## Equations with regular-singular points (Sect. 3.3).

- Equations with regular-singular points.
- Examples: Equations with regular-singular points.
- Method to find solutions.
- Example: Method to find solutions.


## Recall:

The point $x_{0} \in \mathbb{R}$ is a singular point of the equation

$$
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0
$$

iff holds that $P\left(x_{0}\right)=0$.

## Equations with regular-singular points.

## Definition

A singular point $x_{0} \in \mathbb{R}$ of the equation

$$
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0
$$

is called a regular-singular point iff the following limits are finite,

$$
\lim _{x \rightarrow x_{0}} \frac{\left(x-x_{0}\right) Q(x)}{P(x)}, \quad \lim _{x \rightarrow x_{0}} \frac{\left(x-x_{0}\right)^{2} R(x)}{P(x)}
$$

and both functions

$$
\frac{\left(x-x_{0}\right) Q(x)}{P(x)}, \quad \frac{\left(x-x_{0}\right)^{2} R(x)}{P(x)}
$$

admit convergent Taylor series expansions around $x_{0}$.

## Equations with regular-singular points.

## Remark:

- If $x_{0}$ is a regular-singular point of

$$
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0
$$

and $P(x) \simeq\left(x-x_{0}\right)^{n}$ near $x_{0}$, then near $x_{0}$ holds

$$
Q(x) \simeq\left(x-x_{0}\right)^{n-1}, \quad R(x) \simeq\left(x-x_{0}\right)^{n-2}
$$

- The main example is an Euler equation, case $n=2$,

$$
\left(x-x_{0}\right)^{2} y^{\prime \prime}+p_{0}\left(x-x_{0}\right) y^{\prime}+q_{0} y=0
$$

## Equations with regular-singular points.

## Example

Show that the singular point of every Euler equation is a regular-singular point.

## Solution: Consider the general Euler equation

$$
\left(x-x_{0}\right)^{2} y^{\prime \prime}+p_{0}\left(x-x_{0}\right) y^{\prime}+q_{0} y=0
$$

where $p_{0}, q_{0}, x_{0}$, are real constants. This is an equation
$P y^{\prime \prime}+Q y^{\prime}+R y=0$ with

$$
P(x)=\left(x-x_{0}\right)^{2}, \quad Q(x)=p_{0}\left(x-x_{0}\right), \quad R(x)=q_{0} .
$$

Therefore, we obtain,

$$
\lim _{x \rightarrow x_{0}} \frac{\left(x-x_{0}\right) Q(x)}{P(x)}=p_{0}, \quad \lim _{x \rightarrow x_{0}} \frac{\left(x-x_{0}\right)^{2} R(x)}{P(x)}=q_{0}
$$

We conclude that $x_{0}$ is a regular-singular point.

## Equations with regular-singular points.

Remark: Every equation $P y^{\prime \prime}+Q y^{\prime}+R y=0$ with a regular-singular point at $x_{0}$ is close to an Euler equation.
Proof:
For $x \neq x_{0}$ divide the equation by $P(x)$,

$$
y^{\prime \prime}+\frac{Q(x)}{P(x)} y^{\prime}+\frac{R(x)}{P(x)} y=0
$$

and multiply it by $\left(x-x_{0}\right)^{2}$,
$\left(x-x_{0}\right)^{2} y^{\prime \prime}+\left(x-x_{0}\right)\left[\frac{\left(x-x_{0}\right) Q(x)}{P(x)}\right] y^{\prime}+\left[\frac{\left(x-x_{0}\right)^{2} R(x)}{P(x)}\right] y=0$.
The factors between [] approach constants, say $p_{0}, q_{0}$, as $x \rightarrow x_{0}$,

$$
\left(x-x_{0}\right)^{2} y^{\prime \prime}+\left(x-x_{0}\right) p_{0} y^{\prime}+q_{0} y=0 .
$$

Equations with regular-singular points (Sect. 3.3).

- Equations with regular-singular points.
- Examples: Equations with regular-singular points.
- Method to find solutions.
- Example: Method to find solutions.

Examples: Equations with regular-singular points.

