Boundary Value Problems (Sect. 6.1).

Two-point BVP.
Example from physics.
Comparison: IVP vs BVP.

Existence, uniqueness of solutions to BVP.
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Particular case of BVP: Eigenvalue-eigenfunction problem.



Two-point Boundary Value Problem.

Definition
A two-point BVP is the following: Given functions p, g, g, and
constants x1 < x2, Y1,¥2, bi,ba, by, by,

find a function y solution of the differential equation
Y'+p(x)y +aq(x)y = g(x),
together with the extra, boundary conditions,
bry(x1) + b2 y'(x1) = y1,
b1y(x2) + b2y (x2) = ya.
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evaluated at the same point.



Two-point Boundary Value Problem.

Definition
A two-point BVP is the following: Given functions p, g, g, and
constants

x1<x2, Yi,¥2, bi,ba, by, b,
find a function y solution of the differential equation
Y'+p(x)y +a(x)y = g(x),
together with the extra, boundary conditions,
biy(x1) + b y'(x1) = 1,
biy(x2) + b2 y'(x2) = yo.
Remarks:
» Both y and y’ might appear in the boundary condition,

evaluated at the same point.
» In this notes we only study the case of constant coefficients,

y'+ a1y +agy = g(x).
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Example
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(1) Find y solution of

Y'tay +ay=gx), yla)=y, yle)=y.
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(3) Find y solution of

Y'+ay +ay=gx), yxi)=y, yY(e)=y.
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Example from physics.

Problem: The equilibrium (time independent) temperature of a
bar of length L with insulated horizontal sides and the bar vertical
extremes kept at fixed temperatures T, T, is the solution of the
BVP:

T"(x)=0, xe(0,L), T(0)=Ty, T(L)=T,



Example from physics.

Problem: The equilibrium (time independent) temperature of a
bar of length L with insulated horizontal sides and the bar vertical
extremes kept at fixed temperatures T, T, is the solution of the
BVP:

T"(x)=0, xe(0,L), T(0)=Ty, T(L)=T,
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Find the function values y(t) solutions of the differential equation
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together with the initial conditions

y(to) =y1, Y'(to) = ye.
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Find the function values y(t) solutions of the differential equation
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together with the initial conditions
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» Initial conditions: Position and velocity at the initial time tp.
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Comparison: IVP vs BVP.

Review: BVP:

Find the function values y(x) solutions of the differential equation
yY'+ay' +ay = g(x),
together with the initial conditions

y(x1) =y1, y(x) =y

Remark: In physics:
» y(x): A physical quantity (temperature) at a position x.

» Boundary conditions: Conditions at the boundary of the
object under study, where x; # x.
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Existence, uniqueness of solutions to BVP.

Review: The initial value problem.

Theorem (IVP)

Consider the homogeneous initial value problem:
YV'tay +ay=0 y(to)=yo, y'(to)=yi,
and let r+ be the roots of the characteristic polynomial
p(r)=r>+ayr+ ap.

If ry # r_, real or complex, then for every choice of y,, y,, there
exists a unique solution y to the initial value problem above.



Existence, uniqueness of solutions to BVP.

Review: The initial value problem.

Theorem (IVP)

Consider the homogeneous initial value problem:
YV'tay +ay=0 y(to)=yo, y'(to)=yi,
and let r+ be the roots of the characteristic polynomial
p(r)=r>+ayr+ ap.
If ry # r_, real or complex, then for every choice of y,, y,, there

exists a unique solution y to the initial value problem above.

Summary: The IVP above always has a unique solution, no matter
what y, and y; we choose.



Existence, uniqueness of solutions to BVP.

Theorem (BVP)

Consider the homogeneous boundary value problem:
Y'tay' +ay=0,  y(0)=y, y(L)=y,
and let ry be the roots of the characteristic polynomial
p(r) =r*+air+ a.

(A) If ry # r—, real, then for every choice of L # 0 and y,, yi,
there exists a unique solution y to the BVP above.

(B) Ifre =a=xiB, with 3 #0, and a, 3 € R, then the solutions
to the BVP above belong to one of these possibilities:

(1) There exists a unique solution.
(2) There exists no solution.
(3) There exist infinitely many solutions.
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Existence, uniqueness of solutions to BVP.
Proof of IVP: We study the case r, # r.. The general solution is

y(t)=ce " "+cget a,6 eR.
The initial conditions determine ¢; and ¢, as follows:
Yo=y(t) =ce” 04 et

n= y/(to) =qre "% 4cr e+
Using matrix notation,

er_ to er+ to a B Yo
ret et |c, an

The linear system above has a unique solution ¢, and ¢, for every
constants y, and y, iff the det(Z) # 0, where

er_ to er+ to G Yo
|:r_ er_ to r. el’+ t0:| = |:C2 Vi
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Proof of IVP: . ,
r- tp r+ 1o
Recall: 7 = { € € ] = 7 H — [y"].

r el’. to r. eh. to ¥i

A simple calculation shows
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Existence, uniqueness of solutions to BVP.

Proof of IVP: . ,
r- tp r+ 1o
Recall: 7 = { € € } = 7 H — [VO].

r el’- to r. eh. to ¥i

A simple calculation shows
det(Z) = (r+ — r_) elrrtr)to #0 & rn#r.

Since r. # r, the matrix Z is invertible and so

G N
We conclude that for every choice of y, and y,, there exist a unique
value of ¢; and ¢, so the IVP above has a unique solution. O
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Existence, uniqueness of solutions to BVP.
Proof of BVP: The general solution is

y(x)=cqe"*+cge™*, a,6 € R.

The boundary conditions determine ¢, and ¢, as follows:
Yo = Y(O) =q+G.
vi=y(l)=ce" Ligert

Using matrix notation,

e e 2=

The linear system above has a unique solution ¢, and ¢, for every
constants y, and y, iff the det(Z) # 0, where

2=l ] = 2=
e e G 34!
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Proof of IVP: Recall: Z = [ rl_L iL] ~ 7 [Cl} _ [}/0]'
e e (e} Vi

A simple calculation shows
det(Z) = et —e"t£0 & eFlse L
(A) If r. # r. and real-valued, then det(Z) # 0.

We conclude: For every choice of y, and y;, there exist a
unique value of ¢; and ¢, so the BVP in (A) above has a
unique solution.
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Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: Z = [ 1 L ] = Z [ﬂ = [y"].

el‘_ L er+L C2 _yl
A simple calculation shows
det(Z) = et —e"t£0 & eFlse L
(A) If r. # r. and real-valued, then det(Z) # 0.

We conclude: For every choice of y, and y;, there exist a
unique value of ¢; and ¢, so the BVP in (A) above has a
unique solution.

(B) If e =a+ip, with o, € R and 5 # 0, then
det(Z) = et (et — e7PL) = det(Z) = 2i e*tsin(BL).

Since det(Z) = 0 iff 5L = nm, with n integer,
(1) If BL # nm, then BVP has a unique solution.



Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: Z = [ 1 L ] = Z [Cl} = [y"].

el‘_ L er+ L C2 }/1
A simple calculation shows

det(Z) = et —e"t£0 & eFlse L
(A) If r. # r. and real-valued, then det(Z) # 0.

We conclude: For every choice of y, and y;, there exist a
unique value of ¢; and ¢, so the BVP in (A) above has a
unique solution.

(B) If e =a+ip, with o, € R and 5 # 0, then
det(Z) = et (et — e7PL) = det(Z) = 2i e*tsin(BL).
Since det(Z) = 0 iff 5L = nm, with n integer,
(1) If BL # nm, then BVP has a unique solution.

(2) If BL = nm then BVP either has no solutions or it has infinitely
many solutions. O
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Existence, uniqueness of solutions to BVP.
Example
Find y solution of the BVP
y'+y=0, y(0)=1, y(r)=-1

Solution: The characteristic polynomial is

p(r)=r*4+1 = ri==i
The general solution is

y(x) = c1 cos(x) + ¢ sin(x).
The boundary conditions are

1:y(0):C1, —1:y(7r):—c1 = ca =1,

We conclude: y(x) = cos(x) + ¢ sin(x), with & € R.

The BVP has infinitely many solutions.

¢, free.
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Solution: The characteristic polynomial is
p(r)=r*+1 = r.=+i
The general solution is
y(x) = a1 cos(x) + ¢ sin(x).
The boundary conditions are

1:}/(0):C1,



Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP

Y'+y=0 y(0)=1, y(m)=0.
Solution: The characteristic polynomial is
p(r)=r*+1 = r.=+i
The general solution is
y(x) = a1 cos(x) + ¢ sin(x).
The boundary conditions are

l1=y(0)=c, O0=y(r)=—a



Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP

Y'+y=0 y(0)=1, y(m)=0.
Solution: The characteristic polynomial is
p(r)=r*+1 = r.=+i
The general solution is
y(x) = a1 cos(x) + ¢ sin(x).
The boundary conditions are
l1=y(0)=c, O0=y(r)=—a

The BVP has no solution.



Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP

y'+y=0, y(0)=1, y(x/2)=1



Existence, uniqueness of solutions to BVP.
Example
Find y solution of the BVP
y'+y=0, y(0)=1, y(r/2)=1.
Solution: The characteristic polynomial is

p(r)=r*+1



Existence, uniqueness of solutions to BVP.
Example
Find y solution of the BVP
y'+y=0, y(0)=1, y(r/2)=1.
Solution: The characteristic polynomial is

p(r)=r*4+1 = ri==i



Existence, uniqueness of solutions to BVP.
Example
Find y solution of the BVP
y'+y=0, y(0)=1, y(r/2)=1.
Solution: The characteristic polynomial is
p(r)=r*4+1 = ri==i
The general solution is

y(x) = c1 cos(x) + ¢ sin(x).



Existence, uniqueness of solutions to BVP.
Example
Find y solution of the BVP
y'+y=0, y(0)=1, y(r/2)=1.

Solution: The characteristic polynomial is

p(r)=r*4+1 = ri==i
The general solution is

y(x) = c1 cos(x) + ¢ sin(x).
The boundary conditions are

1= y(O) =,



Existence, uniqueness of solutions to BVP.
Example
Find y solution of the BVP
y'+y=0, y(0)=1, y(r/2)=1.

Solution: The characteristic polynomial is

p(r)=r*4+1 = ri==i
The general solution is

y(x) = c1 cos(x) + ¢ sin(x).
The boundary conditions are

1:y(0):C1, 1:y(7r/2):C2



Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP

y'+y=0, y(0)=1, y(r/2)=1
Solution: The characteristic polynomial is
p(r)=r*4+1 = ri==i
The general solution is
y(x) = c1 cos(x) + ¢ sin(x).
The boundary conditions are

1:y(0):c1, 1:y(7r/2):C2 = =0 =1



Existence, uniqueness of solutions to BVP.
Example
Find y solution of the BVP
y'+y=0, y(0)=1, y(r/2)=1.

Solution: The characteristic polynomial is

p(r)=r*4+1 = ri==i
The general solution is

y(x) = c1 cos(x) + ¢ sin(x).
The boundary conditions are

1:y(0):c1, 1:y(7r/2):C2 = =0 =1

We conclude: y(x) = cos(x) + sin(x).



Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP

y'+y=0, y(0)=1, y(r/2)=1
Solution: The characteristic polynomial is
p(r)=r*4+1 = ri==i
The general solution is
y(x) = c1 cos(x) + ¢ sin(x).
The boundary conditions are

1:y(0):c1, 1:y(7r/2):C2 = =0 =1

We conclude: y(x) = cos(x) + sin(x).
The BVP has a unique solution.



Boundary Value Problems (Sect. 6.1).

Two-point BVP.
Example from physics.
Comparison: IVP vs BVP.

Existence, uniqueness of solutions to BVP.

vV v v v .Y

Particular case of BVP: Eigenvalue-eigenfunction problem.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Problem:
Find a number A and a non-zero function y solutions to the
boundary value problem

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Problem:
Find a number A and a non-zero function y solutions to the
boundary value problem

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Remark: This problem is similar to the eigenvalue-eigenvector
problem in Linear Algebra:



Particular case of BVP: Eigenvalue-eigenfunction problem.

Problem:
Find a number A and a non-zero function y solutions to the
boundary value problem

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Remark: This problem is similar to the eigenvalue-eigenvector
problem in Linear Algebra: Given an n x n matrix A, find A and a
non-zero n-vector v solutions of

Av — v =0.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Problem:
Find a number A and a non-zero function y solutions to the
boundary value problem

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Remark: This problem is similar to the eigenvalue-eigenvector
problem in Linear Algebra: Given an n x n matrix A, find A and a
non-zero n-vector v solutions of

Av — v =0.

Differences:

computing a second derivative and
A — . "
applying the boundary conditions.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Problem:
Find a number A and a non-zero function y solutions to the
boundary value problem

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Remark: This problem is similar to the eigenvalue-eigenvector
problem in Linear Algebra: Given an n x n matrix A, find A and a
non-zero n-vector v solutions of

Av — v =0.

Differences:

computing a second derivative and
A — . "
applying the boundary conditions.

» v. — {a function y}.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0, y(0)=0, y(L)=0, L>0.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0, y(0)=0, y(L)=0, L>0.

Remarks: We will show that:



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0, y(0)=0, y(L)=0, L>0.

Remarks: We will show that:
(1) If A <0, then the BVP has no solution.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0, y(0)=0, y(L)=0, L>0.

Remarks: We will show that:
(1) If A <0, then the BVP has no solution.

(2) If A > 0, then there exist infinitely many eigenvalues A, and
eigenfunctions y,, with n any positive integer,



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0, y(0)=0, y(L)=0, L>0.

Remarks: We will show that:
(1) If A <0, then the BVP has no solution.

(2) If A > 0, then there exist infinitely many eigenvalues A, and
eigenfunctions y,, with n any positive integer, given by

= () ) s



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0, y(0)=0, y(L)=0, L>0.

Remarks: We will show that:
(1) If A <0, then the BVP has no solution.

(2) If A > 0, then there exist infinitely many eigenvalues A, and
eigenfunctions y,, with n any positive integer, given by

= () ) s

(3) Analogous results can be proven for the same equation but
with different types of boundary conditions.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0, y(0)=0, y(L)=0, L>0.

Remarks: We will show that:
(1) If A <0, then the BVP has no solution.

(2) If A > 0, then there exist infinitely many eigenvalues A, and
eigenfunctions y,, with n any positive integer, given by

= () ) s

(3) Analogous results can be proven for the same equation but
with different types of boundary conditions. For example, for

y(0) =0, y'(L) = 0;



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0, y(0)=0, y(L)=0, L>0.

Remarks: We will show that:
(1) If A <0, then the BVP has no solution.

(2) If A > 0, then there exist infinitely many eigenvalues A, and
eigenfunctions y,, with n any positive integer, given by

= () ) s

(3) Analogous results can be proven for the same equation but
with different types of boundary conditions. For example, for
y(0) =0, y'(L) =0; or for y’(0) =0, y/(L) =0.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(xX)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(xX)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A = 0.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(xX)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A = 0. The equation is

y/I:O



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(xX)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A = 0. The equation is

y'=0 = y(x)=c+ox



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(xX)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A = 0. The equation is
y'=0 = y(x)=c+ox
The boundary conditions imply

0=y(0)



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(xX)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A = 0. The equation is
y'=0 = y(x)=c+ox
The boundary conditions imply

0=y(0) =q,



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(xX)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A = 0. The equation is
y'=0 = y(x)=c+ox
The boundary conditions imply

0=y(0)=c, O0=ca+ocl



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(xX)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A = 0. The equation is
y'=0 = y(x)=c+ox
The boundary conditions imply

0:y(0):c1, O=ca+ol = cg=c=N0



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(xX)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A = 0. The equation is
y'=0 = y(x)=c+ox
The boundary conditions imply
0=y0)=¢ca, O0=ca+al = ca=c=0

Since y = 0, there are NO non-zero solutions for A = 0.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A < 0.



Particular case of BVP: Eigenvalue-eigenfunction problem.
Example
Find every A € R and non-zero functions y solutions of the BVP
Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A < 0. Introduce the notation A = — 2.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A < 0. Introduce the notation A\ = —u2. The
characteristic equation is

p(r)=r*—p?=0



Particular case of BVP: Eigenvalue-eigenfunction problem.
Example
Find every A € R and non-zero functions y solutions of the BVP
Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A < 0. Introduce the notation A\ = —u2. The
characteristic equation is

p(r)=r*—py?>=0 = ri==4u



Particular case of BVP: Eigenvalue-eigenfunction problem.
Example
Find every A € R and non-zero functions y solutions of the BVP
Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A < 0. Introduce the notation A\ = —u2. The
characteristic equation is

p(r)=r*—py?>=0 = ri==4u

The general solution is

y(x)=c e + e M.



Particular case of BVP: Eigenvalue-eigenfunction problem.
Example
Find every A € R and non-zero functions y solutions of the BVP
Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A < 0. Introduce the notation A\ = —u2. The
characteristic equation is

p(r)=r*—py?>=0 = ri==4u
The general solution is
y(x)=c e + e M.
The boundary condition are

0=y(0)



Particular case of BVP: Eigenvalue-eigenfunction problem.
Example
Find every A € R and non-zero functions y solutions of the BVP
Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A < 0. Introduce the notation A\ = —u2. The
characteristic equation is

p(r)=r*—py?>=0 = ri==4u

The general solution is
y(x)=c e + e M.
The boundary condition are

O:y(O) = + O,



Particular case of BVP: Eigenvalue-eigenfunction problem.
Example
Find every A € R and non-zero functions y solutions of the BVP
Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A < 0. Introduce the notation A\ = —u2. The
characteristic equation is

p(r)=r*—py?>=0 = ri==4u
The general solution is
y(x)=c e + e M.
The boundary condition are
0=y(0)=qca + c,

0=y(L)=c et + et



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Recall: y(x) = c; e + ¢ e and

1+ ¢ =0, et +ce =0



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Recall: y(x) = c; e + ¢ e and

1+ ¢ =0, et +ce =0

We need to solve the linear system

AR



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Recall: y(x) = c; e + ¢ e and

a+c =0, aet+cgett=0.

