frac{1+v+v^{2}}{v} . \\
y=x v, \quad y^{\prime}=x v^{\prime}+v \quad x v^{\prime}+v=\frac{1+v+v^{2}}{v} . \\
x v^{\prime}=\frac{1+v+v^{2}}{v}-v=\frac{1+v+v^{2}-v^{2}}{v} \Rightarrow x v^{\prime}=\frac{1+v}{v} .
\end{gathered}
$$

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: Recall: $\quad v^{\prime}=\frac{1+v}{v}$.

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: Recall: $\quad v^{\prime}=\frac{1+v}{v}$. This is a separable equation.

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: Recall: $v^{\prime}=\frac{1+v}{v}$. This is a separable equation.

$$
\frac{v(x)}{1+v(x)} v^{\prime}(x)=\frac{1}{x}
$$

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: Recall: $v^{\prime}=\frac{1+v}{v}$. This is a separable equation.

$$
\frac{v(x)}{1+v(x)} v^{\prime}(x)=\frac{1}{x} \Rightarrow \int \frac{v(x)}{1+v(x)} v^{\prime}(x) d x=\int \frac{d x}{x}+c .
$$

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: Recall: $v^{\prime}=\frac{1+v}{v}$. This is a separable equation.

$$
\frac{v(x)}{1+v(x)} v^{\prime}(x)=\frac{1}{x} \Rightarrow \int \frac{v(x)}{1+v(x)} v^{\prime}(x) d x=\int \frac{d x}{x}+c .
$$

Use the substitution $u=1+v$,

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: Recall: $v^{\prime}=\frac{1+v}{v}$. This is a separable equation.

$$
\frac{v(x)}{1+v(x)} v^{\prime}(x)=\frac{1}{x} \Rightarrow \int \frac{v(x)}{1+v(x)} v^{\prime}(x) d x=\int \frac{d x}{x}+c .
$$

Use the substitution $u=1+v$, hence $d u=v^{\prime}(x) d x$.

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: Recall: $v^{\prime}=\frac{1+v}{v}$. This is a separable equation.

$$
\frac{v(x)}{1+v(x)} v^{\prime}(x)=\frac{1}{x} \Rightarrow \int \frac{v(x)}{1+v(x)} v^{\prime}(x) d x=\int \frac{d x}{x}+c
$$

Use the substitution $u=1+v$, hence $d u=v^{\prime}(x) d x$.

$$
\int \frac{(u-1)}{u} d u=\int \frac{d x}{x}+c
$$

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: Recall: $v^{\prime}=\frac{1+v}{v}$. This is a separable equation.

$$
\frac{v(x)}{1+v(x)} v^{\prime}(x)=\frac{1}{x} \Rightarrow \int \frac{v(x)}{1+v(x)} v^{\prime}(x) d x=\int \frac{d x}{x}+c .
$$

Use the substitution $u=1+v$, hence $d u=v^{\prime}(x) d x$.

$$
\int \frac{(u-1)}{u} d u=\int \frac{d x}{x}+c \Rightarrow \int\left(1-\frac{1}{u}\right) d u=\int \frac{d x}{x}+c
$$

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: Recall: $v^{\prime}=\frac{1+v}{v}$. This is a separable equation.

$$
\frac{v(x)}{1+v(x)} v^{\prime}(x)=\frac{1}{x} \Rightarrow \int \frac{v(x)}{1+v(x)} v^{\prime}(x) d x=\int \frac{d x}{x}+c
$$

Use the substitution $u=1+v$, hence $d u=v^{\prime}(x) d x$.

$$
\begin{aligned}
& \int \frac{(u-1)}{u} d u=\int \frac{d x}{x}+c \Rightarrow \int\left(1-\frac{1}{u}\right) d u=\int \frac{d x}{x}+c \\
& u-\ln |u|=\ln |x|+c
\end{aligned}
$$

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: Recall: $v^{\prime}=\frac{1+v}{v}$. This is a separable equation.

$$
\frac{v(x)}{1+v(x)} v^{\prime}(x)=\frac{1}{x} \Rightarrow \int \frac{v(x)}{1+v(x)} v^{\prime}(x) d x=\int \frac{d x}{x}+c
$$

