Power series solutions near regular points (Sect. 3.1).

- We study: $P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0$.
- Review of power series.
- Regular point equations.
- Solutions using power series.
- Examples of the power series method.

Review of power series.

Definition

The power series of a function $y: \mathbb{R} \rightarrow \mathbb{R}$ centered at $x_{0} \in \mathbb{R}$ is

$$
y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

Example

$\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+\cdots$. Here $x_{0}=0$ and $|x|<1$.
$\mathrm{e}^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\cdots$. Here $x_{0}=0$ and $x \in \mathbb{R}$.

- The Taylor series of $y: \mathbb{R} \rightarrow \mathbb{R}$ centered at $x_{0} \in \mathbb{R}$ is

$$
y(x)=\sum_{n=0}^{\infty} \frac{y^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}=y\left(x_{0}\right)+y^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\cdots .
$$

Review of power series.

Example

Find the Taylor series of $y(x)=\sin (x)$ centered at $x_{0}=0$.
Solution: $y(x)=\sin (x), y(0)=0 . \quad y^{\prime}(x)=\cos (x), y^{\prime}(0)=1$.

$$
\begin{aligned}
& y^{\prime \prime}(x)=-\sin (x), y^{\prime \prime}(0)=0 . \quad y^{\prime \prime \prime}(x)=-\cos (x), y^{\prime \prime \prime}(0)=-1 . \\
& \sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots \Rightarrow \sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{(2 n+1)} \dot{y}
\end{aligned}
$$

Remark: The Taylor series of $y(x)=\cos (x)$ centered at $x_{0}=0$ is

$$
\cos (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{(2 n)}
$$

Review of power series.

Remark: The power series of a function may not be defined on the whole domain of the function.

Example

The function $y(x)=\frac{1}{1-x}$ is defined for $x \in \mathbb{R}-\{1\}$.

The power series
$y(x)=\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$
converges only for $|x|<1$.

Review of power series.

Definition

The power series $y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ converges absolutely iff the series $\sum_{n=0}^{\infty}\left|a_{n}\right|\left|x-x_{0}\right|^{n}$ converges.

Example

The series $s=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ converges, but it does not converge absolutely, since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

Review of power series.

Definition

The radius of convergence of a power series

$$
y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

is the number $\rho \geqslant 0$ that satisfies both
(a) the series converges absolutely for $\left|x-x_{0}\right|<\rho$;
(b) the series diverges for $\left|x-x_{0}\right|>\rho$.

rho

Review of power series.

Example

(1) $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ has radius of convergence $\rho=1$.
(2) $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ has radius of convergence $\rho=\infty$.
(3) $\sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{(2 n+1)}$ has radius $\rho=\infty$.
(4) $\cos (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{(2 n)}$ has radius of convergence $\rho=\infty$.

Review of power series.

Theorem (Ratio test)

Given the power series $y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$, introduce the number $L=\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}$. Then, the following statements hold:
(1) The power series converges in the domain $\left|x-x_{0}\right| L<1$.
(2) The power series diverges in the domain $\left|x-x_{0}\right| L>1$.
(3) The power series may or may not converge at $\left|x-x_{0}\right| L=1$.

Therefore, if $L \neq 0$, then $\rho=\frac{1}{L}$ is the series radius of convergence; if $L=0$, then the radius of convergence is $\rho=\infty$.

Review of power series.

Remarks: On summation indices:

$$
\begin{gathered}
y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\cdots \\
y(x)=\sum_{k=0}^{\infty} a_{k}\left(x-x_{0}\right)^{k}=\sum_{m=-3}^{\infty} a_{m+3}\left(x-x_{0}\right)^{m+3} \\
y^{\prime}(x)=\sum_{n=0}^{\infty} n a_{n}\left(x-x_{0}\right)^{n-1}=a_{1}+2 a_{2}\left(x-x_{0}\right)+\cdots \\
y^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n}\left(x-x_{0}\right)^{n-1}=\sum_{m=0}^{\infty}(m+1) a_{m+1}\left(x-x_{0}\right)^{m}
\end{gathered}
$$

where $m=n-1$, that is, $n=m+1$.

Power series solutions near regular points (Sect. 3.1).

- We study: $P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0$.
- Review of power series.
- Regular point equations.
- Solutions using power series.
- Examples of the power series method.

Regular point equations.