We need to solve the linear system

el [ =1o) = 2[2]= [0



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Recall: y(x) = c; e + ¢ e and

a+c =0, aet+cgett=0.

We need to solve the linear system

oo ] (2] =B = 2 [a] =) 7=l ]



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Recall: y(x) = c; e + ¢ e and

a+c =0, aet+cgett=0.

We need to solve the linear system

oo ] (2] =B = 2 [a] =) 7=l ]

Since det(Z) = e #L —erL £ 0 for L # 0, matrix Z is invertible, so
the linear system above has a unique solution ¢; =0 and ¢ = 0.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Recall: y(x) = c; e + ¢ e and

a+c =0, aet+cgett=0.

We need to solve the linear system

oo ] (2] =B = 2 [a] =) 7=l ]

Since det(Z) = e #L —erL £ 0 for L # 0, matrix Z is invertible, so
the linear system above has a unique solution ¢; =0 and ¢ = 0.

Since y = 0, there are NO non-zero solutions for \ < 0.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A > 0.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A > 0. Introduce the notation \ = i°.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A > 0. Introduce the notation A\ = ;2. The
characteristic equation is

p(r)=r’+u*=0



Particular case of BVP: Eigenvalue-eigenfunction problem.
Example
Find every A € R and non-zero functions y solutions of the BVP
Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A > 0. Introduce the notation A\ = ;2. The
characteristic equation is

p(r)=r*+p>=0 = ro=4pui



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A > 0. Introduce the notation A\ = ;2. The
characteristic equation is

p(r)=r*+p>=0 = ro=4pui
The general solution is

y(x) = c1 cos(px) + ¢ sin(px).



Particular case of BVP: Eigenvalue-eigenfunction problem.
Example
Find every A € R and non-zero functions y solutions of the BVP
Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A > 0. Introduce the notation A\ = ;2. The
characteristic equation is

p(r)=r*+p>=0 = ro=4pui
The general solution is
y(x) = c1 cos(px) + ¢ sin(px).
The boundary condition are

0=y(0)



Particular case of BVP: Eigenvalue-eigenfunction problem.
Example
Find every A € R and non-zero functions y solutions of the BVP
Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A > 0. Introduce the notation A\ = ;2. The
characteristic equation is

p(r)=r*+p>=0 = ro=4pui
The general solution is
y(x) = c1 cos(px) + ¢ sin(px).
The boundary condition are

0= y(O) =,



Particular case of BVP: Eigenvalue-eigenfunction problem.
Example
Find every A € R and non-zero functions y solutions of the BVP
Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A > 0. Introduce the notation A\ = ;2. The
characteristic equation is

p(r)=r*+p>=0 = ro=4pui
The general solution is
y(x) = c1 cos(px) + ¢ sin(px).
The boundary condition are

0=y(0)=c, = y(x)=csin(ux).



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A > 0. Introduce the notation A\ = ;2. The
characteristic equation is

p(r)=r*+p>=0 = ro=4pui
The general solution is
y(x) = c1 cos(px) + ¢ sin(px).
The boundary condition are
0=y(0)=c, = y(x)=csin(ux).

0=y(L) = c sin(ul),



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A > 0. Introduce the notation A\ = ;2. The
characteristic equation is

p(r)=r*+p>=0 = ro=4pui
The general solution is
y(x) = c1 cos(px) + ¢ sin(px).
The boundary condition are
0=y(0)=c, = y(x)=csin(ux).

0=y(L)=cosin(ul), c#0



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A > 0. Introduce the notation A\ = ;2. The
characteristic equation is

p(r)=r*+p>=0 = ro=4pui
The general solution is
y(x) = c1 cos(px) + ¢ sin(px).
The boundary condition are
0=y(0)=c, = y(x)=csin(ux).
0=y(L)=csin(ul), c#0 = sin(ul)=0.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y (x) + Ay(x) =0, y(0)=0, y(L)=0, L>0.

Solution: Recall: ¢ =0, & #0, and sin(ul) =0.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Recall: ¢ =0, & #0, and sin(ul) =0.

The non-zero solution condition is the reason for ¢ # 0.



Particular case of BVP: Eigenvalue-eigenfunction problem.
Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Recall: ¢ =0, & #0, and sin(ul) =0.
The non-zero solution condition is the reason for ¢; # 0. Hence

sin(ul) =0



Particular case of BVP: Eigenvalue-eigenfunction problem.
Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Recall: ¢ =0, & #0, and sin(ul) =0.
The non-zero solution condition is the reason for ¢; # 0. Hence

sin(pul) =0 = ppl=nn



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Recall: ¢ =0, & #0, and sin(ul) =0.

The non-zero solution condition is the reason for ¢; # 0. Hence
sin(pl)=0 = ppl=nr = p,= nTﬂ-



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Recall: ¢ =0, & #0, and sin(ul) =0.

The non-zero solution condition is the reason for ¢; # 0. Hence
nm

sin(pl)=0 = pupl=nr = fn =

Recalling that A, = 12, and choosing ¢; = 1,



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Recall: ¢ =0, & #0, and sin(ul) =0.

The non-zero solution condition is the reason for ¢; # 0. Hence

sin(pl)=0 = pupl=nr = ,u,,:nTﬂ-.

Recalling that A, = 12, and choosing c; = 1, we conclude

(2 ()



Overview of Fourier Series (Sect. 6.2).

Periodic functions.

Orthogonality of Sines and Cosines.
The Fourier Theorem: Continuous case.
Example: Using the Fourier Theorem.

The Fourier Theorem: Piecewise continuous case.

vV v v v Vv Yy

Example: Using the Fourier Theorem.



Periodic functions.

Definition
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Periodic functions.

Definition
A function f : R — R is called periodic iff there exists 7 > 0 such
that for all x € R holds

f(x+ 1) ="f(x).
Remark: f is invariant under translations by 7.
Definition
A period T of a periodic function f is the smallest value of 7 such

that f(x + 7) = f(x) holds.

Notation:
A periodic function with period T is also called T-periodic.
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Example
The following functions are periodic, with period T,
f(x) = sin(x), T =2n7.
f(x) = cos(x), T =2m.
f(x) = tan(x), T=m.
2w

f(x) = sin(ax), T = 'y

The proof of the latter statement is the following:

2 2
f(x 4 i) = sin(ax + ag) = sin(ax + 2)
a
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Periodic functions.

Example
The following functions are periodic, with period T,
f(x) = sin(x), T =2n7.
f(x) = cos(x), T =2m.
f(x) = tan(x), T=m.
2w

f(x) = sin(ax), T = 'y

The proof of the latter statement is the following:

f(x + 2;) = sin(ax + 32?77) = sin(ax + 27) = sin(ax) = f(x).

<
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Periodic functions.

Example

Show that the function below is periodic, and find its period,

f(x) = ¢, x € [0,2), f(x —2) = f(x).
Solution: We just graph the function,
y y =f(x)
t + + + Py 1 t t t X>




Periodic functions.

Example

Show that the function below is periodic, and find its period,

f(x) = ¢, x € [0,2), f(x —2) = f(x).

Solution: We just graph the function,

A
y y =1(x)

So the function is periodic with period T = 2.
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Remark:
From now on we work on the following domain: [—L, L].

yA

cos (pix/L)




Orthogonality of Sines and Cosines.

Theorem (Orthogonality)
The following relations hold for all n, m € N,

L 0 n#m,
/ cos(niLX) cos(?) dx=<¢ L n=m#0,
-t 2L n=m=0,

[T o=y 77
L

L n=m,




Orthogonality of Sines and Cosines.

Theorem (Orthogonality)
The following relations hold for all n, m € N,
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/ cos(mTX) cos(?) dx=<¢ L n=m#0,
-t 2L n=m=0,

/L sin(%) sin(mzx) dx = {O n#m
—L

L n=m,

/_LL cos(?) sin(mzx> dx = 0.

Remark:

3

L
» The operation f - g = / f(x) g(x) dx is an inner product in
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the vector space of functions.
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Orthogonality of Sines and Cosines.

Theorem (Orthogonality)
The following relations hold for all n, m € N,

L 0 n#m,
/_Lcos(mzx) cos(?)dx: L n=m#0,

2L n=m=0,
[n(ZE) an() = {27

/_LL cos(?) sin(mzx) dx = 0.
Remark:

L
» The operation f - g = / f(x) g(x) dx is an inner product in
-L

the vector space of functions. Like the dot product is in R2.

» Two functions f, g, are orthogonal iff f - g = 0.



Orthogonality of Sines and Cosines.

Recall:  cos(6) cos(¢) = % [cos(8 + ¢) + cos(8 — ¢)];

sin(0) sin(¢) = % [cos(8 — ¢) — cos(0 + ¢)];
sin(f) cos(¢) = % [sin(6 + ¢) +sin(0 — ¢)].
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Recall:  cos(8) cos(¢) = % [cos(8 + ¢) + cos(8 — ¢)];
sin(0) sin(¢) = % [cos(f — @) — cos(8 + ¢)];
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Orthogonality of Sines and Cosines.

Recall:  cos(6) cos(¢) = % [cos(8 + ¢) + cos(8 — ¢)];

sin(0) sin(¢) = % [cos(f — @) — cos(8 + ¢)];
sin(6) cos(¢) = % [sin(6 + ¢) +sin(0 — ¢)].
Proof: First formula: If n = m = 0, it is simple to see that

L L
nmwx mmx
/ cos(—) cos( ) dx = / dx = 2L.
L L L L
In the case where one of n or m is non-zero, use the relation

/L cos(mzx> cos(m;_rx) dx = ;/L COS[W} dx
L —L

—I—% /LL cos[(n_Lm)WX} dx.
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Proof: Since one of n or m is non-zero, holds

L n m)mx . n m)mXx
;/_LCOS[HL)} dx = 2(n+Lm)7r Sm[( JrL ) ”iL =0

We obtain that

L (n—m)mx

/_icos(mzx> cos(mzrx> dx = ;/_L cos[f} dx.




Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero, holds

L n m)mx . n m)mXx
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We obtain that
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Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero, holds

1 [t (n+ m)mx L r(n+m)mxq b
2/_L°°S{ L }dX_Z(n—l—m)w S'”[ L ”_L_O'
We obtain that
/L cos(mrx> cos(mﬁx> dx = / cos[(n — m)rx } dx
] L L 2/, L '
If we further restrict n # m, then

2/_L°°5[(n_L i }d - 2(n—Lm)7r Si”[(n_ln)m”; =0

If n = m # 0, we have that

L B L
1/ cos{m} dx—l/ dx = L.
2], L 2],




Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero, holds

L n m)mx . n m)mXx
;/_LCOS[HL)} dx = 2(n+Lm)7r Sm[( JrL ) ”iL =0

We obtain that

/_LLCOS<mZX) Cos(mzx> dx = 2/_Lcos[(”_L m)7x }dx.

If we further restrict n # m, then

2/_L°°5[(n_L i }d - 2(n—Lm)7r Si”[(n_ln)m”; =0

If n = m # 0, we have that

1t - 1t

/ cos{m} dx—/ dx = L.

2/ L 2/
This establishes the first equation in the Theorem. The remaining
equations are proven in a similar way. ]
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The Fourier Theorem: Continuous case.

Theorem (Fourier Series)
If the function f : [—-L, L] C R — R is continuous, then f can be

expressed as an infinite series
f(x) = +Zl[a,, cos(nLX> + b sm(mzxﬂ (1)

with the constants a, and b, given by

1 [t nm
I >
ap L/L f(x) cos( T )dx n=0,

1 L
bn:L/_Lf(x) sin(mrTX) dx, n>1.

Furthermore, the Fourier series in Eq. (1) provides a 2L-periodic
extension of function f from the domain [—L, L] C R to R.
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» Define the partial sum functions

600 = 3+ o0 con(T) -y n (%)



The Fourier Theorem: Continuous case.

Sketch of the Proof:
» Define the partial sum functions

600 = 3+ o con( ) .y 3 ()

with a, and b, given by

1 L
ap = L/—L f(x) cos(mTX) dx,

L
b, = i/_L f(x) sin(n%

X
~—
B



The Fourier Theorem: Continuous case.

Sketch of the Proof:
» Define the partial sum functions

600 = 3+ o con( ) .y 3 ()

with a, and b, given by

1 L
ap = / f(x) cos(mrx> dx, n=0,

L), L
1 L
bn:L/_Lf(x) sin(nLLX) dx, n>1.

» Express fy as a convolution of Sine, Cosine, functions and the
original function f.



The Fourier Theorem: Continuous case.

Sketch of the Proof:
» Define the partial sum functions

600 = 3+ o con( ) .y 3 ()

with a, and b, given by

1 L
a,,:L/_Lf(x) cos(mTX> dx, n>0,

]

1 L
bn:L/_Lf(x) sin(% dx, n>1.

X
~—

» Express fy as a convolution of Sine, Cosine, functions and the
original function f.

» Use the convolution properties to show that

NILmoo fu(x) = f(x), x € [-L,L].
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Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

] 1+x xe€[-1,0),
f(X)_{l—x x € [0,1].

Solution: In this case L = 1. The Fourier series expansion is

f(x) = ? + Z [a,, cos(nmx) + by Sin(mrX)],
n=1

where the a,, b, are given in the Theorem. We start with ag,

aoz/l f(x)dX:/0(1+X)dx+/01(1—x)dx.

-1 -1
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X 0 X 1
o= ()L )l
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Example

Find the Fourier series expansion of the function

] 1+x xe€[-1,0),
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Solution: In this case L = 1. The Fourier series expansion is
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Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

] 1+x xe€[-1,0),
f(X)_{l—x x € [0,1].

Solution: In this case L = 1. The Fourier series expansion is

f(x) = ? + Z [a,, cos(nmx) + by Sin(mrX)],
n=1

where the a,, b, are given in the Theorem. We start with ag,

aoz/l f(x)dX:/0(1+X)dx+/01(1—x)dx.

-1 -1
2 2

v (D (D= (e

We obtain: a9 = 1.
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Find the Fourier series expansion of the function
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Example
Find the Fourier series expansion of the function

J1+x xe[-1,0),
f(X)_{l—x x € [0,1].

Solution: Recall: ap = 1. Similarly, the rest of the a, are given by,

ap = /1 f(x) cos(nmx) dx
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0 1
ap = /1(1 + x) cos(nmx) dx +/0 (1 — x) cos(nmx) dx.

1
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Example: Using the Fourier Theorem.
Example
Find the Fourier series expansion of the function

J1+x xe[-1,0),
f(X)_{l—x x € [0,1].

Solution: Recall: ap = 1. Similarly, the rest of the a, are given by,

ap = /1 f(x) cos(nmx) dx

-1

0 1
ap = /1(1 + x) cos(nmx) dx +/0 (1 — x) cos(nmx) dx.

1
Recall the integrals /cos(mrx) dx = — sin(n7x), and
nm

X 1
dx = = s . .
/x cos(nmx) dx — sin(nmx) + o cos(nmx)



Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

_J1+x xe[-1,0),
f(X)_{l—x x € [0,1].

Solution: It is not difficult to see that

0 X . 1 0
‘_ + [E sin(nmx) + —— cos(mrx)} ‘_1

1 .
= sin(nmx) 22
1 . 1 X . 1 1
+— sm(mrx)‘0 - [E sin(nmx) + 22 cos(mrx)} ‘0

nm



Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

_J1+x xe[-1,0),
f(X)_{l—x x € [0,1].

Solution: It is not difficult to see that

[ 2 sin(nmx) + 5y cos(mx)] |
— SIN{nTX ———F= COS\NTX
nm n?m2 -1

1 0
ap=— sin(mrx)‘

nm -
- sin(nm)| — [ sin(mmx) + 5 cos(nm)] |
— sin(n — | = sin(nmx) + —— cos(nmx
a0\ nr n2m2 0
1 1 1 1
ap = [—nzﬂz ~ 5 cos(—mr)} — [—nzﬂz cos(nm) — n2ﬂ2].



Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

_J1+x xe[-1,0),
f(X)_{l—x x € [0,1].

Solution: It is not difficult to see that

[ 2 sin(nmx) + 5y cos(mx)] |
— SIN{nTX ———F= COS\NTX
nm n?m2 -1

1 0
ap=— sin(mrx)‘

nm —
- sin(nm)| — [ sin(mmx) + 5 cos(nm)] |
— SINnyn — | — SINlNTXx ——F= Cos(hmX
nw I 0 nw ! n2m2 0
1 1 1 1
= |5~ o cos(om)| = [y cos(om) = 55,

2
We then conclude that a, = o [1 — cos(n)].
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Example
Find the Fourier series expansion of the function

| 1+x xe€[-1,0),
f(X)_{l—x x € [0,1].

2
Solution: Recall: a9 =1, and a,= —— [1 — cos(nm)].

n?m
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Example
Find the Fourier series expansion of the function

| 1+x xe€[-1,0),
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. 2
Solution: Recall: ag =1, and a, = ) [1 — cos(nm)].

Finally, we must find the coefficients b,.

A similar calculation shows that b, = 0.



Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

| 1+x xe€[-1,0),
f(X)_{l—x x € [0,1].

Solution: Recall: ag =1, and a, = [1 — cos(nm)].

n272
Finally, we must find the coefficients b,.
A similar calculation shows that b, = 0.

Then, the Fourier series of f is given by

[y

n?m

N

— 2
- Z 5 [1 — cos(n)] cos(nmx).
n=1
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Example
Find the Fourier series expansion of the function

| 1+x xe€[-1,0),
f(X)_{l—x x € [0,1].

[e.9]

) 2
Solution: Recall: = = + Z 5 2 — cos(
n=m

nm)| cos(nmx).
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Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

f(X):{l—i-x x € [~1,0),

1-x xe]l0,1].
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Solution: Recall: == .
olution: Reca + Z n27r2 — cos(nm)| cos(nmx)

We can obtain a simpler expression for the Fourier coefficients aj,.

Recall the relations cos(nm) = (—1)", then
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Example
Find the Fourier series expansion of the function
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Example
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Example
Find the Fourier series expansion of the function
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Example

Find the Fourier series expansion of the function

) {1+x x € [-1,0),

1-x xel0,1].
Solution:
I — 2
Recall: f(x) = 5T ,,Z:; 32 [1+ (=1)""] cos(nmx), and
4
ax =0, k-1 = m
W lude: f(x) = Ly 4 2k —1
e conclude: f(x) = 5t ; k=122 cos((2k — 1)mx). <
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The Fourier Theorem: Piecewise continuous case.

