Boundary Value Problems (Sect. 6.1).

- Two-point BVP.
- Example from physics.
- Comparison: IVP vs BVP.
- Existence, uniqueness of solutions to BVP.
- Particular case of BVP: Eigenvalue-eigenfunction problem.
Two-point Boundary Value Problem.

Definition
A two-point BVP is the following: Given functions p, q, g, and constants $x_1 < x_2$, y_1, y_2, b_1, b_2, \tilde{b}_1, \tilde{b}_2, find a function y solution of the differential equation

$$y'' + p(x) y' + q(x) y = g(x),$$

together with the extra, boundary conditions,

$$b_1 y(x_1) + b_2 y'(x_1) = y_1,$$
$$\tilde{b}_1 y(x_2) + \tilde{b}_2 y'(x_2) = y_2.$$
Two-point Boundary Value Problem.

Definition
A two-point BVP is the following: Given functions p, q, g, and constants $x_1 < x_2$, y_1, y_2, b_1, b_2, \tilde{b}_1, \tilde{b}_2, find a function y solution of the differential equation
$$y'' + p(x)y' + q(x)y = g(x),$$
together with the extra, boundary conditions,
$$b_1 y(x_1) + b_2 y'(x_1) = y_1,$$
$$\tilde{b}_1 y(x_2) + \tilde{b}_2 y'(x_2) = y_2.$$

Remarks:
- Both y and y' might appear in the boundary condition, evaluated at the same point.
Two-point Boundary Value Problem.

Definition
A \textit{two-point BVP} is the following: Given functions \(p, q, g \), and constants \(x_1 < x_2, \ y_1, y_2, \ b_1, b_2, \ \tilde{b}_1, \tilde{b}_2, \) find a function \(y \) solution of the differential equation

\[y'' + p(x) y' + q(x) y = g(x), \]

together with the extra, \textit{boundary conditions},

\[b_1 \ y(x_1) + b_2 \ y'(x_1) = y_1, \]
\[\tilde{b}_1 \ y(x_2) + \tilde{b}_2 \ y'(x_2) = y_2. \]

Remarks:

\begin{itemize}
 \item Both \(y \) and \(y' \) might appear in the boundary condition, evaluated at the same point.
 \item In this notes we only study the case of constant coefficients, \(y'' + a_1 y' + a_0 y = g(x) \).
\end{itemize}
Two-point Boundary Value Problem.

Example

Examples of BVP.
Two-point Boundary Value Problem.

Example

Examples of BVP. Assume $x_1 \neq x_2$.

(1) Find y solution of

$$y'' + a_1 y' + a_0 y = g(x), \quad y(x_1) = y_1, \quad y(x_2) = y_2.$$
Two-point Boundary Value Problem.

Example

Examples of BVP. Assume $x_1 \neq x_2$.

(1) Find y solution of

$$y'' + a_1 y' + a_0 y = g(x), \quad y(x_1) = y_1, \quad y(x_2) = y_2.$$

(2) Find y solution of

$$y'' + a_1 y' + a_0 y = g(x), \quad y'(x_1) = y_1, \quad y'(x_2) = y_2.$$
Two-point Boundary Value Problem.

Example
Examples of BVP. Assume $x_1 \neq x_2$.

(1) Find y solution of

$$y'' + a_1 y' + a_0 y = g(x), \quad y(x_1) = y_1, \quad y(x_2) = y_2.$$

(2) Find y solution of

$$y'' + a_1 y' + a_0 y = g(x), \quad y'(x_1) = y_1, \quad y'(x_2) = y_2.$$

(3) Find y solution of

$$y'' + a_1 y' + a_0 y = g(x), \quad y(x_1) = y_1, \quad y'(x_2) = y_2.$$
Boundary Value Problems (Sect. 6.1).

- Two-point BVP.
- **Example from physics.**
- Comparison: IVP vs BVP.
- Existence, uniqueness of solutions to BVP.
- Particular case of BVP: Eigenvalue-eigenfunction problem.
Example from physics.

Problem: The equilibrium (time independent) temperature of a bar of length L with insulated horizontal sides and the bar vertical extremes kept at fixed temperatures T_0, T_L is the solution of the BVP:

$$T''(x) = 0, \quad x \in (0, L), \quad T(0) = T_0, \quad T(L) = T_L,$$
Example from physics.

Problem: The equilibrium (time independent) temperature of a bar of length L with insulated horizontal sides and the bar vertical extremes kept at fixed temperatures T_0, T_L is the solution of the BVP:

$$T''(x) = 0, \quad x \in (0, L), \quad T(0) = T_0, \quad T(L) = T_L,$$
Boundary Value Problems (Sect. 6.1).

- Two-point BVP.
- Example from physics.
- **Comparison: IVP vs BVP.**
- Existence, uniqueness of solutions to BVP.
- Particular case of BVP: Eigenvalue-eigenfunction problem.
Comparison: IVP vs BVP.

Review: IVP:
Find the function values $y(t)$ solutions of the differential equation

$$y'' + a_1 y' + a_0 y = g(t),$$

together with the initial conditions

$$y(t_0) = y_1, \quad y'(t_0) = y_2.$$
Comparison: IVP vs BVP.

Review: IVP:
Find the function values $y(t)$ solutions of the differential equation

$$y'' + a_1 y' + a_0 y = g(t),$$

together with the initial conditions

$$y(t_0) = y_1, \quad y'(t_0) = y_2.$$

Remark: In physics:
- $y(t)$: Position at time t.
Comparison: IVP vs BVP.

Review: IVP:
Find the function values $y(t)$ solutions of the differential equation

$$y'' + a_1 y' + a_0 y = g(t),$$

together with the initial conditions

$$y(t_0) = y_1, \quad y'(t_0) = y_2.$$

Remark: In physics:

- $y(t)$: Position at time t.
- Initial conditions: Position and velocity at the initial time t_0.
Comparison: IVP vs BVP.

Review: BVP:
Find the function values \(y(x) \) solutions of the differential equation
\[
y'' + a_1 y' + a_0 y = g(x),
\]
together with the initial conditions
\[
y(x_1) = y_1, \quad y(x_2) = y_2.
\]
Comparison: IVP vs BVP.

Review: BVP:
Find the function values \(y(x) \) solutions of the differential equation
\[
y'' + a_1 y' + a_0 y = g(x),
\]
together with the initial conditions
\[
y(x_1) = y_1, \quad y(x_2) = y_2.
\]

Remark: In physics:
- \(y(x) \): A physical quantity (temperature) at a position \(x \).
Comparison: IVP vs BVP.

Review: BVP:
Find the function values $y(x)$ solutions of the differential equation

$$y'' + a_1 y' + a_0 y = g(x),$$

together with the initial conditions

$$y(x_1) = y_1, \quad y(x_2) = y_2.$$

Remark: In physics:

- $y(x)$: A physical quantity (temperature) at a position x.
- **Boundary conditions**: Conditions at the boundary of the object under study, where $x_1 \neq x_2$.
Boundary Value Problems (Sect. 6.1).

- Two-point BVP.
- Example from physics.
- Comparison: IVP vs BVP.
- **Existence, uniqueness of solutions to BVP.**
- Particular case of BVP: Eigenvalue-eigenfunction problem.
Existence, uniqueness of solutions to BVP.

Review: The initial value problem.

Theorem (IVP)
Consider the homogeneous initial value problem:

\[y'' + a_1 y' + a_0 y = 0, \quad y(t_0) = y_0, \quad y'(t_0) = y_1, \]

and let \(r_{\pm} \) be the roots of the characteristic polynomial

\[p(r) = r^2 + a_1 r + a_0. \]

If \(r_+ \neq r_- \), real or complex, then for every choice of \(y_0, y_1 \), there exists a unique solution \(y \) to the initial value problem above.
Existence, uniqueness of solutions to BVP.

Review: The initial value problem.

Theorem (IVP)

Consider the homogeneous initial value problem:

\[
y'' + a_1 y' + a_0 y = 0, \quad y(t_0) = y_0, \quad y'(t_0) = y_1,
\]

and let \(r_\pm \) be the roots of the characteristic polynomial

\[
p(r) = r^2 + a_1 r + a_0.
\]

If \(r_+ \neq r_- \), real or complex, then for every choice of \(y_0, y_1 \), there exists a unique solution \(y \) to the initial value problem above.

Summary: The IVP above always has a unique solution, no matter what \(y_0 \) and \(y_1 \) we choose.
Existence, uniqueness of solutions to BVP.

Theorem (BVP)
Consider the homogeneous boundary value problem:

\[y'' + a_1 y' + a_0 y = 0, \quad y(0) = y_0, \quad y(L) = y_1, \]

and let \(r_\pm \) be the roots of the characteristic polynomial

\[p(r) = r^2 + a_1 r + a_0. \]

(A) If \(r_+ \neq r_- \), real, then for every choice of \(L \neq 0 \) and \(y_0, y_1 \), there exists a unique solution \(y \) to the BVP above.

(B) If \(r_\pm = \alpha \pm i\beta \), with \(\beta \neq 0 \), and \(\alpha, \beta \in \mathbb{R} \), then the solutions to the BVP above belong to one of these possibilities:

1. There exists a unique solution.
2. There exists no solution.
3. There exist infinitely many solutions.
Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_+ \neq r_-$.

The general solution is

$$y(t) = c_1 e^{r_- t} + c_2 e^{r_+ t},$$

where $c_1, c_2 \in \mathbb{R}$. The initial conditions determine c_1 and c_2 as follows:

$$y(0) = y(t_0) = c_1 e^{r_- t_0} + c_2 e^{r_+ t_0},$$

$$y'(0) = y'(t_0) = c_1 r_- e^{r_- t_0} + c_2 r_+ e^{r_+ t_0}.$$

Using matrix notation,

$$\begin{bmatrix} e^{r_- t_0} & e^{r_+ t_0} \\ r_- e^{r_- t_0} & r_+ e^{r_+ t_0} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y(0) \\ y'(0) \end{bmatrix}.$$

The linear system above has a unique solution c_1 and c_2 for every constants $y(0)$ and $y'(0)$ iff

$$\det(Z) \neq 0,$$

where

$$Z = \begin{bmatrix} e^{r_- t_0} & e^{r_+ t_0} \\ r_- e^{r_- t_0} & r_+ e^{r_+ t_0} \end{bmatrix}.$$
Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_+ \neq r_-$. The general solution is

$$y(t) = c_1 e^{r_- t} + c_2 e^{r_+ t},$$
Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_+ \neq r_-$. The general solution is

$$y(t) = c_1 e^{r_- t} + c_2 e^{r_+ t}, \quad c_1, c_2 \in \mathbb{R}.$$
Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_+ \neq r_-$. The general solution is

$$y(t) = c_1 e^{r_- t} + c_2 e^{r_+ t}, \quad c_1, c_2 \in \mathbb{R}.$$

The initial conditions determine c_1 and c_2.

Using matrix notation,

$$
\begin{bmatrix}
 e^{r_- t_0} & e^{r_+ t_0} \\
 r_- e^{r_- t_0} & r_+ e^{r_+ t_0}
\end{bmatrix}
\begin{bmatrix}
 c_1 \\
 c_2
\end{bmatrix}
=
\begin{bmatrix}
 y_0 \\
 y_1
\end{bmatrix}.
$$

The linear system above has a unique solution c_1 and c_2 for every constants y_0 and y_1 if

$$\text{det}(Z) \neq 0,$

where

$$Z = \begin{bmatrix}
 e^{r_- t_0} & e^{r_+ t_0} \\
 r_- e^{r_- t_0} & r_+ e^{r_+ t_0}
\end{bmatrix}.$$
Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_+ \neq r_-$. The general solution is

$$y(t) = c_1 e^{r_- t} + c_2 e^{r_+ t}, \quad c_1, c_2 \in \mathbb{R}.$$

The initial conditions determine c_1 and c_2 as follows:

$$y_0 = y(t_0)$$
Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_+ \neq r_-$. The general solution is

$$y(t) = c_1 e^{r_- t} + c_2 e^{r_+ t}, \quad c_1, c_2 \in \mathbb{R}. $$

The initial conditions determine c_1 and c_2 as follows:

$$y_0 = y(t_0) = c_1 e^{r_- t_0} + c_2 e^{r_+ t_0}$$
Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case \(r_+ \neq r_- \). The general solution is

\[
y(t) = c_1 e^{r_- t} + c_2 e^{r_+ t}, \quad c_1, c_2 \in \mathbb{R}.
\]

The initial conditions determine \(c_1 \) and \(c_2 \) as follows:

\[
y_0 = y(t_0) = c_1 e^{r_- t_0} + c_2 e^{r_+ t_0}
\]

\[
y_1 = y'(t_0)
\]
Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case \(r_+ \neq r_- \). The general solution is

\[
y(t) = c_1 e^{r_- t} + c_2 e^{r_+ t}, \quad c_1, c_2 \in \mathbb{R}.
\]

The initial conditions determine \(c_1 \) and \(c_2 \) as follows:

\[
y_0 = y(t_0) = c_1 e^{r_- t_0} + c_2 e^{r_+ t_0}
\]
\[
y_1 = y'(t_0) = c_1 r_- e^{r_- t_0} + c_2 r_+ e^{r_+ t_0}
\]
Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_+ \neq r_-$. The general solution is

$$y(t) = c_1 e^{r_- t} + c_2 e^{r_+ t}, \quad c_1, c_2 \in \mathbb{R}.$$

The initial conditions determine c_1 and c_2 as follows:

$$y_0 = y(t_0) = c_1 e^{r_- t_0} + c_2 e^{r_+ t_0}$$

$$y_1 = y'(t_0) = c_1 r_- e^{r_- t_0} + c_2 r_+ e^{r_+ t_0}$$

Using matrix notation,

$$\begin{bmatrix} e^{r_- t_0} & e^{r_+ t_0} \\ r_- e^{r_- t_0} & r_+ e^{r_+ t_0} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}.$$
Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_+ \neq r_-$. The general solution is

$$y(t) = c_1 e^{r_- t} + c_2 e^{r_+ t}, \quad c_1, c_2 \in \mathbb{R}.$$

The initial conditions determine c_1 and c_2 as follows:

$$y_0 = y(t_0) = c_1 e^{r_- t_0} + c_2 e^{r_+ t_0}$$

$$y_1 = y'(t_0) = c_1 r_- e^{r_- t_0} + c_2 r_+ e^{r_+ t_0}$$

Using matrix notation,

$$\begin{bmatrix} e^{r_- t_0} & e^{r_+ t_0} \\ r_- e^{r_- t_0} & r_+ e^{r_+ t_0} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}.$$

The linear system above has a unique solution c_1 and c_2 for every constants y_0 and y_1 iff

$$\det(Z) \neq 0,$$

where

$$Z = \begin{bmatrix} e^{r_- t_0} & e^{r_+ t_0} \\ r_- e^{r_- t_0} & r_+ e^{r_+ t_0} \end{bmatrix}.$$
Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_+ \neq r_-$. The general solution is

$$y(t) = c_1 e^{r^- t} + c_2 e^{r^+ t}, \quad c_1, c_2 \in \mathbb{R}.$$

The initial conditions determine c_1 and c_2 as follows:

$$y_0 = y(t_0) = c_1 e^{r^- t_0} + c_2 e^{r^+ t_0}$$

$$y_1 = y'(t_0) = c_1 r^- e^{r^- t_0} + c_2 r^+ e^{r^+ t_0}$$

Using matrix notation,

$$\begin{bmatrix} e^{r^- t_0} & e^{r^+ t_0} \\
 -r_- e^{r^- t_0} & r_+ e^{r^+ t_0} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}.$$

The linear system above has a unique solution c_1 and c_2 for every constants y_0 and y_1 iff the $\text{det}(Z) \neq 0$,

\Rightarrow $\text{det}(Z) \neq 0$.

Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_+ \neq r_-$. The general solution is

$$y(t) = c_1 e^{r_- t} + c_2 e^{r_+ t}, \quad c_1, c_2 \in \mathbb{R}.$$

The initial conditions determine c_1 and c_2 as follows:

$$y_0 = y(t_0) = c_1 e^{r_- t_0} + c_2 e^{r_+ t_0}$$

$$y_1 = y'(t_0) = c_1 r_- e^{r_- t_0} + c_2 r_+ e^{r_+ t_0}$$

Using matrix notation,

$$\begin{bmatrix} e^{r_- t_0} & e^{r_+ t_0} \\ r_- e^{r_- t_0} & r_+ e^{r_+ t_0} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}.$$

The linear system above has a unique solution c_1 and c_2 for every constants y_0 and y_1 iff the $\det(Z) \neq 0$, where

$$Z = \begin{bmatrix} e^{r_- t_0} & e^{r_+ t_0} \\ r_- e^{r_- t_0} & r_+ e^{r_+ t_0} \end{bmatrix}.$$
Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_+ \neq r_-$. The general solution is

$$y(t) = c_1 e^{r_- t} + c_2 e^{r_+ t}, \quad c_1, c_2 \in \mathbb{R}.$$

The initial conditions determine c_1 and c_2 as follows:

$$y_0 = y(t_0) = c_1 e^{r_- t_0} + c_2 e^{r_+ t_0}$$

$$y_1 = y'(t_0) = c_1 r_- e^{r_- t_0} + c_2 r_+ e^{r_+ t_0}$$

Using matrix notation,

$$\begin{bmatrix} e^{r_- t_0} & e^{r_+ t_0} \\ r_- e^{r_- t_0} & r_+ e^{r_+ t_0} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}.$$

The linear system above has a unique solution c_1 and c_2 for every constants y_0 and y_1 iff the $\det(Z) \neq 0$, where

$$Z = \begin{bmatrix} e^{r_- t_0} & e^{r_+ t_0} \\ r_- e^{r_- t_0} & r_+ e^{r_+ t_0} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}.$$
Existence, uniqueness of solutions to BVP.

Proof of IVP:

Recall: \[Z = \begin{bmatrix} e^{r_- t_0} & e^{r_+ t_0} \\ r_- e^{r_- t_0} & r_+ e^{r_+ t_0} \end{bmatrix} \implies Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}. \]
Existence, uniqueness of solutions to BVP.

Proof of IVP:

Recall: \[Z = \begin{bmatrix} e^{r_+ t_0} & e^{r_- t_0} \\ r_- e^{r_- t_0} & r_+ e^{r_+ t_0} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}. \]

A simple calculation shows

\[\det(Z) = (r_+ - r_-) e^{(r_+ + r_-) t_0} \]
Existence, uniqueness of solutions to BVP.

Proof of IVP:
Recall: \[Z = \begin{bmatrix} e^{r_- t_0} & e^{r_+ t_0} \\ r_- e^{r_- t_0} & r_+ e^{r_+ t_0} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}. \]

A simple calculation shows

\[\det(Z) = (r_+ - r_-) e^{(r_+ + r_-) t_0} \neq 0 \iff r_+ \neq r_- . \]
Existence, uniqueness of solutions to BVP.

Proof of IVP:
Recall: \(Z = \begin{bmatrix} e^{r_- t_0} & e^{r_+ t_0} \\
 r_- e^{r_- t_0} & r_+ e^{r_+ t_0} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}. \)

A simple calculation shows

\[
\det(Z) = (r_+ - r_-) e^{(r_+ + r_-) t_0} \neq 0 \iff r_+ \neq r_-.
\]

Since \(r_+ \neq r_- \), the matrix \(Z \) is invertible
Existence, uniqueness of solutions to BVP.

Proof of IVP:
Recall: \[Z = \begin{bmatrix} e^{r_- t_0} & e^{r_+ t_0} \\ r_- e^{r_- t_0} & r_+ e^{r_+ t_0} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}. \]

A simple calculation shows

\[\det(Z) = (r_+ - r_-) e^{(r_+ + r_-) t_0} \neq 0 \iff r_+ \neq r_- . \]

Since \(r_+ \neq r_- \), the matrix \(Z \) is invertible and so

\[\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = Z^{-1} \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}. \]
Existence, uniqueness of solutions to BVP.

Proof of IVP:
Recall: \[Z = \begin{bmatrix} e^{r_- t_0} & e^{r_+ t_0} \\ r_- e^{r_- t_0} & r_+ e^{r_+ t_0} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}. \]

A simple calculation shows
\[
\det(Z) = (r_+ - r_-) e^{(r_+ - r_-) t_0} \neq 0 \iff r_+ \neq r_-.
\]

Since \(r_+ \neq r_- \), the matrix \(Z \) is invertible and so
\[
\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = Z^{-1} \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}.
\]

We conclude that for every choice of \(y_0 \) and \(y_1 \), there exist a unique value of \(c_1 \) and \(c_2 \), so the IVP above has a unique solution. \(\square \)
Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

\[y(x) = c_1 e^{r_+ x} + c_2 e^{r_- x}, \]
Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

\[y(x) = c_1 e^{r_- x} + c_2 e^{r_+ x}, \quad c_1, c_2 \in \mathbb{R}. \]
Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

\[y(x) = c_1 e^{r_- x} + c_2 e^{r_+ x}, \quad c_1, c_2 \in \mathbb{R}. \]

The boundary conditions determine \(c_1 \) and \(c_2 \)
Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

\[y(x) = c_1 e^{r_- x} + c_2 e^{r_+ x}, \quad c_1, c_2 \in \mathbb{R}. \]

The boundary conditions determine \(c_1 \) and \(c_2 \) as follows:

\[y_0 = y(0) \]
Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

\[y(x) = c_1 e^{r_- x} + c_2 e^{r_+ x}, \quad c_1, c_2 \in \mathbb{R}. \]

The boundary conditions determine \(c_1 \) and \(c_2 \) as follows:

\[y_0 = y(0) = c_1 + c_2. \]
Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

\[y(x) = c_1 e^{r_- x} + c_2 e^{r_+ x}, \quad c_1, c_2 \in \mathbb{R}. \]

The boundary conditions determine \(c_1 \) and \(c_2 \) as follows:

\(y_0 = y(0) = c_1 + c_2. \)

\(y_1 = y(L) \)
Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

\[y(x) = c_1 e^{r^- x} + c_2 e^{r^+ x}, \quad c_1, c_2 \in \mathbb{R}. \]

The boundary conditions determine \(c_1 \) and \(c_2 \) as follows:

\[y_0 = y(0) = c_1 + c_2. \]

\[y_1 = y(L) = c_1 e^{r^- L} + c_2 e^{r^+ L} \]
Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

\[y(x) = c_1 e^{r_- x} + c_2 e^{r_+ x}, \quad c_1, c_2 \in \mathbb{R}. \]

The boundary conditions determine \(c_1 \) and \(c_2 \) as follows:

\[y_0 = y(0) = c_1 + c_2. \]

\[y_1 = y(L) = c_1 e^{r_- L} + c_2 e^{r_+ L} \]

Using matrix notation,

\[
\begin{bmatrix}
1 & 1 \\
1 & e^{r_+ L}
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2
\end{bmatrix}
=
\begin{bmatrix}
y_0 \\
y_1
\end{bmatrix}.
\]
Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

\[y(x) = c_1 e^{r_- x} + c_2 e^{r_+ x}, \quad c_1, c_2 \in \mathbb{R}. \]

The boundary conditions determine \(c_1 \) and \(c_2 \) as follows:

\[y_0 = y(0) = c_1 + c_2. \]

\[y_1 = y(L) = c_1 e^{r_- L} + c_2 e^{r_+ L} \]

Using matrix notation,

\[
\begin{bmatrix}
1 & 1 \\
e^{r_- L} & e^{r_+ L}
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2
\end{bmatrix}
= \begin{bmatrix}
y_0 \\
y_1
\end{bmatrix}.
\]

The linear system above has a unique solution \(c_1 \) and \(c_2 \) for every constants \(y_0 \) and \(y_1 \) iff

\[\text{det}(Z) \neq 0, \]

where \(Z = \begin{bmatrix}
1 & 1 \\
e^{r_- L} & e^{r_+ L}
\end{bmatrix} \Rightarrow Z \begin{bmatrix}
c_1 \\
c_2
\end{bmatrix} = \begin{bmatrix}
y_0 \\
y_1
\end{bmatrix}. \]
Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

\[y(x) = c_1 e^{r_- x} + c_2 e^{r_+ x}, \quad c_1, c_2 \in \mathbb{R}. \]

The boundary conditions determine \(c_1 \) and \(c_2 \) as follows:

\[y_0 = y(0) = c_1 + c_2. \]

\[y_1 = y(L) = c_1 e^{r_- L} + c_2 e^{r_+ L} \]

Using matrix notation,

\[
\begin{bmatrix}
1 & 1 \\
e^{r_- L} & e^{r_+ L}
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2
\end{bmatrix}
= \begin{bmatrix}
y_0 \\
y_1
\end{bmatrix}.
\]

The linear system above has a unique solution \(c_1 \) and \(c_2 \) for every constants \(y_0 \) and \(y_1 \) iff the \(\det(Z) \neq 0 \),
Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

\[y(x) = c_1 e^{r_- x} + c_2 e^{r_+ x}, \quad c_1, c_2 \in \mathbb{R}. \]

The boundary conditions determine \(c_1 \) and \(c_2 \) as follows:

\[y_0 = y(0) = c_1 + c_2. \]
\[y_1 = y(L) = c_1 e^{r_- L} + c_2 e^{r_+ L} \]

Using matrix notation,

\[
\begin{bmatrix}
1 & 1 \\
e^{r_- L} & e^{r_+ L}
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2
\end{bmatrix}
= \begin{bmatrix}
y_0 \\
y_1
\end{bmatrix}.
\]

The linear system above has a unique solution \(c_1 \) and \(c_2 \) for every constants \(y_0 \) and \(y_1 \) iff the \(\det(Z) \neq 0 \), where

\[
Z = \begin{bmatrix}
1 & 1 \\
e^{r_- L} & e^{r_+ L}
\end{bmatrix}
\]
Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

\[y(x) = c_1 e^{r_- x} + c_2 e^{r_+ x}, \quad c_1, c_2 \in \mathbb{R}. \]

The boundary conditions determine \(c_1 \) and \(c_2 \) as follows:

\[
 \begin{align*}
 y_0 &= y(0) = c_1 + c_2. \\
 y_1 &= y(L) = c_1 e^{r_- L} + c_2 e^{r_+ L}
 \end{align*}
\]

Using matrix notation,

\[
 \begin{bmatrix}
 1 & 1 \\
 e^{r_- L} & e^{r_+ L}
 \end{bmatrix}
 \begin{bmatrix}
 c_1 \\
 c_2
 \end{bmatrix}
 =
 \begin{bmatrix}
 y_0 \\
 y_1
 \end{bmatrix}.
\]

The linear system above has a unique solution \(c_1 \) and \(c_2 \) for every constants \(y_0 \) and \(y_1 \) iff the \(\det(Z) \neq 0 \), where

\[
 Z = \begin{bmatrix}
 1 & 1 \\
 e^{r_- L} & e^{r_+ L}
 \end{bmatrix}
\Rightarrow
 Z \begin{bmatrix}
 c_1 \\
 c_2
 \end{bmatrix}
 =
 \begin{bmatrix}
 y_0 \\
 y_1
 \end{bmatrix}.
\]
Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: \[Z = \begin{bmatrix} 1 & 1 \\ e^{r-L} & e^{r+L} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}. \]
Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: \[Z = \begin{bmatrix} 1 & 1 \\ e^{r^-L} & e^{r^+L} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}. \]

A simple calculation shows

\[\det(Z) = e^{r^+L} - e^{r^-L} \]
Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: \[Z = \begin{bmatrix} 1 & 1 \\ e^{r_-L} & e^{r_+L} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}. \]

A simple calculation shows

\[
\det(Z) = e^{r_+L} - e^{r_-L} \neq 0 \iff e^{r_+L} \neq e^{r_-L}.
\]
Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: \(Z = \begin{bmatrix} 1 & 1 \\ e^{-r-L} & e^{r+L} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix} \).

A simple calculation shows
\[
\det(Z) = e^{r+L} - e^{r-L} \neq 0 \iff e^{r+L} \neq e^{r-L}.
\]

(A) If \(r_+ \neq r_- \) and real-valued,

(1) If \(\beta L \neq n\pi \), then BVP has a unique solution.

(2) If \(\beta L = n\pi \) then BVP either has no solutions or it has infinitely many solutions.
Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: \(Z = \begin{bmatrix} 1 & 1 \\ e^{r_- L} & e^{r_+ L} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix} \).

A simple calculation shows

\[
\det(Z) = e^{r_+ L} - e^{r_- L} \neq 0 \iff e^{r_+ L} \neq e^{r_- L}.
\]

(A) If \(r_+ \neq r_- \) and real-valued, then \(\det(Z) \neq 0 \).
Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall:

\[Z = \begin{bmatrix} 1 & 1 \\ e^{r_- L} & e^{r_+ L} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}. \]

A simple calculation shows

\[\det(Z) = e^{r_+ L} - e^{r_- L} \neq 0 \iff e^{r_+ L} \neq e^{r_- L}. \]

(A) If \(r_+ \neq r_- \) and real-valued, then \(\det(Z) \neq 0 \).

We conclude: For every choice of \(y_0 \) and \(y_1 \), there exist a unique value of \(c_1 \) and \(c_2 \), so the BVP in (A) above has a unique solution.
Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: \(Z = \begin{bmatrix} 1 & 1 \\ e^{-L} & e^{+L} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}. \)

A simple calculation shows

\[
\det(Z) = e^{+L} - e^{-L} \neq 0 \iff e^{+L} \neq e^{-L}.
\]

(A) If \(r_+ \neq r_- \) and real-valued, then \(\det(Z) \neq 0. \)

We conclude: For every choice of \(y_0 \) and \(y_1 \), there exist a unique value of \(c_1 \) and \(c_2 \), so the BVP in (A) above has a unique solution.

(B) If \(r_\pm = \alpha \pm i\beta \), with \(\alpha, \beta \in \mathbb{R} \) and \(\beta \neq 0 \),
Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: \[Z = \begin{bmatrix} 1 & 1 \\ e^{r_- L} & e^{r_+ L} \end{bmatrix} \] \[\Rightarrow \quad Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}. \]

A simple calculation shows
\[\det(Z) = e^{r_+ L} - e^{r_- L} \neq 0 \iff e^{r_+ L} \neq e^{r_- L}. \]

(A) If \(r_+ \neq r_- \) and real-valued, then \(\det(Z) \neq 0. \)

We conclude: For every choice of \(y_0 \) and \(y_1 \), there exist a unique value of \(c_1 \) and \(c_2 \), so the BVP in (A) above has a unique solution.

(B) If \(r_\pm = \alpha \pm i\beta \), with \(\alpha, \beta \in \mathbb{R} \) and \(\beta \neq 0 \), then
\[\det(Z) = e^{\alpha L}(e^{i\beta L} - e^{-i\beta L}) \]
Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: \[Z = \begin{bmatrix} 1 & 1 \\ e^{r_- L} & e^{r_+ L} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}. \]

A simple calculation shows
\[
\text{det}(Z) = e^{r_+ L} - e^{r_- L} \neq 0 \iff e^{r_+ L} \neq e^{r_- L}.
\]

(A) If \(r_+ \neq r_- \) and real-valued, then \(\text{det}(Z) \neq 0 \).

We conclude: For every choice of \(y_0 \) and \(y_1 \), there exist a unique value of \(c_1 \) and \(c_2 \), so the BVP in (A) above has a unique solution.

(B) If \(r_\pm = \alpha \pm i\beta \), with \(\alpha, \beta \in \mathbb{R} \) and \(\beta \neq 0 \), then
\[
\text{det}(Z) = e^{\alpha L}(e^{i\beta L} - e^{-i\beta L}) \Rightarrow \text{det}(Z) = 2i e^{\alpha L} \sin(\beta L).
\]
Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: \(Z = \begin{bmatrix} 1 & 1 \\ e^{r_- L} & e^{r_+ L} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix} \).

A simple calculation shows

\[
\det(Z) = e^{r_+ L} - e^{r_- L} \neq 0 \iff e^{r_+ L} \neq e^{r_- L}.
\]

(A) If \(r_+ \neq r_- \) and real-valued, then \(\det(Z) \neq 0 \).

We conclude: For every choice of \(y_0 \) and \(y_1 \), there exist a unique value of \(c_1 \) and \(c_2 \), so the BVP in (A) above has a unique solution.

(B) If \(r_\pm = \alpha \pm i\beta \), with \(\alpha, \beta \in \mathbb{R} \) and \(\beta \neq 0 \), then

\[
\det(Z) = e^{\alpha L}(e^{i\beta L} - e^{-i\beta L}) \Rightarrow \det(Z) = 2i e^{\alpha L} \sin(\beta L).
\]

Since \(\det(Z) = 0 \) iff \(\beta L = n\pi \), with \(n \) integer,
Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: \(Z = \begin{bmatrix} 1 & 1 \\ e^{r_-} L & e^{r_+} L \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix} \).

A simple calculation shows
\[
\det(Z) = e^{r_+} L - e^{r_-} L \neq 0 \iff e^{r_+} L \neq e^{r_-} L.
\]

(A) If \(r_+ \neq r_- \) and real-valued, then \(\det(Z) \neq 0 \).

We conclude: For every choice of \(y_0 \) and \(y_1 \), there exist a unique value of \(c_1 \) and \(c_2 \), so the BVP in (A) above has a unique solution.

(B) If \(r_\pm = \alpha \pm i\beta \), with \(\alpha, \beta \in \mathbb{R} \) and \(\beta \neq 0 \), then
\[
\det(Z) = e^{\alpha L} (e^{i\beta L} - e^{-i\beta L}) \Rightarrow \det(Z) = 2i \ e^{\alpha L} \sin(\beta L).
\]

Since \(\det(Z) = 0 \) iff \(\beta L = n\pi \), with \(n \) integer,

(1) If \(\beta L \neq n\pi \), then BVP has a unique solution.
Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: \[Z = \begin{bmatrix} 1 & 1 \\ e^{r_- L} & e^{r_+ L} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}. \]

A simple calculation shows
\[\det(Z) = e^{r_+ L} - e^{r_- L} \neq 0 \iff e^{r_+ L} \neq e^{r_- L}. \]

(A) If \(r_+ \neq r_- \) and real-valued, then \(\det(Z) \neq 0 \).

We conclude: For every choice of \(y_0 \) and \(y_1 \), there exist a unique value of \(c_1 \) and \(c_2 \), so the BVP in (A) above has a unique solution.

(B) If \(r_\pm = \alpha \pm i\beta \), with \(\alpha, \beta \in \mathbb{R} \) and \(\beta \neq 0 \), then
\[\det(Z) = e^{\alpha L}(e^{i\beta L} - e^{-i\beta L}) \Rightarrow \det(Z) = 2i e^{\alpha L} \sin(\beta L). \]

Since \(\det(Z) = 0 \) iff \(\beta L = n\pi \), with \(n \) integer,
\((1) \) If \(\beta L \neq n\pi \), then BVP has a unique solution.
\((2) \) If \(\beta L = n\pi \) then BVP either has no solutions or it has infinitely many solutions.
Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP

$$y'' + y = 0, \quad y(0) = 1, \quad y(\pi) = -1.$$
Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP

$$y'' + y = 0, \quad y(0) = 1, \quad y(\pi) = -1.$$

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1$$
Existence, uniqueness of solutions to BVP.

Example
Find \(y \) solution of the BVP

\[
y'' + y = 0, \quad y(0) = 1, \quad y(\pi) = -1.
\]

Solution: The characteristic polynomial is

\[
p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.
\]
Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$y'' + y = 0, \quad y(0) = 1, \quad y(\pi) = -1.$$

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.$$

The general solution is

$$y(x) = c_1 \cos(x) + c_2 \sin(x).$$
Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP

$$y'' + y = 0, \quad y(0) = 1, \quad y(\pi) = -1.$$

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_\pm = \pm i.$$

The general solution is

$$y(x) = c_1 \cos(x) + c_2 \sin(x).$$

The boundary conditions are

$$1 = y(0) = c_1,$$
Existence, uniqueness of solutions to BVP.

Example
Find \(y \) solution of the BVP

\[
y'' + y = 0, \quad y(0) = 1, \quad y(\pi) = -1.
\]

Solution: The characteristic polynomial is

\[
p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.
\]

The general solution is

\[
y(x) = c_1 \cos(x) + c_2 \sin(x).
\]

The boundary conditions are

\[
1 = y(0) = c_1, \quad -1 = y(\pi) = -c_1
\]
Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP
$$y'' + y = 0, \quad y(0) = 1, \quad y(\pi) = -1.$$

Solution: The characteristic polynomial is
$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.$$

The general solution is
$$y(x) = c_1 \cos(x) + c_2 \sin(x).$$

The boundary conditions are
$$1 = y(0) = c_1, \quad -1 = y(\pi) = -c_1 \quad \Rightarrow \quad c_1 = 1, \quad c_2 \text{ free.}$$
Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP

$$y'' + y = 0, \quad y(0) = 1, \quad y(\pi) = -1.$$

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_\pm = \pm i.$$

The general solution is

$$y(x) = c_1 \cos(x) + c_2 \sin(x).$$

The boundary conditions are

$$1 = y(0) = c_1, \quad -1 = y(\pi) = -c_1 \quad \Rightarrow \quad c_1 = 1, \quad c_2 \text{ free.}$$

We conclude:
$$y(x) = \cos(x) + c_2 \sin(x), \text{ with } c_2 \in \mathbb{R}.$$
Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP

$$y'' + y = 0, \quad y(0) = 1, \quad y(\pi) = -1.$$

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.$$

The general solution is

$$y(x) = c_1 \cos(x) + c_2 \sin(x).$$

The boundary conditions are

$$1 = y(0) = c_1, \quad -1 = y(\pi) = -c_1 \quad \Rightarrow \quad c_1 = 1, \quad c_2 \text{ free.}$$

We conclude: $y(x) = \cos(x) + c_2 \sin(x)$, with $c_2 \in \mathbb{R}$.

The BVP has infinitely many solutions. \(\triangle \)
Example
Find y solution of the BVP

$$y'' + y = 0, \quad y(0) = 1, \quad y(\pi) = 0.$$
Existence, uniqueness of solutions to BVP.

Example
Find \(y \) solution of the BVP

\[
y'' + y = 0, \quad y(0) = 1, \quad y(\pi) = 0.
\]

Solution: The characteristic polynomial is

\[
p(r) = r^2 + 1
\]
Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP

$$y'' + y = 0, \quad y(0) = 1, \quad y(\pi) = 0.$$

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.$$
Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP
\[y'' + y = 0, \quad y(0) = 1, \quad y(\pi) = 0. \]

Solution: The characteristic polynomial is
\[p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i. \]

The general solution is
\[y(x) = c_1 \cos(x) + c_2 \sin(x). \]
Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP

$$y'' + y = 0, \quad y(0) = 1, \quad y(\pi) = 0.$$

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.$$

The general solution is

$$y(x) = c_1 \cos(x) + c_2 \sin(x).$$

The boundary conditions are

$$1 = y(0) = c_1,$$
Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP

$$y'' + y = 0, \quad y(0) = 1, \quad y(\pi) = 0.$$

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \implies r_{\pm} = \pm i.$$

The general solution is

$$y(x) = c_1 \cos(x) + c_2 \sin(x).$$

The boundary conditions are

$$1 = y(0) = c_1, \quad 0 = y(\pi) = -c_1$$
Existence, uniqueness of solutions to BVP.

Example
Find \(y \) solution of the BVP
\[
 y'' + y = 0, \quad y(0) = 1, \quad y(\pi) = 0.
\]

Solution: The characteristic polynomial is
\[
p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.
\]

The general solution is
\[
y(x) = c_1 \cos(x) + c_2 \sin(x).
\]

The boundary conditions are
\[
1 = y(0) = c_1, \quad 0 = y(\pi) = -c_1
\]

The BVP has no solution.
Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP

$$y'' + y = 0, \quad y(0) = 1, \quad y(\pi/2) = 1.$$
Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP

$$y'' + y = 0, \quad y(0) = 1, \quad y(\pi/2) = 1.$$

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1$$
Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP

$$y'' + y = 0, \quad y(0) = 1, \quad y(\pi/2) = 1.$$

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \implies r_{\pm} = \pm i.$$
Existence, uniqueness of solutions to BVP.

Example
Find \(y \) solution of the BVP

\[
y'' + y = 0, \quad y(0) = 1, \quad y(\pi/2) = 1.
\]

Solution: The characteristic polynomial is

\[
p(r) = r^2 + 1 \quad \Rightarrow \quad r_\pm = \pm i.
\]

The general solution is

\[
y(x) = c_1 \cos(x) + c_2 \sin(x).
\]
Existence, uniqueness of solutions to BVP.

Example
Find \(y \) solution of the BVP
\[
y'' + y = 0, \quad y(0) = 1, \quad y(\pi/2) = 1.
\]

Solution: The characteristic polynomial is
\[
p(r) = r^2 + 1 \implies r_{\pm} = \pm i.
\]

The general solution is
\[
y(x) = c_1 \cos(x) + c_2 \sin(x).
\]

The boundary conditions are
\[
1 = y(0) = c_1,
\]
Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP

$$y'' + y = 0, \quad y(0) = 1, \quad y(\pi/2) = 1.$$

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.$$

The general solution is

$$y(x) = c_1 \cos(x) + c_2 \sin(x).$$

The boundary conditions are

$$1 = y(0) = c_1, \quad 1 = y(\pi/2) = c_2$$
Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP

$$y'' + y = 0, \quad y(0) = 1, \quad y(\pi/2) = 1.$$

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.$$

The general solution is

$$y(x) = c_1 \cos(x) + c_2 \sin(x).$$

The boundary conditions are

$$1 = y(0) = c_1, \quad 1 = y(\pi/2) = c_2 \quad \Rightarrow \quad c_1 = c_2 = 1.$$
Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP

$$y'' + y = 0, \quad y(0) = 1, \quad y(\pi/2) = 1.$$

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \implies r_{\pm} = \pm i.$$

The general solution is

$$y(x) = c_1 \cos(x) + c_2 \sin(x).$$

The boundary conditions are

$$1 = y(0) = c_1, \quad 1 = y(\pi/2) = c_2 \implies c_1 = c_2 = 1.$$

We conclude: $y(x) = \cos(x) + \sin(x)$.
Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP

$$y'' + y = 0, \quad y(0) = 1, \quad y(\pi/2) = 1.$$

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \Rightarrow r_{\pm} = \pm i.$$

The general solution is

$$y(x) = c_1 \cos(x) + c_2 \sin(x).$$

The boundary conditions are

$$1 = y(0) = c_1, \quad 1 = y(\pi/2) = c_2 \Rightarrow c_1 = c_2 = 1.$$

We conclude: $y(x) = \cos(x) + \sin(x)$.

The BVP has a unique solution.
Boundary Value Problems (Sect. 6.1).

- Two-point BVP.
- Example from physics.
- Comparison: IVP vs BVP.
- Existence, uniqueness of solutions to BVP.
- Particular case of BVP: \textit{Eigenvalue-eigenfunction problem}.
Particular case of BVP: Eigenvalue-eigenfunction problem.

Problem:
Find a number λ and a non-zero function y solutions to the boundary value problem

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Problem:
Find a number λ and a non-zero function y solutions to the boundary value problem

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$}

Remark: This problem is similar to the eigenvalue-eigenvector problem in Linear Algebra:
Particular case of BVP: Eigenvalue-eigenfunction problem.

Problem:
Find a number λ and a non-zero function y solutions to the boundary value problem

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Remark: This problem is similar to the eigenvalue-eigenvector problem in Linear Algebra: Given an $n \times n$ matrix A, find λ and a non-zero n-vector v solutions of

$$Av - \lambda v = 0.$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Problem:
Find a number λ and a non-zero function y solutions to the boundary value problem

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Remark: This problem is similar to the eigenvalue-eigenvector problem in Linear Algebra: Given an $n \times n$ matrix A, find λ and a non-zero n-vector v solutions of

$$Av - \lambda v = 0.$$

Differences:

\rightarrow A \quad \left\{ \begin{array}{l} \text{computing a second derivative and } \\ \text{applying the boundary conditions.} \end{array} \right.$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Problem:
Find a number λ and a non-zero function y solutions to the boundary value problem
\[y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0. \]

Remark: This problem is similar to the eigenvalue-eigenvector problem in Linear Algebra: Given an $n \times n$ matrix A, find λ and a non-zero n-vector v solutions of
\[Av - \lambda v = 0. \]

Differences:
- A \longrightarrow \begin{cases} \text{computing a second derivative and} \\ \text{applying the boundary conditions.} \end{cases}
- v \longrightarrow \{a function y\}.
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Remarks: We will show that:

1. If $\lambda \leq 0$, then the BVP has no solution.
2. If $\lambda > 0$, then there exist infinitely many eigenvalues λ_n and eigenfunctions y_n, with n any positive integer, given by

$$\lambda_n = \left(\frac{n \pi}{L}\right)^2,$$

$$y_n(x) = \sin\left(\frac{n \pi x}{L}\right),$$

3. Analogous results can be proven for the same equation but with different types of boundary conditions. For example, for $y(0) = 0$, $y'(L) = 0$; or for $y'(0) = 0$, $y'(L) = 0$.
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Remarks: We will show that:
(1) If $\lambda \leq 0$, then the BVP has no solution.
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Remarks: We will show that:

1. If $\lambda \leq 0$, then the BVP has no solution.
2. If $\lambda > 0$, then there exist infinitely many eigenvalues λ_n and eigenfunctions y_n, with n any positive integer,
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Remarks: We will show that:

1. If $\lambda \leq 0$, then the BVP has no solution.
2. If $\lambda > 0$, then there exist infinitely many eigenvalues λ_n and eigenfunctions y_n, with n any positive integer, given by

$$\lambda_n = \left(\frac{n\pi}{L} \right)^2, \quad y_n(x) = \sin\left(\frac{n\pi x}{L} \right),$$

Analogous results can be proven for the same equation but with different types of boundary conditions. For example, for $y(0) = 0, y'(L) = 0$; or for $y'(0) = 0, y'(L) = 0$.
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Remarks: We will show that:

(1) If $\lambda \leq 0$, then the BVP has no solution.

(2) If $\lambda > 0$, then there exist infinitely many eigenvalues λ_n and eigenfunctions y_n, with n any positive integer, given by

$$\lambda_n = \left(\frac{n\pi}{L}\right)^2, \quad y_n(x) = \sin\left(\frac{n\pi x}{L}\right),$$

(3) Analogous results can be proven for the same equation but with different types of boundary conditions.
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every \(\lambda \in \mathbb{R} \) and non-zero functions \(y \) solutions of the BVP
\[
y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.
\]

Remarks: We will show that:

1. If \(\lambda \leq 0 \), then the BVP has no solution.
2. If \(\lambda > 0 \), then there exist infinitely many eigenvalues \(\lambda_n \) and eigenfunctions \(y_n \), with \(n \) any positive integer, given by
 \[
 \lambda_n = \left(\frac{n\pi}{L} \right)^2, \quad y_n(x) = \sin \left(\frac{n\pi x}{L} \right),
 \]
3. Analogous results can be proven for the same equation but with different types of boundary conditions. For example, for \(y(0) = 0, \ y'(L) = 0 \);
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Remarks: We will show that:

1. If $\lambda \leq 0$, then the BVP has no solution.
2. If $\lambda > 0$, then there exist infinitely many eigenvalues λ_n and eigenfunctions y_n, with n any positive integer, given by

$$\lambda_n = \left(\frac{n\pi}{L}\right)^2, \quad y_n(x) = \sin\left(\frac{n\pi x}{L}\right),$$

3. Analogous results can be proven for the same equation but with different types of boundary conditions. For example, for $y(0) = 0, \ y'(L) = 0$; or for $y'(0) = 0, \ y'(L) = 0$.
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda = 0$.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda = 0$. The equation is

$$y'' = 0$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda = 0$. The equation is

$$y'' = 0 \quad \Rightarrow \quad y(x) = c_1 + c_2 x.$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda = 0$. The equation is

$$y'' = 0 \quad \Rightarrow \quad y(x) = c_1 + c_2 x.$$

The boundary conditions imply

$$0 = y(0)$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda = 0$. The equation is

$$y'' = 0 \quad \Rightarrow \quad y(x) = c_1 + c_2 x.$$

The boundary conditions imply

$$0 = y(0) = c_1,$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda = 0$. The equation is

$$y'' = 0 \quad \Rightarrow \quad y(x) = c_1 + c_2 x.$$

The boundary conditions imply

$$0 = y(0) = c_1, \quad 0 = c_1 + c_2 L$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda = 0$. The equation is

$$y'' = 0 \quad \Rightarrow \quad y(x) = c_1 + c_2 x.$$

The boundary conditions imply

$$0 = y(0) = c_1, \quad 0 = c_1 + c_2 L \quad \Rightarrow \quad c_1 = c_2 = 0.$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda = 0$. The equation is

$$y'' = 0 \quad \Rightarrow \quad y(x) = c_1 + c_2 x.$$

The boundary conditions imply

$$0 = y(0) = c_1, \quad 0 = c_1 + c_2 L \quad \Rightarrow \quad c_1 = c_2 = 0.$$

Since $y = 0$, there are NO non-zero solutions for $\lambda = 0$.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda < 0$.
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda < 0$. Introduce the notation $\lambda = -\mu^2$.
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda < 0$. Introduce the notation $\lambda = -\mu^2$. The characteristic equation is

$$p(r) = r^2 - \mu^2 = 0$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda < 0$. Introduce the notation $\lambda = -\mu^2$. The characteristic equation is

$$p(r) = r^2 - \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu.$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda < 0$. Introduce the notation $\lambda = -\mu^2$. The characteristic equation is

$$p(r) = r^2 - \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu.$$

The general solution is

$$y(x) = c_1 e^{\mu x} + c_2 e^{-\mu x}.$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every \(\lambda \in \mathbb{R} \) and non-zero functions \(y \) solutions of the BVP

\[
y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.
\]

Solution: Case \(\lambda < 0 \). Introduce the notation \(\lambda = -\mu^2 \). The characteristic equation is

\[
p(r) = r^2 - \mu^2 = 0 \quad \Rightarrow \quad r_\pm = \pm \mu.
\]

The general solution is

\[
y(x) = c_1 e^{\mu x} + c_2 e^{-\mu x}.
\]

The boundary condition are

\[
0 = y(0)
\]
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda < 0$. Introduce the notation $\lambda = -\mu^2$. The characteristic equation is

$$p(r) = r^2 - \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu.$$

The general solution is

$$y(x) = c_1 e^{\mu x} + c_2 e^{-\mu x}.$$

The boundary condition are

$$0 = y(0) = c_1 + c_2,$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda < 0$. Introduce the notation $\lambda = -\mu^2$. The characteristic equation is

$$p(r) = r^2 - \mu^2 = 0 \quad \Rightarrow \quad r_\pm = \pm \mu.$$

The general solution is

$$y(x) = c_1 e^{\mu x} + c_2 e^{-\mu x}.$$

The boundary condition are

$$0 = y(0) = c_1 + c_2,$$

$$0 = y(L) = c_1 e^{\mu L} + c_2 e^{-\mu L}.$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Recall: $y(x) = c_1 e^{\mu x} + c_2 e^{\mu x}$ and

$$c_1 + c_2 = 0, \quad c_1 e^{\mu L} + c_2 e^{-\mu L} = 0.$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Recall: $y(x) = c_1 e^{\mu x} + c_2 e^{-\mu x}$ and

$$c_1 + c_2 = 0, \quad c_1 e^{\mu L} + c_2 e^{-\mu L} = 0.$$

We need to solve the linear system

$$
\begin{bmatrix}
1 & 1 \\
e^{\mu L} & e^{-\mu L}
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0
\end{bmatrix}
$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Recall: $y(x) = c_1 e^{\mu x} + c_2 e^{\mu x}$ and

$$c_1 + c_2 = 0, \quad c_1 e^{\mu L} + c_2 e^{-\mu L} = 0.$$

We need to solve the linear system

$$\begin{bmatrix} 1 & 1 \\ e^{\mu L} & e^{-\mu L} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \iff Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

since $\det(Z) = e^{-\mu L} - e^{\mu L} \neq 0$ for $L \neq 0$, matrix Z is invertible, so the linear system above has a unique solution $c_1 = 0$ and $c_2 = 0$. Since $y = 0$, there are NO non-zero solutions for $\lambda < 0$.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every \(\lambda \in \mathbb{R} \) and non-zero functions \(y \) solutions of the BVP

\[
y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.
\]

Solution: Recall: \(y(x) = c_1 e^{\mu x} + c_2 e^{\mu x} \) and

\[
c_1 + c_2 = 0, \quad c_1 e^{\mu L} + c_2 e^{-\mu L} = 0.
\]

We need to solve the linear system

\[
\begin{bmatrix}
1 & 1 \\
e^{\mu L} & e^{-\mu L}
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2
\end{bmatrix}
= \begin{bmatrix}
0 \\
0
\end{bmatrix} \iff Z \begin{bmatrix}
c_1 \\
c_2
\end{bmatrix} = \begin{bmatrix}
0 \\
0
\end{bmatrix}, \quad Z = \begin{bmatrix}
1 & 1 \\
e^{\mu L} & e^{-\mu L}
\end{bmatrix}
\]
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every \(\lambda \in \mathbb{R} \) and non-zero functions \(y \) solutions of the BVP

\[
y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.
\]

Solution: Recall: \(y(x) = c_1 e^{\mu x} + c_2 e^{\mu x} \) and

\[
c_1 + c_2 = 0, \quad c_1 e^{\mu L} + c_2 e^{-\mu L} = 0.
\]

We need to solve the linear system

\[
\begin{bmatrix}
1 & 1 \\
e^{\mu L} & e^{-\mu L}
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0
\end{bmatrix} \Leftrightarrow Z \begin{bmatrix}
c_1 \\
c_2
\end{bmatrix} = \begin{bmatrix}
0 \\
0
\end{bmatrix}, \quad Z = \begin{bmatrix}
1 & 1 \\
e^{\mu L} & e^{-\mu L}
\end{bmatrix}
\]

Since \(\text{det}(Z) = e^{-\mu L} - e^{\mu L} \neq 0 \) for \(L \neq 0 \), matrix \(Z \) is invertible, so the linear system above has a unique solution \(c_1 = 0 \) and \(c_2 = 0 \).
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Recall: $y(x) = c_1 e^{\mu x} + c_2 e^{\mu x}$ and

$$c_1 + c_2 = 0, \quad c_1 e^{\mu L} + c_2 e^{-\mu L} = 0.$$

We need to solve the linear system

$$
\begin{bmatrix}
1 & 1 \\
e^{\mu L} & e^{-\mu L}
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0
\end{bmatrix} \iff Z
\begin{bmatrix}
c_1 \\
c_2
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0
\end{bmatrix}, \quad Z =
\begin{bmatrix}
1 & 1 \\
e^{\mu L} & e^{-\mu L}
\end{bmatrix}
$$

Since $\det(Z) = e^{-\mu L} - e^{\mu L} \neq 0$ for $L \neq 0$, matrix Z is invertible, so the linear system above has a unique solution $c_1 = 0$ and $c_2 = 0$.

Since $y = 0$, there are NO non-zero solutions for $\lambda < 0$.
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda > 0$.

