- Review: Classification of 2×2 diagonalizable systems.
- Review: The case of diagonalizable matrices.
- The algebraic multiplicity of an eigenvalue.
- Non-diagonalizable matrices with a repeated eigenvalue.
- Phase portraits for 2×2 systems.

Review: Classification of 2×2 diagonalizable systems.

Remark:

Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.
(a) $\lambda_{1} \neq \lambda_{2}$, real-valued. Hence, A has two non-proportional eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ (eigen-directions), (Section 5.7).
(b) $\lambda_{1}=\bar{\lambda}_{2}$, complex-valued. Hence, A has two non-proportional eigenvectors $\mathbf{v}_{1}=\overline{\mathbf{v}}_{2}$, (Section 5.8).
(c-1) $\lambda_{1}=\lambda_{2}$ real-valued with two non-proportional eigenvectors \mathbf{v}_{1}, \mathbf{v}_{2}, (Section 5.9).

Remark:

(c-2) $\lambda_{1}=\lambda_{2}$ real-valued with only one eigen-direction. Hence, A is not diagonalizable, (Section 5.9).

- Review: Classification of 2×2 diagonalizable systems.
- Review: The case of diagonalizable matrices.
- The algebraic multiplicity of an eigenvalue.
- Non-diagonalizable matrices with a repeated eigenvalue.
- Phase portraits for 2×2 systems.

Review: The case of diagonalizable matrices.

Theorem (Diagonalizable matrix)
If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$ and corresponding eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)
$$

is given by the expression below, where $c_{1}, \cdots, c_{n} \in \mathbb{R}$,

$$
\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+\cdots+c_{n} \mathbf{v}_{n} e^{\lambda_{n} t}
$$

- Review: Classification of 2×2 diagonalizable systems.
- Review: The case of diagonalizable matrices.
- The algebraic multiplicity of an eigenvalue.
- Non-diagonalizable matrices with a repeated eigenvalue.
- Phase portraits for 2×2 systems.

The algebraic multiplicity of an eigenvalue.

Definition

Let $\left\{\lambda_{1}, \cdots, \lambda_{k}\right\}$ be the set of eigenvalues of an $n \times n$ matrix, where $1 \leqslant k \leqslant n$, hence the characteristic polynomial is

$$
p(\lambda)=(-1)^{n}\left(\lambda-\lambda_{1}\right)^{r_{1}} \cdots\left(\lambda-\lambda_{k}\right)^{r_{k}} .
$$

The positive integer r_{i}, for $i=1, \cdots, k$, is called the algebraic multiplicity of the eigenvalue λ_{i}. The eigenvalue λ_{i} is called repeated iff $r_{i}>1$.

Remark:

- A matrix with repeated eigenvalues may or may not be diagonalizable.
- Equivalently: An $n \times n$ matrix with repeated eigenvalues may or may not have a linearly independent set of n eigenvectors.

The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

$$
A=\left[\begin{array}{lll}
3 & 0 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right], \quad B=\left[\begin{array}{lll}
3 & 1 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right] .
$$

Solution: The eigenvalues of A are the solutions of

$$
\left|\begin{array}{ccc}
(3-\lambda) & 0 & 1 \\
0 & (3-\lambda) & 2 \\
0 & 0 & (1-\lambda)
\end{array}\right|=-(\lambda-3)^{2}(\lambda-1)=0,
$$

We conclude: $\lambda_{1}=3, r_{1}=2$, and $\lambda_{2}=1, r_{2}=1$.
Verify that the eigenvalues are: $\left.\left\{\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ -2 \\ 2\end{array}\right]\right\}$.
We conclude: A is diagonalizable.

The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

$$
A=\left[\begin{array}{lll}
3 & 0 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right], \quad B=\left[\begin{array}{lll}
3 & 1 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right] .
$$

Solution: The eigenvalues of B are the solutions of

$$
\left|\begin{array}{ccc}
(3-\lambda) & 1 & 1 \\
0 & (3-\lambda) & 2 \\
0 & 0 & (1-\lambda)
\end{array}\right|=-(\lambda-3)^{2}(\lambda-1)=0,
$$

We conclude: $\lambda_{1}=3, r_{1}=2$, and $\lambda_{2}=1, r_{2}=1$.
Verify that the eigenvalues are: $\left.\left\{\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]\right\}$.
We conclude: B is not diagonalizable.

The algebraic multiplicity of an eigenvalue.