Recall:
Definition
A function f : [a, b] — R is called piecewise continuous iff holds,

(a) [a, b] can be partitioned in a finite number of sub-intervals
such that f is continuous on the interior of these sub-intervals.

(b) f has finite limits at the endpoints of all sub-intervals.



The Fourier Theorem: Piecewise continuous case.

Theorem (Fourier Series)
Iff:[-L,L] C R — R is piecewise continuous, then the function

B0 = 243 [ cos( ) 4 by sin( )]
n=1

where a, and b, given by

1t nm
= — _— >
an L/—L f(x) cos( T )dx, n=0,

1 L
b,,:L/_Lf(x) sin(?) dx, n>1.

X

satisfies that:

(a) fe(x) = f(x) for all x where f is continuous;

(6) fr(0) = 5

discontinuous.

(x)+ lim f(x)] for all xo where f is

lim f
X—’XJ X*)XO
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-1 xe[-1,0),
Find the Fourier series of f(x) = X<l )
1 xe€]0,1).
and periodic with period T = 2.
4
Solution: Recall: by, =0, byy = m and a, =0.

Therefore, we conclude that

— 1
fr(x) % Z ok —1) sin((2k — 1)m x).
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Review: The Stationary Heat Equation.

Review: The Stationary Heat Equation describes the temperature
distribution in a solid material in thermal equilibrium. The
temperature is time-independent.

Problem: The time-independent temperature, T, of a bar of
length L with insulated horizontal sides and vertical extremes kept
at fixed temperatures Ty, T, is the solution of the BVP:

T"(x)=0, xe(0,L), T(0)=Ty, T(L)=T,

y T insulation

o

z insulation

Remark: The heat transfer occurs only along the x-axis.
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The Heat Equation.

Remarks:

» The unknown of the problem is u(t, x), the temperature of
the bar at the time t and position x.

» The temperature does not depend on y or z.
» The one-dimensional Heat Equation is:
Oru(t, x) = k02u(t, x),
(distance)?
(time)
» The Heat Equation is a Partial Differential Equation, PDE.

where k > 0 is the heat conductivity, units: [k] =



The Heat Equation.

Remarks:

» The unknown of the problem is u(t, x), the temperature of
the bar at the time t and position x.

» The temperature does not depend on y or z.
» The one-dimensional Heat Equation is:
Oru(t, x) = k02u(t, x),
(distance)?
(time)
» The Heat Equation is a Partial Differential Equation, PDE.

where k > 0 is the heat conductivity, units: [k] =

u
étU:O Ju<0 B‘U>0

0 L
t is held constant. X
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The Initial-Boundary Value Problem.

Definition

The IBVP for the one-dimensional Heat Equation is the following:
Given a constant k > 0 and a function f : [0, L] — R with

f(0) =f(L) =0, find u: [0,00) x [0, L] — R solution of

Oru(t, x) = k d2u(t, x),

[.C.: u(0,x) = f(x),

B.C.. wu(t,0)=0, u(t,L)=0.

u(t0)= OW (LL)=0

) = f(x) 't
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Summary: IBVP for the Heat Equation.

Propose:
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n=1

where
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The separation of variables method.

Summary: IBVP for the Heat Equation.

Propose:
Z Cn Vn n

where
> v,: Solution of an IVP.
> w,: Solution of a BVP, an eigenvalue-eigenfunction problem.
» c,: Fourier Series coefficients.

Remark:
The separation of variables method does not work for every PDE.
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The separation of variables method.

Summary:
» The idea is to transform the PDE into infinitely many ODEs.
» We describe this method in 6 steps.

Step 1:
One looks for solutions u given by an infinite series of simpler
functions, u,, that is,

00
U(t,X) = Z Cn Un(taX)a
n=1

where u, is simpler than u is the sense,
un(t, x) = va(t) wp(x).

Here c, are constants, n=1,2,---.
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The separation of variables method.

Step 2:
Introduce the series expansion for u into the Heat Equation,
Oru — ka)%u =0 = ch [8tu,, - k@iun} =0.
n=1

A sufficient condition for the equation above is: To find uj, for
n=1,2,---, solutions of

Orlp — k@iun =0.

Step 3:
Find upn(t, x) = vu(t) wp(x) solution of the IBVP

Ortn — k2u, = 0.
.C.: un(0,x) = wp(x),

B.C.: wun(t,0) =0, un(t,L)=0.
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1 dv, 1 d’w,

Recall: _
= kva(®) at = () de

Depends only ont = Depends only on x.

» The Heat Equation has the following property:
The left-hand side depends only on t, while the right-hand
side depends only on x.

» When this happens in a PDE, one can use the separation of
variables method on that PDE.

» We conclude that for appropriate constants A, holds

1 dv, 1 d2Wn

t) = —An, el —a ()=

k vn(t) I( ) ~An-

» We have transformed the original PDE into infinitely many
ODEs parametrized by n, positive integer.
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The separation of variables method.

Summary Step 4: The original IBVP for the Heat Equation, PDE,
can transformed into:

(a) We choose to solve the following IVP for v,,

1 dvy,
kvn(t) dt

(t) =—Xn, LC: v(0)=1.
Remark: This choice of I.C. simplifies the problem.

(b) The BVP for wy,

1 d?w,
Wn(x) dx?

(x)=—=Xn, B.C.: wu(0)=0, wy(L)=0.

Step 5:
(a) Solve the IVP for v,.
(b) Solve the BVP for w,,.
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The separation of variables method.

Step 5(a): Solving the IVP for v,,.

vi(t) + kApva(t) =0, 1C: v,(0) = 1.

The integrating factor method implies that pu(t) = ekt

/
eVt (t) + ket va(t) =0 = [eéMtu(t)] 0.

ety () =c, = va(t) = c,e <Mt

1=v,(0)=c = v,(t)=e "M
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The separation of variables method.

Step 5(a): Recall: v,(t) = e k.

Step 5(b): Eigenvalue-eigenvector problem for wj:
Find the eigenvalues A, and the non-zero eigenfunctions w;,
solutions of the BVP

W (x) + Apwa(x) =0 B.C.: wy(0) =0, w,(L)=0.

We know that this problem has solution only for A, > 0.
Denote: A, = 2. Proposing w,(x) = e, we get that

plra)=r2+p2=0 = rpe =+
The real-valued general solution is

Wn(x) = c1 cos(pnx) + c2 sin(pnx).
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Recall: v,(t) = e "t w,(x) = c1 cos(unx) + c2 sin(jnx).
The boundary conditions imply,

0=wp(0)=c = wp(x) = c2 sin(ppx).

0=wy(L) = csin(unl), o #0, = sin(u,l)=0.

=~ = ()

nm
pupl=nm = pup=— [

L

Choosing ¢ = 1, we get wy(x) = sin(nLLX).

We conclude that: u,(t, x) = e kTt sin<mr—x>, n=1,2---.
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Step 6: Recall: wu,(t,x) = e KTt sin(nLLX>.
Compute the solution to the IBVP for the Heat Equation,

x) = icn un(t, x).
Zc e KT sm(mLTX).

By construction, this solution satisfies the boundary conditions,
u(t,0) =0, u(t,L) =0.

Given a function f with f(0) = f(L) = 0, the solution u above
satisfies the initial condition f(x) = u(0, x) iff holds

x) = Zc,, sin(?).
n=1
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Recall:
ch n sm<mTX) Zc,, Sm(mrx>

This is a Sme Series for f. The coefficients ¢, are computed in the
usual way. Recall the orthogonality relation

[ () sin( ) o =
0

L
Multiply the equation for u by sin(%) nd integrate,

ni::lcn /OL sin(mrTX> sin(mzx> dx = /OL f(x) sin(mzx) dx.

o

Y m#”?

m=n.

N~
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Recall:
ch n sm<mTX) Zc,, Sm(mrx>

This is a Sme Series for f. The coefficients ¢, are computed in the
usual way. Recall the orthogonality relation
m # n,

[an() i) - Oé "
n

Multiply the equation for u by sin(%) nd integrate,

ni:o:lcn /OLsin(mrLX> Sin(mwx> dX:/OLf(x) Sin(mﬂ'X) .
/ f(x sin nmx ZC oK) Sin(ﬂLx)_
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Summary: IBVP for the Heat Equation.

Propose:
u(t,x) = Z n Va(t) wi(x).
n=1

where
> v,: Solution of an IVP.
> w,: Solution of a BVP, an eigenvalue-eigenfunction problem.

» c,: Fourier Series coefficients.



The separation of variables method.

Summary: IBVP for the Heat Equation.

Propose:
Z Cn Vn n

where
> v,: Solution of an IVP.
> w,: Solution of a BVP, an eigenvalue-eigenfunction problem.
» c,: Fourier Series coefficients.

Remark:
The separation of variables method does not work for every PDE.



Solving the Heat Equation (Sect. 6.3).

Review: The Stationary Heat Equation.
The Heat Equation.
The Initial-Boundary Value Problem.

The separation of variables method.

vV v v v .Y

An example of separation of variables.
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v 2W v/ w' (x
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An example of separation of variables.

Example
Find the solution to the IBVP 40,u = d%u, t>0, x¢€][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, wu(t,2)=0.

Solution: Let un(t,x) = vu(t) wp(x). Then
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The equations for v, and w,, are
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We solve for v, with the initial condition v,(0) = 1.
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An example of separation of variables.

Example
Find the solution to the IBVP 40,u = d%u, t>0, x¢€][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, wu(t,2)=0.

Solution: Let un(t,x) = vu(t) wp(x). Then

dv d’w avi(t)  w)(x)

) Gr(0) = () G () = = =

The equations for v, and w,, are
A

v)(t) + Zn va(t) =0, Wl (x) + Ap wiy(x) = 0.

We solve for v, with the initial condition v,(0) = 1.

n )\n An An
e%tv;(t)+7eﬁfvn(t):o = [e¥tv,(t)] =0.
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Example
Find the solution to the IBVP 40,u = d?u, t>0, x¢c][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, u(t,2)=0.

Solution: Recall: [e%t v,,(t)]/ = 0. Therefore,
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v(t)=ce #t, 1=v,(0)=c = v,(t)=e 7.
Next the BVP: w//(x) + A\, wy(x) = 0, with w,(0) = w,(L) = 0.
Since A, > 0, introduce A\, = ,u%. The characteristic polynomial is

p(r)=r* +12=0 = 1=+,
The general solution, w,(x) = ¢ cos(px) + ¢ sin(finx).

The boundary conditions imply
0=wy(0) =c1, = wp(x)=c sin(pnx).
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Find the solution to the IBVP 40,u = d2u, t>0, x¢€][0,2],
u(0,x) = 3sin(rx/2), u(t,0)=0, wu(t,2)=0.

Solution: Recall: v,(t) = e ¥t and wp(x) = ¢z sin(pinx).
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Find the solution to the IBVP 40,u = d2u, t>0, x¢€][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, wu(t,2)=0.
Solution: Recall: v,(t) = e ¥t and wp(x) = ¢z sin(pinx).
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Example
Find the solution to the IBVP 40,u = d2u, t>0, x¢€][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, wu(t,2)=0.

Solution: Recall: v,(t) = e ¥t and wp(x) = ¢z sin(pinx).
0=wy(2) = sin(n2), @ #0, = sin(u,2)=0.

Then, pup2 = nm, that is, pu, = ng Choosing ¢, = 1, we conclude,
2
Am = (n—ﬂ) , wp(x) = sin(?).

2
Zc,, - sin(?).
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Find the solution to the IBVP 40,u = d?u, t>0, x¢c][0,2],

u(0,x) = 3sin(mx/2), wu(t,0)=0, wu(t,2)=0.
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Solution: Recall: u(t, x) ch 7 )t an(T).
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If m 1, then 0 = ¢ 3, that is, ¢ = 0 for m # 1.
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Example
Find the solution to the IBVP 40,u = d?u, t>0, x¢c][0,2],

u(0,x) = 3sin(mx/2), wu(t,0)=0, wu(t,2)=0.

. nﬂ' 2 . nmx
Solution: Recall: u(t, x) Zc,, 7 )t sm(T).

The initial condition is 3 sm( ) ch sm(n X)

The orthogonality of the sine functlons |mp||es
2 0 2
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An example of separation of variables.

Example
Find the solution to the IBVP 40,u = d?u, t>0, x¢c][0,2],

u(0,x) = 3sin(mx/2), wu(t,0)=0, wu(t,2)=0.

. nﬂ' 2 . nmx
Solution: Recall: u(t, x) Zc,, 7 )t sm(T).

The initial condition is 3 sm( ) ch sm(n X)

The orthogonality of the sine functlons |mp||es
2 0 2
3/0 sin(%x) sin(m;X> dx = ;/0 sin<m2r—x) sin(m;TX> dx.

If m#1, then 0 = ¢y % that is, ¢y, = 0 for m £ 1. Therefore,

3sin(7r2—x) =q sin(%) = =3




An example of separation of variables.

Example
Find the solution to the IBVP 40,u = d2u, t>0, x¢€][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, u(t,2)=0.

Solution: We conclude that

u(t,x) = 3e(3) sin(%x).



Review for Final Exam.

vV v. v v Y

vV v vV vV VvV VY

Exam is cumulative.

Heat equation and Fourier Series not included.
10-12 problems.

Two hours.

Integration and Laplace Transform tables included.

Not in the exam: Fourier Series expansions (Chptr.6).
Eigenvalue-Eigenfunction BVP (Chptr. 6).

Systems of linear Equations (Chptr. 5).

Laplace transforms (Chptr. 4).

Power Series Methods (Chptr. 3).

Second order linear equations (Chptr. 2).

First order differential equations (Chptr. 1).



Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

Solution: The Fourier series is

700 = 243 [ancos( ™) + bysin(").
n=1



Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

Solution: The Fourier series is
o
_ap nmwx . /nTXx
f(x) = > + Z:l[an cos(T> + by sm(T)].
n=

Since f is odd and periodic,
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Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

Solution: The Fourier series is

+Z[ancos( =) + busin( 7).

Since f is odd and periodic, then the Fourier Series is a Sine
Series, that is, a, = 0.

1 [t . [/ nmx
bn = L/_L f(X) Sln(T) dx



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

Solution: The Fourier series is

+Z[ancos( =) + busin( 7).

Since f is odd and periodic, then the Fourier Series is a Sine
Series, that is, a, = 0.

L nmx L . [ NTX
by = i/_ f(x) sin(T) dx = i/o f(x) sm(T) dx.

L



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

Solution: The Fourier series is

+Z[ancos( =) + busin( 7).

Since f is odd and periodic, then the Fourier Series is a Sine
Series, that is, a, = 0.

L nmx L . [ NTX
by = i/ f(x) sin(T) dx = i/o f(x) sm(T) dx.

—L

1
b, = 2/0 (—1) sin(nmx) dx



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

Solution: The Fourier series is

+Z[ancos( =) + busin( 7).

Since f is odd and periodic, then the Fourier Series is a Sine
Series, that is, a, = 0.

L nmx L . [ NTX
bn:i/ f(x)sin( 1 )dx—i/o f(x)sm(T) dx.

—L

1
b, = 2/0 (—1) sin(nmx) dx = (—2)



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

Solution: The Fourier series is

+Z[ancos( =) + busin( 7).

Since f is odd and periodic, then the Fourier Series is a Sine
Series, that is, a, = 0.

L nmx L . [ NTX
bn:i/ f(x)sin( 1 )dx—i/o f(x)sm(T) dx.

—L

1
b, = 2/0 (—1) sin(nmx) dx = (—2)

b, = 2 [cos(nT) — 1]

nm



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

Solution: The Fourier series is

+Z[ancos( =) + busin( 7).

Since f is odd and periodic, then the Fourier Series is a Sine
Series, that is, a, = 0.

L nmx L . [ NTX
bn:i/ f(x)sin( 1 )dx—i/o f(x)sm(T) dx.

—L

= 1— sin(nmx) dx = (— (=1) cos(nmx '
by =2 [ (1) sin(rmx) e = (<2) ) cos(om)|
bn:%[cos(nﬂ)—l} = bn:%[(—l)”—l].



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

2
lution: Recall: b, = — [(—1)" —1].
Solution: Reca - [(-1) ]



Fourier Series: Even/Odd-periodic extensions.
Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and

then find the Fourier Series of this extension.

2
lution: Recall: b, = — [(—1)" —1].
Solution: Reca - [(-1) ]

If n =2k,



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

2
jon: : b,=—|(-1)"—1}|.
Solution: Reca o [( ) ]

— _ 2 2k
If n =2k, then by = Sk [(-1) 1]



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

2
jon: : b,=—|(-1)"—1}|.
Solution: Reca o [( ) ]

_ _ 2 2k _ 1] —
If n = 2k, then by, = 5 — [(-1)**—1] =0.



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

2
lution: Recall: b, = — [(—1)" — 1.
Solution: Reca - [(-1) ]

_ _ 2 2k _ 1] —
If n = 2k, then by, = 5 — [(-1)**—1] =0.

If n=2k—1,



Fourier Series: Even/Odd-periodic extensions.
Example

Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

2
lution: Recall: b, = — [(—1)" — 1.
Solution: Reca - [(-1) ]

_ _ 2 2k 1] —
If n = 2k, then by, = 5 — [(-1)**—1] =0.
|fn=2/<—1,2
bok-1) = = [(-1)* T -1



Fourier Series: Even/Odd-periodic extensions.
Example

Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

2
lution: Recall: b, = — [(—1)" — 1.
Solution: Reca - [(-1) ]

_ _ 2 2% _
If n = 2k, then by, = 5 — [(-1)**—1] =0.
fn=2k-1, .
bok_1) = = [(-1)* 1 1] = = —
k=17 2k — 1) (1) ) (2k — D



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

2
lution: Recall: b, = — [(—1)" — 1.
Solution: Reca - [(-1) ]

_ _ 2 2k _ 1] —
If n = 2k, then by, = 5 — [(-1)**—1] =0.