Introduce the notation $\lambda = \mu^2$. The characteristic equation is

$$p(r) = r^2 + \mu^2 = 0 \Rightarrow r = \pm \mu i.$$

The general solution is

$$y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x).$$

The boundary conditions are

$$0 = y(0) = c_1,$$

$$0 = y(L) = c_2 \sin(\mu L), \quad c_2 \neq 0 \Rightarrow \sin(\mu L) = 0.$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda > 0$. Introduce the notation $\lambda = \mu^2$.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every \(\lambda \in \mathbb{R} \) and non-zero functions \(y \) solutions of the BVP

\[
y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.
\]

Solution: Case \(\lambda > 0 \). Introduce the notation \(\lambda = \mu^2 \). The characteristic equation is

\[
p(r) = r^2 + \mu^2 = 0
\]
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every \(\lambda \in \mathbb{R} \) and non-zero functions \(y \) solutions of the BVP

\[
y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.
\]

Solution: Case \(\lambda > 0 \). Introduce the notation \(\lambda = \mu^2 \). The characteristic equation is

\[
p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu i.
\]
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda > 0$. Introduce the notation $\lambda = \mu^2$. The characteristic equation is

$$p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu i.$$

The general solution is

$$y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x).$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda > 0$. Introduce the notation $\lambda = \mu^2$. The characteristic equation is

$$p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu i.$$

The general solution is

$$y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x).$$

The boundary condition are

$$0 = y(0)$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda > 0$. Introduce the notation $\lambda = \mu^2$. The characteristic equation is

$$p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu i.$$

The general solution is

$$y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x).$$

The boundary condition are

$$0 = y(0) = c_1,$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every \(\lambda \in \mathbb{R} \) and non-zero functions \(y \) solutions of the BVP

\[
y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.
\]

Solution: Case \(\lambda > 0 \). Introduce the notation \(\lambda = \mu^2 \). The characteristic equation is

\[
p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu i.
\]

The general solution is

\[
y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x).
\]

The boundary condition are

\[
0 = y(0) = c_1, \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x).
\]
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda > 0$. Introduce the notation $\lambda = \mu^2$. The characteristic equation is

$$p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu i.$$

The general solution is

$$y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x).$$

The boundary condition are

$$0 = y(0) = c_1, \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x).$$

$$0 = y(L) = c_2 \sin(\mu L),$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda > 0$. Introduce the notation $\lambda = \mu^2$. The characteristic equation is

$$p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu i.$$

The general solution is

$$y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x).$$

The boundary condition are

$$0 = y(0) = c_1, \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x).$$

$$0 = y(L) = c_2 \sin(\mu L), \quad c_2 \neq 0$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda > 0$. Introduce the notation $\lambda = \mu^2$. The characteristic equation is

$$p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu i.$$

The general solution is

$$y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x).$$

The boundary condition are

$$0 = y(0) = c_1, \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x).$$

$$0 = y(L) = c_2 \sin(\mu L), \quad c_2 \neq 0 \quad \Rightarrow \quad \sin(\mu L) = 0.$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Recall: $c_1 = 0$, $c_2 \neq 0$, and $\sin(\mu L) = 0$.

\forall
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Recall: $c_1 = 0$, $c_2 \neq 0$, and $\sin(\mu L) = 0$.

The non-zero solution condition is the reason for $c_2 \neq 0$.
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Recall: $c_1 = 0$, $c_2 \neq 0$, and $\sin(\mu L) = 0$.

The non-zero solution condition is the reason for $c_2 \neq 0$. Hence

$$\sin(\mu L) = 0$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Recall: $c_1 = 0$, $c_2 \neq 0$, and $\sin(\mu L) = 0$.

The non-zero solution condition is the reason for $c_2 \neq 0$. Hence

$$\sin(\mu L) = 0 \quad \Rightarrow \quad \mu_n L = n\pi$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every \(\lambda \in \mathbb{R} \) and non-zero functions \(y \) solutions of the BVP

\[
y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.
\]

Solution: Recall: \(c_1 = 0, \ c_2 \neq 0, \) and \(\sin(\mu L) = 0. \)

The non-zero solution condition is the reason for \(c_2 \neq 0. \) Hence

\[
\sin(\mu L) = 0 \quad \Rightarrow \quad \mu_n L = n\pi \quad \Rightarrow \quad \mu_n = \frac{n\pi}{L}.
\]
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Recall: $c_1 = 0$, $c_2 \neq 0$, and $\sin(\mu L) = 0$.

The non-zero solution condition is the reason for $c_2 \neq 0$. Hence

$$\sin(\mu L) = 0 \quad \Rightarrow \quad \mu_n L = n\pi \quad \Rightarrow \quad \mu_n = \frac{n\pi}{L}.$$

Recalling that $\lambda_n = \mu_n^2$, and choosing $c_2 = 1$,
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Recall: $c_1 = 0$, $c_2 \neq 0$, and $\sin(\mu L) = 0$.

The non-zero solution condition is the reason for $c_2 \neq 0$. Hence

$$\sin(\mu L) = 0 \quad \Rightarrow \quad \mu_n L = n\pi \quad \Rightarrow \quad \mu_n = \frac{n\pi}{L}.$$

Recalling that $\lambda_n = \mu_n^2$, and choosing $c_2 = 1$, we conclude

$$\lambda_n = \left(\frac{n\pi}{L}\right)^2, \quad y_n(x) = \sin\left(\frac{n\pi x}{L}\right).$$ \triangleq
Overview of Fourier Series (Sect. 6.2).

- Periodic functions.
- Orthogonality of Sines and Cosines.
- The Fourier Theorem: Continuous case.
- Example: Using the Fourier Theorem.
- The Fourier Theorem: Piecewise continuous case.
- Example: Using the Fourier Theorem.
Definition
A function $f : \mathbb{R} \to \mathbb{R}$ is called *periodic* iff there exists $\tau > 0$ such that for all $x \in \mathbb{R}$ holds

$$f(x + \tau) = f(x).$$
Periodic functions.

Definition
A function $f : \mathbb{R} \rightarrow \mathbb{R}$ is called *periodic* iff there exists $\tau > 0$ such that for all $x \in \mathbb{R}$ holds

$$f(x + \tau) = f(x).$$

Remark: f is invariant under translations by τ.
Periodic functions.

Definition
A function $f : \mathbb{R} \to \mathbb{R}$ is called *periodic* iff there exists $\tau > 0$ such that for all $x \in \mathbb{R}$ holds

$$f(x + \tau) = f(x).$$

Remark: f is invariant under translations by τ.

Definition
A *period* T of a periodic function f is the smallest value of τ such that $f(x + \tau) = f(x)$ holds.
Periodic functions.

Definition
A function \(f : \mathbb{R} \to \mathbb{R} \) is called \textit{periodic} iff there exists \(\tau > 0 \) such that for all \(x \in \mathbb{R} \) holds

\[
 f(x + \tau) = f(x).
\]

Remark: \(f \) is invariant under translations by \(\tau \).

Definition
A \textit{period} \(T \) of a periodic function \(f \) is the smallest value of \(\tau \) such that \(f(x + \tau) = f(x) \) holds.

Notation:
A periodic function with period \(T \) is also called \(T \)-periodic.
Example
The following functions are periodic, with period T,

\[
\begin{align*}
f(x) &= \sin(x), & T &= 2\pi. \\
f(x) &= \cos(x), & T &= 2\pi. \\
f(x) &= \tan(x), & T &= \pi. \\
f(x) &= \sin(ax), & T &= \frac{2\pi}{a}.
\end{align*}
\]
Periodic functions.

Example

The following functions are periodic, with period T,

\[f(x) = \sin(x), \quad T = 2\pi. \]
\[f(x) = \cos(x), \quad T = 2\pi. \]
\[f(x) = \tan(x), \quad T = \pi. \]
\[f(x) = \sin(ax), \quad T = \frac{2\pi}{a}. \]

The proof of the latter statement is the following:
Periodic functions.

Example

The following functions are periodic, with period T,

\[f(x) = \sin(x), \quad T = 2\pi. \]
\[f(x) = \cos(x), \quad T = 2\pi. \]
\[f(x) = \tan(x), \quad T = \pi. \]
\[f(x) = \sin(ax), \quad T = \frac{2\pi}{a}. \]

The proof of the latter statement is the following:

\[f\left(x + \frac{2\pi}{a}\right) \]
Periodic functions.

Example

The following functions are periodic, with period T,

\[f(x) = \sin(x), \quad T = 2\pi. \]

\[f(x) = \cos(x), \quad T = 2\pi. \]

\[f(x) = \tan(x), \quad T = \pi. \]

\[f(x) = \sin(ax), \quad T = \frac{2\pi}{a}. \]

The proof of the latter statement is the following:

\[f\left(x + \frac{2\pi}{a}\right) = \sin\left(ax + a \frac{2\pi}{a}\right) \]
Periodic functions.

Example

The following functions are periodic, with period T,

\[
\begin{align*}
 f(x) &= \sin(x), \quad T = 2\pi. \\
 f(x) &= \cos(x), \quad T = 2\pi. \\
 f(x) &= \tan(x), \quad T = \pi. \\
 f(x) &= \sin(ax), \quad T = \frac{2\pi}{a}.
\end{align*}
\]

The proof of the latter statement is the following:

\[
f\left(x + \frac{2\pi}{a}\right) = \sin\left(ax + a\frac{2\pi}{a}\right) = \sin(ax + 2\pi)
\]
Periodic functions.

Example
The following functions are periodic, with period T,
\[
\begin{align*}
f(x) &= \sin(x), \quad T = 2\pi. \\
f(x) &= \cos(x), \quad T = 2\pi. \\
f(x) &= \tan(x), \quad T = \pi. \\
f(x) &= \sin(ax), \quad T = \frac{2\pi}{a}.
\end{align*}
\]

The proof of the latter statement is the following:
\[
f\left(x + \frac{2\pi}{a}\right) = \sin\left(ax + a\frac{2\pi}{a}\right) = \sin(ax + 2\pi) = \sin(ax)
\]
Periodic functions.

Example

The following functions are periodic, with period T,

\[f(x) = \sin(x), \quad T = 2\pi. \]

\[f(x) = \cos(x), \quad T = 2\pi. \]

\[f(x) = \tan(x), \quad T = \pi. \]

\[f(x) = \sin(ax), \quad T = \frac{2\pi}{a}. \]

The proof of the latter statement is the following:

\[
\begin{align*}
 f\left(x + \frac{2\pi}{a} \right) &= \sin\left(ax + a \cdot \frac{2\pi}{a} \right) = \sin(ax + 2\pi) = \sin(ax) = f(x).
\end{align*}
\]
Periodic functions.

Example
Show that the function below is periodic, and find its period,

\[f(x) = e^x, \quad x \in [0, 2), \quad f(x - 2) = f(x). \]
Periodic functions.

Example
Show that the function below is periodic, and find its period,

\[f(x) = e^x, \quad x \in [0, 2), \quad f(x - 2) = f(x). \]

Solution: We just graph the function,
Periodic functions.

Example
Show that the function below is periodic, and find its period,

\[f(x) = e^x, \quad x \in [0, 2), \quad f(x - 2) = f(x). \]

Solution: We just graph the function,

So the function is periodic with period \(T = 2 \).
Overview of Fourier Series (Sect. 6.2).

- Periodic functions.
- **Orthogonality of Sines and Cosines.**
- The Fourier Theorem: Continuous case.
- Example: Using the Fourier Theorem.
- The Fourier Theorem: Piecewise continuous case.
- Example: Using the Fourier Theorem.
Orthogonality of Sines and Cosines.

Remark:
From now on we work on the following domain: \([-L, L]\).
Orthogonality of Sines and Cosines.

Remark:
From now on we work on the following domain: \([-L, L]\).
Orthogonality of Sines and Cosines.

Theorem (Orthogonality)

The following relations hold for all \(n, m \in \mathbb{N}, \)

\[
\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) \, dx = \begin{cases}
0 & n \neq m, \\
L & n = m \neq 0, \\
2L & n = m = 0,
\end{cases}
\]

\[
\int_{-L}^{L} \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) \, dx = \begin{cases}
0 & n \neq m, \\
L & n = m,
\end{cases}
\]

\[
\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) \, dx = 0.
\]

Remark:

The operation \(f \cdot g = \int_{-L}^{L} f(x) g(x) \, dx \) is an **inner product** in the vector space of functions. Like the dot product in \(\mathbb{R}^2 \).

Two functions \(f, g \) are orthogonal iff \(f \cdot g = 0 \).
Orthogonality of Sines and Cosines.

Theorem (Orthogonality)

The following relations hold for all $n, m \in \mathbb{N},$

\[
\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) \, dx = \begin{cases}
0 & n \neq m, \\
L & n = m \neq 0, \\
2L & n = m = 0,
\end{cases}
\]

\[
\int_{-L}^{L} \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) \, dx = \begin{cases}
0 & n \neq m, \\
L & n = m,
\end{cases}
\]

\[
\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) \, dx = 0.
\]

Remark:

- The operation $f \cdot g = \int_{-L}^{L} f(x) g(x) \, dx$ is an inner product in the vector space of functions.
Orthogonality of Sines and Cosines.

Theorem (Orthogonality)

The following relations hold for all \(n, m \in \mathbb{N} \),

\[
\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) \, dx = \begin{cases}
0 & n \neq m, \\
L & n = m \neq 0, \\
2L & n = m = 0,
\end{cases}
\]

\[
\int_{-L}^{L} \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) \, dx = \begin{cases}
0 & n \neq m, \\
L & n = m,
\end{cases}
\]

\[
\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) \, dx = 0.
\]

Remark:

- The operation \(f \cdot g = \int_{-L}^{L} f(x) g(x) \, dx \) is an inner product in the vector space of functions. Like the dot product is in \(\mathbb{R}^2 \).
Orthogonality of Sines and Cosines.

Theorem (Orthogonality)

The following relations hold for all \(n, m \in \mathbb{N} \),

\[
\begin{align*}
\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) \, dx &= \begin{cases}
0 & n \neq m, \\
L & n = m \neq 0, \\
2L & n = m = 0,
\end{cases} \\
\int_{-L}^{L} \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) \, dx &= \begin{cases}
0 & n \neq m, \\
L & n = m,
\end{cases} \\
\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) \, dx &= 0.
\end{align*}
\]

Remark:

- The operation \(f \cdot g = \int_{-L}^{L} f(x) g(x) \, dx \) is an inner product in the vector space of functions. Like the dot product is in \(\mathbb{R}^2 \).
- Two functions \(f, g \), are orthogonal iff \(f \cdot g = 0 \).
Orthogonality of Sines and Cosines.

Recall:

\[
\cos(\theta) \cos(\phi) = \frac{1}{2} \left[\cos(\theta + \phi) + \cos(\theta - \phi) \right];
\]

\[
\sin(\theta) \sin(\phi) = \frac{1}{2} \left[\cos(\theta - \phi) - \cos(\theta + \phi) \right];
\]

\[
\sin(\theta) \cos(\phi) = \frac{1}{2} \left[\sin(\theta + \phi) + \sin(\theta - \phi) \right].
\]
Orthogonality of Sines and Cosines.

Recall:
\[
\cos(\theta) \cos(\phi) = \frac{1}{2} \left[\cos(\theta + \phi) + \cos(\theta - \phi) \right];
\]
\[
\sin(\theta) \sin(\phi) = \frac{1}{2} \left[\cos(\theta - \phi) - \cos(\theta + \phi) \right];
\]
\[
\sin(\theta) \cos(\phi) = \frac{1}{2} \left[\sin(\theta + \phi) + \sin(\theta - \phi) \right].
\]

Proof: First formula:
Orthogonality of Sines and Cosines.

Recall:

\[
\cos(\theta) \cos(\phi) = \frac{1}{2} \left[\cos(\theta + \phi) + \cos(\theta - \phi) \right];
\]

\[
\sin(\theta) \sin(\phi) = \frac{1}{2} \left[\cos(\theta - \phi) - \cos(\theta + \phi) \right];
\]

\[
\sin(\theta) \cos(\phi) = \frac{1}{2} \left[\sin(\theta + \phi) + \sin(\theta - \phi) \right].
\]

Proof: First formula: If \(n = m = 0 \), it is simple to see that

\[
\int_{-L}^{L} \cos\left(\frac{n\pi x}{L} \right) \cos\left(\frac{m\pi x}{L} \right) \, dx = \int_{-L}^{L} \, dx = 2L.
\]
Orthogonality of Sines and Cosines.

Recall: \[
\cos(\theta) \cos(\phi) = \frac{1}{2} \left[\cos(\theta + \phi) + \cos(\theta - \phi) \right]; \\
\sin(\theta) \sin(\phi) = \frac{1}{2} \left[\cos(\theta - \phi) - \cos(\theta + \phi) \right]; \\
\sin(\theta) \cos(\phi) = \frac{1}{2} \left[\sin(\theta + \phi) + \sin(\theta - \phi) \right].
\]

Proof: First formula: If \(n = m = 0 \), it is simple to see that
\[
\int_{-L}^{L} \cos\left(\frac{n \pi x}{L} \right) \cos\left(\frac{m \pi x}{L} \right) \, dx = \int_{-L}^{L} \, dx = 2L.
\]

In the case where one of \(n \) or \(m \) is non-zero, use the relation
\[
\int_{-L}^{L} \cos\left(\frac{n \pi x}{L} \right) \cos\left(\frac{m \pi x}{L} \right) \, dx = \frac{1}{2} \int_{-L}^{L} \cos\left[\frac{(n + m) \pi x}{L} \right] \, dx \\
+ \frac{1}{2} \int_{-L}^{L} \cos\left[\frac{(n - m) \pi x}{L} \right] \, dx.
\]
Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero,
Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero, holds

$$
\frac{1}{2} \int_{-L}^{L} \cos \left(\frac{(n + m)\pi x}{L} \right) \, dx = \frac{L}{2(n + m)\pi} \sin \left[\frac{(n + m)\pi x}{L} \right] \bigg|_{-L}^{L} = 0.
$$

If $n = m \neq 0$, we have that

$$
\frac{1}{2} \int_{-L}^{L} \cos \left(\frac{(n - m)\pi x}{L} \right) \, dx = \frac{L}{2(n - m)\pi} \sin \left[\frac{(n - m)\pi x}{L} \right] \bigg|_{-L}^{L} = 0.
$$

This establishes the first equation in the Theorem. The remaining equations are proven in a similar way.
Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero, holds

$$\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n + m)\pi x}{L} \right] \, dx = \frac{L}{2(n + m)\pi} \sin \left[\frac{(n + m)\pi x}{L} \right] \bigg|_{-L}^{L} = 0.$$

We obtain that

$$\int_{-L}^{L} \cos \left(\frac{n\pi x}{L} \right) \cos \left(\frac{m\pi x}{L} \right) \, dx = \frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n - m)\pi x}{L} \right] \, dx.$$
Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero, holds

\[\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n + m) \pi x}{L} \right] \, dx = \frac{L}{2(n + m)\pi} \sin \left[\frac{(n + m) \pi x}{L} \right] \bigg|_{-L}^{L} = 0. \]

We obtain that

\[\int_{-L}^{L} \cos \left(\frac{n\pi x}{L} \right) \cos \left(\frac{m\pi x}{L} \right) \, dx = \frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n - m) \pi x}{L} \right] \, dx. \]

If we further restrict $n \neq m$, then

\[\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n - m) \pi x}{L} \right] \, dx = \frac{L}{2(n - m)\pi} \sin \left[\frac{(n - m) \pi x}{L} \right] \bigg|_{-L}^{L} = 0. \]
Orthogonality of Sines and Cosines.

Proof: Since one of \(n \) or \(m \) is non-zero, holds

\[
\frac{1}{2} \int_{-L}^{L} \cos \left(\frac{(n + m)\pi x}{L} \right) \, dx = \frac{L}{2(n + m)\pi} \sin \left(\frac{(n + m)\pi x}{L} \right) \bigg|_{-L}^{L} = 0.
\]

We obtain that

\[
\int_{-L}^{L} \cos \left(\frac{n\pi x}{L} \right) \cos \left(\frac{m\pi x}{L} \right) \, dx = \frac{1}{2} \int_{-L}^{L} \cos \left(\frac{(n - m)\pi x}{L} \right) \, dx.
\]

If we further restrict \(n \neq m \), then

\[
\frac{1}{2} \int_{-L}^{L} \cos \left(\frac{(n - m)\pi x}{L} \right) \, dx = \frac{L}{2(n - m)\pi} \sin \left(\frac{(n - m)\pi x}{L} \right) \bigg|_{-L}^{L} = 0.
\]

If \(n = m \neq 0 \), we have that

\[
\frac{1}{2} \int_{-L}^{L} \cos \left(\frac{(n - m)\pi x}{L} \right) \, dx = \frac{1}{2} \int_{-L}^{L} \, dx = L.
\]
Orthogonality of Sines and Cosines.

Proof: Since one of \(n \) or \(m \) is non-zero, holds

\[
\frac{1}{2} \int_{-L}^{L} \cos\left[\frac{(n + m)\pi x}{L}\right] \, dx = \frac{L}{2(n + m)\pi} \sin\left[\frac{(n + m)\pi x}{L}\right] \bigg|_{-L}^{L} = 0.
\]

We obtain that

\[
\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) \, dx = \frac{1}{2} \int_{-L}^{L} \cos\left[\frac{(n - m)\pi x}{L}\right] \, dx.
\]

If we further restrict \(n \neq m \), then

\[
\frac{1}{2} \int_{-L}^{L} \cos\left[\frac{(n - m)\pi x}{L}\right] \, dx = \frac{L}{2(n - m)\pi} \sin\left[\frac{(n - m)\pi x}{L}\right] \bigg|_{-L}^{L} = 0.
\]

If \(n = m \neq 0 \), we have that

\[
\frac{1}{2} \int_{-L}^{L} \cos\left[\frac{(n - m)\pi x}{L}\right] \, dx = \frac{1}{2} \int_{-L}^{L} \, dx = L.
\]

This establishes the first equation in the Theorem. The remaining equations are proven in a similar way. \(\square \)
Overview of Fourier Series (Sect. 6.2).

- Periodic functions.
- Orthogonality of Sines and Cosines.
- **The Fourier Theorem: Continuous case.**
- Example: Using the Fourier Theorem.
- The Fourier Theorem: Piecewise continuous case.
- Example: Using the Fourier Theorem.
The Fourier Theorem: Continuous case.

Theorem (Fourier Series)

If the function $f : [-L, L] \subset \mathbb{R} \rightarrow \mathbb{R}$ *is continuous, then* f *can be expressed as an infinite series*

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right] \quad (1)$$

with the constants a_n *and* b_n *given by*

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) \, dx, \quad n \geq 0,$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) \, dx, \quad n \geq 1.$$

Furthermore, the Fourier series in Eq. (1) provides a $2L$-*periodic extension of function* f *from the domain* $[-L, L] \subset \mathbb{R}$ *to* \mathbb{R}.
The Fourier Theorem: Continuous case.

Sketch of the Proof:

Define the partial sum functions

\[f_N(x) = \frac{a_0}{2} + \sum_{n=1}^{N} \left[a_n \cos \left(\frac{n\pi x}{L} \right) + b_n \sin \left(\frac{n\pi x}{L} \right) \right] \]
The Fourier Theorem: Continuous case.

Sketch of the Proof:

- Define the partial sum functions

\[f_N(x) = \frac{a_0}{2} + \sum_{n=1}^{N} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right] \]

with \(a_n \) and \(b_n \) given by

\[a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) \, dx, \quad n \geq 0, \]

\[b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) \, dx, \quad n \geq 1. \]
The Fourier Theorem: Continuous case.

Sketch of the Proof:

- Define the partial sum functions

\[f_N(x) = \frac{a_0}{2} + \sum_{n=1}^{N} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right] \]

with \(a_n\) and \(b_n\) given by

\[a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) \, dx, \quad n \geq 0, \]

\[b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) \, dx, \quad n \geq 1. \]

- Express \(f_N\) as a convolution of Sine, Cosine, functions and the original function \(f\).
The Fourier Theorem: Continuous case.

Sketch of the Proof:

- Define the partial sum functions

\[f_N(x) = \frac{a_0}{2} + \sum_{n=1}^{N} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right] \]

with \(a_n \) and \(b_n \) given by

\[a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) \, dx, \quad n \geq 0, \]

\[b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) \, dx, \quad n \geq 1. \]

- Express \(f_N(x) \) as a convolution of Sine, Cosine, functions and the original function \(f \).

- Use the convolution properties to show that

\[\lim_{N \to \infty} f_N(x) = f(x), \quad x \in [-L, L]. \]
Overview of Fourier Series (Sect. 6.2).

- Periodic functions.
- Orthogonality of Sines and Cosines.
- The Fourier Theorem: Continuous case.
 - Example: Using the Fourier Theorem.
- The Fourier Theorem: Piecewise continuous case.
 - Example: Using the Fourier Theorem.
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: In this case \(L = 1 \).

The Fourier series expansion is

\[f(x) = a_0 + \sum_{n=1}^{\infty} \left[a_n \cos\left(n\pi x \right) + b_n \sin\left(n\pi x \right) \right], \]

where the \(a_n \) and \(b_n \) are given in the Theorem.

We start with \(a_0 \),

\[a_0 = \frac{1}{2} \left[\int_{-1}^{0} (1 + x) \, dx + \int_{0}^{1} (1 - x) \, dx \right]. \]

We obtain:

\[a_0 = 1. \]
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
 1 + x & x \in [-1, 0), \\
 1 - x & x \in [0, 1].
\end{cases} \]

Solution: In this case \(L = 1 \).
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
 1 + x & x \in [-1, 0), \\
 1 - x & x \in [0, 1].
\end{cases} \]

Solution: In this case \(L = 1 \). The Fourier series expansion is

\[f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\pi x) + b_n \sin(n\pi x) \right], \]
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: In this case \(L = 1 \). The Fourier series expansion is

\[f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\pi x) + b_n \sin(n\pi x) \right], \]

where the \(a_n \), \(b_n \) are given in the Theorem.
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases} 1 + x & x \in [-1, 0), \\ 1 - x & x \in [0, 1]. \end{cases} \]

Solution: In this case \(L = 1 \). The Fourier series expansion is

\[f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\pi x) + b_n \sin(n\pi x) \right], \]

where the \(a_n, b_n \) are given in the Theorem. We start with \(a_0 \),

\[a_0 = \int_{-1}^{1} f(x) \, dx \]
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: In this case \(L = 1 \). The Fourier series expansion is

\[f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\pi x) + b_n \sin(n\pi x) \right], \]

where the \(a_n \), \(b_n \) are given in the Theorem. We start with \(a_0 \),

\[a_0 = \int_{-1}^{1} f(x) \, dx = \int_{-1}^{0} (1 + x) \, dx + \int_{0}^{1} (1 - x) \, dx. \]
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[
f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases}
\]

Solution: In this case \(L = 1 \). The Fourier series expansion is

\[
f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\pi x) + b_n \sin(n\pi x) \right],
\]

where the \(a_n, b_n \) are given in the Theorem. We start with \(a_0 \),

\[
a_0 = \int_{-1}^{1} f(x) \, dx = \int_{-1}^{0} (1 + x) \, dx + \int_{0}^{1} (1 - x) \, dx.
\]

\[
a_0 = \left(x + \frac{x^2}{2} \right) \bigg|_{-1}^{0} + \left(x - \frac{x^2}{2} \right) \bigg|_{0}^{1}
\]
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: In this case \(L = 1 \). The Fourier series expansion is

\[f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\pi x) + b_n \sin(n\pi x) \right], \]

where the \(a_n, b_n \) are given in the Theorem. We start with \(a_0 \),

\[a_0 = \int_{-1}^{1} f(x) \, dx = \int_{-1}^{0} (1 + x) \, dx + \int_{0}^{1} (1 - x) \, dx. \]

\[a_0 = \left(x + \frac{x^2}{2} \right) \bigg|_{-1}^{0} + \left(x - \frac{x^2}{2} \right) \bigg|_{0}^{1} = \left(1 - \frac{1}{2} \right) + \left(1 - \frac{1}{2} \right) \]
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: In this case \(L = 1 \). The Fourier series expansion is

\[f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\pi x) + b_n \sin(n\pi x) \right], \]

where the \(a_n, b_n \) are given in the Theorem. We start with \(a_0 \),

\[a_0 = \int_{-1}^{1} f(x) \, dx = \int_{-1}^{0} (1 + x) \, dx + \int_{0}^{1} (1 - x) \, dx. \]

\[a_0 = \left(x + \frac{x^2}{2} \right) \bigg|_{-1}^{0} + \left(x - \frac{x^2}{2} \right) \bigg|_{0}^{1} = \left(1 - \frac{1}{2} \right) + \left(1 - \frac{1}{2} \right) \]

We obtain: \(a_0 = 1 \).
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall: \(a_0 = 1 \).
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall: \(a_0 = 1 \). Similarly, the rest of the \(a_n \) are given by,

\[a_n = \int_{-1}^{1} f(x) \cos(n\pi x) \, dx \]
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[
f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases}
\]

Solution: Recall: \(a_0 = 1 \). Similarly, the rest of the \(a_n \) are given by,

\[
a_n = \int_{-1}^{1} f(x) \cos(n\pi x) \, dx
\]

\[
a_n = \int_{-1}^{0} (1 + x) \cos(n\pi x) \, dx + \int_{0}^{1} (1 - x) \cos(n\pi x) \, dx.
\]
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall: \(a_0 = 1 \). Similarly, the rest of the \(a_n \) are given by,

\[a_n = \int_{-1}^{1} f(x) \cos(n\pi x) \, dx \]

\[a_n = \int_{-1}^{0} (1 + x) \cos(n\pi x) \, dx + \int_{0}^{1} (1 - x) \cos(n\pi x) \, dx. \]

Recall the integrals \(\int \cos(n\pi x) \, dx = \frac{1}{n\pi} \sin(n\pi x), \)
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall: \(a_0 = 1 \). Similarly, the rest of the \(a_n \) are given by,

\[a_n = \int_{-1}^{1} f(x) \cos(n \pi x) \, dx \]

\[a_n = \int_{-1}^{0} (1 + x) \cos(n \pi x) \, dx + \int_{0}^{1} (1 - x) \cos(n \pi x) \, dx. \]

Recall the integrals \(\int \cos(n \pi x) \, dx = \frac{1}{n \pi} \sin(n \pi x) \), and

\[\int x \cos(n \pi x) \, dx = \frac{x}{n \pi} \sin(n \pi x) + \frac{1}{n^2 \pi^2} \cos(n \pi x). \]
Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: It is not difficult to see that

\[a_n = \frac{1}{n\pi} \sin(n\pi x) \bigg|_0^1 + \left[\frac{x}{n\pi} \sin(n\pi x) + \frac{1}{n^2\pi^2} \cos(n\pi x) \right] \bigg|_0^1 \]

\[+ \frac{1}{n\pi} \sin(n\pi x) \bigg|_0^1 - \left[\frac{x}{n\pi} \sin(n\pi x) + \frac{1}{n^2\pi^2} \cos(n\pi x) \right] \bigg|_0^1 \]
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[
f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases}
\]

Solution: It is not difficult to see that

\[
a_n = \frac{1}{n\pi} \sin(n\pi x) \bigg|_{-1}^{0} + \left[\frac{x}{n\pi} \sin(n\pi x) + \frac{1}{n^2\pi^2} \cos(n\pi x) \right] \bigg|_{-1}^{0} \\
+ \frac{1}{n\pi} \sin(n\pi x) \bigg|_{0}^{1} - \left[\frac{x}{n\pi} \sin(n\pi x) + \frac{1}{n^2\pi^2} \cos(n\pi x) \right] \bigg|_{0}^{1} \\
= \left[\frac{1}{n^2\pi^2} - \frac{1}{n^2\pi^2} \cos(-n\pi) \right] - \left[\frac{1}{n^2\pi^2} \cos(n\pi) - \frac{1}{n^2\pi^2} \right].
\]
Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: It is not difficult to see that

\[a_n = \frac{1}{n\pi} \sin(n\pi x) \bigg|_0^0 + \frac{x}{n\pi} \sin(n\pi x) \bigg|_1^0 + \frac{1}{n^2\pi^2} \cos(n\pi x) \bigg|_0^0 \]

\[+ \frac{1}{n\pi} \sin(n\pi x) \bigg|_0^1 - \frac{x}{n\pi} \sin(n\pi x) \bigg|_1^1 - \frac{1}{n^2\pi^2} \cos(n\pi x) \bigg|_0^1 \]

\[a_n = \left[\frac{1}{n^2\pi^2} - \frac{1}{n^2\pi^2} \cos(-n\pi) \right] - \left[\frac{1}{n^2\pi^2} \cos(n\pi) - \frac{1}{n^2\pi^2} \right]. \]

We then conclude that \(a_n = \frac{2}{n^2\pi^2} [1 - \cos(n\pi)] \).
Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

\[f(x) = \begin{cases} 1 + x & x \in [-1, 0), \\ 1 - x & x \in [0, 1]. \end{cases} \]

Solution: Recall: \(a_0 = 1 \), and \(a_n = \frac{2}{n^2\pi^2} [1 - \cos(n\pi)] \).
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall: \(a_0 = 1 \), and \(a_n = \frac{2}{n^2\pi^2} \left[1 - \cos(n\pi) \right] \).

Finally, we must find the coefficients \(b_n \).
Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall: \(a_0 = 1 \), and \(a_n = \frac{2}{n^2 \pi^2} [1 - \cos(n\pi)] \).

Finally, we must find the coefficients \(b_n \).

A similar calculation shows that \(b_n = 0 \).
Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall: \(a_0 = 1 \), and \(a_n = \frac{2}{n^2\pi^2} [1 - \cos(n\pi)] \).

Finally, we must find the coefficients \(b_n \).

A similar calculation shows that \(b_n = 0 \).

Then, the Fourier series of \(f \) is given by

\[f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2\pi^2} [1 - \cos(n\pi)] \cos(n\pi x). \]
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall:

\[f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} \left[1 - \cos(n\pi) \right] \cos(n\pi x). \]
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[
f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases}
\]

Solution: Recall:

\[
f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} \left[1 - \cos(n\pi)\right] \cos(n\pi x).
\]

We can obtain a simpler expression for the Fourier coefficients \(a_n \).
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall:

\[f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} \left[1 - \cos(n\pi) \right] \cos(n\pi x). \]

We can obtain a simpler expression for the Fourier coefficients \(a_n \).

Recall the relations \(\cos(n\pi) = (-1)^n \).
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall:

\[f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} \left[1 - \cos(n \pi) \right] \cos(n \pi x). \]

We can obtain a simpler expression for the Fourier coefficients \(a_n \).

Recall the relations \(\cos(n \pi) = (-1)^n \), then

\[f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} \left[1 - (-1)^n \right] \cos(n \pi x). \]
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
 1 + x & x \in [-1, 0), \\
 1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall: \(f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} [1 - \cos(n\pi)] \cos(n\pi x). \)

We can obtain a simpler expression for the Fourier coefficients \(a_n \).

Recall the relations \(\cos(n\pi) = (-1)^n \), then

\[f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} [1 - (-1)^n] \cos(n\pi x). \]

\[f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} [1 + (-1)^{n+1}] \cos(n\pi x). \]
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall: \(f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} \left[1 + (-1)^{n+1} \right] \cos(n \pi x). \)
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall:

\[f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} \left[1 + (-1)^{n+1} \right] \cos(n\pi x). \]

If \(n = 2k \),
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall:

\[
f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} \left[1 + (-1)^{n+1} \right] \cos(n\pi x).
\]

If \(n = 2k \), so \(n \) is even,
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall:

\[f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} \left[1 + (-1)^{n+1} \right] \cos(n \pi x). \]

If \(n = 2k \), so \(n \) is even, so \(n + 1 = 2k + 1 \) is odd,
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall:

\[f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} \left[1 + (-1)^{n+1} \right] \cos(n\pi x). \]

If \(n = 2k \), so \(n \) is even, so \(n + 1 = 2k + 1 \) is odd, then

\[a_{2k} = \frac{2}{(2k)^2 \pi^2} (1 - 1) \]
Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall: \(f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} \left[1 + (-1)^{n+1}\right] \cos(n\pi x). \)

If \(n = 2k \), so \(n \) is even, so \(n + 1 = 2k + 1 \) is odd, then

\[a_{2k} = \frac{2}{(2k)^2 \pi^2} (1 - 1) \quad \Rightarrow \quad a_{2k} = 0. \]
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall:

\[f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} [1 + (-1)^{n+1}] \cos(n \pi x). \]

If \(n = 2k \), so \(n \) is even, so \(n + 1 = 2k + 1 \) is odd, then

\[a_{2k} = \frac{2}{(2k)^2 \pi^2} (1 - 1) \implies a_{2k} = 0. \]

If \(n = 2k - 1 \),
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall: \(f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} \left[1 + (-1)^{n+1} \right] \cos(n \pi x). \)

If \(n = 2k \), so \(n \) is even, so \(n + 1 = 2k + 1 \) is odd, then

\[a_{2k} = \frac{2}{(2k)^2 \pi^2} (1 - 1) \Rightarrow a_{2k} = 0. \]

If \(n = 2k - 1 \), so \(n \) is odd,
Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

\[f(x) = \begin{cases} 1 + x & x \in [-1, 0), \\ 1 - x & x \in [0, 1]. \end{cases} \]

Solution: Recall:
\[f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} \left[1 + (-1)^{n+1} \right] \cos(n \pi x). \]

If \(n = 2k \), so \(n \) is even, so \(n + 1 = 2k + 1 \) is odd, then

\[a_{2k} = \frac{2}{(2k)^2 \pi^2} (1 - 1) \quad \Rightarrow \quad a_{2k} = 0. \]

If \(n = 2k - 1 \), so \(n \) is odd, so \(n + 1 = 2k \) is even,
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases} 1 + x & x \in [-1, 0), \\ 1 - x & x \in [0, 1]. \end{cases} \]

Solution: Recall:

\[f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2\pi^2} \left[1 + (-1)^{n+1} \right] \cos(n\pi x). \]

If \(n = 2k \), so \(n \) is even, so \(n + 1 = 2k + 1 \) is odd, then

\[a_{2k} = \frac{2}{(2k)^2\pi^2} (1 - 1) \Rightarrow a_{2k} = 0. \]

If \(n = 2k - 1 \), so \(n \) is odd, so \(n + 1 = 2k \) is even, then

\[a_{2k-1} = \frac{2}{(2k - 1)^2\pi^2} (1 + 1) \]
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases} 1 + x & x \in [-1, 0), \\ 1 - x & x \in [0, 1]. \end{cases} \]

Solution: Recall:

\[f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2\pi^2} \left[1 + (-1)^{n+1} \right] \cos(n\pi x). \]

If \(n = 2k \), so \(n \) is even, so \(n + 1 = 2k + 1 \) is odd, then

\[a_{2k} = \frac{2}{(2k)^2\pi^2} (1 - 1) \implies a_{2k} = 0. \]

If \(n = 2k - 1 \), so \(n \) is odd, so \(n + 1 = 2k \) is even, then

\[a_{2k-1} = \frac{2}{(2k - 1)^2\pi^2} (1 + 1) \implies a_{2k-1} = \frac{4}{(2k - 1)^2\pi^2}. \]
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases} 1 + x & x \in [-1, 0), \\ 1 - x & x \in [0, 1]. \end{cases} \]

Solution:

Recall: \(f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2\pi^2} \left[1 + (-1)^{n+1} \right] \cos(n\pi x), \) and

\[a_{2k} = 0, \quad a_{2k-1} = \frac{4}{(2k-1)^2\pi^2}. \]
Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution:
Recall: \(f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} \left[1 + (-1)^{n+1} \right] \cos(n\pi x), \) and

\[a_{2k} = 0, \quad a_{2k-1} = \frac{4}{(2k - 1)^2 \pi^2}. \]

We conclude: \(f(x) = \frac{1}{2} + \sum_{k=1}^{\infty} \frac{4}{(2k - 1)^2 \pi^2} \cos((2k - 1)\pi x). \)
Overview of Fourier Series (Sect. 6.2).

- Periodic functions.
- Orthogonality of Sines and Cosines.
- The Fourier Theorem: Continuous case.
- Example: Using the Fourier Theorem.
- The Fourier Theorem: Piecewise continuous case.
- Example: Using the Fourier Theorem.
Recall:

Definition
A function \(f : [a, b] \to \mathbb{R} \) is called \textit{piecewise continuous} \(\text{iff} \) holds,

(a) \([a, b]\) can be partitioned in a finite number of sub-intervals such that \(f \) is continuous on the interior of these sub-intervals.

(b) \(f \) has finite limits at the endpoints of all sub-intervals.
The Fourier Theorem: Piecewise continuous case.

Theorem (Fourier Series)

If \(f : [-L, L] \subset \mathbb{R} \to \mathbb{R} \) is piecewise continuous, then the function

\[
f_f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos \left(\frac{n\pi x}{L} \right) + b_n \sin \left(\frac{n\pi x}{L} \right) \right]
\]

where \(a_n \) and \(b_n \) given by

\[
a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n\pi x}{L} \right) \, dx, \quad n \geq 0,
\]

\[
b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n\pi x}{L} \right) \, dx, \quad n \geq 1.
\]

satisfies that:

(a) \(f_f(x) = f(x) \) for all \(x \) where \(f \) is continuous;

(b) \(f_f(x_0) = \frac{1}{2} \left[\lim_{x \to x_0^+} f(x) + \lim_{x \to x_0^-} f(x) \right] \) for all \(x_0 \) where \(f \) is discontinuous.
Overview of Fourier Series (Sect. 6.2).

- Periodic functions.
- Orthogonality of Sines and Cosines.
- The Fourier Theorem: Continuous case.
- Example: Using the Fourier Theorem.
- The Fourier Theorem: Piecewise continuous case.
- **Example: Using the Fourier Theorem.**
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases}
-1 & x \in [-1, 0), \\
1 & x \in [0, 1).
\end{cases} \)
and periodic with period \(T = 2 \).
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases}
-1 & x \in [-1, 0), \\
1 & x \in [0, 1).
\end{cases} \)

and periodic with period \(T = 2 \).

Solution: We start computing the Fourier coefficients \(b_n; \)
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases} -1 & x \in [-1, 0), \\ 1 & x \in [0, 1). \end{cases} \)

and periodic with period \(T = 2 \).

Solution: We start computing the Fourier coefficients \(b_n \);

\[
b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n\pi x}{L} \right) \, dx,
\]
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases}
-1 & x \in [-1, 0), \\
1 & x \in [0, 1).
\end{cases} \)

and periodic with period \(T = 2 \).

Solution: We start computing the Fourier coefficients \(b_n \);

\[
b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n\pi x}{L} \right) \, dx, \quad L = 1,
\]
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases} -1 & x \in [-1, 0), \\ 1 & x \in [0, 1) \end{cases} \)
and periodic with period \(T = 2 \).

Solution: We start computing the Fourier coefficients \(b_n \):

\[
b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n\pi x}{L} \right) \, dx, \quad L = 1,
\]

\[
b_n = \int_{-1}^{0} (-1) \sin(n\pi x) \, dx + \int_{0}^{1} (1) \sin(n\pi x) \, dx,
\]
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases}
-1 & x \in [-1, 0), \\
1 & x \in [0, 1).
\end{cases} \)

and periodic with period \(T = 2 \).

Solution: We start computing the Fourier coefficients \(b_n \);

\[
b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n\pi x}{L} \right) \, dx,
\]

\(L = 1, \)

\[
b_n = \int_{-1}^{0} (-1) \sin(n\pi x) \, dx + \int_{0}^{1} (1) \sin(n\pi x) \, dx,
\]

\[
b_n = \frac{(-1)}{n\pi} \left[-\cos(n\pi x) \right]_{-1}^{0} + \frac{1}{n\pi} \left[-\cos(n\pi x) \right]_{0}^{1},
\]
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases} -1 & x \in [-1, 0), \\ 1 & x \in [0, 1). \end{cases} \)
and periodic with period \(T = 2 \).

Solution: We start computing the Fourier coefficients \(b_n \);

\[
b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n\pi x}{L} \right) \, dx,
\]

\(L = 1 \),

\[
b_n = \int_{-1}^{0} (-1) \sin(n\pi x) \, dx + \int_{0}^{1} (1) \sin(n\pi x) \, dx,
\]

\[
b_n = \frac{(-1)}{n\pi} \left[-\cos(n\pi x) \right]_{-1}^{0} + \frac{1}{n\pi} \left[-\cos(n\pi x) \right]_{0}^{1},
\]

\[
b_n = \frac{(-1)}{n\pi} \left[-1 + \cos(-n\pi) \right] + \frac{1}{n\pi} \left[-\cos(n\pi) + 1 \right].
\]
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases} -1 & x \in [-1, 0), \\ 1 & x \in [0, 1). \end{cases} \) and periodic with period \(T = 2 \).

Solution: \(b_n = \frac{(-1)}{n\pi} [-1 + \cos(-n\pi)] + \frac{1}{n\pi} [-\cos(n\pi) + 1] \).
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases}
-1 & x \in [-1, 0), \\
1 & x \in [0, 1).
\end{cases} \)

and periodic with period \(T = 2. \)

Solution: \(b_n = \frac{(-1)}{n\pi}[-1 + \cos(-n\pi)] + \frac{1}{n\pi}[-\cos(n\pi) + 1]. \)

\[b_n = \frac{1}{n\pi} \left[1 - \cos(-n\pi) - \cos(n\pi) + 1 \right] \]
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases} -1 & x \in [-1, 0), \\ 1 & x \in [0, 1). \end{cases} \)

and periodic with period \(T = 2 \).

Solution: \(b_n = \frac{(-1)}{n\pi}[-1 + \cos(-n\pi)] + \frac{1}{n\pi}[-\cos(n\pi) + 1]. \)

\[
\begin{align*}
b_n &= \frac{1}{n\pi} [1 - \cos(-n\pi) - \cos(n\pi) + 1] = \frac{2}{n\pi} [1 - \cos(n\pi)],
\end{align*}
\]
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases} -1 & x \in [-1, 0), \\ 1 & x \in [0, 1). \end{cases} \) and periodic with period \(T = 2 \).

Solution:

\[b_n = \frac{(-1)}{n\pi} [-1 + \cos(-n\pi)] + \frac{1}{n\pi} [-\cos(n\pi) + 1]. \]

\[b_n = \frac{1}{n\pi} [1 - \cos(-n\pi) - \cos(n\pi) + 1] = \frac{2}{n\pi} [1 - \cos(n\pi)], \]

We obtain:

\[b_n = \frac{2}{n\pi} [1 - (-1)^n]. \]
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases} -1 & x \in [-1, 0), \\ 1 & x \in [0, 1). \end{cases} \)
and periodic with period \(T = 2 \).

Solution: \(b_n = \frac{(-1)}{n\pi} \left[-1 + \cos(-n\pi)\right] + \frac{1}{n\pi} \left[-\cos(n\pi) + 1\right]. \)

\[
b_n = \frac{1}{n\pi} \left[1 - \cos(-n\pi) - \cos(n\pi) + 1\right] = \frac{2}{n\pi} \left[1 - \cos(n\pi)\right],
\]

We obtain: \(b_n = \frac{2}{n\pi} \left[1 - (-1)^n\right]. \)

If \(n = 2k, \)
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases}
-1 & x \in [-1, 0), \\
1 & x \in [0, 1).
\end{cases} \) and periodic with period \(T = 2 \).

Solution:
\[
 b_n = \frac{(-1)}{n\pi} [-1 + \cos(-n\pi)] + \frac{1}{n\pi} [-\cos(n\pi) + 1].
\]

\[
 b_n = \frac{1}{n\pi} [1 - \cos(-n\pi) - \cos(n\pi) + 1] = \frac{2}{n\pi} [1 - \cos(n\pi)],
\]

We obtain:
\[
 b_n = \frac{2}{n\pi} [1 - (-1)^n].
\]

If \(n = 2k \), then
\[
 b_{2k} = \frac{2}{2k\pi} [1 - (-1)^{2k}],
\]
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases}
-1 & x \in [-1, 0), \\
1 & x \in [0, 1).
\end{cases} \)

and periodic with period \(T = 2 \).

Solution: \(b_n = \frac{(-1)^n}{n\pi} [-1 + \cos(-n\pi)] + \frac{1}{n\pi} [-\cos(n\pi) + 1] \).

\[
\begin{align*}
b_n &= \frac{1}{n\pi} [1 - \cos(-n\pi) - \cos(n\pi) + 1] = \frac{2}{n\pi} [1 - \cos(n\pi)],
\end{align*}
\]

We obtain: \(b_n = \frac{2}{n\pi} [1 - (-1)^n] \).

If \(n = 2k \), then \(b_{2k} = \frac{2}{2k\pi} [1 - (-1)^{2k}] \), hence \(b_{2k} = 0 \).
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases} -1 & x \in [-1, 0), \\ 1 & x \in [0, 1). \end{cases} \)

and periodic with period \(T = 2 \).

Solution:

\[
\begin{align*}
 b_n &= \frac{(-1)}{n\pi} \left[-1 + \cos(-n\pi) \right] + \frac{1}{n\pi} \left[-\cos(n\pi) + 1 \right]. \\
 b_n &= \frac{1}{n\pi} \left[1 - \cos(-n\pi) - \cos(n\pi) + 1 \right] = \frac{2}{n\pi} \left[1 - \cos(n\pi) \right],
\end{align*}
\]

We obtain:

\[
 b_n = \frac{2}{n\pi} \left[1 - (-1)^n \right].
\]

If \(n = 2k \), then \(b_{2k} = \frac{2}{2k\pi} \left[1 - (-1)^{2k} \right] \), hence \(b_{2k} = 0 \).

If \(n = 2k - 1 \),
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases} -1 & x \in [-1, 0), \\ 1 & x \in [0, 1). \end{cases} \)

and periodic with period \(T = 2 \).

Solution: \(b_n = \frac{(-1)^n}{n\pi} [-1 + \cos(-n\pi)] + \frac{1}{n\pi} [-\cos(n\pi) + 1]. \)

\[
 b_n = \frac{1}{n\pi} [1 - \cos(-n\pi) - \cos(n\pi) + 1] = \frac{2}{n\pi} [1 - \cos(n\pi)],
\]

We obtain: \(b_n = \frac{2}{n\pi} [1 - (-1)^n]. \)

If \(n = 2k \), then \(b_{2k} = \frac{2}{2k\pi} [1 - (-1)^{2k}], \) hence \(b_{2k} = 0. \)

If \(n = 2k - 1 \), then \(b_{2k-1} = \frac{2}{(2k - 1)\pi} [1 - (-1)^{2k-1}], \)
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases} -1 & x \in [-1, 0), \\ 1 & x \in [0, 1). \end{cases} \) and periodic with period \(T = 2 \).

Solution: \(b_n = \frac{(-1)^n}{n\pi} [-1 + \cos(-n\pi)] + \frac{1}{n\pi} [-\cos(n\pi) + 1]. \)

\[b_n = \frac{1}{n\pi} \left[1 - \cos(-n\pi) - \cos(n\pi) + 1 \right] = \frac{2}{n\pi} \left[1 - \cos(n\pi) \right], \]

We obtain: \(b_n = \frac{2}{n\pi} \left[1 - (-1)^n \right]. \)

If \(n = 2k \), then \(b_{2k} = \frac{2}{2k\pi} \left[1 - (-1)^{2k} \right] \), hence \(b_{2k} = 0 \).

If \(n = 2k - 1 \), then \(b_{2k-1} = \frac{2}{(2k-1)\pi} \left[1 - (-1)^{2k-1} \right], \)

hence \(b_{2k} = \frac{4}{(2k-1)\pi}. \)
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases} -1 & x \in [-1, 0), \\ 1 & x \in [0, 1). \end{cases} \)

and periodic with period \(T = 2 \).

Solution: Recall: \(b_{2k} = 0 \), and \(b_{2k} = \frac{4}{(2k - 1)\pi} \).
Example: Using the Fourier Theorem.

Example

Find the Fourier series of

\[f(x) = \begin{cases}
 -1 & x \in [-1, 0), \\
 1 & x \in [0, 1).
\end{cases} \]

and periodic with period \(T = 2 \).

Solution: Recall: \(b_{2k} = 0 \), and \(b_{2k} = \frac{4}{(2k - 1)\pi} \).

\[
a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) \, dx,
\]

\[
b_{2k} = \frac{4}{(2k - 1)\pi}.
\]
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases} -1 & x \in [-1, 0), \\ 1 & x \in [0, 1) \end{cases} \) and periodic with period \(T = 2 \).

Solution: Recall: \(b_{2k} = 0 \), and \(b_{2k} = \frac{4}{(2k - 1)\pi} \).

\[
a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) \, dx, \quad L = 1,
\]
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases}
-1 & x \in [-1, 0), \\
1 & x \in [0, 1).
\end{cases} \)

and periodic with period \(T = 2 \).

Solution: Recall: \(b_{2k} = 0 \), and \(b_{2k} = \frac{4}{(2k - 1)\pi} \).

\[
a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) \, dx, \quad L = 1,
\]

\[
a_n = \int_{-1}^{0} (-1) \cos(n\pi x) \, dx + \int_{0}^{1} (1) \cos(n\pi x) \, dx,
\]
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases}
-1 & x \in [-1, 0), \\
1 & x \in [0, 1).
\end{cases} \)
and periodic with period \(T = 2 \).

Solution: Recall: \(b_{2k} = 0 \), and \(b_{2k} = \frac{4}{(2k - 1)\pi} \).

\[
a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) \, dx, \quad \text{where} \quad L = 1,
\]

\[
a_n = \int_{-1}^{0} (-1) \cos(n\pi x) \, dx + \int_{0}^{1} (1) \cos(n\pi x) \, dx,
\]

\[
a_n = \frac{(-1)}{n\pi} \left[\sin(n\pi x) \right]_{-1}^{0} + \frac{1}{n\pi} \left[\sin(n\pi x) \right]_{0}^{1},
\]
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases} -1 & x \in [-1, 0), \\ 1 & x \in [0, 1). \end{cases} \)
and periodic with period \(T = 2 \).

Solution: Recall: \(b_{2k} = 0 \), and \(b_{2k} = \frac{4}{(2k - 1)\pi} \).

\[
a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) \, dx, \quad L = 1,
\]

\[
a_n = \int_{-1}^{0} (-1) \cos(n\pi x) \, dx + \int_{0}^{1} 1 \cos(n\pi x) \, dx,
\]

\[
a_n = \frac{(-1)}{n\pi} \left[\sin(n\pi x) \right]_{-1}^{0} + \frac{1}{n\pi} \left[\sin(n\pi x) \right]_{0}^{1},
\]

\[
a_n = \frac{(-1)}{n\pi} [0 - \sin(-n\pi)] + \frac{1}{n\pi} [\sin(n\pi) - 0]
\]
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases} -1 & x \in [-1, 0), \\ 1 & x \in [0, 1). \end{cases} \)

and periodic with period \(T = 2 \).

Solution: Recall: \(b_{2k} = 0 \), and \(b_{2k} = \frac{4}{(2k - 1)\pi} \).

\[
a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L} \right) \, dx,
\]

\[
a_n = \int_{-1}^{0} (-1) \cos(n\pi x) \, dx + \int_{0}^{1} (1) \cos(n\pi x) \, dx,
\]

\[
a_n = \frac{(-1)}{n\pi} \left[\sin(n\pi x) \right]_{-1}^{0} + \frac{1}{n\pi} \left[\sin(n\pi x) \right]_{0}^{1},
\]

\[
a_n = \frac{(-1)}{n\pi} [0 - \sin(-n\pi)] + \frac{1}{n\pi} [\sin(n\pi) - 0] \quad \Rightarrow \quad a_n = 0.
\]
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases}
-1 & x \in [-1, 0), \\
1 & x \in [0, 1).
\end{cases} \)

and periodic with period \(T = 2 \).

Solution: Recall: \(b_{2k} = 0 \), \(b_{2k} = \frac{4}{(2k - 1)\pi} \), and \(a_n = 0 \).
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases}
-1 & x \in [-1, 0), \\
1 & x \in [0, 1).
\end{cases} \)
and periodic with period \(T = 2 \).

Solution: Recall: \(b_{2k} = 0 \), \(b_{2k} = \frac{4}{(2k - 1)\pi} \), and \(a_n = 0 \).
Therefore, we conclude that

\[
f_F(x) = \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{1}{(2k - 1)} \sin((2k - 1)\pi x).
\]
Solving the Heat Equation (Sect. 6.3).

- The Heat Equation.
- The Initial-Boundary Value Problem.
- The separation of variables method.
- An example of separation of variables.

Review: The Stationary Heat Equation describes the temperature distribution in a solid material in thermal equilibrium. The temperature is time-independent.

Review: The Stationary Heat Equation describes the temperature distribution in a solid material in thermal equilibrium. The temperature is time-independent.

Problem: The time-independent temperature, \(T \), of a bar of length \(L \) with insulated horizontal sides and vertical extremes kept at fixed temperatures \(T_0, T_L \), is the solution of the BVP:

\[
T''(x) = 0, \quad x \in (0, L), \quad T(0) = T_0, \quad T(L) = T_L,
\]

Review: The Stationary Heat Equation describes the temperature distribution in a solid material in thermal equilibrium. The temperature is time-independent.

Problem: The time-independent temperature, T, of a bar of length L with insulated horizontal sides and vertical extremes kept at fixed temperatures T_0, T_L, is the solution of the BVP:

$$T''(x) = 0, \quad x \in (0, L), \quad T(0) = T_0, \quad T(L) = T_L,$$

Remark: The heat transfer occurs only along the x-axis.

Review: The Stationary Heat Equation describes the temperature distribution in a solid material in thermal equilibrium. The temperature is time-independent.

Problem: The time-independent temperature, T, of a bar of length L with insulated horizontal sides and vertical extremes kept at fixed temperatures T_0, T_L, is the solution of the BVP:

$$T''(x) = 0, \quad x \in (0, L), \quad T(0) = T_0, \quad T(L) = T_L,$$

Remark: The heat transfer occurs only along the x-axis.
Solving the Heat Equation (Sect. 6.3).

