

Definition

The *power series* of a function $y : \mathbb{R} \to \mathbb{R}$ centered at $x_0 \in \mathbb{R}$ is

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n.$$

Example

- $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \cdots$. Here $x_0 = 0$ and |x| < 1.
- $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \cdots$. Here $x_0 = 0$ and $x \in \mathbb{R}$.

► The Taylor series of $y : \mathbb{R} \to \mathbb{R}$ centered at $x_0 \in \mathbb{R}$ is $y(x) = \sum_{n=0}^{\infty} \frac{y^{(n)}(x_0)}{n!} (x - x_0)^n = y(x_0) + y'(x_0) (x - x_0) + \cdots$

Example

Find the Taylor series of $y(x) = \sin(x)$ centered at $x_0 = 0$.

Solution:
$$y(x) = \sin(x), y(0) = 0.$$
 $y'(x) = \cos(x), y'(0) = 1.$

$$y''(x) = -\sin(x), \ y''(0) = 0.$$
 $y'''(x) = -\cos(x), \ y'''(0) = -1.$

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots \Rightarrow \sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{(2n+1)!}$$

Remark: The Taylor series of y(x) = cos(x) centered at $x_0 = 0$ is

$$\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{(2n)}$$

Review of power series.

Remark: The power series of a function may not be defined on the whole domain of the function.

Example The function $y(x) = \frac{1}{1-x}$ is defined for $x \in \mathbb{R} - \{1\}$. The power series $y(x) = \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$ converges only for |x| < 1.

Definition

The power series $y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$ converges absolutely iff the series $\sum_{n=0}^{\infty} |a_n| |x - x_0|^n$ converges.

Example

The series $s = \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ converges, but it does not converge absolutely, since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

Review of power series.

Definition

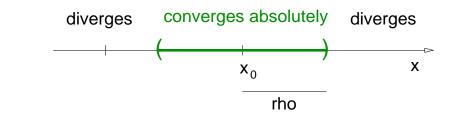
The radius of convergence of a power series

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

is the number $\rho \ge 0$ that satisfies both

(a) the series converges absolutely for $|x - x_0| < \rho$;

(b) the series diverges for $|x - x_0| > \rho$.



Example

(1)
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$
 has radius of convergence $\rho = 1$.
(2) $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ has radius of convergence $\rho = \infty$.
(3) $\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{(2n+1)}$ has radius $\rho = \infty$.
(4) $\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{(2n)}$ has radius of convergence $\rho = \infty$.

Review of power series.

Theorem (Ratio test) Given the power series $y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$, introduce the number $L = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}$. Then, the following statements hold: (1) The power series converges in the domain $|x - x_0|L < 1$. (2) The power series diverges in the domain $|x - x_0|L > 1$. (3) The power series may or may not converge at $|x - x_0|L = 1$. Therefore, if $L \neq 0$, then $\rho = \frac{1}{L}$ is the series radius of convergence; if L = 0, then the radius of convergence is $\rho = \infty$.

Remarks: On summation indices:

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \cdots$$
$$y(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k = \sum_{m=-3}^{\infty} a_{m+3} (x - x_0)^{m+3}.$$
$$y'(x) = \sum_{n=0}^{\infty} n a_n (x - x_0)^{n-1} = a_1 + 2a_2 (x - x_0) + \cdots$$
$$y'(x) = \sum_{n=1}^{\infty} n a_n (x - x_0)^{n-1} = \sum_{m=0}^{\infty} (m+1) a_{m+1} (x - x_0)^m$$
where $m = n - 1$, that is, $n = m + 1$.

Power series solutions near regular points (Sect. 3.1).

- We study: P(x) y'' + Q(x) y' + R(x) y = 0.
- Review of power series.
- ► Regular point equations.
- Solutions using power series.
- Examples of the power series method.

Regular point equations.

