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Two-point Boundary Value Problem.

Definition
A two-point BVP is the following: Given functions p, q, g , and
constants x1 < x2, y1, y2, b1, b2, b̃1, b̃2,

find a function y solution of the differential equation

y ′′ + p(x) y ′ + q(x) y = g(x),

together with the extra, boundary conditions,

b1 y(x1) + b2 y ′(x1) = y1,

b̃1 y(x2) + b̃2 y ′(x2) = y2.

Remarks:
I Both y and y ′ might appear in the boundary condition,

evaluated at the same point.

I In this notes we only study the case of constant coefficients,

y ′′ + a1 y ′ + a0 y = g(x).
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Two-point Boundary Value Problem.

Example

Examples of BVP.

Assume x1 6= x2.

(1) Find y solution of

y ′′ + a1 y ′ + a0 y = g(x), y(x1) = y1, y(x2) = y2.
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Example from physics.

Problem: The equilibrium (time independent) temperature of a
bar of length L with insulated horizontal sides and the bar vertical
extremes kept at fixed temperatures T0, TL is the solution of the
BVP:

T ′′(x) = 0, x ∈ (0, L), T (0) = T0, T (L) = TL,
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Comparison: IVP vs BVP.

Review: IVP:
Find the function values y(t) solutions of the differential equation

y ′′ + a1 y ′ + a0 y = g(t),

together with the initial conditions

y(t0) = y1, y ′(t0) = y2.

Remark: In physics:

I y(t): Position at time t.

I Initial conditions: Position and velocity at the initial time t0.
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Comparison: IVP vs BVP.

Review: BVP:
Find the function values y(x) solutions of the differential equation

y ′′ + a1 y ′ + a0 y = g(x),

together with the initial conditions

y(x1) = y1, y(x2) = y2.

Remark: In physics:

I y(x): A physical quantity (temperature) at a position x .

I Boundary conditions: Conditions at the boundary of the
object under study, where x1 6= x2.
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Existence, uniqueness of solutions to BVP.

Review: The initial value problem.

Theorem (IVP)

Consider the homogeneous initial value problem:

y ′′ + a1 y ′ + a0 y = 0, y(t0) = y0, y ′(t0) = y1,

and let r± be the roots of the characteristic polynomial

p(r) = r2 + a1 r + a0.

If r+ 6= r−, real or complex, then for every choice of y0, y1, there
exists a unique solution y to the initial value problem above.

Summary: The IVP above always has a unique solution, no matter
what y0 and y1 we choose.
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Existence, uniqueness of solutions to BVP.

Theorem (BVP)

Consider the homogeneous boundary value problem:

y ′′ + a1 y ′ + a0 y = 0, y(0) = y0, y(L) = y1,

and let r± be the roots of the characteristic polynomial

p(r) = r2 + a1 r + a0.

(A) If r+ 6= r−, real, then for every choice of L 6= 0 and y0, y1,
there exists a unique solution y to the BVP above.

(B) If r± = α± iβ, with β 6= 0, and α, β ∈ R, then the solutions
to the BVP above belong to one of these possibilities:

(1) There exists a unique solution.
(2) There exists no solution.
(3) There exist infinitely many solutions.



Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case r+ 6= r-.

The general solution is

y(t) = c1 er- t + c2 er+ t , c1, c2 ∈ R.

The initial conditions determine c1 and c2 as follows:

y0 = y(t0) = c1 er- t0 + c2 er+ t0

y1 = y ′(t0) = c1r- er- t0 + c2r+ er+ t0

Using matrix notation,[
er- t0 er+ t0

r- er-t0 r+ er+ t0

] [
c1

c2

]
=

[
y0

y1

]
.

The linear system above has a unique solution c1 and c2 for every
constants y0 and y1 iff the det(Z ) 6= 0, where

Z =

[
er- t0 er+ t0

r- er- t0 r+ er+ t0

]
⇒ Z

[
c1

c2

]
=

[
y0

y1

]
.
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Existence, uniqueness of solutions to BVP.
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det(Z ) =
(
r+ − r-

)
e(r++r-) t0 6= 0 ⇔ r+ 6= r-.

Since r+ 6= r-, the matrix Z is invertible and so[
c1

c2

]
= Z−1

[
y0

y1

]
.

We conclude that for every choice of y0 and y1, there exist a unique
value of c1 and c2, so the IVP above has a unique solution.
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(A) If r+ 6= r- and real-valued, then det(Z ) 6= 0.

We conclude: For every choice of y0 and y1, there exist a
unique value of c1 and c2, so the BVP in (A) above has a
unique solution.

(B) If r± = α± iβ, with α, β ∈ R and β 6= 0, then

det(Z ) = eαL
(
e iβL − e−iβL

)
⇒ det(Z ) = 2i eαL sin(βL).

Since det(Z ) = 0 iff βL = nπ, with n integer,

(1) If βL 6= nπ, then BVP has a unique solution.
(2) If βL = nπ then BVP either has no solutions or it has infinitely

many solutions.
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Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

y ′′ + y = 0, y(0) = 1, y(π) = −1.

Solution: The characteristic polynomial is

p(r) = r2 + 1 ⇒ r± = ±i .

The general solution is

y(x) = c1 cos(x) + c2 sin(x).

The boundary conditions are

1 = y(0) = c1, − 1 = y(π) = −c1 ⇒ c1 = 1, c2 free.

We conclude: y(x) = cos(x) + c2 sin(x), with c2 ∈ R.

The BVP has infinitely many solutions. C
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Boundary Value Problems (Sect. 6.1).

I Two-point BVP.

I Example from physics.

I Comparison: IVP vs BVP.

I Existence, uniqueness of solutions to BVP.

I Particular case of BVP: Eigenvalue-eigenfunction problem.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Problem:
Find a number λ and a non-zero function y solutions to the
boundary value problem

y ′′(x) + λ y(x) = 0, y(0) = 0, y(L) = 0, L > 0.

Remark: This problem is similar to the eigenvalue-eigenvector
problem in Linear Algebra: Given an n × n matrix A, find λ and a
non-zero n-vector v solutions of

Av− λ v = 0.

Differences:

I A −→

{
computing a second derivative and

applying the boundary conditions.

}
I v −→ {a function y}.
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Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every λ ∈ R and non-zero functions y solutions of the BVP

y ′′(x) + λ y(x) = 0, y(0) = 0, y(L) = 0, L > 0.

Remarks: We will show that:

(1) If λ 6 0, then the BVP has no solution.

(2) If λ > 0, then there exist infinitely many eigenvalues λn and
eigenfunctions yn, with n any positive integer, given by

λn =
(nπ

L

)2
, yn(x) = sin

(nπx

L

)
,

(3) Analogous results can be proven for the same equation but
with different types of boundary conditions. For example, for
y(0) = 0, y ′(L) = 0; or for y ′(0) = 0, y ′(L) = 0.
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Example
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y ′′(x) + λ y(x) = 0, y(0) = 0, y(L) = 0, L > 0.

Solution: Case λ = 0. The equation is

y ′′ = 0 ⇒ y(x) = c1 + c2x .

The boundary conditions imply

0 = y(0) = c1, 0 = c1 + c2L ⇒ c1 = c2 = 0.

Since y = 0, there are NO non-zero solutions for λ = 0.
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the linear system above has a unique solution c1 = 0 and c2 = 0.

Since y = 0, there are NO non-zero solutions for λ < 0.
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Overview of Fourier Series (Sect. 6.2).

I Periodic functions.

I Orthogonality of Sines and Cosines.

I The Fourier Theorem: Continuous case.

I Example: Using the Fourier Theorem.

I The Fourier Theorem: Piecewise continuous case.

I Example: Using the Fourier Theorem.



Periodic functions.

Definition
A function f : R → R is called periodic iff there exists τ > 0 such
that for all x ∈ R holds

f (x + τ) = f (x).

Remark: f is invariant under translations by τ .

Definition
A period T of a periodic function f is the smallest value of τ such
that f (x + τ) = f (x) holds.

Notation:
A periodic function with period T is also called T -periodic.
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Periodic functions.

Example

The following functions are periodic, with period T ,

f (x) = sin(x), T = 2π.

f (x) = cos(x), T = 2π.

f (x) = tan(x), T = π.

f (x) = sin(ax), T =
2π

a
.

The proof of the latter statement is the following:

f
(
x +

2π

a

)
= sin

(
ax + a

2π

a

)
= sin(ax + 2π) = sin(ax) = f (x).

C
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Periodic functions.

Example

Show that the function below is periodic, and find its period,

f (x) = ex , x ∈ [0, 2), f (x − 2) = f (x).

Solution: We just graph the function,

y = f(x)y

0 1 x

So the function is periodic with period T = 2. C
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Overview of Fourier Series (Sect. 6.2).

I Periodic functions.

I Orthogonality of Sines and Cosines.

I The Fourier Theorem: Continuous case.

I Example: Using the Fourier Theorem.

I The Fourier Theorem: Piecewise continuous case.

I Example: Using the Fourier Theorem.



Orthogonality of Sines and Cosines.

Remark:
From now on we work on the following domain: [−L, L].

L x

y

T = 2 L

cos ( pi x / L )

sin ( pi x / L )

−L
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Orthogonality of Sines and Cosines.