Example

Find a fundamental set of solutions to

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t), \quad A=\left[\begin{array}{lll}
3 & 0 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

Solution: Since matrix A is diagonalizable, with eigen-pairs,

$$
\lambda_{1}=3, \quad\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\} \quad \text { and } \quad \lambda_{2}=1, \quad\left\{\left[\begin{array}{c}
-1 \\
-2 \\
2
\end{array}\right]\right\} .
$$

We conclude that a set of fundamental solutions is

$$
\left\{\mathbf{x}_{1}(t)=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] e^{3 t}, \mathbf{x}_{2}(t)=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] e^{3 t}, \mathbf{x}_{3}(t)=\left[\begin{array}{c}
-1 \\
-2 \\
2
\end{array}\right] e^{t}\right\}
$$

Real, repeated eigenvalues (Sect. 5.9)

- Review: Classification of 2×2 diagonalizable systems.
- Review: The case of diagonalizable matrices.
- The algebraic multiplicity of an eigenvalue.
- Non-diagonalizable matrices with a repeated eigenvalue.
- Phase portraits for 2×2 systems.

Non-diagonalizable matrices with a repeated eigenvalue.

Theorem (Repeated eigenvalue)
If λ is an eigenvalue of an $n \times n$ matrix A having algebraic multiplicity $r=2$ and only one associated eigen-direction, then the differential equation

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)
$$

has a linearly independent set of solutions given by

$$
\left\{\mathbf{x}^{(1)}(t)=\mathbf{v} e^{\lambda t}, \quad \mathbf{x}^{(2)}(t)=(\mathbf{v} t+\mathbf{w}) e^{\lambda t}\right\}
$$

where the vector \mathbf{w} is solution of

$$
(A-\lambda I) \mathbf{w}=\mathbf{v}
$$

which always has a solution \mathbf{w}.

Non-diagonalizable matrices with a repeated eigenvalue.

Recall: The case of a single second order equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

with characteristic polynomial

$$
p(r)=r^{2}+a_{1} r+a_{0}=\left(r-r_{1}\right)^{2} .
$$

In this case a fundamental set of solutions is

$$
\left\{y_{1}(t)=e^{r_{1} t}, \quad y_{2}(t)=t e^{r_{1} t}\right\}
$$

This is not the case with systems of first order linear equations,

$$
\left\{\mathbf{x}^{(1)}(t)=\mathbf{v} e^{\lambda t}, \quad \mathbf{x}^{(2)}(t)=(\mathbf{v} t+\mathbf{w}) e^{\lambda t}\right\}
$$

In general, $\mathbf{w} \neq \mathbf{0}$.

Non-diagonalizable matrices with a repeated eigenvalue.

Example

Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Find the eigenvalues of A. Its characteristic polynomial is

$$
p(\lambda)=\left|\begin{array}{cc}
\left(-\frac{3}{2}-\lambda\right) & 1 \\
-\frac{1}{4} & \left(-\frac{1}{2}-\lambda\right)
\end{array}\right|=\left(\lambda+\frac{3}{2}\right)\left(\lambda+\frac{1}{2}\right)+\frac{1}{4} .
$$

So $p(\lambda)=\lambda^{2}+2 \lambda+1=(\lambda+1)^{2}$. The roots and multiplicity are

$$
\lambda=-1, \quad r=2
$$

The corresponding eigenvectors are the solutions of $(A+I) \mathbf{v}=\mathbf{0}$,

$$
\left[\begin{array}{cc}
\left(-\frac{3}{2}+1\right) & 1 \\
-\frac{1}{4} & \left(-\frac{1}{2}+1\right)
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{2} & 1 \\
-\frac{1}{4} & \frac{1}{2}
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -2 \\
1 & -2
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right]
$$

Non-diagonalizable matrices with a repeated eigenvalue.

Example

Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Recall: $\lambda=-1$, with $r=2$, and $(A+I) \rightarrow\left[\begin{array}{cc}1 & -2 \\ 0 & 0\end{array}\right]$.
The eigenvector components satisfy: $v_{1}=2 v_{2}$. We obtain,

$$
\lambda=-1, \quad \mathbf{v}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] v_{2}
$$

We conclude that this eigenvalue has only one eigen-direction.
Matrix A is not diagonalizable.
Theorem above says we need to find \mathbf{w} solution of $(A+I) \mathbf{w}=\mathbf{v}$.

$$
\left[\begin{array}{cc|c}
-\frac{1}{2} & 1 & 2 \\
-\frac{1}{4} & \frac{1}{2} & 1
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
1 & -2 & -4 \\
1 & -2 & -4
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
1 & -2 & -4 \\
0 & 0 & 0
\end{array}\right]
$$

Non-diagonalizable matrices with a repeated eigenvalue.