- **The Heat Equation.**
- The Initial-Boundary Value Problem.
- The separation of variables method.
- An example of separation of variables.
The Heat Equation.

Remarks:

- The unknown of the problem is \(u(t, x) \), the temperature of the bar at the time \(t \) and position \(x \).
The Heat Equation.

Remarks:

- The unknown of the problem is $u(t, x)$, the temperature of the bar at the time t and position x.
- The temperature does not depend on y or z.

The one-dimensional Heat Equation is:

$$\frac{\partial u}{\partial t}(t, x) = k \frac{\partial^2 u}{\partial x^2}(t, x),$$

where $k > 0$ is the heat conductivity, units: $[k] = (\text{distance})^2/(\text{time})$.

The Heat Equation is a Partial Differential Equation, PDE.
The Heat Equation.

Remarks:

- The unknown of the problem is $u(t, x)$, the temperature of the bar at the time t and position x.
- The temperature does not depend on y or z.
- The one-dimensional Heat Equation is:

$$\partial_t u(t, x) = k \partial_x^2 u(t, x),$$
The Heat Equation.

Remarks:

- The unknown of the problem is $u(t, x)$, the temperature of the bar at the time t and position x.
- The temperature does not depend on y or z.
- The one-dimensional Heat Equation is:

$$\partial_t u(t, x) = k \partial_x^2 u(t, x),$$

where $k > 0$ is the heat conductivity,
The Heat Equation.

Remarks:

- The unknown of the problem is \(u(t, x) \), the temperature of the bar at the time \(t \) and position \(x \).
- The temperature does not depend on \(y \) or \(z \).
- The one-dimensional Heat Equation is:

\[
\frac{\partial u(t, x)}{\partial t} = k \frac{\partial^2 u(t, x)}{\partial x^2},
\]

where \(k > 0 \) is the heat conductivity, units: \([k] = \frac{(distance)^2}{(time)}\).
The Heat Equation.

Remarks:

- The unknown of the problem is $u(t, x)$, the temperature of the bar at the time t and position x.
- The temperature does not depend on y or z.
- The one-dimensional Heat Equation is:

$$\frac{\partial u(t, x)}{\partial t} = k \frac{\partial^2 u(t, x)}{\partial x^2},$$

where $k > 0$ is the heat conductivity, units: $[k] = \frac{(\text{distance})^2}{\text{time}}$.
- The Heat Equation is a Partial Differential Equation, PDE.
The Heat Equation.

Remarks:

- The unknown of the problem is $u(t, x)$, the temperature of the bar at the time t and position x.
- The temperature does not depend on y or z.
- The one-dimensional Heat Equation is:

$$\partial_t u(t, x) = k \partial_x^2 u(t, x),$$

where $k > 0$ is the heat conductivity, units: $[k] = \frac{(\text{distance})^2}{(\text{time})}$.

- The Heat Equation is a Partial Differential Equation, PDE.
Solving the Heat Equation (Sect. 6.3).

- The Heat Equation.
- **The Initial-Boundary Value Problem.**
- The separation of variables method.
- An example of separation of variables.
The Initial-Boundary Value Problem.

Definition

The IBVP for the one-dimensional Heat Equation is the following:
Given a constant $k > 0$ and a function $f : [0, L] \rightarrow \mathbb{R}$ with $f(0) = f(L) = 0$, find $u : [0, \infty) \times [0, L] \rightarrow \mathbb{R}$ solution of

$$\partial_t u(t, x) = k \partial_x^2 u(t, x),$$

I.C.:

$$u(0, x) = f(x)$$

B.C.:

$$u(t, 0) = 0, \quad u(t, L) = 0.$$
The Initial-Boundary Value Problem.

Definition

The IBVP for the one-dimensional Heat Equation is the following: Given a constant $k > 0$ and a function $f : [0, L] \to \mathbb{R}$ with $f(0) = f(L) = 0$, find $u : [0, \infty) \times [0, L] \to \mathbb{R}$ solution of

$$
\partial_t u(t, x) = k \partial_x^2 u(t, x),
$$

I.C.: $u(0, x) = f(x),$

B.C.: $u(t, 0) = 0, u(t, L) = 0.$
The Initial-Boundary Value Problem.

Definition

The IBVP for the one-dimensional Heat Equation is the following: Given a constant $k > 0$ and a function $f : [0, L] \to \mathbb{R}$ with $f(0) = f(L) = 0$, find $u : [0, \infty) \times [0, L] \to \mathbb{R}$ solution of

$$
\partial_t u(t, x) = k \partial_x^2 u(t, x),
$$

I.C.: $u(0, x) = f(x),$

B.C.: $u(t, 0) = 0, \quad u(t, L) = 0.$
The Initial-Boundary Value Problem.

Definition

The **IBVP** for the one-dimensional Heat Equation is the following: Given a constant $k > 0$ and a function $f : [0, L] \rightarrow \mathbb{R}$ with $f(0) = f(L) = 0$, find $u : [0, \infty) \times [0, L] \rightarrow \mathbb{R}$ solution of

$$\partial_t u(t, x) = k \partial_x^2 u(t, x),$$

I.C.: $u(0, x) = f(x),$

B.C.: $u(t, 0) = 0$, $u(t, L) = 0.$
Solving the Heat Equation (Sect. 6.3).

- The Heat Equation.
- The Initial-Boundary Value Problem.
- **The separation of variables method.**
- An example of separation of variables.
The separation of variables method.

Summary: IBVP for the Heat Equation.

Propose:

\[u(t, x) = \sum_{n=1}^{\infty} c_n v_n(t) w_n(x). \]

where
- \(v_n(t) \): Solution of an IVP.
- \(w_n(x) \): Solution of a BVP, an eigenvalue-eigenfunction problem.
- \(c_n \): Fourier Series coefficients.

Remark: The separation of variables method does not work for every PDE.
The separation of variables method.

Summary: IBVP for the Heat Equation.

Propose:

\[u(t, x) = \sum_{n=1}^{\infty} c_n \, v_n(t) \, w_n(x). \]

where

- \(v_n \): Solution of an IVP.

Remark: The separation of variables method does not work for every PDE.
The separation of variables method.

Summary: IBVP for the Heat Equation.

Propose:

\[u(t, x) = \sum_{n=1}^{\infty} c_n \nu_n(t) w_n(x). \]

where

- \(\nu_n \): Solution of an IVP.
- \(w_n \): Solution of a BVP, an eigenvalue-eigenfunction problem.

Remark: The separation of variables method does not work for every PDE.
The separation of variables method.

Summary: IBVP for the Heat Equation.

Propose:

\[u(t, x) = \sum_{n=1}^{\infty} c_n v_n(t) w_n(x). \]

where

- \(v_n \): Solution of an IVP.
- \(w_n \): Solution of a BVP, an eigenvalue-eigenfunction problem.
- \(c_n \): Fourier Series coefficients.

Remark: The separation of variables method does not work for every PDE.
The separation of variables method.

Summary: IBVP for the Heat Equation.

Propose:

\[u(t, x) = \sum_{n=1}^{\infty} c_n v_n(t) w_n(x). \]

where

- \(v_n \): Solution of an IVP.
- \(w_n \): Solution of a BVP, an eigenvalue-eigenfunction problem.
- \(c_n \): Fourier Series coefficients.

Remark:
The separation of variables method does not work for every PDE.
The separation of variables method.

Summary:
- The idea is to transform the PDE into infinitely many ODEs.
The separation of variables method.

Summary:
- The idea is to transform the PDE into infinitely many ODEs.
- We describe this method in 6 steps.
The separation of variables method.

Summary:

- The idea is to transform the PDE into infinitely many ODEs.
- We describe this method in 6 steps.

Step 1:
One looks for solutions u given by an infinite series of simpler functions, u_n.
The separation of variables method.

Summary:
- The idea is to transform the PDE into infinitely many ODEs.
- We describe this method in 6 steps.

Step 1:
One looks for solutions u given by an infinite series of simpler functions, u_n, that is,

$$u(t, x) = \sum_{n=1}^{\infty} c_n u_n(t, x),$$
The separation of variables method.

Summary:

▶ The idea is to transform the PDE into infinitely many ODEs.
▶ We describe this method in 6 steps.

Step 1:
One looks for solutions u given by an infinite series of simpler functions, u_n, that is,

$$u(t, x) = \sum_{n=1}^{\infty} c_n u_n(t, x),$$

where u_n is simpler than u is the sense,

$$u_n(t, x) = v_n(t) w_n(x).$$
The separation of variables method.

Summary:
▶ The idea is to transform the PDE into infinitely many ODEs.
▶ We describe this method in 6 steps.

Step 1:
One looks for solutions u given by an infinite series of simpler functions, u_n, that is,

$$u(t, x) = \sum_{n=1}^{\infty} c_n u_n(t, x),$$

where u_n is simpler than u is the sense,

$$u_n(t, x) = v_n(t) w_n(x).$$

Here c_n are constants, $n = 1, 2, \ldots$.
The separation of variables method.

Step 2:
Introduce the series expansion for u into the Heat Equation,

$$\partial_t u - k \partial_x^2 u = 0$$
The separation of variables method.

Step 2:
Introduce the series expansion for u into the Heat Equation,

$$
\partial_t u - k \partial_x^2 u = 0 \quad \Rightarrow \quad \sum_{n=1}^{\infty} c_n \left[\partial_t u_n - k \partial_x^2 u_n \right] = 0.
$$
The separation of variables method.

Step 2:
Introduce the series expansion for u into the Heat Equation,

$$\partial_t u - k \partial_x^2 u = 0 \Rightarrow \sum_{n=1}^{\infty} c_n \left[\partial_t u_n - k \partial_x^2 u_n \right] = 0.$$

A sufficient condition for the equation above is:
The separation of variables method.

Step 2:
Introduce the series expansion for \(u \) into the Heat Equation,

\[
\partial_t u - k \partial_x^2 u = 0 \quad \Rightarrow \quad \sum_{n=1}^{\infty} c_n \left[\partial_t u_n - k \partial_x^2 u_n \right] = 0.
\]

A sufficient condition for the equation above is: To find \(u_n \), for \(n = 1, 2, \ldots \),
The separation of variables method.

Step 2:
Introduce the series expansion for u into the Heat Equation,

$$\partial_t u - k \partial_x^2 u = 0 \quad \Rightarrow \quad \sum_{n=1}^{\infty} c_n \left[\partial_t u_n - k \partial_x^2 u_n \right] = 0.$$

A sufficient condition for the equation above is: To find u_n, for $n = 1, 2, \cdots$, solutions of

$$\partial_t u_n - k \partial_x^2 u_n = 0.$$
The separation of variables method.

Step 2:
Introduce the series expansion for u into the Heat Equation,

$$\partial_t u - k \partial_x^2 u = 0 \Rightarrow \sum_{n=1}^{\infty} c_n [\partial_t u_n - k \partial_x^2 u_n] = 0.$$

A sufficient condition for the equation above is: To find u_n, for $n = 1, 2, \cdots$, solutions of

$$\partial_t u_n - k \partial_x^2 u_n = 0.$$

Step 3:
Find $u_n(t, x) = v_n(t) w_n(x)$ solution of the IBVP

$$\partial_t u_n - k \partial_x^2 u_n = 0.$$

The separation of variables method.

Step 2:
Introduce the series expansion for u into the Heat Equation,

$$\partial_t u - k \partial_x^2 u = 0 \Rightarrow \sum_{n=1}^{\infty} c_n \left[\partial_t u_n - k \partial_x^2 u_n \right] = 0.$$

A sufficient condition for the equation above is: To find u_n, for $n = 1, 2, \ldots$, solutions of

$$\partial_t u_n - k \partial_x^2 u_n = 0.$$

Step 3:
Find $u_n(t, x) = v_n(t) w_n(x)$ solution of the IBVP

$$\partial_t u_n - k \partial_x^2 u_n = 0.$$

I.C.: $u_n(0, x) = w_n(x)$,
The separation of variables method.

Step 2:
Introduce the series expansion for \(u \) into the Heat Equation,

\[
\partial_t u - k \partial_x^2 u = 0 \quad \Rightarrow \quad \sum_{n=1}^{\infty} c_n \left[\partial_t u_n - k \partial_x^2 u_n \right] = 0.
\]

A sufficient condition for the equation above is: To find \(u_n \), for \(n = 1, 2, \cdots \), solutions of

\[
\partial_t u_n - k \partial_x^2 u_n = 0.
\]

Step 3:
Find \(u_n(t, x) = v_n(t) w_n(x) \) solution of the IBVP

\[
\partial_t u_n - k \partial_x^2 u_n = 0.
\]

I.C.: \(u_n(0, x) = w_n(x) \),

B.C.: \(u_n(t, 0) = 0, \quad u_n(t, L) = 0 \).
The separation of variables method.

Step 4: (Key step.)
Transform the IBVP for u_n into:

\[
\partial_t u_n(t, x) = \partial_x^2 u_n(t, x)
\]

\[
\partial_t u_n(t, x) = k \partial_x^2 u_n(t, x)
\]

Depends only on t.
Depends only on x.
The separation of variables method.

Step 4: (Key step.)
Transform the IBVP for \(u_n \) into:
(a) IVP for \(v_n \);
The separation of variables method.

Step 4: (Key step.)
Transform the IBVP for u_n into: (a) IVP for v_n; (b) BVP for w_n.
The separation of variables method.

Step 4: (Key step.)
Transform the IBVP for \(u_n \) into: (a) IVP for \(v_n \); (b) BVP for \(w_n \).

Notice:
\[
\frac{\partial}{\partial t} u_n(t, x) = \text{Depends only on } t \\
\frac{\partial^2}{\partial x^2} u_n(t, x) = \text{Depends only on } x
\]
The separation of variables method.

Step 4: (Key step.)
Transform the IBVP for u_n into: (a) IVP for v_n; (b) BVP for w_n.

Notice:

$$\partial_t u_n(t, x) = \partial_t [v_n(t) w_n(x)]$$
The separation of variables method.

Step 4: (Key step.)
Transform the IBVP for \(u_n \) into: (a) IVP for \(v_n \); (b) BVP for \(w_n \).

Notice:
\[
\frac{\partial}{\partial t} u_n(t, x) = \frac{\partial}{\partial t} [v_n(t) w_n(x)] = w_n(x) \frac{dv_n}{dt}(t).
\]
The separation of variables method.

Step 4: (Key step.)
Transform the IBVP for u_n into: (a) IVP for v_n; (b) BVP for w_n.

Notice:
\[\partial_t u_n(t, x) = \partial_t [v_n(t) w_n(x)] = w_n(x) \frac{dv_n}{dt}(t). \]

\[\partial_x^2 u_n(t, x) \]
The separation of variables method.

Step 4: (Key step.)
Transform the IBVP for u_n into: *(a)* IVP for v_n; *(b)* BVP for w_n.

Notice:

\[
\frac{\partial t}{2} u_n(t, x) = \frac{\partial t}{2} [v_n(t) w_n(x)] = w_n(x) \frac{dv_n}{dt}(t).
\]

\[
\frac{\partial^2}{\partial x^2} u_n(t, x) = \frac{\partial^2}{\partial x^2} [v_n(t) w_n(x)]
\]
The separation of variables method.

Step 4: (Key step.)
Transform the IBVP for \(u_n \) into: (a) IVP for \(v_n \); (b) BVP for \(w_n \).

Notice:
\[
\partial_t u_n(t, x) = \partial_t [v_n(t) w_n(x)] = w_n(x) \frac{dv_n}{dt}(t).
\]
\[
\partial_x^2 u_n(t, x) = \partial_x^2 [v_n(t) w_n(x)] = v_n(t) \frac{d^2 w_n}{dx^2}(x).
\]
The separation of variables method.

Step 4: (Key step.)
Transform the IBVP for \(u_n \) into: (a) IVP for \(v_n \); (b) BVP for \(w_n \).

Notice:
\[
\partial_t u_n(t, x) = \partial_t [v_n(t) w_n(x)] = w_n(x) \frac{dv_n}{dt}(t).
\]

\[
\partial_x^2 u_n(t, x) = \partial_x^2 [v_n(t) w_n(x)] = v_n(t) \frac{d^2 w_n}{dx^2}(x).
\]

Therefore, the equation \(\partial_t u_n = k \partial_x^2 u_n \)
The separation of variables method.

Step 4: (Key step.)
Transform the IBVP for \(u_n \) into: (a) IVP for \(v_n \); (b) BVP for \(w_n \).

Notice:

\[
\partial_t u_n(t, x) = \partial_t [v_n(t) w_n(x)] = w_n(x) \frac{dv_n}{dt}(t).
\]

\[
\partial_x^2 u_n(t, x) = \partial_x^2 [v_n(t) w_n(x)] = v_n(t) \frac{d^2 w_n}{dx^2}(x).
\]

Therefore, the equation \(\partial_t u_n = k \partial_x^2 u_n \) is given by

\[
w_n(x) \frac{dv_n}{dt}(t) = k \ v_n(t) \frac{d^2 w_n}{dx^2}(x).
\]
The separation of variables method.

Step 4: (Key step.)
Transform the IBVP for \(u_n \) into: (a) IVP for \(v_n \); (b) BVP for \(w_n \).

Notice:
\[
\partial_t u_n(t, x) = \partial_t \left[v_n(t) w_n(x) \right] = w_n(x) \frac{dv_n}{dt}(t).
\]
\[
\partial_x^2 u_n(t, x) = \partial_x^2 \left[v_n(t) w_n(x) \right] = v_n(t) \frac{d^2 w_n}{dx^2}(x).
\]

Therefore, the equation \(\partial_t u_n = k \partial_x^2 u_n \) is given by
\[
w_n(x) \frac{dv_n}{dt}(t) = k v_n(t) \frac{d^2 w_n}{dx^2}(x)
\]
\[
\frac{1}{k v_n(t)} \frac{dv_n}{dt}(t) = \frac{1}{w_n(x)} \frac{d^2 w_n}{dx^2}(x).
\]
The separation of variables method.

Step 4: (Key step.)
Transform the IBVP for \(u_n \) into: (a) IVP for \(v_n \); (b) BVP for \(w_n \).

Notice:
\[
\partial_t u_n(t, x) = \partial_t [v_n(t) w_n(x)] = w_n(x) \frac{dv_n}{dt}(t).
\]
\[
\partial_x^2 u_n(t, x) = \partial_x^2 [v_n(t) w_n(x)] = v_n(t) \frac{d^2 w_n}{dx^2}(x).
\]

Therefore, the equation \(\partial_t u_n = k \partial_x^2 u_n \) is given by
\[
w_n(x) \frac{dv_n}{dt}(t) = k v_n(t) \frac{d^2 w_n}{dx^2}(x)
\]
\[
\frac{1}{k v_n(t)} \frac{dv_n}{dt}(t) = \frac{1}{w_n(x)} \frac{d^2 w_n}{dx^2}(x).
\]

Depends only on \(t \).
The separation of variables method.

Step 4: (Key step.)
Transform the IBVP for u_n into: (a) IVP for v_n; (b) BVP for w_n.

Notice:
\[
\partial_t u_n(t, x) = \partial_t [v_n(t) w_n(x)] = w_n(x) \frac{dv_n}{dt}(t).
\]
\[
\partial_x^2 u_n(t, x) = \partial_x^2 [v_n(t) w_n(x)] = v_n(t) \frac{d^2 w_n}{dx^2}(x).
\]

Therefore, the equation $\partial_t u_n = k \partial_x^2 u_n$ is given by
\[
w_n(x) \frac{dv_n}{dt}(t) = k v_n(t) \frac{d^2 w_n}{dx^2}(x)
\]
\[
\frac{1}{k v_n(t)} \frac{dv_n}{dt}(t) = \frac{1}{w_n(x)} \frac{d^2 w_n}{dx^2}(x).
\]

Depends only on t = Depends only on x.
The separation of variables method.

Recall:

\[
\frac{1}{k v_n(t)} \frac{dv_n}{dt}(t) = \frac{1}{w_n(x)} \frac{d^2w_n}{dx^2}(x).
\]

Depends only on \(t \) = Depends only on \(x \).
The separation of variables method.

Recall:

\[
\frac{1}{k v_n(t)} \frac{dv_n}{dt}(t) = \frac{1}{w_n(x)} \frac{d^2w_n}{dx^2}(x).
\]

Depends only on \(t \) \hspace{1cm} \text{Depends only on} \ x.

- The Heat Equation has the following property:
 The left-hand side depends only on \(t \), while the right-hand side depends only on \(x \).
The separation of variables method.

Recall: \[
\frac{1}{k \nu_n(t)} \frac{dv_n(t)}{dt} = \frac{1}{w_n(x)} \frac{d^2w_n(x)}{dx^2}.
\]

Depends only on \(t \) \quad = \quad \text{Depends only on } x.

- The Heat Equation has the following property: The left-hand side depends only on \(t \), while the right-hand side depends only on \(x \).
- When this happens in a PDE, one can use the separation of variables method on that PDE.
The separation of variables method.

Recall:
$$\frac{1}{k \nu_n(t)} \frac{dv_n(t)}{dt} = \frac{1}{w_n(x)} \frac{d^2w_n(x)}{dx^2}.$$

Depends only on t \Rightarrow Depends only on x.

- The Heat Equation has the following property:
 The left-hand side depends only on t, while the right-hand side depends only on x.

- When this happens in a PDE, one can use the separation of variables method on that PDE.

- We conclude that for appropriate constants λ_m holds
 $$\frac{1}{k \nu_n(t)} \frac{dv_n(t)}{dt} = -\lambda_n,$$
The separation of variables method.

Recall:
\[
\frac{1}{k v_n(t)} \frac{dv_n}{dt}(t) = \frac{1}{w_n(x)} \frac{d^2 w_n}{dx^2}(x).
\]

Depends only on t $=$ Depends only on x.

- The Heat Equation has the following property:
 The left-hand side depends only on t, while the right-hand side depends only on x.

- When this happens in a PDE, one can use the separation of variables method on that PDE.

- We conclude that for appropriate constants λ_m holds
\[
\frac{1}{k v_n(t)} \frac{dv_n}{dt}(t) = -\lambda_n, \quad \frac{1}{w_n(x)} \frac{d^2 w_n}{dx^2}(x) = -\lambda_n.
\]
The separation of variables method.

Recall:
\[
\frac{1}{k v_n(t)} \frac{dv_n(t)}{dt} = \frac{1}{w_n(x)} \frac{d^2w_n(x)}{dx^2}.
\]

Depends only on \(t \) = Depends only on \(x \).

- The Heat Equation has the following property:
 The left-hand side depends only on \(t \), while the right-hand side depends only on \(x \).

- When this happens in a PDE, one can use the separation of variables method on that PDE.

- We conclude that for appropriate constants \(\lambda_m \) holds
 \[
 \frac{1}{k v_n(t)} \frac{dv_n(t)}{dt} = -\lambda_n, \quad \frac{1}{w_n(x)} \frac{d^2w_n(x)}{dx^2} = -\lambda_n.
 \]

- We have transformed the original PDE into infinitely many ODEs parametrized by \(n \), positive integer.
The separation of variables method.

Summary Step 4: The original *IBVP* for the Heat Equation, PDE, can be transformed into:

(a) We choose to solve the following IVP for \(v_n \):

\[
\frac{dv_n}{dt}(t) = -\lambda_n,
\]

I.C.: \(v_n(0) = 1 \).

Remark: This choice of I.C. simplifies the problem.

(b) The BVP for \(w_n \):

\[
\frac{d^2w_n}{dx^2}(x) = -\lambda_n,
\]

B.C.: \(w_n(0) = 0 \), \(w_n(L) = 0 \).

Step 5:

(a) Solve the IVP for \(v_n \).

(b) Solve the BVP for \(w_n \).
The separation of variables method.

Summary Step 4: The original IBVP for the Heat Equation, PDE, can be transformed into:

(a) We choose to solve the following IVP for \(v_n \),

\[
\frac{1}{k \, v_n(t)} \frac{dv_n}{dt}(t) = -\lambda_n,
\]

(b) The BVP for \(w_n \),

\[
\frac{d^2w_n}{dx^2}(x) = -\lambda_n,
\]

I.C.: \(w_n(0) = 0 \), \(w_n(L) = 0 \).
The separation of variables method.

Summary Step 4: The original IBVP for the Heat Equation, PDE, can be transformed into:

(a) We choose to solve the following IVP for v_n,

\[
\frac{1}{k v_n(t)} \frac{dv_n}{dt}(t) = -\lambda_n, \quad \text{I.C.: } v_n(0) = 1.
\]
The separation of variables method.

Summary Step 4: The original IBVP for the Heat Equation, PDE, can be transformed into:

(a) We choose to solve the following IVP for v_n,

$$\frac{1}{k} \frac{dv_n}{dt}(t) = -\lambda_n, \quad \text{I.C.:} \quad v_n(0) = 1.$$

Remark: This choice of I.C. simplifies the problem.
The separation of variables method.

Summary Step 4: The original IBVP for the Heat Equation, PDE, can be transformed into:

(a) We choose to solve the following IVP for v_n,

$$\frac{1}{k} \frac{dv_n}{dt}(t) = -\lambda_n, \quad \text{I.C.: } v_n(0) = 1.$$

Remark: This choice of I.C. simplifies the problem.

(b) The BVP for w_n,

$$\frac{1}{w_n(x)} \frac{d^2 w_n}{dx^2}(x) = -\lambda_n,$$
The separation of variables method.

Summary Step 4: The original IBVP for the Heat Equation, PDE, can be transformed into:

(a) We choose to solve the following IVP for v_n,

\[
\frac{1}{k v_n(t)} \frac{dv_n(t)}{dt} = -\lambda_n, \quad \text{I.C.:} \quad v_n(0) = 1.
\]

Remark: This choice of I.C. simplifies the problem.

(b) The BVP for w_n,

\[
\frac{1}{w_n(x)} \frac{d^2 w_n(x)}{dx^2} = -\lambda_n, \quad \text{B.C.:} \quad w_n(0) = 0, \quad w_n(L) = 0.
\]
The separation of variables method.

Summary Step 4: The original *IBVP* for the Heat Equation, PDE, can be transformed into:

(a) We choose to solve the following IVP for v_n,

\[
\frac{1}{k v_n(t)} \frac{dv_n}{dt}(t) = -\lambda_n, \quad \text{I.C.: } v_n(0) = 1.
\]

Remark: This choice of I.C. simplifies the problem.

(b) The BVP for w_n,

\[
\frac{1}{w_n(x)} \frac{d^2w_n}{dx^2}(x) = -\lambda_n, \quad \text{B.C.: } w_n(0) = 0, \quad w_n(L) = 0.
\]

Step 5:

(a) Solve the IVP for v_n.

(b) Solve the BVP for w_n.
The separation of variables method.

Step 5(a): Solving the IVP for v_n.

\[v_n'(t) + k\lambda_n v_n(t) = 0, \]
The separation of variables method.

Step 5(a): Solving the IVP for v_n.

$$v_n'(t) + k \lambda_n v_n(t) = 0, \quad \text{I.C.:} \quad v_n(0) = 1.$$
The separation of variables method.

Step 5(a): Solving the IVP for v_n.

$$v_n'(t) + k\lambda_n v_n(t) = 0, \quad \text{I.C.:} \quad v_n(0) = 1.$$

The integrating factor method implies that $\mu(t) = e^{k\lambda_n t}$.

$$e^{k\lambda_n t} v_n'(t) + k\lambda_n e^{k\lambda_n t} v_n(t) = 0$$
The separation of variables method.

Step 5(a): Solving the IVP for \(v_n \).

\[
v'_n(t) + k\lambda_n v_n(t) = 0, \quad \text{I.C.:} \quad v_n(0) = 1.
\]

The integrating factor method implies that \(\mu(t) = e^{k\lambda_n t} \).

\[
e^{k\lambda_n t} v'_n(t) + k\lambda_n e^{k\lambda_n t} v_n(t) = 0 \quad \Rightarrow \quad \left[e^{k\lambda_n t} v_n(t) \right]' = 0.
\]
The separation of variables method.

Step 5(a): Solving the IVP for v_n.

\[v'_n(t) + k \lambda_n v_n(t) = 0, \quad \text{I.C.:} \quad v_n(0) = 1. \]

The integrating factor method implies that $\mu(t) = e^{k \lambda_n t}$.

\[e^{k \lambda_n t} v'_n(t) + k \lambda_n e^{k \lambda_n t} v_n(t) = 0 \quad \Rightarrow \quad \left[e^{k \lambda_n t} v_n(t) \right]' = 0. \]

\[e^{k \lambda_n t} v_n(t) = c_n \]
The separation of variables method.

Step 5(a): Solving the IVP for \(v_n \).

\[
v_n'(t) + k\lambda_n v_n(t) = 0, \quad \text{I.C.:} \quad v_n(0) = 1.
\]

The integrating factor method implies that \(\mu(t) = e^{k\lambda_n t} \).

\[
e^{k\lambda_n t} v_n'(t) + k\lambda_n e^{k\lambda_n t} v_n(t) = 0 \quad \Rightarrow \quad [e^{k\lambda_n t} v_n(t)]' = 0.
\]

\[
e^{k\lambda_n t} v_n(t) = c_n \quad \Rightarrow \quad v_n(t) = c_n e^{-k\lambda_n t}.
\]
The separation of variables method.

Step 5(a): Solving the IVP for v_n.

$$v'_n(t) + k\lambda_n v_n(t) = 0, \quad \text{I.C.: } v_n(0) = 1.$$

The integrating factor method implies that $\mu(t) = e^{k\lambda_n t}$.

$$e^{k\lambda_n t} v'_n(t) + k\lambda_n e^{k\lambda_n t} v_n(t) = 0 \quad \Rightarrow \quad [e^{k\lambda_n t} v_n(t)]' = 0.$$

$$e^{k\lambda_n t} v_n(t) = c_n \quad \Rightarrow \quad v_n(t) = c_n e^{-k\lambda_n t}.$$

$$1 = v_n(0) = c$$
The separation of variables method.

Step 5(a): Solving the IVP for v_n.

$$v'_n(t) + k\lambda_n v_n(t) = 0, \quad \text{I.C.: } v_n(0) = 1.$$

The integrating factor method implies that $\mu(t) = e^{k\lambda_n t}$.

$$e^{k\lambda_n t}v'_n(t) + k\lambda_n e^{k\lambda_n t} v_n(t) = 0 \quad \Rightarrow \quad \left[e^{k\lambda_n t} v_n(t)\right]' = 0.$$

$$e^{k\lambda_n t} v_n(t) = c_n \quad \Rightarrow \quad v_n(t) = c_n e^{-k\lambda_n t}.$$

$$1 = v_n(0) = c \quad \Rightarrow \quad v_n(t) = e^{-k\lambda_n t}.$$
The separation of variables method.

Step 5(a): Recall: \(v_n(t) = e^{-k\lambda_n t} \).
The separation of variables method.

Step 5(a): Recall: \(v_n(t) = e^{-k\lambda_n t} \).

Step 5(b): Eigenvalue-eigenvector problem for \(w_n \):

Find the eigenvalues \(\lambda_n \) and the non-zero eigenfunctions \(w_n \) solutions of the BVP

\[
w_n''(x) + \lambda_n w_n(x) = 0
\]

B.C.: \(w_n(0) = 0 \), \(w_n(L) = 0 \).

We know that this problem has solution only for \(\lambda_n > 0 \).

Denote: \(\lambda_n = \mu_n^2 \).

Proposing \(w_n(x) = e^{r_n x} \), we get that

\[
p(r_n) = r_n^2 + \mu_n^2 = 0 \Rightarrow r_n = \pm \mu_n i
\]

The real-valued general solution is

\[
w_n(x) = c_1 \cos(\mu_n x) + c_2 \sin(\mu_n x)
\]
The separation of variables method.

Step 5(a): Recall: \(v_n(t) = e^{-k\lambda_n t} \).

Step 5(b): Eigenvalue-eigenvector problem for \(w_n \):
Find the eigenvalues \(\lambda_n \) and the non-zero eigenfunctions \(w_n \) solutions of the BVP

\[
\frac{d^2}{dx^2} w_n(x) + \lambda_n w_n(x) = 0
\]
The separation of variables method.

Step 5(a): Recall: $v_n(t) = e^{-k\lambda_n t}$.

Step 5(b): Eigenvalue-eigenvector problem for w_n:
Find the eigenvalues λ_n and the non-zero eigenfunctions w_n solutions of the BVP

$$w''_n(x) + \lambda_n w_n(x) = 0 \quad \text{B.C.: } w_n(0) = 0, \quad w_n(L) = 0.$$
The separation of variables method.

Step 5(a): Recall: \(v_n(t) = e^{-k\lambda_n t} \).

Step 5(b): Eigenvalue-eigenvector problem for \(w_n \):
Find the eigenvalues \(\lambda_n \) and the non-zero eigenfunctions \(w_n \) solutions of the BVP

\[
w_n''(x) + \lambda_n w_n(x) = 0 \quad \text{B.C.:} \quad w_n(0) = 0, \quad w_n(L) = 0.
\]

We know that this problem has solution only for \(\lambda_n > 0 \).
The separation of variables method.

Step 5(a): Recall: \(v_n(t) = e^{-k\lambda_n t} \).

Step 5(b): Eigenvalue-eigenvector problem for \(w_n \):
Find the eigenvalues \(\lambda_n \) and the non-zero eigenfunctions \(w_n \)
solutions of the BVP

\[
w_n''(x) + \lambda_n w_n(x) = 0 \quad \text{B.C.: } \quad w_n(0) = 0, \quad w_n(L) = 0.
\]

We know that this problem has solution only for \(\lambda_n > 0 \).
Denote: \(\lambda_n = \mu_n^2 \).
The separation of variables method.

Step 5(a): Recall: \(v_n(t) = e^{-k\lambda_n t} \).

Step 5(b): Eigenvalue-eigenvector problem for \(w_n \):
Find the eigenvalues \(\lambda_n \) and the non-zero eigenfunctions \(w_n \) solutions of the BVP

\[
 w_n''(x) + \lambda_n w_n(x) = 0 \quad \text{B.C.:} \quad w_n(0) = 0, \quad w_n(L) = 0.
\]

We know that this problem has solution only for \(\lambda_n > 0 \).

Denote: \(\lambda_n = \mu_n^2 \). Proposing \(w_n(x) = e^{r_n x} \),
The separation of variables method.

Step 5(a): Recall: \(v_n(t) = e^{-k\lambda_n t} \).

Step 5(b): Eigenvalue-eigenvector problem for \(w_n \):
Find the eigenvalues \(\lambda_n \) and the non-zero eigenfunctions \(w_n \) solutions of the BVP

\[
w_n''(x) + \lambda_n w_n(x) = 0 \quad \text{B.C.:} \quad w_n(0) = 0, \quad w_n(L) = 0.
\]

We know that this problem has solution only for \(\lambda_n > 0 \).

Denote: \(\lambda_n = \mu_n^2 \). Proposing \(w_n(x) = e^{r_n x} \), we get that

\[
p(r_n) = r_n^2 + \mu_n^2 = 0
\]
The separation of variables method.

Step 5(a): Recall: \(v_n(t) = e^{-k\lambda_n t} \).

Step 5(b): Eigenvalue-eigenvector problem for \(w_n \):
Find the eigenvalues \(\lambda_n \) and the non-zero eigenfunctions \(w_n \) solutions of the BVP

\[
w''_n(x) + \lambda_n w_n(x) = 0 \quad \text{B.C.:} \quad w_n(0) = 0, \quad w_n(L) = 0.
\]

We know that this problem has solution only for \(\lambda_n > 0 \).
Denote: \(\lambda_n = \mu_n^2 \). Proposing \(w_n(x) = e^{r_n x} \), we get that

\[
p(r_n) = r_n^2 + \mu_n^2 = 0 \quad \Rightarrow \quad r_n = \pm \mu_n i
\]
The separation of variables method.

Step 5(a): Recall: \(v_n(t) = e^{-k\lambda_n t} \).

Step 5(b): Eigenvalue-eigenvector problem for \(w_n \):
Find the eigenvalues \(\lambda_n \) and the non-zero eigenfunctions \(w_n \) solutions of the BVP

\[
\frac{d^2 w_n(x)}{dx^2} + \lambda_n w_n(x) = 0 \quad \text{B.C.:} \quad w_n(0) = 0, \quad w_n(L) = 0.
\]

We know that this problem has solution only for \(\lambda_n > 0 \).
Denote: \(\lambda_n = \mu_n^2 \). Proposing \(w_n(x) = e^{r_n x} \), we get that

\[
p(r_n) = r_n^2 + \mu_n^2 = 0 \quad \Rightarrow \quad r_n \pm = \pm \mu_n i
\]

The real-valued general solution is

\[
w_n(x) = c_1 \cos(\mu_n x) + c_2 \sin(\mu_n x).
\]
The separation of variables method.

Recall: \(v_n(t) = e^{-k\lambda_n t} \), \(w_n(x) = c_1 \cos(\mu_n x) + c_2 \sin(\mu_n x) \).
The separation of variables method.

Recall: \(v_n(t) = e^{-k\lambda_n t} \), \(w_n(x) = c_1 \cos(\mu_n x) + c_2 \sin(\mu_n x) \).

The boundary conditions imply,

\[
0 = w_n(0)
\]
The separation of variables method.

Recall: \(v_n(t) = e^{-k\lambda_n t} \), \(w_n(x) = c_1 \cos(\mu_n x) + c_2 \sin(\mu_n x) \).

The boundary conditions imply,

\[
0 = w_n(0) = c_1
\]
The separation of variables method.

Recall: \(v_n(t) = e^{-k\lambda_n t} \), \(w_n(x) = c_1 \cos(\mu_n x) + c_2 \sin(\mu_n x) \).

The boundary conditions imply,

\[
0 = w_n(0) = c_1 \quad \Rightarrow \quad w_n(x) = c_2 \sin(\mu_n x).
\]
The separation of variables method.

Recall: $v_n(t) = e^{-k\lambda nt}$, $w_n(x) = c_1 \cos(\mu_n x) + c_2 \sin(\mu_n x)$.

The boundary conditions imply,

$0 = w_n(0) = c_1 \Rightarrow w_n(x) = c_2 \sin(\mu_n x)$.

$0 = w_n(L)$
The separation of variables method.

Recall: \(v_n(t) = e^{-k\lambda_n t} \), \(w_n(x) = c_1 \cos(\mu_n x) + c_2 \sin(\mu_n x) \).

The boundary conditions imply,

\[
0 = w_n(0) = c_1 \quad \Rightarrow \quad w_n(x) = c_2 \sin(\mu_n x).
\]

\[
0 = w_n(L) = c_2 \sin(\mu_n L),
\]
The separation of variables method.

Recall: $v_n(t) = e^{-k\lambda_n t}$, $w_n(x) = c_1 \cos(\mu_n x) + c_2 \sin(\mu_n x)$.

The boundary conditions imply,

$$0 = w_n(0) = c_1 \quad \Rightarrow \quad w_n(x) = c_2 \sin(\mu_n x).$$

$$0 = w_n(L) = c_2 \sin(\mu_n L), \quad c_2 \neq 0,$$
The separation of variables method.

Recall: \(v_n(t) = e^{-k\lambda_n t} \), \(w_n(x) = c_1 \cos(\mu_n x) + c_2 \sin(\mu_n x) \).

The boundary conditions imply,

\[
0 = w_n(0) = c_1 \quad \Rightarrow \quad w_n(x) = c_2 \sin(\mu_n x).
\]

\[
0 = w_n(L) = c_2 \sin(\mu_n L), \quad c_2 \neq 0, \quad \Rightarrow \quad \sin(\mu_n L) = 0.
\]
The separation of variables method.

Recall: $v_n(t) = e^{-k\lambda_n t}$, $w_n(x) = c_1 \cos(\mu_n x) + c_2 \sin(\mu_n x)$.

The boundary conditions imply,

$$0 = w_n(0) = c_1 \quad \Rightarrow \quad w_n(x) = c_2 \sin(\mu_n x).$$

$$0 = w_n(L) = c_2 \sin(\mu_n L), \quad c_2 \neq 0, \quad \Rightarrow \quad \sin(\mu_n L) = 0.$$

$$\mu_n L = n\pi$$
The separation of variables method.

Recall: $v_n(t) = e^{-k\lambda_n t}$, $w_n(x) = c_1 \cos(\mu_n x) + c_2 \sin(\mu_n x)$.

The boundary conditions imply,

$$0 = w_n(0) = c_1 \quad \Rightarrow \quad w_n(x) = c_2 \sin(\mu_n x).$$

$$0 = w_n(L) = c_2 \sin(\mu_n L), \quad c_2 \neq 0, \quad \Rightarrow \quad \sin(\mu_n L) = 0.$$

$$\mu_n L = n\pi \quad \Rightarrow \quad \mu_n = \frac{n\pi}{L}$$
The separation of variables method.

Recall: \(v_n(t) = e^{-k\lambda_n t} \), \(w_n(x) = c_1 \cos(\mu_n x) + c_2 \sin(\mu_n x) \).

The boundary conditions imply,

\[
0 = w_n(0) = c_1 \quad \Rightarrow \quad w_n(x) = c_2 \sin(\mu_n x).
\]

\[
0 = w_n(L) = c_2 \sin(\mu_n L), \quad c_2 \neq 0, \quad \Rightarrow \quad \sin(\mu_n L) = 0.
\]

\[
\mu_n L = n\pi \quad \Rightarrow \quad \mu_n = \frac{n\pi}{L} \quad \Rightarrow \quad \lambda_n = \left(\frac{n\pi}{L} \right)^2.
\]
The separation of variables method.

Recall: \(v_n(t) = e^{-k\lambda_n t} \), \(w_n(x) = c_1 \cos(\mu_n x) + c_2 \sin(\mu_n x) \).

The boundary conditions imply,

\[
0 = w_n(0) = c_1 \quad \Rightarrow \quad w_n(x) = c_2 \sin(\mu_n x).
\]

\[
0 = w_n(L) = c_2 \sin(\mu_n L), \quad c_2 \neq 0, \quad \Rightarrow \quad \sin(\mu_n L) = 0.
\]

\[
\mu_n L = n\pi \quad \Rightarrow \quad \mu_n = \frac{n\pi}{L} \quad \Rightarrow \quad \lambda_n = \left(\frac{n\pi}{L}\right)^2.
\]

Choosing \(c_2 = 1 \), we get \(w_n(x) = \sin(\frac{n\pi x}{L}) \).
The separation of variables method.

Recall: \(v_n(t) = e^{-k\lambda_n t} \), \(w_n(x) = c_1 \cos(\mu_n x) + c_2 \sin(\mu_n x) \).

The boundary conditions imply,

\[
0 = w_n(0) = c_1 \quad \Rightarrow \quad w_n(x) = c_2 \sin(\mu_n x).
\]

\[
0 = w_n(L) = c_2 \sin(\mu_n L), \quad c_2 \neq 0, \quad \Rightarrow \quad \sin(\mu_n L) = 0.
\]

\[
\mu_n L = n\pi \quad \Rightarrow \quad \mu_n = \frac{n\pi}{L} \quad \Rightarrow \quad \lambda_n = \left(\frac{n\pi}{L}\right)^2.
\]

Choosing \(c_2 = 1 \), we get \(w_n(x) = \sin\left(\frac{n\pi x}{L}\right) \).

We conclude that: \(u_n(t, x) = e^{-k\left(\frac{n\pi}{L}\right)^2 t} \sin\left(\frac{n\pi x}{L}\right), \quad n = 1, 2, \cdots \).
The separation of variables method.

Step 6: Recall: \[u_n(t, x) = e^{-k\left(\frac{n\pi}{L}\right)^2 t} \sin\left(\frac{n\pi x}{L}\right). \]
The separation of variables method.

Step 6: Recall: \(u_n(t, x) = e^{-k \left(\frac{n\pi}{L} \right)^2 t} \sin \left(\frac{n\pi x}{L} \right) \).

Compute the solution to the IBVP for the Heat Equation,

\[
 u(t, x) = \sum_{n=1}^{\infty} c_n u_n(t, x).
\]
The separation of variables method.

Step 6: Recall: \(u_n(t, x) = e^{-k\left(\frac{n\pi}{L}\right)^2 t} \sin\left(\frac{n\pi x}{L}\right) \).

Compute the solution to the IBVP for the Heat Equation,

\[
 u(t, x) = \sum_{n=1}^{\infty} c_n u_n(t, x).
\]

\[
 u(t, x) = \sum_{n=1}^{\infty} c_n e^{-k\left(\frac{n\pi}{L}\right)^2 t} \sin\left(\frac{n\pi x}{L}\right).
\]
The separation of variables method.

Step 6: Recall: \(u_n(t, x) = e^{-k(n\pi/L)^2 t} \sin\left(\frac{n\pi x}{L}\right) \).

Compute the solution to the IBVP for the Heat Equation,

\[
u(t, x) = \sum_{n=1}^{\infty} c_n u_n(t, x).
\]

By construction, this solution satisfies the boundary conditions,

\[
u(t, 0) = 0, \quad u(t, L) = 0.
\]
The separation of variables method.

Step 6: Recall: \(u_n(t, x) = e^{-k\left(\frac{n\pi}{L}\right)^2 t} \sin\left(\frac{n\pi x}{L}\right). \)

Compute the solution to the IBVP for the Heat Equation,

\[
 u(t, x) = \sum_{n=1}^{\infty} c_n u_n(t, x).
\]

\[
 u(t, x) = \sum_{n=1}^{\infty} c_n e^{-k\left(\frac{n\pi}{L}\right)^2 t} \sin\left(\frac{n\pi x}{L}\right).
\]

By construction, this solution satisfies the boundary conditions,

\[
 u(t, 0) = 0, \quad u(t, L) = 0.
\]

Given a function \(f \) with \(f(0) = f(L) = 0 \), the solution \(u \) above satisfies the initial condition \(f(x) = u(0, x) \) iff holds
The separation of variables method.

Step 6: Recall: \(u_n(t, x) = e^{-k \left(\frac{n \pi}{L} \right)^2 t} \sin \left(\frac{n \pi x}{L} \right) \).

Compute the solution to the IBVP for the Heat Equation,

\[
\begin{align*}
 u(t, x) &= \sum_{n=1}^{\infty} c_n u_n(t, x).
\end{align*}
\]

\[
\begin{align*}
 u(t, x) &= \sum_{n=1}^{\infty} c_n e^{-k \left(\frac{n \pi}{L} \right)^2 t} \sin \left(\frac{n \pi x}{L} \right).
\end{align*}
\]

By construction, this solution satisfies the boundary conditions,

\[
\begin{align*}
 u(t, 0) &= 0, \quad u(t, L) = 0.
\end{align*}
\]

Given a function \(f \) with \(f(0) = f(L) = 0 \), the solution \(u \) above satisfies the initial condition \(f(x) = u(0, x) \) iff holds

\[
\begin{align*}
 f(x) &= \sum_{n=1}^{\infty} c_n \sin \left(\frac{n \pi x}{L} \right).
\end{align*}
\]
The separation of variables method.

Recall:

\[u(t, x) = \sum_{n=1}^{\infty} c_n e^{-k \left(\frac{n\pi}{L} \right)^2 t} \sin \left(\frac{n\pi x}{L} \right), \quad f(x) = \sum_{n=1}^{\infty} c_n \sin \left(\frac{n\pi x}{L} \right). \]
The separation of variables method.

Recall:

\[u(t, x) = \sum_{n=1}^{\infty} c_n e^{-k \left(\frac{n\pi}{L} \right)^2 t} \sin \left(\frac{n\pi x}{L} \right), \quad f(x) = \sum_{n=1}^{\infty} c_n \sin \left(\frac{n\pi x}{L} \right). \]

This is a Sine Series for \(f \). The coefficients \(c_n \) are computed in the usual way.
The separation of variables method.

Recall:
\[u(t, x) = \sum_{n=1}^{\infty} c_n e^{-k\left(\frac{n\pi}{L}\right)^2 t} \sin\left(\frac{n\pi x}{L}\right), \quad f(x) = \sum_{n=1}^{\infty} c_n \sin\left(\frac{n\pi x}{L}\right). \]

This is a Sine Series for \(f \). The coefficients \(c_n \) are computed in the usual way. Recall the orthogonality relation
\[
\int_0^L \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) \, dx = \begin{cases}
0, & m \neq n, \\
\frac{L}{2}, & m = n.
\end{cases}
\]
The separation of variables method.

Recall:

\[u(t, x) = \sum_{n=1}^{\infty} c_n e^{-k \left(\frac{n\pi}{L} \right)^2 t} \sin \left(\frac{n\pi x}{L} \right), \quad f(x) = \sum_{n=1}^{\infty} c_n \sin \left(\frac{n\pi x}{L} \right). \]

This is a Sine Series for \(f \). The coefficients \(c_n \) are computed in the usual way. Recall the orthogonality relation

\[\int_0^L \sin \left(\frac{n\pi x}{L} \right) \sin \left(\frac{m\pi x}{L} \right) \, dx = \begin{cases} 0, & m \neq n, \\ \frac{L}{2}, & m = n. \end{cases} \]

Multiply the equation for \(u \) by \(\sin \left(\frac{m\pi x}{L} \right) \) and integrate,

\[\sum_{n=1}^{\infty} c_n \int_0^L \sin \left(\frac{n\pi x}{L} \right) \sin \left(\frac{m\pi x}{L} \right) \, dx = \int_0^L f(x) \sin \left(\frac{m\pi x}{L} \right) \, dx. \]
The separation of variables method.

Recall:

\[u(t, x) = \sum_{n=1}^{\infty} c_n e^{-k \left(\frac{n\pi}{L}\right)^2 t} \sin\left(\frac{n\pi x}{L}\right), \quad f(x) = \sum_{n=1}^{\infty} c_n \sin\left(\frac{n\pi x}{L}\right). \]

This is a Sine Series for \(f \). The coefficients \(c_n \) are computed in the usual way. Recall the orthogonality relation

\[
\int_0^L \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) \, dx = \begin{cases} 0, & m \neq n, \\ L, & m = n. \end{cases}
\]

Multiply the equation for \(u \) by \(\sin\left(\frac{m\pi x}{L}\right) \) nd integrate,

\[
\sum_{n=1}^{\infty} c_n \int_0^L \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) \, dx = \int_0^L f(x) \sin\left(\frac{m\pi x}{L}\right) \, dx.
\]

\[
c_n = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi x}{L}\right) \, dx, \quad u(t, x) = \sum_{n=1}^{\infty} c_n e^{-k \left(\frac{n\pi}{L}\right)^2 t} \sin\left(\frac{n\pi x}{L}\right).\]
The separation of variables method.

Summary: IBVP for the Heat Equation.

Propose:

\[u(t, x) = \sum_{n=1}^{\infty} c_n \, v_n(t) \, w_n(x). \]

Remark: The separation of variables method does not work for every PDE.
The separation of variables method.

Summary: IBVP for the Heat Equation.

Propose:

\[u(t, x) = \sum_{n=1}^{\infty} c_n \, v_n(t) \, w_n(x). \]

where

- \(v_n \): Solution of an IVP.

Remark: The separation of variables method does not work for every PDE.
The separation of variables method.

Summary: IBVP for the Heat Equation.

Propose:

\[u(t, x) = \sum_{n=1}^{\infty} c_n \nu_n(t) w_n(x). \]

where

- \(\nu_n \): Solution of an IVP.
- \(w_n \): Solution of a BVP, an eigenvalue-eigenfunction problem.

Remark: The separation of variables method does not work for every PDE.
The separation of variables method.

Summary: IBVP for the Heat Equation.

Propose:

\[u(t, x) = \sum_{n=1}^{\infty} c_n v_n(t) w_n(x). \]

where

- \(v_n \): Solution of an IVP.
- \(w_n \): Solution of a BVP, an eigenvalue-eigenfunction problem.
- \(c_n \): Fourier Series coefficients.

Remark: The separation of variables method does not work for every PDE.
The separation of variables method.

Summary: IBVP for the Heat Equation.

Propose:

\[u(t, x) = \sum_{n=1}^{\infty} c_n v_n(t) w_n(x). \]

where

- \(v_n \): Solution of an IVP.
- \(w_n \): Solution of a BVP, an eigenvalue-eigenfunction problem.
- \(c_n \): Fourier Series coefficients.

Remark:
The separation of variables method does not work for every PDE.
Solving the Heat Equation (Sect. 6.3).

- The Heat Equation.
- The Initial-Boundary Value Problem.
- The separation of variables method.
- An example of separation of variables.
An example of separation of variables.

Example
Find the solution to the IBVP $4\partial_t u = \partial_x^2 u$, $t > 0$, $x \in [0, 2]$,

$u(0, x) = 3 \sin(\pi x/2)$, $u(t, 0) = 0$, $u(t, 2) = 0$.
An example of separation of variables.

Example
Find the solution to the IBVP

$$4 \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \quad t > 0, \quad x \in [0, 2],$$

$$u(0, x) = 3 \sin\left(\frac{\pi x}{2}\right), \quad u(t, 0) = 0, \quad u(t, 2) = 0.$$

Solution: Let $u_n(t, x) = v_n(t) w_n(x)$.
An example of separation of variables.

Example

Find the solution to the IBVP

\[4\frac{\partial}{\partial t} u = \frac{\partial^2}{\partial x^2} u, \quad t > 0, \quad x \in [0, 2], \]

\[u(0, x) = 3 \sin(\pi x/2), \quad u(t, 0) = 0, \quad u(t, 2) = 0. \]

Solution: Let \(u_n(t, x) = v_n(t) w_n(x) \). Then

\[4w_n(x) \frac{dv}{dt}(t) = v_n(t) \frac{d^2 w}{dx^2}(x) \]
An example of separation of variables.

Example
Find the solution to the IBVP

\[4 \partial_t u = \partial_x^2 u, \quad t > 0, \quad x \in [0, 2], \]

\[u(0, x) = 3 \sin(\pi x/2), \quad u(t, 0) = 0, \quad u(t, 2) = 0. \]

Solution: Let \(u_n(t, x) = v_n(t) w_n(x) \). Then

\[4w_n(x) \frac{dv}{dt}(t) = v_n(t) \frac{d^2 w}{dx^2}(x) \quad \Rightarrow \quad \frac{4v_n'(t)}{v_n(t)} = \frac{w_n''(x)}{w_n(x)} = -\lambda_n. \]
An example of separation of variables.

Example

Find the solution to the IBVP $4\partial_t u = \partial_x^2 u$, $t > 0$, $x \in [0, 2]$, $u(0, x) = 3\sin(\pi x/2)$, $u(t, 0) = 0$, $u(t, 2) = 0$.

Solution: Let $u_n(t, x) = v_n(t) w_n(x)$. Then

$$4w_n(x) \frac{dv}{dt}(t) = v_n(t) \frac{d^2w}{dx^2}(x) \quad \Rightarrow \quad \frac{4v'_n(t)}{v_n(t)} = \frac{w''_n(x)}{w_n(x)} = -\lambda_n.$$

The equations for v_n and w_n are

$$v'_n(t) + \frac{\lambda_n}{4} v_n(t) = 0,$$
An example of separation of variables.

Example
Find the solution to the IBVP \(4 \partial_t u = \partial_x^2 u, \quad t > 0, \quad x \in [0, 2], \)
\[
 u(0, x) = 3 \sin(\pi x / 2), \quad u(t, 0) = 0, \quad u(t, 2) = 0.
\]

Solution: Let \(u_n(t, x) = v_n(t) w_n(x) \). Then
\[
 4w_n(x) \frac{dv}{dt}(t) = v_n(t) \frac{d^2w}{dx^2}(x) \quad \Rightarrow \quad \frac{4v'_n(t)}{v_n(t)} = \frac{w''_n(x)}{w_n(x)} = -\lambda_n.
\]

The equations for \(v_n \) and \(w_n \) are
\[
 v'_n(t) + \frac{\lambda_n}{4} v_n(t) = 0, \quad w''_n(x) + \lambda_n w_n(x) = 0.
\]
An example of separation of variables.