Use the substitution $u=1+v$, hence $d u=v^{\prime}(x) d x$.

$$
\begin{aligned}
& \int \frac{(u-1)}{u} d u=\int \frac{d x}{x}+c \quad \Rightarrow \quad \int\left(1-\frac{1}{u}\right) d u=\int \frac{d x}{x}+c \\
& u-\ln |u|=\ln |x|+c \quad \Rightarrow \quad 1+v-\ln |1+v|=\ln |x|+c .
\end{aligned}
$$

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: Recall: $v^{\prime}=\frac{1+v}{v}$. This is a separable equation.

$$
\frac{v(x)}{1+v(x)} v^{\prime}(x)=\frac{1}{x} \Rightarrow \int \frac{v(x)}{1+v(x)} v^{\prime}(x) d x=\int \frac{d x}{x}+c
$$

Use the substitution $u=1+v$, hence $d u=v^{\prime}(x) d x$.

$$
\begin{aligned}
& \int \frac{(u-1)}{u} d u=\int \frac{d x}{x}+c \Rightarrow \int\left(1-\frac{1}{u}\right) d u=\int \frac{d x}{x}+c \\
& u-\ln |u|=\ln |x|+c \quad \Rightarrow \quad 1+v-\ln |1+v|=\ln |x|+c \\
& \quad v=\frac{y}{x}
\end{aligned}
$$

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: Recall: $v^{\prime}=\frac{1+v}{v}$. This is a separable equation.

$$
\frac{v(x)}{1+v(x)} v^{\prime}(x)=\frac{1}{x} \Rightarrow \int \frac{v(x)}{1+v(x)} v^{\prime}(x) d x=\int \frac{d x}{x}+c
$$

Use the substitution $u=1+v$, hence $d u=v^{\prime}(x) d x$.

$$
\begin{gather*}
\int \frac{(u-1)}{u} d u=\int \frac{d x}{x}+c \Rightarrow \int\left(1-\frac{1}{u}\right) d u=\int \frac{d x}{x}+c \\
u-\ln |u|=\ln |x|+c \quad \Rightarrow \quad 1+v-\ln |1+v|=\ln |x|+c \\
v=\frac{y}{x} \Rightarrow 1+\frac{y(x)}{x}-\ln \left|1+\frac{y(x)}{x}\right|=\ln |x|+c
\end{gather*}
$$

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: This is a Bernoulli equation,

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: This is a Bernoulli equation, $y^{\prime}+y=-e^{2 x} y^{n}$,

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: This is a Bernoulli equation, $y^{\prime}+y=-e^{2 x} y^{n}, \quad n=3$.

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: This is a Bernoulli equation, $y^{\prime}+y=-e^{2 x} y^{n}, \quad n=3$.
Divide by y^{3}.

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: This is a Bernoulli equation, $y^{\prime}+y=-e^{2 x} y^{n}, \quad n=3$.
Divide by y^{3}. That is, $\frac{y^{\prime}}{y^{3}}+\frac{1}{y^{2}}=-e^{2 x}$.

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: This is a Bernoulli equation, $y^{\prime}+y=-e^{2 x} y^{n}, \quad n=3$.
Divide by y^{3}. That is, $\frac{y^{\prime}}{y^{3}}+\frac{1}{y^{2}}=-e^{2 x}$.
Let $\quad v=\frac{1}{y^{2}}$.

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: This is a Bernoulli equation, $y^{\prime}+y=-e^{2 x} y^{n}, \quad n=3$.
Divide by y^{3}. That is, $\frac{y^{\prime}}{y^{3}}+\frac{1}{y^{2}}=-e^{2 x}$.
Let $v=\frac{1}{y^{2}}$. Since $v^{\prime}=-2 \frac{y^{\prime}}{y^{3}}$,

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: This is a Bernoulli equation, $y^{\prime}+y=-e^{2 x} y^{n}, \quad n=3$.
Divide by y^{3}. That is, $\frac{y^{\prime}}{y^{3}}+\frac{1}{y^{2}}=-e^{2 x}$.
Let $v=\frac{1}{y^{2}}$. Since $v^{\prime}=-2 \frac{y^{\prime}}{y^{3}}$, we obtain

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: This is a Bernoulli equation, $y^{\prime}+y=-e^{2 x} y^{n}, \quad n=3$.
Divide by y^{3}. That is, $\frac{y^{\prime}}{y^{3}}+\frac{1}{y^{2}}=-e^{2 x}$.
Let $v=\frac{1}{y^{2}}$. Since $v^{\prime}=-2 \frac{y^{\prime}}{y^{3}}$, we obtain $-\frac{1}{2} v^{\prime}+v=-e^{2 x}$.