## Example

Find the regular-singular points of the differential equation

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\alpha(\alpha+1) y=0
$$

where $\alpha$ is a real constant.
Solution: Find the singular points of this equation,

$$
0=P(x)=\left(1-x^{2}\right)=(1-x)(1+x) \quad \Rightarrow \quad\left\{\begin{array}{l}
x_{0}=1 \\
x_{1}=-1
\end{array}\right.
$$

Case $x_{0}=1$ : We then have

$$
\begin{gathered}
\frac{(x-1) Q(x)}{P(x)}=\frac{(x-1)(-2 x)}{(1-x)(1+x)}=\frac{2 x}{1+x} \\
\frac{(x-1)^{2} R(x)}{P(x)}=\frac{(x-1)^{2}[\alpha(\alpha+1)]}{(1-x)(1+x)}=\frac{(x-1)[\alpha(\alpha+1)]}{1+x}
\end{gathered}
$$

both functions above have Taylor series around $x_{0}=1$.

## Examples: Equations with regular-singular points.

## Example

Find the regular-singular points of the differential equation

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\alpha(\alpha+1) y=0
$$

where $\alpha$ is a real constant.
Solution: Recall:

$$
\frac{(x-1) Q(x)}{P(x)}=\frac{2 x}{1+x}, \quad \frac{(x-1)^{2} R(x)}{P(x)}=\frac{(x-1)[\alpha(\alpha+1)]}{1+x} .
$$

Furthermore, the following limits are finite,

$$
\lim _{x \rightarrow 1} \frac{(x-1) Q(x)}{P(x)}=1, \quad \lim _{x \rightarrow 1} \frac{(x-1)^{2} R(x)}{P(x)}=0
$$

We conclude that $x_{0}=1$ is a regular-singular point.

## Examples: Equations with regular-singular points.

## Example

Find the regular-singular points of the differential equation

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\alpha(\alpha+1) y=0
$$

where $\alpha$ is a real constant.
Solution:
Case $x_{1}=-1$ :

$$
\begin{gathered}
\frac{(x+1) Q(x)}{P(x)}=\frac{(x+1)(-2 x)}{(1-x)(1+x)}=-\frac{2 x}{1-x} \\
\frac{(x+1)^{2} R(x)}{P(x)}=\frac{(x+1)^{2}[\alpha(\alpha+1)]}{(1-x)(1+x)}=\frac{(x+1)[\alpha(\alpha+1)]}{1-x}
\end{gathered}
$$

Both functions above have Taylor series $x_{1}=-1$.

## Examples: Equations with regular-singular points.

## Example

Find the regular-singular points of the differential equation

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\alpha(\alpha+1) y=0
$$

where $\alpha$ is a real constant.
Solution: Recall:

$$
\frac{(x+1) Q(x)}{P(x)}=-\frac{2 x}{1-x}, \quad \frac{(x+1)^{2} R(x)}{P(x)}=\frac{(x+1)[\alpha(\alpha+1)]}{1-x} .
$$

Furthermore, the following limits are finite,

$$
\lim _{x \rightarrow-1} \frac{(x+1) Q(x)}{P(x)}=1, \quad \lim _{x \rightarrow-1} \frac{(x+1)^{2} R(x)}{P(x)}=0
$$

Therefore, the point $x_{1}=-1$ is a regular-singular point.

Examples: Equations with regular-singular points.

## Example

Find the regular-singular points of the differential equation

$$
(x+2)^{2}(x-1) y^{\prime \prime}+3(x-1) y^{\prime}+2 y=0
$$

Solution: Find the singular points: $x_{0}=-2$ and $x_{1}=1$.
Case $x_{0}=-2$ :

$$
\lim _{x \rightarrow-2} \frac{(x+2) Q(x)}{P(x)}=\lim _{x \rightarrow-2} \frac{(x+2) 3(x-1)}{(x+2)^{2}(x-1)}=\lim _{x \rightarrow-2} \frac{3}{(x+2)}= \pm \infty .
$$

So $x_{0}=-2$ is not a regular-singular point. Case $x_{1}=1$ :

$$
\begin{aligned}
& \frac{(x-1) Q(x)}{P(x)}=\frac{(x-1)[3(x-1)]}{(x+2)(x-1)}=-\frac{3(x-1)}{(x+2)^{2}} \\
& \frac{(x-1)^{2} R(x)}{P(x)}=\frac{2(x-1)^{2}}{(x+2)^{2}(x-1)}=\frac{2(x-1)}{(x+2)^{2}}
\end{aligned}
$$

Both functions have Taylor series around $x_{1}=1$.