Example

Find the solution to the IBVP \(4 \frac{\partial}{\partial t} u = \frac{\partial^2}{\partial x^2} u, \quad t > 0, \quad x \in [0, 2],\)
\[u(0, x) = 3 \sin(\pi x/2), \quad u(t, 0) = 0, \quad u(t, 2) = 0.\]

Solution: Let \(u_n(t, x) = v_n(t) w_n(x).\) Then
\[4w_n(x) \frac{dv}{dt}(t) = v_n(t) \frac{d^2 w}{dx^2}(x) \quad \Rightarrow \quad \frac{4v_n'(t)}{v_n(t)} = \frac{w_n''(x)}{w_n(x)} = -\lambda_n.\]

The equations for \(v_n\) and \(w_n\) are
\[v_n'(t) + \frac{\lambda_n}{4} v_n(t) = 0, \quad w_n''(x) + \lambda_n w_n(x) = 0.\]

We solve for \(v_n\) with the initial condition \(v_n(0) = 1.\)
\[e^{\frac{\lambda_n}{4} t} v_n'(t) + \frac{\lambda_n}{4} e^{\frac{\lambda_n}{4} t} v_n(t) = 0\]
An example of separation of variables.

Example
Find the solution to the IBVP \[4\partial_t u = \partial_x^2 u, \quad t > 0, \quad x \in [0, 2], \]
\[u(0, x) = 3 \sin(\pi x/2), \quad u(t, 0) = 0, \quad u(t, 2) = 0.\]

Solution: Let \(u_n(t, x) = v_n(t)w_n(x)\). Then
\[4w_n(x) \frac{dv}{dt}(t) = v_n(t) \frac{d^2w}{dx^2}(x) \quad \Rightarrow \quad \frac{4v'_n(t)}{v_n(t)} = \frac{w''_n(x)}{w_n(x)} = -\lambda_n.\]

The equations for \(v_n\) and \(w_n\) are
\[v'_n(t) + \frac{\lambda_n}{4} v_n(t) = 0, \quad w''_n(x) + \lambda_n w_n(x) = 0.\]

We solve for \(v_n\) with the initial condition \(v_n(0) = 1\).
\[e^{\frac{\lambda_n}{4} t} v'_n(t) + \frac{\lambda_n}{4} e^{\frac{\lambda_n}{4} t} v_n(t) = 0 \quad \Rightarrow \quad \left[e^{\frac{\lambda_n}{4} t} v_n(t)\right]' = 0.\]
An example of separation of variables.

Example
Find the solution to the IBVP
\[4 \partial_t u = \partial_x^2 u, \quad t > 0, \quad x \in [0, 2], \]
\[u(0, x) = 3 \sin(\pi x / 2), \quad u(t, 0) = 0, \quad u(t, 2) = 0. \]

Solution: Recall: \[e^{\lambda_n^4 t} \nu_n(t) \]' = 0.
An example of separation of variables.

Example
Find the solution to the IBVP $4 \partial_t u = \partial_x^2 u, \quad t > 0, \quad x \in [0, 2],$

$u(0, x) = 3 \sin(\pi x / 2), \quad u(t, 0) = 0, \quad u(t, 2) = 0.$

Solution: Recall: $\left[e^{\frac{\lambda_n}{4} t} v_n(t) \right]' = 0.$ Therefore,

$v_n(t) = c e^{-\frac{\lambda_n}{4} t},$
An example of separation of variables.

Example

Find the solution to the IBVP
\[4 \frac{\partial t}{\partial t} u = \frac{\partial^2}{\partial x^2} u, \quad t > 0, \quad x \in [0, 2], \]
\[u(0, x) = 3 \sin(\pi x/2), \quad u(t, 0) = 0, \quad u(t, 2) = 0. \]

Solution: Recall: \[e^{\frac{\lambda n}{4} t} v_n(t) \] \[\left. ' \right) = 0. \] Therefore,
\[v_n(t) = c e^{-\frac{\lambda n}{4} t}, \quad 1 = v_n(0) \]
An example of separation of variables.

Example
Find the solution to the IBVP

\[4 \partial_t u = \partial_x^2 u, \quad t > 0, \quad x \in [0, 2], \]
\[u(0, x) = 3 \sin(\pi x / 2), \quad u(t, 0) = 0, \quad u(t, 2) = 0. \]

Solution: Recall: \[\begin{bmatrix} e^{\frac{\lambda_n}{4} t} v_n(t) \end{bmatrix} ' = 0. \]
Therefore,
\[v_n(t) = c e^{-\frac{\lambda_n}{4} t}, \quad 1 = v_n(0) = c \]
An example of separation of variables.

Example
Find the solution to the IBVP
\[4 \frac{\partial}{\partial t} u = \frac{\partial^2}{\partial x^2} u, \quad t > 0, \quad x \in [0, 2], \]
\[u(0, x) = 3 \sin \left(\frac{\pi x}{2} \right), \quad u(t, 0) = 0, \quad u(t, 2) = 0. \]

Solution: Recall: \[\left[e^{\frac{\lambda n}{4} t} v_n(t) \right]' = 0. \] Therefore,
\[v_n(t) = c e^{-\frac{\lambda n}{4} t}, \quad 1 = v_n(0) = c \quad \Rightarrow \quad v_n(t) = e^{-\frac{\lambda n}{4} t}. \]
An example of separation of variables.

Example
Find the solution to the IBVP

\[4 \partial_t u = \partial_x^2 u, \quad t > 0, \quad x \in [0, 2], \]
\[u(0, x) = 3 \sin(\pi x/2), \quad u(t, 0) = 0, \quad u(t, 2) = 0. \]

Solution: Recall: \[\left[e^{\frac{\lambda_n}{4} t} v_n(t) \right]' = 0. \] Therefore,

\[v_n(t) = c e^{-\frac{\lambda_n}{4} t}, \quad 1 = v_n(0) = c \quad \Rightarrow \quad v_n(t) = e^{-\frac{\lambda_n}{4} t}. \]

Next the BVP: \[w_n''(x) + \lambda_n w_n(x) = 0, \text{ with } w_n(0) = w_n(L) = 0. \]
An example of separation of variables.

Example
Find the solution to the IBVP $4 \frac{\partial_t u}{t} = \partial_x^2 u, \quad t > 0, \quad x \in [0, 2],$

$u(0, x) = 3 \sin(\pi x/2), \quad u(t, 0) = 0, \quad u(t, 2) = 0.$

Solution: Recall: $\left[e^{\frac{\lambda n}{4} t} v_n(t) \right]’ = 0.$ Therefore,

$v_n(t) = c e^{-\frac{\lambda n}{4} t}, \quad 1 = v_n(0) = c \quad \Rightarrow \quad v_n(t) = e^{-\frac{\lambda n}{4} t}.$

Next the BVP: $w_n''(x) + \lambda_n w_n(x) = 0,$ with $w_n(0) = w_n(L) = 0.$
Since $\lambda_n > 0,$ introduce $\lambda_n = \mu_n^2.$
An example of separation of variables.

Example
Find the solution to the IBVP

\[4 \partial_t u = \partial_x^2 u, \quad t > 0, \quad x \in [0, 2], \]
\[u(0, x) = 3 \sin(\pi x / 2), \quad u(t, 0) = 0, \quad u(t, 2) = 0. \]

Solution: Recall: \[\left[e^{\frac{\lambda_n}{4} t} v_n(t) \right]' = 0. \] Therefore,

\[v_n(t) = c e^{-\frac{\lambda_n}{4} t}, \quad 1 = v_n(0) = c \quad \Rightarrow \quad v_n(t) = e^{-\frac{\lambda_n}{4} t}. \]

Next the BVP: \[w''_n(x) + \lambda_n w_n(x) = 0, \text{ with } w_n(0) = w_n(L) = 0. \]
Since \(\lambda_n > 0 \), introduce \(\lambda_n = \mu_n^2 \). The characteristic polynomial is

\[p(r) = r^2 + \mu_n^2. \]
An example of separation of variables.

Example
Find the solution to the IBVP
\[4 \partial_t u = \partial_x^2 u, \quad t > 0, \quad x \in [0, 2], \]
\[u(0, x) = 3 \sin(\pi x/2), \quad u(t, 0) = 0, \quad u(t, 2) = 0. \]

Solution: Recall: \[\left[e^{\frac{\lambda_n t}{4}} v_n(t) \right]' = 0. \] Therefore,

\[v_n(t) = c e^{-\frac{\lambda_n t}{4}}, \quad 1 = v_n(0) = c \quad \Rightarrow \quad v_n(t) = e^{-\frac{\lambda_n t}{4}}. \]

Next the BVP: \[w''_n(x) + \lambda_n w_n(x) = 0, \] with \(w_n(0) = w_n(L) = 0. \)

Since \(\lambda_n > 0, \) introduce \(\lambda_n = \mu_n^2. \) The characteristic polynomial is

\[p(r) = r^2 + \mu_n^2 = 0 \]
An example of separation of variables.

Example
Find the solution to the IBVP
\[4 \partial_t u = \partial_x^2 u, \quad t > 0, \quad x \in [0, 2],\]
\[u(0, x) = 3 \sin(\pi x/2), \quad u(t, 0) = 0, \quad u(t, 2) = 0.\]

Solution: Recall: \[\left[e^{\frac{\lambda_n}{4} t} \nu_n(t) \right]' = 0.\] Therefore,
\[\nu_n(t) = c e^{-\frac{\lambda_n}{4} t}, \quad 1 = \nu_n(0) = c \quad \Rightarrow \quad \nu_n(t) = e^{-\frac{\lambda_n}{4} t}.\]

Next the BVP: \[w''_n(x) + \lambda_n w_n(x) = 0, \text{ with } w_n(0) = w_n(L) = 0.\]
Since \(\lambda_n > 0\), introduce \(\lambda_n = \mu_n^2\). The characteristic polynomial is
\[p(r) = r^2 + \mu_n^2 = 0 \quad \Rightarrow \quad r_{n\pm} = \pm \mu_n i.\]
An example of separation of variables.

Example
Find the solution to the IBVP \(4 \frac{\partial t}{\partial t} u = \frac{\partial^2 x}{\partial x^2} u, \quad t > 0, \quad x \in [0, 2],\)
\[u(0, x) = 3 \sin(\pi x/2), \quad u(t, 0) = 0, \quad u(t, 2) = 0.\]

Solution: Recall: \(\left[e^{\frac{\lambda_n}{4} t} v_n(t) \right]' = 0.\) Therefore,
\[v_n(t) = c e^{-\frac{\lambda_n}{4} t}, \quad 1 = v_n(0) = c \quad \Rightarrow \quad v_n(t) = e^{-\frac{\lambda_n}{4} t}.\]

Next the BVP: \(w_n''(x) + \lambda_n w_n(x) = 0,\) with \(w_n(0) = w_n(L) = 0.\)

Since \(\lambda_n > 0,\) introduce \(\lambda_n = \mu_n^2.\) The characteristic polynomial is
\[p(r) = r^2 + \mu_n^2 = 0 \quad \Rightarrow \quad r_{n\pm} = \pm \mu_n i.\]

The general solution, \(w_n(x) = c_1 \cos(\mu_n x) + c_2 \sin(\mu_n x).\)
An example of separation of variables.

Example
Find the solution to the IBVP $4 \partial_t u = \partial_x^2 u$, $t > 0$, $x \in [0, 2]$, $u(0, x) = 3 \sin(\pi x/2)$, $u(t, 0) = 0$, $u(t, 2) = 0$.

Solution: Recall: $[e^{\frac{\lambda_n}{4} t} v_n(t)]' = 0$. Therefore,

$$v_n(t) = c e^{-\frac{\lambda_n}{4} t}, \quad 1 = v_n(0) = c \quad \Rightarrow \quad v_n(t) = e^{-\frac{\lambda_n}{4} t}.$$

Next the BVP: $w_n''(x) + \lambda_n w_n(x) = 0$, with $w_n(0) = w_n(L) = 0$.
Since $\lambda_n > 0$, introduce $\lambda_n = \mu_n^2$. The characteristic polynomial is

$$p(r) = r^2 + \mu_n^2 = 0 \quad \Rightarrow \quad r_{n\pm} = \pm \mu_n i.$$

The general solution, $w_n(x) = c_1 \cos(\mu_n x) + c_2 \sin(\mu_n x)$.

The boundary conditions imply

$$0 = w_n(0) = c_1,$$
An example of separation of variables.

Example
Find the solution to the IBVP \(4\frac{\partial}{\partial t} u = \frac{\partial^2}{\partial x^2} u, \quad t > 0, \quad x \in [0, 2], \)
\[u(0, x) = 3 \sin(\pi x/2), \quad u(t, 0) = 0, \quad u(t, 2) = 0. \]

Solution: Recall: \([e^{\frac{\lambda_n}{4} t} \nu_n(t)]' = 0. \) Therefore,
\[\nu_n(t) = c e^{-\frac{\lambda_n}{4} t}, \quad 1 = \nu_n(0) = c \quad \Rightarrow \quad \nu_n(t) = e^{-\frac{\lambda n}{4} t}. \]

Next the BVP: \(w_n''(x) + \lambda_n w_n(x) = 0, \) with \(w_n(0) = w_n(L) = 0. \)
Since \(\lambda_n > 0, \) introduce \(\lambda_n = \mu_n^2. \) The characteristic polynomial is
\[p(r) = r^2 + \mu_n^2 = 0 \quad \Rightarrow \quad r_{n\pm} = \pm \mu_n i. \]

The general solution, \(w_n(x) = c_1 \cos(\mu_n x) + c_2 \sin(\mu_n x). \)

The boundary conditions imply
\[0 = w_n(0) = c_1, \quad \Rightarrow \quad w_n(x) = c_2 \sin(\mu_n x). \]
An example of separation of variables.

Example
Find the solution to the IBVP
\[4\partial_t u = \partial_x^2 u, \quad t > 0, \quad x \in [0, 2], \]
\[u(0, x) = 3 \sin(\pi x/2), \quad u(t, 0) = 0, \quad u(t, 2) = 0. \]

Solution: Recall: \(v_n(t) = e^{-\frac{\lambda_n}{4} t}, \) and \(w_n(x) = c_2 \sin(\mu_n x). \)
An example of separation of variables.

Example
Find the solution to the IBVP $4 \partial_t u = \partial_x^2 u$, $t > 0$, $x \in [0, 2]$, $u(0, x) = 3 \sin(\pi x/2)$, $u(t, 0) = 0$, $u(t, 2) = 0$.

Solution: Recall: $v_n(t) = e^{-\frac{\lambda_n}{4} t}$, and $w_n(x) = c_2 \sin(\mu_n x)$.

$$0 = w_n(2) = c_2 \sin(\mu_n 2),$$
An example of separation of variables.

Example
Find the solution to the IBVP

\[4 \partial_t u = \partial_x^2 u, \quad t > 0, \quad x \in [0, 2], \]
\[u(0, x) = 3 \sin(\pi x/2), \quad u(t, 0) = 0, \quad u(t, 2) = 0. \]

Solution: Recall: \(v_n(t) = e^{-\frac{\lambda_n}{4}t} \), and \(w_n(x) = c_2 \sin(\mu_n x) \).

\[0 = w_n(2) = c_2 \sin(\mu_n 2), \quad c_2 \neq 0, \]
An example of separation of variables.

Example
Find the solution to the IBVP
\[4 \partial_t u = \partial_x^2 u, \quad t > 0, \quad x \in [0, 2], \]
\[u(0, x) = 3 \sin(\pi x/2), \quad u(t, 0) = 0, \quad u(t, 2) = 0. \]

Solution: Recall: \(v_n(t) = e^{-\frac{\lambda n}{4} t} \), and \(w_n(x) = c_2 \sin(\mu_n x) \).

\[0 = w_n(2) = c_2 \sin(\mu_n 2), \quad c_2 \neq 0, \quad \Rightarrow \quad \sin(\mu_n 2) = 0. \]
An example of separation of variables.

Example
Find the solution to the IBVP

\[4\partial_t u = \partial_x^2 u, \quad t > 0, \quad x \in [0, 2], \]

\[u(0, x) = 3 \sin(\pi x/2), \quad u(t, 0) = 0, \quad u(t, 2) = 0. \]

Solution: Recall: \(v_n(t) = e^{-\frac{\lambda_n}{4} t} \), and \(w_n(x) = c_2 \sin(\mu_n x) \).

\[0 = w_n(2) = c_2 \sin(\mu_n 2), \quad c_2 \neq 0, \quad \Rightarrow \quad \sin(\mu_n 2) = 0. \]

Then, \(\mu_n 2 = n\pi \).
An example of separation of variables.

Example
Find the solution to the IBVP

\[4 \partial_t u = \partial_x^2 u, \quad t > 0, \quad x \in [0, 2], \]
\[u(0, x) = 3 \sin\left(\frac{\pi x}{2}\right), \quad u(t, 0) = 0, \quad u(t, 2) = 0. \]

Solution: Recall: \(v_n(t) = e^{-\frac{\lambda_n}{4} t} \), and \(w_n(x) = c_2 \sin(\mu_n x) \).

\[0 = w_n(2) = c_2 \sin(\mu_n 2), \quad c_2 \neq 0, \quad \Rightarrow \quad \sin(\mu_n 2) = 0. \]

Then, \(\mu_n 2 = n\pi \), that is, \(\mu_n = \frac{n\pi}{2} \).
An example of separation of variables.

Example
Find the solution to the IBVP

$$4\partial_t u = \partial_x^2 u, \quad t > 0, \quad x \in [0, 2],$$

$$u(0, x) = 3\sin(\pi x/2), \quad u(t, 0) = 0, \quad u(t, 2) = 0.$$

Solution: Recall: $v_n(t) = e^{-\frac{\lambda_n}{4} t}$, and $w_n(x) = c_2 \sin(\mu_n x)$.

$$0 = w_n(2) = c_2 \sin(\mu_n 2), \quad c_2 \neq 0, \quad \Rightarrow \quad \sin(\mu_n 2) = 0.$$

Then, $\mu_n 2 = n\pi$, that is, $\mu_n = \frac{n\pi}{2}$. Choosing $c_2 = 1$, we conclude,

$$\lambda_m = \left(\frac{n\pi}{2}\right)^2, \quad w_n(x) = \sin\left(\frac{n\pi x}{2}\right).$$
An example of separation of variables.

Example
Find the solution to the IBVP
\[4 \partial_t u = \partial_x^2 u, \quad t > 0, \quad x \in [0, 2], \]
\[u(0, x) = 3 \sin(\pi x/2), \quad u(t, 0) = 0, \quad u(t, 2) = 0. \]

Solution: Recall: \(v_n(t) = e^{-\lambda_n t/4}, \) and \(w_n(x) = c_2 \sin(\mu_n x). \)

\[0 = w_n(2) = c_2 \sin(\mu_n 2), \quad c_2 \neq 0, \quad \Rightarrow \quad \sin(\mu_n 2) = 0. \]

Then, \(\mu_n 2 = n\pi, \) that is, \(\mu_n = \frac{n\pi}{2}. \) Choosing \(c_2 = 1, \) we conclude,

\[\lambda_n = \left(\frac{n\pi}{2} \right)^2, \quad w_n(x) = \sin\left(\frac{n\pi x}{2} \right). \]

\[u(t, x) = \sum_{n=1}^{\infty} c_n e^{-\left(\frac{n\pi}{4} \right)^2 t} \sin\left(\frac{n\pi x}{2} \right). \]
An example of separation of variables.

Example
Find the solution to the IBVP
\[4 \partial_t u = \partial_x^2 u, \quad t > 0, \quad x \in [0, 2], \]
\[u(0, x) = 3 \sin(\pi x/2), \quad u(t, 0) = 0, \quad u(t, 2) = 0. \]

Solution: Recall:
\[u(t, x) = \sum_{n=1}^{\infty} c_n e^{-\left(\frac{n\pi}{4}\right)^2 t} \sin\left(\frac{n\pi x}{2}\right). \]
An example of separation of variables.

Example
Find the solution to the IBVP

\[4 \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \quad t > 0, \quad x \in [0, 2], \]

\[u(0, x) = 3 \sin\left(\frac{\pi x}{2}\right), \quad u(t, 0) = 0, \quad u(t, 2) = 0. \]

Solution: Recall:

\[u(t, x) = \sum_{n=1}^{\infty} c_n e^{-\left(\frac{n\pi}{4}\right)^2 t} \sin\left(\frac{n\pi x}{2}\right). \]

The initial condition is

\[3 \sin\left(\frac{\pi x}{2}\right) = \sum_{n=1}^{\infty} c_n \sin\left(\frac{n\pi x}{2}\right). \]
An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_t u = \partial_x^2 u$, $t > 0$, $x \in [0, 2]$,
$u(0, x) = 3 \sin(\pi x / 2)$,
$u(t, 0) = 0$,
$u(t, 2) = 0$.

Solution: Recall:
$u(t, x) = \sum_{n=1}^{\infty} c_n e^{-\left(\frac{n\pi}{4}\right)^2 t} \sin\left(\frac{n\pi x}{2}\right)$.

The initial condition is
$3 \sin\left(\frac{\pi x}{2}\right) = \sum_{n=1}^{\infty} c_n \sin\left(\frac{n\pi x}{2}\right)$.

The orthogonality of the sine functions implies
$3 \int_0^2 \sin\left(\frac{\pi x}{2}\right) \sin\left(\frac{m\pi x}{2}\right) \, dx = \sum_{n=1}^{\infty} \int_0^2 \sin\left(\frac{n\pi x}{2}\right) \sin\left(\frac{m\pi x}{2}\right) \, dx$.
An example of separation of variables.

Example
Find the solution to the IBVP $4 \partial_t u = \partial_x^2 u$, $t > 0$, $x \in [0, 2]$, $u(0, x) = 3 \sin(\pi x/2)$, $u(t, 0) = 0$, $u(t, 2) = 0$.

Solution: Recall: $u(t, x) = \sum_{n=1}^{\infty} c_n e^{-\left(\frac{n\pi}{4}\right)^2 t} \sin\left(\frac{n\pi x}{2}\right)$.

The initial condition is $3 \sin\left(\frac{\pi x}{2}\right) = \sum_{n=1}^{\infty} c_n \sin\left(\frac{n\pi x}{2}\right)$.

The orthogonality of the sine functions implies

$$3 \int_0^2 \sin\left(\frac{\pi x}{2}\right) \sin\left(\frac{m\pi x}{2}\right) \, dx = \sum_{n=1}^{\infty} \int_0^2 \sin\left(\frac{n\pi x}{2}\right) \sin\left(\frac{m\pi x}{2}\right) \, dx.$$

If $m \neq 1$, then $0 = c_m \frac{2}{2}$,
An example of separation of variables.

Example
Find the solution to the IBVP

\[4 \partial_t u = \partial_x^2 u, \quad t > 0, \quad x \in [0, 2], \]

\[u(0, x) = 3 \sin(\pi x / 2), \quad u(t, 0) = 0, \quad u(t, 2) = 0. \]

Solution: Recall:

\[u(t, x) = \sum_{n=1}^{\infty} c_n e^{-\left(\frac{n\pi}{4}\right)^2 t} \sin\left(\frac{n\pi x}{2}\right). \]

The initial condition is

\[3 \sin\left(\frac{\pi x}{2}\right) = \sum_{n=1}^{\infty} c_n \sin\left(\frac{n\pi x}{2}\right). \]

The orthogonality of the sine functions implies

\[3 \int_0^2 \sin\left(\frac{\pi x}{2}\right) \sin\left(\frac{m\pi x}{2}\right) \, dx = \sum_{n=1}^{\infty} \int_0^2 \sin\left(\frac{n\pi x}{2}\right) \sin\left(\frac{m\pi x}{2}\right) \, dx. \]

If \(m \neq 1 \), then \(0 = c_m \frac{2}{2} \), that is, \(c_m = 0 \) for \(m \neq 1 \).
An example of separation of variables.

Example

Find the solution to the IBVP

\[4\partial_t u = \partial_x^2 u, \quad t > 0, \quad x \in [0, 2], \]
\[u(0, x) = 3 \sin(\frac{\pi x}{2}), \quad u(t, 0) = 0, \quad u(t, 2) = 0. \]

Solution: Recall:

\[u(t, x) = \sum_{n=1}^{\infty} c_n e^{-\left(\frac{n\pi}{4}\right)^2 t} \sin\left(\frac{n\pi x}{2}\right). \]

The initial condition is

\[3 \sin\left(\frac{\pi x}{2}\right) = \sum_{n=1}^{\infty} c_n \sin\left(\frac{n\pi x}{2}\right). \]

The orthogonality of the sine functions implies

\[3 \int_0^2 \sin\left(\frac{\pi x}{2}\right) \sin\left(\frac{m\pi x}{2}\right) \, dx = \sum_{n=1}^{\infty} \int_0^2 \sin\left(\frac{n\pi x}{2}\right) \sin\left(\frac{m\pi x}{2}\right) \, dx. \]

If \(m \neq 1 \), then \(0 = c_m \frac{2}{2} \), that is, \(c_m = 0 \) for \(m \neq 1 \). Therefore,

\[3 \sin\left(\frac{\pi x}{2}\right) = c_1 \sin\left(\frac{\pi x}{2}\right) \]
An example of separation of variables.

Example

Find the solution to the IBVP

\[4 \frac{\partial t u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \quad t > 0, \quad x \in [0, 2], \]

\[u(0, x) = 3 \sin(\pi x/2), \quad u(t, 0) = 0, \quad u(t, 2) = 0. \]

Solution: Recall:

\[u(t, x) = \sum_{n=1}^{\infty} c_n e^{-\left(\frac{n \pi}{4}\right)^2 t} \sin\left(\frac{n \pi x}{2}\right). \]

The initial condition is

\[3 \sin\left(\frac{\pi x}{2}\right) = \sum_{n=1}^{\infty} c_n \sin\left(\frac{n \pi x}{2}\right). \]

The orthogonality of the sine functions implies

\[3 \int_{0}^{2} \sin\left(\frac{\pi x}{2}\right) \sin\left(\frac{m \pi x}{2}\right) dx = \sum_{n=1}^{\infty} \int_{0}^{2} \sin\left(\frac{n \pi x}{2}\right) \sin\left(\frac{m \pi x}{2}\right) dx. \]

If \(m \neq 1 \), then \(0 = c_m \frac{2}{2} \), that is, \(c_m = 0 \) for \(m \neq 1 \). Therefore,

\[3 \sin\left(\frac{\pi x}{2}\right) = c_1 \sin\left(\frac{\pi x}{2}\right) \implies c_1 = 3. \]
An example of separation of variables.

Example
Find the solution to the IBVP \(4\partial_t u = \partial_x^2 u, \quad t > 0, \quad x \in [0, 2], \)
\[
 u(0, x) = 3 \sin(\pi x/2), \quad u(t, 0) = 0, \quad u(t, 2) = 0.
\]

Solution: We conclude that
\[
 u(t, x) = 3 e^{-\left(\frac{\pi}{4}\right)^2 t} \sin\left(\frac{\pi x}{2}\right).
\]
Review for Final Exam.

- Exam is cumulative.
- Heat equation and Fourier Series not included.
- 10-12 problems.
- Two hours.
- Integration and Laplace Transform tables included.

- **Not in the exam:** Fourier Series expansions (Chptr.6).
- Eigenvalue-Eigenfunction BVP (Chptr. 6).
- Systems of linear Equations (Chptr. 5).
- Laplace transforms (Chptr. 4).
- Power Series Methods (Chptr. 3).
- Second order linear equations (Chptr. 2).
- First order differential equations (Chptr. 1).
Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x) = 1$ for $x \in (-1, 0)$, and then find the Fourier Series of this extension.

Solution:

The Fourier series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos \left(\frac{n\pi x}{L} \right) + b_n \sin \left(\frac{n\pi x}{L} \right) \right].$$

Since f is odd and periodic, the Fourier Series is a Sine Series, that is, $a_n = 0$.

$$b_n = \frac{2}{L} \int_{L}^{L} f(x) \sin \left(\frac{n\pi x}{L} \right) \, dx = \frac{1}{L} \int_{-1}^{0} f(x) \sin \left(\frac{n\pi x}{L} \right) \, dx.$$

$$b_n = 2 \left[\int_{0}^{1} \sin \left(\frac{n\pi x}{L} \right) \, dx \right] = \frac{1}{n\pi} \left[\cos \left(\frac{n\pi - 1}{L} \right) - \cos \left(\frac{n\pi - 1}{L} \right) \right] = \frac{1}{n\pi}. $$

$$b_n = \frac{2}{n\pi} \left[\cos \left(\frac{n\pi x}{L} \right) - 1 \right] \bigg|_{L}^{L} = \frac{2}{n\pi} \left(1 - \cos \left(\frac{n\pi}{L} \right) \right).$$
Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of \(f(x) = 1 \) for \(x \in (-1, 0) \), and then find the Fourier Series of this extension.

Solution: The Fourier series is

\[
f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].
\]
Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of \(f(x) = 1 \) for \(x \in (-1, 0) \), and then find the Fourier Series of this extension.

Solution: The Fourier series is

\[
f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos \left(\frac{n\pi x}{L} \right) + b_n \sin \left(\frac{n\pi x}{L} \right) \right].
\]

Since \(f \) is odd and periodic,
Example
Graph the odd-periodic extension of \(f(x) = 1 \) for \(x \in (-1, 0) \), and then find the Fourier Series of this extension.

Solution: The Fourier series is

\[
f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].
\]

Since \(f \) is odd and periodic, then the Fourier Series is a Sine Series,
Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of \(f(x) = 1 \) for \(x \in (-1, 0) \), and then find the Fourier Series of this extension.

Solution: The Fourier series is

\[
f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].
\]

Since \(f \) is odd and periodic, then the Fourier Series is a Sine Series, that is, \(a_n = 0 \).
Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of \(f(x) = 1 \) for \(x \in (-1, 0) \), and then find the Fourier Series of this extension.

Solution: The Fourier series is
\[
 f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n \pi x}{L} \right) + b_n \sin\left(\frac{n \pi x}{L} \right) \right].
\]
Since \(f \) is odd and periodic, then the Fourier Series is a Sine Series, that is, \(a_n = 0 \).
\[
b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n \pi x}{L} \right) \, dx
\]
Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of $f(x) = 1$ for $x \in (-1, 0)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos \left(\frac{n\pi x}{L} \right) + b_n \sin \left(\frac{n\pi x}{L} \right) \right].$$

Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_n = 0$.

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n\pi x}{L} \right) \, dx = \frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n\pi x}{L} \right) \, dx.$$
Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of \(f(x) = 1 \) for \(x \in (-1, 0) \), and then find the Fourier Series of this extension.

Solution: The Fourier series is

\[
f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].
\]

Since \(f \) is odd and periodic, then the Fourier Series is a Sine Series, that is, \(a_n = 0 \).

\[
b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) \, dx = \frac{2}{L} \int_{0}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) \, dx.
\]

\[
b_n = 2 \int_{0}^{1} (-1) \sin(n\pi x) \, dx
\]
Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of \(f(x) = 1 \) for \(x \in (-1, 0) \), and then find the Fourier Series of this extension.

Solution: The Fourier series is

\[
f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].
\]

Since \(f \) is odd and periodic, then the Fourier Series is a Sine Series, that is, \(a_n = 0 \).

\[
b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) \, dx = \frac{2}{L} \int_{0}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) \, dx.
\]

\[
b_n = 2 \int_{0}^{1} (-1) \sin(n\pi x) \, dx = (-2) \left. \frac{(-1)}{n\pi} \cos(n\pi x) \right|_{0}^{1},
\]
Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of \(f(x) = 1 \) for \(x \in (-1, 0) \), and then find the Fourier Series of this extension.

Solution: The Fourier series is

\[
 f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos \left(\frac{n\pi x}{L} \right) + b_n \sin \left(\frac{n\pi x}{L} \right) \right].
\]

Since \(f \) is odd and periodic, then the Fourier Series is a Sine Series, that is, \(a_n = 0 \).

\[
b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n\pi x}{L} \right) \, dx = \frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n\pi x}{L} \right) \, dx.
\]

\[
b_n = 2 \int_{0}^{1} (-1) \sin(n\pi x) \, dx = (-2) \frac{(-1)^n}{n\pi} \cos(n\pi x) \bigg|_{0}^{1},
\]

\[
b_n = \frac{2}{n\pi} \left[\cos(n\pi) - 1 \right]
\]
Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x) = 1$ for $x \in (-1, 0)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos \left(\frac{n\pi x}{L} \right) + b_n \sin \left(\frac{n\pi x}{L} \right) \right].$$

Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_n = 0$.

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n\pi x}{L} \right) \, dx = \frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n\pi x}{L} \right) \, dx.$$

$$b_n = 2 \int_{0}^{1} (-1) \sin(n\pi x) \, dx = (-2) \left[\frac{(-1)}{n\pi} \cos(n\pi x) \right]_{0}^{1},$$

$$b_n = \frac{2}{n\pi} \left[\cos(n\pi) - 1 \right] \Rightarrow b_n = \frac{2}{n\pi} \left[(-1)^n - 1 \right].$$
Example

Graph the odd-periodic extension of \(f(x) = 1 \) for \(x \in (-1, 0) \), and then find the Fourier Series of this extension.

Solution: Recall: \(b_n = \frac{2}{n\pi} [(-1)^n - 1] \).
Example
Graph the odd-periodic extension of \(f(x) = 1 \) for \(x \in (-1, 0) \), and then find the Fourier Series of this extension.

Solution: Recall: \(b_n = \frac{2}{n\pi} \left[(-1)^n - 1 \right] \).

If \(n = 2k \),
Example

Graph the odd-periodic extension of \(f(x) = 1 \) for \(x \in (-1, 0) \), and then find the Fourier Series of this extension.

Solution: Recall: \(b_n = \frac{2}{n\pi} \left[(-1)^n - 1 \right] \).

If \(n = 2k \), then \(b_{2k} = \frac{2}{2k\pi} \left[(-1)^{2k} - 1 \right] \).
Example

Graph the odd-periodic extension of \(f(x) = 1 \) for \(x \in (-1, 0) \), and then find the Fourier Series of this extension.

Solution: Recall: \(b_n = \frac{2}{n\pi} \left[(-1)^n - 1 \right] \).

If \(n = 2k \), then \(b_{2k} = \frac{2}{2k\pi} \left[(-1)^{2k} - 1 \right] = 0. \)
Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of \(f(x) = 1 \) for \(x \in (-1, 0) \), and then find the Fourier Series of this extension.

Solution: Recall: \(b_n = \frac{2}{n\pi} \left[(-1)^n - 1 \right] \).

If \(n = 2k \), then \(b_{2k} = \frac{2}{2k\pi} \left[(-1)^{2k} - 1 \right] = 0 \).

If \(n = 2k - 1 \),
Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of \(f(x) = 1 \) for \(x \in (-1, 0) \), and then find the Fourier Series of this extension.

Solution: Recall: \(b_n = \frac{2}{n\pi} [(-1)^n - 1] \).

If \(n = 2k \), then \(b_{2k} = \frac{2}{2k\pi} [(-1)^{2k} - 1] = 0 \).

If \(n = 2k - 1 \),
\[
b_{(2k-1)} = \frac{2}{(2k-1)\pi} [(-1)^{2k-1} - 1]
\]
Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x) = 1$ for $x \in (-1, 0)$, and then find the Fourier Series of this extension.

Solution: Recall: $b_n = \frac{2}{n\pi} \left[(-1)^n - 1\right]$.

If $n = 2k$, then $b_{2k} = \frac{2}{2k\pi} \left[(-1)^{2k} - 1\right] = 0$.

If $n = 2k - 1$, $b_{(2k-1)} = \frac{2}{(2k-1)\pi} \left[(-1)^{2k-1} - 1\right] = -\frac{4}{(2k-1)\pi}$.
Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of \(f(x) = 1 \) for \(x \in (-1, 0) \), and then find the Fourier Series of this extension.

Solution: Recall: \(b_n = \frac{2}{n\pi} \left[(-1)^n - 1 \right] \).

If \(n = 2k \), then \(b_{2k} = \frac{2}{2k\pi} \left[(-1)^{2k} - 1 \right] = 0 \).

If \(n = 2k - 1 \),
\[
b_{(2k-1)} = \frac{2}{(2k-1)\pi} \left[(-1)^{2k-1} - 1 \right] = -\frac{4}{(2k-1)\pi}.
\]

We conclude: \(f(x) = -\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{1}{(2k-1)} \sin[(2k-1)\pi x] \). \(\triangle \)
Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of \(f(x) = 2 - x \) for \(x \in (0, 2) \), and then find the Fourier Series of this extension.
Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of $f(x) = 2 - x$ for $x \in (0, 2)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].$$
Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of \(f(x) = 2 - x \) for \(x \in (0, 2) \), and then find the Fourier Series of this extension.

Solution: The Fourier series is

\[
f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L} \right) + b_n \sin\left(\frac{n\pi x}{L} \right) \right].
\]

Since \(f \) is odd and periodic,
Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of \(f(x) = 2 - x \) for \(x \in (0, 2) \), and then find the Fourier Series of this extension.

Solution: The Fourier series is

\[
f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos \left(\frac{n\pi x}{L} \right) + b_n \sin \left(\frac{n\pi x}{L} \right) \right].
\]

Since \(f \) is odd and periodic, then the Fourier Series is a Sine Series,
Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of \(f(x) = 2 - x \) for \(x \in (0, 2) \), and then find the Fourier Series of this extension.

Solution: The Fourier series is

\[
f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].
\]

Since \(f \) is odd and periodic, then the Fourier Series is a Sine Series, that is, \(a_n = 0 \).
Example
Graph the odd-periodic extension of \(f(x) = 2 - x \) for \(x \in (0, 2) \), and then find the Fourier Series of this extension.

Solution: The Fourier series is

\[
f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].
\]

Since \(f \) is odd and periodic, then the Fourier Series is a Sine Series, that is, \(a_n = 0 \).

\[
b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) \, dx
\]
Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of \(f(x) = 2 - x \) for \(x \in (0, 2) \), and then find the Fourier Series of this extension.

Solution: The Fourier series is

\[
f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].
\]

Since \(f \) is odd and periodic, then the Fourier Series is a Sine Series, that is, \(a_n = 0 \).

\[
b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) \, dx = \frac{2}{L} \int_{0}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) \, dx,
\]
Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of $f(x) = 2 - x$ for $x \in (0, 2)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].$$

Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_n = 0$.

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) \, dx = \frac{2}{L} \int_{0}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) \, dx, \quad L = 2,$$
Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of $f(x) = 2 - x$ for $x \in (0, 2)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos \left(\frac{n\pi x}{L} \right) + b_n \sin \left(\frac{n\pi x}{L} \right) \right].$$

Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_n = 0$.

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n\pi x}{L} \right) \, dx = \frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n\pi x}{L} \right) \, dx, \quad L = 2,$$

$$b_n = \int_{0}^{2} (2 - x) \sin \left(\frac{n\pi x}{2} \right) \, dx.$$
Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of \(f(x) = 2 - x \) for \(x \in (0, 2) \), and then find the Fourier Series of this extension.

Solution: \(b_n = 2 \int_0^2 \sin \left(\frac{n\pi x}{2} \right) \, dx - \int_0^2 x \sin \left(\frac{n\pi x}{2} \right) \, dx \).
Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of \(f(x) = 2 - x \) for \(x \in (0, 2) \), and then find the Fourier Series of this extension.

Solution: \(b_n = 2 \int_0^2 \sin \left(\frac{n\pi x}{2} \right) \, dx - \int_0^2 x \sin \left(\frac{n\pi x}{2} \right) \, dx \).

\[
\int \sin \left(\frac{n\pi x}{2} \right) \, dx = \frac{-2}{n\pi} \cos \left(\frac{n\pi x}{2} \right),
\]
Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of \(f(x) = 2 - x \) for \(x \in (0, 2) \), and then find the Fourier Series of this extension.

Solution:

\[b_n = 2 \int_0^2 \sin \left(\frac{n\pi x}{2} \right) \, dx - \int_0^2 x \sin \left(\frac{n\pi x}{2} \right) \, dx. \]

\[\int \sin \left(\frac{n\pi x}{2} \right) \, dx = \frac{-2}{n\pi} \cos \left(\frac{n\pi x}{2} \right), \]

The other integral is done by parts,
Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of \(f(x) = 2 - x \) for \(x \in (0, 2) \), and then find the Fourier Series of this extension.

Solution:

\[
 b_n = 2 \int_0^2 \sin\left(\frac{n\pi x}{2}\right) \, dx - \int_0^2 x \sin\left(\frac{n\pi x}{2}\right) \, dx.
\]

\[
 \int \sin\left(\frac{n\pi x}{2}\right) \, dx = \frac{-2}{n\pi} \cos\left(\frac{n\pi x}{2}\right),
\]

The other integral is done by parts,

\[
 I = \int x \sin\left(\frac{n\pi x}{2}\right) \, dx,
\]
Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of \(f(x) = 2 - x \) for \(x \in (0, 2) \), and then find the Fourier Series of this extension.

Solution: \(b_n = 2 \int_0^2 \sin \left(\frac{n\pi x}{2} \right) \, dx - \int_0^2 x \sin \left(\frac{n\pi x}{2} \right) \, dx \).

\[
\int \sin \left(\frac{n\pi x}{2} \right) \, dx = \frac{-2}{n\pi} \cos \left(\frac{n\pi x}{2} \right),
\]

The other integral is done by parts,

\[
I = \int x \sin \left(\frac{n\pi x}{2} \right) \, dx, \quad \left\{ \begin{array}{c}
u = x, \quad v' = \sin \left(\frac{n\pi x}{2} \right)
\end{array} \right.
\]
Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of \(f(x) = 2 - x \) for \(x \in (0, 2) \), and then find the Fourier Series of this extension.

Solution: \(b_n = 2 \int_0^2 \sin\left(\frac{n\pi x}{2}\right) \, dx - \int_0^2 x \sin\left(\frac{n\pi x}{2}\right) \, dx \).

\[
\int \sin\left(\frac{n\pi x}{2}\right) \, dx = \frac{-2}{n\pi} \cos\left(\frac{n\pi x}{2}\right),
\]

The other integral is done by parts,

\[
I = \int x \sin\left(\frac{n\pi x}{2}\right) \, dx, \quad \left\{ \begin{array}{l}
 u = x, \quad v' = \sin\left(\frac{n\pi x}{2}\right) \\
 u' = 1, \quad v = -\frac{2}{n\pi} \cos\left(\frac{n\pi x}{2}\right)
\end{array} \right.
\]
Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of \(f(x) = 2 - x \) for \(x \in (0, 2) \), and then find the Fourier Series of this extension.

Solution: \(b_n = 2 \int_0^2 \sin\left(\frac{n\pi x}{2}\right) \, dx - \int_0^2 x \sin\left(\frac{n\pi x}{2}\right) \, dx \).

\[
\int \sin\left(\frac{n\pi x}{2}\right) \, dx = \frac{-2}{n\pi} \cos\left(\frac{n\pi x}{2}\right),
\]

The other integral is done by parts,

\[
I = \int x \sin\left(\frac{n\pi x}{2}\right) \, dx,
\]

\[
\begin{aligned}
&u = x, &v' &= \sin\left(\frac{n\pi x}{2}\right) \\
&u' = 1, &v &= -\frac{2}{n\pi} \cos\left(\frac{n\pi x}{2}\right)
\end{aligned}
\]

\[
I = \frac{-2x}{n\pi} \cos\left(\frac{n\pi x}{2}\right) - \int \left(\frac{-2}{n\pi}\right) \cos\left(\frac{n\pi x}{2}\right) \, dx.
\]
Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of \(f(x) = 2 - x \) for \(x \in (0, 2) \), and then find the Fourier Series of this extension.

Solution: \(I = \frac{-2x}{n\pi} \cos\left(\frac{n\pi x}{2}\right) - \int \left(\frac{-2}{n\pi}\right) \cos\left(\frac{n\pi x}{2}\right) \, dx. \)
Example
Graph the odd-periodic extension of $f(x) = 2 - x$ for $x \in (0, 2)$, and then find the Fourier Series of this extension.

Solution: $I = \frac{-2x}{n\pi} \cos\left(\frac{n\pi x}{2}\right) - \int \left(\frac{-2}{n\pi}\right) \cos\left(\frac{n\pi x}{2}\right) \, dx$.

$I = -\frac{2x}{n\pi} \cos\left(\frac{n\pi x}{2}\right) + \left(\frac{2}{n\pi}\right)^2 \sin\left(\frac{n\pi x}{2}\right)$.
Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of \(f(x) = 2 - x \) for \(x \in (0, 2) \), and then find the Fourier Series of this extension.

Solution:
\[
I = \frac{-2x}{n\pi} \cos\left(\frac{n\pi x}{2}\right) - \int \left(\frac{-2}{n\pi}\right) \cos\left(\frac{n\pi x}{2}\right) \, dx.
\]
\[
I = -\frac{2x}{n\pi} \cos\left(\frac{n\pi x}{2}\right) + \left(\frac{2}{n\pi}\right)^2 \sin\left(\frac{n\pi x}{2}\right).
\]

So, we get
\[
b_n = 2 \left[\frac{-2}{n\pi} \cos\left(\frac{n\pi x}{2}\right)\right]_0^2 + \left[\frac{2x}{n\pi} \cos\left(\frac{n\pi x}{2}\right)\right]_0^2 - \left(\frac{2}{n\pi}\right)^2 \sin\left(\frac{n\pi x}{2}\right)_0^2.
\]
Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of \(f(x) = 2 - x \) for \(x \in (0, 2) \), and then find the Fourier Series of this extension.

Solution: \(I = \frac{-2x}{n\pi} \cos\left(\frac{n\pi x}{2}\right) - \int \left(\frac{-2}{n\pi}\right) \cos\left(\frac{n\pi x}{2}\right) \, dx \).

\[
I = -\frac{2x}{n\pi} \cos\left(\frac{n\pi x}{2}\right) + \left(\frac{2}{n\pi}\right)^2 \sin\left(\frac{n\pi x}{2}\right). \,
\]

So, we get

\[
b_n = 2 \left[\frac{-2}{n\pi} \cos\left(\frac{n\pi x}{2}\right)\right]_0^2 + \left[\frac{2x}{n\pi} \cos\left(\frac{n\pi x}{2}\right)\right]_0^2 - \left(\frac{2}{n\pi}\right)^2 \sin\left(\frac{n\pi x}{2}\right)_0^2
\]

\[
b_n = \frac{-4}{n\pi} [\cos(n\pi) - 1] + \frac{4}{n\pi} \cos(n\pi) - 0
\]
Example

Graph the odd-periodic extension of \(f(x) = 2 - x \) for \(x \in (0, 2) \), and then find the Fourier Series of this extension.

Solution: \(I = \frac{-2x}{n\pi} \cos\left(\frac{n\pi x}{2}\right) - \int \left(\frac{-2}{n\pi}\right) \cos\left(\frac{n\pi x}{2}\right) \, dx \).

\[
I = -\frac{2x}{n\pi} \cos\left(\frac{n\pi x}{2}\right) + \left(\frac{2}{n\pi}\right)^2 \sin\left(\frac{n\pi x}{2}\right).
\]

So, we get

\[
b_n = 2 \left[\frac{-2}{n\pi} \cos\left(\frac{n\pi x}{2}\right)\right]_0^2 + \left[\frac{2x}{n\pi} \cos\left(\frac{n\pi x}{2}\right)\right]_0^2 - \left(\frac{2}{n\pi}\right)^2 \sin\left(\frac{n\pi x}{2}\right)]_0^2
\]

\[
b_n = -\frac{4}{n\pi} [\cos(n\pi) - 1] + \left[\frac{4}{n\pi} \cos(n\pi) - 0\right] \Rightarrow b_n = \frac{4}{n\pi}.
\]
Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of \(f(x) = 2 - x \) for \(x \in (0, 2) \), and then find the Fourier Series of this extension.

Solution: \(I = \frac{-2x}{n\pi} \cos \left(\frac{n\pi x}{2} \right) - \int \left(\frac{-2}{n\pi} \right) \cos \left(\frac{n\pi x}{2} \right) \, dx \).

\[I = -\frac{2x}{n\pi} \cos \left(\frac{n\pi x}{2} \right) + \left(\frac{2}{n\pi} \right)^2 \sin \left(\frac{n\pi x}{2} \right). \]

So, we get

\[b_n = 2 \left[\frac{-2}{n\pi} \cos \left(\frac{n\pi x}{2} \right) \right]_0^2 + \left[\frac{2x}{n\pi} \cos \left(\frac{n\pi x}{2} \right) \right]_0^2 - \left(\frac{2}{n\pi} \right)^2 \sin \left(\frac{n\pi x}{2} \right) \]

\[b_n = -\frac{4}{n\pi} \left[\cos(n\pi) - 1 \right] + \left[\frac{4}{n\pi} \cos(n\pi) - 0 \right] \quad \Rightarrow \quad b_n = \frac{4}{n\pi}. \]

We conclude: \(f(x) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \left(\frac{n\pi x}{2} \right) \). \(\triangle \)
Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of \(f(x) = 2 - x \) for \(x \in [0, 2] \), and then find the Fourier Series of this extension.

Solution:
The Fourier series is
\[
f(x) = a_0 + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right)\right].
\]
Since \(f \) is even and periodic, the Fourier Series is a Cosine Series, that is, \(b_n = 0 \).
\[
a_0 = \frac{1}{L} \int_{-L}^{L} f(x) \, dx = \int_{0}^{2} (2 - x) \, dx = \text{base x height} = 2.
\]

\[
a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) \, dx = \frac{2}{L} \int_{0}^{2} (2 - x) \cos\left(\frac{n\pi x}{2}\right) \, dx.
\]
Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x) = 2 - x$ for $x \in [0, 2]$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].$$
Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of \(f(x) = 2 - x \) for \(x \in [0, 2] \), and then find the Fourier Series of this extension.

Solution: The Fourier series is
\[
f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos \left(\frac{n\pi x}{L} \right) + b_n \sin \left(\frac{n\pi x}{L} \right) \right].
\]

Since \(f \) is even and periodic,
Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of \(f(x) = 2 - x \) for \(x \in [0, 2] \), and then find the Fourier Series of this extension.

Solution: The Fourier series is

\[
 f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].
\]

Since \(f \) is even and periodic, then the Fourier Series is a Cosine Series.
Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of \(f(x) = 2 - x \) for \(x \in [0, 2] \), and then find the Fourier Series of this extension.

Solution: The Fourier series is

\[
f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L} \right) + b_n \sin\left(\frac{n\pi x}{L} \right) \right].
\]

Since \(f \) is even and periodic, then the Fourier Series is a Cosine Series, that is, \(b_n = 0 \).
Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of \(f(x) = 2 - x \) for \(x \in [0, 2] \), and then find the Fourier Series of this extension.

Solution: The Fourier series is

\[
f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L} \right) + b_n \sin\left(\frac{n\pi x}{L} \right) \right].
\]

Since \(f \) is even and periodic, then the Fourier Series is a Cosine Series, that is, \(b_n = 0 \).

\[
a_0 = \frac{1}{2} \int_{-2}^{2} f(x) \, dx
\]
Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of \(f(x) = 2 - x \) for \(x \in [0, 2] \), and then find the Fourier Series of this extension.

Solution: The Fourier series is

\[
f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos \left(\frac{n \pi x}{L} \right) + b_n \sin \left(\frac{n \pi x}{L} \right) \right].
\]

Since \(f \) is even and periodic, then the Fourier Series is a Cosine Series, that is, \(b_n = 0 \).

\[
a_0 = \frac{1}{2} \int_{-2}^{2} f(x) \, dx = \int_{0}^{2} (2 - x) \, dx
\]
Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of \(f(x) = 2 - x \) for \(x \in [0, 2] \), and then find the Fourier Series of this extension.

Solution: The Fourier series is

\[
f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L} \right) + b_n \sin\left(\frac{n\pi x}{L} \right) \right].
\]

Since \(f \) is even and periodic, then the Fourier Series is a Cosine Series, that is, \(b_n = 0 \).

\[
a_0 = \frac{1}{2} \int_{-2}^{2} f(x) \, dx = \int_{0}^{2} (2 - x) \, dx = \frac{\text{base} \times \text{height}}{2}
\]
Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of \(f(x) = 2 - x \) for \(x \in [0, 2] \), and then find the Fourier Series of this extension.

Solution: The Fourier series is

\[
f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos \left(\frac{n\pi x}{L} \right) + b_n \sin \left(\frac{n\pi x}{L} \right) \right].
\]

Since \(f \) is even and periodic, then the Fourier Series is a Cosine Series, that is, \(b_n = 0 \).

\[
a_0 = \frac{1}{2} \int_{-2}^{2} f(x) \, dx = \int_{0}^{2} (2 - x) \, dx = \frac{\text{base} \times \text{height}}{2} \quad \Rightarrow \quad a_0 = 2.
\]
Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of \(f(x) = 2 - x \) for \(x \in [0, 2] \), and then find the Fourier Series of this extension.

Solution: The Fourier series is

\[
f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos \left(\frac{n\pi x}{L} \right) + b_n \sin \left(\frac{n\pi x}{L} \right) \right].
\]

Since \(f \) is even and periodic, then the Fourier Series is a Cosine Series, that is, \(b_n = 0 \).

\[
a_0 = \frac{1}{2} \int_{-2}^{2} f(x) \, dx = \int_{0}^{2} (2 - x) \, dx = \frac{\text{base} \times \text{height}}{2} \quad \Rightarrow \quad a_0 = 2.
\]

\[
a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n\pi x}{L} \right) \, dx
\]
Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of \(f(x) = 2 - x \) for \(x \in [0, 2] \), and then find the Fourier Series of this extension.

Solution: The Fourier series is

\[
f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos \left(\frac{n\pi x}{L} \right) + b_n \sin \left(\frac{n\pi x}{L} \right) \right].
\]

Since \(f \) is even and periodic, then the Fourier Series is a Cosine Series, that is, \(b_n = 0 \).

\[
a_0 = \frac{1}{2} \int_{-2}^{2} f(x) \, dx = \int_{0}^{2} (2 - x) \, dx = \frac{\text{base} \times \text{height}}{2} \quad \Rightarrow \quad a_0 = 2.
\]

\[
a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n\pi x}{L} \right) \, dx = \frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n\pi x}{L} \right) \, dx,
\]
Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of \(f(x) = 2 - x \) for \(x \in [0, 2] \), and then find the Fourier Series of this extension.

Solution: The Fourier series is

\[
f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos \left(\frac{n\pi x}{L} \right) + b_n \sin \left(\frac{n\pi x}{L} \right) \right].
\]

Since \(f \) is even and periodic, then the Fourier Series is a Cosine Series, that is, \(b_n = 0 \).

\[
a_0 = \frac{1}{2} \int_{-2}^{2} f(x) \, dx = \int_{0}^{2} (2 - x) \, dx = \frac{\text{base} \times \text{height}}{2} \quad \Rightarrow \quad a_0 = 2.
\]

\[
a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n\pi x}{L} \right) \, dx = \frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n\pi x}{L} \right) \, dx, \quad L = 2,
\]
Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of \(f(x) = 2 - x \) for \(x \in [0, 2] \), and then find the Fourier Series of this extension.

Solution: The Fourier series is

\[
f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos \left(\frac{n\pi x}{L} \right) + b_n \sin \left(\frac{n\pi x}{L} \right) \right].
\]

Since \(f \) is even and periodic, then the Fourier Series is a Cosine Series, that is, \(b_n = 0 \).

\[
a_0 = \frac{1}{2} \int_{-2}^{2} f(x) \, dx = \int_{0}^{2} (2 - x) \, dx = \frac{\text{base} \times \text{height}}{2} \Rightarrow a_0 = 2.
\]

\[
a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n\pi x}{L} \right) \, dx = \frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n\pi x}{L} \right) \, dx, \quad L = 2,
\]

\[
a_n = \int_{0}^{2} (2 - x) \cos \left(\frac{n\pi x}{2} \right) \, dx.
\]
Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of \(f(x) = 2 - x \) for \(x \in [0, 2] \), and then find the Fourier Series of this extension.

Solution: \(a_n = 2 \int_0^2 \cos \left(\frac{n\pi x}{2} \right) \, dx - \int_0^2 x \cos \left(\frac{n\pi x}{2} \right) \, dx \).
Example
Graph the even-periodic extension of \(f(x) = 2 - x \) for \(x \in [0, 2] \), and then find the Fourier Series of this extension.

Solution: \(a_n = 2 \int_0^2 \cos\left(\frac{n\pi x}{2}\right) \, dx - \int_0^2 x \cos\left(\frac{n\pi x}{2}\right) \, dx \).

\[
\int \cos\left(\frac{n\pi x}{2}\right) \, dx = \frac{2}{n\pi} \sin\left(\frac{n\pi x}{2}\right),
\]
Example
Graph the even-periodic extension of \(f(x) = 2 - x \) for \(x \in [0, 2] \), and then find the Fourier Series of this extension.