Theorem (Orthogonality)

The following relations hold for all n, m ∈ N,∫ L

−L
cos

(nπx

L

)
cos

(mπx

L

)
dx =


0 n 6= m,

L n = m 6= 0,

2L n = m = 0,∫ L

−L
sin

(nπx

L

)
sin

(mπx

L

)
dx =

{
0 n 6= m,

L n = m,∫ L

−L
cos

(nπx

L

)
sin

(mπx

L

)
dx = 0.

Remark:

I The operation f · g =

∫ L

−L
f (x) g(x) dx is an inner product in

the vector space of functions. Like the dot product is in R2.

I Two functions f , g , are orthogonal iff f · g = 0.
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Orthogonality of Sines and Cosines.

Recall: cos(θ) cos(φ) =
1

2

[
cos(θ + φ) + cos(θ − φ)

]
;

sin(θ) sin(φ) =
1

2

[
cos(θ − φ)− cos(θ + φ)

]
;

sin(θ) cos(φ) =
1

2

[
sin(θ + φ) + sin(θ − φ)

]
.

Proof: First formula: If n = m = 0, it is simple to see that∫ L

−L
cos

(nπx

L

)
cos

(mπx

L

)
dx =

∫ L

−L
dx = 2L.

In the case where one of n or m is non-zero, use the relation∫ L

−L
cos

(nπx

L

)
cos

(mπx

L

)
dx =

1

2

∫ L

−L
cos

[(n + m)πx

L

]
dx

+
1

2

∫ L

−L
cos

[(n −m)πx

L

]
dx .
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Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero,

holds

1

2

∫ L

−L
cos

[(n + m)πx

L

]
dx =

L

2(n + m)π
sin

[(n + m)πx

L

]∣∣∣L
−L

= 0.

We obtain that∫ L

−L
cos

(nπx

L

)
cos

(mπx

L

)
dx =

1

2

∫ L

−L
cos

[(n −m)πx

L

]
dx .

If we further restrict n 6= m, then

1

2

∫ L

−L
cos

[(n −m)πx

L

]
dx =

L

2(n −m)π
sin

[(n −m)πx

L

]∣∣∣L
−L

= 0.

If n = m 6= 0, we have that

1

2

∫ L

−L
cos

[(n −m)πx

L

]
dx =

1

2

∫ L

−L
dx = L.

This establishes the first equation in the Theorem. The remaining
equations are proven in a similar way.
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Overview of Fourier Series (Sect. 6.2).

I Periodic functions.

I Orthogonality of Sines and Cosines.

I The Fourier Theorem: Continuous case.

I Example: Using the Fourier Theorem.

I The Fourier Theorem: Piecewise continuous case.

I Example: Using the Fourier Theorem.



The Fourier Theorem: Continuous case.

Theorem (Fourier Series)

If the function f : [−L, L] ⊂ R → R is continuous, then f can be
expressed as an infinite series

f (x) =
a0

2
+

∞∑
n=1

[
an cos

(nπx

L

)
+ bn sin

(nπx

L

)]
(1)

with the constants an and bn given by

an =
1

L

∫ L

−L
f (x) cos

(nπx

L

)
dx , n > 0,

bn =
1

L

∫ L

−L
f (x) sin

(nπx

L

)
dx , n > 1.

Furthermore, the Fourier series in Eq. (1) provides a 2L-periodic
extension of function f from the domain [−L, L] ⊂ R to R.



The Fourier Theorem: Continuous case.

Sketch of the Proof:

I Define the partial sum functions

fN(x) =
a0

2
+

N∑
n=1

[
an cos

(nπx

L

)
+ bn sin

(nπx

L

)]

with an and bn given by

an =
1

L

∫ L

−L
f (x) cos

(nπx

L

)
dx , n > 0,

bn =
1

L

∫ L

−L
f (x) sin

(nπx

L

)
dx , n > 1.

I Express fN as a convolution of Sine, Cosine, functions and the
original function f .

I Use the convolution properties to show that

lim
N→∞

fN(x) = f (x), x ∈ [−L, L].
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Example: Using the Fourier Theorem.
Example

Find the Fourier series expansion of the function

f (x) =

{
1 + x x ∈ [−1, 0),

1− x x ∈ [0, 1].

Solution: In this case L = 1. The Fourier series expansion is

f (x) =
a0

2
+

∞∑
n=1

[
an cos(nπx) + bn sin(nπx)

]
,

where the an, bn are given in the Theorem. We start with a0,

a0 =

∫ 1

−1
f (x) dx =

∫ 0

−1
(1 + x) dx +

∫ 1

0
(1− x) dx .

a0 =
(
x +

x2

2

)∣∣∣0
−1

+
(
x − x2

2

)∣∣∣1
0

=
(
1− 1

2

)
+

(
1− 1

2

)
We obtain: a0 = 1.
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1 + (−1)n+1

]
cos(nπx).

If n = 2k, so n is even, so n + 1 = 2k + 1 is odd, then
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(2k − 1)2π2
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The Fourier Theorem: Piecewise continuous case.

Recall:

Definition
A function f : [a, b] → R is called piecewise continuous iff holds,

(a) [a, b] can be partitioned in a finite number of sub-intervals
such that f is continuous on the interior of these sub-intervals.

(b) f has finite limits at the endpoints of all sub-intervals.



The Fourier Theorem: Piecewise continuous case.

Theorem (Fourier Series)

If f : [−L, L] ⊂ R → R is piecewise continuous, then the function

fF (x) =
a0

2
+

∞∑
n=1

[
an cos

(nπx

L

)
+ bn sin

(nπx

L

)]
where an and bn given by

an =
1

L

∫ L

−L
f (x) cos

(nπx

L

)
dx , n > 0,

bn =
1

L

∫ L

−L
f (x) sin

(nπx

L

)
dx , n > 1.

satisfies that:

(a) fF (x) = f (x) for all x where f is continuous;

(b) fF (x0) =
1

2

[
lim

x→x+
0

f (x) + lim
x→x−0

f (x)
]

for all x0 where f is

discontinuous.
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Example: Using the Fourier Theorem.

Example

Find the Fourier series of f (x) =

{
− 1 x ∈ [−1, 0),

1 x ∈ [0, 1).

and periodic with period T = 2.

Solution: We start computing the Fourier coefficients bn;

bn =
1

L

∫ L

−L
f (x) sin

(nπx

L

)
dx , L = 1,

bn =

∫ 0

−1
(−1) sin

(
nπx

)
dx +

∫ 1

0
(1) sin

(
nπx

)
dx ,

bn =
(−1)

nπ

[
− cos(nπx)

∣∣∣0
−1

]
+

1

nπ

[
− cos(nπx)

∣∣∣1
0

]
,

bn =
(−1)

nπ

[
−1 + cos(−nπ)

]
+

1

nπ

[
− cos(nπ) + 1

]
.
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Solving the Heat Equation (Sect. 6.3).

I Review: The Stationary Heat Equation.

I The Heat Equation.

I The Initial-Boundary Value Problem.

I The separation of variables method.

I An example of separation of variables.



Review: The Stationary Heat Equation.

Review: The Stationary Heat Equation describes the temperature
distribution in a solid material in thermal equilibrium. The
temperature is time-independent.

Problem: The time-independent temperature, T , of a bar of
length L with insulated horizontal sides and vertical extremes kept
at fixed temperatures T0, TL, is the solution of the BVP:

T ′′(x) = 0, x ∈ (0, L), T (0) = T0, T (L) = TL,

y

x0

z insulation

insulation

T  
0

T  L

L x

Remark: The heat transfer occurs only along the x-axis.
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Solving the Heat Equation (Sect. 6.3).

I Review: The Stationary Heat Equation.

I The Heat Equation.

I The Initial-Boundary Value Problem.

I The separation of variables method.

I An example of separation of variables.



The Heat Equation.

Remarks:

I The unknown of the problem is u(t, x), the temperature of
the bar at the time t and position x .

I The temperature does not depend on y or z .

I The one-dimensional Heat Equation is:

∂tu(t, x) = k ∂2
xu(t, x),

where k > 0 is the heat conductivity, units: [k] =
(distance)2

(time)
.

I The Heat Equation is a Partial Differential Equation, PDE.

L

u(t,x)

t t t
u = 0 u < 0 u > 0

t  is  held  constant.
x

u

0
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Solving the Heat Equation (Sect. 6.3).

I Review: The Stationary Heat Equation.

I The Heat Equation.

I The Initial-Boundary Value Problem.

I The separation of variables method.

I An example of separation of variables.



The Initial-Boundary Value Problem.

Definition
The IBVP for the one-dimensional Heat Equation is the following:
Given a constant k > 0 and a function f : [0, L] → R with
f (0) = f (L) = 0, find u : [0,∞)× [0, L] → R solution of

∂tu(t, x) = k ∂2
xu(t, x),

I.C.: u(0, x) = f (x),

B.C.: u(t, 0) = 0, u(t, L) = 0.

2

x

t

u ( 0, x )  =  f ( x )0 L

u ( t, 0 ) = 0 u ( t, L ) = 0
d u  =  k d   u

t x
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The separation of variables method.

Summary: IBVP for the Heat Equation.

Propose:

u(t, x) =
∞∑

n=1

cn vn(t) wn(x).

where

I vn: Solution of an IVP.

I wn: Solution of a BVP, an eigenvalue-eigenfunction problem.

I cn: Fourier Series coefficients.

Remark:
The separation of variables method does not work for every PDE.



The separation of variables method.

Summary: IBVP for the Heat Equation.