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: This is a Bernoulli equation, $y^{\prime}+y=-e^{2 x} y^{n}, \quad n=3$.
Divide by y^{3}. That is, $\frac{y^{\prime}}{y^{3}}+\frac{1}{y^{2}}=-e^{2 x}$.
Let $v=\frac{1}{y^{2}}$. Since $v^{\prime}=-2 \frac{y^{\prime}}{y^{3}}$, we obtain $-\frac{1}{2} v^{\prime}+v=-e^{2 x}$.
We obtain the linear equation $v^{\prime}-2 v=2 e^{2 x}$.

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: This is a Bernoulli equation, $y^{\prime}+y=-e^{2 x} y^{n}, \quad n=3$.
Divide by y^{3}. That is, $\frac{y^{\prime}}{y^{3}}+\frac{1}{y^{2}}=-e^{2 x}$.
Let $v=\frac{1}{y^{2}}$. Since $v^{\prime}=-2 \frac{y^{\prime}}{y^{3}}$, we obtain $-\frac{1}{2} v^{\prime}+v=-e^{2 x}$.
We obtain the linear equation $v^{\prime}-2 v=2 e^{2 x}$.
Use the integrating factor method.

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: This is a Bernoulli equation, $y^{\prime}+y=-e^{2 x} y^{n}, \quad n=3$.
Divide by y^{3}. That is, $\frac{y^{\prime}}{y^{3}}+\frac{1}{y^{2}}=-e^{2 x}$.
Let $v=\frac{1}{y^{2}}$. Since $v^{\prime}=-2 \frac{y^{\prime}}{y^{3}}$, we obtain $-\frac{1}{2} v^{\prime}+v=-e^{2 x}$.
We obtain the linear equation $v^{\prime}-2 v=2 e^{2 x}$.
Use the integrating factor method. $\mu(x)=e^{-2 x}$.

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: This is a Bernoulli equation, $y^{\prime}+y=-e^{2 x} y^{n}, \quad n=3$.
Divide by y^{3}. That is, $\frac{y^{\prime}}{y^{3}}+\frac{1}{y^{2}}=-e^{2 x}$.
Let $v=\frac{1}{y^{2}}$. Since $v^{\prime}=-2 \frac{y^{\prime}}{y^{3}}$, we obtain $-\frac{1}{2} v^{\prime}+v=-e^{2 x}$.
We obtain the linear equation $v^{\prime}-2 v=2 e^{2 x}$.
Use the integrating factor method. $\mu(x)=e^{-2 x}$.

$$
e^{-2 x} v^{\prime}-2 e^{-2 x} v=2
$$

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3} .
$$

Solution: This is a Bernoulli equation, $y^{\prime}+y=-e^{2 x} y^{n}, \quad n=3$.
Divide by y^{3}. That is, $\frac{y^{\prime}}{y^{3}}+\frac{1}{y^{2}}=-e^{2 x}$.
Let $v=\frac{1}{y^{2}}$. Since $v^{\prime}=-2 \frac{y^{\prime}}{y^{3}}$, we obtain $-\frac{1}{2} v^{\prime}+v=-e^{2 x}$.
We obtain the linear equation $v^{\prime}-2 v=2 e^{2 x}$.
Use the integrating factor method. $\mu(x)=e^{-2 x}$.

$$
e^{-2 x} v^{\prime}-2 e^{-2 x} v=2 \quad \Rightarrow \quad\left(e^{-2 x} v\right)^{\prime}=2
$$

First order differential equations.

Example
Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: Recall: $v=\frac{1}{y^{2}}$ and $\left(e^{-2 x} v\right)^{\prime}=2$.