Problem: We look for solutions y of the variable coefficients equation

$$
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0
$$

around $x_{0} \in \mathbb{R}$ where $P\left(x_{0}\right) \neq 0$ using a power series representation of the solution centered at x_{0}, that is,

$$
y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

Definition

Given continuous functions $P, Q, R:\left(x_{1}, x_{2}\right) \rightarrow \mathbb{R}$, a point $x_{0} \in\left(x_{1}, x_{2}\right)$ is called a regular point of the equation

$$
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0
$$

iff $P\left(x_{0}\right) \neq 0$. The point x_{0} is called a singular point iff $P\left(x_{0}\right)=0$.
Remark: The equation order does not change near regular points.

Power series solutions near regular points (Sect. 3.1).

- We study: $P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0$.
- Review of power series.
- Regular point equations.
- Solutions using power series.
- Examples of the power series method.

Solutions using power series.

Summary for regular points:
(1) Propose a power series representation of the solution centered at x_{0}, given by

$$
\begin{equation*}
y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n} \tag{1}
\end{equation*}
$$

(2) Introduce Eq. (1) into the differential equation

$$
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0
$$

(3) Find a recurrence relation among the coefficients a_{n};
(4) Solve the recurrence relation in terms of free coefficients;
(5) If possible, add up the resulting power series for the solution y.

Power series solutions near regular points (Sect. 3.1).

- We study: $P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0$.
- Review of power series.
- Regular point equations.
- Solutions using power series.
- Examples of the power series method.

Examples of the power series method.

Example

Find a power series solution $y(x)$ around the point $x_{0}=0$ of the equation

$$
y^{\prime}+c y=0, \quad c \in \mathbb{R}
$$

Solution: Recall: The solution is $y(x)=a_{0} e^{-c x}$.
We now use the power series method. We propose a power series centered at $x_{0}=0$:

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \Rightarrow y^{\prime}(x)=\sum_{n=0}^{\infty} n a_{n} x^{(n-1)}=\sum_{n=1}^{\infty} n a_{n} x^{(n-1)} .
$$

Change the summation index: $m=n-1$, so $n=m+1$.

$$
y^{\prime}(x)=\sum_{m=0}^{\infty}(m+1) a_{m+1} x^{m}=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}
$$

Examples of the power series method.

Example

Find a power series solution $y(x)$ around the point $x_{0}=0$ of the equation

$$
y^{\prime}+c y=0, \quad c \in \mathbb{R}
$$

Solution: $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$, and $y^{\prime}(x)=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}$.
Introduce y and y^{\prime} into the differential equation,

$$
\begin{gathered}
\sum_{n=0}^{\infty}(n+1) a_{(n+1)} x^{n}+\sum_{n=0}^{\infty} c a_{n} x^{n}=0 \\
\sum_{n=0}^{\infty}\left[(n+1) a_{(n+1)}+c a_{n}\right] x^{n}=0
\end{gathered}
$$

The recurrence relation is $(n+1) a_{(n+1)}+c a_{n}=0$ for all $n \geqslant 0$.

Examples of the power series method.

Example

Find a power series solution $y(x)$ around the point $x_{0}=0$ of the equation

$$
y^{\prime}+c y=0, \quad c \in \mathbb{R}
$$

Solution: Recurrence relation: $(n+1) a_{(n+1)}+c a_{n}=0, \quad n \geqslant 0$.
Equivalently: $a_{n+1}=-\frac{c}{n+1} a_{n}$. That is,

$$
\begin{aligned}
& n=0, \quad a_{1}=-c a_{0} \quad \Rightarrow \quad a_{1}=-c a_{0}, \\
& n=1, \quad 2 a_{2}=-c a_{1} \quad \Rightarrow \quad a_{2}=\frac{c^{2}}{2!} a_{0}, \\
& n=2, \quad 3 a_{3}=-c a_{2} \quad \Rightarrow \quad a_{3}=-\frac{c^{3}}{3!} a_{0}, \\
& n=3, \quad 4 a_{4}=-c a_{3} \quad \Rightarrow \quad a_{4}=\frac{c^{4}}{4!} a_{0} .
\end{aligned}
$$

Examples of the power series method.

Example

Find a power series solution $y(x)$ around the point $x_{0}=0$ of the equation

$$
y^{\prime}+c y=0, \quad c \in \mathbb{R}
$$

Solution: Solved recurrence relation: $a_{n}=\frac{(-c)^{n}}{n!} a_{0}$.
The solution y of the differential equation is given by

$$
y(x)=\sum_{n=0}^{\infty} \frac{(-c)^{n}}{n!} a_{0} x^{n} \Rightarrow y(x)=a_{0} \sum_{n=0}^{\infty} \frac{(-c x)^{n}}{n!} .
$$

If we recall the power series $e^{a x}=\sum_{n=0}^{\infty} \frac{(a x)^{n}}{n!}$,
then, we conclude that the solution is $y(x)=a_{0} e^{-c x}$.