Solution: \(a_n = 2 \int_0^2 \cos \left(\frac{n\pi x}{2} \right) \, dx - \int_0^2 x \cos \left(\frac{n\pi x}{2} \right) \, dx \).

\[
\int \cos \left(\frac{n\pi x}{2} \right) \, dx = \frac{2}{n\pi} \sin \left(\frac{n\pi x}{2} \right),
\]

The other integral is done by parts,
Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of \(f(x) = 2 - x \) for \(x \in [0, 2] \), and then find the Fourier Series of this extension.

Solution: \(a_n = 2 \int_0^2 \cos\left(\frac{n\pi x}{2}\right) \, dx - \int_0^2 x \cos\left(\frac{n\pi x}{2}\right) \, dx \).

\[
\int \cos\left(\frac{n\pi x}{2}\right) \, dx = \frac{2}{n\pi} \sin\left(\frac{n\pi x}{2}\right),
\]

The other integral is done by parts,

\[
I = \int x \cos\left(\frac{n\pi x}{2}\right) \, dx,
\]
Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of \(f(x) = 2 - x \) for \(x \in [0, 2] \), and then find the Fourier Series of this extension.

Solution: \(a_n = 2 \int_0^2 \cos \left(\frac{n\pi x}{2} \right) \, dx - \int_0^2 x \cos \left(\frac{n\pi x}{2} \right) \, dx \).

\[
\int \cos \left(\frac{n\pi x}{2} \right) \, dx = \frac{2}{n\pi} \sin \left(\frac{n\pi x}{2} \right),
\]

The other integral is done by parts,

\[
I = \int x \cos \left(\frac{n\pi x}{2} \right) \, dx, \quad \left\{ \begin{array}{l}
\quad u = x, \quad v' = \cos \left(\frac{n\pi x}{2} \right) \\
\end{array} \right.
\]
Example

Graph the even-periodic extension of \(f(x) = 2 - x \) for \(x \in [0, 2] \), and then find the Fourier Series of this extension.

Solution: \(a_n = 2 \int_0^2 \cos \left(\frac{n\pi x}{2} \right) \, dx - \int_0^2 x \cos \left(\frac{n\pi x}{2} \right) \, dx \).

\[
\int \cos \left(\frac{n\pi x}{2} \right) \, dx = \frac{2}{n\pi} \sin \left(\frac{n\pi x}{2} \right),
\]

The other integral is done by parts,

\[
l = \int x \cos \left(\frac{n\pi x}{2} \right) \, dx,
\]

\[
\begin{align*}
u &= x, & v' &= \cos \left(\frac{n\pi x}{2} \right), \\
u' &= 1, & v &= \frac{2}{n\pi} \sin \left(\frac{n\pi x}{2} \right).
\end{align*}
\]
Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of \(f(x) = 2 - x \) for \(x \in [0, 2] \), and then find the Fourier Series of this extension.

Solution: \(a_n = 2 \int_0^2 \cos\left(\frac{n\pi x}{2}\right) \, dx - \int_0^2 x \cos\left(\frac{n\pi x}{2}\right) \, dx \).

\[
\int \cos\left(\frac{n\pi x}{2}\right) \, dx = \frac{2}{n\pi} \sin\left(\frac{n\pi x}{2}\right),
\]

The other integral is done by parts,

\[
I = \int x \cos\left(\frac{n\pi x}{2}\right) \, dx,
\]

\[
\begin{align*}
u &= x, & v' &= \cos\left(\frac{n\pi x}{2}\right), \\
u' &= 1, & v &= \frac{2}{n\pi} \sin\left(\frac{n\pi x}{2}\right)
\end{align*}
\]

\[
I = \frac{2x}{n\pi} \sin\left(\frac{n\pi x}{2}\right) - \int \frac{2}{n\pi} \sin\left(\frac{n\pi x}{2}\right) \, dx.
\]
Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of \(f(x) = 2 - x \) for \(x \in [0, 2] \), and then find the Fourier Series of this extension.

Solution: Recall:

\[
I = \frac{2x}{n\pi} \sin\left(\frac{n\pi x}{2}\right) - \int \frac{2}{n\pi} \sin\left(\frac{n\pi x}{2}\right) \, dx.
\]
Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of $f(x) = 2 - x$ for $x \in [0, 2]$, and then find the Fourier Series of this extension.

Solution: Recall: $I = \frac{2x}{n\pi} \sin\left(\frac{n\pi x}{2}\right) - \int \frac{2}{n\pi} \sin\left(\frac{n\pi x}{2}\right) \, dx$.

$I = \frac{2x}{n\pi} \sin\left(\frac{n\pi x}{2}\right) + \left(\frac{2}{n\pi}\right)^2 \cos\left(\frac{n\pi x}{2}\right)$.
Example
Graph the even-periodic extension of \(f(x) = 2 - x \) for \(x \in [0, 2] \), and then find the Fourier Series of this extension.

Solution: Recall: \(L = \frac{2x}{n\pi} \sin\left(\frac{n\pi x}{2}\right) - \int \frac{2}{n\pi} \sin\left(\frac{n\pi x}{2}\right) \, dx \).

\[L = \frac{2x}{n\pi} \sin\left(\frac{n\pi x}{2}\right) + \left(\frac{2}{n\pi}\right)^2 \cos\left(\frac{n\pi x}{2}\right). \] So, we get

\[a_n = 2\left[\frac{2}{n\pi} \sin\left(\frac{n\pi x}{2}\right)\right]_0^2 - \left[\frac{2x}{n\pi} \sin\left(\frac{n\pi x}{2}\right)\right]_0^2 - \left(\frac{2}{n\pi}\right)^2 \cos\left(\frac{n\pi x}{2}\right)_0^2 \]
Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of \(f(x) = 2 - x \) for \(x \in [0, 2] \), and then find the Fourier Series of this extension.

Solution: Recall:
\[
I = \frac{2x}{n\pi} \sin\left(\frac{n\pi x}{2}\right) - \int \frac{2}{n\pi} \sin\left(\frac{n\pi x}{2}\right) \, dx.
\]

\[
I = \frac{2x}{n\pi} \sin\left(\frac{n\pi x}{2}\right) + \left(\frac{2}{n\pi}\right)^2 \cos\left(\frac{n\pi x}{2}\right).
\]

So, we get
\[
a_n = 2 \left[\frac{2}{n\pi} \sin\left(\frac{n\pi x}{2}\right) \right]_0^2 - \left[\frac{2x}{n\pi} \sin\left(\frac{n\pi x}{2}\right) \right]_0^2 - \left(\frac{2}{n\pi}\right)^2 \cos\left(\frac{n\pi x}{2}\right)\bigg|_0^2
\]

\[
a_n = 0 - 0 - \frac{4}{n^2\pi^2} \left[\cos(n\pi) - 1 \right]
\]
Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of \(f(x) = 2 - x \) for \(x \in [0, 2] \), and then find the Fourier Series of this extension.

Solution: Recall:

\[
I = \frac{2x}{n\pi} \sin\left(\frac{n\pi x}{2}\right) - \int \frac{2}{n\pi} \sin\left(\frac{n\pi x}{2}\right) \, dx.
\]

\[
I = \frac{2x}{n\pi} \sin\left(\frac{n\pi x}{2}\right) + \left(\frac{2}{n\pi}\right)^2 \cos\left(\frac{n\pi x}{2}\right) .
\]

So, we get

\[
a_n = 2 \left[\frac{2}{n\pi} \sin\left(\frac{n\pi x}{2}\right) \right]_0^2 - \left[\frac{2x}{n\pi} \sin\left(\frac{n\pi x}{2}\right) \right]_0^2 - \left(\frac{2}{n\pi}\right)^2 \cos\left(\frac{n\pi x}{2}\right) \bigg|_0^2
\]

\[
a_n = 0 - 0 - \frac{4}{n^2\pi^2} \left[\cos(n\pi) - 1 \right] \quad \Rightarrow \quad a_n = \frac{4}{n^2\pi^2} [1 - (-1)^n].
\]
Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of $f(x) = 2 - x$ for $x \in [0, 2]$, and then find the Fourier Series of this extension.

Solution: Recall: $b_n = 0$, $a_0 = 2$, $a_n = \frac{4}{n^2 \pi^2} [1 - (-1)^n]$.
Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of \(f(x) = 2 - x \) for \(x \in [0, 2] \), and then find the Fourier Series of this extension.

Solution: Recall: \(b_n = 0, \ a_0 = 2, \ a_n = \frac{4}{n^2 \pi^2} [1 - (-1)^n] \).

If \(n = 2k \),
Example
Graph the even-periodic extension of $f(x) = 2 - x$ for $x \in [0, 2]$, and then find the Fourier Series of this extension.

Solution: Recall: $b_n = 0$, $a_0 = 2$, $a_n = \frac{4}{n^2 \pi^2} [1 - (-1)^n]$.

If $n = 2k$, then $a_{2k} = \frac{4}{(2k)^2 \pi^2} \left[1 - (-1)^{2k} \right]$
Example
Graph the even-periodic extension of \(f(x) = 2 - x \) for \(x \in [0, 2] \), and then find the Fourier Series of this extension.

Solution: Recall: \(b_n = 0 \), \(a_0 = 2 \), \(a_n = \frac{4}{n^2 \pi^2} [1 - (-1)^n] \).

If \(n = 2k \), then \(a_{2k} = \frac{4}{(2k)^2 \pi^2} [1 - (-1)^{2k}] = 0 \).
Example

Graph the even-periodic extension of \(f(x) = 2 - x \) for \(x \in [0, 2] \), and then find the Fourier Series of this extension.

Solution: Recall: \(b_n = 0, \ a_0 = 2, \ a_n = \frac{4}{n^2 \pi^2} [1 - (-1)^n] \).

If \(n = 2k \), then \(a_{2k} = \frac{4}{(2k)^2 \pi^2} [1 - (-1)^{2k}] = 0 \).

If \(n = 2k - 1 \),
Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of $f(x) = 2 - x$ for $x \in [0, 2]$, and then find the Fourier Series of this extension.

Solution: Recall: $b_n = 0$, $a_0 = 2$, $a_n = \frac{4}{n^2 \pi^2} [1 - (-1)^n]$.

If $n = 2k$, then $a_{2k} = \frac{4}{(2k)^2 \pi^2} [1 - (-1)^{2k}] = 0$.

If $n = 2k - 1$, then we obtain

$a_{(2k-1)} = \frac{4}{(2k - 1)^2 \pi^2} [1 - (-1)^{2k-1}]$
Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of \(f(x) = 2 - x \) for \(x \in [0, 2] \), and then find the Fourier Series of this extension.

Solution: Recall: \(b_n = 0 \), \(a_0 = 2 \), \(a_n = \frac{4}{n^2 \pi^2} [1 - (-1)^n] \).

If \(n = 2k \), then \(a_{2k} = \frac{4}{(2k)^2 \pi^2} [1 - (-1)^{2k}] = 0 \).

If \(n = 2k - 1 \), then we obtain
\[
a_{2k-1} = \frac{4}{(2k - 1)^2 \pi^2} [1 - (-1)^{2k-1}] = \frac{8}{(2k - 1)^2 \pi^2}.
\]
Example
Graph the even-periodic extension of \(f(x) = 2 - x \) for \(x \in [0, 2] \), and then find the Fourier Series of this extension.

Solution: Recall: \(b_n = 0 \), \(a_0 = 2 \), \(a_n = \frac{4}{n^2 \pi^2} [1 - (-1)^n] \).

If \(n = 2k \), then \(a_{2k} = \frac{4}{(2k)^2 \pi^2} \left[1 - (-1)^{2k} \right] = 0 \).

If \(n = 2k - 1 \), then we obtain
\[
a_{(2k-1)} = \frac{4}{(2k-1)^2 \pi^2} \left[1 - (-1)^{2k-1} \right] = \frac{8}{(2k-1)^2 \pi^2}.
\]

We conclude: \(f(x) = 1 + \frac{8}{\pi^2} \sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} \cos\left(\frac{(2k-1)\pi x}{2}\right) \). \(\triangle \)
Review for Final Exam.

- Fourier Series expansions (Chptr. 6).
- **Eigenvalue-Eigenfunction BVP (Chptr. 6).**
- Systems of linear Equations (Chptr. 5).
- Laplace transforms (Chptr. 4).
- Power Series Methods (Chptr. 3).
- Second order linear equations (Chptr. 2).
- First order differential equations (Chptr. 1).
Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0, \quad y(0) = 0, \quad y(8) = 0.$$
Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

\[y'' + \lambda \, y = 0, \quad y(0) = 0, \quad y(8) = 0. \]

Solution: Since \(\lambda > 0 \),
Example

Find the positive eigenvalues and their eigenfunctions of

\[y'' + \lambda y = 0, \quad y(0) = 0, \quad y(8) = 0. \]

Solution: Since \(\lambda > 0 \), introduce \(\lambda = \mu^2 \),

\[y_n(x) = \sin \left(\frac{n\pi}{8} x \right), \quad n = 1, 2, \ldots \]
Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0, \quad y(0) = 0, \quad y(8) = 0.$$

Solution: Since $\lambda > 0$, introduce $\lambda = \mu^2$, with $\mu > 0$.

$\mu = \frac{n \pi}{8}$,

$\lambda = \left(\frac{n \pi}{8}\right)^2$,

$y_n(x) = \sin\left(\frac{n \pi x}{8}\right)$,

$n = 1, 2, \ldots$
Example

Find the positive eigenvalues and their eigenfunctions of

\[y'' + \lambda y = 0, \quad y(0) = 0, \quad y(8) = 0. \]

Solution: Since \(\lambda > 0 \), introduce \(\lambda = \mu^2 \), with \(\mu > 0 \).

\(y(x) = e^{rx} \) implies that \(r \) is solution of
Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

\[y'' + \lambda y = 0, \quad y(0) = 0, \quad y(8) = 0. \]

Solution: Since \(\lambda > 0 \), introduce \(\lambda = \mu^2 \), with \(\mu > 0 \).

\[y(x) = e^{rx} \] implies that \(r \) is solution of

\[p(r) = r^2 + \mu^2 = 0 \]
Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

\[y'' + \lambda y = 0, \quad y(0) = 0, \quad y(8) = 0. \]

Solution: Since \(\lambda > 0 \), introduce \(\lambda = \mu^2 \), with \(\mu > 0 \).

\[y(x) = e^{rx} \] implies that \(r \) is solution of

\[p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu i. \]
Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

\[y'' + \lambda y = 0, \quad y(0) = 0, \quad y(8) = 0. \]

Solution: Since \(\lambda > 0 \), introduce \(\lambda = \mu^2 \), with \(\mu > 0 \).

\(y(x) = e^{rx} \) implies that \(r \) is solution of

\[p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu i. \]

The general solution is \(y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x) \).
Example

Find the positive eigenvalues and their eigenfunctions of

\[y'' + \lambda y = 0, \quad y(0) = 0, \quad y(8) = 0. \]

Solution: Since \(\lambda > 0 \), introduce \(\lambda = \mu^2 \), with \(\mu > 0 \).

\(y(x) = e^{rx} \) implies that \(r \) is solution of

\[p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu i. \]

The general solution is \(y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x) \).

The boundary conditions imply:

\[0 = y(0) \]
Eigenvalue-Eigenfunction BVP.

Example
Find the positive eigenvalues and their eigenfunctions of
\[y'' + \lambda y = 0, \quad y(0) = 0, \quad y(8) = 0. \]

Solution: Since \(\lambda > 0 \), introduce \(\lambda = \mu^2 \), with \(\mu > 0 \).
\[y(x) = e^{rx} \] implies that \(r \) is solution of
\[p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_\pm = \pm \mu i. \]
The general solution is
\[y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x). \]
The boundary conditions imply:
\[0 = y(0) = c_1 \]
Eigenvalue-Eigenfunction BVP.

Example
Find the positive eigenvalues and their eigenfunctions of
\[y'' + \lambda y = 0, \quad y(0) = 0, \quad y(8) = 0. \]

Solution: Since \(\lambda > 0 \), introduce \(\lambda = \mu^2 \), with \(\mu > 0 \).

Let \(y(x) = e^{rx} \) implies that \(r \) is solution of
\[p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu i. \]

The general solution is \(y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x) \).

The boundary conditions imply:
\[0 = y(0) = c_1 \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x). \]
Example
Find the positive eigenvalues and their eigenfunctions of
\[y'' + \lambda y = 0, \quad y(0) = 0, \quad y(8) = 0. \]

Solution: Since \(\lambda > 0 \), introduce \(\lambda = \mu^2 \), with \(\mu > 0 \).
\[y(x) = e^{rx} \] implies that \(r \) is solution of
\[p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu i. \]
The general solution is \(y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x) \).
The boundary conditions imply:
\[0 = y(0) = c_1 \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x). \]
\[0 = y(8) = c_2 \sin(\mu 8), \]
Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

\[y'' + \lambda y = 0, \quad y(0) = 0, \quad y(8) = 0. \]

Solution: Since \(\lambda > 0 \), introduce \(\lambda = \mu^2 \), with \(\mu > 0 \).

\(y(x) = e^{rx} \) implies that \(r \) is solution of

\[p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_\pm = \pm \mu i. \]

The general solution is \(y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x) \).

The boundary conditions imply:

\[0 = y(0) = c_1 \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x). \]

\[0 = y(8) = c_2 \sin(\mu 8), \quad c_2 \neq 0 \]
Example

Find the positive eigenvalues and their eigenfunctions of
\[y'' + \lambda y = 0, \quad y(0) = 0, \quad y(8) = 0. \]

Solution: Since \(\lambda > 0 \), introduce \(\lambda = \mu^2 \), with \(\mu > 0 \).

\[y(x) = e^{rx} \] implies that \(r \) is solution of
\[p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_\pm = \pm \mu i. \]

The general solution is \(y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x) \).

The boundary conditions imply:
\[0 = y(0) = c_1 \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x). \]
\[0 = y(8) = c_2 \sin(\mu 8), \quad c_2 \neq 0 \quad \Rightarrow \quad \sin(\mu 8) = 0. \]
Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

\[y'' + \lambda \, y = 0, \quad y(0) = 0, \quad y(8) = 0. \]

Solution: Since \(\lambda > 0 \), introduce \(\lambda = \mu^2 \), with \(\mu > 0 \).

\(y(x) = e^{rx} \) implies that \(r \) is solution of

\[p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu i. \]

The general solution is \(y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x) \).

The boundary conditions imply:

\[0 = y(0) = c_1 \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x). \]

\[0 = y(8) = c_2 \sin(\mu 8), \quad c_2 \neq 0 \quad \Rightarrow \quad \sin(\mu 8) = 0. \]

\[\mu = \frac{n\pi}{8}, \]
Example
Find the positive eigenvalues and their eigenfunctions of
\[y'' + \lambda y = 0, \quad y(0) = 0, \quad y(8) = 0. \]

Solution: Since \(\lambda > 0 \), introduce \(\lambda = \mu^2 \), with \(\mu > 0 \).
\(y(x) = e^{rx} \) implies that \(r \) is solution of
\[p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_\pm = \pm \mu i. \]
The general solution is \(y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x) \).

The boundary conditions imply:
\[0 = y(0) = c_1 \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x). \]
\[0 = y(8) = c_2 \sin(\mu 8), \quad c_2 \neq 0 \quad \Rightarrow \quad \sin(\mu 8) = 0. \]
\[\mu = \frac{n\pi}{8}, \quad \lambda = \left(\frac{n\pi}{8} \right)^2, \quad n = 1, 2, \cdots \]
Example

Find the positive eigenvalues and their eigenfunctions of

\[y'' + \lambda y = 0, \quad y(0) = 0, \quad y(8) = 0. \]

Solution: Since \(\lambda > 0 \), introduce \(\lambda = \mu^2 \), with \(\mu > 0 \).

\[y(x) = e^{rx} \] implies that \(r \) is solution of

\[p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu i. \]

The general solution is \(y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x) \).

The boundary conditions imply:

\[0 = y(0) = c_1 \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x). \]

\[0 = y(8) = c_2 \sin(\mu 8), \quad c_2 \neq 0 \quad \Rightarrow \quad \sin(\mu 8) = 0. \]

\[\mu = \frac{n\pi}{8}, \quad \lambda = \left(\frac{n\pi}{8}\right)^2, \quad y_n(x) = \sin\left(\frac{n\pi x}{8}\right), \quad n = 1, 2, \cdots \]
Example
Find the positive eigenvalues and their eigenfunctions of
\[y'' + \lambda y = 0, \quad y(0) = 0, \quad y'(8) = 0. \]
Example
Find the positive eigenvalues and their eigenfunctions of
\[y'' + \lambda y = 0, \quad y(0) = 0, \quad y'(8) = 0. \]

Solution: The general solution is \[y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x). \]
Example

Find the positive eigenvalues and their eigenfunctions of

\[y'' + \lambda y = 0, \quad y(0) = 0, \quad y'(8) = 0. \]

Solution: The general solution is \(y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x) \).

The boundary conditions imply:

\[0 = y(0) \]
Example

Find the positive eigenvalues and their eigenfunctions of

\[y'' + \lambda y = 0, \quad y(0) = 0, \quad y'(8) = 0. \]

Solution: The general solution is

\[y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x). \]

The boundary conditions imply:

\[0 = y(0) = c_1 \]
Example

Find the positive eigenvalues and their eigenfunctions of

\[y'' + \lambda y = 0, \quad y(0) = 0, \quad y'(8) = 0. \]

Solution: The general solution is \(y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x). \)

The boundary conditions imply:

\[0 = y(0) = c_1 \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x). \]
Eigenvalue-Eigenfunction BVP.

Example
Find the positive eigenvalues and their eigenfunctions of
\[y'' + \lambda y = 0, \quad y(0) = 0, \quad y'(8) = 0. \]

Solution: The general solution is
\[y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x). \]

The boundary conditions imply:
\[0 = y(0) = c_1 \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x). \]
\[0 = y'(8) = c_2 \mu \cos(\mu 8), \]
Example

Find the positive eigenvalues and their eigenfunctions of

\[y'' + \lambda y = 0, \quad y(0) = 0, \quad y'(8) = 0. \]

Solution: The general solution is

\[y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x). \]

The boundary conditions imply:

\[0 = y(0) = c_1 \implies y(x) = c_2 \sin(\mu x). \]

\[0 = y'(8) = c_2 \mu \cos(\mu 8), \quad c_2 \neq 0 \]
Eigenvalue-Eigenfunction BVP.

Example
Find the positive eigenvalues and their eigenfunctions of
\[y'' + \lambda y = 0, \quad y(0) = 0, \quad y'(8) = 0. \]

Solution: The general solution is \(y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x). \)

The boundary conditions imply:
\[0 = y(0) = c_1 \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x). \]
\[0 = y'(8) = c_2 \mu \cos(\mu 8), \quad c_2 \neq 0 \quad \Rightarrow \quad \cos(\mu 8) = 0. \]
Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of
\[y'' + \lambda y = 0, \quad y(0) = 0, \quad y'(8) = 0. \]

Solution: The general solution is \(y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x) \).

The boundary conditions imply:

\[0 = y(0) = c_1 \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x). \]

\[0 = y'(8) = c_2 \mu \cos(\mu 8), \quad c_2 \neq 0 \quad \Rightarrow \quad \cos(\mu 8) = 0. \]

\[8\mu = (2n + 1)\frac{\pi}{2}, \]
Eigenvalue-Eigenfunction BVP.

Example
Find the positive eigenvalues and their eigenfunctions of
\[y'' + \lambda y = 0, \quad y(0) = 0, \quad y'(8) = 0. \]

Solution: The general solution is \(y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x) \).
The boundary conditions imply:
\[0 = y(0) = c_1 \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x). \]
\[0 = y'(8) = c_2 \mu \cos(\mu 8), \quad c_2 \neq 0 \quad \Rightarrow \quad \cos(\mu 8) = 0. \]
\[8\mu = (2n + 1)\frac{\pi}{2}, \quad \Rightarrow \quad \mu = \frac{(2n + 1)\pi}{16}. \]
Example
Find the positive eigenvalues and their eigenfunctions of
\[y'' + \lambda y = 0, \quad y(0) = 0, \quad y'(8) = 0. \]

Solution: The general solution is \(y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x) \).

The boundary conditions imply:
\[0 = y(0) = c_1 \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x). \]
\[0 = y'(8) = c_2 \mu \cos(\mu 8), \quad c_2 \neq 0 \quad \Rightarrow \quad \cos(\mu 8) = 0. \]
\[8\mu = (2n + 1)\frac{\pi}{2}, \quad \Rightarrow \quad \mu = \frac{(2n + 1)\pi}{16}. \]

Then, for \(n = 1, 2, \ldots \) holds
\[\lambda = \left[\frac{(2n + 1)\pi}{16} \right]^2, \]
Example
Find the positive eigenvalues and their eigenfunctions of
\[y'' + \lambda y = 0, \quad y(0) = 0, \quad y'(8) = 0. \]

Solution: The general solution is \(y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x) \).
The boundary conditions imply:
\[0 = y(0) = c_1 \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x). \]
\[0 = y'(8) = c_2 \mu \cos(\mu 8), \quad c_2 \neq 0 \quad \Rightarrow \quad \cos(\mu 8) = 0. \]
\[8\mu = (2n + 1) \frac{\pi}{16}, \quad \Rightarrow \quad \mu = \frac{(2n + 1)\pi}{16}. \]
Then, for \(n = 1, 2, \cdots \) holds
\[\lambda = \left[\frac{(2n + 1)\pi}{16} \right]^2, \quad y_n(x) = \sin\left(\frac{(2n + 1)\pi x}{16} \right). \]
Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

\[y'' + \lambda y = 0, \quad y'(0) = 0, \quad y'(8) = 0. \]
Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

\[y'' + \lambda y = 0, \quad y'(0) = 0, \quad y'(8) = 0. \]

Solution: Case \(\lambda > 0 \).
Example
Find the non-negative eigenvalues and their eigenfunctions of
\[y'' + \lambda y = 0, \quad y'(0) = 0, \quad y'(8) = 0. \]

Solution: Case \(\lambda > 0 \). Then, \(y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x) \).
Example
Find the non-negative eigenvalues and their eigenfunctions of
\[y'' + \lambda y = 0, \quad y'(0) = 0, \quad y'(8) = 0. \]

Solution: Case \(\lambda > 0 \). Then, \(y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x) \). Then, \(y'(x) = -c_1 \mu \sin(\mu x) + c_2 \mu \cos(\mu x) \).
Example

Find the non-negative eigenvalues and their eigenfunctions of

\[y'' + \lambda y = 0, \quad y'(0) = 0, \quad y'(8) = 0. \]

Solution: Case \(\lambda > 0 \). Then, \(y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x) \).

Then, \(y'(x) = -c_1 \mu \sin(\mu x) + c_2 \mu \cos(\mu x) \). The B.C. imply:

\[0 = y'(0) \]
Eigenvalue-Eigenfunction BVP.

Example
Find the non-negative eigenvalues and their eigenfunctions of
\[y'' + \lambda y = 0, \quad y'(0) = 0, \quad y'(8) = 0. \]

Solution: Case \(\lambda > 0 \). Then, \(y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x) \).

Then, \(y'(x) = -c_1 \mu \sin(\mu x) + c_2 \mu \cos(\mu x) \). The B.C. imply:
\[0 = y'(0) = c_2 \]
Example
Find the non-negative eigenvalues and their eigenfunctions of
\[y'' + \lambda y = 0, \quad y'(0) = 0, \quad y'(8) = 0. \]

Solution: Case \(\lambda > 0 \). Then, \(y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x) \).
Then, \(y'(x) = -c_1 \mu \sin(\mu x) + c_2 \mu \cos(\mu x) \). The B.C. imply:
\[0 = y'(0) = c_2 \Rightarrow y(x) = c_1 \cos(\mu x), \]
Example
Find the non-negative eigenvalues and their eigenfunctions of
\[y'' + \lambda y = 0, \quad y'(0) = 0, \quad y'(8) = 0. \]

Solution: Case \(\lambda > 0 \). Then, \(y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x) \).
Then, \(y'(x) = -c_1 \mu \sin(\mu x) + c_2 \mu \cos(\mu x) \).
The B.C. imply:
\[0 = y'(0) = c_2 \Rightarrow y(x) = c_1 \cos(\mu x), \quad y'(x) = -c_1 \mu \sin(\mu x). \]
Example
Find the non-negative eigenvalues and their eigenfunctions of
\[y'' + \lambda y = 0, \quad y'(0) = 0, \quad y'(8) = 0. \]

Solution: Case \(\lambda > 0 \). Then, \(y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x) \).
Then, \(y'(x) = -c_1 \mu \sin(\mu x) + c_2 \mu \cos(\mu x) \). The B.C. imply:
\[
0 = y'(0) = c_2 \implies y(x) = c_1 \cos(\mu x), \quad y'(x) = -c_1 \mu \sin(\mu x).
\]
\[
0 = y'(8) = c_1 \mu \sin(\mu 8),
\]
Example
Find the non-negative eigenvalues and their eigenfunctions of
\[y'' + \lambda y = 0, \quad y'(0) = 0, \quad y'(8) = 0. \]

Solution: Case $\lambda > 0$. Then, $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$. Then, $y'(x) = -c_1 \mu \sin(\mu x) + c_2 \mu \cos(\mu x)$. The B.C. imply:

\[0 = y'(0) = c_2 \quad \Rightarrow \quad y(x) = c_1 \cos(\mu x), \quad y'(x) = -c_1 \mu \sin(\mu x). \]

\[0 = y'(8) = c_1 \mu \sin(\mu 8), \quad c_1 \neq 0 \]
Example
Find the non-negative eigenvalues and their eigenfunctions of
\[y'' + \lambda y = 0, \quad y'(0) = 0, \quad y'(8) = 0. \]

Solution: Case \(\lambda > 0 \). Then, \(y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x) \).

Then, \(y'(x) = -c_1 \mu \sin(\mu x) + c_2 \mu \cos(\mu x) \). The B.C. imply:

\[0 = y'(0) = c_2 \quad \Rightarrow \quad y(x) = c_1 \cos(\mu x), \quad y'(x) = -c_1 \mu \sin(\mu x). \]

\[0 = y'(8) = c_1 \mu \sin(\mu 8), \quad c_1 \neq 0 \quad \Rightarrow \quad \sin(\mu 8) = 0. \]
Eigenvalue-Eigenfunction BVP.

Example
Find the non-negative eigenvalues and their eigenfunctions of
\[y'' + \lambda y = 0, \quad y'(0) = 0, \quad y'(8) = 0. \]

Solution: Case \(\lambda > 0 \). Then, \(y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x) \).

Then, \(y'(x) = -c_1 \mu \sin(\mu x) + c_2 \mu \cos(\mu x) \). The B.C. imply:
\[0 = y'(0) = c_2 \quad \Rightarrow \quad y(x) = c_1 \cos(\mu x), \quad y'(x) = -c_1 \mu \sin(\mu x). \]
\[0 = y'(8) = c_1 \mu \sin(\mu 8), \quad c_1 \neq 0 \quad \Rightarrow \quad \sin(\mu 8) = 0. \]
\[8\mu = n\pi, \]
Example

Find the non-negative eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0, \quad y'(0) = 0, \quad y'(8) = 0.$$

Solution: Case $\lambda > 0$. Then, $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$.

Then, $y'(x) = -c_1 \mu \sin(\mu x) + c_2 \mu \cos(\mu x)$. The B.C. imply:

$$0 = y'(0) = c_2 \quad \Rightarrow \quad y(x) = c_1 \cos(\mu x), \quad y'(x) = -c_1 \mu \sin(\mu x).$$

$$0 = y'(8) = c_1 \mu \sin(\mu 8), \quad c_1 \neq 0 \quad \Rightarrow \quad \sin(\mu 8) = 0.$$

$$8 \mu = n\pi, \quad \Rightarrow \quad \mu = \frac{n\pi}{8}.$$
Eigenvalue-Eigenfunction BVP.

Example
Find the non-negative eigenvalues and their eigenfunctions of
\[y'' + \lambda y = 0, \quad y'(0) = 0, \quad y'(8) = 0. \]

Solution: Case \(\lambda > 0 \). Then, \(y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x) \).
Then, \(y'(x) = -c_1 \mu \sin(\mu x) + c_2 \mu \cos(\mu x) \). The B.C. imply:
\[0 = y'(0) = c_2 \quad \Rightarrow \quad y(x) = c_1 \cos(\mu x), \quad y'(x) = -c_1 \mu \sin(\mu x). \]
\[0 = y'(8) = c_1 \mu \sin(\mu 8), \quad c_1 \neq 0 \quad \Rightarrow \quad \sin(\mu 8) = 0. \]
\[8\mu = n\pi, \quad \Rightarrow \quad \mu = \frac{n\pi}{8}. \]
Then, choosing \(c_1 = 1 \), for \(n = 1, 2, \cdots \) holds
\[\lambda = \left(\frac{n\pi}{8} \right)^2. \]
Example
Find the non-negative eigenvalues and their eigenfunctions of
\[y'' + \lambda y = 0, \quad y'(0) = 0, \quad y'(8) = 0. \]

Solution: Case \(\lambda > 0 \). Then, \(y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x) \).
Then, \(y'(x) = -c_1 \mu \sin(\mu x) + c_2 \mu \cos(\mu x) \). The B.C. imply:
\[
0 = y'(0) = c_2 \Rightarrow y(x) = c_1 \cos(\mu x), \quad y'(x) = -c_1 \mu \sin(\mu x).
\]
\[
0 = y'(8) = c_1 \mu \sin(\mu 8), \quad c_1 \neq 0 \Rightarrow \sin(\mu 8) = 0.
\]
\[
8\mu = n\pi, \quad \Rightarrow \quad \mu = \frac{n\pi}{8}.
\]
Then, choosing \(c_1 = 1 \), for \(n = 1, 2, \cdots \) holds
\[
\lambda = \left(\frac{n\pi}{8}\right)^2, \quad y_n(x) = \cos\left(\frac{n\pi x}{8}\right).
\]
Example
Find the non-negative eigenvalues and their eigenfunctions of
\[y'' + \lambda y = 0, \quad y'(0) = 0, \quad y'(8) = 0. \]

Solution: The case \(\lambda = 0 \). The general solution is
\[y(x) = c_1 + c_2 x. \]
Example
Find the non-negative eigenvalues and their eigenfunctions of
\[y'' + \lambda y = 0, \quad y'(0) = 0, \quad y'(8) = 0. \]

Solution: The case \(\lambda = 0 \). The general solution is
\[y(x) = c_1 + c_2 x. \]
The B.C. imply:
\[0 = y'(0) \]
Example
Find the non-negative eigenvalues and their eigenfunctions of

\[y'' + \lambda y = 0, \quad y'(0) = 0, \quad y'(8) = 0. \]

Solution: The case \(\lambda = 0 \). The general solution is

\[y(x) = c_1 + c_2 x. \]

The B.C. imply:

\[0 = y'(0) = c_2 \]
Example
Find the non-negative eigenvalues and their eigenfunctions of
\[y'' + \lambda y = 0, \quad y'(0) = 0, \quad y'(8) = 0. \]

Solution: The case \(\lambda = 0 \). The general solution is
\[y(x) = c_1 + c_2 x. \]
The B.C. imply:
\[0 = y'(0) = c_2 \quad \Rightarrow \quad y(x) = c_1, \]
Example
Find the non-negative eigenvalues and their eigenfunctions of
\[y'' + \lambda y = 0, \quad y'(0) = 0, \quad y'(8) = 0. \]

Solution: The case \(\lambda = 0 \). The general solution is
\[y(x) = c_1 + c_2 x. \]
The B.C. imply:
\[0 = y'(0) = c_2 \quad \Rightarrow \quad y(x) = c_1, \quad y'(x) = 0. \]
Example
Find the non-negative eigenvalues and their eigenfunctions of
\[y'' + \lambda y = 0, \quad y'(0) = 0, \quad y'(8) = 0. \]

Solution: The case \(\lambda = 0 \). The general solution is
\[y(x) = c_1 + c_2 x. \]
The B.C. imply:
\[0 = y'(0) = c_2 \quad \Rightarrow \quad y(x) = c_1, \quad y'(x) = 0. \]
\[0 = y'(8) \]

\[\Rightarrow 0 = y'(0) = c_2 \quad \Rightarrow \quad y(x) = c_1, \quad y'(x) = 0. \]
Example
Find the non-negative eigenvalues and their eigenfunctions of
\[y'' + \lambda y = 0, \quad y'(0) = 0, \quad y'(8) = 0. \]

Solution: The case \(\lambda = 0 \). The general solution is
\[y(x) = c_1 + c_2 x. \]
The B.C. imply:
\[0 = y'(0) = c_2 \quad \Rightarrow \quad y(x) = c_1, \quad y'(x) = 0. \]
\[0 = y'(8) = 0. \]
Example

Find the non-negative eigenvalues and their eigenfunctions of

\[y'' + \lambda y = 0, \quad y'(0) = 0, \quad y'(8) = 0. \]

Solution: The case \(\lambda = 0 \). The general solution is

\[y(x) = c_1 + c_2 x. \]

The B.C. imply:

\[0 = y'(0) = c_2 \quad \Rightarrow \quad y(x) = c_1, \quad y'(x) = 0. \]

\[0 = y'(8) = 0. \]

Then, choosing \(c_1 = 1 \), holds,

\[\lambda = 0, \]

\[y_0(x) = 1. \]
Example
Find the non-negative eigenvalues and their eigenfunctions of
\[y'' + \lambda y = 0, \quad y'(0) = 0, \quad y'(8) = 0. \]

Solution: The case \(\lambda = 0 \). The general solution is
\[y(x) = c_1 + c_2 x. \]
The B.C. imply:
\[0 = y'(0) = c_2 \quad \Rightarrow \quad y(x) = c_1, \quad y'(x) = 0. \]
\[0 = y'(8) = 0. \]

Then, choosing \(c_1 = 1 \), holds,
\[\lambda = 0, \quad y_0(x) = 1. \]
Example

Find the solution of the BVP

\[y'' + y = 0, \quad y'(0) = 1, \quad y\left(\frac{\pi}{3}\right) = 0. \]
A Boundary Value Problem.

Example
Find the solution of the BVP

\[y'' + y = 0, \quad y'(0) = 1, \quad y(\pi/3) = 0. \]

Solution: \(y(x) = e^{rx} \) implies that \(r \) is solution of
Example

Find the solution of the BVP

\[y'' + y = 0, \quad y'(0) = 1, \quad y\left(\frac{\pi}{3}\right) = 0. \]

Solution: \(y(x) = e^{rx} \) implies that \(r \) is solution of

\[p(r) = r^2 + \mu^2 = 0 \]
Example
Find the solution of the BVP

\[y'' + y = 0, \quad y'(0) = 1, \quad y(\pi/3) = 0. \]

Solution: \(y(x) = e^{rx} \) implies that \(r \) is solution of

\[p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm i. \]
Example

Find the solution of the BVP

\[y'' + y = 0, \quad y'(0) = 1, \quad y(\pi/3) = 0. \]

Solution: \(y(x) = e^{rx} \) implies that \(r \) is solution of

\[p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm i. \]

The general solution is \(y(x) = c_1 \cos(x) + c_2 \sin(x) \).
Example
Find the solution of the BVP
\[y'' + y = 0, \quad y'(0) = 1, \quad y(\pi/3) = 0. \]

Solution: \(y(x) = e^{rx} \) implies that \(r \) is solution of
\[p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_\pm = \pm i. \]
The general solution is \(y(x) = c_1 \cos(x) + c_2 \sin(x). \)
Then, \(y'(x) = -c_1 \sin(x) + c_2 \cos(x). \)
A Boundary Value Problem.

Example

Find the solution of the BVP

\[y'' + y = 0, \quad y'(0) = 1, \quad y(\pi/3) = 0. \]

Solution: \(y(x) = e^{rx} \) implies that \(r \) is solution of

\[p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_\pm = \pm i. \]

The general solution is \(y(x) = c_1 \cos(x) + c_2 \sin(x) \).

Then, \(y'(x) = -c_1 \sin(x) + c_2 \cos(x) \). The B.C. imply:

\[1 = y'(0) \]
A Boundary Value Problem.

Example

Find the solution of the BVP

\[y'' + y = 0, \quad y'(0) = 1, \quad y(\pi/3) = 0. \]

Solution: \(y(x) = e^{rx} \) implies that \(r \) is solution of

\[p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm i. \]

The general solution is \(y(x) = c_1 \cos(x) + c_2 \sin(x). \)

Then, \(y'(x) = -c_1 \sin(x) + c_2 \cos(x). \) The B.C. imply:

\[1 = y'(0) = c_2 \]
A Boundary Value Problem.

Example

Find the solution of the BVP

\[y'' + y = 0, \quad y'(0) = 1, \quad y(\pi/3) = 0. \]

Solution: \(y(x) = e^{rx} \) implies that \(r \) is solution of

\[p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm i. \]

The general solution is \(y(x) = c_1 \cos(x) + c_2 \sin(x) \).

Then, \(y'(x) = -c_1 \sin(x) + c_2 \cos(x) \). The B.C. imply:

\[1 = y'(0) = c_2 \quad \Rightarrow \quad y(x) = c_1 \cos(x) + \sin(x). \]
A Boundary Value Problem.

Example

Find the solution of the BVP

\[y'' + y = 0, \quad y'(0) = 1, \quad y(\pi/3) = 0. \]

Solution: \(y(x) = e^{rx} \) implies that \(r \) is solution of

\[p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm i. \]

The general solution is \(y(x) = c_1 \cos(x) + c_2 \sin(x). \)

Then, \(y'(x) = -c_1 \sin(x) + c_2 \cos(x). \) The B.C. imply:

\[1 = y'(0) = c_2 \quad \Rightarrow \quad y(x) = c_1 \cos(x) + \sin(x). \]

\[0 = y(\pi/3) \]
A Boundary Value Problem.

Example
Find the solution of the BVP
\[y'' + y = 0, \quad y'(0) = 1, \quad y(\pi/3) = 0. \]

Solution: \(y(x) = e^{rx} \) implies that \(r \) is solution of
\[p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm i. \]

The general solution is \(y(x) = c_1 \cos(x) + c_2 \sin(x) \).

Then, \(y'(x) = -c_1 \sin(x) + c_2 \cos(x) \). The B.C. imply:
\[1 = y'(0) = c_2 \quad \Rightarrow \quad y(x) = c_1 \cos(x) + \sin(x). \]

\[0 = y(\pi/3) = c_1 \cos(\pi/3) + \sin(\pi/3) \]
A Boundary Value Problem.

Example
Find the solution of the BVP

\[y'' + y = 0, \quad y'(0) = 1, \quad y(\pi/3) = 0. \]

Solution: \(y(x) = e^{rx} \) implies that \(r \) is solution of

\[p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm i. \]

The general solution is \(y(x) = c_1 \cos(x) + c_2 \sin(x). \)

Then, \(y'(x) = -c_1 \sin(x) + c_2 \cos(x). \) The B.C. imply:

\[1 = y'(0) = c_2 \quad \Rightarrow \quad y(x) = c_1 \cos(x) + \sin(x). \]

\[0 = y(\pi/3) = c_1 \cos(\pi/3) + \sin(\pi/3) \quad \Rightarrow \quad c_1 = -\frac{\sin(\pi/3)}{\cos(\pi/3)}. \]
A Boundary Value Problem.

Example

Find the solution of the BVP

\[y'' + y = 0, \quad y'(0) = 1, \quad y(\pi/3) = 0. \]

Solution: \(y(x) = e^{rx} \) implies that \(r \) is solution of

\[p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_\pm = \pm i. \]

The general solution is \(y(x) = c_1 \cos(x) + c_2 \sin(x) \).

Then, \(y'(x) = -c_1 \sin(x) + c_2 \cos(x) \). The B.C. imply:

\[1 = y'(0) = c_2 \quad \Rightarrow \quad y(x) = c_1 \cos(x) + \sin(x). \]

\[0 = y(\pi/3) = c_1 \cos(\pi/3) + \sin(\pi/3) \quad \Rightarrow \quad c_1 = -\frac{\sin(\pi/3)}{\cos(\pi/3)}. \]

\[c_1 = -\frac{\sqrt{3}/2}{1/2}. \]
A Boundary Value Problem.

Example

Find the solution of the BVP

\[y'' + y = 0, \quad y'(0) = 1, \quad y(\pi/3) = 0. \]

Solution: \(y(x) = e^{rx} \) implies that \(r \) is solution of

\[p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_\pm = \pm i. \]

The general solution is \(y(x) = c_1 \cos(x) + c_2 \sin(x) \).

Then, \(y'(x) = -c_1 \sin(x) + c_2 \cos(x) \). The B.C. imply:

\[1 = y'(0) = c_2 \quad \Rightarrow \quad y(x) = c_1 \cos(x) + \sin(x). \]

\[0 = y(\pi/3) = c_1 \cos(\pi/3) + \sin(\pi/3) \quad \Rightarrow \quad c_1 = -\frac{\sin(\pi/3)}{\cos(\pi/3)}. \]

\[c_1 = -\frac{\sqrt{3}/2}{1/2} = -\sqrt{3}. \]
A Boundary Value Problem.

Example
Find the solution of the BVP

\[y'' + y = 0, \quad y'(0) = 1, \quad y(\pi/3) = 0. \]

Solution: \(y(x) = e^{rx} \) implies that \(r \) is solution of

\[p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_\pm = \pm i. \]

The general solution is \(y(x) = c_1 \cos(x) + c_2 \sin(x) \).

Then, \(y'(x) = -c_1 \sin(x) + c_2 \cos(x) \). The B.C. imply:

\[1 = y'(0) = c_2 \quad \Rightarrow \quad y(x) = c_1 \cos(x) + \sin(x). \]

\[0 = y(\pi/3) = c_1 \cos(\pi/3) + \sin(\pi/3) \quad \Rightarrow \quad c_1 = -\frac{\sin(\pi/3)}{\cos(\pi/3)}. \]

\[c_1 = -\frac{\sqrt{3}/2}{1/2} = -\sqrt{3} \quad \Rightarrow \quad y(x) = -\sqrt{3} \cos(x) + \sin(x). \]
Review for Final Exam.

- Fourier Series expansions (Chptr. 6).
- Eigenvalue-Eigenfunction BVP (Chptr. 6).
- **Systems of linear Equations (Chptr. 5).**
- Laplace transforms (Chptr. 4).
- Power Series Methods (Chptr. 3).
- Second order linear equations (Chptr. 2).
- First order differential equations (Chptr. 1).
Systems of linear Equations.

Summary: Find solutions of $x' = A x$, with A a 2×2 matrix.
Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}' = A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_i and the eigenvectors $\mathbf{v}^{(i)}$ of A.
Summary: Find solutions of $x' = Ax$, with A a 2×2 matrix. First find the eigenvalues λ_i and the eigenvectors $v^{(i)}$ of A.

(a) If $\lambda_1 \neq \lambda_2$, real,
Systems of linear Equations.

Summary: Find solutions of $x' = Ax$, with A a 2×2 matrix. First find the eigenvalues λ_i and the eigenvectors $v^{(i)}$ of A.

(a) If $\lambda_1 \neq \lambda_2$, real, then $\{v^{(1)}, v^{(2)}\}$ are linearly independent,
Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}' = A \mathbf{x}$, with A a 2×2 matrix.

First find the eigenvalues λ_i and the eigenvectors $\mathbf{v}^{(i)}$ of A.

(a) If $\lambda_1 \neq \lambda_2$, real, then $\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\}$ are linearly independent, and the general solution is $\mathbf{x}(x) = c_1 \mathbf{v}^{(1)} e^{\lambda_1 t} + c_2 \mathbf{v}^{(2)} e^{\lambda_2 t}$.
Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}' = A \mathbf{x}$, with A a 2×2 matrix.

First find the eigenvalues λ_i and the eigenvectors $\mathbf{v}^{(i)}$ of A.

(a) If $\lambda_1 \neq \lambda_2$, real, then \{$\mathbf{v}^{(1)}, \mathbf{v}^{(2)}$\} are linearly independent, and the general solution is $\mathbf{x}(x) = c_1 \mathbf{v}^{(1)} e^{\lambda_1 t} + c_2 \mathbf{v}^{(2)} e^{\lambda_2 t}$.

(b) If $\lambda_1 \neq \lambda_2$, complex,
Systems of linear Equations.

Summary: Find solutions of \(x' = A x \), with \(A \) a \(2 \times 2 \) matrix.

First find the eigenvalues \(\lambda_i \) and the eigenvectors \(v^{(i)} \) of \(A \).

(a) If \(\lambda_1 \neq \lambda_2 \), real, then \(\{v^{(1)}, v^{(2)}\} \) are linearly independent, and the general solution is \(x(x) = c_1 v^{(1)} e^{\lambda_1 t} + c_2 v^{(2)} e^{\lambda_2 t} \).

(b) If \(\lambda_1 \neq \lambda_2 \), complex, then denoting \(\lambda_\pm = \alpha \pm \beta i \) and \(v^{(\pm)} = a \pm bi \),
Summary: Find solutions of $\mathbf{x}' = A \mathbf{x}$, with A a 2×2 matrix.

First find the eigenvalues λ_i and the eigenvectors $\mathbf{v}^{(i)}$ of A.

(a) If $\lambda_1 \neq \lambda_2$, real, then $\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\}$ are linearly independent, and the general solution is $\mathbf{x}(x) = c_1 \mathbf{v}^{(1)} e^{\lambda_1 t} + c_2 \mathbf{v}^{(2)} e^{\lambda_2 t}$.

(b) If $\lambda_1 \neq \lambda_2$, complex, then denoting $\lambda_{\pm} = \alpha \pm \beta i$ and $\mathbf{v}^{(\pm)} = a \pm b i$, the complex-valued fundamental solutions $\mathbf{x}^{(\pm)} = (a \pm b i) e^{(\alpha \pm \beta i) t}$.
Systems of linear Equations.

Summary: Find solutions of \(\mathbf{x}' = A \mathbf{x} \), with \(A \) a \(2 \times 2 \) matrix.

First find the eigenvalues \(\lambda_i \) and the eigenvectors \(\mathbf{v}^{(i)} \) of \(A \).

(a) If \(\lambda_1 \neq \lambda_2 \), real, then \(\{ \mathbf{v}^{(1)}, \mathbf{v}^{(2)} \} \) are linearly independent, and the general solution is
\[
\mathbf{x}(x) = c_1 \mathbf{v}^{(1)} e^{\lambda_1 t} + c_2 \mathbf{v}^{(2)} e^{\lambda_2 t}.
\]

(b) If \(\lambda_1 \neq \lambda_2 \), complex, then denoting \(\lambda_{\pm} = \alpha \pm \beta i \) and \(\mathbf{v}^{(\pm)} = a \pm b i \), the complex-valued fundamental solutions
\[
\mathbf{x}^{(\pm)} = (a \pm b i) e^{(\alpha \pm \beta i) t}
\]
\[
\mathbf{x}^{(\pm)} = e^{\alpha t} (a \pm b i) [\cos(\beta t) + i \sin(\beta t)].
\]
Systems of linear Equations.

Summary: Find solutions of $x' = Ax$, with A a 2×2 matrix.

First find the eigenvalues λ_i and the eigenvectors $v^{(i)}$ of A.

(a) If $\lambda_1 \neq \lambda_2$, real, then $\{v^{(1)}, v^{(2)}\}$ are linearly independent, and the general solution is

$$x(x) = c_1 v^{(1)} e^{\lambda_1 t} + c_2 v^{(2)} e^{\lambda_2 t}.$$

(b) If $\lambda_1 \neq \lambda_2$, complex, then denoting $\lambda_{\pm} = \alpha \pm \beta i$ and $v^{(\pm)} = a \pm bi$, the complex-valued fundamental solutions

$$x^{(\pm)} = (a \pm bi) e^{(\alpha \pm \beta i) t}$$

$$x^{(\pm)} = e^{\alpha t} (a \pm bi) [\cos(\beta t) + i \sin(\beta t)].$$

$$x^{(\pm)} = e^{\alpha t} [a \cos(\beta t) - b \sin(\beta t)] \pm ie^{\alpha t} [a \sin(\beta t) + b \cos(\beta t)].$$
Systems of linear Equations.

Summary: Find solutions of \(\mathbf{x}' = A \mathbf{x} \), with \(A \) a \(2 \times 2 \) matrix.

First find the eigenvalues \(\lambda_i \) and the eigenvectors \(\mathbf{v}^{(i)} \) of \(A \).

(a) If \(\lambda_1 \neq \lambda_2 \), real, then \(\{ \mathbf{v}^{(1)}, \mathbf{v}^{(2)} \} \) are linearly independent, and the general solution is

\[
\mathbf{x}(t) = c_1 \mathbf{v}^{(1)} e^{\lambda_1 t} + c_2 \mathbf{v}^{(2)} e^{\lambda_2 t}.
\]

(b) If \(\lambda_1 \neq \lambda_2 \), complex, then denoting \(\lambda_{\pm} = \alpha \pm \beta i \) and \(\mathbf{v}^{(\pm)} = a \pm bi \), the complex-valued fundamental solutions

\[
\mathbf{x}^{(\pm)} = (a \pm bi) e^{(\alpha \pm \beta i) t}
\]

\[
\mathbf{x}^{(\pm)} = e^{\alpha t} (a \pm bi) \left[\cos(\beta t) + i \sin(\beta t) \right].
\]

\[
\mathbf{x}^{(\pm)} = e^{\alpha t} \left[a \cos(\beta t) - b \sin(\beta t) \right] \pm ie^{\alpha t} \left[a \sin(\beta t) + b \cos(\beta t) \right].
\]

Real-valued fundamental solutions are
Systems of linear Equations.

Summary: Find solutions of $x' = Ax$, with A a 2×2 matrix.

First find the eigenvalues λ_i and the eigenvectors $v^{(i)}$ of A.

(a) If $\lambda_1 \neq \lambda_2$, real, then $\{v^{(1)}, v^{(2)}\}$ are linearly independent, and the general solution is $x(x) = c_1 v^{(1)} e^{\lambda_1 t} + c_2 v^{(2)} e^{\lambda_2 t}$.

(b) If $\lambda_1 \neq \lambda_2$, complex, then denoting $\lambda_\pm = \alpha \pm \beta i$ and $v^{(\pm)} = a \pm bi$, the complex-valued fundamental solutions are $x^{(\pm)} = e^{\alpha t} (a \pm bi) [\cos(\beta t) + i \sin(\beta t)]$.

Real-valued fundamental solutions are $x^{(1)} = e^{\alpha t} [a \cos(\beta t) - b \sin(\beta t)]$, $x^{(2)} = e^{\alpha t} [a \sin(\beta t) + b \cos(\beta t)]$.
Systems of linear Equations.

Summary: Find solutions of \(x' = Ax \), with \(A \) a \(2 \times 2 \) matrix.

First find the eigenvalues \(\lambda_i \) and the eigenvectors \(v^{(i)} \) of \(A \).

(a) If \(\lambda_1 \neq \lambda_2 \), real, then \(\{v^{(1)}, v^{(2)}\} \) are linearly independent, and the general solution is \(x(x) = c_1 v^{(1)} e^{\lambda_1 t} + c_2 v^{(2)} e^{\lambda_2 t} \).

(b) If \(\lambda_1 \neq \lambda_2 \), complex, then denoting \(\lambda_{\pm} = \alpha \pm \beta i \) and \(v^{(\pm)} = a \pm b i \), the complex-valued fundamental solutions

\[
x^{(\pm)} = (a \pm bi) e^{(\alpha \pm \beta i) t}.
\]

\[
x^{(\pm)} = e^{\alpha t} (a \pm bi) \left[\cos(\beta t) + i \sin(\beta t) \right].
\]

Real-valued fundamental solutions are

\[
x^{(1)} = e^{\alpha t} \left[a \cos(\beta t) - b \sin(\beta t) \right],
\]

\[
x^{(2)} = e^{\alpha t} \left[a \sin(\beta t) + b \cos(\beta t) \right].
\]
Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}' = A\mathbf{x}$, with A a 2×2 matrix.

First find the eigenvalues λ_i and the eigenvectors $\mathbf{v}^{(i)}$ of A.
Systems of linear Equations.

Summary: Find solutions of \(x' = Ax \), with \(A \) a \(2 \times 2 \) matrix. First find the eigenvalues \(\lambda_i \) and the eigenvectors \(v^{(i)} \) of \(A \).

(c) If \(\lambda_1 = \lambda_2 = \lambda \), real,
Systems of linear Equations.

Summary: Find solutions of $x' = Ax$, with A a 2×2 matrix.

First find the eigenvalues λ_i and the eigenvectors $v^{(i)}$ of A.