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: Recall: $v=\frac{1}{y^{2}}$ and $\left(e^{-2 x} v\right)^{\prime}=2$.

$$
e^{-2 x} v=2 x+c
$$

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: Recall: $v=\frac{1}{y^{2}}$ and $\left(e^{-2 x} v\right)^{\prime}=2$.

$$
e^{-2 x} v=2 x+c \Rightarrow v(x)=(2 x+c) e^{2 x}
$$

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: Recall: $v=\frac{1}{y^{2}}$ and $\left(e^{-2 x} v\right)^{\prime}=2$.

$$
e^{-2 x} v=2 x+c \Rightarrow v(x)=(2 x+c) e^{2 x} \Rightarrow \frac{1}{y^{2}}=(2 x+c) e^{2 x}
$$

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: Recall: $v=\frac{1}{y^{2}}$ and $\left(e^{-2 x} v\right)^{\prime}=2$.

$$
\begin{gathered}
e^{-2 x} v=2 x+c \Rightarrow v(x)=(2 x+c) e^{2 x} \Rightarrow \frac{1}{y^{2}}=(2 x+c) e^{2 x} \\
y^{2}=\frac{1}{e^{2} x(2 x+c)}
\end{gathered}
$$

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: Recall: $v=\frac{1}{y^{2}}$ and $\left(e^{-2 x} v\right)^{\prime}=2$.

$$
\begin{gathered}
e^{-2 x} v=2 x+c \Rightarrow v(x)=(2 x+c) e^{2 x} \Rightarrow \frac{1}{y^{2}}=(2 x+c) e^{2 x} \\
y^{2}=\frac{1}{e^{2} x(2 x+c)} \Rightarrow \quad y \pm(x)= \pm \frac{e^{-x}}{\sqrt{2 x+c}}
\end{gathered}
$$

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: Recall: $v=\frac{1}{y^{2}}$ and $\left(e^{-2 x} v\right)^{\prime}=2$.

$$
\begin{gathered}
e^{-2 x} v=2 x+c \Rightarrow v(x)=(2 x+c) e^{2 x} \Rightarrow \frac{1}{y^{2}}=(2 x+c) e^{2 x} \\
y^{2}=\frac{1}{e^{2} x(2 x+c)} \Rightarrow y_{ \pm}(x)= \pm \frac{e^{-x}}{\sqrt{2 x+c}}
\end{gathered}
$$

The initial condition $y(0)=1 / 3$

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: Recall: $v=\frac{1}{y^{2}}$ and $\left(e^{-2 x} v\right)^{\prime}=2$.

$$
\begin{gathered}
e^{-2 x} v=2 x+c \Rightarrow v(x)=(2 x+c) e^{2 x} \Rightarrow \frac{1}{y^{2}}=(2 x+c) e^{2 x} \\
y^{2}=\frac{1}{e^{2} x(2 x+c)} \Rightarrow y_{ \pm}(x)= \pm \frac{e^{-x}}{\sqrt{2 x+c}}
\end{gathered}
$$

The initial condition $y(0)=1 / 3>0$

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: Recall: $v=\frac{1}{y^{2}}$ and $\left(e^{-2 x} v\right)^{\prime}=2$.

$$
\begin{gathered}
e^{-2 x} v=2 x+c \Rightarrow v(x)=(2 x+c) e^{2 x} \Rightarrow \frac{1}{y^{2}}=(2 x+c) e^{2 x} \\
y^{2}=\frac{1}{e^{2} x(2 x+c)} \Rightarrow y_{ \pm}(x)= \pm \frac{e^{-x}}{\sqrt{2 x+c}}
\end{gathered}
$$

The initial condition $y(0)=1 / 3>0$ implies:

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: Recall: $v=\frac{1}{y^{2}}$ and $\left(e^{-2 x} v\right)^{\prime}=2$.

$$
\begin{gathered}
e^{-2 x} v=2 x+c \Rightarrow v(x)=(2 x+c) e^{2 x} \Rightarrow \frac{1}{y^{2}}=(2 x+c) e^{2 x} \\
y^{2}=\frac{1}{e^{2} x(2 x+c)} \Rightarrow y_{ \pm}(x)= \pm \frac{e^{-x}}{\sqrt{2 x+c}}
\end{gathered}
$$

The initial condition $y(0)=1 / 3>0$ implies: Choose y_{+}.