Propose:

u(t, x) =
∞∑

n=1

cn vn(t) wn(x).

where

I vn: Solution of an IVP.

I wn: Solution of a BVP, an eigenvalue-eigenfunction problem.

I cn: Fourier Series coefficients.

Remark:
The separation of variables method does not work for every PDE.



The separation of variables method.

Summary: IBVP for the Heat Equation.

Propose:

u(t, x) =
∞∑

n=1

cn vn(t) wn(x).

where

I vn: Solution of an IVP.

I wn: Solution of a BVP, an eigenvalue-eigenfunction problem.

I cn: Fourier Series coefficients.

Remark:
The separation of variables method does not work for every PDE.



The separation of variables method.

Summary: IBVP for the Heat Equation.

Propose:

u(t, x) =
∞∑

n=1

cn vn(t) wn(x).

where

I vn: Solution of an IVP.

I wn: Solution of a BVP, an eigenvalue-eigenfunction problem.

I cn: Fourier Series coefficients.

Remark:
The separation of variables method does not work for every PDE.



The separation of variables method.

Summary: IBVP for the Heat Equation.

Propose:

u(t, x) =
∞∑

n=1

cn vn(t) wn(x).

where

I vn: Solution of an IVP.

I wn: Solution of a BVP, an eigenvalue-eigenfunction problem.

I cn: Fourier Series coefficients.

Remark:
The separation of variables method does not work for every PDE.



The separation of variables method.

Summary:

I The idea is to transform the PDE into infinitely many ODEs.

I We describe this method in 6 steps.

Step 1:
One looks for solutions u given by an infinite series of simpler
functions, un, that is,

u(t, x) =
∞∑

n=1

cn un(t, x),

where un is simpler than u is the sense,

un(t, x) = vn(t) wn(x).

Here cn are constants, n = 1, 2, · · · .
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The separation of variables method.

Step 2:
Introduce the series expansion for u into the Heat Equation,

∂tu − k ∂2
xu = 0

⇒
∞∑

n=1

cn

[
∂tun − k ∂2

xun

]
= 0.

A sufficient condition for the equation above is: To find un, for
n = 1, 2, · · · , solutions of

∂tun − k ∂2
xun = 0.

Step 3:
Find un(t, x) = vn(t) wn(x) solution of the IBVP

∂tun − k ∂2
xun = 0.

I.C.: un(0, x) = wn(x),

B.C.: un(t, 0) = 0, un(t, L) = 0.
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The separation of variables method.

Step 4: (Key step.)
Transform the IBVP for un into:
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The separation of variables method.

Recall: 1

k vn(t)

dvn

dt
(t) =

1

wn(x)

d2wn

dx2
(x).

Depends only on t = Depends only on x .

I The Heat Equation has the following property:
The left-hand side depends only on t, while the right-hand
side depends only on x .

I When this happens in a PDE, one can use the separation of
variables method on that PDE.

I We conclude that for appropriate constants λm holds

1

k vn(t)

dvn

dt
(t) = −λn,

1

wn(x)

d2wn

dx2
(x) = −λn.

I We have transformed the original PDE into infinitely many
ODEs parametrized by n, positive integer.
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The separation of variables method.

Summary Step 4: The original IBVP for the Heat Equation, PDE,
can transformed into:

(a) We choose to solve the following IVP for vn,

1

k vn(t)

dvn

dt
(t) = −λn, I.C.: vn(0) = 1.

Remark: This choice of I.C. simplifies the problem.

(b) The BVP for wn,

1

wn(x)

d2wn

dx2
(x) = −λn, B.C.: wn(0) = 0, wn(L) = 0.

Step 5:

(a) Solve the IVP for vn.

(b) Solve the BVP for wn.
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The separation of variables method.

Step 5(a): Solving the IVP for vn.

v ′n(t) + kλn vn(t) = 0,

I.C.: vn(0) = 1.

The integrating factor method implies that µ(t) = ekλnt .

ekλntv ′n(t) + kλn ekλnt vn(t) = 0 ⇒
[
ekλntvn(t)

]′
= 0.

ekλntvn(t) = cn ⇒ vn(t) = cn e−kλnt .

1 = vn(0) = c ⇒ vn(t) = e−kλnt .
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The separation of variables method.

Step 5(a): Recall: vn(t) = e−kλnt .

Step 5(b): Eigenvalue-eigenvector problem for wn:
Find the eigenvalues λn and the non-zero eigenfunctions wn

solutions of the BVP

w ′′n (x) + λn wn(x) = 0 B.C.: wn(0) = 0, wn(L) = 0.

We know that this problem has solution only for λn > 0.
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u(t, 0) = 0, u(t, L) = 0.

Given a function f with f (0) = f (L) = 0, the solution u above
satisfies the initial condition f (x) = u(0, x) iff holds

f (x) =
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The separation of variables method.

Summary: IBVP for the Heat Equation.

Propose:

u(t, x) =
∞∑

n=1

cn vn(t) wn(x).

where

I vn: Solution of an IVP.

I wn: Solution of a BVP, an eigenvalue-eigenfunction problem.

I cn: Fourier Series coefficients.

Remark:
The separation of variables method does not work for every PDE.
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Solving the Heat Equation (Sect. 6.3).

I Review: The Stationary Heat Equation.

I The Heat Equation.

I The Initial-Boundary Value Problem.

I The separation of variables method.

I An example of separation of variables.



An example of separation of variables.

Example

Find the solution to the IBVP 4∂tu = ∂2
xu, t > 0, x ∈ [0, 2],

u(0, x) = 3 sin(πx/2), u(t, 0) = 0, u(t, 2) = 0.

Solution: Let un(t, x) = vn(t) wn(x). Then

4wn(x)
dv

dt
(t) = vn(t)

d2w

dx2
(x) ⇒ 4v ′n(t)

vn(t)
=

w ′′n (x)

wn(x)
= −λn.

The equations for vn and wn are

v ′n(t) +
λn

4
vn(t) = 0, w ′′n (x) + λn wn(x) = 0.

We solve for vn with the initial condition vn(0) = 1.

e
λn
4

t v ′n(t) +
λn

4
e

λn
4

t vn(t) = 0 ⇒
[
e

λn
4

t vn(t)
]′

= 0.
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Next the BVP: w ′′n (x) + λn wn(x) = 0, with wn(0) = wn(L) = 0.

Since λn > 0, introduce λn = µ2
n. The characteristic polynomial is

p(r) = r2 + µ2
n = 0 ⇒ rn± = ±µni .

The general solution, wn(x) = c1 cos(µnx) + c2 sin(µnx).

The boundary conditions imply

0 = wn(0) = c1, ⇒ wn(x) = c2 sin(µnx).
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I Exam is cumulative.

I Heat equation and Fourier Series not included.
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I Not in the exam: Fourier Series expansions (Chptr.6).
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I Systems of linear Equations (Chptr. 5).

I Laplace transforms (Chptr. 4).

I Power Series Methods (Chptr. 3).

I Second order linear equations (Chptr. 2).

I First order differential equations (Chptr. 1).



Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of f (x) = 1 for x ∈ (−1, 0), and
then find the Fourier Series of this extension.

Solution: The Fourier series is

f (x) =
a0

2
+

∞∑
n=1

[
an cos

(nπx

L

)
+ bn sin

(nπx

L

)]
.

Since f is odd and periodic, then the Fourier Series is a Sine
Series, that is, an = 0.

bn =
1

L

∫ L

−L
f (x) sin

(nπx

L

)
dx =

2

L

∫ L

0
f (x) sin

(nπx

L

)
dx .

bn = 2

∫ 1

0
(−1) sin(nπx) dx = (−2)

(−1)

nπ
cos(nπx)

∣∣∣1
0
,

bn =
2

nπ

[
cos(nπ)− 1

]
⇒ bn =

2

nπ

[
(−1)n − 1

]
.
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Review for Final Exam.

I Fourier Series expansions (Chptr.6).

I Eigenvalue-Eigenfunction BVP (Chptr. 6).

I Systems of linear Equations (Chptr. 5).

I Laplace transforms (Chptr. 4).

I Power Series Methods (Chptr. 3).

I Second order linear equations (Chptr. 2).

I First order differential equations (Chptr. 1).



Eigenvalue-Eigenfunction BVP.
Example

Find the positive eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y(0) = 0, y(8) = 0.

Solution: Since λ > 0, introduce λ = µ2, with µ > 0.

y(x) = erx implies that r is solution of

p(r) = r2 + µ2 = 0 ⇒ r± = ±µi .

The general solution is y(x) = c1 cos(µx) + c2 sin(µx).

The boundary conditions imply:

0 = y(0) = c1 ⇒ y(x) = c2 sin(µx).

0 = y(8) = c2 sin(µ8), c2 6= 0 ⇒ sin(µ8) = 0.

µ =
nπ

8
, λ =

(nπ

8

)2
, yn(x) = sin

(nπx

8

)
, n = 1, 2, · · · C
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The general solution is y(x) = c1 cos(µx) + c2 sin(µx).

The boundary conditions imply:

0 = y(0) = c1 ⇒ y(x) = c2 sin(µx).

0 = y(8) = c2 sin(µ8), c2 6= 0 ⇒ sin(µ8) = 0.

µ =
nπ

8
, λ =

(nπ

8

)2
,
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(nπx
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)
, n = 1, 2, · · · C



Eigenvalue-Eigenfunction BVP.
Example

Find the positive eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y(0) = 0, y(8) = 0.