(c) If $\lambda_1 = \lambda_2 = \lambda$, real, and their eigenvectors $\{v^{(1)}, v^{(2)}\}$ are linearly independent,
Systems of linear Equations.

Summary: Find solutions of \(\mathbf{x}' = A \mathbf{x} \), with \(A \) a \(2 \times 2 \) matrix.

First find the eigenvalues \(\lambda_i \) and the eigenvectors \(\mathbf{v}^{(i)} \) of \(A \).

(c) If \(\lambda_1 = \lambda_2 = \lambda \), real, and their eigenvectors \(\{ \mathbf{v}^{(1)}, \mathbf{v}^{(2)} \} \) are linearly independent, then the general solution is

\[
\mathbf{x}(t) = c_1 \mathbf{v}^{(1)} e^{\lambda t} + c_2 \mathbf{v}^{(2)} e^{\lambda t}.
\]
Summary: Find solutions of $x' = Ax$, with A a 2×2 matrix.

First find the eigenvalues λ_i and the eigenvectors $v^{(i)}$ of A.

(c) If $\lambda_1 = \lambda_2 = \lambda$, real, and their eigenvectors $\{v^{(1)}, v^{(2)}\}$ are linearly independent, then the general solution is

$$x(t) = c_1 v^{(1)} e^{\lambda t} + c_2 v^{(2)} e^{\lambda t}.$$

(d) If $\lambda_1 = \lambda_2 = \lambda$, real,
Summary: Find solutions of $x' = Ax$, with A a 2×2 matrix.

First find the eigenvalues λ_i and the eigenvectors $v^{(i)}$ of A.

(c) If $\lambda_1 = \lambda_2 = \lambda$, real, and their eigenvectors $\{v^{(1)}, v^{(2)}\}$ are linearly independent, then the general solution is

$$x(x) = c_1 v^{(1)} e^{\lambda t} + c_2 v^{(2)} e^{\lambda t}.$$

(d) If $\lambda_1 = \lambda_2 = \lambda$, real, and there is only one eigendirection v, then find w solution of $(A - \lambda I)w = v$. Then fundamental solutions to the differential equation are given by

$$x^{(1)} = v e^{\lambda t},$$

$$x^{(2)} = (v t + w) e^{\lambda t}.$$

Then, the general solution is

$$x = c_1 v e^{\lambda t} + c_2 (v t + w) e^{\lambda t}.$$
Summary: Find solutions of $x' = Ax$, with A a 2×2 matrix.

First find the eigenvalues λ_i and the eigenvectors $v^{(i)}$ of A.

(c) If $\lambda_1 = \lambda_2 = \lambda$, real, and their eigenvectors $\{v^{(1)}, v^{(2)}\}$ are linearly independent, then the general solution is

$$x(t) = c_1 v^{(1)} e^{\lambda t} + c_2 v^{(2)} e^{\lambda t}.$$

(d) If $\lambda_1 = \lambda_2 = \lambda$, real, and there is only one eigendirection v, then find w solution of $(A - \lambda I)w = v$.

Systems of linear Equations.

Summary: Find solutions of \(\mathbf{x}' = A \mathbf{x} \), with \(A \) a \(2 \times 2 \) matrix.

First find the eigenvalues \(\lambda_i \) and the eigenvectors \(\mathbf{v}^{(i)} \) of \(A \).

(c) If \(\lambda_1 = \lambda_2 = \lambda \), real, and their eigenvectors \(\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\} \) are linearly independent, then the general solution is

\[
\mathbf{x}(t) = c_1 \mathbf{v}^{(1)} e^{\lambda t} + c_2 \mathbf{v}^{(2)} e^{\lambda t}.
\]

(d) If \(\lambda_1 = \lambda_2 = \lambda \), real, and there is only one eigendirection \(\mathbf{v} \), then find \(\mathbf{w} \) solution of \((A - \lambda I)\mathbf{w} = \mathbf{v} \). Then fundamental solutions to the differential equation are given by

\[
\mathbf{x}^{(1)} = \mathbf{v} e^{\lambda t},
\]
Systems of linear Equations.

Summary: Find solutions of \(x' = Ax \), with \(A \) a \(2 \times 2 \) matrix.

First find the eigenvalues \(\lambda_i \) and the eigenvectors \(v^{(i)} \) of \(A \).

(c) If \(\lambda_1 = \lambda_2 = \lambda \), real, and their eigenvectors \(\{v^{(1)}, v^{(2)}\} \) are linearly independent, then the general solution is

\[
x(x) = c_1 v^{(1)} e^{\lambda t} + c_2 v^{(2)} e^{\lambda t}.
\]

(d) If \(\lambda_1 = \lambda_2 = \lambda \), real, and there is only one eigendirection \(v \), then find \(w \) solution of \((A - \lambda I)w = v \). Then fundamental solutions to the differential equation are given by

\[
x^{(1)} = v e^{\lambda t}, \quad x^{(2)} = (v t + w) e^{\lambda t}.
\]
Systems of linear Equations.

Summary: Find solutions of $x' = Ax$, with A a 2×2 matrix.

First find the eigenvalues λ_i and the eigenvectors $v^{(i)}$ of A.

(c) If $\lambda_1 = \lambda_2 = \lambda$, real, and their eigenvectors $\{v^{(1)}, v^{(2)}\}$ are linearly independent, then the general solution is

$$x(x) = c_1 v^{(1)} e^{\lambda t} + c_2 v^{(2)} e^{\lambda t}.$$

(d) If $\lambda_1 = \lambda_2 = \lambda$, real, and there is only one eigendirection v, then find w solution of $(A - \lambda I)w = v$. Then fundamental solutions to the differential equation are given by

$$x^{(1)} = v e^{\lambda t}, \quad x^{(2)} = (v t + w) e^{\lambda t}.$$

Then, the general solution is

$$x = c_1 v e^{\lambda t} + c_2 (v t + w) e^{\lambda t}.$$
Systems of linear Equations.

Example

Find the solution to: \(\mathbf{x}' = A \mathbf{x}, \quad \mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}. \)
Systems of linear Equations.

Example

Find the solution to: \(x' = Ax, \quad x(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}. \)

Solution:

\[
p(\lambda) = \begin{vmatrix} (1 - \lambda) & 4 \\ 2 & (-1 - \lambda) \end{vmatrix}
\]
Systems of linear Equations.

Example

Find the solution to: \(\mathbf{x}' = A \mathbf{x}, \quad \mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}. \)

Solution:

\[
p(\lambda) = \begin{vmatrix} (1 - \lambda) & 4 \\ 2 & (-1 - \lambda) \end{vmatrix} = (\lambda - 1)(\lambda + 1) - 8
\]
Systems of linear Equations.

Example

Find the solution to: \(\mathbf{x}' = A \mathbf{x} \), \(\mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \), \(A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix} \).

Solution:

\[
p(\lambda) = \begin{vmatrix} (1 - \lambda) & 4 \\ 2 & (-1 - \lambda) \end{vmatrix} = (\lambda - 1)(\lambda + 1) - 8 = \lambda^2 - 1 - 8,
\]

\[
\begin{align*}
\text{Case } \lambda + 1 &= 3, \\
A - 3I &= \begin{bmatrix} -2 & 4 \\ 2 & -4 \end{bmatrix} \\
&\to \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix} \\
&\Rightarrow v_1 = 2v_2 \\
\text{Case } \lambda - 1 &= -3, \\
A + 3I &= \begin{bmatrix} 4 & 4 \\ 2 & 2 \end{bmatrix} \\
&\to \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \\
&\Rightarrow v_1 = -v_2
\end{align*}
\]
Systems of linear Equations.

Example
Find the solution to: \(x' = Ax, \quad x(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}. \)

Solution:
\[
p(\lambda) = \begin{vmatrix} (1 - \lambda) & 4 \\ 2 & (-1 - \lambda) \end{vmatrix} = (\lambda - 1)(\lambda + 1) - 8 = \lambda^2 - 1 - 8,
\]
\[
p(\lambda) = \lambda^2 - 9 = 0
\]
Systems of linear Equations.

Example

Find the solution to: \(\mathbf{x}' = A \mathbf{x}, \quad \mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}. \)

Solution:

\[
p(\lambda) = \begin{vmatrix} (1 - \lambda) & 4 \\ 2 & (-1 - \lambda) \end{vmatrix} = (\lambda - 1)(\lambda + 1) - 8 = \lambda^2 - 1 - 8,
\]

\[
p(\lambda) = \lambda^2 - 9 = 0 \quad \Rightarrow \quad \lambda_{\pm} = \pm 3.
\]
Systems of linear Equations.

Example

Find the solution to: \(x' = Ax, \quad x(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}. \)

Solution:

\[
p(\lambda) = \begin{vmatrix} (1 - \lambda) & 4 \\ 2 & (-1 - \lambda) \end{vmatrix} = (\lambda - 1)(\lambda + 1) - 8 = \lambda^2 - 1 - 8,
\]

\[
p(\lambda) = \lambda^2 - 9 = 0 \quad \Rightarrow \quad \lambda_\pm = \pm 3.
\]

Case \(\lambda_+ = 3, \)
Systems of linear Equations.

Example

Find the solution to: \(x' = Ax, \quad x(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}. \)

Solution:

\[
p(\lambda) = \begin{vmatrix} (1 - \lambda) & 4 \\ 2 & (-1 - \lambda) \end{vmatrix} = (\lambda - 1)(\lambda + 1) - 8 = \lambda^2 - 1 - 8,
\]

\[
p(\lambda) = \lambda^2 - 9 = 0 \quad \Rightarrow \quad \lambda_{\pm} = \pm 3.
\]

Case \(\lambda_+ = 3, \)

\(A - 3I \)
Systems of linear Equations.

Example

Find the solution to: \(\mathbf{x}' = A \mathbf{x}, \quad \mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}. \)

Solution:

\[
p(\lambda) = \begin{vmatrix} (1 - \lambda) & 4 \\ 2 & (-1 - \lambda) \end{vmatrix} = (\lambda - 1)(\lambda + 1) - 8 = \lambda^2 - 1 - 8,
\]

\[
p(\lambda) = \lambda^2 - 9 = 0 \quad \Rightarrow \quad \lambda_{\pm} = \pm 3.
\]

Case \(\lambda_+ = 3 \),

\[
A - 3I = \begin{bmatrix} -2 & 4 \\ 2 & -4 \end{bmatrix}
\]
Systems of linear Equations.

Example

Find the solution to: \(x' = Ax, \quad x(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}. \)

Solution:

\[
p(\lambda) = \begin{vmatrix} (1 - \lambda) & 4 \\ 2 & (-1 - \lambda) \end{vmatrix} = (\lambda - 1)(\lambda + 1) - 8 = \lambda^2 - 1 - 8,
\]

\[
p(\lambda) = \lambda^2 - 9 = 0 \quad \Rightarrow \quad \lambda_{\pm} = \pm 3.
\]

Case \(\lambda_+ = 3 \),

\[
A - 3I = \begin{bmatrix} -2 & 4 \\ 2 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix}
\]
Example

Find the solution to: \(x' = Ax, \quad x(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}. \)

Solution:

\[
p(\lambda) = \begin{vmatrix} (1 - \lambda) & 4 \\ 2 & (-1 - \lambda) \end{vmatrix} = (\lambda - 1)(\lambda + 1) - 8 = \lambda^2 - 1 - 8,
\]

\[
p(\lambda) = \lambda^2 - 9 = 0 \quad \Rightarrow \quad \lambda_{\pm} = \pm 3.
\]

Case \(\lambda_+ = 3 \),

\[
A - 3I = \begin{bmatrix} -2 & 4 \\ 2 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix} \Rightarrow v_1 = 2v_2
\]
Systems of linear Equations.

Example

Find the solution to: \(\mathbf{x}' = A \mathbf{x}, \quad \mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}. \)

Solution:

\[
p(\lambda) = \begin{vmatrix} (1 - \lambda) & 4 \\ 2 & (-1 - \lambda) \end{vmatrix} = (\lambda - 1)(\lambda + 1) - 8 = \lambda^2 - 1 - 8,
\]

\[
p(\lambda) = \lambda^2 - 9 = 0 \quad \Rightarrow \quad \lambda_{\pm} = \pm 3.
\]

Case \(\lambda_+ = 3 \),

\[
A - 3I = \begin{bmatrix} -2 & 4 \\ 2 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix} \quad \Rightarrow \quad \mathbf{v}_1 = 2\mathbf{v}_2 \quad \Rightarrow \quad \mathbf{v}^{(+)} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}
\]
Systems of linear Equations.

Example
Find the solution to: \(x' = Ax, \quad x(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}. \)

Solution:
\[
p(\lambda) = \begin{vmatrix} (1 - \lambda) & 4 \\ 2 & (-1 - \lambda) \end{vmatrix} = (\lambda - 1)(\lambda + 1) - 8 = \lambda^2 - 1 - 8,
\]
\[
p(\lambda) = \lambda^2 - 9 = 0 \quad \Rightarrow \quad \lambda_{\pm} = \pm 3.
\]

Case \(\lambda_{+} = 3 \),
\[
A - 3I = \begin{bmatrix} -2 & 4 \\ 2 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix} \quad \Rightarrow \quad v_1 = 2v_2 \quad \Rightarrow \quad v^{(+)} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}
\]

Case \(\lambda_{-} = -3 \),
Systems of linear Equations.

Example

Find the solution to: \(x' = Ax, \quad x(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix} \).

Solution:

\[
p(\lambda) = \begin{vmatrix} 1 - \lambda & 4 \\ 2 & -1 - \lambda \end{vmatrix} = (\lambda - 1)(\lambda + 1) - 8 = \lambda^2 - 1 - 8,
\]

\[
p(\lambda) = \lambda^2 - 9 = 0 \quad \Rightarrow \quad \lambda_{\pm} = \pm 3.
\]

Case \(\lambda_+ = 3 \),

\[
A - 3I = \begin{bmatrix} -2 & 4 \\ 2 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix} \Rightarrow v_1 = 2v_2 \Rightarrow v^{(+)} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}
\]

Case \(\lambda_- = -3 \),

\[
A + 3I
\]
Systems of linear Equations.

Example

Find the solution to: \(x' = Ax, \quad x(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix} \).

Solution:

\[
p(\lambda) = \begin{vmatrix} (1 - \lambda) & 4 \\ 2 & (-1 - \lambda) \end{vmatrix} = (\lambda - 1)(\lambda + 1) - 8 = \lambda^2 - 1 - 8,
\]

\[
p(\lambda) = \lambda^2 - 9 = 0 \quad \Rightarrow \quad \lambda_{\pm} = \pm 3.
\]

Case \(\lambda_+ = 3 \),

\[
A - 3I = \begin{bmatrix} -2 & 4 \\ 2 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix} \Rightarrow v_1 = 2v_2 \Rightarrow v^{(+)} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}
\]

Case \(\lambda_- = -3 \),

\[
A + 3I = \begin{bmatrix} 4 & 4 \\ 2 & 2 \end{bmatrix}
\]
Systems of linear Equations.

Example

Find the solution to: \(\mathbf{x}' = A \mathbf{x}, \quad \mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}. \)

Solution:

\[
p(\lambda) = \begin{vmatrix} (1 - \lambda) & 4 \\ 2 & (-1 - \lambda) \end{vmatrix} = (\lambda - 1)(\lambda + 1) - 8 = \lambda^2 - 1 - 8,
\]

\[
p(\lambda) = \lambda^2 - 9 = 0 \quad \Rightarrow \quad \lambda_\pm = \pm 3.
\]

Case \(\lambda_+ = 3, \)

\[
A - 3I = \begin{bmatrix} -2 & 4 \\ 2 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix} \Rightarrow \mathbf{v}_1 = 2\mathbf{v}_2 \Rightarrow \mathbf{v}^{(+)} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}
\]

Case \(\lambda_- = -3, \)

\[
A + 3I = \begin{bmatrix} 4 & 4 \\ 2 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}
\]
Systems of linear Equations.

Example

Find the solution to: \(\mathbf{x}' = A \mathbf{x}, \quad \mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}. \)

Solution:

\[
p(\lambda) = \begin{vmatrix} (1 - \lambda) & 4 \\ 2 & (-1 - \lambda) \end{vmatrix} = (\lambda - 1)(\lambda + 1) - 8 = \lambda^2 - 1 - 8,
\]

\[
p(\lambda) = \lambda^2 - 9 = 0 \quad \Rightarrow \quad \lambda_\pm = \pm 3.
\]

Case \(\lambda_+ = 3, \)

\[
A - 3I = \begin{bmatrix} -2 & 4 \\ 2 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix} \Rightarrow \mathbf{v}_1 = 2\mathbf{v}_2 \Rightarrow \mathbf{v}^{(+)} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}
\]

Case \(\lambda_- = -3, \)

\[
A + 3I = \begin{bmatrix} 4 & 4 \\ 2 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \Rightarrow \mathbf{v}_1 = -\mathbf{v}_2
\]
Systems of linear Equations.

Example

Find the solution to: \(x' = Ax, \quad x(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}. \)

Solution:

\[
p(\lambda) = \begin{vmatrix} (1 - \lambda) & 4 \\ 2 & (-1 - \lambda) \end{vmatrix} = (\lambda - 1)(\lambda + 1) - 8 = \lambda^2 - 1 - 8,
\]

\[
p(\lambda) = \lambda^2 - 9 = 0 \quad \Rightarrow \quad \lambda_{\pm} = \pm 3.
\]

Case \(\lambda_+ = 3, \)

\[
A - 3I = \begin{bmatrix} -2 & 4 \\ 2 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix} \Rightarrow v_1 = 2v_2 \Rightarrow v^{(+) = \begin{bmatrix} 2 \\ 1 \end{bmatrix}}
\]

Case \(\lambda_- = -3, \)

\[
A + 3I = \begin{bmatrix} 4 & 4 \\ 2 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \Rightarrow v_1 = -v_2 \Rightarrow v^{(-)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}
\]
Systems of linear Equations.

Example

Find the solution to: \(x' = A x \), \(x(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \), \(A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix} \).

Solution: Recall: \(\lambda_{\pm} = \pm 3 \), \(\mathbf{v}^{(+)} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \), \(\mathbf{v}^{(-)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \).
Example

Find the solution to: $\mathbf{x}' = A\mathbf{x}$, $\mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}$.

Solution: Recall: $\lambda_{\pm} = \pm 3$, $\mathbf{v}^{(+)} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $\mathbf{v}^{(-)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

The general solution is $\mathbf{x}(t) = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-3t}$.
Systems of linear Equations.

Example

Find the solution to: \(x' = Ax, \quad x(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}. \)

Solution: Recall: \(\lambda = \pm 3, \quad v^+(+) = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \quad v^-(−) = \begin{bmatrix} -1 \\ 1 \end{bmatrix}. \)

The general solution is \(x(t) = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-3t}. \)

The initial condition implies,

\[
\begin{bmatrix} 3 \\ 2 \end{bmatrix} = x(0)
\]
Systems of linear Equations.

Example

Find the solution to: \(\mathbf{x}' = A \mathbf{x} \), \(\mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \), \(A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix} \).

Solution: Recall: \(\lambda_{\pm} = \pm 3 \), \(\mathbf{v}^{(+)} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \), \(\mathbf{v}^{(-)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \).

The general solution is \(\mathbf{x}(t) = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-3t} \).

The initial condition implies,

\[
\begin{bmatrix} 3 \\ 2 \end{bmatrix} = \mathbf{x}(0) = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}
\]
Systems of linear Equations.

Example

Find the solution to: \(\mathbf{x}' = A \mathbf{x} \), \(\mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \), \(A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix} \).

Solution: Recall: \(\lambda_{\pm} = \pm 3 \), \(\mathbf{v}^{(+)} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \), \(\mathbf{v}^{(-)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \).

The general solution is \(\mathbf{x}(t) = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-3t} \).

The initial condition implies,

\[
\begin{bmatrix} 3 \\ 2 \end{bmatrix} = \mathbf{x}(0) = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}.
\]
Systems of linear Equations.

Example

Find the solution to: \(x' = Ax \), \(x(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}. \)

Solution: Recall: \(\lambda_{\pm} = \pm 3, \quad v^{(+) = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \quad v^{-} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}. \)

The general solution is \(x(t) = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-3t}. \)

The initial condition implies,

\[
\begin{bmatrix} 3 \\ 2 \end{bmatrix} = x(0) = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}.
\]

\[
\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \frac{1}{(2 + 1)} \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix}
\]
Systems of linear Equations.

Example

Find the solution to: \(x' = Ax, \quad x(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}. \)

Solution: Recall: \(\lambda_{\pm} = \pm 3, \quad v^{(+)} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \quad v^{(-)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}. \)

The general solution is \(x(t) = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-3t}. \)

The initial condition implies,

\[
\begin{bmatrix} 3 \\ 2 \end{bmatrix} = x(0) = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}.
\]

\[
\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \frac{1}{(2 + 1)} \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix} \Rightarrow \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 5 \\ 1 \end{bmatrix}.
\]
Systems of linear Equations.

Example

Find the solution to: \(x' = Ax, \quad x(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}. \)

Solution: Recall: \(\lambda_{\pm} = \pm 3, \quad v^{(+)} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \quad v^{(-)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}. \)

The general solution is \(x(t) = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-3t}. \)

The initial condition implies,

\[
\begin{bmatrix} 3 \\ 2 \end{bmatrix} = x(0) = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}.
\]

\[
\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \frac{1}{(2 + 1)} \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 5 \\ 1 \end{bmatrix}.
\]

We conclude: \(x(t) = \frac{5}{3} \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{3t} + \frac{1}{3} \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-3t}. \) △
Review for Final Exam.

- Fourier Series expansions (Chptr. 6).
- Eigenvalue-Eigenfunction BVP (Chptr. 6).
- Systems of linear Equations (Chptr. 5).
- **Laplace transforms (Chptr. 4).**
- Power Series Methods (Chptr. 3).
- Second order linear equations (Chptr. 2).
- First order differential equations (Chptr. 1).
Laplace transforms.

Summary:

- Main Properties:
Laplace transforms.

Summary:

- Main Properties:

\[\mathcal{L}[f^{(n)}(t)] = s^n \mathcal{L}[f(t)] - s^{(n-1)} f(0) - \cdots - f^{(n-1)}(0); \quad (18) \]
Laplace transforms.

Summary:

- **Main Properties:**
 \[
 \mathcal{L}[f^{(n)}(t)] = s^n \mathcal{L}[f(t)] - s^{(n-1)} f(0) - \cdots - f^{(n-1)}(0);
 \]
 \[
 e^{-cs} \mathcal{L}[f(t)] = \mathcal{L}[u_c(t) f(t - c)];
 \]
 \[
 \mathcal{L}[f(t)] \bigg|_{s=c} = \mathcal{L}[e^{ct} f(t)];
 \]

- **Convolutions:**
 \[
 \mathcal{L}[f \ast g(t)] = \mathcal{L}[f(t)] \mathcal{L}[g(t)];
 \]

- **Partial fraction decompositions, completing the squares.**
Laplace transforms.

Summary:

- **Main Properties:**

 \[
 \mathcal{L}[f^{(n)}(t)] = s^n \mathcal{L}[f(t)] - s^{(n-1)} f(0) - \cdots - f^{(n-1)}(0); \quad (18)
 \]

 \[
 e^{-cs} \mathcal{L}[f(t)] = \mathcal{L}[u_c(t) f(t-c)]; \quad (13)
 \]

 \[
 \mathcal{L}[f(t)] \bigg|_{(s-c)} = \mathcal{L}[e^{ct} f(t)]. \quad (14)
 \]
Laplace transforms.

Summary:

- **Main Properties:**
 \[\mathcal{L}[f^{(n)}(t)] = s^n \mathcal{L}[f(t)] - s^{(n-1)} f(0) - \cdots - f^{(n-1)}(0); \quad (18) \]
 \[e^{-cs} \mathcal{L}[f(t)] = \mathcal{L}[u_c(t) f(t - c)]; \quad (13) \]
 \[\mathcal{L}[f(t)] \bigg|_{(s-c)} = \mathcal{L}[e^{ct} f(t)]. \quad (14) \]

- **Convolutions:**
 \[\mathcal{L}[f(t) \ast g(t)] = \mathcal{L}[f(t)] \mathcal{L}[g(t)]. \]
Laplace transforms.

Summary:

- **Main Properties:**

 \[\mathcal{L}[f^{(n)}(t)] = s^n \mathcal{L}[f(t)] - s^{(n-1)} f(0) - \ldots - f^{(n-1)}(0); \quad (18) \]

 \[e^{-cs} \mathcal{L}[f(t)] = \mathcal{L}[u_c(t) f(t - c)]; \quad (13) \]

 \[\mathcal{L}[f(t)] \bigg|_{(s-c)} = \mathcal{L}[e^{ct} f(t)]. \quad (14) \]

- **Convolutions:**

 \[\mathcal{L}[(f * g)(t)] = \mathcal{L}[f(t)] \mathcal{L}[g(t)]. \]
Laplace transforms.

Summary:

- **Main Properties:**
 \[\mathcal{L}[f^{(n)}(t)] = s^n \mathcal{L}[f(t)] - s^{(n-1)} f(0) - \cdots - f^{(n-1)}(0); \quad (18) \]
 \[e^{-cs} \mathcal{L}[f(t)] = \mathcal{L}[u_c(t) f(t - c)]; \quad (13) \]
 \[\mathcal{L}[f(t)] \bigg|_{(s-c)} = \mathcal{L}[e^{ct} f(t)]. \quad (14) \]

- **Convolutions:**
 \[\mathcal{L}[(f * g)(t)] = \mathcal{L}[f(t)] \mathcal{L}[g(t)]. \]

- **Partial fraction decompositions, completing the squares.**
Laplace transforms.

Example

Use L.T. to find the solution to the IVP

\[y'' + 9y = u_5(t), \quad y(0) = 3, \quad y'(0) = 2. \]
Example
Use L.T. to find the solution to the IVP
\[y'' + 9y = u_5(t), \quad y(0) = 3, \quad y'(0) = 2. \]

Solution: Compute \(\mathcal{L}[y''] + 9 \mathcal{L}[y] = \mathcal{L}[u_5(t)] \)
Example
Use L.T. to find the solution to the IVP

\[y'' + 9y = u_5(t), \quad y(0) = 3, \quad y'(0) = 2. \]

Solution: Compute \(\mathcal{L}[y''] + 9 \mathcal{L}[y] = \mathcal{L}[u_5(t)] = \frac{e^{-5s}}{s}, \)
Laplace transforms.

Example

Use L.T. to find the solution to the IVP

\[y'' + 9y = u_5(t), \quad y(0) = 3, \quad y'(0) = 2. \]

Solution: Compute \(\mathcal{L}[y''] + 9 \mathcal{L}[y] = \mathcal{L}[u_5(t)] = \frac{e^{-5s}}{s} \), and recall,

\[
\mathcal{L}[y''] = s^2 \mathcal{L}[y] - s y(0) - y'(0)
\]
Laplace transforms.

Example

Use L.T. to find the solution to the IVP

\[y'' + 9y = u_5(t), \quad y(0) = 3, \quad y'(0) = 2. \]

Solution: Compute \(\mathcal{L}[y''] + 9 \mathcal{L}[y] = \mathcal{L}[u_5(t)] = \frac{e^{-5s}}{s} \), and recall,

\[\mathcal{L}[y''] = s^2 \mathcal{L}[y] - sy(0) - y'(0) \quad \Rightarrow \quad \mathcal{L}[y''] = s^2 \mathcal{L}[y] - 3s - 2. \]
Laplace transforms.

Example

Use L.T. to find the solution to the IVP

\[y'' + 9y = u_5(t), \quad y(0) = 3, \quad y'(0) = 2. \]

Solution: Compute \[\mathcal{L}[y''] + 9 \mathcal{L}[y] = \mathcal{L}[u_5(t)] = \frac{e^{-5s}}{s}, \]

and recall,

\[\mathcal{L}[y''] = s^2 \mathcal{L}[y] - sy(0) - y'(0) \quad \Rightarrow \quad \mathcal{L}[y''] = s^2 \mathcal{L}[y] - 3s - 2. \]

\[(s^2 + 9) \mathcal{L}[y] - 3s - 2 = \frac{e^{-5s}}{s}. \]
Laplace transforms.

Example

Use L.T. to find the solution to the IVP

\[y'' + 9y = u_5(t), \quad y(0) = 3, \quad y'(0) = 2. \]

Solution: Compute \(\mathcal{L}[y''] + 9 \mathcal{L}[y] = \mathcal{L}[u_5(t)] = \frac{e^{-5s}}{s} \), and recall,

\[\mathcal{L}[y''] = s^2 \mathcal{L}[y] - s y(0) - y'(0) \quad \Rightarrow \quad \mathcal{L}[y''] = s^2 \mathcal{L}[y] - 3s - 2. \]

\[(s^2 + 9) \mathcal{L}[y] - 3s - 2 = \frac{e^{-5s}}{s} \]

\[\mathcal{L}[y] = \frac{(3s + 2)}{(s^2 + 9)} + e^{-5s} \frac{1}{s(s^2 + 9)}. \]
Example
Use L.T. to find the solution to the IVP
\[y'' + 9y = u_5(t), \quad y(0) = 3, \quad y'(0) = 2. \]

Solution: Compute \(\mathcal{L}[y''] + 9 \mathcal{L}[y] = \mathcal{L}[u_5(t)] = \frac{e^{-5s}}{s} \), and recall,

\[\mathcal{L}[y''] = s^2 \mathcal{L}[y] - sy(0) - y'(0) \quad \Rightarrow \quad \mathcal{L}[y''] = s^2 \mathcal{L}[y] - 3s - 2. \]

\[(s^2 + 9) \mathcal{L}[y] - 3s - 2 = \frac{e^{-5s}}{s}. \]

\[\mathcal{L}[y] = \frac{(3s + 2)}{(s^2 + 9)} + e^{-5s} \frac{1}{s(s^2 + 9)}. \]

\[\mathcal{L}[y] = 3 \frac{s}{(s^2 + 9)} + \frac{2}{3} \frac{3}{(s^2 + 9)} + e^{-5s} \frac{1}{s(s^2 + 9)}. \]
Laplace transforms.

Example

Use L.T. to find the solution to the IVP

\[y'' + 9y = u_5(t), \quad y(0) = 3, \quad y'(0) = 2. \]
Laplace transforms.

Example

Use L.T. to find the solution to the IVP

\[y'' + 9y = u_5(t), \quad y(0) = 3, \quad y'(0) = 2. \]

Solution: Recall \(L[y] = 3 \frac{s}{(s^2 + 9)} + \frac{2}{3} \frac{3}{(s^2 + 9)} + e^{-5s} \frac{1}{s(s^2 + 9)}. \)
Example
Use L.T. to find the solution to the IVP

\[y'' + 9y = u_5(t), \quad y(0) = 3, \quad y'(0) = 2. \]

Solution: Recall \(\mathcal{L}[y] = 3 \frac{s}{s^2 + 9} + \frac{2}{3} \frac{3}{s^2 + 9} + e^{-5s} \frac{1}{s(s^2 + 9)}. \)

\[\mathcal{L}[y] = 3 \mathcal{L}[\cos(3t)] + \frac{2}{3} \mathcal{L}[\sin(3t)] + e^{-5s} \frac{1}{s(s^2 + 9)}. \]
Laplace transforms.

Example
Use L.T. to find the solution to the IVP

\[y'' + 9y = u_5(t), \quad y(0) = 3, \quad y'(0) = 2. \]

Solution: Recall \(\mathcal{L}[y] = 3 \frac{s}{s^2 + 9} + 2 \frac{3}{3} \frac{3}{s^2 + 9} + e^{-5s} \frac{1}{s(s^2 + 9)}. \)

\[\mathcal{L}[y] = 3 \mathcal{L}[\cos(3t)] + \frac{2}{3} \mathcal{L}[\sin(3t)] + e^{-5s} \frac{1}{s(s^2 + 9)}. \]

Partial fractions on

\[H(s) = \frac{1}{s(s^2 + 9)} \]
Laplace transforms.

Example

Use L.T. to find the solution to the IVP

\[y'' + 9y = u_5(t), \quad y(0) = 3, \quad y'(0) = 2. \]

Solution: Recall

\[
\mathcal{L}[y] = 3 \frac{s}{s^2 + 9} + \frac{2}{3} \frac{3}{s^2 + 9} + e^{-5s} \frac{1}{s(s^2 + 9)}.
\]

\[
\mathcal{L}[y] = 3 \mathcal{L}[\cos(3t)] + \frac{2}{3} \mathcal{L}[\sin(3t)] + e^{-5s} \frac{1}{s(s^2 + 9)}.
\]

Partial fractions on

\[
H(s) = \frac{1}{s(s^2 + 9)} = \frac{a}{s} + \frac{(bs + c)}{(s^2 + 9)}
\]
Laplace transforms.

Example
Use L.T. to find the solution to the IVP
\[y'' + 9y = u_5(t), \quad y(0) = 3, \quad y'(0) = 2. \]

Solution: Recall
\[\mathcal{L}[y] = 3 \frac{s}{(s^2 + 9)} + \frac{2}{3} \frac{3}{(s^2 + 9)} + e^{-5s} \frac{1}{s(s^2 + 9)}. \]

\[\mathcal{L}[y] = 3 \mathcal{L}[\cos(3t)] + \frac{2}{3} \mathcal{L}[\sin(3t)] + e^{-5s} \frac{1}{s(s^2 + 9)}. \]

Partial fractions on
\[H(s) = \frac{1}{s(s^2 + 9)} = \frac{a}{s} + \frac{(bs + c)}{(s^2 + 9)} = \frac{a(s^2 + 9) + (bs + c)s}{s(s^2 + 9)}, \]
Laplace transforms.

Example
Use L.T. to find the solution to the IVP

\[y'' + 9y = u_5(t), \quad y(0) = 3, \quad y'(0) = 2. \]

Solution: Recall \(\mathcal{L}[y] = 3 \frac{s}{s^2 + 9} + \frac{2}{3} \frac{3}{s^2 + 9} + e^{-5s} \frac{1}{s(s^2 + 9)}. \)

\[\mathcal{L}[y] = 3 \mathcal{L}[\cos(3t)] + \frac{2}{3} \mathcal{L}[\sin(3t)] + e^{-5s} \frac{1}{s(s^2 + 9)}. \]

Partial fractions on

\[H(s) = \frac{1}{s(s^2 + 9)} = \frac{a}{s} + \frac{(bs + c)}{(s^2 + 9)} = \frac{a(s^2 + 9) + (bs + c)s}{s(s^2 + 9)}, \]

\[1 = as^2 + 9a + bs^2 + cs \]
Laplace transforms.

Example
Use L.T. to find the solution to the IVP

\[y'' + 9y = u_5(t), \quad y(0) = 3, \quad y'(0) = 2. \]

Solution: Recall

\[
\mathcal{L}[y] = 3 \frac{s}{s^2 + 9} + \frac{2}{3} \frac{3}{s^2 + 9} + e^{-5s} \frac{1}{s(s^2 + 9)}.
\]

\[
\mathcal{L}[y] = 3 \mathcal{L}[\cos(3t)] + \frac{2}{3} \mathcal{L}[\sin(3t)] + e^{-5s} \frac{1}{s(s^2 + 9)}.
\]

Partial fractions on

\[
H(s) = \frac{1}{s(s^2 + 9)} = \frac{a}{s} + \frac{(bs + c)}{(s^2 + 9)} = \frac{a(s^2 + 9) + (bs + c)s}{s(s^2 + 9)},
\]

\[
1 = as^2 + 9a + bs^2 + cs = (a + b)s^2 + cs + 9a
\]
Laplace transforms.

Example

Use L.T. to find the solution to the IVP

\[y'' + 9y = u_5(t), \quad y(0) = 3, \quad y'(0) = 2. \]

Solution: Recall

\[\mathcal{L}[y] = 3 \frac{s}{s^2 + 9} + \frac{2}{3} \frac{3}{s^2 + 9} + e^{-5s} \frac{1}{s(s^2 + 9)}. \]

\[\mathcal{L}[y] = 3 \mathcal{L}[\cos(3t)] + \frac{2}{3} \mathcal{L}[\sin(3t)] + e^{-5s} \frac{1}{s(s^2 + 9)}. \]

Partial fractions on

\[H(s) = \frac{1}{s(s^2 + 9)} = \frac{a}{s} + \frac{(bs + c)}{(s^2 + 9)} = \frac{a(s^2 + 9) + (bs + c)s}{s(s^2 + 9)}, \]

\[1 = as^2 + 9a + bs^2 + cs = (a + b)s^2 + cs + 9a \]

\[a = \frac{1}{9}, \]
Laplace transforms.

Example
Use L.T. to find the solution to the IVP

\[y'' + 9y = u_5(t), \quad y(0) = 3, \quad y'(0) = 2. \]

Solution: Recall \(\mathcal{L}[y] = 3 \frac{s}{s^2 + 9} + 2 \frac{3}{3(s^2 + 9)} + e^{-5s} \frac{1}{s(s^2 + 9)}. \)

\[\mathcal{L}[y] = 3 \mathcal{L}[\cos(3t)] + \frac{2}{3} \mathcal{L}[\sin(3t)] + e^{-5s} \frac{1}{s(s^2 + 9)}. \]

Partial fractions on \(H(s) = \frac{1}{s(s^2 + 9)} = \frac{a}{s} + \frac{(bs + c)}{(s^2 + 9)} = \frac{a(s^2 + 9) + (bs + c)s}{s(s^2 + 9)}, \)

\[1 = as^2 + 9a + bs^2 + cs = (a + b)s^2 + cs + 9a \]

\[a = \frac{1}{9}, \quad c = 0, \]
Laplace transforms.

Example

Use L.T. to find the solution to the IVP

\[y'' + 9y = u_5(t), \quad y(0) = 3, \quad y'(0) = 2. \]

Solution: Recall

\[\mathcal{L}[y] = 3 \frac{s}{s^2 + 9} + \frac{2}{3} \frac{3}{s^2 + 9} + e^{-5s} \frac{1}{s(s^2 + 9)}. \]

\[\mathcal{L}[y] = 3 \mathcal{L}\{\cos(3t)\} + \frac{2}{3} \mathcal{L}\{\sin(3t)\} + e^{-5s} \frac{1}{s(s^2 + 9)}. \]

Partial fractions on

\[H(s) = \frac{1}{s(s^2 + 9)} = \frac{a}{s} + \frac{bs + c}{s^2 + 9} = \frac{a(s^2 + 9) + (bs + c)s}{s(s^2 + 9)}, \]

\[1 = as^2 + 9a + bs^2 + cs = (a + b)s^2 + cs + 9a \]

\[a = \frac{1}{9}, \quad c = 0, \quad b = -a \]
Laplace transforms.

Example

Use L.T. to find the solution to the IVP

\[y'' + 9y = u_5(t), \quad y(0) = 3, \quad y'(0) = 2. \]

Solution: Recall \(\mathcal{L}[y] = 3 \frac{s}{s^2 + 9} + 2 \frac{3}{3(s^2 + 9)} + e^{-5s} \frac{1}{s(s^2 + 9)}. \)

\[\mathcal{L}[y] = 3 \mathcal{L}[\cos(3t)] + \frac{2}{3} \mathcal{L}[\sin(3t)] + e^{-5s} \frac{1}{s(s^2 + 9)}. \]

Partial fractions on

\[H(s) = \frac{1}{s(s^2 + 9)} = \frac{a}{s} + \frac{(bs + c)}{(s^2 + 9)} = \frac{a(s^2 + 9) + (bs + c)s}{s(s^2 + 9)}, \]

\[1 = as^2 + 9a + bs^2 + cs = (a + b)s^2 + cs + 9a \]

\[a = \frac{1}{9}, \quad c = 0, \quad b = -a \quad \Rightarrow \quad b = -\frac{1}{9}. \]
Laplace transforms.

Example

Use L.T. to find the solution to the IVP

\[y'' + 9y = u_5(t), \quad y(0) = 3, \quad y'(0) = 2. \]

Solution: So, \(\mathcal{L}[y] = 3 \mathcal{L}[\cos(3t)] + \frac{2}{3} \mathcal{L}[\sin(3t)] + e^{-5s} H(s), \) and

\[H(s) = \frac{1}{s(s^2 + 9)} = \frac{1}{9} \left[\frac{1}{s} - \frac{s}{s^2 + 9} \right] \]
Laplace transforms.

Example

Use L.T. to find the solution to the IVP

\[y'' + 9y = u_5(t), \quad y(0) = 3, \quad y'(0) = 2. \]

Solution: So, \(\mathcal{L}[y] = 3 \mathcal{L}[\cos(3t)] + \frac{2}{3} \mathcal{L}[\sin(3t)] + e^{-5s} H(s) \), and

\[
H(s) = \frac{1}{s(s^2 + 9)} = \frac{1}{9} \left[\frac{1}{s} - \frac{s}{s^2 + 9} \right] = \frac{1}{9} \left(\mathcal{L}[u(t)] - \mathcal{L}[\cos(3t)] \right)
\]
Laplace transforms.

Example
Use L.T. to find the solution to the IVP

\[y'' + 9y = u_5(t), \quad y(0) = 3, \quad y'(0) = 2. \]

Solution: So, \(\mathcal{L}[y] = 3 \mathcal{L}[\cos(3t)] + \frac{2}{3} \mathcal{L}[\sin(3t)] + e^{-5s} H(s), \) and

\[
H(s) = \frac{1}{s(s^2 + 9)} = \frac{1}{9} \left[\frac{1}{s} - \frac{s}{s^2 + 9} \right] = \frac{1}{9} \left(\mathcal{L}[u(t)] - \mathcal{L}[\cos(3t)] \right)
\]

\[
e^{-5s} H(s) = \frac{1}{9} \left(e^{-5s} \mathcal{L}[u(t)] - e^{-5s} \mathcal{L}[\cos(3t)] \right)
\]
Laplace transforms.

Example

Use L.T. to find the solution to the IVP

\[y'' + 9y = u_5(t), \quad y(0) = 3, \quad y'(0) = 2. \]

Solution: So,

\[\mathcal{L}[y] = 3 \mathcal{L}[\cos(3t)] + \frac{2}{3} \mathcal{L}[\sin(3t)] + e^{-5s} H(s), \quad \text{and} \]

\[H(s) = \frac{1}{s(s^2 + 9)} = \frac{1}{9} \left[\frac{1}{s} - \frac{s}{s^2 + 9} \right] = \frac{1}{9} \left(\mathcal{L}[u(t)] - \mathcal{L}[\cos(3t)] \right) \]

\[e^{-5s} H(s) = \frac{1}{9} \left(e^{-5s} \mathcal{L}[u(t)] - e^{-5s} \mathcal{L}[\cos(3t)] \right) \]

\[e^{-5s} H(s) = \frac{1}{9} \left(\mathcal{L}[u_5(t)] - \mathcal{L}[u_5(t) \cos(3(t - 5))] \right). \]
Laplace transforms.

Example

Use L.T. to find the solution to the IVP

\[y'' + 9y = u_5(t), \quad y(0) = 3, \quad y'(0) = 2. \]

Solution: So, \(L[y] = 3 L[\cos(3t)] + \frac{2}{3} L[\sin(3t)] + e^{-5s} H(s), \) and

\[
H(s) = \frac{1}{s(s^2 + 9)} = \frac{1}{9} \left[\frac{1}{s} - \frac{s}{s^2 + 9} \right] = \frac{1}{9} \left(L[u(t)] - L[\cos(3t)]\right)
\]

\[
e^{-5s} H(s) = \frac{1}{9} \left(e^{-5s} L[u(t)] - e^{-5s} L[\cos(3t)]\right)
\]

\[
e^{-5s} H(s) = \frac{1}{9} \left(L[u_5(t)] - L[u_5(t) \cos(3(t - 5))]\right).
\]

\[
L[y] = 3 L[\cos(3t)] + \frac{2}{3} L[\sin(3t)] + \frac{1}{9} \left(L[u_5(t)] - L[u_5(t) \cos(3(t - 5))]\right).
\]
Example

Use L.T. to find the solution to the IVP

\[y'' + 9y = u_5(t), \quad y(0) = 3, \quad y'(0) = 2. \]

Solution:

\[
\mathcal{L}[y] = 3\mathcal{L}[\cos(3t)] + \frac{2}{3}\mathcal{L}[\sin(3t)] + \frac{1}{9}\left(\mathcal{L}[u_5(t)] - \mathcal{L}[u_5(t)\cos(3(t-5))]\right).
\]
Example
Use L.T. to find the solution to the IVP

\[y'' + 9y = u_5(t), \quad y(0) = 3, \quad y'(0) = 2. \]

Solution:

\[
L[y] = 3 \mathcal{L}[\cos(3t)] + \frac{2}{3} \mathcal{L}[\sin(3t)] + \frac{1}{9} \left(\mathcal{L}[u_5(t)] - \mathcal{L}[u_5(t) \cos(3(t-5))] \right).
\]

Therefore, we conclude that,

\[
y(t) = 3 \cos(3t) + \frac{2}{3} \sin(3t) + \frac{u_5(t)}{9} \left[1 - \cos(3(t - 5)) \right].
\]
Review for Final Exam.

- Fourier Series expansions (Chptr. 6).
- Eigenvalue-Eigenfunction BVP (Chptr. 6).
- Systems of linear Equations (Chptr. 5).
- Laplace transforms (Chptr. 4).
- **Power Series Methods (Chptr. 3).**
- Second order linear equations (Chptr. 2).
- First order differential equations (Chptr. 1).
Power series solutions (Chptr. 3).

Summary: Solve: \(a(x) y'' + b(x) y' + c(x) y = 0 \) near \(x_0 \).
Power series solutions (Chptr. 3).

Summary: Solve: \(a(x) y'' + b(x) y' + c(x) y = 0 \) near \(x_0 \).

(a) If \(x_0 \) is a regular point,
Power series solutions (Chptr. 3).

Summary: Solve: \(a(x) y'' + b(x) y' + c(x) y = 0 \) near \(x_0 \).

(a) If \(x_0 \) is a regular point, then \(y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n \).
Summary: Solve: \(a(x) y'' + b(x) y' + c(x) y = 0 \) near \(x_0 \).

(a) If \(x_0 \) is a regular point, then \(y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n \).

Find a recurrence relation for \(a_n \).
Power series solutions (Chptr. 3).

Summary: Solve: \[a(x) y'' + b(x) y' + c(x) y = 0 \] near \(x_0 \).

(a) If \(x_0 \) is a regular point, then \(y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n \).

Find a recurrence relation for \(a_n \).

(b) If \(x_0 \) is a regular-singular point,
Power series solutions (Chptr. 3).

Summary: Solve: \(a(x) y'' + b(x) y' + c(x) y = 0 \) near \(x_0 \).

(a) If \(x_0 \) is a regular point, then \(y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n \).

Find a recurrence relation for \(a_n \).

(b) If \(x_0 \) is a regular-singular point, \(y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^{n+r} \).

Solutions: If \(y(x) = |x - x_0|^r \), then \(r \) is solution of the indicial equation
\[p(r) = r(r-1) + \alpha r + \beta = 0. \]
Power series solutions (Chptr. 3).

Summary: Solve: \[a(x) y'' + b(x) y' + c(x) y = 0 \] near \(x_0 \).

(a) If \(x_0 \) is a regular point, then \[y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n. \]

Find a recurrence relation for \(a_n \).

(b) If \(x_0 \) is a regular-singular point, \[y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^{(n+r)}. \]

Find a recurrence relation for \(a_n \) and indicial equation for \(r \).
Power series solutions (Chptr. 3).

Summary: Solve: \[a(x) y'' + b(x) y' + c(x) y = 0 \] near \(x_0 \).

(a) If \(x_0 \) is a regular point, then \(y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n \).

Find a recurrence relation for \(a_n \).

(b) If \(x_0 \) is a regular-singular point, \(y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^{(n+r)} \).

Find a recurrence relation for \(a_n \) and indicial equation for \(r \).

(c) Euler equation: \((x - x_0)^2 y'' + \alpha (x - x_0) y' + \beta y = 0 \).
Power series solutions (Chptr. 3).

Summary: Solve: \(a(x) y'' + b(x) y' + c(x) y = 0 \) near \(x_0 \).

(a) If \(x_0 \) is a regular point, then
\[
y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n.
\]
Find a recurrence relation for \(a_n \).

(b) If \(x_0 \) is a regular-singular point,
\[
y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^{(n+r)}.
\]
Find a recurrence relation for \(a_n \) and indicial equation for \(r \).

(c) Euler equation: \((x - x_0)^2 y'' + \alpha (x - x_0) y' + \beta y = 0 \).
Solutions: If \(y(x) = |x - x_0|^r \),
Power series solutions (Chptr. 3).

Summary: Solve: \(a(x) y'' + b(x) y' + c(x) y = 0 \) near \(x_0 \).

(a) If \(x_0 \) is a regular point, then \(y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n \).

Find a recurrence relation for \(a_n \).

(b) If \(x_0 \) is a regular-singular point, \(y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^{(n+r)} \).

Find a recurrence relation for \(a_n \) and indicial equation for \(r \).

(c) Euler equation: \((x - x_0)^2 y'' + \alpha (x - x_0) y' + \beta y = 0 \).

Solutions: If \(y(x) = |x - x_0|^r \), then \(r \) is solution of the indicial equation \(p(r) = r(r - 1) + \alpha r + \beta = 0 \).
Power series solutions (Chptr. 3).

Summary: Solving the Euler equation

\[(x - x_0)^2 y'' + \alpha (x - x_0) y' + \beta y = 0.\]
Power series solutions (Chptr. 3).

Summary: Solving the Euler equation

\[(x - x_0)^2 y'' + \alpha (x - x_0) y' + \beta y = 0.\]

(i) If \(r_1 \neq r_2\), reals,
Summary: Solving the Euler equation

\[(x - x_0)^2 y'' + \alpha (x - x_0) y' + \beta y = 0.\]

(i) If \(r_1 \neq r_2\), reals, then the general solution is

\[y(x) = c_1 |x - x_0|^{r_1} + c_2 |x - x_0|^{r_2}.\]
Power series solutions (Chptr. 3).

Summary: Solving the Euler equation

\[(x - x_0)^2 y'' + \alpha (x - x_0) y' + \beta y = 0.\]

(i) If \(r_1 \neq r_2\), reals, then the general solution is

\[y(x) = c_1 |x - x_0|^{r_1} + c_2 |x - x_0|^{r_2}.\]

(ii) If \(r_1 \neq r_2\), complex,
Power series solutions (Chptr. 3).

Summary: Solving the Euler equation

\[(x - x_0)^2 y'' + \alpha (x - x_0) y' + \beta y = 0.\]

(i) If \(r_1 \neq r_2 \), reals, then the general solution is

\[y(x) = c_1 |x - x_0|^{r_1} + c_2 |x - x_0|^{r_2}.\]

(ii) If \(r_1 \neq r_2 \), complex, denote them as \(r_{\pm} = \lambda \pm \mu i \).
Power series solutions (Chptr. 3).

Summary: Solving the Euler equation

\[(x - x_0)^2 y'' + \alpha (x - x_0) y' + \beta y = 0.\]

(i) If \(r_1 \neq r_2 \), reals, then the general solution is

\[y(x) = c_1 |x - x_0|^{r_1} + c_2 |x - x_0|^{r_2}.\]

(ii) If \(r_1 \neq r_2 \), complex, denote them as \(r_{\pm} = \lambda \pm \mu i \). Then, the real-valued general solution is

\[y(x) = c_1 |x - x_0|^\lambda \cos(\mu \ln |x - x_0|)\]
\[+ c_2 |x - x_0|^\lambda \sin(\mu \ln |x - x_0|).\]
Power series solutions (Chptr. 3).

Summary: Solving the Euler equation

\[(x - x_0)^2 y'' + \alpha (x - x_0) y' + \beta y = 0.\]

(i) If \(r_1 \neq r_2\), reals, then the general solution is

\[y(x) = c_1 |x - x_0|^{r_1} + c_2 |x - x_0|^{r_2}.\]

(ii) If \(r_1 \neq r_2\), complex, denote them as \(r_{\pm} = \lambda \pm \mu i\). Then, the real-valued general solution is

\[y(x) = c_1 |x - x_0|^\lambda \cos(\mu \ln |x - x_0|) + c_2 |x - x_0|^\lambda \sin(\mu \ln |x - x_0|).\]

(iii) If \(r_1 = r_2 = r\), real,
Power series solutions (Chptr. 3).

Summary: Solving the Euler equation

$$(x - x_0)^2 y'' + \alpha (x - x_0) y' + \beta y = 0.$$

(i) If $r_1 \neq r_2$, reals, then the general solution is

$$y(x) = c_1 |x - x_0|^{r_1} + c_2 |x - x_0|^{r_2}.$$

(ii) If $r_1 \neq r_2$, complex, denote them as $r_{\pm} = \lambda \pm \mu i$. Then, the real-valued general solution is

$$y(x) = c_1 |x - x_0|^\lambda \cos(\mu \ln |x - x_0|)$$

$$+ c_2 |x - x_0|^\lambda \sin(\mu \ln |x - x_0|).$$

(iii) If $r_1 = r_2 = r$, real, then the general solution is

$$y(x) = (c_1 + c_2 \ln |x - x_0|) |x - x_0|^r.$$
Example

Find the recurrence relation for the coefficients of the power series solution centered at $x_0 = 0$ of the equation $y'' - 3y' + xy = 0$.
Example

Find the recurrence relation for the coefficients of the power series solution centered at \(x_0 = 0 \) of the equation \(y'' - 3y' + xy = 0 \).

Solution: \(x_0 = 0 \) is a regular point of the differential equation.
Example
Find the recurrence relation for the coefficients of the power series solution centered at $x_0 = 0$ of the equation $y'' - 3y' + xy = 0$.

Solution: $x_0 = 0$ is a regular point of the differential equation.

Therefore, $y(x) = \sum_{n=0}^{\infty} a_n x^n$
Example

Find the recurrence relation for the coefficients of the power series solution centered at $x_0 = 0$ of the equation $y'' - 3y' + xy = 0$.

Solution: $x_0 = 0$ is a regular point of the differential equation.

Therefore, $y(x) = \sum_{n=0}^{\infty} a_n x^n \implies xy = \sum_{n=0}^{\infty} a_n x^{(n+1)}$.

Example

Find the recurrence relation for the coefficients of the power series solution centered at $x_0 = 0$ of the equation $y'' - 3y' + xy = 0$.

Solution: $x_0 = 0$ is a regular point of the differential equation.

Therefore, $y(x) = \sum_{n=0}^{\infty} a_n x^n \Rightarrow xy = \sum_{n=0}^{\infty} a_n x^{(n+1)}$.

$y'(x) = \sum_{n=0}^{\infty} na_n x^{(n-1)}$
Example
Find the recurrence relation for the coefficients of the power series solution centered at $x_0 = 0$ of the equation $y'' - 3y' + xy = 0$.

Solution: $x_0 = 0$ is a regular point of the differential equation.

Therefore, $y(x) = \sum_{n=0}^{\infty} a_n x^n \Rightarrow xy = \sum_{n=0}^{\infty} a_n x^{(n+1)}$.

$$y'(x) = \sum_{n=0}^{\infty} na_n x^{(n-1)} \Rightarrow -3y = \sum_{n=0}^{\infty} (-3n)a_n x^{(n-1)}.$$
Example

Find the recurrence relation for the coefficients of the power series solution centered at $x_0 = 0$ of the equation $y'' - 3y' + xy = 0$.

Solution: $x_0 = 0$ is a regular point of the differential equation.

Therefore, $y(x) = \sum_{n=0}^{\infty} a_n x^n \Rightarrow xy = \sum_{n=0}^{\infty} a_n x^{n+1}$.

$$y'(x) = \sum_{n=0}^{\infty} n a_n x^{n-1} \Rightarrow -3y = \sum_{n=0}^{\infty} (-3n) a_n x^{n-1}.$$

$$y''(x) = \sum_{n=0}^{\infty} n(n-1) a_n x^{n-2}.$$
Example

Find the recurrence relation for the coefficients of the power series solution centered at \(x_0 = 0 \) of the equation \(y'' - 3y' + xy = 0 \).

Solution: \(x_0 = 0 \) is a regular point of the differential equation.