If n =2k —1, .
= [~ loq]=-__"
Bak-1) (2k — D)7 (1) ) (2k — D

4 )
W lude: —— (2k -1 .
e conclude - Z sm[ )mx] <

k:l



Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: The Fourier series is

f(x) = % + i[an cos(nLLX> + b, sin(mrTX)].
n=1



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: The Fourier series is
_o v X in (T
f(x) = 5 —i—;[ancos( 1 )—i—b,,sm( T )]

Since f is odd and periodic,



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: The Fourier series is
_o v X in (T
f(x) = 5 —i—;[ancos( 1 )—i—b,,sm( T )]

Since f is odd and periodic, then the Fourier Series is a Sine
Series,



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: The Fourier series is
_o v X in (T
f(x) = 5 —i—;[ancos( 1 )—i—b,,sm( T )]

Since f is odd and periodic, then the Fourier Series is a Sine
Series, that is, a, = 0.



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: The Fourier series is
_o v X in (T
f(x) = 5 —i—;[ancos( 1 )—i—bnsm( T )]

Since f is odd and periodic, then the Fourier Series is a Sine
Series, that is, a, = 0.



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: The Fourier series is
_o v X in (T
f(x) = 5 —i—;[ancos( 1 )—i—bnsm( T )]

Since f is odd and periodic, then the Fourier Series is a Sine
Series, that is, a, = 0.



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: The Fourier series is
_o v X in (T
f(x) = 5 —i—;[ancos( 1 )—i—bnsm( T )]

Since f is odd and periodic, then the Fourier Series is a Sine
Series, that is, a, = 0.



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: The Fourier series is
_o v X in (T
f(x) = 5 —i—;[ancos( 1 )—i—bnsm( T )]

Since f is odd and periodic, then the Fourier Series is a Sine
Series, that is, a, = 0.

b, = /02(2 - Xx) sin(?) dx.a



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0,2),
and then find the Fourier Series of this extension.

2 2
Solution: b, = 2/ sin(@) dx—/
0 2 0

nmx

X Sln(T> dx.



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0,2),
and then find the Fourier Series of this extension.

2 2

Solution: b, = 2/ sin(@) dx—/
0 2 0

. <n7rx> dx — -2 (mrx>

sin( =~ ) dx = —— cos( —~ ),

nmx

X Sln(7> dx.



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0,2),
and then find the Fourier Series of this extension.

2

2
Solution: b, = 2/ sin(@) dx—/ X Sin(@) dx.
0 2 0 2
. (an'X)d 2 (mrx>
SNl = —— cos(—= ),

The other integral is done by parts,



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0,2),
and then find the Fourier Series of this extension.

2

2
Solution: b, = 2/ sin(@) dx—/ X Sin(@) dx.
0 2 0 2
. (an'X)d 2 (mrx>
SNl = —— cos(—= ),

The other integral is done by parts,

I = /xsin(ngx) dx,



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0,2),
and then find the Fourier Series of this extension.

2

2
Solution: b, = 2/ sin(ﬂ) dx—/ X sin(ﬂ) dx.
0 2 0 2
. (an'X)d 2 (mrx>
SNl = —— cos(—= ),

The other integral is done by parts,

, . [/ nmx
u=x, V =sin

I = /xsin(ngx) dx, 2



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0,2),
and then find the Fourier Series of this extension.

2

2
Solution: b, = 2/ sin(ﬂ) dx—/ X sin(ﬂ) dx.
0 2 0 2
. (an'X)d 2 (mrx>
SNl = —— cos(—= ),

The other integral is done by parts,
nmx

I = /xsin(m) dx, = :;in(znz

2 =1 v=-— cos(—x>
nm 2



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0,2),
and then find the Fourier Series of this extension.

2

2
Solution: b, = 2/ sin(ﬂ) dx—/ X sin(ﬂ) dx.
0 2 0 2
. <n7rx>d 2 (mrx>
SNl = —— cos(—= ),

The other integral is done by parts,
nmx

I = /xsin(m) dx, = :;in(znz

2 =1 v=-— cos(—x>
nm 2



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: | = _n—ix cos(%) — /(;j) cos(%) dx.



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: | = _n—ix cos(?) — /(;j) cos(%) dx.

2x nmx 2\2 . /nmx
| = —— cos(—) + (*) sm(—).
nm 2 nm 2



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: | = % cos(ngx> — /(;j) cos(%) dx.

2x nmx 2\2 . /nmx
| = —— cos(—) + (*) sm(—). So, we get
nm 2 nm 2

2

o =22 eos( )], + [ o], - () s ()N,



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: | = % cos(ngx> — /(;j) cos(%) dx.

2x nmx 2\2 . /nmx
| = —— cos(—) + (*) sm(T) So, we get

nm 2 nm

2

o =22 eos( )], + [ o], - () s ()N,



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: | = % cos(ngx> — /(;j) cos(%) dx.

2x nmx 2\2 . /nmx
| = —— cos(—) + (*) sm(T) So, we get

nm 2 nm
in =2l oo, + [ s~ () o)
b, = ;—:[cos(mr) -1] + {ni;r cos(nm) O} = b,= %



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: | = % cos(ngx> — /(;j) cos(%) dx.

2x nmx 2\2 . /nmx
| = —— cos(—) + (*) sm(T) So, we get

nm 2 nm
tn=2[ % eos( )|+ [ eos(F][, ~ () s (),
b, = ;—:[cos(mr) -1] + {ni;r cos(nm) — O} =  b,= %
We conclude: % i}) i <n7rx> <

n=1



Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is

700 = 243 [ancos( ™) + bysin( ™).
n=1



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is
(o]
_a nmwx ./ NTX
f(x) = > + ngl [a,,cos(—l_ ) +b,,sm(—L )]

Since f is even and periodic,



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is

+Z[ancos( =) + basin (7).

Since f is even and periodic, then the Fourier Series is a Cosine
Series,



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is

+Z[ancos( =) + basin (7).

Since f is even and periodic, then the Fourier Series is a Cosine
Series, that is, b, = 0.



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is

+Z[ancos( =) + basin (7).

Since f is even and periodic, then the Fourier Series is a Cosine
Series, that is, b, = 0.

1 /2
a) = = / f(x) dx
2 ).,



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is

+Z[ancos( =) + basin (7).

Since f is even and periodic, then the Fourier Series is a Cosine
Series, that is, b, = 0.

ao:;/:f(x)dx:/;@—x)dx



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is

+Z[ancos( =) + basin (7).

Since f is even and periodic, then the Fourier Series is a Cosine
Series, that is, b, = 0.

1 /2 2 b height
3022/ f(X)dX:/(2—X)dX:aseX2elg
-2 0



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is

+Z[ancos( =) + basin (7).

Since f is even and periodic, then the Fourier Series is a Cosine
Series, that is, b, = 0.

1 [? 2 b height
30:2/ f(x)dx:/(2—x)dx:asex2e'g:>aoz2.
-2 0



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is

+Z[ancos( =) + basin (7).

Since f is even and periodic, then the Fourier Series is a Cosine
Series, that is, b, = 0.

1 [? 2 b height
30:2/ f(x)dx:/(2—x)dx:asex2e'g:>aoz2.
-2 0

1 [t nmx
ap = L/—L f(x)cos(T) dx



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is

+Z[ancos( =) + basin (7).

Since f is even and periodic, then the Fourier Series is a Cosine
Series, that is, b, = 0.

1 [? 2 b height
30:2/ f(x)dx:/(2—x)dx:asex2e'g:>aoz2.
-2 0

ap = i/L f(x) cos(nLLX) dx = i/OL (x)cos(mzx> dx,

—L



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is

+Z[ancos( =) + basin (7).

Since f is even and periodic, then the Fourier Series is a Cosine
Series, that is, b, = 0.

1 [? 2 b height
30:2/ f(x)dx:/(2—x)dx:asex2e'g:>aoz2.
-2 0

an:i/L f(x)cos(nLLX) dx:i/L (x)cos(nL )dx L=2,
0

—L



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is

+Z[ancos( =) + basin (7).

Since f is even and periodic, then the Fourier Series is a Cosine
Series, that is, b, = 0.

1 [? 2 b height
30:2/ f(x)dx:/(2—x)dx:asex2e'g:>aoz2.
-2 0

an:i/L f(x)cos(mLTX) dx—i/L (x)cos(nL )dx L=2,
0

—L
an = /02(2 - Xx) cos(mzr—x> dx.



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

2 2
Solution: a, = 2/ cos(ﬂ) dx —/
0 2 0

nmx

X COS(T) dx.



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

2 2

Solution: a, :2/ cos(ﬂ) dx—/
0 2 0

(n7rx>d 2 <n7rx>

cos > Ix = o sin 5 )

nmx

X COS(T) dx.



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

2

2
Solution: an:2/ cos(ﬂ) dx—/ XCOS(%) dx.
0 2 0 2
(n7rx>d 2 <n7rx>
cos > X—mrsm 5 )

The other integral is done by parts,



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

2

2
Solution: an:2/ cos(ﬂ) dx—/ XCOS(%) dx.
0 2 0 2
(n7rx>d 2 <n7rx>
cos > X—mrsm 5 )

The other integral is done by parts,

| = /xcos<m2TX> dx,



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

2

2
Solution: an:2/ cos(ﬂ) dx—/ XCOS(ﬂ) dx.
0 2 0 2
(n7rx>d 2 (I'IT['X)
cos > X—mrsm 5 )

The other integral is done by parts,

, nmx
u=x, VvV =cosl—

| = /xcos<m2TX> dx, 2



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

2

2
Solution: an:2/ cos(ﬂ) dx—/ XCOS(ﬂ) dx.
0 2 0 2
(n7rx>d 2 (I'IT['X)
cos > X—mrsm 5 )

The other integral is done by parts,

, nmx
u=x, v =cos{—

nmwx
| = /xcos<2> dx, / 2 nmx
u=1, = — sm( )

V —
nm

2



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

2

2
Solution: an:2/ cos(ﬂ) dx—/ XCOS(ﬂ) dx.
0 2 0 2
(n7rx>d 2 (I'IT['X)
cos > X—mrsm 5 )

The other integral is done by parts,

nmx

o u=x, cos( 5 )
I:/xcos< )dx
2 , 2 . /nmx
u=1, :—sm( )

nm

2



Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

Solution: Recall: | = 2—X sin(m;—x> /2 sin(?) dx.

nm nm



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

Solution: Recall: | = 2—X sin(m7x> /2 Sin(ﬂ) dx.
nr 2 nm 2

2x . /nTX 2\2 nmx
| = — sm(—) + (—) cos(—).
nm 2 nm 2



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

Solution: Recall: | = 2—X sin(m7x> /2 Sin(ﬂ) dx.
nr 2 nm 2

2x . /nTXx 2\2 nmx
| =— sm(T) + (—) cos( ) So, we get



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

Solution: Recall: | = 2—X sin(m7x> /2 Sin(ﬂ) dx.
nr 2 nm 2

2x . /nTXx 2\2 nmx
| =— sm(T) + (—) cos(T). So, we get



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

Solution: Recall: | = 2—X sin(m7x> /2 Sin(ﬂ) dx.
nr 2 nm 2

2x . /nTXx 2\2 nmx
| =— sm(T) + (—) cos(T). So, we get

= (- [ w3 () (5]

4 4 .
an :0—0—W[cos(nﬂ)—1] = ap= m[l—(—l) |



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

: 4 n
Solution: Recall: b, =0, ap =2, a, = W[l —(-1)".



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

: 4 n
Solution: Recall: b, =0, ap =2, a, = W[l —(-1)".

If n =2k,



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

: 4 n
Solution: Recall: b, =0, ap =2, a, = W[l —(-1)".

4
If n= 2k, then azg = W [1 — (—1)2k]



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

: 4 n
Solution: Recall: b, =0, ap =2, a, = W[l —(-1)".

4
If n =2k, then ayy = ——— |1 — (-1 2 = 0.
(2k)?m2



Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

: 4 n
Solution: Recall: b, =0, ap =2, a, = W[l —(-1)".

4
If n =2k, then ayy = ——— |1 — (-1 2 = 0.
(2k)?m2

If n=2k—1,



Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

: 4 n
Solution: Recall: b, =0, ap =2, a, = W[l —(-1)".

4
If n =2k, then ayy = ——— |1 — (-1 2 = 0.
(2k)?m2

If n=2k —1, then we obtain

4 2k—1
d(2k-1) = (2k — 1)2r2 [1 - (-1) ]



Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

: 4 n
Solution: Recall: b, =0, ap =2, a, = W[l —(-1)".

4

2k1 __
Ifn:2k, then QQkZW [1—(—1) ] =0.
If n=2k —1, then we obtain
4 2%-1 8
d(2k-1) = (2/( _ 1)27].2 [1 - (_1) ] = (2/( _ 1)271.2'



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

: 4 n
Solution: Recall: b, =0, ap =2, a, = W[l —(-1)".

4 2k
Ifn:2k, then a2k:W[l_(_1) ] =0.
If n=2k —1, then we obtain
4 8

S S— G A ULS ) [

a(2k—1) (2k _ 1)27].2 [1 ( ) ] (2/( _ 1)271.2
_ 8 — 1 (2k — 1)mx

We conclude: f(x):1+; g 2k —1)2 cos( 5 >.<

k=1



Review for Final Exam.

Fourier Series expansions (Chptr.6).
Eigenvalue-Eigenfunction BVP (Chptr. 6).
Systems of linear Equations (Chptr. 5).
Laplace transforms (Chptr. 4).

Power Series Methods (Chptr. 3).

Second order linear equations (Chptr. 2).

vV vV vV V. VvV Vv Y

First order differential equations (Chptr. 1).



Eigenvalue-Eigenfunction BVP.
Example
Find the positive eigenvalues and their eigenfunctions of

y"+Ay =0, y(0)=0, y(8)=0.



Eigenvalue-Eigenfunction BVP.
Example
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Then, y'(x) = —c1 sin(x) 4+ 2 cos(x). The B.C. imply:
1=y'(0)=c = y(x)=c cos(x) +sin(x).
B B _ _ sin(m/3)
0= y(w/i)f; c1 cos(m/3) +sin(n/3) = a = ~cos(n/3)"
3/2
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A Boundary Value Problem.

Example
Find the solution of the BVP

y'+y=0, y(0)=1, y(r/3)=0.
Solution: y(x) = e™ implies that r is solution of
p(r)=r*+u>=0 = ry=-=+i
The general solution is y(x) = ¢1 cos(x) + ¢ sin(x).
Then, y'(x) = —c1 sin(x) 4+ 2 cos(x). The B.C. imply:
1=y'(0)=c = y(x)=c cos(x) +sin(x).

B B _ _ sin(m/3)
0=y(n/3) = ¢ cos(w/3) +sin(w/3) = = ~cos(n/3)"
= —@ = —V3 = y(x) = —V/3 cos(x) + sin(x).

1/2
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Review for Final Exam.

Fourier Series expansions (Chptr.6).
Eigenvalue-Eigenfunction BVP (Chptr. 6).
Systems of linear Equations (Chptr. 5).
Laplace transforms (Chptr. 4).

Power Series Methods (Chptr. 3).

Second order linear equations (Chptr. 2).

vV vV vV V. VvV Vv Y

First order differential equations (Chptr. 1).



Systems of linear Equations.

Summary: Find solutions of x’ = Ax, with A a 2 x 2 matrix.
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Summary: Find solutions of x’ = Ax, with A a 2 x 2 matrix.

First find the eigenvalues )\; and the eigenvectors v(7) of A.
(a) If Ay # Ao, real, then {v(1) v(®)} are linearly independent, and
the general solution is x(x) = c; v eMt 4 ¢, v(?) Mot

(b) If A1 # A2, complex, then denoting Ay = o £+ 37 and
v —a+ b/, the complex-valued fundamental solutions
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Systems of linear Equations.

Summary: Find solutions of x’ = Ax, with A a 2 x 2 matrix.

First find the eigenvalues )\; and the eigenvectors v(7) of A.
(a) If Ay # Ao, real, then {v(1) v(®)} are linearly independent, and
the general solution is x(x) = c; v eMt 4 ¢, v(?) Mot

(b) If A1 # A2, complex, then denoting Ay = o £+ 37 and
v —a+ b/, the complex-valued fundamental solutions
x(F) = (a+bi) eloEBt

x(F) = et (a + bi) [cos(Bt) + isin(Bt)].



Systems of linear Equations.

Summary: Find solutions of x’ = Ax, with A a 2 x 2 matrix.

First find the eigenvalues )\; and the eigenvectors v(7) of A.

(a) If Ay # Ao, real, then {v(1) v(®)} are linearly independent, and
the general solution is x(x) = c; v eMt 4 ¢, v(?) Mot

(b) If A1 # A2, complex, then denoting Ay = o £+ 37 and
v —a+ b/, the complex-valued fundamental solutions

x(5) = (a + bj) el@ =9t
x(*) = e (a + bi) [cos(Bt) + isin(Bt)].

x5 = et [acos(At) —bsin(Bt)] £ie®* [asin(3t)+bcos(Gt)].



Systems of linear Equations.

Summary: Find solutions of x’ = Ax, with A a 2 x 2 matrix.

First find the eigenvalues )\; and the eigenvectors v(7) of A.

(a) If Ay # Ao, real, then {v(1) v(®)} are linearly independent, and
the general solution is x(x) = c; v eMt 4 ¢, v(?) Mot

(b) If A1 # A2, complex, then denoting Ay = o £+ 37 and
v —a+ b/, the complex-valued fundamental solutions

x() = (a £ bj) elotAt
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Summary: Find solutions of x’ = Ax, with A a 2 x 2 matrix.

First find the eigenvalues )\; and the eigenvectors v(7) of A.
(a) If Ay # Ao, real, then {v(1) v(®)} are linearly independent, and
the general solution is x(x) = c; v eMt 4 ¢, v(?) Mot

(b) If A1 # A2, complex, then denoting Ay = o £+ 37 and
v —a+ b/, the complex-valued fundamental solutions

x(F) = (a+bi) eloEBt
x(*) = e (a + bi) [cos(Bt) + isin(Bt)].
x5 = et [acos(At) —bsin(Bt)] £ie®* [asin(3t)+bcos(Gt)].
Real-valued fundamental solutions are
x(D) = et [acos(8t) — bsin(Bt)],



Systems of linear Equations.