Problem: We look for solutions y of the variable coefficients equation P(y)y'' + Q(y)y' + P(y)y = 0

$$P(x) y'' + Q(x) y' + R(x) y = 0.$$

around $x_0 \in \mathbb{R}$ where $P(x_0) \neq 0$ using a power series representation of the solution centered at x_0 , that is,

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n.$$

Definition

Given continuous functions P, Q, $R : (x_1, x_2) \to \mathbb{R}$, a point $x_0 \in (x_1, x_2)$ is called a *regular point* of the equation

$$P(x) y'' + Q(x) y' + R(x) y = 0.$$

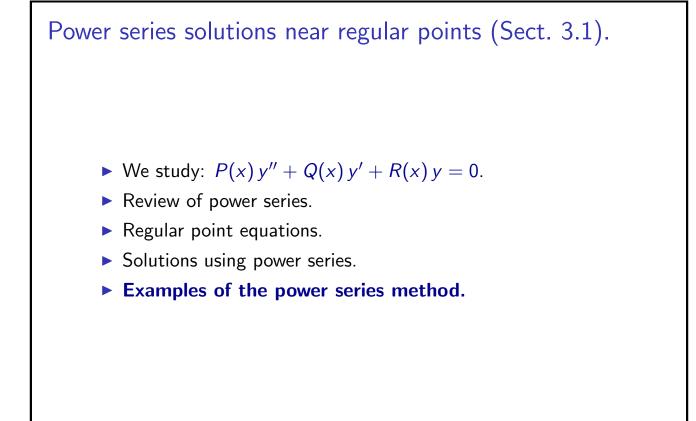
iff $P(x_0) \neq 0$. The point x_0 is called a *singular point* iff $P(x_0) = 0$.

Remark: The equation order does not change near regular points.

Power series solutions near regular points (Sect. 3.1).

- We study: P(x) y'' + Q(x) y' + R(x) y = 0.
- Review of power series.
- Regular point equations.
- **•** Solutions using power series.
- Examples of the power series method.

Solutions using power series. Summary for regular points: Propose a power series representation of the solution centered at x₀, given by y(x) = ∑ a_n (x - x₀)ⁿ; (2) Introduce Eq. (1) into the differential equation P(x) y'' + Q(x) y' + R(x) y = 0. (3) Find a recurrence relation among the coefficients a_n; (4) Solve the recurrence relation in terms of free coefficients; (5) If possible, add up the resulting power series for the solution y.



Example

Find a power series solution y(x) around the point $x_0 = 0$ of the equation

 $y' + c y = 0, \qquad c \in \mathbb{R}.$

Solution: Recall: The solution is $y(x) = a_0 e^{-cx}$.

We now use the power series method. We propose a power series centered at $x_0 = 0$:

$$y(x) = \sum_{n=0}^{\infty} a_n x^n \quad \Rightarrow \quad y'(x) = \sum_{n=0}^{\infty} n a_n x^{(n-1)} = \sum_{n=1}^{\infty} n a_n x^{(n-1)}.$$

Change the summation index: m = n - 1, so n = m + 1.

$$y'(x) = \sum_{m=0}^{\infty} (m+1)a_{m+1}x^m = \sum_{n=0}^{\infty} (n+1)a_{n+1}x^n$$

Examples of the power series method.

Example

Find a power series solution y(x) around the point $x_0 = 0$ of the equation $y' + c y = 0, \qquad c \in \mathbb{R}.$

Solution:
$$y(x) = \sum_{n=0}^{\infty} a_n x^n$$
, and $y'(x) = \sum_{n=0}^{\infty} (n+1)a_{n+1} x^n$.

Introduce y and y' into the differential equation,

$$\sum_{n=0}^{\infty} (n+1)a_{(n+1)}x^n + \sum_{n=0}^{\infty} c a_n x^n = 0$$
$$\sum_{n=0}^{\infty} [(n+1)a_{(n+1)} + c a_n] x^n = 0$$

The recurrence relation is $(n+1)a_{(n+1)} + c a_n = 0$ for all $n \ge 0$.

Example

Find a power series solution y(x) around the point $x_0 = 0$ of the equation $y' + c y = 0, \qquad c \in \mathbb{R}.$

Solution: Recurrence relation: $(n + 1)a_{(n+1)} + c a_n = 0$, $n \ge 0$.

Equivalently: $a_{n+1} = -\frac{c}{n+1} a_n$. That is,

$$n=0, \quad a_1=-c \ a_0 \quad \Rightarrow \quad a_1=-c \ a_0,$$

$$n = 1, \quad 2a_2 = -c a_1 \quad \Rightarrow \quad a_2 = \frac{c^2}{2!} a_0,$$
$$n = 2, \quad 3a_3 = -c a_2 \quad \Rightarrow \quad a_3 = -\frac{c^3}{3!} a_0$$

$$n=3, \quad 4a_4=-c a_3 \quad \Rightarrow \quad a_4=rac{c^4}{4!} a_0.$$

Examples of the power series method.