## Examples: Equations with regular-singular points.

## Example

Find the regular-singular points of the differential equation

$$
(x+2)^{2}(x-1) y^{\prime \prime}+3(x-1) y^{\prime}+2 y=0
$$

Solution: Recall:

$$
\frac{(x-1) Q(x)}{P(x)}=-\frac{3(x-1)}{(x+2)^{2}}, \quad \frac{(x-1)^{2} R(x)}{P(x)}=\frac{2(x-1)}{(x+2)^{2}}
$$

Furthermore, the following limits are finite,

$$
\lim _{x \rightarrow 1} \frac{(x-1) Q(x)}{P(x)}=0 ; \quad \lim _{x \rightarrow 1} \frac{(x-1)^{2} R(x)}{P(x)}=0
$$

Therefore, the point $x_{1}=-1$ is a regular-singular point.

## Examples: Equations with regular-singular points.

## Example

Find the regular-singular points of the differential equation

$$
x y^{\prime \prime}-x \ln (|x|) y^{\prime}+3 x y=0
$$

Solution: The singular point is $x_{0}=0$. We compute the limit

$$
\lim _{x \rightarrow 0} \frac{x Q(x)}{P(x)}=\lim _{x \rightarrow 0} \frac{x[-x \ln (|x|)]}{x}=\lim _{x \rightarrow 0}-\frac{\ln (|x|)}{\frac{1}{x}}
$$

Use L'Hôpital's rule: $\lim _{x \rightarrow 0} \frac{x Q(x)}{P(x)}=\lim _{x \rightarrow 0} \frac{-\frac{1}{x}}{-\frac{1}{x^{2}}}=\lim _{x \rightarrow 0} x=0$.
The other limit is: $\lim _{x \rightarrow 0} \frac{x^{2} R(x)}{P(x)}=\lim _{x \rightarrow 0} \frac{x^{2}(3 x)}{x}=\lim _{x \rightarrow 0} 3 x^{2}=0$.

## Examples: Equations with regular-singular points.

## Example

Find the regular-singular points of the differential equation

$$
x y^{\prime \prime}-x \ln (|x|) y^{\prime}+3 x y=0
$$

Solution: Recall: $\lim _{x \rightarrow 0} \frac{x Q(x)}{P(x)}=0$ and $\lim _{x \rightarrow 0} \frac{x^{2} R(x)}{P(x)}=0$.
However, at the point $x_{0}=0$ the function $x Q / P$ does not have a power series expansion around zero, since

$$
\frac{x Q(x)}{P(x)}=-x \ln (|x|)
$$

and the log function does not have a Taylor series at $x_{0}=0$.
We conclude that $x_{0}=0$ is not a regular-singular point.

- Equations with regular-singular points.
- Examples: Equations with regular-singular points.
- Method to find solutions.
- Example: Method to find solutions.


## Method to find solutions.

Recall: If $x_{0}$ is a regular-singular point of

$$
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0
$$

with limits $\lim _{x \rightarrow x_{0}} \frac{\left(x-x_{0}\right) Q(x)}{P(x)}=p_{0}$ and $\lim _{x \rightarrow x_{0}} \frac{\left(x-x_{0}\right)^{2} R(x)}{P(x)}=q_{0}$, then the coefficients of the differential equation above near $x_{0}$ are close to the coefficients of the Euler equation

$$
\left(x-x_{0}\right)^{2} y^{\prime \prime}+p_{0}\left(x-x_{0}\right) y^{\prime}+q_{0} y=0 .
$$

Idea: If the differential equation is close to an Euler equation, then the solutions of the differential equation might be close to the solutions of an Euler equation.

Recall: One solution of an Euler equation is $y(x)=\left(x-x_{0}\right)^{r}$.

## Method to find solutions.

Summary: Solutions for equations with regular-singular points:
(1) Look for a solution $y$ of the form

$$
y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{(n+r)} ;
$$

(2) Introduce this power series expansion into the differential equation and find both a the exponent $r$ and a recurrence relation for the coefficients $a_{n}$;
(3) First find the solutions for the constant $r$. Then, introduce this result for $r$ into the recurrence relation for the coefficients $a_{n}$. Only then, solve this latter recurrence relation for the coefficients $a_{n}$.

## Equations with regular-singular points (Sect. 3.3).

- Equations with regular-singular points.
- Examples: Equations with regular-singular points.
- Method to find solutions.
- Example: Method to find solutions.