Examples of the power series method.

Example

Find a power series solution $y(x)$ around the point $x_{0}=0$ of the equation

$$
y^{\prime \prime}+y=0
$$

Solution: Recall: The characteristic polynomial is $r^{2}+1=0$, hence the general solution is $y(x)=a_{0} \cos (x)+a_{1} \sin (x)$.
We re-obtain this solution using the power series method:

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n} \Rightarrow y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{(n-1)}=\sum_{m=0}^{\infty}(m+1) a_{m+1} x^{m}
$$

where $m=n-1$, so $n=m+1$;

$$
y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{(n-2)}=\sum_{m=0}^{\infty}(m+2)(m+1) a_{m+2} x^{m} .
$$

where $m=n-2$, so $n=m+2$.

Examples of the power series method.

Example

Find a power series solution $y(x)$ around the point $x_{0}=0$ of the equation

$$
y^{\prime \prime}+y=0
$$

Solution: Introduce y and $y^{\prime \prime}$ into the differential equation,

$$
\begin{aligned}
& \sum_{n=0}^{\infty}(n+2)(n+1) a_{(n+2)} x^{n}+\sum_{n=0}^{\infty} a_{n} x^{n}=0 \\
& \sum_{n=0}^{\infty}\left[(n+2)(n+1) a_{(n+2)}+a_{n}\right] x^{n}=0
\end{aligned}
$$

The recurrence relation is $(n+2)(n+1) a_{(n+2)}+a_{n}=0, \quad n \geqslant 0$.
Equivalently: $(n+2)(n+1) a_{(n+2)}=-a_{n}$,

Examples of the power series method.

Example

Find a power series solution $y(x)$ around the point $x_{0}=0$ of the equation

$$
y^{\prime \prime}+y=0
$$

Solution: Recall: $(n+2)(n+1) a_{(n+2)}=-a_{n}, \quad n \geqslant 0$.
For n even: $n=0, \quad(2)(1) a_{2}=-a_{0} \quad \Rightarrow \quad a_{2}=-\frac{1}{2!} a_{0}$,

$$
\begin{aligned}
& n=2, \quad(4)(3) a_{4}=-a_{2} \quad \Rightarrow \quad a_{4}=\frac{1}{4!} a_{0} \\
& n=4, \quad(6)(5) a_{6}=-a_{4} \quad \Rightarrow \quad a_{6}=-\frac{1}{6!} a_{0} .
\end{aligned}
$$

We obtain: $a_{2 k}=\frac{(-1)^{k}}{(2 k)!} a_{0}$, for $k \geqslant 0$.

Examples of the power series method.

Example

Find a power series solution $y(x)$ around the point $x_{0}=0$ of the equation

$$
y^{\prime \prime}+y=0
$$

Solution: Recall: $a_{2 k}=\frac{(-1)^{k}}{(2 k)!} a_{0}$ and $(n+2)(n+1) a_{(n+2)}=-a_{n}$.
For n odd: $n=1, \quad(3)(2) a_{3}=-a_{1} \quad \Rightarrow \quad a_{3}=-\frac{1}{3!} a_{1}$,

$$
\begin{aligned}
& n=3, \quad(5)(4) a_{5}=-a_{3} \quad \Rightarrow \quad a_{5}=\frac{1}{5!} a_{1}, \\
& n=5, \quad(7)(6) a_{7}=-a_{5} \quad \Rightarrow \quad a_{7}=-\frac{1}{7!} a_{1} .
\end{aligned}
$$

We obtain $a_{2 k+1}=\frac{(-1)^{k}}{(2 k+1)!} a_{1}$ for $k \geqslant 0$.

Examples of the power series method.

Example

Find a power series solution $y(x)$ around the point $x_{0}=0$ of the equation

$$
y^{\prime \prime}+y=0
$$

Solution: Recall: $a_{2 k}=\frac{(-1)^{k}}{(2 k)!} a_{0}$ and $a_{2 k+1}=\frac{(-1)^{k}}{(2 k+1)!} a_{1}$.
Therefore, the solution of the differential equation is given by

$$
y(x)=a_{0} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} x^{2 k}+a_{1} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1}
$$

One can check that these are precisely the power series representations of the cosine and sine functions, respectively,

$$
y(x)=a_{0} \cos (x)+a_{1} \sin (x)
$$

Examples of the power series method.