Therefore,

\[
\begin{align*}
y(x) &= \sum_{n=0}^{\infty} a_n x^n \quad \Rightarrow \quad xy = \sum_{n=0}^{\infty} a_n x^{(n+1)}. \\
y'(x) &= \sum_{n=0}^{\infty} na_n x^{(n-1)} \quad \Rightarrow \quad -3y = \sum_{n=0}^{\infty} (-3n) a_n x^{(n-1)}. \\
y''(x) &= \sum_{n=0}^{\infty} n(n-1) a_n x^{(n-2)}.
\end{align*}
\]

\[
\sum_{n=0}^{\infty} n(n-1) a_n x^{(n-2)} + \sum_{n=0}^{\infty} (-3n) a_n x^{(n-1)} + \sum_{n=0}^{\infty} a_n x^{(n+1)} = 0.
\]
Power series solutions (Chptr. 3).

Example

Find the recurrence relation for the coefficients of the power series solution centered at $x_0 = 0$ of the equation $y'' - 3y' + xy = 0$.

Solution:

$$\sum_{n=0}^{\infty} n(n - 1)a_n x^{(n-2)} + \sum_{n=0}^{\infty} (-3n)a_n x^{(n-1)} + \sum_{n=0}^{\infty} a_n x^{(n+1)} = 0.$$
Power series solutions (Chptr. 3).

Example
Find the recurrence relation for the coefficients of the power series solution centered at \(x_0 = 0 \) of the equation \(y'' - 3y' + xy = 0 \).

Solution:
\[
\sum_{n=0}^{\infty} n(n - 1)a_n x^{(n-2)} + \sum_{n=0}^{\infty} (-3n)a_n x^{(n-1)} + \sum_{n=0}^{\infty} a_n x^{(n+1)} = 0.
\]
\[
\sum_{n=2}^{\infty} n(n - 1)a_n x^{(n-2)} + \sum_{n=1}^{\infty} (-3n)a_n x^{(n-1)} + \sum_{n=0}^{\infty} a_n x^{(n+1)} = 0.
\]
Example
Find the recurrence relation for the coefficients of the power series solution centered at $x_0 = 0$ of the equation $y'' - 3y' + xy = 0$.

Solution:

$$\sum_{n=0}^{\infty} n(n-1)a_n x^{(n-2)} + \sum_{n=0}^{\infty} (-3n)a_n x^{(n-1)} + \sum_{n=0}^{\infty} a_n x^{(n+1)} = 0.$$

$$\sum_{n=2}^{\infty} n(n-1)a_n x^{(n-2)} + \sum_{n=1}^{\infty} (-3n)a_n x^{(n-1)} + \sum_{n=0}^{\infty} a_n x^{(n+1)} = 0.$$

$m = n - 2$

$m \rightarrow n$
Power series solutions (Chptr. 3).

Example

Find the recurrence relation for the coefficients of the power series solution centered at \(x_0 = 0 \) of the equation \(y'' - 3y' + xy = 0 \).

Solution:

\[
\sum_{n=0}^{\infty} n(n-1)a_n x^{(n-2)} + \sum_{n=0}^{\infty} (-3n)a_n x^{(n-1)} + \sum_{n=0}^{\infty} a_n x^{(n+1)} = 0.
\]

\[
\sum_{n=2}^{\infty} n(n-1)a_n x^{(n-2)} + \sum_{n=1}^{\infty} (-3n)a_n x^{(n-1)} + \sum_{n=0}^{\infty} a_n x^{(n+1)} = 0.
\]

\[
m = n - 2 \quad \quad m = n - 1
\]

\[
m \rightarrow n \quad \quad m \rightarrow n
\]
Power series solutions (Chptr. 3).

Example

Find the recurrence relation for the coefficients of the power series solution centered at \(x_0 = 0 \) of the equation \(y'' - 3y' + xy = 0 \).

Solution:

\[
\sum_{n=0}^{\infty} n(n-1)a_n x^{(n-2)} + \sum_{n=0}^{\infty} (-3n)a_n x^{(n-1)} + \sum_{n=0}^{\infty} a_n x^{(n+1)} = 0.
\]

\[
\sum_{n=2}^{\infty} n(n-1)a_n x^{(n-2)} + \sum_{n=1}^{\infty} (-3n)a_n x^{(n-1)} + \sum_{n=0}^{\infty} a_n x^{(n+1)} = 0.
\]

\[
m = n - 2 \quad m = n - 1 \quad m = n + 1
\]

\[
m \to n \quad m \to n \quad m \to n
\]
Power series solutions (Chptr. 3).

Example

Find the recurrence relation for the coefficients of the power series solution centered at $x_0 = 0$ of the equation $y'' - 3y' + xy = 0$.

Solution:

$$\sum_{n=0}^{\infty} n(n-1)a_n x^{(n-2)} + \sum_{n=0}^{\infty} (-3n)a_n x^{(n-1)} + \sum_{n=0}^{\infty} a_n x^{(n+1)} = 0.$$

$$\sum_{n=2}^{\infty} n(n-1)a_n x^{(n-2)} + \sum_{n=1}^{\infty} (-3n)a_n x^{(n-1)} + \sum_{n=0}^{\infty} a_n x^{(n+1)} = 0.$$

$$m = n - 2 \quad m = n - 1 \quad m = n + 1$$

$$m \rightarrow n \quad m \rightarrow n \quad m \rightarrow n$$

$$\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} x^n + \sum_{n=0}^{\infty} (-3)(n+1)a_{n+1} x^n + \sum_{n=1}^{\infty} a_{n-1} x^n = 0.$$
Power series solutions (Chptr. 3).

Example

Find the recurrence relation for the coefficients of the power series solution centered at $x_0 = 0$ of the equation $y'' - 3y' + xy = 0$.

Solution:

$$\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n + \sum_{n=0}^{\infty} (-3)(n+1)a_{n+1}x^n + \sum_{n=1}^{\infty} a_{n-1}x^n = 0.$$
Power series solutions (Chptr. 3).

Example

Find the recurrence relation for the coefficients of the power series solution centered at $x_0 = 0$ of the equation $y'' - 3y' + xy = 0$.

Solution:

$$
\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} x^n + \sum_{n=0}^{\infty} (-3)(n+1)a_{n+1} x^n + \sum_{n=1}^{\infty} a_{n-1} x^n = 0.
$$

$$(2)(1)a_2 + (-3)(1)a_1 + \sum_{n=1}^{\infty} \left[(n + 2)(n + 1)a_{n+2} - 3(n + 1)a_{n+1} + a_{n-1} \right] x^n = 0$$
Power series solutions (Chptr. 3).

Example

Find the recurrence relation for the coefficients of the power series solution centered at $x_0 = 0$ of the equation $y'' - 3y' + xy = 0$.

Solution:

$$
\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} x^n + \sum_{n=0}^{\infty} (-3)(n+1)a_{n+1} x^n + \sum_{n=1}^{\infty} a_{n-1} x^n = 0.
$$

$$
(2)(1)a_2 + (-3)(1)a_1 + \sum_{n=1}^{\infty} [(n + 2)(n + 1)a_{n+2} - 3(n + 1)a_{n+1} + a_{n-1}] x^n = 0
$$

We conclude: $2a_2 - 3a_1 = 0$, and

$$
(n + 2)(n + 1)a_{n+2} - 3(n + 1)a_{n+1} + a_{n-1} = 0, \quad n \geq 1.
$$
Power series solutions (Chptr. 3).

Example
Find the first two terms on the power series expansion around $x_0 = 0$ of each fundamental solution of $y'' - 3y' + xy = 0$.

Solution:
Recall: $a_2^2 - 3a_1 = 0$, and $(n + 2)(n + 1)a_n + 2 - 3(n + 1)a_{n + 1} + a_n - 1 = 0$, $n \geq 1$.
Therefore, $a_2 = 3a_1$, and $n = 1$ in the other equation implies $(3)(2)a_3 - 3(2)a_2 + a_0 = 0 \Rightarrow a_3 = a_2 - a_0$.

Using the equation for a_2, we obtain $a_3 = 3a_1 - a_0$.

$y(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots$

$y(x) = a_0 + a_1 x + 3a_1 x^2 + (3a_1 - a_0) x^3 + \cdots$
Power series solutions (Chptr. 3).

Example
Find the first two terms on the power series expansion around \(x_0 = 0 \) of each fundamental solution of \(y'' - 3y' + xy = 0 \).

Solution: Recall: \(2a_2 - 3a_1 = 0 \), and

\[
(n + 2)(n + 1)a_{n+2} - 3(n + 1)a_{n+1} + a_{n-1} = 0, \quad n \geq 1.
\]
Example

Find the first two terms on the power series expansion around \(x_0 = 0 \) of each fundamental solution of \(y'' - 3y' + xy = 0 \).

Solution: Recall: \(2a_2 - 3a_1 = 0 \), and

\[
(n + 2)(n + 1)a_{n+2} - 3(n + 1)a_{n+1} + a_{n-1} = 0, \quad n \geq 1.
\]

Therefore, \(a_2 = \frac{3}{2} a_1 \).
Power series solutions (Chptr. 3).

Example
Find the first two terms on the power series expansion around $x_0 = 0$ of each fundamental solution of $y'' - 3y' + xy = 0$.

Solution: Recall: $2a_2 - 3a_1 = 0$, and

$$(n + 2)(n + 1)a_{n+2} - 3(n + 1)a_{n+1} + a_{n-1} = 0, \quad n \geq 1.$$

Therefore, $a_2 = \frac{3}{2}a_1$, and $n = 1$ in the other equation implies
Power series solutions (Chptr. 3).

Example
Find the first two terms on the power series expansion around $x_0 = 0$ of each fundamental solution of $y'' - 3y' + xy = 0$.

Solution: Recall: $2a_2 - 3a_1 = 0$, and

$$ (n + 2)(n + 1)a_{n+2} - 3(n + 1)a_{n+1} + a_{n-1} = 0, \quad n \geq 1. $$

Therefore, $a_2 = \frac{3}{2} a_1$, and $n = 1$ in the other equation implies

$$ (3)(2)a_3 - 3(2)a_2 + a_0 = 0 $$
Power series solutions (Chptr. 3).

Example

Find the first two terms on the power series expansion around $x_0 = 0$ of each fundamental solution of $y'' - 3y' + xy = 0$.

Solution: Recall: $2a_2 - 3a_1 = 0$, and

$$(n + 2)(n + 1)a_{n+2} - 3(n + 1)a_{n+1} + a_{n-1} = 0, \quad n \geq 1.$$

Therefore, $a_2 = \frac{3}{2} a_1$, and $n = 1$ in the other equation implies

$$(3)(2)a_3 - 3(2)a_2 + a_0 = 0 \quad \Rightarrow \quad a_3 = a_2 - \frac{a_0}{6}.$$
Power series solutions (Chptr. 3).

Example

Find the first two terms on the power series expansion around $x_0 = 0$ of each fundamental solution of $y'' - 3y' + xy = 0$.

Solution: Recall: $2a_2 - 3a_1 = 0$, and

$$(n + 2)(n + 1)a_{n+2} - 3(n + 1)a_{n+1} + a_{n-1} = 0, \quad n \geq 1.$$

Therefore, $a_2 = \frac{3}{2} a_1$, and $n = 1$ in the other equation implies

$$(3)(2)a_3 - 3(2)a_2 + a_0 = 0 \quad \Rightarrow \quad a_3 = a_2 - \frac{a_0}{6}.$$

Using the equation for a_2 we obtain
Power series solutions (Chptr. 3).

Example

Find the first two terms on the power series expansion around $x_0 = 0$ of each fundamental solution of $y'' - 3y' + xy = 0$.

Solution: Recall: $2a_2 - 3a_1 = 0$, and

$$(n + 2)(n + 1)a_{n+2} - 3(n + 1)a_{n+1} + a_{n-1} = 0, \quad n \geq 1.$$

Therefore, $a_2 = \frac{3}{2} a_1$, and $n = 1$ in the other equation implies

$$(3)(2)a_3 - 3(2)a_2 + a_0 = 0 \quad \Rightarrow \quad a_3 = a_2 - \frac{a_0}{6}.$$

Using the equation for a_2 we obtain $a_3 = \frac{3}{2} a_1 - \frac{a_0}{6}.$
Power series solutions (Chptr. 3).

Example
Find the first two terms on the power series expansion around \(x_0 = 0 \) of each fundamental solution of \(y'' - 3y' + xy = 0 \).

Solution: Recall: \(2a_2 - 3a_1 = 0 \), and
\[
(n + 2)(n + 1)a_{n+2} - 3(n + 1)a_{n+1} + a_{n-1} = 0, \quad n \geq 1.
\]
Therefore, \(a_2 = \frac{3}{2} a_1 \), and \(n = 1 \) in the other equation implies
\[
(3)(2)a_3 - 3(2)a_2 + a_0 = 0 \quad \Rightarrow \quad a_3 = a_2 - \frac{a_0}{6}.
\]
Using the equation for \(a_2 \) we obtain \(a_3 = \frac{3}{2} a_1 - \frac{a_0}{6} \).

\[y(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots \]
Example
Find the first two terms on the power series expansion around $x_0 = 0$ of each fundamental solution of $y'' - 3y' + xy = 0$.

Solution: Recall: $2a_2 - 3a_1 = 0$, and

$$(n + 2)(n + 1)a_{n+2} - 3(n + 1)a_{n+1} + a_{n-1} = 0, \quad n \geq 1.$$

Therefore, $a_2 = \frac{3}{2} a_1$, and $n = 1$ in the other equation implies

$$(3)(2)a_3 - 3(2)a_2 + a_0 = 0 \quad \Rightarrow \quad a_3 = a_2 - \frac{a_0}{6}.$$

Using the equation for a_2 we obtain $a_3 = \frac{3}{2} a_1 - \frac{a_0}{6}$.

$$y(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots$$

$$y(x) = a_0 + a_1 x + \frac{3}{2} a_1 x^2 + \left(\frac{3}{2} a_1 - \frac{a_0}{6}\right) x^3 + \cdots$$
Example
Find the first two terms on the power series expansion around $x_0 = 0$ of each fundamental solution of $y'' - 3y' + xy = 0$.

Solution: Recall: $y(x) = a_0 + a_1 x + \frac{3}{2} a_1 x^2 + \left(\frac{3}{2} a_1 - \frac{a_0}{6}\right) x^3 + \cdots$.
Example

Find the first two terms on the power series expansion around $x_0 = 0$ of each fundamental solution of $y'' - 3y' + xy = 0$.

Solution: Recall: $y(x) = a_0 + a_1 x + \frac{3}{2} a_1 x^2 + \left(\frac{3}{2} a_1 - \frac{a_0}{6}\right) x^3 + \cdots$.

$$y(x) = a_0 \left(1 - \frac{1}{6} x^3 + \cdots\right) + a_1 \left(x + \frac{3}{2} x^2 + \frac{3}{2} x^3 + \cdots\right),$$
Power series solutions (Chptr. 3).

Example

Find the first two terms on the power series expansion around \(x_0 = 0 \) of each fundamental solution of \(y'' - 3y' + xy = 0 \).

Solution: Recall:
\[
y(x) = a_0 + a_1 x + \frac{3}{2} a_1 x^2 + \left(\frac{3}{2} a_1 - \frac{a_0}{6} \right) x^3 + \cdots.
\]

\[
y(x) = a_0 \left(1 - \frac{1}{6} x^3 + \cdots \right) + a_1 \left(x + \frac{3}{2} x^2 + \frac{3}{2} x^3 + \cdots \right),
\]

We conclude that:

\[
y_1(x) = 1 - \frac{1}{6} x^3 + \cdots,
\]

\[
y_2(x) = x + \frac{3}{2} x^2 + \frac{3}{2} x^3 + \cdots.
\]

\(\triangle \)
Review for Final Exam.

- Fourier Series expansions (Chptr. 6).
- Eigenvalue-Eigenfunction BVP (Chptr. 6).
- Systems of linear Equations (Chptr. 5).
- Laplace transforms (Chptr. 4).
- Power Series Methods (Chptr. 3).
- **Second order linear equations (Chptr. 2).**
- First order differential equations (Chptr. 1).
Second order linear equations.

Summary: Solve $y'' + a_1 y' + a_0 y = g(t)$.
Second order linear equations.

Summary: Solve \(y'' + a_1 y' + a_0 y = g(t) \).

First find fundamental solutions \(y(t) = e^{rt} \) to the case \(g = 0 \),
Second order linear equations.

Summary: Solve $y'' + a_1 y' + a_0 y = g(t)$.

First find fundamental solutions $y(t) = e^{rt}$ to the case $g = 0$, where r is a root of $p(r) = r^2 + a_1 r + a_0$.
Second order linear equations.

Summary: Solve $y'' + a_1 y' + a_0 y = g(t)$.

First find fundamental solutions $y(t) = e^{rt}$ to the case $g = 0$, where r is a root of $p(r) = r^2 + a_1 r + a_0$.

(a) If $r_1 \neq r_2$, real,
Second order linear equations.

Summary: Solve \(y'' + a_1 y' + a_0 y = g(t) \).

First find fundamental solutions \(y(t) = e^{rt} \) to the case \(g = 0 \), where \(r \) is a root of \(p(r) = r^2 + a_1 r + a_0 \).

(a) If \(r_1 \neq r_2 \), real, then the general solution is

\[
y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}.
\]
Second order linear equations.

Summary: Solve \(y'' + a_1 y' + a_0 y = g(t) \).

First find fundamental solutions \(y(t) = e^{rt} \) to the case \(g = 0 \), where \(r \) is a root of \(p(r) = r^2 + a_1 r + a_0 \).

(a) If \(r_1 \neq r_2 \), real, then the general solution is
\[y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}. \]

(b) If \(r_1 \neq r_2 \), complex,
Second order linear equations.

Summary: Solve \(y'' + a_1 y' + a_0 y = g(t) \).

First find fundamental solutions \(y(t) = e^{rt} \) to the case \(g = 0 \), where \(r \) is a root of \(p(r) = r^2 + a_1 r + a_0 \).

(a) If \(r_1 \neq r_2 \), real, then the general solution is

\[
y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}.
\]

(b) If \(r_1 \neq r_2 \), complex, then denoting \(r_\pm = \alpha \pm \beta i \),
Second order linear equations.

Summary: Solve \(y'' + a_1 y' + a_0 y = g(t) \).

First find fundamental solutions \(y(t) = e^{rt} \) to the case \(g = 0 \), where \(r \) is a root of \(p(r) = r^2 + a_1 r + a_0 \).

(a) If \(r_1 \neq r_2 \), real, then the general solution is

\[
 y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}.
\]

(b) If \(r_1 \neq r_2 \), complex, then denoting \(r_\pm = \alpha \pm \beta i \), complex-valued fundamental solutions are

\[
 y_\pm(t) = e^{(\alpha \pm \beta i)t}
\]
Second order linear equations.

Summary: Solve $y'' + a_1 y' + a_0 y = g(t)$.

First find fundamental solutions $y(t) = e^{rt}$ to the case $g = 0$, where r is a root of $p(r) = r^2 + a_1 r + a_0$.

(a) If $r_1 \neq r_2$, real, then the general solution is

$$y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}.$$

(b) If $r_1 \neq r_2$, complex, then denoting $r_\pm = \alpha \pm \beta i$, complex-valued fundamental solutions are

$$y_\pm(t) = e^{(\alpha \pm \beta i)t} \quad \Leftrightarrow \quad y_\pm(t) = e^{\alpha t} \left[\cos(\beta t) \pm i \sin(\beta t) \right],$$

If $r_1 = r_2 = r$, real, then the general solution is

$$y(t) = (c_1 + c_2 t) e^{rt}.$$
Second order linear equations.

Summary: Solve \(y'' + a_1 y' + a_0 y = g(t) \).

First find fundamental solutions \(y(t) = e^{rt} \) to the case \(g = 0 \), where \(r \) is a root of \(p(r) = r^2 + a_1 + a_0 \).

(a) If \(r_1 \neq r_2 \), real, then the general solution is
\[
y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}.
\]

(b) If \(r_1 \neq r_2 \), complex, then denoting \(r_\pm = \alpha \pm \beta i \), complex-valued fundamental solutions are
\[
y_\pm(t) = e^{(\alpha \pm \beta i)t} \iff y_\pm(t) = e^{\alpha t} \left[\cos(\beta t) \pm i \sin(\beta t) \right],
\]
and real-valued fundamental solutions are
Second order linear equations.

Summary: Solve \(y'' + a_1 y' + a_0 y = g(t) \).

First find fundamental solutions \(y(t) = e^{rt} \) to the case \(g = 0 \), where \(r \) is a root of \(p(r) = r^2 + a_1 r + a_0 \).

(a) If \(r_1 \neq r_2 \), real, then the general solution is

\[
y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}.
\]

(b) If \(r_1 \neq r_2 \), complex, then denoting \(r_\pm = \alpha \pm \beta i \), complex-valued fundamental solutions are

\[
y_\pm(t) = e^{(\alpha \pm \beta i)t} \iff y_\pm(t) = e^{\alpha t} \left[\cos(\beta t) \pm i \sin(\beta t) \right],
\]

and real-valued fundamental solutions are

\[
y_1(t) = e^{\alpha t} \cos(\beta t),
\]

\[
y_2(t) = e^{\alpha t} \sin(\beta t).
\]
Second order linear equations.

Summary: Solve \(y'' + a_1 y' + a_0 y = g(t) \).

First find fundamental solutions \(y(t) = e^{rt} \) to the case \(g = 0 \), where \(r \) is a root of \(p(r) = r^2 + a_1 r + a_0 \).

(a) If \(r_1 \neq r_2 \), real, then the general solution is
\[
y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}.
\]

(b) If \(r_1 \neq r_2 \), complex, then denoting \(r_{\pm} = \alpha \pm \beta i \), complex-valued fundamental solutions are
\[
y_{\pm}(t) = e^{(\alpha \pm \beta i)t} \iff y_{\pm}(t) = e^{\alpha t} \left[\cos(\beta t) \pm i \sin(\beta t) \right],
\]
and real-valued fundamental solutions are
\[
y_1(t) = e^{\alpha t} \cos(\beta t), \quad y_2(t) = e^{\alpha t} \sin(\beta t).
\]
Second order linear equations.

Summary: Solve \(y'' + a_1 y' + a_0 y = g(t) \).

First find fundamental solutions \(y(t) = e^{rt} \) to the case \(g = 0 \), where \(r \) is a root of \(p(r) = r^2 + a_1 r + a_0 \).

(a) If \(r_1 \neq r_2 \), real, then the general solution is
\[
y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}.
\]

(b) If \(r_1 \neq r_2 \), complex, then denoting \(r_\pm = \alpha \pm \beta i \), complex-valued fundamental solutions are
\[
y_\pm(t) = e^{(\alpha \pm \beta i)t} \quad \Leftrightarrow \quad y_\pm(t) = e^{\alpha t} \left[\cos(\beta t) \pm i \sin(\beta t) \right],
\]
and real-valued fundamental solutions are
\[
y_1(t) = e^{\alpha t} \cos(\beta t), \quad y_2(t) = e^{\alpha t} \sin(\beta t).
\]

If \(r_1 = r_2 = r \), real,
Second order linear equations.

Summary: Solve \(y'' + a_1 y' + a_0 y = g(t) \).

First find fundamental solutions \(y(t) = e^{rt} \) to the case \(g = 0 \), where \(r \) is a root of \(p(r) = r^2 + a_1 r + a_0 \).

(a) If \(r_1 \neq r_2 \), real, then the general solution is
\[
y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}.
\]

(b) If \(r_1 \neq r_2 \), complex, then denoting \(r_{\pm} = \alpha \pm \beta i \), complex-valued fundamental solutions are
\[
y_{\pm}(t) = e^{(\alpha \pm \beta i)t} \iff y_{\pm}(t) = e^{\alpha t} \left[\cos(\beta t) \pm i \sin(\beta t) \right],
\]
and real-valued fundamental solutions are
\[
y_1(t) = e^{\alpha t} \cos(\beta t), \quad y_2(t) = e^{\alpha t} \sin(\beta t).
\]
If \(r_1 = r_2 = r \), real, then the general solution is
\[
y(t) = (c_1 + c_2 t) e^{rt}.
\]
Second order linear equations.

Remark: Case (c) is solved using the *reduction of order method*.
Second order linear equations.

Remark: Case (c) is solved using the \textit{reduction of order method}. See page 170 in the textbook.
Second order linear equations.

Remark: Case (c) is solved using the *reduction of order method*. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.
Second order linear equations.

Remark: Case (c) is solved using the *reduction of order method*. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:
Non-homogeneous equations: $g \neq 0$.
Second order linear equations.

Remark: Case (c) is solved using the reduction of order method. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:
Non-homogeneous equations: $g \neq 0$.

(i) Undetermined coefficients:
Second order linear equations.

Remark: Case (c) is solved using the *reduction of order method*. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:
Non-homogeneous equations: $g \neq 0$.

(i) Undetermined coefficients: Guess the particular solution y_p
Second order linear equations.

Remark: Case (c) is solved using the reduction of order method. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:
Non-homogeneous equations: $g \neq 0$.

(i) Undetermined coefficients: Guess the particular solution y_p using the guessing table, $g \rightarrow y_p$.
Second order linear equations.

Remark: Case (c) is solved using the reduction of order method. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:
Non-homogeneous equations: $g \neq 0$.

(i) Undetermined coefficients: Guess the particular solution y_p using the guessing table, $g \rightarrow y_p$.

(ii) Variation of parameters:
Second order linear equations.

Remark: Case (c) is solved using the reduction of order method. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:
Non-homogeneous equations: \(g \neq 0 \).

(i) Undetermined coefficients: Guess the particular solution \(y_p \) using the guessing table, \(g \rightarrow y_p \).

(ii) Variation of parameters: If \(y_1 \) and \(y_2 \) are fundamental solutions to the homogeneous equation,
Second order linear equations.

Remark: Case (c) is solved using the reduction of order method. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:
Non-homogeneous equations: $g \neq 0$.

(i) Undetermined coefficients: Guess the particular solution y_p using the guessing table, $g \rightarrow y_p$.

(ii) Variation of parameters: If y_1 and y_2 are fundamental solutions to the homogeneous equation, and W is their Wronskian,
Second order linear equations.

Remark: Case (c) is solved using the reduction of order method. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:
Non-homogeneous equations: \(g \neq 0 \).

(i) Undetermined coefficients: Guess the particular solution \(y_p \) using the guessing table, \(g \rightarrow y_p \).

(ii) Variation of parameters: If \(y_1 \) and \(y_2 \) are fundamental solutions to the homogeneous equation, and \(W \) is their Wronskian, then \(y_p = u_1y_1 + u_2y_2 \).
Second order linear equations.

Remark: Case (c) is solved using the *reduction of order method*. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:
Non-homogeneous equations: $g \neq 0$.

(i) Undetermined coefficients: Guess the particular solution y_p using the guessing table, $g \to y_p$.

(ii) Variation of parameters: If y_1 and y_2 are fundamental solutions to the homogeneous equation, and W is their Wronskian, then $y_p = u_1y_1 + u_2y_2$, where

$$u'_1 = -\frac{y_2g}{W},$$
Second order linear equations.

Remark: Case (c) is solved using the reduction of order method. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:
Non-homogeneous equations: \(g \neq 0 \).

(i) Undetermined coefficients: Guess the particular solution \(y_p \) using the guessing table, \(g \rightarrow y_p \).

(ii) Variation of parameters: If \(y_1 \) and \(y_2 \) are fundamental solutions to the homogeneous equation, and \(W \) is their Wronskian, then \(y_p = u_1 y_1 + u_2 y_2 \), where

\[
\begin{align*}
u_1' &= -\frac{y_2 g}{W}, \\
u_2' &= \frac{y_1 g}{W}.
\end{align*}
\]
Second order linear equations.

Example
Knowing that $y_1(x) = x^2$ solves $x^2 y'' - 4x y' + 6y = 0$, with $x > 0$, find a second solution y_2 not proportional to y_1.

Solution:
Use the reduction of order method.
We verify that $y_1(x) = x^2$ solves the equation,

$x^2 (2) - 4x (2) + 6x^2 = 0$.

Look for a solution $y_2(x) = v(x) y_1(x)$,

and find an equation for v.

$y_2 = x^2 v$,
$y_2' = x^2 v' + 2xv$,
$y_2'' = x^2 v'' + 4xv' + 2v$.

$x^2 (x^2 v'' + 4xv' + 2v) - 4x (x^2 v' + 2xv) + 6 (x^2 v) = 0$.

$x^4 v'' + (4x^3 - 4x^3) v' + (2x^2 - 8x^2 + 6x^2) v = 0$.

$v'' = 0$
$⇒ v = c_1 + c_2 x$
$⇒ y_2 = c_1 y_1 + c_2 x y_1$.

Choose $c_1 = 0$, $c_2 = 1$.

Hence $y_2(x) = x^3$, and $y_1(x) = x^2$.

◁
Second order linear equations.

Example
Knowing that $y_1(x) = x^2$ solves $x^2 y'' - 4x y' + 6y = 0$, with $x > 0$, find a second solution y_2 not proportional to y_1.

Solution: Use the reduction of order method.
Second order linear equations.

Example
Knowing that $y_1(x) = x^2$ solves $x^2 y'' - 4x y' + 6y = 0$, with $x > 0$, find a second solution y_2 not proportional to y_1.

Solution: Use the reduction of order method. We verify that $y_1 = x^2$ solves the equation,

\[x^2 y'' - 4x y' + 6y = 0. \]
Second order linear equations.

Example
Knowing that $y_1(x) = x^2$ solves $x^2 y'' - 4x y' + 6y = 0$, with $x > 0$, find a second solution y_2 not proportional to y_1.

Solution: Use the reduction of order method. We verify that $y_1 = x^2$ solves the equation,

$$x^2 (2) - 4x (2x) + 6x^2 = 0.$$
Second order linear equations.

Example
Knowing that $y_1(x) = x^2$ solves $x^2 y'' - 4x y' + 6y = 0$, with $x > 0$, find a second solution y_2 not proportional to y_1.

Solution: Use the reduction of order method. We verify that $y_1 = x^2$ solves the equation,

$$x^2 (2) - 4x (2x) + 6x^2 = 0.$$

Look for a solution $y_2(x) = v(x) y_1(x)$,
Second order linear equations.

Example
Knowing that $y_1(x) = x^2$ solves $x^2 y'' - 4x y' + 6y = 0$, with $x > 0$, find a second solution y_2 not proportional to y_1.

Solution: Use the reduction of order method. We verify that $y_1 = x^2$ solves the equation,

$$x^2 (2) - 4x (2x) + 6x^2 = 0.$$

Look for a solution $y_2(x) = v(x) y_1(x)$, and find an equation for v.

Second order linear equations.

Example
Knowing that $y_1(x) = x^2$ solves $x^2 y'' - 4x y' + 6y = 0$, with $x > 0$, find a second solution y_2 not proportional to y_1.

Solution: Use the reduction of order method. We verify that $y_1 = x^2$ solves the equation,

$$x^2 (2) - 4x (2x) + 6x^2 = 0.$$

Look for a solution $y_2(x) = v(x) y_1(x)$, and find an equation for v.

$$y_2 = x^2 v,$$
Second order linear equations.

Example
Knowing that $y_1(x) = x^2$ solves $x^2 y'' - 4x y' + 6y = 0$, with $x > 0$, find a second solution y_2 not proportional to y_1.

Solution: Use the reduction of order method. We verify that $y_1 = x^2$ solves the equation,
$$x^2 (2) - 4x (2x) + 6x^2 = 0.$$ Look for a solution $y_2(x) = v(x) y_1(x)$, and find an equation for v.
$$y_2 = x^2 v, \quad y_2' = x^2 v' + 2xv,$$
Second order linear equations.

Example
Knowing that \(y_1(x) = x^2 \) solves \(x^2 y'' - 4x y' + 6y = 0 \), with \(x > 0 \), find a second solution \(y_2 \) not proportional to \(y_1 \).

Solution: Use the reduction of order method. We verify that \(y_1 = x^2 \) solves the equation,
\[x^2 (2) - 4x (2x) + 6x^2 = 0. \]

Look for a solution \(y_2(x) = v(x) y_1(x) \), and find an equation for \(v \).
\[y_2 = x^2 v, \quad y'_2 = x^2 v' + 2xv, \quad y''_2 = x^2 v'' + 4xv' + 2v. \]
Second order linear equations.

Example

Knowing that \(y_1(x) = x^2 \) solves \(x^2 y'' - 4x y' + 6y = 0 \), with \(x > 0 \), find a second solution \(y_2 \) not proportional to \(y_1 \).

Solution: Use the reduction of order method. We verify that \(y_1 = x^2 \) solves the equation,

\[
x^2 (2) - 4x (2x) + 6x^2 = 0.
\]

Look for a solution \(y_2(x) = v(x) y_1(x) \), and find an equation for \(v \).

\[
y_2 = x^2 v, \quad y'_2 = x^2 v' + 2xv, \quad y''_2 = x^2 v'' + 4xv' + 2v.
\]

\[
x^2(x^2 v'' + 4xv' + 2v) - 4x (x^2 v' + 2xv) + 6 (x^2 v) = 0.
\]
Second order linear equations.

Example
Knowing that $y_1(x) = x^2$ solves $x^2 y'' - 4x y' + 6y = 0$, with $x > 0$, find a second solution y_2 not proportional to y_1.

Solution: Use the reduction of order method. We verify that $y_1 = x^2$ solves the equation,

$$x^2 (2) - 4x (2x) + 6x^2 = 0.$$

Look for a solution $y_2(x) = v(x) y_1(x)$, and find an equation for v.

$$y_2 = x^2 v, \quad y'_2 = x^2 v' + 2xv, \quad y''_2 = x^2 v'' + 4xv' + 2v.$$

$$x^2(x^2 v'' + 4xv' + 2v) - 4x (x^2 v' + 2xv) + 6 (x^2 v) = 0.$$

$$x^4 v'' + (4x^3 - 4x^3) v' + (2x^2 - 8x^2 + 6x^2) v = 0.$$

Choose $c_1 = 0$, $c_2 = 1$. Hence $y_2(x) = x^3$, and $y_1(x) = x^2$. \[\blacksquare\]
Second order linear equations.

Example
Knowing that \(y_1(x) = x^2 \) solves \(x^2 y'' - 4x y' + 6y = 0 \), with \(x > 0 \), find a second solution \(y_2 \) not proportional to \(y_1 \).

Solution: Use the reduction of order method. We verify that \(y_1 = x^2 \) solves the equation,

\[
x^2 (2) - 4x (2x) + 6x^2 = 0.
\]

Look for a solution \(y_2(x) = v(x) y_1(x) \), and find an equation for \(v \).

\[
y_2 = x^2 v, \quad y'_2 = x^2 v' + 2xv, \quad y''_2 = x^2 v'' + 4xv' + 2v.
\]

\[
x^2 (x^2 v'' + 4xv' + 2v) - 4x (x^2 v' + 2xv) + 6 (x^2 v) = 0.
\]

\[
x^4 v'' + (4x^3 - 4x^3) v' + (2x^2 - 8x^2 + 6x^2) v = 0.
\]

\[
v'' = 0
\]
Second order linear equations.

Example
Knowing that \(y_1(x) = x^2 \) solves \(x^2 y'' - 4x y' + 6y = 0 \), with \(x > 0 \), find a second solution \(y_2 \) not proportional to \(y_1 \).

Solution: Use the reduction of order method. We verify that \(y_1 = x^2 \) solves the equation,

\[
x^2 (2) - 4x (2x) + 6x^2 = 0.
\]

Look for a solution \(y_2(x) = v(x) y_1(x) \), and find an equation for \(v \).

\[
y_2 = x^2 v, \quad y_2' = x^2 v' + 2xv, \quad y_2'' = x^2 v'' + 4x v' + 2v.
\]

\[
x^2 (x^2 v'' + 4x v' + 2v) - 4x (x^2 v' + 2x v) + 6 (x^2 v) = 0.
\]

\[
x^4 v'' + (4x^3 - 4x^3) v' + (2x^2 - 8x^2 + 6x^2) v = 0.
\]

\[
v'' = 0 \quad \Rightarrow \quad v = c_1 + c_2 x
\]
Second order linear equations.

Example
Knowing that \(y_1(x) = x^2 \) solves \(x^2 y'' - 4x y' + 6y = 0 \), with \(x > 0 \), find a second solution \(y_2 \) not proportional to \(y_1 \).

Solution: Use the reduction of order method. We verify that \(y_1 = x^2 \) solves the equation,

\[
x^2 (2) - 4x (2x) + 6x^2 = 0.
\]

Look for a solution \(y_2(x) = v(x) y_1(x) \), and find an equation for \(v \).

\[
y_2 = x^2 v, \quad y'_2 = x^2 v' + 2xv, \quad y''_2 = x^2 v'' + 4xv' + 2v.
\]

\[
x^2(x^2 v'' + 4xv' + 2v) - 4x(x^2 v' + 2xv) + 6(x^2 v) = 0.
\]

\[
x^4 v'' + (4x^3 - 4x^3) v' + (2x^2 - 8x^2 + 6x^2) v = 0.
\]

\[
v'' = 0 \quad \Rightarrow \quad v = c_1 + c_2x \quad \Rightarrow \quad y_2 = c_1 y_1 + c_2x y_1.
\]
Second order linear equations.

Example
Knowing that $y_1(x) = x^2$ solves $x^2 y'' - 4x y' + 6y = 0$, with $x > 0$, find a second solution y_2 not proportional to y_1.

Solution: Use the reduction of order method. We verify that $y_1 = x^2$ solves the equation,

$$x^2 (2) - 4x (2x) + 6x^2 = 0.$$

Look for a solution $y_2(x) = v(x) y_1(x)$, and find an equation for v.

$$y_2 = x^2 v, \quad y'_2 = x^2 v' + 2x v, \quad y''_2 = x^2 v'' + 4x v' + 2v.$$

$$x^2(x^2 v'' + 4x v' + 2v) - 4x (x^2 v' + 2x v) + 6 (x^2 v) = 0.$$

$$x^4 v'' + (4x^3 - 4x^3) v' + (2x^2 - 8x^2 + 6x^2) v = 0.$$

$$v'' = 0 \quad \Rightarrow \quad v = c_1 + c_2 x \quad \Rightarrow \quad y_2 = c_1 y_1 + c_2 x y_1.$$

Choose $c_1 = 0$, $c_2 = 1$.

\[\text{\textcopyright 2023 All rights reserved}\]
Second order linear equations.

Example
Knowing that $y_1(x) = x^2$ solves $x^2 y'' - 4x y' + 6y = 0$, with $x > 0$, find a second solution y_2 not proportional to y_1.

Solution: Use the reduction of order method. We verify that $y_1 = x^2$ solves the equation,

$$x^2 (2) - 4x (2x) + 6x^2 = 0.$$

Look for a solution $y_2(x) = v(x)y_1(x)$, and find an equation for v.

$$y_2 = x^2 v, \quad y'_2 = x^2 v' + 2xv, \quad y''_2 = x^2 v'' + 4xv' + 2v.$$

$$x^2(x^2 v'' + 4xv' + 2v) - 4x (x^2 v' + 2xv) + 6 (x^2 v) = 0.$$

$$x^4 v'' + (4x^3 - 4x^3) v' + (2x^2 - 8x^2 + 6x^2) v = 0.$$

$$v'' = 0 \quad \Rightarrow \quad v = c_1 + c_2x \quad \Rightarrow \quad y_2 = c_1 y_1 + c_2 x y_1.$$

Choose $c_1 = 0$, $c_2 = 1$. Hence $y_2(x) = x^3$, and $y_1(x) = x^2$. ◄
Second order linear equations.

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$
Second order linear equations.

Example
Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3 e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: \((1)\) Solve the homogeneous equation.
Second order linear equations.

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3 e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}. $$

Solution: (1) Solve the homogeneous equation.

$$y(t) = e^{rt},$$
Second order linear equations.

Example
Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: (1) Solve the homogeneous equation.

$$y(t) = e^{rt}, \quad p(r) = r^2 - 2r - 3$$
Second order linear equations.

Example
Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3 e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: (1) Solve the homogeneous equation.

$$y(t) = e^{rt}, \quad p(r) = r^2 - 2r - 3 = 0.$$
Second order linear equations.

Example
Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: (1) Solve the homogeneous equation.

$$y(t) = e^{rt}, \quad p(r) = r^2 - 2r - 3 = 0.$$

$$r_{\pm} = \frac{1}{2} [2 \pm \sqrt{4 + 12}]$$
Second order linear equations.

Example
Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: (1) Solve the homogeneous equation.

$$y(t) = e^{rt}, \quad p(r) = r^2 - 2r - 3 = 0.$$

$$r_{\pm} = \frac{1}{2} [2 \pm \sqrt{4 + 12}] = \frac{1}{2} [2 \pm \sqrt{16}]$$
Second order linear equations.

Example
Find the solution \(y \) to the initial value problem

\[
y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.
\]

Solution: (1) Solve the homogeneous equation.

\[
y(t) = e^{rt}, \quad p(r) = r^2 - 2r - 3 = 0.
\]

\[
r_{\pm} = \frac{1}{2} [2 \pm \sqrt{4 + 12}] = \frac{1}{2} [2 \pm \sqrt{16}] = 1 \pm 2
\]
Second order linear equations.

Example
Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: (1) Solve the homogeneous equation.

$$y(t) = e^{rt}, \quad p(r) = r^2 - 2r - 3 = 0.$$

$$r_{\pm} = \frac{1}{2} [2 \pm \sqrt{4 + 12}] = \frac{1}{2} [2 \pm \sqrt{16}] = 1 \pm 2 \Rightarrow \begin{cases} r_+ = 3, \\ r_- = -1. \end{cases}$$
Second order linear equations.

Example
Find the solution \(y \) to the initial value problem

\[
y'' - 2y' - 3y = 3 e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.
\]

Solution: (1) Solve the homogeneous equation.

\[
y(t) = e^{rt}, \quad p(r) = r^2 - 2r - 3 = 0.
\]

\[
r_\pm = \frac{1}{2} \left[2 \pm \sqrt{4 + 12} \right] = \frac{1}{2} \left[2 \pm \sqrt{16} \right] = 1 \pm 2 \Rightarrow \begin{cases} r_+ = 3, \\ r_- = -1. \end{cases}
\]

Fundamental solutions: \(y_1(t) = e^{3t} \) and \(y_2(t) = e^{-t}. \)
Second order linear equations.

Example
Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: (1) Solve the homogeneous equation.

$$y(t) = e^{rt}, \quad p(r) = r^2 - 2r - 3 = 0.$$

$$r_{\pm} = \frac{1}{2} \left[2 \pm \sqrt{4 + 12} \right] = \frac{1}{2} \left[2 \pm \sqrt{16} \right] = 1 \pm 2 \Rightarrow \begin{cases} r_+ = 3, \\ r_- = -1. \end{cases}$$

Fundamental solutions: $y_1(t) = e^{3t}$ and $y_2(t) = e^{-t}$.

(2) Guess y_p.

Second order linear equations.

Example

Find the solution \(y \) to the initial value problem

\[
y'' - 2y' - 3y = 3 \, e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.
\]

Solution:

(1) Solve the homogeneous equation.

\[
y(t) = e^{rt}, \quad p(r) = r^2 - 2r - 3 = 0.
\]

\[
r_{\pm} = \frac{1}{2} \left[2 \pm \sqrt{4 + 12} \right] = \frac{1}{2} \left[2 \pm \sqrt{16} \right] = 1 \pm 2 \quad \Rightarrow \quad \begin{cases} r_+ = 3, \\ r_- = -1. \end{cases}
\]

Fundamental solutions: \(y_1(t) = e^{3t} \) and \(y_2(t) = e^{-t} \).

(2) Guess \(y_p \). Since \(g(t) = 3 \, e^{-t} \)
Second order linear equations.

Example
Find the solution \(y \) to the initial value problem

\[
y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.
\]

Solution: (1) Solve the homogeneous equation.

\[
y(t) = e^{rt}, \quad p(r) = r^2 - 2r - 3 = 0.
\]

\[
r_\pm = \frac{1}{2} \left[2 \pm \sqrt{4 + 12} \right] = \frac{1}{2} \left[2 \pm \sqrt{16} \right] = 1 \pm 2 \quad \Rightarrow \quad \begin{cases} r_+ = 3, \\ r_- = -1. \end{cases}
\]

Fundamental solutions: \(y_1(t) = e^{3t} \) and \(y_2(t) = e^{-t} \).

(2) Guess \(y_p \). Since \(g(t) = 3e^{-t} \) \(\Rightarrow \) \(y_p(t) = ke^{-t} \).
Second order linear equations.

Example
Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3 e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: (1) Solve the homogeneous equation.

$$y(t) = e^{rt}, \quad p(r) = r^2 - 2r - 3 = 0.$$

$$r_{\pm} = \frac{1}{2} \left[2 \pm \sqrt{4 + 12} \right] = \frac{1}{2} \left[2 \pm \sqrt{16} \right] = 1 \pm 2 \Rightarrow \begin{cases} r_+ = 3, \\ r_- = -1. \end{cases}$$

Fundamental solutions: $y_1(t) = e^{3t}$ and $y_2(t) = e^{-t}$.

(2) Guess y_p. Since $g(t) = 3 e^{-t} \Rightarrow y_p(t) = k e^{-t}$.

But this $y_p = k e^{-t}$
Second order linear equations.

Example
Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3 e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: (1) Solve the homogeneous equation.

$$y(t) = e^{rt}, \quad p(r) = r^2 - 2r - 3 = 0.$$

$$r_{\pm} = \frac{1}{2} \left[2 \pm \sqrt{4 + 12} \right] = \frac{1}{2} \left[2 \pm \sqrt{16} \right] = 1 \pm 2 \Rightarrow \left\{ \begin{array}{l} r_+ = 3, \\ r_- = -1. \end{array} \right.$$

Fundamental solutions: $y_1(t) = e^{3t}$ and $y_2(t) = e^{-t}$.

(2) Guess y_p. Since $g(t) = 3 e^{-t}$ \Rightarrow $y_p(t) = k e^{-t}$.

But this $y_p = k e^{-t}$ is solution of the homogeneous equation.
Second order linear equations.

Example
Find the solution y to the initial value problem

\[y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.
\]

Solution: (1) Solve the homogeneous equation.

\[y(t) = e^{rt}, \quad p(r) = r^2 - 2r - 3 = 0.
\]

\[r_\pm = \frac{1}{2} \left[2 \pm \sqrt{4 + 12} \right] = \frac{1}{2} \left[2 \pm \sqrt{16} \right] = 1 \pm 2 \Rightarrow \begin{cases} r_+ = 3, \\ r_- = -1. \end{cases}
\]

Fundamental solutions: $y_1(t) = e^{3t}$ and $y_2(t) = e^{-t}$.

(2) Guess y_p. Since $g(t) = 3e^{-t} \Rightarrow y_p(t) = ke^{-t}$.

But this $y_p = ke^{-t}$ is solution of the homogeneous equation.
Then propose $y_p(t) = k't e^{-t}$.

Second order linear equations.

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3 e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: Recall: $y_p(t) = kt e^{-t}$.

This is correct, since te^{-t} is not a solution of the homogeneous equation.

Find the undetermined coefficient k.

$y'_p = ke^{-t} - kt e^{-t}$,

$y''_p = -2ke^{-t} + kt e^{-t}$.

$(-2ke^{-t} + kt e^{-t}) - 2(ke^{-t} - kt e^{-t}) - 3(kt e^{-t}) = 3e^{-t}$

$(-2 + t - 2 + 2t - 3t)ke^{-t} = 3e^{-t}$

$\Rightarrow -4k = 3 \Rightarrow k = -\frac{3}{4}$.

We obtain:

$y_p(t) = -\frac{3}{4}t e^{-t}$.

Second order linear equations.

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}. $$

Solution: Recall: $y_p(t) = kt e^{-t}$. This is correct, since te^{-t} is not solution of the homogeneous equation.
Example
Find the solution \(y \) to the initial value problem

\[
y'' - 2y' - 3y = 3 e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.
\]

Solution: Recall: \(y_p(t) = k t e^{-t} \). This is correct, since \(t e^{-t} \) is not solution of the homogeneous equation.

(3) Find the undetermined coefficient \(k \).
Second order linear equations.

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3 e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: Recall: $y_p(t) = kt e^{-t}$. This is correct, since te^{-t} is not solution of the homogeneous equation.

(3) Find the undetermined coefficient k.

$$y_p' = k e^{-t} - kt e^{-t},$$
Second order linear equations.

Example
Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: Recall: $y_p(t) = kt e^{-t}$. This is correct, since te^{-t} is not solution of the homogeneous equation.

(3) Find the undetermined coefficient k.

$$y'_p = k e^{-t} - kt e^{-t}, \quad y''_p = -2k e^{-t} + kt e^{-t}.$$
Second order linear equations.

Example
Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3 e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: Recall: $y_p(t) = kt e^{-t}$. This is correct, since te^{-t} is not solution of the homogeneous equation.

(3) Find the undetermined coefficient k.

$$y'_p = k e^{-t} - kt e^{-t}, \quad y''_p = -2k e^{-t} + kt e^{-t}.$$

$$(-2k e^{-t} + kt e^{-t}) - 2(k e^{-t} - kt e^{-t}) - 3(kt e^{-t}) = 3 e^{-t}$$
Second order linear equations.

Example
Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3 e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: Recall: $y_p(t) = kt e^{-t}$. This is correct, since te^{-t} is not solution of the homogeneous equation.

(3) Find the undetermined coefficient k.

$$y'_p = k e^{-t} - kt e^{-t}, \quad y''_p = -2k e^{-t} + kt e^{-t}.$$

$$(-2k e^{-t} + kt e^{-t}) - 2(k e^{-t} - kt e^{-t}) - 3(kt e^{-t}) = 3 e^{-t}$$

$$(-2 + t - 2 + 2t - 3t) k e^{-t} = 3 e^{-t}$$
Second order linear equations.

Example
Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: Recall: $y_p(t) = kt e^{-t}$. This is correct, since te^{-t} is not solution of the homogeneous equation.

(3) Find the undetermined coefficient k.

$$y_p' = k e^{-t} - kt e^{-t}, \quad y_p'' = -2k e^{-t} + kt e^{-t}.$$

$$(-2k e^{-t} + kt e^{-t}) - 2(k e^{-t} - kt e^{-t}) - 3(kt e^{-t}) = 3e^{-t}$$

$$(-2 + t - 2 + 2t - 3t) k e^{-t} = 3 e^{-t} \Rightarrow -4k = 3$$
Second order linear equations.

Example
Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}. $$

Solution: Recall: $y_p(t) = kt e^{-t}$. This is correct, since te^{-t} is not solution of the homogeneous equation.

(3) Find the undetermined coefficient k.

$$y'_p = k e^{-t} - kt e^{-t}, \quad y''_p = -2k e^{-t} + kt e^{-t}. $$

$$(-2k e^{-t} + kt e^{-t}) - 2(k e^{-t} - kt e^{-t}) - 3(kt e^{-t}) = 3 e^{-t} $$

$$(−2 + t − 2 + 2t − 3t) k e^{-t} = 3 e^{-t} \Rightarrow −4k = 3 \Rightarrow k = −\frac{3}{4}. $$
Second order linear equations.

Example
Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3 e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}. $$

Solution: Recall: $y_p(t) = kt e^{-t}$. This is correct, since te^{-t} is not solution of the homogeneous equation.

(3) Find the undetermined coefficient k.

$$y_p' = k e^{-t} - kt e^{-t}, \quad y_p'' = -2k e^{-t} + kt e^{-t}. $$

$$(-2k e^{-t} + kt e^{-t}) - 2(k e^{-t} - kt e^{-t}) - 3(kt e^{-t}) = 3 e^{-t}$$

$$(-2 + t - 2 + 2t - 3t) k e^{-t} = 3 e^{-t} \Rightarrow -4k = 3 \Rightarrow k = -\frac{3}{4}. $$

We obtain: $y_p(t) = -\frac{3}{4} t e^{-t}$.
Second order linear equations.

Example
Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3 e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: Recall: $y_p(t) = -\frac{3}{4}t e^{-t}$.

Second order linear equations.

Example
Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: Recall: $y_p(t) = -\frac{3}{4}t e^{-t}$.

(4) Find the general solution:
Second order linear equations.

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3 e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}. $$

Solution: Recall: $y_p(t) = -\frac{3}{4} t e^{-t}$.

(4) Find the general solution: $y(t) = c_1 e^{3t} + c_2 e^{-t} - \frac{3}{4} t e^{-t}$.
Second order linear equations.

Example
Find the solution \(y \) to the initial value problem

\[
y'' - 2y' - 3y = 3 e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.
\]

Solution: Recall: \(y_p(t) = -\frac{3}{4} t e^{-t} \).

(4) Find the general solution: \(y(t) = c_1 e^{3t} + c_2 e^{-t} - \frac{3}{4} t e^{-t} \).

(5) Impose the initial conditions.
Second order linear equations.

Example
Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: Recall: $y_p(t) = -\frac{3}{4}te^{-t}$.

(4) Find the general solution: $y(t) = c_1 e^{3t} + c_2 e^{-t} - \frac{3}{4}te^{-t}$.

(5) Impose the initial conditions. The derivative function is
Second order linear equations.

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: Recall: $y_p(t) = -\frac{3}{4}t e^{-t}$.

(4) Find the general solution: $y(t) = c_1 e^{3t} + c_2 e^{-t} - \frac{3}{4}t e^{-t}$.

(5) Impose the initial conditions. The derivative function is

$$y'(t) = 3c_1 e^{3t} - c_2 e^{-t} - \frac{3}{4}(e^{-t} - t e^{-t}).$$
Second order linear equations.

Example
Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3 e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: Recall: $y_p(t) = -\frac{3}{4} t e^{-t}$.

(4) Find the general solution: $y(t) = c_1 e^{3t} + c_2 e^{-t} - \frac{3}{4} t e^{-t}$.

(5) Impose the initial conditions. The derivative function is

$$y'(t) = 3c_1 e^{3t} - c_2 e^{-t} - \frac{3}{4} (e^{-t} - t e^{-t}).$$

$$1 = y(0)$$
Second order linear equations.

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: Recall: $y_p(t) = -\frac{3}{4}t e^{-t}$.

(4) Find the general solution: $y(t) = c_1 e^{3t} + c_2 e^{-t} - \frac{3}{4} t e^{-t}$.

(5) Impose the initial conditions. The derivative function is

$$y'(t) = 3c_1 e^{3t} - c_2 e^{-t} - \frac{3}{4}(e^{-t} - t e^{-t}).$$

$$1 = y(0) = c_1 + c_2,$$
Second order linear equations.

Example
Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: Recall: $y_p(t) = -\frac{3}{4}te^{-t}$.

(4) Find the general solution: $y(t) = c_1 e^{3t} + c_2 e^{-t} - \frac{3}{4}te^{-t}$.

(5) Impose the initial conditions. The derivative function is

$$y'(t) = 3c_1 e^{3t} - c_2 e^{-t} - \frac{3}{4}(e^{-t} - te^{-t}).$$

$$1 = y(0) = c_1 + c_2,$$

$$\frac{1}{4} = y'(0)$$
Second order linear equations.

Example

Find the solution \(y \) to the initial value problem

\[
y'' - 2y' - 3y = 3 e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.
\]

Solution: Recall: \(y_p(t) = -\frac{3}{4} t e^{-t} \).

(4) Find the general solution: \(y(t) = c_1 e^{3t} + c_2 e^{-t} - \frac{3}{4} t e^{-t} \).

(5) Impose the initial conditions. The derivative function is

\[
y'(t) = 3c_1 e^{3t} - c_2 e^{-t} - \frac{3}{4} (e^{-t} - t e^{-t}).
\]

\[
1 = y(0) = c_1 + c_2, \quad \frac{1}{4} = y'(0) = 3c_1 - c_2 - \frac{3}{4}.
\]
Second order linear equations.

Example

Find the solution \(y \) to the initial value problem

\[y'' - 2y' - 3y = 3 e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}. \]

Solution: Recall: \(y_p(t) = -\frac{3}{4} t e^{-t}. \)

(4) Find the general solution: \(y(t) = c_1 e^{3t} + c_2 e^{-t} - \frac{3}{4} t e^{-t}. \)

(5) Impose the initial conditions. The derivative function is

\[y'(t) = 3c_1 e^{3t} - c_2 e^{-t} - \frac{3}{4} (e^{-t} - t e^{-t}). \]

\[1 = y(0) = c_1 + c_2, \quad \frac{1}{4} = y'(0) = 3c_1 - c_2 - \frac{3}{4}. \]

\[\begin{cases} c_1 + c_2 = 1, \\ 3c_1 - c_2 = 1 \end{cases} \]
Second order linear equations.

Example
Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3 e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: Recall: $y_p(t) = -\frac{3}{4} t e^{-t}$.