Example

Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Recall that:
$\lambda=-1, \quad \mathbf{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right] \quad v_{2}$, and $(A+I) \mathbf{w}=\mathbf{v} \Rightarrow\left[\begin{array}{cc|c}1 & -2 & -4 \\ 0 & 0 & 0\end{array}\right]$.
We obtain $w_{1}=2 w_{2}-4$. That is, $\mathbf{w}=\left[\begin{array}{l}2 \\ 1\end{array}\right] w_{2}+\left[\begin{array}{c}-4 \\ 0\end{array}\right]$.
Given a solution \mathbf{w}, then $c \mathbf{v}+\mathbf{w}$ is also a solution, $c \in \mathbb{R}$.
We choose the simplest solution, $w=\left[\begin{array}{c}-4 \\ 0\end{array}\right]$. We conclude,

$$
\mathbf{x}^{(1)}(t)=\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{-t}, \quad \mathbf{x}^{(2)}(t)=\left(\left[\begin{array}{c}
2 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-4 \\
0
\end{array}\right]\right) e^{-t}
$$

Non-diagonalizable matrices with a repeated eigenvalue.

Example

Find the solution \mathbf{x} to the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad A=\frac{1}{4}\left[\begin{array}{cc}
-6 & 4 \\
-1 & -2
\end{array}\right]
$$

Solution: The general solution is

$$
\mathbf{x}(t)=c_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{-t}+c_{2}\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-4 \\
0
\end{array}\right]\right) e^{-t}
$$

The initial condition is $\mathbf{x}(0)=\left[\begin{array}{l}1 \\ 1\end{array}\right]=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{c}-4 \\ 0\end{array}\right]$.

$$
\left[\begin{array}{cc}
2 & -4 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\frac{1}{4}\left[\begin{array}{cc}
0 & 4 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
1 / 4
\end{array}\right]
$$

We conclude: $\mathbf{x}(t)=\left[\begin{array}{l}2 \\ 1\end{array}\right] e^{-t}+\frac{1}{4}\left(\left[\begin{array}{l}2 \\ 1\end{array}\right] t+\left[\begin{array}{c}-4 \\ 0\end{array}\right]\right) e^{-t}$.

Real, repeated eigenvalues (Sect. 5.9)

- Review: Classification of 2×2 diagonalizable systems.
- Review: The case of diagonalizable matrices.
- The algebraic multiplicity of an eigenvalue.
- Non-diagonalizable matrices with a repeated eigenvalue.
- Phase portraits for 2×2 systems.

Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of
$\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution:
We start plotting the vectors

$$
\begin{gathered}
\mathbf{v}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \\
\mathbf{w}=\left[\begin{array}{c}
-4 \\
0
\end{array}\right] .
\end{gathered}
$$

Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of
$\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution:
Now plot the solutions

$$
\begin{gathered}
\mathbf{x}^{(1)}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{-t} \\
\mathbf{x}^{(2)}=\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-4 \\
0
\end{array}\right]\right) e^{-t} .
\end{gathered}
$$

Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of
$\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution:
Now plot the solutions

$$
\begin{array}{ll}
\mathbf{x}^{(1)}, & -\mathbf{x}^{(1)}, \\
\mathbf{x}^{(2)}, & -\mathbf{x}^{(2)},
\end{array}
$$

This is the case $\lambda<0$.

Phase portraits for 2×2 systems.

Example

Given any vectors \mathbf{v} and \mathbf{w}, and any constant λ, plot the phase portraits of the functions

$$
\mathbf{x}^{(1)}(t)=\mathbf{v} e^{\lambda t}, \quad \mathbf{x}^{(2)}(t)=(\mathbf{v} t+\mathbf{w}) e^{\lambda t}
$$

Solution:

The case $\lambda<0$. We plot the functions

$$
\begin{array}{ll}
\mathbf{x}^{(1)}, & -\mathbf{x}^{(1)} \\
\mathbf{x}^{(2)}, & -\mathbf{x}^{(2)}
\end{array}
$$

Phase portraits for 2×2 systems.

Example

Given any vectors \mathbf{v} and \mathbf{w}, and any constant λ, plot the phase portraits of the functions

$$
\mathbf{x}^{(1)}(t)=\mathbf{v} e^{\lambda t}, \quad \mathbf{x}^{(2)}(t)=(\mathbf{v} t+\mathbf{w}) e^{\lambda t}
$$

Solution:
The case $\lambda>0$. We plot the functions

$$
\begin{array}{ll}
\mathbf{x}^{(1)}, & -\mathbf{x}^{(1)}, \\
\mathbf{x}^{(2)}, & -\mathbf{x}^{(2)} .
\end{array}
$$