Solution: Since λ > 0, introduce λ = µ2, with µ > 0.

y(x) = erx implies that r is solution of

p(r) = r2 + µ2 = 0 ⇒ r± = ±µi .

The general solution is y(x) = c1 cos(µx) + c2 sin(µx).

The boundary conditions imply:

0 = y(0) = c1 ⇒ y(x) = c2 sin(µx).

0 = y(8) = c2 sin(µ8), c2 6= 0 ⇒ sin(µ8) = 0.

µ =
nπ

8
, λ =

(nπ

8

)2
, yn(x) = sin

(nπx

8

)
, n = 1, 2, · · · C



Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y(0) = 0, y ′(8) = 0.

Solution: The general solution is y(x) = c1 cos(µx) + c2 sin(µx).

The boundary conditions imply:

0 = y(0) = c1 ⇒ y(x) = c2 sin(µx).

0 = y ′(8) = c2µ cos(µ8), c2 6= 0 ⇒ cos(µ8) = 0.

8µ = (2n + 1)
π

2
, ⇒ µ =

(2n + 1)π

16
.

Then, for n = 1, 2, · · · holds

λ =
[(2n + 1)π

16

]2
, yn(x) = sin

((2n + 1)πx

16

)
. C



Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y(0) = 0, y ′(8) = 0.

Solution: The general solution is y(x) = c1 cos(µx) + c2 sin(µx).

The boundary conditions imply:

0 = y(0) = c1 ⇒ y(x) = c2 sin(µx).

0 = y ′(8) = c2µ cos(µ8), c2 6= 0 ⇒ cos(µ8) = 0.

8µ = (2n + 1)
π

2
, ⇒ µ =

(2n + 1)π

16
.

Then, for n = 1, 2, · · · holds

λ =
[(2n + 1)π

16

]2
, yn(x) = sin

((2n + 1)πx

16

)
. C



Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y(0) = 0, y ′(8) = 0.

Solution: The general solution is y(x) = c1 cos(µx) + c2 sin(µx).

The boundary conditions imply:

0 = y(0)

= c1 ⇒ y(x) = c2 sin(µx).

0 = y ′(8) = c2µ cos(µ8), c2 6= 0 ⇒ cos(µ8) = 0.

8µ = (2n + 1)
π

2
, ⇒ µ =

(2n + 1)π

16
.

Then, for n = 1, 2, · · · holds

λ =
[(2n + 1)π

16

]2
, yn(x) = sin

((2n + 1)πx

16

)
. C



Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y(0) = 0, y ′(8) = 0.

Solution: The general solution is y(x) = c1 cos(µx) + c2 sin(µx).

The boundary conditions imply:

0 = y(0) = c1

⇒ y(x) = c2 sin(µx).

0 = y ′(8) = c2µ cos(µ8), c2 6= 0 ⇒ cos(µ8) = 0.

8µ = (2n + 1)
π

2
, ⇒ µ =

(2n + 1)π

16
.

Then, for n = 1, 2, · · · holds

λ =
[(2n + 1)π

16

]2
, yn(x) = sin

((2n + 1)πx

16

)
. C



Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y(0) = 0, y ′(8) = 0.

Solution: The general solution is y(x) = c1 cos(µx) + c2 sin(µx).

The boundary conditions imply:

0 = y(0) = c1 ⇒ y(x) = c2 sin(µx).

0 = y ′(8) = c2µ cos(µ8), c2 6= 0 ⇒ cos(µ8) = 0.

8µ = (2n + 1)
π

2
, ⇒ µ =

(2n + 1)π

16
.

Then, for n = 1, 2, · · · holds

λ =
[(2n + 1)π

16

]2
, yn(x) = sin

((2n + 1)πx

16

)
. C



Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y(0) = 0, y ′(8) = 0.

Solution: The general solution is y(x) = c1 cos(µx) + c2 sin(µx).

The boundary conditions imply:

0 = y(0) = c1 ⇒ y(x) = c2 sin(µx).

0 = y ′(8) = c2µ cos(µ8),

c2 6= 0 ⇒ cos(µ8) = 0.

8µ = (2n + 1)
π

2
, ⇒ µ =

(2n + 1)π

16
.

Then, for n = 1, 2, · · · holds

λ =
[(2n + 1)π

16

]2
, yn(x) = sin

((2n + 1)πx

16

)
. C



Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y(0) = 0, y ′(8) = 0.

Solution: The general solution is y(x) = c1 cos(µx) + c2 sin(µx).

The boundary conditions imply:

0 = y(0) = c1 ⇒ y(x) = c2 sin(µx).

0 = y ′(8) = c2µ cos(µ8), c2 6= 0

⇒ cos(µ8) = 0.

8µ = (2n + 1)
π

2
, ⇒ µ =

(2n + 1)π

16
.

Then, for n = 1, 2, · · · holds

λ =
[(2n + 1)π

16

]2
, yn(x) = sin

((2n + 1)πx

16

)
. C



Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y(0) = 0, y ′(8) = 0.

Solution: The general solution is y(x) = c1 cos(µx) + c2 sin(µx).

The boundary conditions imply:

0 = y(0) = c1 ⇒ y(x) = c2 sin(µx).

0 = y ′(8) = c2µ cos(µ8), c2 6= 0 ⇒ cos(µ8) = 0.

8µ = (2n + 1)
π

2
, ⇒ µ =

(2n + 1)π

16
.

Then, for n = 1, 2, · · · holds

λ =
[(2n + 1)π

16

]2
, yn(x) = sin

((2n + 1)πx

16

)
. C



Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y(0) = 0, y ′(8) = 0.

Solution: The general solution is y(x) = c1 cos(µx) + c2 sin(µx).

The boundary conditions imply:

0 = y(0) = c1 ⇒ y(x) = c2 sin(µx).

0 = y ′(8) = c2µ cos(µ8), c2 6= 0 ⇒ cos(µ8) = 0.

8µ = (2n + 1)
π

2
,

⇒ µ =
(2n + 1)π

16
.

Then, for n = 1, 2, · · · holds

λ =
[(2n + 1)π

16

]2
, yn(x) = sin

((2n + 1)πx

16

)
. C



Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y(0) = 0, y ′(8) = 0.

Solution: The general solution is y(x) = c1 cos(µx) + c2 sin(µx).

The boundary conditions imply:

0 = y(0) = c1 ⇒ y(x) = c2 sin(µx).

0 = y ′(8) = c2µ cos(µ8), c2 6= 0 ⇒ cos(µ8) = 0.

8µ = (2n + 1)
π

2
, ⇒ µ =

(2n + 1)π

16
.

Then, for n = 1, 2, · · · holds

λ =
[(2n + 1)π

16

]2
, yn(x) = sin

((2n + 1)πx

16

)
. C



Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y(0) = 0, y ′(8) = 0.

Solution: The general solution is y(x) = c1 cos(µx) + c2 sin(µx).

The boundary conditions imply:

0 = y(0) = c1 ⇒ y(x) = c2 sin(µx).

0 = y ′(8) = c2µ cos(µ8), c2 6= 0 ⇒ cos(µ8) = 0.

8µ = (2n + 1)
π

2
, ⇒ µ =

(2n + 1)π

16
.

Then, for n = 1, 2, · · · holds

λ =
[(2n + 1)π

16

]2
,

yn(x) = sin
((2n + 1)πx

16

)
. C



Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y(0) = 0, y ′(8) = 0.

Solution: The general solution is y(x) = c1 cos(µx) + c2 sin(µx).

The boundary conditions imply:

0 = y(0) = c1 ⇒ y(x) = c2 sin(µx).

0 = y ′(8) = c2µ cos(µ8), c2 6= 0 ⇒ cos(µ8) = 0.

8µ = (2n + 1)
π

2
, ⇒ µ =

(2n + 1)π

16
.

Then, for n = 1, 2, · · · holds

λ =
[(2n + 1)π

16

]2
, yn(x) = sin

((2n + 1)πx

16

)
. C



Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y ′(0) = 0, y ′(8) = 0.

Solution: Case λ > 0. Then, y(x) = c1 cos(µx) + c2 sin(µx).

Then, y ′(x) = −c1µ sin(µx) + c2µ cos(µx). The B.C. imply:

0 = y ′(0) = c2 ⇒ y(x) = c1 cos(µx), y ′(x) = −c1µ sin(µx).

0 = y ′(8) = c1µ sin(µ8), c1 6= 0 ⇒ sin(µ8) = 0.

8µ = nπ, ⇒ µ =
nπ

8
.

Then, choosing c1 = 1, for n = 1, 2, · · · holds

λ =
(nπ

8

)2
, yn(x) = cos

(nπx

8

)
.



Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y ′(0) = 0, y ′(8) = 0.

Solution: Case λ > 0.

Then, y(x) = c1 cos(µx) + c2 sin(µx).

Then, y ′(x) = −c1µ sin(µx) + c2µ cos(µx). The B.C. imply:

0 = y ′(0) = c2 ⇒ y(x) = c1 cos(µx), y ′(x) = −c1µ sin(µx).

0 = y ′(8) = c1µ sin(µ8), c1 6= 0 ⇒ sin(µ8) = 0.

8µ = nπ, ⇒ µ =
nπ

8
.

Then, choosing c1 = 1, for n = 1, 2, · · · holds

λ =
(nπ

8

)2
, yn(x) = cos

(nπx

8

)
.



Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y ′(0) = 0, y ′(8) = 0.