п

Example

Find a power series solution y(x) around the point $x_0 = 0$ of the equation

$$y'+c y=0, \qquad c\in\mathbb{R}.$$

Solution: Solved recurrence relation: $a_n = \frac{(-c)^n}{n!} a_0$.

The solution y of the differential equation is given by

$$y(x) = \sum_{n=0}^{\infty} \frac{(-c)^n}{n!} a_0 x^n \quad \Rightarrow \quad y(x) = a_0 \sum_{n=0}^{\infty} \frac{(-c x)^n}{n!}.$$

If we recall the power series $e^{ax} = \sum_{n=0}^{\infty} \frac{(ax)^n}{n!}$,

then, we conclude that the solution is $y(x) = a_0 e^{-cx}$.

 \triangleleft

Example

Find a power series solution y(x) around the point $x_0 = 0$ of the equation

$$y''+y=0.$$

Solution: Recall: The characteristic polynomial is $r^2 + 1 = 0$, hence the general solution is $y(x) = a_0 \cos(x) + a_1 \sin(x)$.

We re-obtain this solution using the power series method:

$$y = \sum_{n=0}^{\infty} a_n x^n \quad \Rightarrow \quad y' = \sum_{n=1}^{\infty} n a_n x^{(n-1)} = \sum_{m=0}^{\infty} (m+1) a_{m+1} x^m,$$

where m = n - 1, so n = m + 1;

$$y'' = \sum_{n=2}^{\infty} n(n-1)a_n x^{(n-2)} = \sum_{m=0}^{\infty} (m+2)(m+1)a_{m+2} x^m.$$

where m = n - 2, so n = m + 2.

Examples of the power series method.

Example

Find a power series solution y(x) around the point $x_0 = 0$ of the equation v'' + v = 0.

Solution: Introduce y and y'' into the differential equation,

$$\sum_{n=0}^{\infty} (n+2)(n+1)a_{(n+2)}x^n + \sum_{n=0}^{\infty} a_n x^n = 0$$
$$\sum_{n=0}^{\infty} [(n+2)(n+1)a_{(n+2)} + a_n]x^n = 0.$$

The recurrence relation is $(n+2)(n+1)a_{(n+2)} + a_n = 0$, $n \ge 0$. Equivalently: $(n+2)(n+1)a_{(n+2)} = -a_n$,

Example

Find a power series solution y(x) around the point $x_0 = 0$ of the equation y'' + y = 0.

Solution: Recall: $(n+2)(n+1) a_{(n+2)} = -a_n, n \ge 0.$

For *n* even: n = 0, $(2)(1)a_2 = -a_0 \Rightarrow a_2 = -\frac{1}{2!}a_0$,

$$n = 2$$
, $(4)(3)a_4 = -a_2 \Rightarrow a_4 = \frac{1}{4!}a_0$,

$$n = 4, \quad (6)(5)a_6 = -a_4 \quad \Rightarrow \quad a_6 = -rac{1}{6!}a_0$$

We obtain:
$$a_{2k} = \frac{(-1)^k}{(2k)!} a_0$$
, for $k \ge 0$.

Examples of the power series method.

Example

Find a power series solution y(x) around the point $x_0 = 0$ of the equation y'' + y = 0.

Solution: Recall:
$$a_{2k} = \frac{(-1)^k}{(2k)!} a_0$$
 and $(n+2)(n+1) a_{(n+2)} = -a_n$.
For n odd: $n = 1$, $(3)(2)a_3 = -a_1 \Rightarrow a_3 = -\frac{1}{3!} a_1$,
 $n = 3$, $(5)(4)a_5 = -a_3 \Rightarrow a_5 = \frac{1}{5!} a_1$,
 $n = 5$, $(7)(6)a_7 = -a_5 \Rightarrow a_7 = -\frac{1}{7!} a_1$.
We obtain $a_{2k+1} = \frac{(-1)^k}{(2k+1)!} a_1$ for $k \ge 0$.

Example

Find a power series solution y(x) around the point $x_0 = 0$ of the equation y'' + y = 0.

Solution: Recall:
$$a_{2k} = rac{(-1)^k}{(2k)!} \, a_{\scriptscriptstyle 0} \, ext{ and } \, a_{2k+1} = rac{(-1)^k}{(2k+1)!} \, a_{\scriptscriptstyle 1}.$$

Therefore, the solution of the differential equation is given by

$$y(x) = a_0 \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k} + a_1 \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}.$$

One can check that these are precisely the power series representations of the cosine and sine functions, respectively,

$$y(x) = a_0 \cos(x) + a_1 \sin(x).$$

Examples of the power series method.

