The Laplace Transform (Sect. 4.1).

- The definition of the Laplace Transform.
- Review: Improper integrals.
- Examples of Laplace Transforms.
- A table of Laplace Transforms.
- Properties of the Laplace Transform.
- Laplace Transform and differential equations.

The Laplace Transform (Sect. 4.1).

- The definition of the Laplace Transform.
- Review: Improper integrals.
- Examples of Laplace Transforms.
- A table of Laplace Transforms.
- Properties of the Laplace Transform.
- Laplace Transform and differential equations.

The definition of the Laplace Transform.

Definition

The function $F: D_{F} \rightarrow \mathbb{R}$ is the Laplace transform of a function $f:[0, \infty) \rightarrow \mathbb{R}$ iff for all $s \in D_{F}$ holds,

$$
F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

where $D_{F} \subset \mathbb{R}$ is the set where the integral converges.
Remark: The domain D_{F} of F depends on the function f.
Notation: We often denote: $F(s)=\mathcal{L}[f(t)]$.

- This notation \mathcal{L} [] emphasizes that the Laplace transform defines a map from a set of functions into a set of functions.
- Functions are denoted as $t \mapsto f(t)$.
- The Laplace transform is also a function: $f \mapsto \mathcal{L}[f]$.

The Laplace Transform (Sect. 4.1).

- The definition of the Laplace Transform.
- Review: Improper integrals.
- Examples of Laplace Transforms.
- A table of Laplace Transforms.
- Properties of the Laplace Transform.
- Laplace Transform and differential equations.

Review: Improper integrals.

Recall: Improper integral are defined as a limit.

$$
\int_{t_{0}}^{\infty} g(t) d t=\lim _{N \rightarrow \infty} \int_{t_{0}}^{N} g(t) d t
$$

- The integral converges iff the limit exists.
- The integral diverges iff the limit does not exist.

Example

Compute the improper integral $\int_{0}^{\infty} e^{-a t} d t$, with $a>0$.
Solution: $\int_{0}^{\infty} e^{-a t} d t=\lim _{N \rightarrow \infty} \int_{0}^{N} e^{-a t} d t=\lim _{N \rightarrow \infty}-\frac{1}{a}\left(e^{-a N}-1\right)$.
Since $\lim _{N \rightarrow \infty} e^{-a N}=0$ for $a>0$, we conclude $\int_{0}^{\infty} e^{-a t} d t=\frac{1}{a} . \triangleleft$

The Laplace Transform (Sect. 4.1).

- The definition of the Laplace Transform.
- Review: Improper integrals.
- Examples of Laplace Transforms.
- A table of Laplace Transforms.
- Properties of the Laplace Transform.
- Laplace Transform and differential equations.

Examples of Laplace Transforms.

Example

Compute $\mathcal{L}[1]$.
Solution: We have to find the Laplace Transform of $f(t)=1$.
Following the definition we obtain,

$$
\mathcal{L}[1]=\int_{0}^{\infty} e^{-s t} 1 d t=\int_{0}^{\infty} e^{-s t} d t
$$

But $\int_{0}^{\infty} e^{-a t} d t=\frac{1}{a}$ for $a>0$, and diverges for $a \leqslant 0$.
Therefore $\mathcal{L}[1]=\frac{1}{s}$, for $s>0$, and $\mathcal{L}[1]$ does not exists for $s \leqslant 0$.
In other words, $F(s)=\mathcal{L}[1]$ is the function $F: D_{F} \rightarrow \mathbb{R}$ given by

$$
f(t)=1, \quad F(s)=\frac{1}{s}, \quad D_{F}=(0, \infty)
$$

Examples of Laplace Transforms.

Example

Compute $\mathcal{L}\left[e^{a t}\right]$, where $a \in \mathbb{R}$.
Solution: Following the definition of Laplace Transform,

$$
\mathcal{L}\left[e^{a t}\right]=\int_{0}^{\infty} e^{-s t} e^{a t} d t=\int_{0}^{\infty} e^{-(s-a) t} d t
$$

We have seen that the improper integral is given by

$$
\int_{0}^{\infty} e^{-(s-a) t} d t=\frac{1}{(s-a)} \quad \text { for } \quad(s-a)>0
$$

We conclude that $\mathcal{L}\left[e^{a t}\right]=\frac{1}{s-a}$ for $s>a$. In other words,

$$
f(t)=e^{a t}, \quad F(s)=\frac{1}{(s-a)}, \quad s>a
$$

Examples of Laplace Transforms.