Solution: Case λ > 0. Then, y(x) = c1 cos(µx) + c2 sin(µx).

Then, y ′(x) = −c1µ sin(µx) + c2µ cos(µx). The B.C. imply:

0 = y ′(0) = c2 ⇒ y(x) = c1 cos(µx), y ′(x) = −c1µ sin(µx).

0 = y ′(8) = c1µ sin(µ8), c1 6= 0 ⇒ sin(µ8) = 0.

8µ = nπ, ⇒ µ =
nπ

8
.

Then, choosing c1 = 1, for n = 1, 2, · · · holds

λ =
(nπ

8

)2
, yn(x) = cos

(nπx

8

)
.



Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y ′(0) = 0, y ′(8) = 0.

Solution: Case λ > 0. Then, y(x) = c1 cos(µx) + c2 sin(µx).

Then, y ′(x) = −c1µ sin(µx) + c2µ cos(µx).

The B.C. imply:

0 = y ′(0) = c2 ⇒ y(x) = c1 cos(µx), y ′(x) = −c1µ sin(µx).

0 = y ′(8) = c1µ sin(µ8), c1 6= 0 ⇒ sin(µ8) = 0.

8µ = nπ, ⇒ µ =
nπ

8
.

Then, choosing c1 = 1, for n = 1, 2, · · · holds

λ =
(nπ

8

)2
, yn(x) = cos

(nπx

8

)
.



Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y ′(0) = 0, y ′(8) = 0.

Solution: Case λ > 0. Then, y(x) = c1 cos(µx) + c2 sin(µx).

Then, y ′(x) = −c1µ sin(µx) + c2µ cos(µx). The B.C. imply:

0 = y ′(0)

= c2 ⇒ y(x) = c1 cos(µx), y ′(x) = −c1µ sin(µx).

0 = y ′(8) = c1µ sin(µ8), c1 6= 0 ⇒ sin(µ8) = 0.

8µ = nπ, ⇒ µ =
nπ

8
.

Then, choosing c1 = 1, for n = 1, 2, · · · holds

λ =
(nπ

8

)2
, yn(x) = cos

(nπx

8

)
.



Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y ′(0) = 0, y ′(8) = 0.

Solution: Case λ > 0. Then, y(x) = c1 cos(µx) + c2 sin(µx).

Then, y ′(x) = −c1µ sin(µx) + c2µ cos(µx). The B.C. imply:

0 = y ′(0) = c2

⇒ y(x) = c1 cos(µx), y ′(x) = −c1µ sin(µx).

0 = y ′(8) = c1µ sin(µ8), c1 6= 0 ⇒ sin(µ8) = 0.

8µ = nπ, ⇒ µ =
nπ

8
.

Then, choosing c1 = 1, for n = 1, 2, · · · holds

λ =
(nπ

8

)2
, yn(x) = cos

(nπx

8

)
.



Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y ′(0) = 0, y ′(8) = 0.

Solution: Case λ > 0. Then, y(x) = c1 cos(µx) + c2 sin(µx).

Then, y ′(x) = −c1µ sin(µx) + c2µ cos(µx). The B.C. imply:

0 = y ′(0) = c2 ⇒ y(x) = c1 cos(µx),

y ′(x) = −c1µ sin(µx).

0 = y ′(8) = c1µ sin(µ8), c1 6= 0 ⇒ sin(µ8) = 0.

8µ = nπ, ⇒ µ =
nπ

8
.

Then, choosing c1 = 1, for n = 1, 2, · · · holds

λ =
(nπ

8

)2
, yn(x) = cos

(nπx

8

)
.



Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y ′(0) = 0, y ′(8) = 0.

Solution: Case λ > 0. Then, y(x) = c1 cos(µx) + c2 sin(µx).

Then, y ′(x) = −c1µ sin(µx) + c2µ cos(µx). The B.C. imply:

0 = y ′(0) = c2 ⇒ y(x) = c1 cos(µx), y ′(x) = −c1µ sin(µx).

0 = y ′(8) = c1µ sin(µ8), c1 6= 0 ⇒ sin(µ8) = 0.

8µ = nπ, ⇒ µ =
nπ

8
.

Then, choosing c1 = 1, for n = 1, 2, · · · holds

λ =
(nπ

8

)2
, yn(x) = cos

(nπx

8

)
.



Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y ′(0) = 0, y ′(8) = 0.

Solution: Case λ > 0. Then, y(x) = c1 cos(µx) + c2 sin(µx).

Then, y ′(x) = −c1µ sin(µx) + c2µ cos(µx). The B.C. imply:

0 = y ′(0) = c2 ⇒ y(x) = c1 cos(µx), y ′(x) = −c1µ sin(µx).

0 = y ′(8) = c1µ sin(µ8),

c1 6= 0 ⇒ sin(µ8) = 0.

8µ = nπ, ⇒ µ =
nπ

8
.

Then, choosing c1 = 1, for n = 1, 2, · · · holds

λ =
(nπ

8

)2
, yn(x) = cos

(nπx

8

)
.



Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y ′(0) = 0, y ′(8) = 0.

Solution: Case λ > 0. Then, y(x) = c1 cos(µx) + c2 sin(µx).

Then, y ′(x) = −c1µ sin(µx) + c2µ cos(µx). The B.C. imply:

0 = y ′(0) = c2 ⇒ y(x) = c1 cos(µx), y ′(x) = −c1µ sin(µx).

0 = y ′(8) = c1µ sin(µ8), c1 6= 0

⇒ sin(µ8) = 0.

8µ = nπ, ⇒ µ =
nπ

8
.

Then, choosing c1 = 1, for n = 1, 2, · · · holds

λ =
(nπ

8

)2
, yn(x) = cos

(nπx

8

)
.



Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y ′(0) = 0, y ′(8) = 0.

Solution: Case λ > 0. Then, y(x) = c1 cos(µx) + c2 sin(µx).

Then, y ′(x) = −c1µ sin(µx) + c2µ cos(µx). The B.C. imply:

0 = y ′(0) = c2 ⇒ y(x) = c1 cos(µx), y ′(x) = −c1µ sin(µx).

0 = y ′(8) = c1µ sin(µ8), c1 6= 0 ⇒ sin(µ8) = 0.

8µ = nπ, ⇒ µ =
nπ

8
.

Then, choosing c1 = 1, for n = 1, 2, · · · holds

λ =
(nπ

8

)2
, yn(x) = cos

(nπx

8

)
.



Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y ′(0) = 0, y ′(8) = 0.

Solution: Case λ > 0. Then, y(x) = c1 cos(µx) + c2 sin(µx).

Then, y ′(x) = −c1µ sin(µx) + c2µ cos(µx). The B.C. imply:

0 = y ′(0) = c2 ⇒ y(x) = c1 cos(µx), y ′(x) = −c1µ sin(µx).

0 = y ′(8) = c1µ sin(µ8), c1 6= 0 ⇒ sin(µ8) = 0.

8µ = nπ,

⇒ µ =
nπ

8
.

Then, choosing c1 = 1, for n = 1, 2, · · · holds

λ =
(nπ

8

)2
, yn(x) = cos

(nπx

8

)
.



Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y ′(0) = 0, y ′(8) = 0.

Solution: Case λ > 0. Then, y(x) = c1 cos(µx) + c2 sin(µx).

Then, y ′(x) = −c1µ sin(µx) + c2µ cos(µx). The B.C. imply:

0 = y ′(0) = c2 ⇒ y(x) = c1 cos(µx), y ′(x) = −c1µ sin(µx).

0 = y ′(8) = c1µ sin(µ8), c1 6= 0 ⇒ sin(µ8) = 0.

8µ = nπ, ⇒ µ =
nπ

8
.

Then, choosing c1 = 1, for n = 1, 2, · · · holds

λ =
(nπ

8

)2
, yn(x) = cos

(nπx

8

)
.



Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y ′(0) = 0, y ′(8) = 0.

Solution: Case λ > 0. Then, y(x) = c1 cos(µx) + c2 sin(µx).

Then, y ′(x) = −c1µ sin(µx) + c2µ cos(µx). The B.C. imply:

0 = y ′(0) = c2 ⇒ y(x) = c1 cos(µx), y ′(x) = −c1µ sin(µx).

0 = y ′(8) = c1µ sin(µ8), c1 6= 0 ⇒ sin(µ8) = 0.

8µ = nπ, ⇒ µ =
nπ

8
.

Then, choosing c1 = 1, for n = 1, 2, · · · holds

λ =
(nπ

8

)2
,

yn(x) = cos
(nπx

8

)
.



Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y ′(0) = 0, y ′(8) = 0.

Solution: Case λ > 0. Then, y(x) = c1 cos(µx) + c2 sin(µx).

Then, y ′(x) = −c1µ sin(µx) + c2µ cos(µx). The B.C. imply:

0 = y ′(0) = c2 ⇒ y(x) = c1 cos(µx), y ′(x) = −c1µ sin(µx).

0 = y ′(8) = c1µ sin(µ8), c1 6= 0 ⇒ sin(µ8) = 0.

8µ = nπ, ⇒ µ =
nπ

8
.

Then, choosing c1 = 1, for n = 1, 2, · · · holds

λ =
(nπ

8

)2
, yn(x) = cos

(nπx

8

)
.



Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y ′(0) = 0, y ′(8) = 0.

Solution: The case λ = 0. The general solution is

y(x) = c1 + c2x .