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: Recall: $v=\frac{1}{y^{2}}$ and $\left(e^{-2 x} v\right)^{\prime}=2$.

$$
\begin{gathered}
e^{-2 x} v=2 x+c \Rightarrow v(x)=(2 x+c) e^{2 x} \Rightarrow \frac{1}{y^{2}}=(2 x+c) e^{2 x} \\
y^{2}=\frac{1}{e^{2} x(2 x+c)} \Rightarrow \quad y \pm(x)= \pm \frac{e^{-x}}{\sqrt{2 x+c}}
\end{gathered}
$$

The initial condition $y(0)=1 / 3>0$ implies: Choose y_{+}.

$$
\frac{1}{3}=y_{+}(0)=\frac{1}{\sqrt{c}}
$$

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: Recall: $v=\frac{1}{y^{2}}$ and $\left(e^{-2 x} v\right)^{\prime}=2$.

$$
\begin{gathered}
e^{-2 x} v=2 x+c \Rightarrow v(x)=(2 x+c) e^{2 x} \Rightarrow \frac{1}{y^{2}}=(2 x+c) e^{2 x} \\
y^{2}=\frac{1}{e^{2} x(2 x+c)} \Rightarrow \quad y \pm(x)= \pm \frac{e^{-x}}{\sqrt{2 x+c}}
\end{gathered}
$$

The initial condition $y(0)=1 / 3>0$ implies: Choose y_{+}.

$$
\frac{1}{3}=y_{+}(0)=\frac{1}{\sqrt{c}} \quad \Rightarrow \quad c=9
$$

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: Recall: $v=\frac{1}{y^{2}}$ and $\left(e^{-2 x} v\right)^{\prime}=2$.

$$
\begin{gathered}
e^{-2 x} v=2 x+c \Rightarrow v(x)=(2 x+c) e^{2 x} \Rightarrow \frac{1}{y^{2}}=(2 x+c) e^{2 x} \\
y^{2}=\frac{1}{e^{2} x(2 x+c)} \Rightarrow y_{ \pm}(x)= \pm \frac{e^{-x}}{\sqrt{2 x+c}}
\end{gathered}
$$

The initial condition $y(0)=1 / 3>0$ implies: Choose y_{+}.

$$
\frac{1}{3}=y_{+}(0)=\frac{1}{\sqrt{c}} \Rightarrow c=9 \quad \Rightarrow \quad y(x)=\frac{e^{-x}}{\sqrt{2 x+9}}
$$

First order differential equations.

Example

Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.

First order differential equations.

Example
Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.
Solution: Re-write the equation is a more organized way,

First order differential equations.

Example

Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.
Solution: Re-write the equation is a more organized way,

$$
\left[2 x^{2} y+2 x\right] y^{\prime}+\left[2 x y^{2}+2 y\right]=0
$$

First order differential equations.

Example

Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.
Solution: Re-write the equation is a more organized way,

$$
\left[2 x^{2} y+2 x\right] y^{\prime}+\left[2 x y^{2}+2 y\right]=0
$$

$$
N=\left[2 x^{2} y+2 x\right]
$$

First order differential equations.

Example

Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.
Solution: Re-write the equation is a more organized way,

$$
\begin{aligned}
& {\left[2 x^{2} y+2 x\right] y^{\prime}+\left[2 x y^{2}+2 y\right]=0} \\
& N=\left[2 x^{2} y+2 x\right] \quad \Rightarrow \quad \partial_{x} N=4 x y+2 .
\end{aligned}
$$

First order differential equations.

Example

Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.
Solution: Re-write the equation is a more organized way,

$$
\begin{aligned}
& \quad\left[2 x^{2} y+2 x\right] y^{\prime}+\left[2 x y^{2}+2 y\right]=0 \\
& N=\left[2 x^{2} y+2 x\right] \quad \Rightarrow \quad \partial_{x} N=4 x y+2 . \\
& M=\left[2 x y^{2}+2 y\right]
\end{aligned}
$$

First order differential equations.