Example

Compute $\mathcal{L}[\sin (a t)]$, where $a \in \mathbb{R}$.
Solution: In this case we need to compute

$$
\mathcal{L}[\sin (a t)]=\lim _{N \rightarrow \infty} \int_{0}^{N} e^{-s t} \sin (a t) d t .
$$

Integrating by parts twice it is not difficult to obtain:

$$
\begin{gathered}
\int_{0}^{N} e^{-s t} \sin (a t) d t= \\
-\left.\frac{1}{s}\left[e^{-s t} \sin (a t)\right]\right|_{0} ^{N}-\left.\frac{a}{s^{2}}\left[e^{-s t} \cos (a t)\right]\right|_{0} ^{N}-\frac{a^{2}}{s^{2}} \int_{0}^{N} e^{-s t} \sin (a t) d t
\end{gathered}
$$

This identity implies

$$
\left(1+\frac{a^{2}}{s^{2}}\right) \int_{0}^{N} e^{-s t} \sin (a t) d t=-\left.\frac{1}{s}\left[e^{-s t} \sin (a t)\right]\right|_{0} ^{N}-\left.\frac{a}{s^{2}}\left[e^{-s t} \cos (a t)\right]\right|_{0} ^{N} .
$$

Examples of Laplace Transforms.

Example

Compute $\mathcal{L}[\sin (a t)]$, where $a \in \mathbb{R}$.
Solution: Recall the identity:

$$
\left(1+\frac{a^{2}}{s^{2}}\right) \int_{0}^{N} e^{-s t} \sin (a t) d t=-\left.\frac{1}{s}\left[e^{-s t} \sin (a t)\right]\right|_{0} ^{N}-\left.\frac{a}{s^{2}}\left[e^{-s t} \cos (a t)\right]\right|_{0} ^{N} .
$$

Hence, it is not difficult to see that

$$
\left(\frac{s^{2}+a^{2}}{s^{2}}\right) \int_{0}^{\infty} e^{-s t} \sin (a t) d t=\frac{a}{s^{2}}, \quad s>0
$$

which is equivalent to

$$
\mathcal{L}[\sin (a t)]=\frac{a}{s^{2}+a^{2}}, \quad s>0 .
$$

The Laplace Transform (Sect. 4.1).

- The definition of the Laplace Transform.
- Review: Improper integrals.
- Examples of Laplace Transforms.
- A table of Laplace Transforms.
- Properties of the Laplace Transform.
- Laplace Transform and differential equations.

A table of Laplace Transforms.

$$
\begin{array}{lll}
f(t)=1 & F(s)=\frac{1}{s} & s>0, \\
f(t)=e^{a t} & F(s)=\frac{1}{s-a} & s>\max \{a, 0\}, \\
f(t)=t^{n} & F(s)=\frac{n!}{s^{(n+1)}} & s>0, \\
f(t)=\sin (a t) & F(s)=\frac{a}{s^{2}+a^{2}} & s>0, \\
f(t)=\cos (a t) & F(s)=\frac{s}{s^{2}+a^{2}} & s>0, \\
f(t)=\sinh (a t) & F(s)=\frac{a}{s^{2}-a^{2}} & s>|a|, \\
f(t)=\cosh (a t) & F(s)=\frac{s}{s^{2}-a^{2}} & s>|a|, \\
f(t)=t^{n} e^{a t} & F(s)=\frac{n!}{(s-a)^{(n+1)}} & s>\max \{a, 0\}, \\
f(t)=e^{a t} \sin (b t) & F(s)=\frac{b}{(s-a)^{2}+b^{2}} & s>\max \{a, 0\} .
\end{array}
$$

- The definition of the Laplace Transform.
- Review: Improper integrals.
- Examples of Laplace Transforms.
- A table of Laplace Transforms.
- Properties of the Laplace Transform.
- Laplace Transform and differential equations.

Properties of the Laplace Transform.

Theorem (Sufficient conditions)
If the function $f:[0, \infty) \rightarrow \mathbb{R}$ is piecewise continuous and there exist positive constants k and a such that

$$
|f(t)| \leqslant k e^{a t}
$$

then the Laplace Transform of f exists for all $s>a$.
Theorem (Linear combination)
If the $\mathcal{L}[f]$ and $\mathcal{L}[g]$ are well-defined and a, b are constants, then

$$
\mathcal{L}[a f+b g]=a \mathcal{L}[f]+b \mathcal{L}[g] .
$$

Proof: Integration is a linear operation:

$$
\int[a f(t)+b g(t)] d t=a \int f(t) d t+b \int g(t) d t
$$

Properties of the Laplace Transform.