The B.C. imply:

0 = y ′(0) = c2 ⇒ y(x) = c1, y ′(x) = 0.

0 = y ′(8) = 0.

Then, choosing c1 = 1, holds,

λ = 0, y0(x) = 1. C



Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y ′(0) = 0, y ′(8) = 0.

Solution: The case λ = 0. The general solution is

y(x) = c1 + c2x .

The B.C. imply:

0 = y ′(0)

= c2 ⇒ y(x) = c1, y ′(x) = 0.

0 = y ′(8) = 0.

Then, choosing c1 = 1, holds,

λ = 0, y0(x) = 1. C



Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y ′(0) = 0, y ′(8) = 0.

Solution: The case λ = 0. The general solution is

y(x) = c1 + c2x .

The B.C. imply:

0 = y ′(0) = c2

⇒ y(x) = c1, y ′(x) = 0.

0 = y ′(8) = 0.

Then, choosing c1 = 1, holds,

λ = 0, y0(x) = 1. C



Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y ′(0) = 0, y ′(8) = 0.

Solution: The case λ = 0. The general solution is

y(x) = c1 + c2x .

The B.C. imply:

0 = y ′(0) = c2 ⇒ y(x) = c1,

y ′(x) = 0.

0 = y ′(8) = 0.

Then, choosing c1 = 1, holds,

λ = 0, y0(x) = 1. C



Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y ′(0) = 0, y ′(8) = 0.

Solution: The case λ = 0. The general solution is

y(x) = c1 + c2x .

The B.C. imply:

0 = y ′(0) = c2 ⇒ y(x) = c1, y ′(x) = 0.

0 = y ′(8) = 0.

Then, choosing c1 = 1, holds,

λ = 0, y0(x) = 1. C



Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y ′(0) = 0, y ′(8) = 0.

Solution: The case λ = 0. The general solution is

y(x) = c1 + c2x .

The B.C. imply:

0 = y ′(0) = c2 ⇒ y(x) = c1, y ′(x) = 0.

0 = y ′(8)

= 0.

Then, choosing c1 = 1, holds,

λ = 0, y0(x) = 1. C



Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y ′(0) = 0, y ′(8) = 0.

Solution: The case λ = 0. The general solution is

y(x) = c1 + c2x .

The B.C. imply:

0 = y ′(0) = c2 ⇒ y(x) = c1, y ′(x) = 0.

0 = y ′(8) = 0.

Then, choosing c1 = 1, holds,

λ = 0, y0(x) = 1. C



Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y ′(0) = 0, y ′(8) = 0.

Solution: The case λ = 0. The general solution is

y(x) = c1 + c2x .

The B.C. imply:

0 = y ′(0) = c2 ⇒ y(x) = c1, y ′(x) = 0.

0 = y ′(8) = 0.

Then, choosing c1 = 1, holds,

λ = 0,

y0(x) = 1. C



Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y ′(0) = 0, y ′(8) = 0.

Solution: The case λ = 0. The general solution is

y(x) = c1 + c2x .

The B.C. imply:

0 = y ′(0) = c2 ⇒ y(x) = c1, y ′(x) = 0.

0 = y ′(8) = 0.

Then, choosing c1 = 1, holds,

λ = 0, y0(x) = 1. C



A Boundary Value Problem.

Example

Find the solution of the BVP

y ′′ + y = 0, y ′(0) = 1, y(π/3) = 0.

Solution: y(x) = erx implies that r is solution of

p(r) = r2 + µ2 = 0 ⇒ r± = ±i .

The general solution is y(x) = c1 cos(x) + c2 sin(x).

Then, y ′(x) = −c1 sin(x) + c2 cos(x). The B.C. imply:

1 = y ′(0) = c2 ⇒ y(x) = c1 cos(x) + sin(x).

0 = y(π/3) = c1 cos(π/3) + sin(π/3) ⇒ c1 = − sin(π/3)

cos(π/3)
.

c1 = −
√

3/2

1/2
= −

√
3 ⇒ y(x) = −

√
3 cos(x) + sin(x). C
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Review for Final Exam.

I Fourier Series expansions (Chptr.6).

I Eigenvalue-Eigenfunction BVP (Chptr. 6).

I Systems of linear Equations (Chptr. 5).

I Laplace transforms (Chptr. 4).

I Power Series Methods (Chptr. 3).

I Second order linear equations (Chptr. 2).

I First order differential equations (Chptr. 1).



Systems of linear Equations.

Summary: Find solutions of x′ = A x, with A a 2× 2 matrix.

First find the eigenvalues λi and the eigenvectors v(i) of A.

(a) If λ1 6= λ2, real, then {v(1), v(2)} are linearly independent, and
the general solution is x(x) = c1 v(1) eλ1t + c2 v(2) eλ2t .

(b) If λ1 6= λ2, complex, then denoting λ± = α± βi and
v(±) = a± bi , the complex-valued fundamental solutions

x(±) = (a± bi) e(α±βi)t

x(±) = eαt (a± bi)
[
cos(βt) + i sin(βt)

]
.

x(±) = eαt
[
a cos(βt)−b sin(βt)

]
± ieαt

[
a sin(βt)+b cos(βt)

]
.

Real-valued fundamental solutions are

x(1) = eαt
[
a cos(βt)− b sin(βt)

]
,

x(2) = eαt
[
a sin(βt) + b cos(βt)

]
.
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(d) If λ1 = λ2 = λ, real, and there is only one eigendirection v,
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Systems of linear Equations.

Example

Find the solution to: x′ = A x, x(0) =

[
3
2

]
, A =

[
1 4
2 −1

]
.

Solution:

p(λ) =

∣∣∣∣(1− λ) 4
2 (−1− λ)

∣∣∣∣ = (λ− 1)(λ+ 1)− 8 = λ2 − 1− 8,

p(λ) = λ2 − 9 = 0 ⇒ λ± = ±3.

Case λ+ = 3,

A− 3I =

[
−2 4
2 −4

]
→

[
1 −2
0 0

]
⇒ v1 = 2v2 ⇒ v(+) =

[
2
1

]
Case λ− = −3,

A + 3I =

[
4 4
2 2

]
→

[
1 1
0 0

]
⇒ v1 = −v2 ⇒ v(−) =

[
−1
1

]
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Review for Final Exam.

I Fourier Series expansions (Chptr.6).

I Eigenvalue-Eigenfunction BVP (Chptr. 6).

I Systems of linear Equations (Chptr. 5).

I Laplace transforms (Chptr. 4).

I Power Series Methods (Chptr. 3).

I Second order linear equations (Chptr. 2).

I First order differential equations (Chptr. 1).



Laplace transforms.

Summary:

I Main Properties:

L
[
f (n)(t)

]
= sn L[f (t)]− s(n−1) f (0)− · · · − f (n−1)(0); (18)

e−cs L[f (t)] = L[uc(t) f (t − c)]; (13)

L[f (t)]
∣∣∣
(s−c)

= L[ect f (t)]. (14)

I Convolutions:

L[(f ∗ g)(t)] = L[f (t)]L[g(t)].

I Partial fraction decompositions, completing the squares.
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Laplace transforms.

Example

Use L.T. to find the solution to the IVP

y ′′ + 9y = u5(t), y(0) = 3, y ′(0) = 2.

Solution: Compute L[y ′′] + 9L[y ] = L[u5(t)] =
e−5s

s
, and recall,

L[y ′′] = s2 L[y ]− s y(0)− y ′(0) ⇒ L[y ′′] = s2 L[y ]− 3s − 2.

(s2 + 9)L[y ]− 3s − 2 =
e−5s

s

L[y ] =
(3s + 2)

(s2 + 9)
+ e−5s 1

s(s2 + 9)
.

L[y ] = 3
s

(s2 + 9)
+

2

3

3

(s2 + 9)
+ e−5s 1

s(s2 + 9)
.



Laplace transforms.

Example

Use L.T. to find the solution to the IVP

y ′′ + 9y = u5(t), y(0) = 3, y ′(0) = 2.

Solution: Compute L[y ′′] + 9L[y ] = L[u5(t)]

=
e−5s

s
, and recall,

L[y ′′] = s2 L[y ]− s y(0)− y ′(0) ⇒ L[y ′′] = s2 L[y ]− 3s − 2.

(s2 + 9)L[y ]− 3s − 2 =
e−5s

s

L[y ] =
(3s + 2)

(s2 + 9)
+ e−5s 1

s(s2 + 9)
.

L[y ] = 3
s

(s2 + 9)
+

2

3

3

(s2 + 9)
+ e−5s 1

s(s2 + 9)
.



Laplace transforms.

Example

Use L.T. to find the solution to the IVP

y ′′ + 9y = u5(t), y(0) = 3, y ′(0) = 2.

Solution: Compute L[y ′′] + 9L[y ] = L[u5(t)] =
e−5s

s
,

and recall,

L[y ′′] = s2 L[y ]− s y(0)− y ′(0) ⇒ L[y ′′] = s2 L[y ]− 3s − 2.

(s2 + 9)L[y ]− 3s − 2 =
e−5s

s

L[y ] =
(3s + 2)

(s2 + 9)
+ e−5s 1

s(s2 + 9)
.

L[y ] = 3
s

(s2 + 9)
+

2

3

3

(s2 + 9)
+ e−5s 1

s(s2 + 9)
.



Laplace transforms.

Example

Use L.T. to find the solution to the IVP

y ′′ + 9y = u5(t), y(0) = 3, y ′(0) = 2.