Summary: Find solutions of x’ = Ax, with A a 2 x 2 matrix.

First find the eigenvalues )\; and the eigenvectors v(7) of A.

(a) If Ay # Ao, real, then {v(1) v(®)} are linearly independent, and
the general solution is x(x) = c; v eMt 4 ¢, v(?) Mot

(b) If A1 # A2, complex, then denoting Ay = o £+ 37 and
v —a+ b/, the complex-valued fundamental solutions

x(F) = (a+bi) eloEBt
x(*) = e (a + bi) [cos(Bt) + isin(Bt)].
x5 = et [acos(At) —bsin(Bt)] £ie®* [asin(3t)+bcos(Gt)].
Real-valued fundamental solutions are
x(D) = et [acos(8t) — bsin(Bt)],

x?) = e [asin((t) + b cos(5t)].
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First find the eigenvalues \; and the eigenvectors v() of A.
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Systems of linear Equations.

Summary: Find solutions of X' = Ax, with A a 2 x 2 matrix.
First find the eigenvalues \; and the eigenvectors v() of A.

(c) If A\ = A2 = A, real, and their eigenvectors {v(l),v(2)} are
linearly independent, then the general solution is

x(x) = co vV M 4 v et

(d) If Ay = X2 = A, real,
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First find the eigenvalues \; and the eigenvectors v() of A.

(c) If A\ = A2 = A, real, and their eigenvectors {v(l),v(2)} are
linearly independent, then the general solution is
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Systems of linear Equations.

Summary: Find solutions of X’ = Ax, with A a 2 x 2 matrix.
First find the eigenvalues \; and the eigenvectors v() of A.

(c) If A\ = A2 = A, real, and their eigenvectors {v(l),v(2)} are
linearly independent, then the general solution is

x(x) = co vV M 4 v et

(d) If Ay = A2 = A, real, and there is only one eigendirection v,
then find w solution of (A — A)w = v.



Systems of linear Equations.

Summary: Find solutions of X’ = Ax, with A a 2 x 2 matrix.
First find the eigenvalues \; and the eigenvectors v() of A.

(c) If A\ = A2 = A, real, and their eigenvectors {v(l),v(2)} are
linearly independent, then the general solution is

x(x) = co vV M 4 v et

(d) If Ay = A2 = A, real, and there is only one eigendirection v,
then find w solution of (A — A/)w = v. Then fundamental
solutions to the differential equation are given by

x() =y et



Systems of linear Equations.

Summary: Find solutions of X’ = Ax, with A a 2 x 2 matrix.
First find the eigenvalues \; and the eigenvectors v() of A.

(c) If A\ = A2 = A, real, and their eigenvectors {v(l),v(2)} are
linearly independent, then the general solution is

x(x) = co vV M 4 v et

(d) If Ay = A2 = A, real, and there is only one eigendirection v,
then find w solution of (A — A/)w = v. Then fundamental
solutions to the differential equation are given by

x =ver  x®) = (vt+w)e.



Systems of linear Equations.

Summary: Find solutions of X’ = Ax, with A a 2 x 2 matrix.

First find the eigenvalues \; and the eigenvectors v() of A.

(c) If A\; = X\a = ), real, and their eigenvectors {v(}) v(?)} are
linearly independent, then the general solution is

x(x) = co vV M 4 v et

(d) If Ay = A2 = A, real, and there is only one eigendirection v,
then find w solution of (A — A/)w = v. Then fundamental
solutions to the differential equation are given by

x =ver  x®) = (vt+w)e.

Then, the general solution is

x=cveM 4o (vt+w)er



Systems of linear Equations.

Example

Find the solution to: x' = Ax,
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Systems of linear Equations.

Example

_ _ . 3 1 4
Find the solution to: x' = Ax, x(0)= [2] , A= [2 _1]-
Solution:

_ja-n 4 ‘:()\—1)(/\+1)—8:)\2—1—8,

PV=1"0 7 (1o



Systems of linear Equations.

Example
. . ' 3 1 4
Find the solution to: x" = Ax, x(0) = , A= :
2 2 -1
Solution:
_|@=x 4 a2
p(A) = 5 (c1-3)| = A=1)(A+1)—8=X1"—-1-28,

p(\) =X -9=0
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Systems of linear Equations.

Example

_ _ . 3 1 4
Find the solution to: x' = Ax, x(0)= [2] , A= [2 _1]-
Solution:

1-x 4
PV=" 5 (1o )\)‘

=(A-1)(\+1)—-8=X—-1-8,
p(A) =X —-9=0 = \.=43
Case \y =3,

A-—-3l



Systems of linear Equations.

Example

. . ' 3 1 4
Find the solution to: x" = Ax, x(0) = NE A= N
Solution:

_|@=x 4 2
p()\)—‘ 5 (—1- ) =A-1)(A\+1)—-8=X"—-1-8,
p(A) =X —-9=0 = \.=43

Case A\, =
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Systems of linear Equations.

Example
. . ' 3 1 4
Find the solution to: x" = Ax, x(0) = , A= :
2 2 -1
Solution:

_|@=x 4 a2
p()\)—‘ 5 (—1- ) =A-1)(A\+1)—-8=X"—-1-8,
p(A) =X —-9=0 = \.=43

Case A\ =
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Systems of linear Equations.

Example

_ _ . 3 1 4
Find the solution to: x' = Ax, x(0)= [2] , A= [2 _1]-
Solution:

=" Lt

=(A-1)(\+1)—-8=X—-1-8,
p(A) =X —-9=0 = \.=43
Case \y =3,
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Systems of linear Equations.

Example

_ _ . 3 1 4
Find the solution to: x' = Ax, x(0)= [2] , A= [2 _1]-
Solution:

1-)) 4 ‘

p()\):‘( 2 (1o =(A-1)(\+1)—-8=X—-1-8,

p(A) =X —-9=0 = \.=43

Case \y =3,

L |72 4 1 -2 _ +) _ |2
A 3/—[2 _4}—>[0 0] = vy =2wn = Vv —[J
Case \_ = -3,

A+ 3l



Systems of linear Equations.

Example

_ _ . 3 1 4
Find the solution to: x' = Ax, x(0)= [2] , A= [2 _1]-
Solution:

1-)) 4 ‘

p()\):‘( 2 (1o =(A-1)(\+1)—-8=X—-1-8,

p(A) =X —-9=0 = \.=43

Case \y =3,

L |72 4 1 -2 _ +) _ |2
A 3/—[2 _4}—>[0 0] = vy =2wn = Vv —[J
Case \_ = -3,

4 4
avai=[s 3]



Systems of linear Equations.

Example

_ _ . 3 1 4
Find the solution to: x' = Ax, x(0)= [2] , A= [2 _1]-
Solution:

1-)) 4 ‘

p()\):‘( 2 (1o =(A-1)(\+1)—-8=X—-1-8,

p(A) =X —-9=0 = \.=43

Case \y =3,

L |72 4 1 -2 _ +) _ |2
A 3/—[2 _4}—>[0 0] = vy =2wn = Vv —[J
Case \_ = -3,

4 4 1 1
A+3/—[2 2:|—>|:0 0:|



Systems of linear Equations.

Example

_ _ . 3 1 4
Find the solution to: x' = Ax, x(0)= [2] , A= [2 _1]-
Solution:

1-)) 4 ‘

p()\):‘( 2 (1o =(A-1)(\+1)—-8=X—-1-8,

p(A) =X —-9=0 = \.=43

Case \y =3,

L |72 4 1 -2 _ +) _ |2
A 3/—[2 _4}—>[0 0] = vy =2wn = Vv —[J
Case \_ = -3,

4 4 1 1
A—|—3/:|:2 2:|—>|:0 0:| = Vi =—W



Systems of linear Equations.

Example

_ _ . 3 1 4
Find the solution to: x' = Ax, x(0)= [2] , A= [2 _1]-
Solution:

1-)) 4 ‘

p()\):‘( 2 (1o =(A-1)(\+1)—-8=X—-1-8,

p(A) =X —-9=0 = \.=43

Case \y =3,

L |72 4 1 -2 _ +) _ |2
A 3/—[2 _4}—>[0 0] = vy =2wn = Vv —[J
Case \_ = -3,

|4 4 1 1 _ () _ -1
/4—1—3/—[2 2}%[0 0] = vy=— = V —[ ]



Systems of linear Equations.

Example

Find the solution to: x' = Ax, x(0)

Solution: Recall: Ay = +3, v(t) = [



Systems of linear Equations.

Example
. . / 3 1 4
Find the solution to: x' = Ax, x(0) = , A= .
2 2 -1
=) = |71
=7
~3t

The general solution is x(t) = ¢ [2} e+ o [_ } e

Solution: Recall: Ay = 43, vit) = [ﬂ

1 1



Systems of linear Equations.

Example

Find the solution to: x' = Ax, x(0) = B]

1 4
, A[z _1].
v<>:[—11].
-3t

The general solution is x(t) = ¢ [ﬂ e+ o [_1} e

Solution: Recall: Ay = 43, vit) = [ﬂ

The initial condition implies,



Systems of linear Equations.

Example
: . / 3 1 4
Find the solution to: x' = Ax, x(0) = , A= .

. 2 -1 _
The general solution is x(t) = ¢ [ } et + o [ } e 3t
The initial condition implies,

E] =x(0) = a m +o [11]



Systems of linear Equations.

Example
: . / 3 1 4
Find the solution to: x' = Ax, x(0) = , A= .

. 2 -1 _
The general solution is x(t) = ¢ [ } et + o [ } e 3t
The initial condition implies,
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Systems of linear Equations.

Example
: . / 3 1 4
Find the solution to: x' = Ax, x(0) = , A= .

-1
The general solution is x(t) = ¢ [2} e+ o [ } e 3t
The initial condition implies,

R R T K ]
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Systems of linear Equations.

Example
: . / 3 1 4
Find the solution to: x' = Ax, x(0) = , A= .

-1
The general solution is x(t) = ¢ [2} e+ o [ } e 3t
The initial condition implies,

R R T K ]
e bl = )=l




Systems of linear Equations.

Example
: . / 3 1 4
Find the solution to: x' = Ax, x(0) = , A= .

-1
The general solution is x(t) = ¢ [2} e+ o [ } e 3t
The initial condition implies,

[ o-afl-ali] - B
a2 98 - -

We conclude: x(t) = g




Review for Final Exam.

Fourier Series expansions (Chptr.6).
Eigenvalue-Eigenfunction BVP (Chptr. 6).
Systems of linear Equations (Chptr. 5).
Laplace transforms (Chptr. 4).

Power Series Methods (Chptr. 3).

Second order linear equations (Chptr. 2).
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First order differential equations (Chptr. 1).
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Summary:
» Main Properties:
LlfO(8)] = s" LIF(1)] — s £(0) — - — F"7D(0); - (18)
e~ LIF(£)] = Llue(t) F(t — O)]; (13)
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Laplace transforms.

Summary:
» Main Properties:
LlfO(8)] = s" LIF(1)] — s £(0) — - — F"7D(0); - (18)
e~ LIF(£)] = Llue(t) F(t — O)]; (13)
LI, = £le™ F(0)] (14)

» Convolutions:
L[(f = g)(1)] = L[f(1)] Lg(1)]-

» Partial fraction decompositions, completing the squares.
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Laplace transforms.

Example
Use L.T. to find the solution to the IVP
y'+9y =us(t), y(0)=3,  y'(0)=2

—bs
, and recall,

Solution: Compute L[y"] +9 L[y] = L[us(t)] = ©

Lly"] = 2Ly —sy(0) —y'(0) = L[y"]=s2Lly]—3s—2.

—bs
(s24+9)L[y] —3s—2="1
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Laplace transforms.

Example
Use L.T. to find the solution to the IVP
y'+9y =us(t), y(0)=3,  y'(0)=2

—bs
, and recall,

Solution: Compute L[y"] +9 L[y] = L[us(t)] = ©

Lly"] = 2Ly —sy(0) —y'(0) = L[y"]=s2Lly]—3s—2.

—bs
(s24+9)L[y] —3s—2="1

~ (3s+2) _5s 1
M=arg*e s roy
s 2 3 e 1

=3 g 310 ¢ ss219)




Laplace transforms.

Example
Use L.T. to find the solution to the IVP
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Laplace transforms.

Example
Use L.T. to find the solution to the IVP

y'+9y =us(t), y(0)=3, y(0)=2

s 2 3 _5s
Z19)

Solution: Recall L[y] =3 3 (21 9) +e



Laplace transforms.

Example
Use L.T. to find the solution to the IVP

y" 4+ 9y = us(t), y(0) =3, y'(0) = 2.
s 2 3 _5s 1

Solution: Recall L[y] =3 3 s(s2+9)°
olution: Reca [v] (52+9)+3(52+9)+e s(s2+9)
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Example
Use L.T. to find the solution to the IVP

y" 4+ 9y = us(t), y(0) =3, y'(0) = 2.
s 2 3 _5s 1

Solution: Recall L[y] = 2 s(s2 +9)
olution: Reca [v] 3(52+9) +3 (s2+49) e s(s*+9)
2 . —bs
Lly] = 3 L[cos(3t)] + 3 L[sin(3t)] + e s(s2+9)°
Partial fractions on
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Use L.T. to find the solution to the IVP
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s 2 3 _5s 1
Z19)
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Laplace transforms.

Example
Use L.T. to find the solution to the IVP

y'+9y =us(t), y(0)=3, y(0)=2

Solution: So, L[y] = 3 L[cos(3t)] + % L[sin(3t)] + e > H(s), and
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Example
Use L.T. to find the solution to the IVP

y'+9y =us(t), y(0)=3, y(0)=2

Solution: So, L[y] = 3 L[cos(3t)] + % L[sin(3t)] + e > H(s), and
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Laplace transforms.

Example
Use L.T. to find the solution to the IVP

v+ 9y =us(t), y(0)=3,  y'(0)=2
Solution: So, L[y] =3 L[cos(3t)] + 2 E[sin(3t)] + e % H(s), and
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Laplace transforms.

Example
Use L.T. to find the solution to the IVP

y'+9y =us(t), y(0)=3, y(0)=2
Solution: So, L[y] =3 L[cos(3t)] + 2 C[sin(3t)] + e % H(s), and

1 1

HE) = g = 55— o] = 5 (ctuon - creos(an)

e 55 H(s) = %( =55 Llu(t)] — e*5sc[cos(3t)])

=55 H(s) = <£[U5(t)]— [u (t)cos(s(t—s))]).

[0}

Lly] = 3£[cos(3t)]+ L[sin(3t)]+ = (ﬁ[u5( )] —L[us(t) cos(3(t—5))]).



Laplace transforms.

Example
Use L.T. to find the solution to the IVP

y'+9y =us(t), y(0)=3,  y'(0)=2
Solution:

L[y] = 3 L[cos(3t)]+ % L[sin(3t)]+ % (E[u5(t)] — L[us(t) cos(3(t—5))] ) :



Laplace transforms.

Example
Use L.T. to find the solution to the IVP

y'+9y =us(t), y(0)=3,  y'(0)=2
Solution:

L[y] = 3 L[cos(3t)]+ % L[sin(3t)]+ % (E[u5(t)] — L[us(t) cos(3(t—5))] ) :

Therefore, we conclude that,

y(t) = 3cos(3t) + % sin(3t) + “59“) 1 cos(3(t — 5)|-



Review for Final Exam.

Fourier Series expansions (Chptr.6).
Eigenvalue-Eigenfunction BVP (Chptr. 6).
Systems of linear Equations (Chptr. 5).
Laplace transforms (Chptr. 4).

Power Series Methods (Chptr. 3).
Second order linear equations (Chptr. 2).
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First order differential equations (Chptr. 1).
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Power series solutions (Chptr. 3).

Summary: Solve: a(x)y” + b(x)y’ + c(x)y = 0 near xp.

oo
(a) If xo is a regular point, then y(x) = Z an (x — xo)".
n=0
Find a recurrence relation for a,.

o0

(b) If xo is a regular-singular point, y(x) = Z an (x — xo)
n=0

n+r)
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Find a recurrence relation for a,.
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Power series solutions (Chptr. 3).
Summary: Solve: a(x)y” + b(x)y’ + c(x)y = 0 near xp.

(a) If xo is a regular point, then y(x Za,, x—xp)"

Find a recurrence relation for a,.
(b) If xo is a regular-singular point, y(x E an (x — xp) ”“).
Find a recurrence relation for a,, and |nd|C|aI equation for r.

(c) Euler equation: (x —x0)2y" +a(x —xo)y' + By =0.

Solutions: If y(x) =[x — xol|",



Power series solutions (Chptr. 3).
Summary: Solve: a(x)y” + b(x)y’ + c(x)y = 0 near xp.

(a) If xo is a regular point, then y(x Za,, x—xp)"

Find a recurrence relation for a,.

(b) If xo is a regular-singular point, y(x Zan (x — x0) ”“).
Find a recurrence relation for a,, and |nd|C|aI equation for r.

(c) Euler equation: (x —x0)2y" +a(x —xo)y' + By =0.

Solutions: If y(x) = |x — xp|", then r is solution of the indicial
equation p(r) =r(r—1)+ar+ 3 =0.
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Summary: Solving the Euler equation
(x = x0)?y" +a(x —x0)y' + 8y =0.
(i) If r; # o, reals, then the general solution is
y(x) =[x — xo|™ + a2 |x — x0|".
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Power series solutions (Chptr. 3).
Summary: Solving the Euler equation
(x = x0)*y" +a(x —x)y + By =0.

(i) If r; # o, reals, then the general solution is

y(x) =[x — xo|™ + a2 |x — x0|".

(ii) If r1 # ra, complex, denote them as ri = A & pi. Then, the
real-valued general solution is
y(x) = a1 |x = xo* cos(In |x — xol)
+ o |x — x| sin(pIn [x — xol).
(iii) If 1 = rp = r, real, then the general solution is

y(x) = (c1+ 2 Inlx — xo|) [x — xo!"-
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solution centered at xp = 0 of the equation y” — 3y’ + xy = 0.