(4) Find the general solution: $y(t) = c_1 e^{3t} + c_2 e^{-t} - \frac{3}{4} t e^{-t}$.

(5) Impose the initial conditions. The derivative function is

$$y'(t) = 3c_1 e^{3t} - c_2 e^{-t} - \frac{3}{4} (e^{-t} - t e^{-t}).$$

$$1 = y(0) = c_1 + c_2, \quad \frac{1}{4} = y'(0) = 3c_1 - c_2 - \frac{3}{4}.$$

$$\begin{align*}
 c_1 + c_2 &= 1, \\
 3c_1 - c_2 &= 1
\end{align*} \quad \Rightarrow \quad \begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$
Second order linear equations.

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3 e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: Recall: $y(t) = c_1 e^{3t} + c_2 e^{-t} - \frac{3}{4} t e^{-t}$, and

$$\begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$
Second order linear equations.

Example
Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3 e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: Recall: $y(t) = c_1 e^{3t} + c_2 e^{-t} - \frac{3}{4} t e^{-t}$, and

$$\begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \Rightarrow \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \frac{1}{-4} \begin{bmatrix} -1 & -1 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
Second order linear equations.

Example
Find the solution \(y \) to the initial value problem

\[
y'' - 2y' - 3y = 3 e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.
\]

Solution: Recall: \(y(t) = c_1 e^{3t} + c_2 e^{-t} - \frac{3}{4} t e^{-t} \), and

\[
\begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \Rightarrow \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \frac{1}{-4} \begin{bmatrix} -1 & -1 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 2 \\ 2 \end{bmatrix}.
\]
Second order linear equations.

Example
Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}. $$

Solution: Recall: $y(t) = c_1 e^{3t} + c_2 e^{-t} - \frac{3}{4} t e^{-t}$, and

$$\begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \Rightarrow \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \frac{1}{-4} \begin{bmatrix} -1 & -1 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 2 \\ 2 \end{bmatrix}. $$

Since $c_1 = \frac{1}{2}$ and $c_2 = \frac{1}{2}$.

Second order linear equations.

Example
Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3 e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: Recall: $y(t) = c_1 e^{3t} + c_2 e^{-t} - \frac{3}{4} t e^{-t}$, and

$$\begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \Rightarrow \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \frac{1}{-4} \begin{bmatrix} -1 & -1 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 2 \\ 2 \end{bmatrix}.$$

Since $c_1 = \frac{1}{2}$ and $c_2 = \frac{1}{2}$, we obtain,

$$y(t) = \frac{1}{2} \left(e^{3t} + e^{-t} \right) - \frac{3}{4} t e^{-t}.$$

\triangle
Review for Final Exam.

- Fourier Series expansions (Chptr. 6).
- Eigenvalue-Eigenfunction BVP (Chptr. 6).
- Systems of linear Equations (Chptr. 5).
- Laplace transforms (Chptr. 4).
- Power Series Methods (Chptr. 3).
- Second order linear equations (Chptr. 2).
- **First order differential equations (Chptr. 1).**
First order differential equations.

Summary:

▶ Linear, first order equations: \(y' + p(t) y = q(t) \).

▶ Separable, non-linear equations: \(h(y) y' = g(t) \).

Integrate with the substitution: \(u = y(t) \), \(du = y(t) \, dt \), that is, \(\int h(u) \, du = \int g(t) \, dt + c \).

The solution can be found in implicit or explicit form.

▶ Homogeneous equations can be converted into separable equations.

▶ Applications: Modeling problems from Sect. 2.3.
First order differential equations.

Summary:

- **Linear, first order equations:** \(y' + p(t) y = q(t) \).

 Use the integrating factor method: \(\mu(t) = e^{\int p(t) \, dt} \).
First order differential equations.

Summary:

- **Linear**, first order equations: \(y' + p(t) y = q(t) \).

 Use the integrating factor method: \(\mu(t) = e^{\int p(t) \, dt} \).

- **Separable**, non-linear equations: \(h(y) y' = g(t) \).

Homogeneous equations can be converted into separable equations.

Applications: Modeling problems from Sect. 2.3.
First order differential equations.

Summary:

- **Linear**, first order equations: \(y' + p(t) y = q(t). \)

 Use the integrating factor method: \(\mu(t) = e^{\int p(t) dt}. \)

- **Separable**, non-linear equations: \(h(y) y' = g(t). \)

 Integrate with the substitution: \(u = y(t), \ du = y'(t) \, dt, \)
First order differential equations.

Summary:

- **Linear**, first order equations: $y' + p(t) y = q(t)$.

 Use the integrating factor method: $\mu(t) = e^{\int p(t) \, dt}$.

- **Separable**, non-linear equations: $h(y) y' = g(t)$.

 Integrate with the substitution: $u = y(t)$, $du = y'(t) \, dt$, that is,

 $$\int h(u) \, du = \int g(t) \, dt + c.$$
First order differential equations.

Summary:

► **Linear**, first order equations: \(y' + p(t) y = q(t) \).

Use the integrating factor method: \(\mu(t) = e^{\int p(t) \, dt} \).

► **Separable**, non-linear equations: \(h(y) y' = g(t) \).

Integrate with the substitution: \(u = y(t), \ du = y'(t) \, dt \),
that is,

\[
\int h(u) \, du = \int g(t) \, dt + c.
\]

The solution can be found in implicit or explicit form.
First order differential equations.

Summary:

- **Linear**, first order equations: \(y' + p(t) y = q(t) \).

 Use the integrating factor method: \(\mu(t) = e^{\int p(t) \, dt} \).

- **Separable**, non-linear equations: \(h(y) \, y' = g(t) \).

 Integrate with the substitution: \(u = y(t) \), \(du = y'(t) \, dt \),

 that is,

 \[
 \int h(u) \, du = \int g(t) \, dt + c.
 \]

 The solution can be found in implicit or explicit form.

- **Homogeneous equations** can be converted into separable equations.

Applications: Modeling problems from Sect. 2.3.
First order differential equations.

Summary:

- **Linear**, first order equations: \(y' + p(t) y = q(t) \).

 Use the integrating factor method: \(\mu(t) = e^{\int p(t) \, dt} \).

- **Separable**, non-linear equations: \(h(y) \, y' = g(t) \).

 Integrate with the substitution: \(u = y(t), \, du = y'(t) \, dt \),

 that is,

 \[
 \int h(u) \, du = \int g(t) \, dt + c.
 \]

 The solution can be found in implicit or explicit form.

- **Homogeneous equations** can be converted into separable equations.

- **Applications**: Modeling problems from Sect. 2.3.
First order differential equations.

Summary:

- Bernoulli equations: \(y' + p(t) \, y = q(t) \, y^n \), with \(n \in \mathbb{R} \).
First order differential equations.

Summary:
- Bernoulli equations: \(y' + p(t) y = q(t) y^n \), with \(n \in \mathbb{R} \).

Read page 77 in the textbook,
First order differential equations.

Summary:
- Bernoulli equations: \(y' + p(t)y = q(t)y^n \), with \(n \in \mathbb{R} \).

Read page 77 in the textbook, page 11 in the Lecture Notes.
First order differential equations.

Summary:

- Bernoulli equations: \(y' + p(t) y = q(t) y^n \), with \(n \in \mathbb{R} \).

Read page 77 in the textbook, page 11 in the Lecture Notes.

A Bernoulli equation for \(y \) can be converted into a linear equation for
First order differential equations.

Summary:

- Bernoulli equations: \(y' + p(t) y = q(t) y^n \), with \(n \in \mathbb{R} \).

 Read page 77 in the textbook, page 11 in the Lecture Notes.
 A Bernoulli equation for \(y \) can be converted into a linear equation for \(v = \frac{1}{y^{n-1}} \).
First order differential equations.

Summary:

- **Bernoulli equations**: \(y' + p(t) y = q(t) y^n \), with \(n \in \mathbb{R} \).

 Read page 77 in the textbook, page 11 in the Lecture Notes.

 A Bernoulli equation for \(y \) can be converted into a linear equation for \(v = \frac{1}{y^{n-1}} \).

- **Exact equations** and integrating factors.
First order differential equations.

Summary:

- Bernoulli equations: \(y' + p(t) y = q(t) y^n \), with \(n \in \mathbb{R} \).

 Read page 77 in the textbook, page 11 in the Lecture Notes.

 A Bernoulli equation for \(y \) can be converted into a linear equation for \(\nu = \frac{1}{y^{n-1}} \).

- Exact equations and integrating factors.

 \[N(x, y) y' + M(x, y) = 0. \]
First order differential equations.

Summary:

- **Bernoulli equations**: \(y' + p(t) y = q(t) y^n \), with \(n \in \mathbb{R} \).

 Read page 77 in the textbook, page 11 in the Lecture Notes.

 A Bernoulli equation for \(y \) can be converted into a linear equation for \(v = \frac{1}{y^{n-1}} \).

- **Exact equations** and integrating factors.

 \[N(x, y) y' + M(x, y) = 0. \]

 The equation is exact iff \(\partial_x N = \partial_y M \).
First order differential equations.

Summary:

- **Bernoulli equations**: \(y' + p(t)y = q(t)y^n \), with \(n \in \mathbb{R} \).

 Read page 77 in the textbook, page 11 in the Lecture Notes.

 A Bernoulli equation for \(y \) can be converted into a linear equation for \(v = \frac{1}{y^{n-1}} \).

- **Exact equations** and integrating factors.

 \[N(x, y)y' + M(x, y) = 0. \]

 The equation is exact iff \(\partial_x N = \partial_y M \).

 If the equation is exact, then there is a potential function \(\psi \),

\[\psi(x, y(x)) = c. \]
First order differential equations.

Summary:

▶ **Bernoulli equations:** \[y' + p(t) y = q(t) y^n, \text{ with } n \in \mathbb{R}. \]

Read page 77 in the textbook, page 11 in the Lecture Notes.

A Bernoulli equation for \(y \) can be converted into a linear equation for \(v = \frac{1}{y^{n-1}}. \)

▶ **Exact equations** and integrating factors.

\[
N(x, y) y' + M(x, y) = 0.
\]

The equation is exact iff \(\partial_x N = \partial_y M. \)

If the equation is exact, then there is a potential function \(\psi, \) such that \(N = \partial_y \psi. \)
First order differential equations.

Summary:
- Bernoulli equations: \(y' + p(t)y = q(t)y^n \), with \(n \in \mathbb{R} \).

Read page 77 in the textbook, page 11 in the Lecture Notes.

A Bernoulli equation for \(y \) can be converted into a linear equation for \(v = \frac{1}{y^{n-1}} \).

- Exact equations and integrating factors.

\[N(x, y)y' + M(x, y) = 0. \]

The equation is exact iff \(\partial_x N = \partial_y M \).

If the equation is exact, then there is a potential function \(\psi \), such that \(N = \partial_y \psi \) and \(M = \partial_x \psi \).
First order differential equations.

Summary:

- **Bernoulli equations**: \(y' + p(t) y = q(t) y^n \), with \(n \in \mathbb{R} \).

 Read page 77 in the textbook, page 11 in the Lecture Notes.

 A Bernoulli equation for \(y \) can be converted into a linear equation for \(v = \frac{1}{y^{n-1}} \).

- **Exact equations** and integrating factors.

 \[
 N(x, y) y' + M(x, y) = 0.
 \]

 The equation is exact iff \(\partial_x N = \partial_y M \).

 If the equation is exact, then there is a potential function \(\psi \), such that \(N = \partial_y \psi \) and \(M = \partial_x \psi \).

 The solution of the differential equation is

 \[
 \psi(x, y(x)) = c.
 \]
First order differential equations.

Advice: In order to find out what type of equation is the one you have to solve, check from simple types to the more difficult types:

1. Linear equations. (Just by looking at it: \(y' + a(t)y = b(t) \).)
2. Bernoulli equations. (Just by looking at it: \(y' + a(t)y = b(t)y^n \).)
3. Separable equations. (Few manipulations: \(h(y)y' = g(t) \).)
4. Homogeneous equations. (Several manipulations: \(y' = F(y/t) \).)
5. Exact equations. (Check one equation: \(Ny' + M = 0 \), and \(\partial_t N = \partial_y M \).)
6. Exact equation with integrating factor. (Very complicated to check.)
First order differential equations.

Advice: In order to find out what type of equation is the one you have to solve, check from simple types to the more difficult types:

1. Linear equations.
 (Just by looking at it: \(y' + a(t) y = b(t) \).)
First order differential equations.

Advice: In order to find out what type of equation is the one you have to solve, check from simple types to the more difficult types:

1. Linear equations.
 (Just by looking at it: \(y' + a(t) y = b(t) \).)

2. Bernoulli equations.
 (Just by looking at it: \(y' + a(t) y = b(t) y^n \).)
First order differential equations.

Advice: In order to find out what type of equation is the one you have to solve, check from simple types to the more difficult types:

1. Linear equations.
 (Just by looking at it: \(y' + a(t) y = b(t) \).)

2. Bernoulli equations.
 (Just by looking at it: \(y' + a(t) y = b(t) y^n \).)

 (Few manipulations: \(h(y) y' = g(t) \).)
First order differential equations.

Advice: In order to find out what type of equation is the one you have to solve, check from simple types to the more difficult types:

1. **Linear equations.**
 (Just by looking at it: \(y' + a(t) y = b(t) \).)

2. **Bernoulli equations.**
 (Just by looking at it: \(y' + a(t) y = b(t) y^n \).)

3. **Separable equations.**
 (Few manipulations: \(h(y) y' = g(t) \).)

4. **Homogeneous equations.**
 (Several manipulations: \(y' = F(y/t) \).)

5. **Exact equations.**
 (Check one equation: \(N y' + M = 0 \), and \(\partial_t N = \partial_y M \).)

6. **Exact equation with integrating factor.**
 (Very complicated to check.)
First order differential equations.

Advice: In order to find out what type of equation is the one you have to solve, check from simple types to the more difficult types:

1. Linear equations.
 (Just by looking at it: \(y' + a(t) y = b(t) \).)

2. Bernoulli equations.
 (Just by looking at it: \(y' + a(t) y = b(t) y^n \).)

 (Few manipulations: \(h(y) y' = g(t) \).)

 (Several manipulations: \(y' = F(y/t) \).)

5. Exact equations.
 (Check one equation: \(N y' + M = 0 \), and \(\partial_t N = \partial_y M \).)
First order differential equations.

Advice: In order to find out what type of equation is the one you have to solve, check from simple types to the more difficult types:

1. **Linear equations.**
 (Just by looking at it: $y' + a(t)y = b(t)$.)
2. **Bernoulli equations.**
 (Just by looking at it: $y' + a(t)y = b(t)y^n$.)
3. **Separable equations.**
 (Few manipulations: $h(y)y' = g(t)$.)
4. **Homogeneous equations.**
 (Several manipulations: $y' = F(y/t)$.)
5. **Exact equations.**
 (Check one equation: $Ny' + M = 0$, and $\partial_t N = \partial_y M$.)
6. **Exact equation with integrating factor.**
 (Very complicated to check.)
First order differential equations.

Example

Find all solutions of \(y' = \frac{x^2 + xy + y^2}{xy} \).
First order differential equations.

Example

Find all solutions of \(y' = \frac{x^2 + xy + y^2}{xy} \).

Solution: The sum of the powers in \(x \) and \(y \) on every term is the same number,
First order differential equations.

Example
Find all solutions of $y' = \frac{x^2 + xy + y^2}{xy}$.

Solution: The sum of the powers in x and y on every term is the same number, two in this example.
First order differential equations.

Example

Find all solutions of \(y' = \frac{x^2 + xy + y^2}{xy} \).

Solution: The sum of the powers in \(x \) and \(y \) on every term is the same number, two in this example. The equation is homogeneous.
First order differential equations.

Example
Find all solutions of \(y' = \frac{x^2 + xy + y^2}{xy} \).

Solution: The sum of the powers in \(x \) and \(y \) on every term is the same number, two in this example. The equation is homogeneous.

\[
y' = \frac{x^2 + xy + y^2}{xy} \frac{(1/x^2)}{(1/x^2)}
\]
First order differential equations.

Example

Find all solutions of \(y' = \frac{x^2 + xy + y^2}{xy} \).

Solution: The sum of the powers in \(x \) and \(y \) on every term is the same number, two in this example. The equation is homogeneous.

\[
y' = \frac{x^2 + xy + y^2}{xy} \frac{(1/x^2)}{(1/x^2)} \quad \Rightarrow \quad y' = \frac{1 + (\frac{y}{x}) + (\frac{y}{x})^2}{(\frac{y}{x})}.
\]
First order differential equations.

Example

Find all solutions of $y' = \frac{x^2 + xy + y^2}{xy}$.

Solution: The sum of the powers in x and y on every term is the same number, two in this example. The equation is homogeneous.

\[
y' = \frac{x^2 + xy + y^2}{xy} \cdot \frac{(1/x^2)}{(1/x^2)} \quad \Rightarrow \quad y' = \frac{1 + (\frac{y}{x}) + (\frac{y}{x})^2}{(\frac{y}{x})}.
\]

$v(x) = \frac{y}{x}$
First order differential equations.

Example

Find all solutions of \(y' = \frac{x^2 + xy + y^2}{xy} \).

Solution: The sum of the powers in \(x \) and \(y \) on every term is the same number, two in this example. The equation is homogeneous.

\[
y' = \frac{x^2 + xy + y^2}{xy} \frac{(1/x^2)}{(1/x^2)} \Rightarrow y' = \frac{1 + (\frac{y}{x}) + (\frac{y}{x})^2}{(\frac{y}{x})}.
\]

\[
v(x) = \frac{y}{x} \Rightarrow y' = \frac{1 + v + v^2}{v}.
\]
First order differential equations.

Example

Find all solutions of \(y' = \frac{x^2 + xy + y^2}{xy} \).

Solution: The sum of the powers in \(x \) and \(y \) on every term is the same number, two in this example. The equation is homogeneous.

\[
y' = \frac{x^2 + xy + y^2}{xy} \cdot \frac{1}{(1/x^2)} \quad \Rightarrow \quad y' = 1 + \left(\frac{y}{x} \right) + \left(\frac{y}{x} \right)^2.
\]

\[
v(x) = \frac{y}{x} \quad \Rightarrow \quad y' = \frac{1 + v + v^2}{v}.
\]

\[
y = x \cdot v,
\]
First order differential equations.

Example

Find all solutions of \(y' = \frac{x^2 + xy + y^2}{xy} \).

Solution: The sum of the powers in \(x \) and \(y \) on every term is the same number, two in this example. The equation is homogeneous.

\[
y' = \frac{x^2 + xy + y^2}{xy} \left(\frac{1}{x^2} \right) \cdot \frac{1}{(1/x^2)} \quad \Rightarrow \quad y' = \frac{1 + (\frac{y}{x}) + (\frac{y}{x})^2}{(\frac{y}{x})}.
\]

\[
v(x) = \frac{y}{x} \quad \Rightarrow \quad y' = \frac{1 + v + v^2}{v}.
\]

\[
y = x v, \quad y' = x v' + v
\]
First order differential equations.

Example

Find all solutions of \(y' = \frac{x^2 + xy + y^2}{xy} \).

Solution: The sum of the powers in \(x \) and \(y \) on every term is the same number, two in this example. The equation is homogeneous.

\[
y' = \frac{x^2 + xy + y^2}{xy} \left(\frac{1}{x^2} \right) \Rightarrow y' = \frac{1 + \left(\frac{y}{x} \right) + \left(\frac{y}{x} \right)^2}{\left(\frac{y}{x} \right)}.
\]

Let \(v(x) = \frac{y}{x} \) \(\Rightarrow \ y' = \frac{1 + v + v^2}{v} \).

\[
y = x v, \quad y' = x v' + v \quad x v' + v = \frac{1 + v + v^2}{v}.
\]
First order differential equations.

Example

Find all solutions of \(y' = \frac{x^2 + xy + y^2}{xy} \).

Solution: The sum of the powers in \(x \) and \(y \) on every term is the same number, two in this example. The equation is homogeneous.

\[
y' = \frac{x^2 + xy + y^2}{xy} \left(\frac{1}{x^2}\right) \ \Rightarrow \ \ y' = \frac{1 + \left(\frac{y}{x}\right) + \left(\frac{y}{x}\right)^2}{\left(\frac{y}{x}\right)}.
\]

\[
v(x) = \frac{y}{x} \ \Rightarrow \ \ y' = \frac{1 + v + v^2}{v}.
\]

\[
y = x \ v, \quad y' = x \ v' + v \ \ x \ v' + v = \frac{1 + v + v^2}{v}.
\]

\[
x \ v' = \frac{1 + v + v^2}{v} - v
\]
First order differential equations.

Example

Find all solutions of \(y' = \frac{x^2 + xy + y^2}{xy} \).

Solution: The sum of the powers in \(x \) and \(y \) on every term is the same number, two in this example. The equation is homogeneous.

\[
y' = \frac{x^2 + xy + y^2}{xy} \left(\frac{1}{x^2} \right) \Rightarrow y' = \frac{1 + \left(\frac{y}{x} \right) + \left(\frac{y}{x} \right)^2}{\left(\frac{y}{x} \right)}. \]

\[
v(x) = \frac{y}{x} \Rightarrow y' = \frac{1 + v + v^2}{v}. \]

\[
y = x v, \quad y' = x v' + v \quad x v' + v = \frac{1 + v + v^2}{v}. \]

\[
x v' = \frac{1 + v + v^2}{v} - v = \frac{1 + v + v^2 - v^2}{v}
\]
First order differential equations.

Example

Find all solutions of \(y' = \frac{x^2 + xy + y^2}{xy} \).

Solution: The sum of the powers in \(x \) and \(y \) on every term is the same number, two in this example. The equation is homogeneous.

\[
y' = \frac{x^2 + xy + y^2}{xy} \left(\frac{1}{x^2}\right) \Rightarrow y' = \frac{1 + \left(\frac{y}{x}\right) + \left(\frac{y}{x}\right)^2}{\left(\frac{y}{x}\right)}.
\]

\[
v(x) = \frac{y}{x} \Rightarrow y' = \frac{1 + v + v^2}{v}.
\]

\[
y = x v, \quad y' = x v' + v \quad x v' + v = \frac{1 + v + v^2}{v}.
\]

\[
x v' = \frac{1 + v + v^2}{v} - v = \frac{1 + v + v^2 - v^2}{v} \Rightarrow x v' = \frac{1 + v}{v}.
\]
First order differential equations.

Example
Find all solutions of \(y' = \frac{x^2 + xy + y^2}{xy} \).

Solution: Recall: \(v' = \frac{1 + v}{v} \).
First order differential equations.

Example
Find all solutions of \(y' = \frac{x^2 + xy + y^2}{xy} \).

Solution: Recall: \(v' = \frac{1 + v}{v} \). This is a separable equation.
First order differential equations.

Example

Find all solutions of \(y' = \frac{x^2 + xy + y^2}{xy} \).

Solution: Recall: \(v' = \frac{1 + v}{v} \). This is a separable equation.

\[
\frac{v(x)}{1 + v(x)} \, v'(x) = \frac{1}{x}
\]
First order differential equations.

Example

Find all solutions of $y' = \frac{x^2 + xy + y^2}{xy}$.

Solution: Recall: $v' = \frac{1 + v}{v}$. This is a separable equation.

$$\frac{v(x)}{1 + v(x)} v'(x) = \frac{1}{x} \quad \Rightarrow \quad \int \frac{v(x)}{1 + v(x)} v'(x) \, dx = \int \frac{dx}{x} + c.$$
First order differential equations.

Example

Find all solutions of $y' = \frac{x^2 + xy + y^2}{xy}$.

Solution: Recall: $v' = \frac{1 + v}{v}$. This is a separable equation.

$$\frac{v(x)}{1 + v(x)} v'(x) = \frac{1}{x} \implies \int \frac{v(x)}{1 + v(x)} v'(x) \, dx = \int \frac{dx}{x} + c.$$

Use the substitution $u = 1 + v$,

...
First order differential equations.

Example

Find all solutions of \(y' = \frac{x^2 + xy + y^2}{xy} \).

Solution: Recall: \(v' = \frac{1 + v}{v} \). This is a separable equation.

\[
\frac{v(x)}{1 + v(x)} v'(x) = \frac{1}{x} \quad \Rightarrow \quad \int \frac{v(x)}{1 + v(x)} v'(x) \, dx = \int \frac{dx}{x} + c.
\]

Use the substitution \(u = 1 + v \), hence \(du = v'(x) \, dx \).
First order differential equations.

Example

Find all solutions of \(y' = \frac{x^2 + xy + y^2}{xy} \).

Solution: Recall: \(v' = \frac{1 + v}{v} \). This is a separable equation.

\[
\frac{v(x)}{1 + v(x)} v'(x) = \frac{1}{x} \quad \Rightarrow \quad \int \frac{v(x)}{1 + v(x)} v'(x) \, dx = \int \frac{dx}{x} + c.
\]

Use the substitution \(u = 1 + v \), hence \(du = v'(x) \, dx \).

\[
\int \frac{(u - 1)}{u} \, du = \int \frac{dx}{x} + c
\]
First order differential equations.

Example

Find all solutions of \(y' = \frac{x^2 + xy + y^2}{xy} \).

Solution: Recall: \(v' = \frac{1 + v}{v} \). This is a separable equation.

\[
\frac{v(x)}{1 + v(x)} \cdot v'(x) = \frac{1}{x} \quad \Rightarrow \quad \int \frac{v(x)}{1 + v(x)} v'(x) \, dx = \int \frac{dx}{x} + c.
\]

Use the substitution \(u = 1 + v \), hence \(du = v'(x) \, dx \).

\[
\int \frac{(u - 1)}{u} \, du = \int \frac{dx}{x} + c \quad \Rightarrow \quad \int \left(1 - \frac{1}{u}\right) \, du = \int \frac{dx}{x} + c
\]
First order differential equations.

Example

Find all solutions of \(y' = \frac{x^2 + xy + y^2}{xy} \).

Solution: Recall: \(v' = \frac{1 + v}{v} \). This is a separable equation.

\[
\frac{v(x)}{1 + v(x)} v'(x) = \frac{1}{x} \quad \Rightarrow \quad \int \frac{v(x)}{1 + v(x)} v'(x) \, dx = \int \frac{dx}{x} + c.
\]

Use the substitution \(u = 1 + v \), hence \(du = v'(x) \, dx \).

\[
\int \frac{u - 1}{u} \, du = \int \frac{dx}{x} + c \quad \Rightarrow \quad \int \left(1 - \frac{1}{u}\right) \, du = \int \frac{dx}{x} + c
\]

\[
u - \ln |u| = \ln |x| + c
\]
First order differential equations.

Example

Find all solutions of \(y' = \frac{x^2 + xy + y^2}{xy} \).

Solution: Recall: \(v' = \frac{1 + v}{v} \). This is a separable equation.

\[
\frac{v(x)}{1 + v(x)} v'(x) = \frac{1}{x} \quad \Rightarrow \quad \int \frac{v(x)}{1 + v(x)} v'(x) \, dx = \int \frac{dx}{x} + c.
\]

Use the substitution \(u = 1 + v \), hence \(du = v'(x) \, dx \).

\[
\int \frac{u - 1}{u} \, du = \int \frac{dx}{x} + c \quad \Rightarrow \quad \int \left(1 - \frac{1}{u}\right) \, du = \int \frac{dx}{x} + c
\]

\[
u - \ln |u| = \ln |x| + c \quad \Rightarrow \quad 1 + v - \ln |1 + v| = \ln |x| + c.
\]
First order differential equations.

Example

Find all solutions of $y' = \frac{x^2 + xy + y^2}{xy}$.

Solution: Recall: $v' = \frac{1 + v}{v}$. This is a separable equation.

$$\frac{v(x)}{1 + v(x)} v'(x) = \frac{1}{x} \Rightarrow \int \frac{v(x)}{1 + v(x)} v'(x) \, dx = \int \frac{dx}{x} + c.$$

Use the substitution $u = 1 + v$, hence $du = v'(x) \, dx$.

$$\int \frac{(u - 1)}{u} \, du = \int \frac{dx}{x} + c \Rightarrow \int \left(1 - \frac{1}{u}\right) \, du = \int \frac{dx}{x} + c$$

$$u - \ln |u| = \ln |x| + c \Rightarrow 1 + v - \ln |1 + v| = \ln |x| + c.$$

$$v = \frac{y}{x}$$
First order differential equations.

Example

Find all solutions of \(y' = \frac{x^2 + xy + y^2}{xy} \).

Solution: Recall: \(v' = \frac{1 + v}{v} \). This is a separable equation.

\[
\frac{v(x)}{1 + v(x)} v'(x) = \frac{1}{x} \quad \Rightarrow \quad \int \frac{v(x)}{1 + v(x)} v'(x) \, dx = \int \frac{dx}{x} + c.
\]

Use the substitution \(u = 1 + v \), hence \(du = v'(x) \, dx \).

\[
\int \frac{u - 1}{u} \, du = \int \frac{dx}{x} + c \quad \Rightarrow \quad \int \left(1 - \frac{1}{u}\right) \, du = \int \frac{dx}{x} + c
\]

\[
u - \ln|u| = \ln|x| + c \quad \Rightarrow \quad 1 + v - \ln|1 + v| = \ln|x| + c.
\]

\[
v = \frac{y}{x} \quad \Rightarrow \quad 1 + \frac{y(x)}{x} - \ln\left|1 + \frac{y(x)}{x}\right| = \ln|x| + c. \quad \triangleq
\]
First order differential equations.

Example

Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \quad y(0) = \frac{1}{3}.$$
First order differential equations.

Example

Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \quad y(0) = \frac{1}{3}.$$

Solution: This is a Bernoulli equation,
First order differential equations.

Example
Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \quad y(0) = \frac{1}{3}.$$

Solution: This is a Bernoulli equation,

$$y' + y = -e^{2x} y^n,$$
First order differential equations.

Example
Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \quad y(0) = \frac{1}{3}.$$

Solution: This is a Bernoulli equation, $y' + y = -e^{2x} y^n, \quad n = 3.$
First order differential equations.

Example
Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \quad y(0) = \frac{1}{3}.$$

Solution: This is a Bernoulli equation, $y' + y = -e^{2x} y^n, \quad n = 3$.

Divide by y^3.

First order differential equations.

Example
Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \quad y(0) = \frac{1}{3}.$$

Solution: This is a Bernoulli equation, $y' + y = -e^{2x} y^n, \quad n = 3$.

Divide by y^3. That is, $\frac{y'}{y^3} + \frac{1}{y^2} = -e^{2x}$.

First order differential equations.

Example
Find the solution \(y \) to the initial value problem

\[
y' + y + e^{2x} y^3 = 0, \quad y(0) = \frac{1}{3}.
\]

Solution: This is a Bernoulli equation, \(y' + y = -e^{2x} y^n, \quad n = 3 \).

Divide by \(y^3 \). That is, \(\frac{y'}{y^3} + \frac{1}{y^2} = -e^{2x} \).

Let \(v = \frac{1}{y^2} \).
First order differential equations.

Example
Find the solution \(y \) to the initial value problem

\[
y' + y + e^{2x} y^3 = 0, \quad y(0) = \frac{1}{3}.
\]

Solution: This is a Bernoulli equation, \(y' + y = -e^{2x} y^n, \ n = 3 \).

Divide by \(y^3 \). That is, \(\frac{y'}{y^3} + \frac{1}{y^2} = -e^{2x} \).

Let \(v = \frac{1}{y^2} \). Since \(v' = -2 \frac{y'}{y^3} \),
First order differential equations.

Example
Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \quad y(0) = \frac{1}{3}.$$

Solution: This is a Bernoulli equation, $y' + y = -e^{2x} y^n, \quad n = 3$.

Divide by y^3. That is, $\frac{y'}{y^3} + \frac{1}{y^2} = -e^{2x}$.

Let $v = \frac{1}{y^2}$. Since $v' = -2 \frac{y'}{y^3}$, we obtain
First order differential equations.

Example

Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \quad y(0) = \frac{1}{3}.$$

Solution: This is a Bernoulli equation, $y' + y = -e^{2x} y^n, \quad n = 3$.

Divide by y^3. That is, \[\frac{y'}{y^3} + \frac{1}{y^2} = -e^{2x}.\]

Let $v = \frac{1}{y^2}$. Since $v' = -2 \frac{y'}{y^3}$, we obtain $-\frac{1}{2} v' + v = -e^{2x}$.

First order differential equations.

Example
Find the solution y to the initial value problem
\[y' + y + e^{2x} y^3 = 0, \quad y(0) = \frac{1}{3}. \]

Solution: This is a Bernoulli equation, $y' + y = -e^{2x} y^n$, $n = 3$.

Divide by y^3. That is, \[\frac{y'}{y^3} + \frac{1}{y^2} = -e^{2x}. \]

Let $v = \frac{1}{y^2}$. Since $v' = -2 \frac{y'}{y^3}$, we obtain \[-\frac{1}{2} v' + v = -e^{2x}. \]

We obtain the linear equation \[v' - 2v = 2e^{2x}. \]
First order differential equations.

Example
Find the solution \(y \) to the initial value problem
\[
y' + y + e^{2x} y^3 = 0, \quad y(0) = \frac{1}{3}.
\]

Solution: This is a Bernoulli equation, \(y' + y = -e^{2x} y^n, \quad n = 3 \).

Divide by \(y^3 \). That is, \(\frac{y'}{y^3} + \frac{1}{y^2} = -e^{2x} \).

Let \(v = \frac{1}{y^2} \). Since \(v' = -2 \frac{y'}{y^3} \), we obtain \(-\frac{1}{2} v' + v = -e^{2x} \).

We obtain the linear equation \(v' - 2v = 2e^{2x} \).

Use the integrating factor method.
First order differential equations.

Example
Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \quad y(0) = \frac{1}{3}.$$

Solution: This is a Bernoulli equation, $y' + y = -e^{2x} y^n, \quad n = 3$.

Divide by y^3. That is, $\frac{y'}{y^3} + \frac{1}{y^2} = -e^{2x}$.

Let $v = \frac{1}{y^2}$. Since $v' = -2 \frac{y'}{y^3}$, we obtain $-\frac{1}{2} v' + v = -e^{2x}$.

We obtain the linear equation $v' - 2v = 2e^{2x}$.

Use the integrating factor method. $\mu(x) = e^{-2x}$.
First order differential equations.

Example
Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \quad y(0) = \frac{1}{3}.$$

Solution: This is a Bernoulli equation, $y' + y = -e^{2x} y^n, \quad n = 3$.

Divide by y^3. That is, $\frac{y'}{y^3} + \frac{1}{y^2} = -e^{2x}$.

Let $v = \frac{1}{y^2}$. Since $v' = -2 \frac{y'}{y^3}$, we obtain $-\frac{1}{2} v' + v = -e^{2x}$.

We obtain the linear equation $v' - 2v = 2e^{2x}$.

Use the integrating factor method. $\mu(x) = e^{-2x}$.

$$e^{-2x} v' - 2 e^{-2x} v = 2$$
First order differential equations.

Example
Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \quad y(0) = \frac{1}{3}.$$

Solution: This is a Bernoulli equation, $y' + y = -e^{2x} y^n, \quad n = 3$.

Divide by y^3. That is, $\frac{y'}{y^3} + \frac{1}{y^2} = -e^{2x}$.

Let $v = \frac{1}{y^2}$. Since $v' = -2 \frac{y'}{y^3}$, we obtain $-\frac{1}{2} v' + v = -e^{2x}$.

We obtain the linear equation $v' - 2v = 2e^{2x}$.

Use the integrating factor method. $\mu(x) = e^{-2x}$.

$$e^{-2x} v' - 2e^{-2x} v = 2 \quad \Rightarrow \quad (e^{-2x} v)' = 2.$$
First order differential equations.

Example
Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \quad y(0) = \frac{1}{3}.$$

Solution: Recall: $v = \frac{1}{y^2}$ and $(e^{-2x} v)' = 2$.

The initial condition $y(0) = \frac{1}{3}$ implies: Choose $y +$.

$$1 = y(0) = \sqrt{2x + c} \Rightarrow c = 9 \Rightarrow y(x) = e^{-x} \sqrt{2x + 9}.$$
First order differential equations.

Example
Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \quad y(0) = \frac{1}{3}.$$

Solution: Recall: $v = \frac{1}{y^2}$ and $(e^{-2x} v)' = 2.$

$$e^{-2x} v = 2x + c$$
First order differential equations.

Example
Find the solution y to the initial value problem

\[y' + y + e^{2x} y^3 = 0, \quad y(0) = \frac{1}{3}. \]

Solution: Recall: $v = \frac{1}{y^2}$ and $(e^{-2x} v)' = 2$.

\[
e^{-2x} v = 2x + c \implies v(x) = (2x + c) e^{2x}
\]
First order differential equations.

Example
Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \quad y(0) = \frac{1}{3}.$$

Solution: Recall: $v = \frac{1}{y^2}$ and $(e^{-2x} v)' = 2$.

$$e^{-2x} v = 2x + c \Rightarrow v(x) = (2x + c) e^{2x} \Rightarrow \frac{1}{y^2} = (2x + c) e^{2x}.$$
First order differential equations.

Example
Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \quad y(0) = \frac{1}{3}.$$

Solution: Recall: $v = \frac{1}{y^2}$ and $(e^{-2x} v)' = 2$.

$$e^{-2x} v = 2x + c \Rightarrow v(x) = (2x + c) e^{2x} \Rightarrow \frac{1}{y^2} = (2x + c) e^{2x}.$$

$$y^2 = \frac{1}{e^{2x} (2x + c)}$$
First order differential equations.

Example
Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \quad y(0) = \frac{1}{3}.$$

Solution: Recall: $v = \frac{1}{y^2}$ and $(e^{-2x} v)' = 2$.

$$e^{-2x} v = 2x + c \Rightarrow v(x) = (2x + c) e^{2x} \Rightarrow \frac{1}{y^2} = (2x + c) e^{2x}.$$

$$y^2 = \frac{1}{e^{2x} (2x + c)} \quad \Rightarrow \quad y_\pm(x) = \pm \frac{e^{-x}}{\sqrt{2x + c}}.$$
First order differential equations.

Example

Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \quad y(0) = \frac{1}{3}.$$

Solution: Recall: $v = \frac{1}{y^2}$ and $(e^{-2x} v)' = 2$.

$$e^{-2x} v = 2x + c \Rightarrow v(x) = (2x + c)e^{2x} \Rightarrow \frac{1}{y^2} = (2x + c)e^{2x}.$$

$$y^2 = \frac{1}{e^{2x}(2x + c)} \Rightarrow y_\pm(x) = \pm \frac{e^{-x}}{\sqrt{2x + c}}.$$

The initial condition $y(0) = 1/3$
First order differential equations.

Example

Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \quad y(0) = \frac{1}{3}.\]$$

Solution: Recall: $v = \frac{1}{y^2}$ and $(e^{-2x} v)' = 2.$

$$e^{-2x} v = 2x + c \implies v(x) = (2x + c) e^{2x} \implies \frac{1}{y^2} = (2x + c) e^{2x}.$$

$$y^2 = \frac{1}{e^{2x} (2x + c)} \implies y_{\pm}(x) = \pm \frac{e^{-x}}{\sqrt{2x + c}}.$$

The initial condition $y(0) = 1/3 > 0$
First order differential equations.

Example
Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \quad y(0) = \frac{1}{3}.$$

Solution: Recall: $v = \frac{1}{y^2}$ and $(e^{-2x} v)' = 2.$

$$e^{-2x} v = 2x + c \implies v(x) = (2x + c) e^{2x} \implies \frac{1}{y^2} = (2x + c) e^{2x}.$$

$$y^2 = \frac{1}{e^{2x} (2x + c)} \implies y_{\pm}(x) = \pm \frac{e^{-x}}{\sqrt{2x + c}}.$$

The initial condition $y(0) = 1/3 > 0$ implies:
First order differential equations.

Example
Find the solution \(y \) to the initial value problem

\[
y' + y + e^{2x} y^3 = 0, \quad y(0) = \frac{1}{3}.
\]

Solution: Recall: \(v = \frac{1}{y^2} \) and \((e^{-2x} v)' = 2. \)

\[
e^{-2x} v = 2x + c \quad \Rightarrow \quad v(x) = (2x + c) e^{2x} \quad \Rightarrow \quad \frac{1}{y^2} = (2x + c) e^{2x}.
\]

\[
y^2 = \frac{1}{e^{2x}(2x + c)} \quad \Rightarrow \quad y_\pm(x) = \pm \frac{e^{-x}}{\sqrt{2x + c}}.
\]

The initial condition \(y(0) = 1/3 > 0 \) implies: Choose \(y_+ \).
First order differential equations.

Example

Find the solution \(y \) to the initial value problem

\[
y' + y + e^{2x} y^3 = 0, \quad y(0) = \frac{1}{3}.
\]

Solution: Recall: \(v = \frac{1}{y^2} \) and \((e^{-2x} v)' = 2. \)

\[
e^{-2x} v = 2x + c \implies v(x) = (2x + c) e^{2x} \implies \frac{1}{y^2} = (2x + c) e^{2x}.
\]

\[
y^2 = \frac{1}{e^{2x} (2x + c)} \implies y_\pm(x) = \pm \frac{e^{-x}}{\sqrt{2x + c}}.
\]

The initial condition \(y(0) = 1/3 > 0 \) implies: Choose \(y_+ \).

\[
\frac{1}{3} = y_+(0) = \frac{1}{\sqrt{c}}
\]
First order differential equations.

Example
Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \quad y(0) = \frac{1}{3}.$$

Solution: Recall: $v = \frac{1}{y^2}$ and $(e^{-2x} v)' = 2.$

$$e^{-2x} v = 2x + c \implies v(x) = (2x + c) e^{2x} \implies \frac{1}{y^2} = (2x + c) e^{2x}.$$

$$y^2 = \frac{1}{e^{2x} (2x + c)} \implies y_\pm(x) = \pm \frac{e^{-x}}{\sqrt{2x + c}}.$$

The initial condition $y(0) = 1/3 > 0$ implies: Choose $y_+.$

$$\frac{1}{3} = y_+(0) = \frac{1}{\sqrt{c}} \implies c = 9.$$
First order differential equations.

Example
Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \quad y(0) = \frac{1}{3}. $$

Solution: Recall: $v = \frac{1}{y^2}$ and $(e^{-2x} v)' = 2$.

$$e^{-2x} v = 2x + c \Rightarrow v(x) = (2x + c) e^{2x} \Rightarrow \frac{1}{y^2} = (2x + c) e^{2x}. $$

$$y^2 = \frac{1}{e^{2x} (2x + c)} \Rightarrow y_\pm(x) = \pm \frac{e^{-x}}{\sqrt{2x + c}}. $$

The initial condition $y(0) = 1/3 > 0$ implies: Choose y_+.

$$\frac{1}{3} = y_+(0) = \frac{1}{\sqrt{c}} \Rightarrow c = 9 \Rightarrow y(x) = \frac{e^{-x}}{\sqrt{2x + 9}}. $$
First order differential equations.

Example
Find all solutions of \(2xy^2 + 2y + 2x^2yy' + 2xy' = 0\).
First order differential equations.

Example
Find all solutions of $2xy^2 + 2y + 2x^2y\, y' + 2x\, y' = 0$.

Solution: Re-write the equation is a more organized way,
First order differential equations.

Example
Find all solutions of \(2xy^2 + 2y + 2x^2y^2 + 2x \cdot y' = 0 \).

Solution: Re-write the equation is a more organized way,

\[
[2x^2y + 2x]y' + [2xy^2 + 2y] = 0.
\]
First order differential equations.

Example
Find all solutions of \(2xy^2 + 2y + 2x^2y\ y' + 2x\ y' = 0. \)

Solution: Re-write the equation is a more organized way,

\[
[2x^2y + 2x] y' + [2xy^2 + 2y] = 0.
\]

\[N = [2x^2y + 2x] \]
Example
Find all solutions of \(2xy^2 + 2y + 2x^2y \frac{dy}{dx} + 2x \frac{dy}{dx} = 0. \)

Solution: Re-write the equation is a more organized way,

\[
[2x^2y + 2x] \frac{dy}{dx} + [2xy^2 + 2y] = 0.
\]

\[N = [2x^2y + 2x] \quad \Rightarrow \quad \partial_x N = 4xy + 2. \]
First order differential equations.

Example
Find all solutions of $2xy^2 + 2y + 2x^2y\ y' + 2x\ y' = 0$.

Solution: Re-write the equation is a more organized way,

$$[2x^2y + 2x] y' + [2xy^2 + 2y] = 0.$$ \(\hspace{1cm} \)

$$N = [2x^2y + 2x] \quad \Rightarrow \quad \partial_x N = 4xy + 2.$$ \(\hspace{1cm} \)

$$M = [2xy^2 + 2y]$$
First order differential equations.

Example
Find all solutions of \(2xy^2 + 2y + 2x^2 y \, y' + 2x \, y' = 0\).

Solution: Re-write the equation is a more organized way,
\[
[2x^2y + 2x] \, y' + [2xy^2 + 2y] = 0.
\]

\[N = [2x^2y + 2x] \Rightarrow \partial_x N = 4xy + 2.\]

\[M = [2xy^2 + 2y] \Rightarrow \partial_y M = 4xy + 2.\]
First order differential equations.

Example
Find all solutions of \(2xy^2 + 2y + 2x^2y \, y' + 2x \, y' = 0 \).

Solution: Re-write the equation in a more organized way,

\[
[2x^2y + 2x] \, y' + [2xy^2 + 2y] = 0.
\]

\[
N = [2x^2y + 2x] \quad \Rightarrow \quad \partial_x N = 4xy + 2.
\]

\[
M = [2xy^2 + 2y] \quad \Rightarrow \quad \partial_y M = 4xy + 2.
\]

\[
\begin{aligned}
\Rightarrow & \quad \partial_x N = \partial_y M.
\end{aligned}
\]
First order differential equations.

Example
Find all solutions of \(2xy^2 + 2y + 2x^2y \, y' + 2x \, y' = 0.\)

Solution: Re-write the equation is a more organized way,
\[
[2x^2y + 2x] \, y' + [2xy^2 + 2y] = 0.
\]
\[
N = [2x^2y + 2x] \quad \Rightarrow \quad \partial_x N = 4xy + 2.
\]
\[
M = [2xy^2 + 2y] \quad \Rightarrow \quad \partial_y M = 4xy + 2.
\]
\[
\Rightarrow \quad \partial_x N = \partial_y M.
\]
The equation is exact.
First order differential equations.

Example
Find all solutions of \(2xy^2 + 2y + 2x^2 y' + 2x y' = 0. \)

Solution: Re-write the equation is a more organized way,

\[
[2x^2 y + 2x] y' + [2xy^2 + 2y] = 0.
\]

\[
N = [2x^2 y + 2x] \quad \Rightarrow \quad \partial_x N = 4xy + 2.
\]
\[
M = [2xy^2 + 2y] \quad \Rightarrow \quad \partial_y M = 4xy + 2.
\]

\[
\Rightarrow \quad \partial_x N = \partial_y M.
\]

The equation is exact. There exists a potential function \(\psi \) with
First order differential equations.

Example
Find all solutions of \[2xy^2 + 2y + 2x^2y \, y' + 2x \, y' = 0.\]

Solution: Re-write the equation is a more organized way, \[[2x^2y + 2x] \, y' + [2xy^2 + 2y] = 0.\]

\[
\begin{align*}
N &= [2x^2y + 2x] &\implies \partial_x N = 4xy + 2. \\
M &= [2xy^2 + 2y] &\implies \partial_y M = 4xy + 2.
\end{align*}
\]

\[\implies \partial_x N = \partial_y M.\]

The equation is exact. There exists a potential function \(\psi\) with
\[
\partial_y \psi = N,
\]
First order differential equations.

Example
Find all solutions of \(2xy^2 + 2y + 2x^2y \, y' + 2x \, y' = 0\).

Solution: Re-write the equation in a more organized way,

\[
[2x^2y + 2x] \, y' + [2xy^2 + 2y] = 0.
\]

\[
\begin{align*}
N &= [2x^2y + 2x] \quad \Rightarrow \quad \partial_x N = 4xy + 2, \\
M &= [2xy^2 + 2y] \quad \Rightarrow \quad \partial_y M = 4xy + 2.
\end{align*}
\]

\[
\Rightarrow \quad \partial_x N = \partial_y M.
\]

The equation is exact. There exists a potential function \(\psi\) with

\[
\partial_y \psi = N, \quad \partial_x \psi = M.
\]
First order differential equations.

Example
Find all solutions of $2xy^2 + 2y + 2x^2y \, y' + 2x \, y' = 0$.

Solution: Re-write the equation is a more organized way,

$[2x^2y + 2x] \, y' + [2xy^2 + 2y] = 0$.

\[
\begin{align*}
N &= [2x^2y + 2x] \quad \Rightarrow \quad \partial_x N = 4xy + 2. \\
M &= [2xy^2 + 2y] \quad \Rightarrow \quad \partial_y M = 4xy + 2.
\end{align*}
\]

\[
\begin{align*}
\Rightarrow \quad \partial_x N &= \partial_y M.
\end{align*}
\]

The equation is exact. There exists a potential function ψ with

\[
\begin{align*}
\partial_y \psi &= N, \quad \partial_x \psi = M.
\end{align*}
\]

$\partial_y \psi = 2x^2y + 2x$
First order differential equations.

Example
Find all solutions of \(2xy^2 + 2y + 2x^2 y \, y' + 2x \, y' = 0 \).

Solution: Re-write the equation is a more organized way,
\[
[2x^2 y + 2x] \, y' + [2xy^2 + 2y] = 0.
\]
\[
N = [2x^2 y + 2x] \quad \Rightarrow \quad \partial_x N = 4xy + 2.
\]
\[
M = [2xy^2 + 2y] \quad \Rightarrow \quad \partial_y M = 4xy + 2.
\]
\[
\Rightarrow \quad \partial_x N = \partial_y M.
\]
The equation is exact. There exists a potential function \(\psi \) with
\[
\partial_y \psi = N, \quad \partial_x \psi = M.
\]
\[
\partial_y \psi = 2x^2 y + 2x \quad \Rightarrow \quad \psi(x, y) = x^2 y^2 + 2xy + g(x).
\]
First order differential equations.

Example
Find all solutions of \(2xy^2 + 2y + 2x^2y \, y' + 2x \, y' = 0 \).

Solution: Re-write the equation is a more organized way,

\[
[2x^2y + 2x] \, y' + [2xy^2 + 2y] = 0.
\]

\[
N = [2x^2y + 2x] \quad \Rightarrow \quad \partial_x N = 4xy + 2.
\]
\[
M = [2xy^2 + 2y] \quad \Rightarrow \quad \partial_y M = 4xy + 2.
\]

\[
\begin{aligned}
\partial_x N &= \partial_y M.
\end{aligned}
\]

The equation is exact. There exists a potential function \(\psi \) with

\[
\partial_y \psi = N, \quad \partial_x \psi = M.
\]

\[
\begin{aligned}
\partial_y \psi &= 2x^2y + 2x \quad \Rightarrow \quad \psi(x, y) = x^2y^2 + 2xy + g(x).
\end{aligned}
\]

\[
2xy^2 + 2y + g'(x) = \partial_x \psi
\]
First order differential equations.

Example
Find all solutions of \(2xy^2 + 2y + 2x^2y \ y' + 2x \ y' = 0\).

Solution: Re-write the equation is a more organized way,
\[
[2x^2y + 2x] \ y' + [2xy^2 + 2y] = 0.
\]

\[
N = [2x^2y + 2x] \quad \Rightarrow \quad \partial_x N = 4xy + 2.
\]
\[
M = [2xy^2 + 2y] \quad \Rightarrow \quad \partial_y M = 4xy + 2.
\]
\[
\Rightarrow \quad \partial_x N = \partial_y M.
\]

The equation is exact. There exists a potential function \(\psi\) with
\[
\partial_y \psi = N, \quad \partial_x \psi = M.
\]
\[
\partial_y \psi = 2x^2y + 2x \quad \Rightarrow \quad \psi(x, y) = x^2y^2 + 2xy + g(x).
\]
\[
2xy^2 + 2y + g'(x) = \partial_x \psi = M
\]
First order differential equations.

Example
Find all solutions of \(2xy^2 + 2y + 2x^2 y \, y' + 2x \, y' = 0 \).

Solution: Re-write the equation is a more organized way,
\[
[2x^2 y + 2x] \, y' + [2xy^2 + 2y] = 0.
\]

\[
N = [2x^2 y + 2x] \quad \Rightarrow \quad \partial_x N = 4xy + 2.
\]
\[
M = [2xy^2 + 2y] \quad \Rightarrow \quad \partial_y M = 4xy + 2.
\]

\[
\Rightarrow \quad \partial_x N = \partial_y M.
\]

The equation is exact. There exists a potential function \(\psi \) with
\[
\partial_y \psi = N, \quad \partial_x \psi = M.
\]
\[
\partial_y \psi = 2x^2 y + 2x \quad \Rightarrow \quad \psi(x, y) = x^2 y^2 + 2xy + g(x).
\]
\[
2xy^2 + 2y + g'(x) = \partial_x \psi = M = 2xy^2 + 2y
\]
First order differential equations.

Example
Find all solutions of \(2xy^2 + 2y + 2x^2 y \ y' + 2x \ y' = 0.\)

Solution: Re-write the equation in a more organized way,

\[
[2x^2 y + 2x] \ y' + [2xy^2 + 2y] = 0.
\]

\[
N = [2x^2 y + 2x] \quad \Rightarrow \quad \partial_x N = 4xy + 2.
\]

\[
M = [2xy^2 + 2y] \quad \Rightarrow \quad \partial_y M = 4xy + 2.
\]

\[
\Rightarrow \partial_x N = \partial_y M.
\]

The equation is exact. There exists a potential function \(\psi\) with

\[
\partial_y \psi = N, \quad \partial_x \psi = M.
\]

\[
\partial_y \psi = 2x^2 y + 2x \quad \Rightarrow \quad \psi(x, y) = x^2 y^2 + 2xy + g(x).
\]

\[
2xy^2 + 2y + g'(x) = \partial_x \psi = M = 2xy^2 + 2y \quad \Rightarrow \quad g'(x) = 0.
\]
First order differential equations.

Example
Find all solutions of $2xy^2 + 2y + 2x^2y \, y' + 2x \, y' = 0$.

Solution: Re-write the equation in a more organized way,

$$[2x^2y + 2x] \, y' + [2xy^2 + 2y] = 0.$$

Given:

$N = [2x^2y + 2x] \quad \Rightarrow \quad \partial_x N = 4xy + 2.$
$M = [2xy^2 + 2y] \quad \Rightarrow \quad \partial_y M = 4xy + 2.$

\begin{align*}
\Rightarrow \quad \partial_x N &= \partial_y M.
\end{align*}

The equation is exact. There exists a potential function ψ with

$\partial_y \psi = N, \quad \partial_x \psi = M.$

$\partial_y \psi = 2x^2y + 2x \quad \Rightarrow \quad \psi(x, y) = x^2y^2 + 2xy + g(x).$

$2xy^2 + 2y + g'(x) = \partial_x \psi = M = 2xy^2 + 2y \quad \Rightarrow \quad g'(x) = 0.$

$\psi(x, y) = x^2y^2 + 2xy + c,$
First order differential equations.

Example
Find all solutions of $2xy^2 + 2y + 2x^2y \, y' + 2x \, y' = 0$.

Solution: Re-write the equation is a more organized way,

$$[2x^2y + 2x] \, y' + [2xy^2 + 2y] = 0.$$

\[
\begin{align*}
N &= [2x^2y + 2x] \quad \Rightarrow \quad \partial_x N = 4xy + 2. \\
M &= [2xy^2 + 2y] \quad \Rightarrow \quad \partial_y M = 4xy + 2. \\
\end{align*}
\]

\[
\begin{array}{c}
\Rightarrow \quad \partial_x N = \partial_y M.
\end{array}
\]

The equation is exact. There exists a potential function ψ with

$$\partial_y \psi = N, \quad \partial_x \psi = M.$$

$$\partial_y \psi = 2x^2y + 2x \quad \Rightarrow \quad \psi(x, y) = x^2y^2 + 2xy + g(x).$$

$$2xy^2 + 2y + g'(x) = \partial_x \psi = M = 2xy^2 + 2y \quad \Rightarrow \quad g'(x) = 0.$$

$$\psi(x, y) = x^2y^2 + 2xy + c, \quad x^2 \, y^2(x) + 2x \, y(x) + c = 0.$$