Solution: Compute L[y ′′] + 9L[y ] = L[u5(t)] =
e−5s

s
, and recall,

L[y ′′] = s2 L[y ]− s y(0)− y ′(0)

⇒ L[y ′′] = s2 L[y ]− 3s − 2.

(s2 + 9)L[y ]− 3s − 2 =
e−5s

s

L[y ] =
(3s + 2)

(s2 + 9)
+ e−5s 1

s(s2 + 9)
.

L[y ] = 3
s

(s2 + 9)
+

2

3

3

(s2 + 9)
+ e−5s 1

s(s2 + 9)
.



Laplace transforms.

Example

Use L.T. to find the solution to the IVP

y ′′ + 9y = u5(t), y(0) = 3, y ′(0) = 2.

Solution: Compute L[y ′′] + 9L[y ] = L[u5(t)] =
e−5s

s
, and recall,

L[y ′′] = s2 L[y ]− s y(0)− y ′(0) ⇒ L[y ′′] = s2 L[y ]− 3s − 2.

(s2 + 9)L[y ]− 3s − 2 =
e−5s

s

L[y ] =
(3s + 2)

(s2 + 9)
+ e−5s 1

s(s2 + 9)
.

L[y ] = 3
s

(s2 + 9)
+

2

3

3

(s2 + 9)
+ e−5s 1

s(s2 + 9)
.



Laplace transforms.

Example

Use L.T. to find the solution to the IVP

y ′′ + 9y = u5(t), y(0) = 3, y ′(0) = 2.

Solution: Compute L[y ′′] + 9L[y ] = L[u5(t)] =
e−5s

s
, and recall,

L[y ′′] = s2 L[y ]− s y(0)− y ′(0) ⇒ L[y ′′] = s2 L[y ]− 3s − 2.

(s2 + 9)L[y ]− 3s − 2 =
e−5s

s

L[y ] =
(3s + 2)

(s2 + 9)
+ e−5s 1

s(s2 + 9)
.

L[y ] = 3
s

(s2 + 9)
+

2

3

3

(s2 + 9)
+ e−5s 1

s(s2 + 9)
.



Laplace transforms.

Example

Use L.T. to find the solution to the IVP

y ′′ + 9y = u5(t), y(0) = 3, y ′(0) = 2.

Solution: Compute L[y ′′] + 9L[y ] = L[u5(t)] =
e−5s

s
, and recall,

L[y ′′] = s2 L[y ]− s y(0)− y ′(0) ⇒ L[y ′′] = s2 L[y ]− 3s − 2.

(s2 + 9)L[y ]− 3s − 2 =
e−5s

s

L[y ] =
(3s + 2)

(s2 + 9)
+ e−5s 1

s(s2 + 9)
.

L[y ] = 3
s

(s2 + 9)
+

2

3

3

(s2 + 9)
+ e−5s 1

s(s2 + 9)
.



Laplace transforms.

Example

Use L.T. to find the solution to the IVP

y ′′ + 9y = u5(t), y(0) = 3, y ′(0) = 2.

Solution: Compute L[y ′′] + 9L[y ] = L[u5(t)] =
e−5s

s
, and recall,

L[y ′′] = s2 L[y ]− s y(0)− y ′(0) ⇒ L[y ′′] = s2 L[y ]− 3s − 2.

(s2 + 9)L[y ]− 3s − 2 =
e−5s

s

L[y ] =
(3s + 2)

(s2 + 9)
+ e−5s 1

s(s2 + 9)
.

L[y ] = 3
s

(s2 + 9)
+

2

3

3

(s2 + 9)
+ e−5s 1

s(s2 + 9)
.
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Example

Use L.T. to find the solution to the IVP

y ′′ + 9y = u5(t), y(0) = 3, y ′(0) = 2.

Solution: Recall L[y ] = 3
s

(s2 + 9)
+

2

3

3

(s2 + 9)
+ e−5s 1

s(s2 + 9)
.

L[y ] = 3L[cos(3t)] +
2

3
L[sin(3t)] + e−5s 1

s(s2 + 9)
.
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Review for Final Exam.

I Fourier Series expansions (Chptr.6).

I Eigenvalue-Eigenfunction BVP (Chptr. 6).

I Systems of linear Equations (Chptr. 5).

I Laplace transforms (Chptr. 4).

I Power Series Methods (Chptr. 3).

I Second order linear equations (Chptr. 2).

I First order differential equations (Chptr. 1).



Power series solutions (Chptr. 3).

Summary: Solve: a(x) y ′′ + b(x) y ′ + c(x) y = 0 near x0.

(a) If x0 is a regular point, then y(x) =
∞∑

n=0

an (x − x0)
n.

Find a recurrence relation for an.

(b) If x0 is a regular-singular point, y(x) =
∞∑

n=0

an (x − x0)
(n+r).

Find a recurrence relation for an and indicial equation for r .

(c) Euler equation: (x − x0)
2 y ′′ + α (x − x0) y ′ + β y = 0.

Solutions: If y(x) = |x − x0|r , then r is solution of the indicial
equation p(r) = r(r − 1) + αr + β = 0.
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Power series solutions (Chptr. 3).
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(i) If r1 6= r2, reals, then the general solution is
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(ii) If r1 6= r2, complex, denote them as r± = λ± µi . Then, the
real-valued general solution is

y(x) = c1 |x − x0|λ cos
(
µ ln |x − x0|

)
+ c2 |x − x0|λ sin

(
µ ln |x − x0|

)
.

(iii) If r1 = r2 = r , real, then the general solution is

y(x) =
(
c1 + c2 ln |x − x0|

)
|x − x0|r .
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Power series solutions (Chptr. 3).

Example

Find the recurrence relation for the coefficients of the power series
solution centered at x0 = 0 of the equation y ′′ − 3y ′ + xy = 0.

Solution: x0 = 0 is a regular point of the differential equation.

Therefore, y(x) =
∞∑

n=0

an xn ⇒ xy =
∞∑

n=0

an x (n+1).

y ′(x) =
∞∑

n=0

nan x (n−1) ⇒ −3y =
∞∑

n=0

(−3n)an x (n−1).

y ′′(x) =
∞∑

n=0

n(n − 1)an x (n−2).

∞∑
n=0

n(n − 1)an x (n−2) +
∞∑

n=0

(−3n)an x (n−1) +
∞∑

n=0

an x (n+1) = 0.
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Power series solutions (Chptr. 3).

Example

Find the first two terms on the power series expansion around
x0 = 0 of each fundamental solution of y ′′ − 3y ′ + xy = 0.

Solution: Recall: 2a2 − 3a1 = 0, and

(n + 2)(n + 1)an+2 − 3(n + 1)an+1 + an−1 = 0, n > 1.

Therefore, a2 =
3

2
a1, and n = 1 in the other equation implies

(3)(2)a3 − 3(2)a2 + a0 = 0 ⇒ a3 = a2 −
a0

6
.

Using the equation for a2 we obtain a3 =
3

2
a1 −

a0

6
.

y(x) = a0 + a1x + a2x
2 + a3x

3 + · · ·

y(x) = a0 + a1x +
3

2
a1x

2 +
(3

2
a1 −

a0

6

)
x3 + · · ·
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Review for Final Exam.

I Fourier Series expansions (Chptr. 6).

I Eigenvalue-Eigenfunction BVP (Chptr. 6).

I Systems of linear Equations (Chptr. 5).

I Laplace transforms (Chptr. 4).

I Power Series Methods (Chptr. 3).

I Second order linear equations (Chptr. 2).

I First order differential equations (Chptr. 1).



Second order linear equations.

Summary: Solve y ′′ + a1 y ′ + a0 y = g(t).

First find fundamental solutions y(t) = ert to the case g = 0,
where r is a root of p(r) = r2 + a1r + a0.

(a) If r1 6= r2, real, then the general solution is

y(t) = c1 er1t + c2 er2t .

(b) If r1 6= r2, complex, then denoting r± = α± βi ,
complex-valued fundamental solutions are

y±(t) = e(α±βi)t ⇔ y±(t) = eαt
[
cos(βt)± i sin(βt)

]
,

and real-valued fundamental solutions are

y1(t) = eαt cos(βt), y2(t) = eαt sin(βt).

If r1 = r2 = r , real, then the general solution is

y(t) = (c1 + c2t) ert .
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Second order linear equations.

Remark: Case (c) is solved using the reduction of order method.

See page 170 in the textbook. Do the extra homework problems
Sect. 3.4: 23, 25, 27.

Summary:
Non-homogeneous equations: g 6= 0.

(i) Undetermined coefficients: Guess the particular solution yp

using the guessing table, g → yp.

(ii) Variation of parameters: If y1 and y2 are fundamental
solutions to the homogeneous equation, and W is their
Wronskian, then yp = u1y1 + u2y2, where

u′1 = −y2g

W
, u′2 =

y1g

W
.
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using the guessing table, g → yp.
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Second order linear equations.

Example

Knowing that y1(x) = x2 solves x2 y ′′ − 4x y ′ + 6y = 0, with
x > 0, find a second solution y2 not proportional to y1.

Solution: Use the reduction of order method. We verify that
y1 = x2 solves the equation,

x2 (2)− 4x (2x) + 6x2 = 0.