Solution: xp =0 is a regular point of the dlfferentlal equation.
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Example
Find the recurrence relation for the coefficients of the power series
solution centered at xp = 0 of the equation y” — 3y’ + xy = 0.

Solution: xp =0 is a regular point of the dlfferentlal equation.

Therefore, y(x Za,, = xy= Za x(n 1),
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Example
Find the recurrence relation for the coefficients of the power series
solution centered at xp = 0 of the equation y” — 3y’ + xy = 0.

Solution: xp =0 is a regular point of the d|fferent|a| equation.

Therefore, y(x Za,, = xy= Za x(n 1),

e}

= Z nap x> 3y = Z(—fﬂn)an x(n=1),

n=0

oo
Zn (n—1)a, x(1=2)
n=0



Power series solutions (Chptr. 3).

Example
Find the recurrence relation for the coefficients of the power series
solution centered at xp = 0 of the equation y” — 3y’ + xy = 0.

Solution: xp =0 is a regular point of the dlfferentlal equation.

Therefore, y(x Za,, = xy= Za x(n 1),

= Z nap x> 3y = Z(—fﬂn)an x(n=1),
n=0 n=0

o0

Z (n—1)a, x(1=2),

o0

Z n—lax”2)+z —3n)ap ("1—1-23 x(mt1) — o,

n=0 n=0 n=0
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Example
Find the recurrence relation for the coefficients of the power series
solution centered at xp = 0 of the equation y” — 3y’ + xy = 0.

Solution:

o0
n(n—1)ap x ”2+Z —3n)a, x"1) Za,, (r+1) — o,
n=0 n=0
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Example
Find the recurrence relation for the coefficients of the power series
solution centered at xp = 0 of the equation y” — 3y’ + xy = 0.
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Power series solutions (Chptr. 3).

Example
Find the recurrence relation for the coefficients of the power series
solution centered at xp = 0 of the equation y” — 3y’ + xy = 0.

Solution:

o0
n(n—1)ap x ”2+Z —3n)a, x"1) Za,, (n+1)
n=0

=0

3

in n—1)a, x(n= 2)+Z —3n)ap, x(n1=1) —1—23 x(mt1) — 0.
n=2 n=1 n=0

m=n-—2 m=n-—1
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Power series solutions (Chptr. 3).

Example
Find the recurrence relation for the coefficients of the power series
solution centered at xp = 0 of the equation y” — 3y’ + xy = 0.

Solution:

o0
n(n—1)ap x ”2+Z —3n)a, x"1) Za,, (1) — 0.
=0 n=0

3

in n—1)a, x(n= 2)+Z —3n)ap, x(n1=1) —1—23 x(mt1) — 0.
n=2 n=1 n=0

m=n-—2 m=n-—1 m=n-+1

m—n m—n m—n



Power series solutions (Chptr. 3).

Example
Find the recurrence relation for the coefficients of the power series
solution centered at xp = 0 of the equation y” — 3y’ + xy = 0.

Solution:

n(n—1)ap x ”2+Z —3n)a, x"1) Za,, (1) — 0.
n=0

n=0
[o@)
Zn (n—1)a, x(n= 2)+Z —3n)ap, x(n1=1) —I—Za x(mt1) — 0.
n=2 n=1 n=0
m=n-—2 m=n-—1 m=n-+1
m—n m—n m—n

[e.9]

Z(n+2)(n+ 1)ant2 X”—l—Z(—?))(n—i— 1)ant+1 X”—i—z ap—1x"=0.

n=0 n=0 n=1



Power series solutions (Chptr. 3).

Example

Find the recurrence relation for the coefficients of the power series
solution centered at xp = 0 of the equation y” — 3y’ + xy = 0.

Solution:
o0

Z:(nJr2)(nnL 1)anyo X”Jrz:(—3)(nnL 1)an+1 X”Jrz ap—1x"=0.
n=0 n=0 n=1



Power series solutions (Chptr. 3).

Example

Find the recurrence relation for the coefficients of the power series
solution centered at xp = 0 of the equation y” — 3y’ + xy = 0.

Solution:
Z(n+2)(n+ 1)anyo X”Jrz:(—3)(nnL 1)an+1 X”Jrz ap—1x"=0.
n=0 n=0 n=1

(2)(1)az + (—3)(1)a1+

Z (n+2)(n+1)api2 —3(n+1)apy1 + an_1] x"=0
n=1



Power series solutions (Chptr. 3).

Example

Find the recurrence relation for the coefficients of the power series
solution centered at xp = 0 of the equation y” — 3y’ + xy = 0.

Solution:
Z(n+2)(n+ 1)anyo X”Jrz:(—3)(nnL 1)an+1 X”Jrz ap—1x"=0.
n=0 n=0 n=1

(2)(1)az + (—3)(1)a1+

Z (n+2)(n+1)api2 —3(n+1)apy1 + an_1] x"=0
n=1

We conclude: 2a, —3a; = 0, and

(n+2)(n+1)any2 —3(n+1apt1 +a-1=0, n=>1.
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Power series solutions (Chptr. 3).

Example
Find the first two terms on the power series expansion around
xo = 0 of each fundamental solution of y” — 3y’ + xy = 0.

Solution: Recall: 2a, —3a; =0, and

(n+2)(n+1apy2 —3(n+1)aps1+ap-1 =0, n>1.
3 . .
Therefore, ar = 5 a1, and n =1 in the other equation implies

(3)(2)az —3(2)a2 + a0 =0



Power series solutions (Chptr. 3).

Example

Find the first two terms on the power series expansion around
xo = 0 of each fundamental solution of y” — 3y’ + xy = 0.
Solution: Recall: 2a, —3a; =0, and

(n+2)(n+1)ap2—3(n+1)apy1 +an—1=0, n>=1

3 . .
Therefore, ar = 5 a1, and n =1 in the other equation implies

(3)(2)33 - 3(2)32 +a=0 = a3=a— %)



Power series solutions (Chptr. 3).

Example

Find the first two terms on the power series expansion around
xo = 0 of each fundamental solution of y” — 3y’ + xy = 0.

Solution: Recall: 2a, —3a; =0, and

(n+2)(n+1)ap2—3(n+1)apy1 +an—1=0, n>=1

3 . .
Therefore, ar = 5 a1, and n =1 in the other equation implies

(3)(2)33 - 3(2)32 +a=0 = a3=a— %)

Using the equation for a; we obtain



Power series solutions (Chptr. 3).

Example

Find the first two terms on the power series expansion around
xo = 0 of each fundamental solution of y” — 3y’ + xy = 0.

Solution: Recall: 2a, —3a; =0, and

(n+2)(n+1)ap2—3(n+1)apy1 +an—1=0, n>=1

3 . .
Therefore, ar = 5 a1, and n =1 in the other equation implies

a

(3)(2)33 - 3(2)32 +a=0 = a3=a— EO
1 H . 3 ao
Using the equation for a; we obtain a3 = > a; — 5



Power series solutions (Chptr. 3).

Example

Find the first two terms on the power series expansion around
xo = 0 of each fundamental solution of y” — 3y’ + xy = 0.

Solution: Recall: 2a, —3a; =0, and

(n+2)(n+1)ap2—3(n+1)apy1 +an—1=0, n>=1

3 . .
Therefore, ar = 5 a1, and n =1 in the other equation implies

a

(3)(2)33 - 3(2)32 +a=0 = a3=a— EO
1 H . 3 ao
Using the equation for a; we obtain a3 = > a; — 5

y(x) = ap + ayx + apx® + azx® + -



Power series solutions (Chptr. 3).

Example

Find the first two terms on the power series expansion around
xo = 0 of each fundamental solution of y” — 3y’ + xy = 0.

Solution: Recall: 2a, —3a; =0, and

(n+2)(n+1)ap2—3(n+1)apy1 +an—1=0, n>=1

3 . .
Therefore, ar = 5 a1, and n =1 in the other equation implies

a

(3)(2)33 - 3(2)32 +a=0 = a3=a— EO
1 H . 3 ao
Using the equation for a; we obtain a3 = > a; — 5

y(x) = ap + ayx + apx® + azx® + -

3 3 a
y(x):ao+alx+§alx2+(Eal—go)x:“;—k---



Power series solutions (Chptr. 3).

Example

Find the first two terms on the power series expansion around

xo = 0 of each fundamental solution of y” — 3y’ + xy = 0.
a0

3 3
Solution: Recall: y(x) = ap+ aix+ 3 a x>+ (ial — E) S



Power series solutions (Chptr. 3).

Example
Find the first two terms on the power series expansion around
xo = 0 of each fundamental solution of y” — 3y’ + xy = 0.

3 3
Solution: Recall: y(x) = ap+ aix+ 3 a x>+ (ial — %) S

1
y(x):ao<1_6x3+...>+31<X+gx2_’_gx3+...)7



Power series solutions (Chptr. 3).

Example
Find the first two terms on the power series expansion around
xo = 0 of each fundamental solution of y” — 3y’ + xy = 0.

3 3
Solution: Recall: y(x) = ap+ aix+ 3 a x>+ (ial — %) X34,

1
y(x):ao<1_6x3+...>+31<X+gx2_’_gx3+...)7

We conclude that:

1
) =1 x4,

3 3
yz(x)zx+ix2+§x3+---



Review for Final Exam.

Fourier Series expansions (Chptr. 6).
Eigenvalue-Eigenfunction BVP (Chptr. 6).
Systems of linear Equations (Chptr. 5).
Laplace transforms (Chptr. 4).

Power Series Methods (Chptr. 3).

Second order linear equations (Chptr. 2).

vV vV vV VvV VvV Vv Y

First order differential equations (Chptr. 1).
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First find fundamental solutions y(t) = e'* to the case g = 0,
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Second order linear equations.
Summary: Solve y”" + a1y’ + agy = g(t).

First find fundamental solutions y(t) = e'* to the case g = 0,
where r is a root of p(r) = r?> + air + ag.

(a) If rn # ra, real, then the general solution is
y(t) = cp et 4 et

(b) If r1 # rp, complex, then denoting ri = o & i,
complex-valued fundamental solutions are

yi(t) = e@ENt oy (1) = et [cos(Bt) £ isin(Bt)],
and real-valued fundamental solutions are
y1(t) = e cos(pt), yo(t) = et sin(St).
If n = r = r, real, then the general solution is

y(t) = (a1 + at) e™.
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Remark: Case (c) is solved using the reduction of order method.
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(i) Undetermined coefficients: Guess the particular solution y,
using the guessing table, g — yp.

(ii) Variation of parameters: If y; and y» are fundamental
solutions to the homogeneous equation, and W is their
Wronskian, then y, = u1y1 + w2y, where

_ v8

o g
u; = W _—.

/I
U2—W



Second order linear equations.

Example
Knowing that y1(x) = x2 solves x? y” — 4xy’ + 6y = 0, with
x > 0, find a second solution y» not proportional to y;.



Second order linear equations.

Example
Knowing that y1(x) = x2 solves x? y” — 4xy’ + 6y = 0, with
x > 0, find a second solution y» not proportional to y;.

Solution: Use the reduction of order method.



Second order linear equations.

Example
Knowing that y1(x) = x2 solves x? y” — 4xy’ + 6y = 0, with
x > 0, find a second solution y» not proportional to y;.

Solution: Use the reduction of order method. We verify that
y1= x2 solves the equation,



Second order linear equations.

Example
Knowing that y1(x) = x2 solves x? y” — 4xy’ + 6y = 0, with
x > 0, find a second solution y» not proportional to y;.

Solution: Use the reduction of order method. We verify that
y1= x2 solves the equation,

x?(2) — 4x(2x) +6x* = 0.



Second order linear equations.

Example
Knowing that y1(x) = x2 solves x? y” — 4xy’ + 6y = 0, with
x > 0, find a second solution y» not proportional to y;.

Solution: Use the reduction of order method. We verify that
y1= x2 solves the equation,

x?(2) — 4x(2x) +6x* = 0.

Look for a solution y»(x) = v(x) y1(x),



Second order linear equations.

Example
Knowing that y1(x) = x2 solves x? y” — 4xy’ + 6y = 0, with
x > 0, find a second solution y» not proportional to y;.

Solution: Use the reduction of order method. We verify that
y1= x2 solves the equation,
x?(2) — 4x(2x) +6x* = 0.

Look for a solution y»(x) = v(x) y1(x), and find an equation for v.



Second order linear equations.

Example
Knowing that y1(x) = x2 solves x? y” — 4xy’ + 6y = 0, with
x > 0, find a second solution y» not proportional to y;.

Solution: Use the reduction of order method. We verify that
y1= x2 solves the equation,
x?(2) — 4x(2x) +6x* = 0.
Look for a solution y»(x) = v(x) y1(x), and find an equation for v.

2
Y2 =XV,



Second order linear equations.

Example
Knowing that y1(x) = x2 solves x? y” — 4xy’ + 6y = 0, with
x > 0, find a second solution y» not proportional to y;.

Solution: Use the reduction of order method. We verify that
y1= x2 solves the equation,

x?(2) — 4x(2x) +6x* = 0.

Look for a solution y»(x) = v(x) y1(x), and find an equation for v.

o = x2v, y2—x v+ 2xv,



Second order linear equations.

Example
Knowing that y1(x) = x2 solves x? y” — 4xy’ + 6y = 0, with
x > 0, find a second solution y» not proportional to y;.
Solution: Use the reduction of order method. We verify that
y1= x2 solves the equation,
x?(2) — 4x(2x) +6x* = 0.
Look for a solution y»(x) = v(x) y1(x), and find an equation for v.

o = x2v, V5= X2V + 2xv, vy = x>V 4+ 4xv' + 2v.



Second order linear equations.

Example
Knowing that y1(x) = x2 solves x? y” — 4xy’ + 6y = 0, with
x > 0, find a second solution y» not proportional to y;.

Solution: Use the reduction of order method. We verify that
y1= x2 solves the equation,

x?(2) — 4x(2x) +6x* = 0.
Look for a solution y»(x) = v(x) y1(x), and find an equation for v.

o = x2v, V5= X2V + 2xv, vy = x>V 4+ 4xv' + 2v.

X ( 2y 1 axy' +2v) — 4X(X2vl+2xv)+6(X2v) =0.



Second order linear equations.

Example
Knowing that y1(x) = x2 solves x? y” — 4xy’ + 6y = 0, with
x > 0, find a second solution y» not proportional to y;.

Solution: Use the reduction of order method. We verify that
y1= x2 solves the equation,

x?(2) — 4x(2x) +6x* = 0.
Look for a solution y»(x) = v(x) y1(x), and find an equation for v.
o = x2v, V5= X2V + 2xv, vy = x>V 4+ 4xv' + 2v.
X2(x2V" 4+ axv' +2v) — 4x (x*V/ 4 2xv) + 6 (x*v) = 0.

XMW+ (83 — a3)V 4 (2x% — 8x2 +6x%) v = 0.



Second order linear equations.

Example
Knowing that y1(x) = x2 solves x? y” — 4xy’ + 6y = 0, with
x > 0, find a second solution y» not proportional to y;.

Solution: Use the reduction of order method. We verify that
y1= x2 solves the equation,

x?(2) — 4x(2x) +6x* = 0.

Look for a solution y»(x) = v(x) y1(x), and find an equation for v.

Yo =Xx°v, V5 = X2V + 2xv, vy = x2V" + 4xv' + 2v.

X ( 2y 1 axy' +2v) — 4X(X2vl+2xv)+6(X2v) =0.
XMW+ (83 — a3)V 4 (2x% — 8x2 +6x%) v = 0.

V”ZO



Second order linear equations.

Example
Knowing that y1(x) = x2 solves x? y” — 4xy’ + 6y = 0, with
x > 0, find a second solution y» not proportional to y;.

Solution: Use the reduction of order method. We verify that
y1= x2 solves the equation,

x?(2) — 4x(2x) +6x* = 0.

Look for a solution y»(x) = v(x) y1(x), and find an equation for v.

Yo =Xx°v, V5 = X2V + 2xv, vy = x2V" + 4xv' + 2v.

X ( 2y 1 axy' +2v) — 4X(X2vl+2xv)+6(X2v) =0.
XMW+ (83 — a3)V 4 (2x% — 8x2 +6x%) v = 0.

vVi=0 = v=oqc+ ox



Second order linear equations.

Example
Knowing that y1(x) = x2 solves x? y” — 4xy’ + 6y = 0, with
x > 0, find a second solution y» not proportional to y;.

Solution: Use the reduction of order method. We verify that
y1= x2 solves the equation,

x?(2) — 4x(2x) +6x* = 0.

Look for a solution y»(x) = v(x) y1(x), and find an equation for v.

Yo =Xx°v, V5 = X2V + 2xv, vy = x2V" + 4xv' + 2v.

X ( 2y 1 axy' +2v) — 4X(X2vl+2xv)+6(X2v) =0.
XMW+ (83 — a3)V 4 (2x% — 8x2 +6x%) v = 0.

Vi=0 = v=ca+tox = wm=ocy+oxn.



Second order linear equations.

Example
Knowing that y1(x) = x2 solves x? y” — 4xy’ + 6y = 0, with
x > 0, find a second solution y» not proportional to y;.

Solution: Use the reduction of order method. We verify that
y1= x2 solves the equation,

x?(2) — 4x(2x) +6x* = 0.

Look for a solution y»(x) = v(x) y1(x), and find an equation for v.

Yo =Xx°v, V5 = X2V + 2xv, vy = x2V" + 4xv' + 2v.

X2(x2V" 4+ axv' +2v) — 4x (x*V/ 4 2xv) + 6 (x*v) = 0.
X 4 (4x3 = 4x3) vV + (2x° — 8x2 + 6x) v = 0.
Vi=0 = v=ca+tox = wm=ocy+oxn.

Choose ¢ =0, cp = 1.



Second order linear equations.

Example
Knowing that y1(x) = x2 solves x? y” — 4xy’ + 6y = 0, with
x > 0, find a second solution y» not proportional to y;.