Example

Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.
Solution: Re-write the equation is a more organized way,

$$
\begin{aligned}
& \quad\left[2 x^{2} y+2 x\right] y^{\prime}+\left[2 x y^{2}+2 y\right]=0 . \\
& N=\left[2 x^{2} y+2 x\right] \quad \Rightarrow \quad \partial_{x} N=4 x y+2 . \\
& M=\left[2 x y^{2}+2 y\right] \quad \Rightarrow \quad \partial_{y} M=4 x y+2 .
\end{aligned}
$$

First order differential equations.

Example

Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.
Solution: Re-write the equation is a more organized way,

$$
\left.\begin{array}{c}
{\left[2 x^{2} y+2 x\right] y^{\prime}+\left[2 x y^{2}+2 y\right]=0 .} \\
N=\left[2 x^{2} y+2 x\right] \quad \Rightarrow \quad \partial_{x} N=4 x y+2 . \\
M=\left[2 x y^{2}+2 y\right] \quad \Rightarrow \quad \partial_{y} M=4 x y+2 .
\end{array}\right\} \Rightarrow \partial_{x} N=\partial_{y} M .
$$

First order differential equations.

Example

Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.
Solution: Re-write the equation is a more organized way,

$$
\left.\begin{array}{c}
{\left[2 x^{2} y+2 x\right] y^{\prime}+\left[2 x y^{2}+2 y\right]=0} \\
N=\left[2 x^{2} y+2 x\right] \quad \Rightarrow \quad \partial_{x} N=4 x y+2 . \\
M=\left[2 x y^{2}+2 y\right] \quad \Rightarrow \quad \partial_{y} M=4 x y+2 .
\end{array}\right\} \Rightarrow \partial_{x} N=\partial_{y} M .
$$

The equation is exact.

First order differential equations.

Example

Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.
Solution: Re-write the equation is a more organized way,

$$
\left.\begin{array}{c}
{\left[2 x^{2} y+2 x\right] y^{\prime}+\left[2 x y^{2}+2 y\right]=0} \\
N=\left[2 x^{2} y+2 x\right] \quad \Rightarrow \quad \partial_{x} N=4 x y+2 . \\
M=\left[2 x y^{2}+2 y\right] \quad \Rightarrow \quad \partial_{y} M=4 x y+2 .
\end{array}\right\} \Rightarrow \partial_{x} N=\partial_{y} M .
$$

The equation is exact. There exists a potential function ψ with

First order differential equations.

Example

Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.
Solution: Re-write the equation is a more organized way,

$$
\left.\begin{array}{c}
{\left[2 x^{2} y+2 x\right] y^{\prime}+\left[2 x y^{2}+2 y\right]=0} \\
N=\left[2 x^{2} y+2 x\right] \quad \Rightarrow \quad \partial_{x} N=4 x y+2 . \\
M=\left[2 x y^{2}+2 y\right] \quad \Rightarrow \quad \partial_{y} M=4 x y+2 .
\end{array}\right\} \Rightarrow \partial_{x} N=\partial_{y} M .
$$

The equation is exact. There exists a potential function ψ with

$$
\partial_{y} \psi=N,
$$

First order differential equations.

Example

Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.
Solution: Re-write the equation is a more organized way,

$$
\left.\begin{array}{c}
{\left[2 x^{2} y+2 x\right] y^{\prime}+\left[2 x y^{2}+2 y\right]=0} \\
N=\left[2 x^{2} y+2 x\right] \quad \Rightarrow \quad \partial_{x} N=4 x y+2 . \\
M=\left[2 x y^{2}+2 y\right] \quad \Rightarrow \quad \partial_{y} M=4 x y+2 .
\end{array}\right\} \Rightarrow \partial_{x} N=\partial_{y} M .
$$

The equation is exact. There exists a potential function ψ with

$$
\partial_{y} \psi=N, \quad \partial_{x} \psi=M .
$$

First order differential equations.