## Example: Method to find solutions.

## Example

Find the solution $y$ near the regular-singular point $x_{0}=0$ of

$$
x^{2} y^{\prime \prime}-x(x+3) y^{\prime}+(x+3) y=0
$$

Solution: We look for a solution $y(x)=\sum_{n=0}^{\infty} a_{n} x^{(n+r)}$.
The first and second derivatives are given by

$$
y^{\prime}=\sum_{n=0}^{\infty}(n+r) a_{n} x^{(n+r-1)}, y^{\prime \prime}=\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{(n+r-2)} .
$$

In the case $r=0$ we had the relation

$$
\sum_{n=0}^{\infty} n a_{n} x^{(n-1)}=\sum_{n=1}^{\infty} n a_{n} x^{(n-1)}
$$

but for $r \neq 0$ this relation is not true.

## Example: Method to find solutions.

## Example

Find the solution $y$ near the regular-singular point $x_{0}=0$ of

$$
x^{2} y^{\prime \prime}-x(x+3) y^{\prime}+(x+3) y=0
$$

Solution: We now compute the term $(x+3) y$,

$$
\begin{gathered}
(x+3) y=(x+3) \sum_{n=0}^{\infty} a_{n} x^{(n+r)} \\
(x+3) y=\sum_{n=0}^{\infty} a_{n} x^{(n+r+1)}+\sum_{n=0}^{\infty} 3 a_{n} x^{(n+r)} \\
(x+3) y=\sum_{n=1}^{\infty} a_{(n-1)} x^{(n+r)}+\sum_{n=0}^{\infty} 3 a_{n} x^{(n+r)} .
\end{gathered}
$$

## Example: Method to find solutions.

## Example

Find the solution $y$ near the regular-singular point $x_{0}=0$ of

$$
x^{2} y^{\prime \prime}-x(x+3) y^{\prime}+(x+3) y=0
$$

Solution: We now compute the term $-x(x+3) y^{\prime}$,

$$
\begin{gathered}
-x(x+3) y^{\prime}=-\left(x^{2}+3 x\right) \sum_{n=0}^{\infty}(n+r) a_{n} x^{(n+r-1)} \\
-x(x+3) y^{\prime}=-\sum_{n=0}^{\infty}(n+r) a_{n} x^{(n+r+1)}-\sum_{n=0}^{\infty} 3(n+r) a_{n} x^{(n+r)}, \\
-x(x+3) y^{\prime}=-\sum_{n=1}^{\infty}(n+r-1) a_{(n-1)} x^{(n+r)}-\sum_{n=0}^{\infty} 3(n+r) a_{n} x^{(n+r)} .
\end{gathered}
$$

## Example: Method to find solutions.

## Example

Find the solution $y$ near the regular-singular point $x_{0}=0$ of

$$
x^{2} y^{\prime \prime}-x(x+3) y^{\prime}+(x+3) y=0
$$

Solution: We compute the term $x^{2} y^{\prime \prime}$,

$$
\begin{gathered}
x^{2} y^{\prime \prime}=x^{2} \sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{(n+r-2)} \\
x^{2} y^{\prime \prime}=\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{(n+r)}
\end{gathered}
$$

The guiding principle to rewrite each term is to have the power function $x^{(n+r)}$ labeled in the same way on every term.

Example: Method to find solutions.

## Example

Find the solution $y$ near the regular-singular point $x_{0}=0$ of

$$
x^{2} y^{\prime \prime}-x(x+3) y^{\prime}+(x+3) y=0
$$

Solution: The differential equation is given by

$$
\begin{aligned}
& \sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{(n+r)}-\sum_{n=1}^{\infty}(n+r-1) a_{(n-1)} x^{(n+r)} \\
- & \sum_{n=0}^{\infty} 3(n+r) a_{n} x^{(n+r)}+\sum_{n=1}^{\infty} a_{(n-1)} x^{(n+r)}+\sum_{n=0}^{\infty} 3 a_{n} x^{(n+r)}=0 .
\end{aligned}
$$

We split the sums into the term $n=0$ and a sum containing the terms with $n \geqslant 1$, that is,

$$
\begin{gathered}
0=[r(r-1)-3 r+3] a_{0} x^{r}+ \\
\sum_{n=1}^{\infty}\left[(n+r)(n+r-1) a_{n}-(n+r-1) a_{(n-1)}-3(n+r) a_{n}+a_{(n-1)}+3 a_{n}\right] x^{(n+r)}
\end{gathered}
$$