Solution: Use the reduction of order method. We verify that
y1= x2 solves the equation,

x?(2) — 4x(2x) +6x* = 0.
Look for a solution y»(x) = v(x) y1(x), and find an equation for v.

Yo =Xx°v, V5 = X2V + 2xv, vy = x2V" + 4xv' + 2v.

X2(x2V" 4+ axv' +2v) — 4x (x*V/ 4 2xv) + 6 (x*v) = 0.
X 4 (4x3 = 4x3) vV + (2x° — 8x2 + 6x) v = 0.
Vi=0 = v=ca+tox = wm=ocy+oxn.

Choose ¢; =0, c; = 1. Hence y»(x) = x3, and y;(x) = x°. <



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: (1) Solve the homogeneous equation.



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: (1) Solve the homogeneous equation.

y(t) =e",



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: (1) Solve the homogeneous equation.

yt)=e", p(r)=r —2r-3



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: (1) Solve the homogeneous equation.

y(t)=e" p(r)=r*-2r-3=0.



Second order linear equations.

Example
Find the solution y to the initial value problem

_ 1
y'=2 =3y =3e" y(0)=1, y(0) =7
Solution: (1) Solve the homogeneous equation.

y(t)=e" p(r)=r*-2r-3=0.

ri:%[2j:\/4+12]



Second order linear equations.

Example
Find the solution y to the initial value problem

_ 1
y'=2 =3y =3e" y(0)=1, y(0) =7
Solution: (1) Solve the homogeneous equation.

y(t)=e" p(r)=r*-2r-3=0.

ri:%[2j:\/4—l—12] :%[ux/ﬁ]



Second order linear equations.

Example
Find the solution y to the initial value problem

_ 1
y'=2 =3y =3e" y(0)=1, y(0) =7
Solution: (1) Solve the homogeneous equation.

y(t)=e" p(r)=r*-2r-3=0.

ri:%[2j:\/4+12] :%[21@] =142



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: (1) Solve the homogeneous equation.

y(t)=e" p(r)=r*-2r-3=0.

r— =-1.

ri:%[2j:\/4+12] :%[21@] =1+2 = {r+:



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: (1) Solve the homogeneous equation.

y(t)=e" p(r)=r*-2r-3=0.

r— =-1.

ri:%[2j:\/4+12] :%[21@] =1+2 = {r+:

Fundamental solutions: yi(t) = €3t and y(t) = e L.



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: (1) Solve the homogeneous equation.
y(t)=e" p(r)=r*-2r-3=0.

r— =-1.

ri:%[2j:\/4+12] :%[21@] =1+2 = {r+:

3t t

Fundamental solutions: y;(t) = e’ and ys(t) = e~

(2) Guess yp.



Second order linear equations.

Example
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1
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Solution: (1) Solve the homogeneous equation.
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Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: (1) Solve the homogeneous equation.

y(t)=e" p(r)=r*-2r-3=0.

r— =-1.

ri:%[2j:\/4+12] :%[21@] =1+2 = {r+:

Fundamental solutions: yi(t) = €3t and y(t) = e L.

(2) Guess y,. Since g(t)=3e™ " = y,(t)=ke "

But this y, = ket is solution of the homogeneous equation.

Then propose y,(t) = kte™".
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1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: Recall: y,(t) = kte™". This is correct, since te"* is not
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Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: Recall: y,(t) = kte™". This is correct, since te"* is not
solution of the homogeneous equation.

(3) Find the undetermined coefficient k.
yl’, =ke ' —kte t, y,’)’ = 2ke ' kte l.

(—2ke "+ kte ') —2(ke t—kte ') —3(kte F)=3e "

(—2+t—2+2t—-3t)ke ' =3e "' = —4k=3 = k:%,



Second order linear equations.

Example
Find the solution y to the initial value problem
1
y'=2 =3y =3e" y(0)=1, y(0)=7.

Solution: Recall: y,(t) = kte™". This is correct, since te"* is not
solution of the homogeneous equation.

(3) Find the undetermined coefficient k.
yl’, =ke ' —kte t, y,’)’ = 2ke ' kte l.
(—2ke "+ kte ') —2(ke t—kte ') —3(kte F)=3e "
(—2+t—2+2t—3t)ke '=3e ' = —4k=3 = k:—§

We obtain: y,(t) = —Zte*t.
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Example

Find the solution y to the initial value problem
1
y'=2y =3y =3e", y(0) =1, y(0)=7.

Solution: Recall: y,(t) = —§te_t.

4
. : 3
(4) Find the general solution: y(t) =c e + e f — ite*t.
(5) Impose the initial conditions. The derivative function is

3
y(t)=3c e —cet - Z(e_t —te t).

1=y(0)=c + c,
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Find the solution y to the initial value problem
1
y'=2y =3y =3e", y(0) =1, y(0)=7.

Solution: Recall: y,(t) = —§te_t.

4
. : 3
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(5) Impose the initial conditions. The derivative function is

3
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1
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Second order linear equations.

Example

Find the solution y to the initial value problem
1
y'=2y =3y =3e", y(0) =1, y(0)=7.

3
Solution: Recall: y,(t) = —Zte_t.

3
- z t eit.
(5) Impose the initial conditions. The derivative function is

3
y(t)=3c e —cet - Z(e_t —te t).

(4) Find the general solution: y(t) =ci e’ + e’

1 3
1=y(0)=c + o, Z:y'(O):3q—c2—Z.



Second order linear equations.

Example

Find the solution y to the initial value problem
1
y'=2y =3y =3e", y(0) =1, y(0)=7.

Solution: Recall: y,(t) = —§te_t.

4

t t

3
- z te .
(5) Impose the initial conditions. The derivative function is

3
y(t)=3c e —cet - Z(e_t —te t).

(4) Find the general solution: y(t) =c e + e

1 3
1=y(0)=c + o, Z:y'(O):3q—c2—f.

4
at+ca=1,
31—C2:1



Second order linear equations.

Example

Find the solution y to the initial value problem
y'=2y'=3y=3e"f, y(0)=1 y'(0)=-

Solution: Recall: y,(t) = —Zte_t.

3
(4) Find the general solution: y(t) =ci e + et~ "te "

4
(5) Impose the initial conditions. The derivative function is

y(t)=3c e —cet - %(e‘t —te t).
1 3
1=y(0) =a+e, )’(0)_361—C2—Z-

srem -]
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Example
Find the solution y to the initial value problem

y' =2y =3y =3¢t y(0)=1, y'(0)=

t t

. 3
Solution: Recall: y(t)=c e + et — Zte* , and
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Example
Find the solution y to the initial value problem

1
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Solution: Recall: y(t)=c e + et — Zte* , and

2l fe)=0 - 3= A



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y' =2y =3y =3¢t y(0)=1, y'(0)= T
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Second order linear equations.

Example
Find the solution y to the initial value problem

1
y' =2y =3y =3¢t y(0)=1, y'(0)= T

t t

. 3
Solution: Recall: y(t)=c e + et — Zte* , and

A= =S A=l

1
Since ¢; = 5 and ¢ = 5



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y' =2y =3y =3¢t y(0)=1, y'(0)= T

t t

. 3
Solution: Recall: y(t)=c e + et — Zte* , and

1 1] [a] 1 al 1 [-1 1] [1] _1]2
3 —1 |e| |1 ol =4 |-3 1] |1 4 |2
Since ¢ — = and ¢ — ~, we obtai
|ncec1—2an cz—2,weo ain,

(e3t + e_t) — %te‘t. 4

N —

y(t) =



Review for Final Exam.

Fourier Series expansions (Chptr.6).
Eigenvalue-Eigenfunction BVP (Chptr. 6).
Systems of linear Equations (Chptr. 5).
Laplace transforms (Chptr. 4).

Power Series Methods (Chptr. 3).

Second order linear equations (Chptr. 2).

vV vV vV V. VvV Vv Y

First order differential equations (Chptr. 1).
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First order differential equations.

Summary:
» Linear, first order equations: y’ + p(t)y = q(t).
Use the integrating factor method: p(t) = e/ P(D)dt.
/

y'=g(t).
Integrate with the substitution: v = y(t), du = y'(t) dt,

that is,
/h(u) du = /g(t) dt + c.

The solution can be found in implicit of explicit form.
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First order differential equations.

Summary:
» Linear, first order equations: y’ + p(t)y = q(t).
Use the integrating factor method: p(t) = e/ P(D)dt.
/

y'=g(t).
Integrate with the substitution: v = y(t), du = y'(t) dt,

that is,
/h(u) du = /g(t) dt + c.

The solution can be found in implicit of explicit form.

> Separable, non-linear equations: h(y)

» Homogeneous equations can be converted into separable
equations.

» Applications: Modeling problems from Sect. 2.3.
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First order differential equations.

Summary:
» Bernoulli equations: y' + p(t)y = q(t) y", with n € R.

Read page 77 in the textbook, page 11 in the Lecture Notes.

A Bernoulli equation for y can be converted into a linear

equation for v = =

» Exact equations and integrating factors.
N(x,y)y 4+ M(x,y) = 0.
The equation is exact iff OxN = 9, M.

If the equation is exact, then there is a potential function 1,
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First order differential equations.

Summary:
» Bernoulli equations: y' + p(t)y = q(t) y", with n € R.

Read page 77 in the textbook, page 11 in the Lecture Notes.

A Bernoulli equation for y can be converted into a linear

equation for v = =

» Exact equations and integrating factors.
N(x,y)y 4+ M(x,y) = 0.
The equation is exact iff OxN = 9, M.

If the equation is exact, then there is a potential function 1,
such that N =0,¢ and M = 0.



First order differential equations.

Summary:
» Bernoulli equations: y' + p(t)y = q(t) y", with n € R.

Read page 77 in the textbook, page 11 in the Lecture Notes.

A Bernoulli equation for y can be converted into a linear

equation for v = =

» Exact equations and integrating factors.
N(x,y)y 4+ M(x,y) = 0.
The equation is exact iff OxN = 9, M.

If the equation is exact, then there is a potential function 1,
such that N =0,¢ and M = 0.

The solution of the differential equation is

w(x,y(x)) =c.
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First order differential equations.

Advice: In order to find out what type of equation is the one you
have to solve, check from simple types to the more difficult types:

1. Linear equations.
(Just by looking at it: y' + a(t)y = b(t).)
2. Bernoulli equations.
(Just by looking at it: y' + a(t)y = b(t) y".)
3. Separable equations.
(Few manipulations: h(y)y’ = g(t).)
4. Homogeneous equations.
(Several manipulations: y' = F(y/t).)
5. Exact equations.
(Check one equation: Ny’ + M =0, and 9;N = 0, M.)

6. Exact equation with integrating factor.
(Very complicated to check.)
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/_X2+X}/+y2 (1/X2) /_1+(§)+(§)2
= 5 = ¥y =—5"
xy (1/x?) (%)

y , l+v+v?
» .

Find all solutions of y’ =

v(x) = = y =

v



First order differential equations.

Example
x? 4+ xy +y?
Xy '
Solution: The sum of the powers in x and y on every term is the
same number, two in this example. The equation is homogeneous.
/_X2+X}/+y2 (1/X2) /_1+(§)+(§)2
= 5 = ¥y =—5"
xy (1/x?) (%)

y , l+v+v?
» .

Find all solutions of y’ =

= y = .



First order differential equations.

Example
x? 4+ xy +y?
Xy '
Solution: The sum of the powers in x and y on every term is the
same number, two in this example. The equation is homogeneous.
/_X2+X}/+y2 (1/X2) /_1+(§)+(§)2
= 5 = ¥y =—5"
xy (1/x?) (%)

y , l+v+v?
» .

Find all solutions of y’ =

= y =



First order differential equations.

Example
x? 4+ xy +y?
Xy '
Solution: The sum of the powers in x and y on every term is the
same number, two in this example. The equation is homogeneous.
/_X2+X}/+y2 (1/X2) /_1+(§)+(§)2
= 5 = ¥y =—5"
xy (1/x?) (%)

y , l+v+v?
» .

Find all solutions of y’ =

v(x) = = y =

v
1+ v+ v2

/ / /
Yy=XV, Yy =XV +V XV +vVv=
v



First order differential equations.

Example
x? 4+ xy +y?
Xy '
Solution: The sum of the powers in x and y on every term is the
same number, two in this example. The equation is homogeneous.

,:x2+xy—i-y2 (1/x?) N ,_1+(§)+(§)2

Find all solutions of y’ =

y_
v (169 6
1 2
V(X):X :> y/:u.
X v
1 2
y =XV, y/:xv/—i—v xv/—l—v:u.
v
, 1+v4v?
XV =——7-——v

v



First order differential equations.

Example
x? 4+ xy +y?
Xy '
Solution: The sum of the powers in x and y on every term is the
same number, two in this example. The equation is homogeneous.
/_X2+X}/+y2 (1/X2) /_1+(§)+(§)2
= 5 = ¥y =—5"
xy (1/x?) (%)

y , l+v+v?
» .

Find all solutions of y’ =

v(x) = = y =

v
1+ v+ v2

/ / /
Yy=XV, Yy =XV +V XV +vVv=
v

, l4v4v2? L+v+v2—v2
vV =

XV = ——— —
v v



First order

Example

differential equations.
2 2
Find all solutions of y/ = ~ Y T ¥~
Xy

Solution:

The sum of the powers in x and y on every term is the

same number, two in this example. The equation is homogeneous.

I

x? 4+ xy + y? (1/x?) I 1+ (£)+ (%)

y_
xy (1/x%) (%)
1 2
V(X):X :> y/:u.
X v
1 2
y =XV, y/:xv/—i—v xv/—l—v:u.
v
1+v4+v? 14 v4v?— 2 , 1+v

"4 14 |4



First order differential equations.

Example
x2 + xy + y2
Xy '

Find all solutions of y' =

1
Solution: Recall: v/ = + V.

v



First order differential equations.

Example
x? + Xy + y2
Xy '

Find all solutions of y' =

. 1+v - .
Solution: Recall: v/ = ~——. This is a separable equation.
v



First order differential equations.

Example
2 2
Find all solutions of y' = M
Xy
1
Solution: Recall: v/ = i This is a separable equation.
v

vx) ey L
1—|—v(x)v(x)_7



First order differential equations.

Example
2 2
Find all solutions of y' = M
Xy
1
Solution: Recall: v/ = i This is a separable equation.

11(:())“)( L /1+v(x (x)dx:/dxx+c.



First order differential equations.

Example
2 2
Find all solutions of y' = M
Xy

1
Solution: Recall: v' = i This is a separable equation.

1_|‘i(:()x)v’(x):1 = /1+(V(X dx—/+c

Use the substitution u =1 + v,



First order differential equations.

Example
2 2
Find all solutions of y' = M
Xy
) , l1+v .. )
Solution: Recall: v/ = ——. This is a separable equation.
v

1_:(:()X)v/(x):)1< = /1+(V(X dx—/+c

Use the substitution u = 1 + v, hence du = v/(x) dx.



First order differential equations.

Example
2 2
Find all solutions of y' = M
Xy
) , l1+v .. )
Solution: Recall: v/ = ——. This is a separable equation.
v

1_:(:()X)v/(x):)1< = /1+(V(X dx—/+c

Use the substitution u = 1 + v, hence du = v/(x) dx.

/(u;l)du:/(ﬁ(—l—c



First order differential equations.

Example
2 2
Find all solutions of y' = M
Xy
) , l1+v .. )
Solution: Recall: v/ = ——. This is a separable equation.
v

1_:(:()X)v/(x):)1< = /1+(V(X dx—/+c

Use the substitution u = 1 + v, hence du = v/(x) dx.

~1 d 1 d
/(u)du:/X—l—c = /(1—)du: Z i
u X u X



First order differential equations.

Example
2 2
Find all solutions of y' = M
Xy
) , l1+v .. )
Solution: Recall: v/ = ——. This is a separable equation.
v

1_:(:()X)v/(x):)1< = /1+(V(X dX—/—i—c

Use the substitution u = 1 + v, hence du = v/(x) dx.

/(“;1)d —/Cﬁ(—l—c = /(l—tl)du: %—FC

u—Inul=In|x|+ ¢



First order differential equations.

Example
2 2
Find all solutions of y' = M
Xy
) , l1+v .. )
Solution: Recall: v/ = ——. This is a separable equation.
v

1_:(:()X)v/(x):)1< = /1+(V(X dX—/—i—c

Use the substitution u = 1 + v, hence du = v/(x) dx.

/(“;1)d —/Cﬁ(—l—c = /(l—tl)du: %—FC

u—Injul=In|x|+¢c = 1+v—In|l+v|=In|x|+c.



First order differential equations.

Example
2 2
Find all solutions of y' = M
Xy
) , l1+v .. )
Solution: Recall: v/ = ——. This is a separable equation.
v

1_|‘i(:()x)v’(x):)1< = /1+(v(x dX—/+c
Use the substitution u = 1 + v, hence du = v/(x) dx.
/(u—l)d _/dx+c = /(1—1>du: %—i-c
u X u X
u—Injul=In|x|+¢c = 1+v—In|l+v|=In|x|+c.

v="*=-
X



First order differential equations.

Example
2 2
Find all solutions of y' = M
Xy

1
Solution: Recall: i This is a separable equation.

1_|‘i(:()x)v’(x)—1 = /1+(V(X dx—/+c

Use the substitution v = 1+ v, hence du = v/(x) dx
dx

/(u_l)du:/Cﬁ(—l—c = /(l—tl)du: Tt

u
l1+v—In|l4+v|=In|x|+c.

u—Injul=In|x|+c =

AN 1+M—In’1+
X

v="*=-
X

M':In|x]—|—c.



First order differential equations.

Example
Find the solution y to the initial value problem
1

Y +y+eXy =0,  y(0)= 3



First order differential equations.

Example
Find the solution y to the initial value problem
1

Y +y+eXy =0,  y(0)= 3

Solution: This is a Bernoulli equation,



First order differential equations.

Example
Find the solution y to the initial value problem
1

Y +y+eXy =0,  y(0)= 3

2x ,n

Solution: This is a Bernoulli equation, y' +y = —e*y",



First order differential equations.