Look for a solution y2(x) = v(x) y1(x), and find an equation for v .

y2 = x2v , y ′2 = x2v ′ + 2xv , y ′′2 = x2v ′′ + 4xv ′ + 2v .

x2(x2v ′′ + 4xv ′ + 2v)− 4x (x2v ′ + 2xv) + 6 (x2v) = 0.

x4v ′′ + (4x3 − 4x3) v ′ + (2x2 − 8x2 + 6x2) v = 0.

v ′′ = 0 ⇒ v = c1 + c2x ⇒ y2 = c1y1 + c2x y1.

Choose c1 = 0, c2 = 1. Hence y2(x) = x3, and y1(x) = x2. C
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Second order linear equations.

Example

Find the solution y to the initial value problem

y ′′ − 2y ′ − 3y = 3 e−t , y(0) = 1, y ′(0) =
1

4
.

Solution: (1) Solve the homogeneous equation.

y(t) = ert , p(r) = r2 − 2r − 3 = 0.

r± =
1

2

[
2±

√
4 + 12

]
=

1

2

[
2±

√
16

]
= 1± 2 ⇒

{
r+ = 3,

r− = −1.

Fundamental solutions: y1(t) = e3t and y2(t) = e−t .

(2) Guess yp. Since g(t) = 3 e−t ⇒ yp(t) = k e−t .

But this yp = k e−t is solution of the homogeneous equation.

Then propose yp(t) = kt e−t .
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Review for Final Exam.

I Fourier Series expansions (Chptr.6).

I Eigenvalue-Eigenfunction BVP (Chptr. 6).

I Systems of linear Equations (Chptr. 5).

I Laplace transforms (Chptr. 4).

I Power Series Methods (Chptr. 3).

I Second order linear equations (Chptr. 2).

I First order differential equations (Chptr. 1).



First order differential equations.

Summary:

I Linear, first order equations: y ′ + p(t) y = q(t).

Use the integrating factor method: µ(t) = e
R

p(t) dt .

I Separable, non-linear equations: h(y) y ′ = g(t).

Integrate with the substitution: u = y(t), du = y ′(t) dt,
that is, ∫

h(u) du =

∫
g(t) dt + c .

The solution can be found in implicit of explicit form.

I Homogeneous equations can be converted into separable
equations.

I Applications: Modeling problems from Sect. 2.3.
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First order differential equations.

Summary:

I Bernoulli equations: y ′ + p(t) y = q(t) yn, with n ∈ R.

Read page 77 in the textbook, page 11 in the Lecture Notes.

A Bernoulli equation for y can be converted into a linear

equation for v =
1

yn−1
.

I Exact equations and integrating factors.

N(x , y) y ′ + M(x , y) = 0.

The equation is exact iff ∂xN = ∂yM.

If the equation is exact, then there is a potential function ψ,
such that N = ∂yψ and M = ∂xψ.

The solution of the differential equation is

ψ
(
x , y(x)

)
= c .
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First order differential equations.

Advice: In order to find out what type of equation is the one you
have to solve, check from simple types to the more difficult types:

1. Linear equations.
(Just by looking at it: y ′ + a(t) y = b(t).)

2. Bernoulli equations.
(Just by looking at it: y ′ + a(t) y = b(t) yn.)

3. Separable equations.
(Few manipulations: h(y) y ′ = g(t).)

4. Homogeneous equations.
(Several manipulations: y ′ = F (y/t).)

5. Exact equations.
(Check one equation: N y ′ + M = 0, and ∂tN = ∂yM.)

6. Exact equation with integrating factor.
(Very complicated to check.)



First order differential equations.

Advice: In order to find out what type of equation is the one you
have to solve, check from simple types to the more difficult types:

1. Linear equations.
(Just by looking at it: y ′ + a(t) y = b(t).)

2. Bernoulli equations.
(Just by looking at it: y ′ + a(t) y = b(t) yn.)

3. Separable equations.
(Few manipulations: h(y) y ′ = g(t).)

4. Homogeneous equations.
(Several manipulations: y ′ = F (y/t).)

5. Exact equations.
(Check one equation: N y ′ + M = 0, and ∂tN = ∂yM.)

6. Exact equation with integrating factor.
(Very complicated to check.)



First order differential equations.

Advice: In order to find out what type of equation is the one you
have to solve, check from simple types to the more difficult types:

1. Linear equations.
(Just by looking at it: y ′ + a(t) y = b(t).)

2. Bernoulli equations.
(Just by looking at it: y ′ + a(t) y = b(t) yn.)

3. Separable equations.
(Few manipulations: h(y) y ′ = g(t).)

4. Homogeneous equations.
(Several manipulations: y ′ = F (y/t).)

5. Exact equations.
(Check one equation: N y ′ + M = 0, and ∂tN = ∂yM.)

6. Exact equation with integrating factor.
(Very complicated to check.)



First order differential equations.

Advice: In order to find out what type of equation is the one you
have to solve, check from simple types to the more difficult types:

1. Linear equations.
(Just by looking at it: y ′ + a(t) y = b(t).)

2. Bernoulli equations.
(Just by looking at it: y ′ + a(t) y = b(t) yn.)

3. Separable equations.
(Few manipulations: h(y) y ′ = g(t).)

4. Homogeneous equations.
(Several manipulations: y ′ = F (y/t).)

5. Exact equations.
(Check one equation: N y ′ + M = 0, and ∂tN = ∂yM.)

6. Exact equation with integrating factor.
(Very complicated to check.)



First order differential equations.

Advice: In order to find out what type of equation is the one you
have to solve, check from simple types to the more difficult types:

1. Linear equations.
(Just by looking at it: y ′ + a(t) y = b(t).)

2. Bernoulli equations.
(Just by looking at it: y ′ + a(t) y = b(t) yn.)

3. Separable equations.
(Few manipulations: h(y) y ′ = g(t).)

4. Homogeneous equations.
(Several manipulations: y ′ = F (y/t).)

5. Exact equations.
(Check one equation: N y ′ + M = 0, and ∂tN = ∂yM.)

6. Exact equation with integrating factor.
(Very complicated to check.)



First order differential equations.

Advice: In order to find out what type of equation is the one you
have to solve, check from simple types to the more difficult types:

1. Linear equations.
(Just by looking at it: y ′ + a(t) y = b(t).)

2. Bernoulli equations.
(Just by looking at it: y ′ + a(t) y = b(t) yn.)

3. Separable equations.
(Few manipulations: h(y) y ′ = g(t).)

4. Homogeneous equations.
(Several manipulations: y ′ = F (y/t).)

5. Exact equations.
(Check one equation: N y ′ + M = 0, and ∂tN = ∂yM.)

6. Exact equation with integrating factor.
(Very complicated to check.)



First order differential equations.

Advice: In order to find out what type of equation is the one you
have to solve, check from simple types to the more difficult types:

1. Linear equations.
(Just by looking at it: y ′ + a(t) y = b(t).)

2. Bernoulli equations.
(Just by looking at it: y ′ + a(t) y = b(t) yn.)

3. Separable equations.
(Few manipulations: h(y) y ′ = g(t).)

4. Homogeneous equations.
(Several manipulations: y ′ = F (y/t).)

5. Exact equations.
(Check one equation: N y ′ + M = 0, and ∂tN = ∂yM.)

6. Exact equation with integrating factor.
(Very complicated to check.)



First order differential equations.

Example

Find all solutions of y ′ =
x2 + xy + y2

xy
.

Solution: The sum of the powers in x and y on every term is the
same number, two in this example. The equation is homogeneous.

y ′ =
x2 + xy + y2

xy

(1/x2)

(1/x2)
⇒ y ′ =

1 + ( y
x ) + ( y

x )2

( y
x )

.

v(x) =
y

x
⇒ y ′ =

1 + v + v2

v
.

y = x v , y ′ = x v ′ + v x v ′ + v =
1 + v + v2

v
.

x v ′ =
1 + v + v2

v
− v =

1 + v + v2 − v2

v
⇒ x v ′ =

1 + v

v
.
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First order differential equations.

Example

Find the solution y to the initial value problem

y ′ + y + e2x y3 = 0, y(0) =
1

3
.

Solution: This is a Bernoulli equation, y ′ + y = −e2x yn, n = 3.

Divide by y3. That is,
y ′

y3
+

1

y2
= −e2x .

Let v =
1

y2
. Since v ′ = −2

y ′

y3
, we obtain −1

2
v ′ + v = −e2x .

We obtain the linear equation v ′ − 2v = 2e2x .

Use the integrating factor method. µ(x) = e−2x .

e−2x v ′ − 2 e−2x v = 2 ⇒
(
e−2x v

)′
= 2.
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First order differential equations.

Example

Find all solutions of 2xy2 + 2y + 2x2y y ′ + 2x y ′ = 0.

Solution: Re-write the equation is a more organized way,

[2x2y + 2x ] y ′ + [2xy2 + 2y ] = 0.

N = [2x2y + 2x ] ⇒ ∂xN = 4xy + 2.

M = [2xy2 + 2y ] ⇒ ∂yM = 4xy + 2.

}
⇒ ∂xN = ∂yM.

The equation is exact. There exists a potential function ψ with

∂yψ = N, ∂xψ = M.

∂yψ = 2x2y + 2x ⇒ ψ(x , y) = x2y2 + 2xy + g(x).

2xy2 + 2y + g ′(x) = ∂xψ = M = 2xy2 + 2y ⇒ g ′(x) = 0.

ψ(x , y) = x2y2 + 2xy + c , x2 y2(x) + 2x y(x) + c = 0. C
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