Example

Find the first three terms of the power series expansion around the point $x_{0}=2$ of each fundamental solution to the differential equation

$$
y^{\prime \prime}-x y=0
$$

Solution: We propose: $y=\sum_{n=0}^{\infty} a_{n}(x-2)^{n}$.
It is convenient to rewrite the function $x y$ as follows,

$$
\begin{gathered}
x y=\sum_{n=0}^{\infty} a_{n} x(x-2)^{n}=\sum_{n=0}^{\infty} a_{n}[(x-2)+2](x-2)^{n}, \\
x y=\sum_{n=0}^{\infty} a_{n}(x-2)^{n+1}+\sum_{n=0}^{\infty} 2 a_{n}(x-2)^{n} .
\end{gathered}
$$

We relabel the first sum: $\sum_{n=0}^{\infty} a_{n}(x-2)^{n+1}=\sum_{n=1}^{\infty} a_{(n-1)}(x-2)^{n}$.

Examples of the power series method.

Example

Find the first three terms of the power series expansion around the point $x_{0}=2$ of each fundamental solution to the differential equation

$$
y^{\prime \prime}-x y=0
$$

Solution: We relabel the $y^{\prime \prime}$,
$y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n}(x-2)^{n-2}=\sum_{n=0}^{\infty}(n+2)(n+1) a_{(n+2)}(x-2)^{n}$.
Introduce $y^{\prime \prime}$ and $x y$ in the differential equation
$\sum_{n=0}^{\infty}(n+2)(n+1) a_{(n+2)}(x-2)^{n}-\sum_{n=0}^{\infty} 2 a_{n}(x-2)^{n}-\sum_{n=1}^{\infty} a_{(n-1)}(x-2)^{n}=0$
(2)(1) $a_{2}-2 a_{0}+\sum_{n=1}^{\infty}\left[(n+2)(n+1) a_{(n+2)}-2 a_{n}-a_{(n-1)}\right](x-2)^{n}=0$.

The recurrence relation for the coefficients a_{n} is:
$a_{2}-a_{0}=0, \quad(n+2)(n+1) a_{(n+2)}-2 a_{n}-a_{(n-1)}=0, \quad n \geqslant 1$.

Examples of the power series method.

Example

Find the first three terms of the power series expansion around the point $x_{0}=2$ of each fundamental solution to the differential equation

$$
y^{\prime \prime}-x y=0
$$

Solution: The recurrence relation is:
$a_{2}-a_{0}=0, \quad(n+2)(n+1) a_{(n+2)}-2 a_{n}-a_{(n-1)}=0, \quad n \geqslant 1$.
We solve this recurrence relation for the first four coefficients,

$$
\begin{gathered}
n=0 \quad a_{2}-a_{0}=0 \quad \Rightarrow \quad a_{2}=a_{0}, \\
n=1 \quad(3)(2) a_{3}-2 a_{1}-a_{0}=0 \quad \Rightarrow \quad a_{3}=\frac{a_{0}}{6}+\frac{a_{1}}{3}, \\
n=2 \quad(4)(3) a_{4}-2 a_{2}-a_{1}=0 \quad \Rightarrow \quad a_{4}=\frac{a_{0}}{6}+\frac{a_{1}}{12} . \\
y \simeq a_{0}+a_{1}(x-2)+a_{0}(x-2)^{2}+\left(\frac{a_{0}}{6}+\frac{a_{1}}{3}\right)(x-2)^{3}+\left(\frac{a_{0}}{6}+\frac{a_{1}}{12}\right)(x-2)^{4} .
\end{gathered}
$$

Examples of the power series method.

Example

Find the first three terms of the power series expansion around the point $x_{0}=2$ of each fundamental solution to the differential equation

$$
y^{\prime \prime}-x y=0
$$

Solution: The first terms in the power series expression for y are

$$
\begin{aligned}
& y \simeq a_{0}+a_{1}(x-2)+a_{0}(x-2)^{2}+\left(\frac{a_{0}}{6}+\frac{a_{1}}{3}\right)(x-2)^{3}+\left(\frac{a_{0}}{6}+\frac{a_{1}}{12}\right)(x-2)^{4} . \\
& y= a_{0}\left[1+(x-2)^{2}+\frac{1}{6}(x-2)^{3}+\frac{1}{6}(x-2)^{4}+\cdots\right] \\
&+a_{1}\left[(x-2)+\frac{1}{3}(x-2)^{3}+\frac{1}{12}(x-2)^{4}+\cdots\right]
\end{aligned}
$$

So the first three terms on each fundamental solution are given by
$y_{1} \simeq 1+(x-2)^{2}+\frac{1}{6}(x-2)^{3}, \quad y_{2} \simeq(x-2)+\frac{1}{3}(x-2)^{3}+\frac{1}{12}(x-2)^{4}$.