Example

Find the first three terms of the power series expansion around the point $x_0 = 2$ of each fundamental solution to the differential equation

$$y''-x\,y=0.$$

Solution: We propose:
$$y = \sum_{n=0}^{\infty} a_n (x-2)^n$$
.

It is convenient to rewrite the function xy as follows,

$$xy = \sum_{n=0}^{\infty} a_n x (x-2)^n = \sum_{n=0}^{\infty} a_n [(x-2)+2] (x-2)^n,$$
$$xy = \sum_{n=0}^{\infty} a_n (x-2)^{n+1} + \sum_{n=0}^{\infty} 2a_n (x-2)^n.$$
We relabel the first sum:
$$\sum_{n=0}^{\infty} a_n (x-2)^{n+1} = \sum_{n=1}^{\infty} a_{(n-1)} (x-2)^n.$$

 \triangleleft

Examples of the power series method.
Example
Find the first three terms of the power series expansion around the
point
$$x_0 = 2$$
 of each fundamental solution to the differential
equation
 $y'' - xy = 0.$
Solution: We relabel the y'' ,
 $y'' = \sum_{n=2}^{\infty} n(n-1)a_n(x-2)^{n-2} = \sum_{n=0}^{\infty} (n+2)(n+1)a_{(n+2)}(x-2)^n.$
Introduce y'' and xy in the differential equation
 $\sum_{n=0}^{\infty} (n+2)(n+1)a_{(n+2)}(x-2)^n - \sum_{n=0}^{\infty} 2a_n(x-2)^n - \sum_{n=1}^{\infty} a_{(n-1)}(x-2)^n = 0.$
 $(2)(1)a_2 - 2a_0 + \sum_{n=1}^{\infty} [(n+2)(n+1)a_{(n+2)} - 2a_n - a_{(n-1)}](x-2)^n = 0.$
The recurrence relation for the coefficients a_n is:
 $a_2 - a_0 = 0, \quad (n+2)(n+1)a_{(n+2)} - 2a_n - a_{(n-1)} = 0, \quad n \ge 1.$

Example

Find the first three terms of the power series expansion around the point $x_0 = 2$ of each fundamental solution to the differential equation y'' - x y = 0.

Solution: The recurrence relation is:

 $a_2 - a_0 = 0$, $(n+2)(n+1)a_{(n+2)} - 2a_n - a_{(n-1)} = 0$, $n \ge 1$.

We solve this recurrence relation for the first four coefficients,

$$n=0$$
 $a_2-a_0=0$ \Rightarrow $a_2=a_0,$

$$n = 1 \quad (3)(2)a_3 - 2a_1 - a_0 = 0 \quad \Rightarrow \quad a_3 = \frac{a_0}{6} + \frac{a_1}{3},$$

$$n = 2 \quad (4)(3)a_4 - 2a_2 - a_1 = 0 \quad \Rightarrow \quad a_4 = \frac{a_0}{6} + \frac{a_1}{12}.$$

$$y \simeq a_0 + a_1(x-2) + a_0(x-2)^2 + \left(\frac{a_0}{6} + \frac{a_1}{3}\right)(x-2)^3 + \left(\frac{a_0}{6} + \frac{a_1}{12}\right)(x-2)^4$$

Example

Find the first three terms of the power series expansion around the point $x_0 = 2$ of each fundamental solution to the differential equation $y''_{1} = yy_{2} = 0$

$$y''-x\,y=0$$

Solution: The first terms in the power series expression for y are

$$y \simeq a_0 + a_1(x-2) + a_0(x-2)^2 + \left(\frac{a_0}{6} + \frac{a_1}{3}\right)(x-2)^3 + \left(\frac{a_0}{6} + \frac{a_1}{12}\right)(x-2)^4.$$
$$y = a_0 \left[1 + (x-2)^2 + \frac{1}{6}(x-2)^3 + \frac{1}{6}(x-2)^4 + \cdots\right]$$
$$+ a_1 \left[(x-2) + \frac{1}{3}(x-2)^3 + \frac{1}{12}(x-2)^4 + \cdots\right]$$
So the first three terms on each fundamental solution are given by

So the first three terms on each fundamental solution are given by

$$y_1 \simeq 1 + (x-2)^2 + \frac{1}{6}(x-2)^3$$
, $y_2 \simeq (x-2) + \frac{1}{3}(x-2)^3 + \frac{1}{12}(x-2)^4$.