Theorem (Derivatives)

If the $\mathcal{L}[f]$ and $\mathcal{L}\left[f^{\prime}\right]$ are well-defined, then holds,

$$
\begin{equation*}
\mathcal{L}\left[f^{\prime}\right]=s \mathcal{L}[f]-f(0) . \tag{1}
\end{equation*}
$$

Furthermore, if $\mathcal{L}\left[f^{\prime \prime}\right]$ is well-defined, then it also holds

$$
\begin{equation*}
\mathcal{L}\left[f^{\prime \prime}\right]=s^{2} \mathcal{L}[f]-s f(0)-f^{\prime}(0) \tag{2}
\end{equation*}
$$

Proof of Eq (??): Use Eq. (??) twice:

$$
\mathcal{L}\left[f^{\prime \prime}\right]=\mathcal{L}\left[\left(f^{\prime}\right)^{\prime}\right]=s \mathcal{L}\left[\left(f^{\prime}\right)\right]-f^{\prime}(0)=s(s \mathcal{L}[f]-f(0))-f^{\prime}(0)
$$

that is,

$$
\mathcal{L}\left[f^{\prime \prime}\right]=s^{2} \mathcal{L}[f]-s f(0)-f^{\prime}(0)
$$

Properties of the Laplace Transform.

Proof of Eq (??): Recall the definition of the Laplace Transform,

$$
\mathcal{L}\left[f^{\prime}\right]=\int_{0}^{\infty} e^{-s t} f^{\prime}(t) d t=\lim _{n \rightarrow \infty} \int_{0}^{n} e^{-s t} f^{\prime}(t) d t
$$

Integrating by parts,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int_{0}^{n} e^{-s t} f^{\prime}(t) d t=\lim _{n \rightarrow \infty}\left[\left.\left(e^{-s t} f(t)\right)\right|_{0} ^{n}-\int_{0}^{n}(-s) e^{-s t} f(t) d t\right] \\
& \mathcal{L}\left[f^{\prime}\right]=\lim _{n \rightarrow \infty}\left[e^{-s n} f(n)-f(0)\right]+s \int_{0}^{\infty} e^{-s t} f(t) d t=-f(0)+s \mathcal{L}[f]
\end{aligned}
$$

where we used that $\lim _{n \rightarrow \infty} e^{-s n} f(n)=0$ for s big enough, and we also used that $\mathcal{L}[f]$ is well-defined.
We then conclude that $\mathcal{L}\left[f^{\prime}\right]=s \mathcal{L}[f]-f(0)$.

- The definition of the Laplace Transform.
- Review: Improper integrals.
- Examples of Laplace Transforms.
- A table of Laplace Transforms.
- Properties of the Laplace Transform.
- Laplace Transform and differential equations.

Laplace Transform and differential equations.

Remark: Laplace Transforms can be used to find solutions to differential equations with constant coefficients.

Idea of the method:

$$
\mathcal{L}\left[\begin{array}{c}
\text { Differential Eq. } \\
\text { for } y(t) .
\end{array}\right]
$$

$\xrightarrow{(1)}$ Algebraic Eq. for $\mathcal{L}[y(t)]$.
$\xrightarrow{(2)}$

Solve the
Transform back
$\xrightarrow{(2)}$ Algebraic Eq.
$\xrightarrow{(3)}$ for $\mathcal{L}[y(t)]$. (Using the table.)

Laplace Transform and differential equations.

Example

Use the Laplace transform to find the solution $y(t)$ to the IVP

$$
y^{\prime}+2 y=0, \quad y(0)=3
$$

Solution: We know the solution: $y(t)=3 e^{-2 t}$.
(1): Compute the Laplace transform of the differential equation,

$$
\mathcal{L}\left[y^{\prime}+2 y\right]=\mathcal{L}[0] \quad \Rightarrow \quad \mathcal{L}\left[y^{\prime}+2 y\right]=0 .
$$

Find an algebraic equation for $\mathcal{L}[y]$. Recall linearity:

$$
\mathcal{L}\left[y^{\prime}\right]+2 \mathcal{L}[y]=0 .
$$

Also recall the property: $\mathcal{L}\left[y^{\prime}\right]=s \mathcal{L}[y]-y(0)$, that is,

$$
[s \mathcal{L}[y]-y(0)]+2 \mathcal{L}[y]=0 \quad \Rightarrow \quad(s+2) \mathcal{L}[y]=y(0) .
$$

Laplace Transform and differential equations.

Example

Use the Laplace transform to find the solution $y(t)$ to the IVP

$$
y^{\prime}+2 y=0, \quad y(0)=3
$$

Solution: Recall: $(s+2) \mathcal{L}[y]=y(0)$.
(2): Solve the algebraic equation for $\mathcal{L}[y]$.

$$
\mathcal{L}[y]=\frac{y(0)}{s+2}, \quad y(0)=3, \quad \Rightarrow \quad \mathcal{L}[y]=\frac{3}{s+2} .
$$

(3): Transform back to $y(t)$. From the table:

$$
\mathcal{L}\left[e^{a t}\right]=\frac{1}{s-a} \Rightarrow \frac{3}{s+2}=3 \mathcal{L}\left[e^{-2 t}\right] \Rightarrow \frac{3}{s+2}=\mathcal{L}\left[3 e^{-2 t}\right] .
$$

Hence, $\mathcal{L}[y]=\mathcal{L}\left[3 e^{-2 t}\right] \quad \Rightarrow \quad y(t)=3 e^{-2 t}$.