Example
Find the solution y to the initial value problem
1

Y +y+eXy =0,  y(0)= 3

Solution: This is a Bernoulli equation, y’ +y = —e>y", n=3.



First order differential equations.

Example
Find the solution y to the initial value problem
1

Y +y+eXy =0,  y(0)= 3

Solution: This is a Bernoulli equation, y’ +y = —e>y", n=3.

Divide by y3.



First order differential equations.

Example
Find the solution y to the initial value problem
1

Y +y+eXy =0,  y(0)= 3

Solution: This is a Bernoulli equation, y’ +y = —e>y", n=3.
' 1 2x

Divide by y. Thatis, 25 + — = —e
y y



First order differential equations.

Example
Find the solution y to the initial value problem
1

Y +y+eXy =0,  y(0)= 3

Solution: This is a Bernoulli equation, y’ +y = —e>y", n=3.
' 1 2x

Divide by y. Thatis, 25 + — = —e
y y

1
Let V:72.
y



First order differential equations.

Example
Find the solution y to the initial value problem
1

Y +y+eXy =0,  y(0)= 3

Solution: This is a Bernoulli equation, y’ +y = —e>y", n=3.

y' o1
Divide by y3. Thatis, 25 + — = —e™.
y: oy
1 /
Let v = —. Since vi= —2y—3,
y y



First order differential equations.

Example
Find the solution y to the initial value problem

} 1
Y +y+ey*=0, y(0) =3

Solution: This is a Bernoulli equation, y’ +y = —e>y", n=3.
y 1

Divide by y3. Thatis, 25 + — = —e™.
y y

/

1 . .
Let v = —. Since v = —22_ e obtain
y

y3



First order differential equations.

Example
Find the solution y to the initial value problem

1
Y +y+eXy =0,  y(0)= 3

Solution: This is a Bernoulli equation, y’ +y = —e>y", n=3.

y' 1
Divide by y3. Thatis, 25 + — = —e™.
y y

1 . / y/ . 1 / 2x
Let v = —- Since v' = —2—3, we obtain —— v’ + v = —e“*.
y y 2



First order differential equations.

Example
Find the solution y to the initial value problem
1

Y +y+eXy =0,  y(0)= 3

Solution: This is a Bernoulli equation, y’ +y = —e>y", n=3.

!
1
Divide by y3. Thatis, 25 + — = —e>*.
y y
1 ! . 1
Let v = —. Since vi= —2y—3, we obtain —= v/ + v = —e?*.
y y 2

We obtain the linear equation v/ — 2v = 2e?*.



First order differential equations.

Example
Find the solution y to the initial value problem
1

Y +y+eXy =0,  y(0)= 3

Solution: This is a Bernoulli equation, y’ +y = —e>y", n=3.

y' 1
Divide by y3. Thatis, 25 + — = —e™.
y y
1 ! . 1
Let v = —. Since vi= —2y—3, we obtain —= v/ + v = —e?*.
y y

We obtain the linear equation v/ — 2v = 2e?*.

Use the integrating factor method.



First order differential equations.

Example
Find the solution y to the initial value problem
1

Y +y+eXy =0,  y(0)= 3

Solution: This is a Bernoulli equation, y’ +y = —e>y", n=3.

y' 1
Divide by y3. Thatis, 25 + — = —e™.
y y
1 ! . 1
Let v = —. Since vi= —2y—3, we obtain —= v/ + v = —e?*.
y y

We obtain the linear equation v/ — 2v = 2e?*.

Use the integrating factor method. pu(x) = e™2x.



First order differential equations.

Example
Find the solution y to the initial value problem

Y +y+e¥y =0,  y(0)==.

Solution: This is a Bernoulli equation, y’ +y = —e>y", n=3.

y' 1
Divide by y3. Thatis, 25 + — = —e™.
y y
1 ! . 1
Let v = —. Since vi= —2y—3, we obtain —= v/ + v = —e?*.
y y

We obtain the linear equation v/ — 2v = 2&**
Use the integrating factor method. pu(x) = e™2x.

e Xy —2e Xy =2



First order differential equations.

Example
Find the solution y to the initial value problem

Y +y+e¥y =0,  y(0)==.

Solution: This is a Bernoulli equation, y’ +y = —e>y", n=3.

y' 1
Divide by y3. Thatis, 25 + — = —e™.
y y
1 ! . 1
Let v = —. Since vi= —2y—3, we obtain —= v/ + v = —e?*.
y y

We obtain the linear equation v/ — 2v = 2&**
Use the integrating factor method. pu(x) = e™2x.

eV —2e>v=2 = (ev) =2



First order differential equations.

Example
Find the solution y to the initial value problem

Y +y+e¥y*=0, y(0) =3

1
Solution: Recall: v = — and (e’zx v)/ =2.
y



First order differential equations.

Example
Find the solution y to the initial value problem

Y +y+e¥y?=0, y(0) =3
) 1 Cox N/
Solution: Recall: v = — and (e v) = 2.

y2

e XXy =2x4+c



First order differential equations.

Example
Find the solution y to the initial value problem

Y +y+e¥y*=0, y(0) =3

1
Solution: Recall: v = — and (e’2X v)/ =2.
y

e >v=2x+c = v(x)=(2x+c)e>



First order differential equations.

Example
Find the solution y to the initial value problem

Y +y+e¥y*=0,  y(0)=:.

1
Solution: Recall: v = — and (e’2X v)/ =2.
y

1
e >v=2x+c = v(x)=(2x+c)e¥ = ?:(2x+c)e2x.



First order differential equations.

Example
Find the solution y to the initial value problem

Y +y+e¥y*=0,  y(0)=:.

1
Solution: Recall: v = — and (e’2X v)/ =2.
y

1
e >v=2x+c = v(x)=(2x+c)e¥ = ?:(2x+c)e2x.

2 1
Y= e2x (2x + ¢)



First order differential equations.

Example
Find the solution y to the initial value problem

Y +y+e¥y*=0,  y(0)=:.

1
Solution: Recall: v = — and (e’2X v)/ =2.
y

1
e >v=2x+c = v(x)=(2x+c)e¥ = ?:(2x+c)e2x.

—X
2 1 e

= = e
YT e (2x + ¢) y2(x) V2x+ ¢



First order differential equations.

Example
Find the solution y to the initial value problem

Y +y+e¥y*=0,  y(0)=:.

1
Solution: Recall: v = — and (e’2X v)/ =2.
y

1
e >v=2x+c = v(x)=(2x+c)e¥ = o (2x + ¢) e*.
1 e
2
= = SR
YT e (2x + ¢) y2(x) V2x+ ¢
The initial condition y(0) = 1/3



First order differential equations.

Example
Find the solution y to the initial value problem

Y +y+e¥y*=0,  y(0)=:.

1
Solution: Recall: v = — and (e’2X v)/ =2.
y

1
e >v=2x+c = v(x)=(2x+c)e¥ = o (2x + ¢) e*.
1 e
2
= = SR
YT e (2x + ¢) y2(x) V2x+ ¢
The initial condition y(0) =1/3>0



First order differential equations.

Example
Find the solution y to the initial value problem

Y +y+e¥y*=0,  y(0)=:.

1
Solution: Recall: v = — and (e’2X v)/ =2.
y

1
e >v=2x+c = v(x)=(2x+c)e¥ = ?:(2x+c)e2x.

—X
2 1 e

=— = =t
YT e (2x + ¢) y2(x) V2x+ ¢
The initial condition y(0) = 1/3 > 0 implies:



First order differential equations.

Example
Find the solution y to the initial value problem

Y +y+e¥y*=0,  y(0)=:.

1
Solution: Recall: v = — and (e’2X v)/ =2.
y

1
e >v=2x+c = v(x)=(2x+c)e¥ = —2:(2x+c)e2x.
y

—X
2 1 e

= = e
YT e (2x + ¢) y2(x) V2x+ ¢

The initial condition y(0) = 1/3 > 0 implies: Choose y; .



First order differential equations.

Example
Find the solution y to the initial value problem
Y +y+e>y’=0,  y(0)=z.
. 1 ok
Solution: Recall: v = — and (e v) =2.
y
1
e >v=2x+c = v(x)=(2x+c)e¥ = o (2x + ¢) e*.
1 e~
2
- = S
YT e (2x + ¢) y2(x) V2x+ ¢
The initial condition y(0) = 1/3 > 0 implies: Choose y; .
1

5 =y+(0) =

1
3 Ve



First order differential equations.

Example
Find the solution y to the initial value problem
Y +y+e>y’=0,  y(0)=z.
. 1 ok
Solution: Recall: v = — and (e v) =2.
y
1
e >v=2x+c = v(x)=(2x+c)e¥ = o (2x + ¢) e*.
1 e~
2
- = S
YT e (2x + ¢) y2(x) V2x+ ¢
The initial condition y(0) = 1/3 > 0 implies: Choose y; .
1

5 =y+(0) =

3 = c¢c=9

1
NG



First order differential equations.

Example
Find the solution y to the initial value problem

Y +y+e¥y*=0,  y(0)=:.

1
Solution: Recall: v= — and (e *v) =2.
y
1
e >v=2x+c = v(x)=(2x+c)e¥ = o (2x + ¢) e*.
1 e
2
=" = S
YT e (2x + ¢) y2(x) V2x+ ¢
The initial condition y(0) = 1/3 > 0 implies: Choose y; .
1

3 = y+(0) =

X

o
= = .
y(x) 2x+9 <

= c¢c=9

1
NG



First order differential equations.

Example
Find all solutions of 2xy? + 2y + 2x%y y’ 4+ 2xy’ = 0.



First order differential equations.

Example
Find all solutions of 2xy? + 2y + 2x%y y’ 4+ 2xy’ = 0.

Solution: Re-write the equation is a more organized way,



First order differential equations.

Example
Find all solutions of 2xy? + 2y + 2x%y y’ 4+ 2xy’ = 0.

Solution: Re-write the equation is a more organized way,

[2x%y 4 2x]y’ + [2xy* + 2y] = 0.



First order differential equations.

Example
Find all solutions of 2xy? + 2y + 2x%y y’ 4+ 2xy’ = 0.

Solution: Re-write the equation is a more organized way,

[2x%y 4 2x]y’ + [2xy* + 2y] = 0.

N = [2x%y + 2x]



First order differential equations.

Example
Find all solutions of 2xy? + 2y + 2x%y y’ 4+ 2xy’ = 0.

Solution: Re-write the equation is a more organized way,

[2x%y 4 2x]y’ + [2xy* + 2y] = 0.

N=[2x%y+2x] = 0N =4dxy+2.



First order differential equations.

Example
Find all solutions of 2xy? + 2y + 2x%y y’ 4+ 2xy’ = 0.

Solution: Re-write the equation is a more organized way,
[2x%y 4 2x]y’ + [2xy* + 2y] = 0.

N=[2x%y+2x] = 0N =4dxy+2.
M = [2xy? + 2y]



First order differential equations.

Example
Find all solutions of 2xy? + 2y + 2x%y y’ 4+ 2xy’ = 0.

Solution: Re-write the equation is a more organized way,
[2x%y 4 2x]y’ + [2xy* + 2y] = 0.

N=[2x%y+2x] = 0N =4dxy+2.
M=[2xy?+2y] = OyM = 4xy + 2.



First order differential equations.
Example
Find all solutions of 2xy? + 2y + 2x%y y' 4+ 2xy’ = 0.
Solution: Re-write the equation is a more organized way,
[2x%y 4 2x]y’ + [2xy* + 2y] = 0.
N=[2x%y+2x] = 0N =4dxy+2.

) = 0N =9,M.
M =[2xy“+2y] = 0O,M=4xy+2.



First order differential equations.

Example
Find all solutions of 2xy? + 2y + 2x%y y’ 4+ 2xy’ = 0.

Solution: Re-write the equation is a more organized way,
[2x%y 4 2x]y’ + [2xy* + 2y] = 0.

N=[2x%y+2x] = 0N =4dxy+2.

) = 0N =9,M.
M =[2xy“+2y] = 0O,M=4xy+2.

The equation is exact.



First order differential equations.

Example
Find all solutions of 2xy? + 2y + 2x%y y’ 4+ 2xy’ = 0.

Solution: Re-write the equation is a more organized way,
[2x%y 4 2x]y’ + [2xy* + 2y] = 0.

N=[2x%y+2x] = 0N =4dxy+2.

) = 0N =9,M.
M =[2xy“+2y] = 0O,M=4xy+2.

The equation is exact. There exists a potential function v with



First order differential equations.
Example
Find all solutions of 2xy? + 2y + 2x%y y' 4+ 2xy’ = 0.
Solution: Re-write the equation is a more organized way,
[2x%y 4 2x]y’ + [2xy* + 2y] = 0.
N=[2x%y+2x] = 0N =4dxy+2.

) = 0N =9,M.
M =[2xy“+2y] = 0O,M=4xy+2.

The equation is exact. There exists a potential function v with

Oyp =N,



First order differential equations.
Example
Find all solutions of 2xy? + 2y + 2x%y y' 4+ 2xy’ = 0.
Solution: Re-write the equation is a more organized way,
[2x%y 4 2x]y’ + [2xy* + 2y] = 0.
N=[2x%y+2x] = 0N =4dxy+2.

) = 0N =9,M.
M =[2xy“+2y] = 0O,M=4xy+2.

The equation is exact. There exists a potential function v with

Oyp =N, Oy = M.



First order differential equations.

Example
Find all solutions of 2xy? + 2y + 2x%y y’ 4+ 2xy’ = 0.

Solution: Re-write the equation is a more organized way,
[2x%y 4 2x]y’ + [2xy* + 2y] = 0.

N=[2x%y+2x] = 0N =4dxy+2.

) = 0N =9,M.
M =[2xy“+2y] = 0O,M=4xy+2.

The equation is exact. There exists a potential function v with

Oyp =N, Oy = M.

o) = 2x%y + 2x



First order differential equations.

Example
Find all solutions of 2xy? + 2y + 2x%y y’ 4+ 2xy’ = 0.

Solution: Re-write the equation is a more organized way,
[2x%y 4 2x]y’ + [2xy* + 2y] = 0.

N=[2x%y+2x] = 0N =4dxy+2.

) = 0N =9,M.
M =[2xy“+2y] = 0O,M=4xy+2.

The equation is exact. There exists a potential function v with

Oyp =N, Oy = M.

O =2y +2x = P(x,y) = xy? +2xy + g(x).



First order differential equations.

Example
Find all solutions of 2xy? + 2y + 2x%y y’ 4+ 2xy’ = 0.

Solution: Re-write the equation is a more organized way,

[2x%y 4 2x]y’ + [2xy* + 2y] = 0.

N=[2x%y+2x] = 0N =4dxy+2.

) = 0N =9,M.
M =[2xy“+2y] = 0O,M=4xy+2.

The equation is exact. There exists a potential function v with

ob =N, S =M.
O =2y +2x = P(x,y) = xy? +2xy + g(x).

2xy? + 2y + g'(x) = Okt



First order differential equations.

Example
Find all solutions of 2xy? + 2y + 2x%y y’ 4+ 2xy’ = 0.

Solution: Re-write the equation is a more organized way,

[2x%y 4 2x]y’ + [2xy* + 2y] = 0.

N=[2x%y+2x] = 0N =4dxy+2.

) = 0N =9,M.
M =[2xy“+2y] = 0O,M=4xy+2.

The equation is exact. There exists a potential function v with

ob =N, S =M.
O =2y +2x = P(x,y) = xy? +2xy + g(x).

22 +2y +8'(x) = =M



First order differential equations.

Example
Find all solutions of 2xy? + 2y + 2x%y y’ 4+ 2xy’ = 0.

Solution: Re-write the equation is a more organized way,

[2x%y 4 2x]y’ + [2xy* + 2y] = 0.

N=[2x%y+2x] = 0N =4dxy+2.

) = 0N =9,M.
M =[2xy“+2y] = 0O,M=4xy+2.

The equation is exact. There exists a potential function v with

ob =N, S =M.
O =2y +2x = P(x,y) = xy? +2xy + g(x).

2xy° + 2y + g'(x) = O = M = 2xy* + 2y



First order differential equations.

Example
Find all solutions of 2xy? + 2y + 2x%y y’ 4+ 2xy’ = 0.

Solution: Re-write the equation is a more organized way,

[2x%y 4 2x]y’ + [2xy* + 2y] = 0.

N=[2x%y+2x] = 0N =4dxy+2.

) = 0N =9,M.
M =[2xy“+2y] = 0O,M=4xy+2.

The equation is exact. There exists a potential function v with

ob =N, S =M.
O =2y +2x = P(x,y) = xy? +2xy + g(x).

2xy? + 2y + g'(x) = Oyth = M =2xy°> + 2y = g'(x) =0.



First order differential equations.

Example
Find all solutions of 2xy? + 2y + 2x%y y’ 4+ 2xy’ = 0.

Solution: Re-write the equation is a more organized way,

[2x%y 4 2x]y’ + [2xy* + 2y] = 0.

N=[2x%y+2x] = 0N =4dxy+2.

) = 0N =9,M.
M =[2xy“+2y] = 0O,M=4xy+2.

The equation is exact. There exists a potential function v with

Oyp =N, Oy = M.
Oyp = 2X2y +2x = Y(xy)= X2y2 + 2xy + g(x).
2xy? + 2y + g'(x) = Oyth = M =2xy°> + 2y = g'(x) =0.

U(x,y) = x°y* +2xy +c,



First order differential equations.

Example
Find all solutions of 2xy? + 2y + 2x%y y’ 4+ 2xy’ = 0.

Solution: Re-write the equation is a more organized way,

[2x%y 4 2x]y’ + [2xy* + 2y] = 0.

N=[2x%y+2x] = 0N =4dxy+2.

) = 0N =9,M.
M =[2xy“+2y] = 0O,M=4xy+2.

The equation is exact. There exists a potential function v with

Oyp =N, Oy = M.
Oyp = 2X2y +2x = Y(xy)= X2y2 + 2xy + g(x).
2xy? + 2y + g'(x) = Oyth = M =2xy°> + 2y = g'(x) =0.

V(x,y) =x2y2+2xy +¢, X2y (x)+2xy(x)+c=0. <