Example

Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.
Solution: Re-write the equation is a more organized way,

$$
\left.\begin{array}{c}
{\left[2 x^{2} y+2 x\right] y^{\prime}+\left[2 x y^{2}+2 y\right]=0} \\
N=\left[2 x^{2} y+2 x\right] \quad \Rightarrow \quad \partial_{x} N=4 x y+2 . \\
M=\left[2 x y^{2}+2 y\right] \quad \Rightarrow \quad \partial_{y} M=4 x y+2 .
\end{array}\right\} \Rightarrow \partial_{x} N=\partial_{y} M .
$$

The equation is exact. There exists a potential function ψ with

$$
\begin{aligned}
& \quad \partial_{y} \psi=N, \quad \partial_{x} \psi=M . \\
& \partial_{y} \psi=2 x^{2} y+2 x
\end{aligned}
$$

First order differential equations.

Example

Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.
Solution: Re-write the equation is a more organized way,

$$
\left.\begin{array}{c}
{\left[2 x^{2} y+2 x\right] y^{\prime}+\left[2 x y^{2}+2 y\right]=0} \\
N=\left[2 x^{2} y+2 x\right] \quad \Rightarrow \quad \partial_{x} N=4 x y+2 . \\
M=\left[2 x y^{2}+2 y\right] \quad \Rightarrow \quad \partial_{y} M=4 x y+2 .
\end{array}\right\} \Rightarrow \partial_{x} N=\partial_{y} M .
$$

The equation is exact. There exists a potential function ψ with

$$
\begin{gathered}
\partial_{y} \psi=N, \quad \partial_{x} \psi=M . \\
\partial_{y} \psi=2 x^{2} y+2 x \quad \Rightarrow \quad \psi(x, y)=x^{2} y^{2}+2 x y+g(x)
\end{gathered}
$$

First order differential equations.

Example

Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.
Solution: Re-write the equation is a more organized way,

$$
\left.\begin{array}{c}
{\left[2 x^{2} y+2 x\right] y^{\prime}+\left[2 x y^{2}+2 y\right]=0} \\
N=\left[2 x^{2} y+2 x\right] \quad \Rightarrow \quad \partial_{x} N=4 x y+2 . \\
M=\left[2 x y^{2}+2 y\right] \quad \Rightarrow \quad \partial_{y} M=4 x y+2 .
\end{array}\right\} \Rightarrow \partial_{x} N=\partial_{y} M .
$$

The equation is exact. There exists a potential function ψ with

$$
\begin{gathered}
\partial_{y} \psi=N, \quad \partial_{x} \psi=M . \\
\partial_{y} \psi=2 x^{2} y+2 x \quad \Rightarrow \quad \psi(x, y)=x^{2} y^{2}+2 x y+g(x) \\
2 x y^{2}+2 y+g^{\prime}(x)=\partial_{x} \psi
\end{gathered}
$$

First order differential equations.

Example

Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.
Solution: Re-write the equation is a more organized way,

$$
\left.\begin{array}{c}
{\left[2 x^{2} y+2 x\right] y^{\prime}+\left[2 x y^{2}+2 y\right]=0} \\
N=\left[2 x^{2} y+2 x\right] \quad \Rightarrow \quad \partial_{x} N=4 x y+2 . \\
M=\left[2 x y^{2}+2 y\right] \quad \Rightarrow \quad \partial_{y} M=4 x y+2 .
\end{array}\right\} \Rightarrow \partial_{x} N=\partial_{y} M .
$$

The equation is exact. There exists a potential function ψ with

$$
\begin{gathered}
\partial_{y} \psi=N, \quad \partial_{x} \psi=M . \\
\partial_{y} \psi=2 x^{2} y+2 x \quad \Rightarrow \quad \psi(x, y)=x^{2} y^{2}+2 x y+g(x) \\
2 x y^{2}+2 y+g^{\prime}(x)=\partial_{x} \psi=M
\end{gathered}
$$

First order differential equations.