## Example: Method to find solutions.

## Example

Find the solution $y$ near the regular-singular point $x_{0}=0$ of

$$
x^{2} y^{\prime \prime}-x(x+3) y^{\prime}+(x+3) y=0
$$

Solution: Therefore, $[r(r-1)-3 r+3]=0$ and

$$
\left[(n+r)(n+r-1) a_{n}-(n+r-1) a_{(n-1)}-3(n+r) a_{n}+a_{(n-1)}+3 a_{n}\right]=0 .
$$

The last expression can be rewritten as follows,

$$
\begin{aligned}
& {\left[[(n+r)(n+r-1)-3(n+r)+3] a_{n}-(n+r-1-1) a_{(n-1)}\right]=0,} \\
& {\left[[(n+r)(n+r-1)-3(n+r-1)] a_{n}-(n+r-2) a_{(n-1)}\right]=0}
\end{aligned}
$$

## Example: Method to find solutions.

## Example

Find the solution $y$ near the regular-singular point $x_{0}=0$ of

$$
x^{2} y^{\prime \prime}-x(x+3) y^{\prime}+(x+3) y=0
$$

Solution: Hence, the recurrence relation is given by the equations

$$
\begin{gathered}
r(r-1)-3 r+3=0 \\
(n+r-1)(n+r-3) a_{n}-(n+r-2) a_{(n-1)}=0
\end{gathered}
$$

First: solve the first equation for $r_{ \pm}$.
Second: Introduce the first solution $r_{+}$into the second equation above and solve for the $a_{n}$; the result is a solution $y_{+}$of the original differential equation;

Third: Introduce the second solution $r_{\text {_ }}$ into into the second equation above and solve for the $a_{n}$; the result is a solution $y_{-}$of the original differential equation;

## Example: Method to find solutions.

## Example

Find the solution $y$ near the regular-singular point $x_{0}=0$ of

$$
x^{2} y^{\prime \prime}-x(x+3) y^{\prime}+(x+3) y=0
$$

Solution: We first solve $r(r-1)-3 r+3=0$.

$$
r^{2}-4 r+3=0 \Rightarrow r_{ \pm}=\frac{1}{2}[4 \pm \sqrt{16-12}] \quad \Rightarrow \quad\left\{\begin{array}{l}
r_{+}=3 \\
r_{-}=1
\end{array}\right.
$$

Introduce $r_{+}=3$ into the equation for $a_{n}$ :

$$
(n+2) n a_{n}-(n+1) a_{n-1}=0
$$

One can check that the solution $y_{+}$is

$$
y_{+}=a_{0} x^{3}\left[1+\frac{2}{3} x+\frac{1}{4} x^{2}+\frac{1}{15} x^{3}+\cdots\right] .
$$

## Example: Method to find solutions.

## Example

Find the solution $y$ near the regular-singular point $x_{0}=0$ of

$$
x^{2} y^{\prime \prime}-x(x+3) y^{\prime}+(x+3) y=0
$$

Solution: Introduce $r_{-}=1$ into the equation for $a_{n}$ :

$$
n(n-2) a_{n}-(n-1) a_{n-1}=0
$$

One can also check that the solution $y_{-}$is

$$
y_{-}=a_{2} x\left[x^{2}+\frac{2}{3} x^{3}+\frac{1}{4} x^{4}+\frac{1}{15} x^{5}+\cdots\right] .
$$

Notice:

$$
y_{-}=a_{2} x^{3}\left[1+\frac{2}{3} x+\frac{1}{4} x^{2}+\frac{1}{15} x^{3}+\cdots\right] \Rightarrow y_{-}=\frac{a_{2}}{a_{1}} y_{+} .
$$

## Example: Method to find solutions.

## Example

Find the solution $y$ near the regular-singular point $x_{0}=0$ of

$$
x^{2} y^{\prime \prime}-x(x+3) y^{\prime}+(x+3) y=0
$$

Solution: The solutions $y_{+}$and $y_{-}$are not linearly independent.
This Example shows that the method does not provide all solutions of a differential equation near a regular-singular point, it only provides at least one solution near a regular-singular point.
Remark: It can be shown the following result:
If the roots of the Euler characteristic polynomial $r_{+}, r_{-}$differ by an integer, then the second solution $y_{-}$, the solution corresponding to the smaller root, is not given by the method above.
This solution involves logarithmic terms.
We do not study this type of solutions in these notes.