Example

Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.
Solution: Re-write the equation is a more organized way,

$$
\left.\begin{array}{c}
{\left[2 x^{2} y+2 x\right] y^{\prime}+\left[2 x y^{2}+2 y\right]=0} \\
N=\left[2 x^{2} y+2 x\right] \quad \Rightarrow \quad \partial_{x} N=4 x y+2 . \\
M=\left[2 x y^{2}+2 y\right] \quad \Rightarrow \quad \partial_{y} M=4 x y+2 .
\end{array}\right\} \Rightarrow \partial_{x} N=\partial_{y} M .
$$

The equation is exact. There exists a potential function ψ with

$$
\begin{gathered}
\partial_{y} \psi=N, \quad \partial_{x} \psi=M . \\
\partial_{y} \psi=2 x^{2} y+2 x \quad \Rightarrow \quad \psi(x, y)=x^{2} y^{2}+2 x y+g(x) \\
2 x y^{2}+2 y+g^{\prime}(x)=\partial_{x} \psi=M=2 x y^{2}+2 y
\end{gathered}
$$

First order differential equations.

Example

Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.
Solution: Re-write the equation is a more organized way,

$$
\left.\begin{array}{c}
{\left[2 x^{2} y+2 x\right] y^{\prime}+\left[2 x y^{2}+2 y\right]=0} \\
N=\left[2 x^{2} y+2 x\right] \quad \Rightarrow \quad \partial_{x} N=4 x y+2 . \\
M=\left[2 x y^{2}+2 y\right] \quad \Rightarrow \quad \partial_{y} M=4 x y+2 .
\end{array}\right\} \Rightarrow \partial_{x} N=\partial_{y} M .
$$

The equation is exact. There exists a potential function ψ with

$$
\begin{gathered}
\partial_{y} \psi=N, \quad \partial_{x} \psi=M . \\
\partial_{y} \psi=2 x^{2} y+2 x \Rightarrow \psi(x, y)=x^{2} y^{2}+2 x y+g(x) . \\
2 x y^{2}+2 y+g^{\prime}(x)=\partial_{x} \psi=M=2 x y^{2}+2 y \Rightarrow g^{\prime}(x)=0 .
\end{gathered}
$$

First order differential equations.

Example

Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.
Solution: Re-write the equation is a more organized way,

$$
\left.\begin{array}{c}
{\left[2 x^{2} y+2 x\right] y^{\prime}+\left[2 x y^{2}+2 y\right]=0} \\
N=\left[2 x^{2} y+2 x\right] \quad \Rightarrow \quad \partial_{x} N=4 x y+2 . \\
M=\left[2 x y^{2}+2 y\right] \quad \Rightarrow \quad \partial_{y} M=4 x y+2 .
\end{array}\right\} \Rightarrow \partial_{x} N=\partial_{y} M .
$$

The equation is exact. There exists a potential function ψ with

$$
\begin{gathered}
\partial_{y} \psi=N, \quad \partial_{x} \psi=M . \\
\partial_{y} \psi=2 x^{2} y+2 x \Rightarrow \quad \psi(x, y)=x^{2} y^{2}+2 x y+g(x) . \\
2 x y^{2}+2 y+g^{\prime}(x)=\partial_{x} \psi=M=2 x y^{2}+2 y \Rightarrow g^{\prime}(x)=0 . \\
\psi(x, y)=x^{2} y^{2}+2 x y+c
\end{gathered}
$$

First order differential equations.

Example

Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.
Solution: Re-write the equation is a more organized way,

$$
\left.\begin{array}{c}
{\left[2 x^{2} y+2 x\right] y^{\prime}+\left[2 x y^{2}+2 y\right]=0} \\
N=\left[2 x^{2} y+2 x\right] \quad \Rightarrow \quad \partial_{x} N=4 x y+2 . \\
M=\left[2 x y^{2}+2 y\right] \quad \Rightarrow \quad \partial_{y} M=4 x y+2 .
\end{array}\right\} \Rightarrow \partial_{x} N=\partial_{y} M .
$$

The equation is exact. There exists a potential function ψ with

$$
\begin{gathered}
\partial_{y} \psi=N, \quad \partial_{x} \psi=M \\
\partial_{y} \psi=2 x^{2} y+2 x \Rightarrow \psi(x, y)=x^{2} y^{2}+2 x y+g(x) \\
2 x y^{2}+2 y+g^{\prime}(x)=\partial_{x} \psi=M=2 x y^{2}+2 y \Rightarrow g^{\prime}(x)=0 \\
\psi(x, y)=x^{2} y^{2}+2 x y+c, \quad x^{2} y^{2}(x)+2 x y(x)+c=0 .
\end{gathered}
$$

