- We study: $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=b(t)$.
- Operator notation and preliminary results.
- Summary of the undetermined coefficients method.
- Using the method in few examples.
- The guessing solution table.

Operator notation and preliminary results.

Notation: Given functions p, q, denote

$$
L(y)=y^{\prime \prime}+p(t) y^{\prime}+q(t) y
$$

Therefore, the differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)
$$

can be written as

$$
L(y)=f
$$

The homogeneous equation can be written as

$$
L(y)=0
$$

The function L acting on a function y is called an operator.

Operator notation and preliminary results.
Remark: The operator L is a linear function of y.
Theorem
For every continuously differentiable functions $y_{1}, y_{2}:\left(t_{1}, t_{2}\right) \rightarrow \mathbb{R}$ and every $c_{1}, c_{2} \in \mathbb{R}$ holds that

$$
L\left(c_{1} y_{1}+c_{2} y_{2}\right)=c_{1} L\left(y_{1}\right)+c_{2} L\left(y_{2}\right)
$$

Proof:

$$
\begin{gathered}
L\left(c_{1} y_{1}+c_{2} y_{2}\right)=\left(c_{1} y_{1}+c_{2} y_{2}\right)^{\prime \prime}+p(t)\left(c_{1} y_{1}+c_{2} y_{2}\right)^{\prime}+q(t)\left(c_{1} y_{1}+c_{2} y_{2}\right) \\
\qquad \begin{array}{c}
L\left(c_{1} y_{1}+c_{2} y_{2}\right)=\left(c_{1} y_{1}^{\prime \prime}+p(t) c_{1} y_{1}^{\prime}+q(t) c_{1} y_{1}\right) \\
+\left(c_{2} y_{2}^{\prime \prime}+p(t) c_{2} y_{2}^{\prime}+q(t) c_{2} y_{2}\right)
\end{array} \\
L\left(c_{1} y_{1}+c_{2} y_{2}\right)=c_{1} L\left(y_{1}\right)+c_{2} L\left(y_{2}\right) .
\end{gathered}
$$

Operator notation and preliminary results.

Theorem
Given functions p, q, f, let $L(y)=y^{\prime \prime}+p(t) y^{\prime}+q(t) y$.
If the functions y_{1} and y_{2} are fundamental solutions of the homogeneous equation

$$
L(y)=0,
$$

and y_{p} is any solution of the non-homogeneous equation

$$
\begin{equation*}
L\left(y_{p}\right)=f, \tag{1}
\end{equation*}
$$

then any other solution y of the non-homogeneous equation above is given by

$$
\begin{equation*}
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t) \tag{2}
\end{equation*}
$$

where $c_{1}, c_{2} \in \mathbb{R}$.
Notation: The expression for y in Eq. (2) is called the general solution of the non-homogeneous Eq. (1).

Operator notation and preliminary results.

Theorem
Given functions p, q, let $L(y)=y^{\prime \prime}+p(t) y^{\prime}+q(t) y$.
A particular solution to the differential equation

$$
L\left(y_{p}\right)=f_{1}+\cdots+f_{n},
$$

is a function $y_{p}=y_{p_{1}}+\cdots+y_{p_{n}}$, where each function $y_{p_{i}}$, with $i=1, \cdots, n$ is a solution of the equation

$$
L\left(y_{p_{i}}\right)=f_{i} .
$$

Non-homogeneous equations (Sect. 2.5).

- We study: $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=b(t)$.
- Operator notation and preliminary results.
- Summary of the undetermined coefficients method.
- Using the method in few examples.
- The guessing solution table.

Summary of the undetermined coefficients method.

Problem: Given a constant coefficients linear operator $L(y)=y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y$, with $a_{1}, a_{2} \in \mathbb{R}$, find every solution of the non-homogeneous differential equation

$$
L(y)=f
$$

Remarks:

- The undetermined coefficients is a method to find solutions to linear, non-homogeneous, constant coefficients, differential equations.
- It consists in guessing the solution y_{p} of the non-homogeneous equation

$$
L\left(y_{p}\right)=f,
$$

for particularly simple source functions f.

Summary of the undetermined coefficients method.

Summary:

(1) Find the general solution of the homogeneous equation $L\left(y_{h}\right)=0$.
(2) If f has the form $f=f_{1}+\cdots+f_{n}$, with $n \geqslant 1$, then look for solutions $y_{p_{i}}$, with $i=1, \cdots, n$ to the equations

$$
L\left(y_{p_{i}}\right)=f_{i} .
$$

Once the functions $y_{p_{i}}$ are found, then construct

$$
y_{p}=y_{p_{1}}+\cdots+y_{p_{n}} .
$$

(3) Given the source functions f_{i}, guess the solutions functions $y_{p_{i}}$ following the Table below.

Summary of the undetermined coefficients method.

Summary (cont.):

$f_{i}(t) \quad(K, m, a, b$, given.)	$y_{p_{i}}(t) \quad$ (Guess) (k not given.)
$K e^{a t}$	$k e^{a t}$
$K t^{m}$	$k_{m} t^{m}+k_{m-1} t^{m-1}+\cdots+k_{0}$
$K \cos (b t)$	$k_{1} \cos (b t)+k_{2} \sin (b t)$
$K \sin (b t)$	$k_{1} \cos (b t)+k_{2} \sin (b t)$
$K t^{m} e^{a t}$	$e^{a t}\left(k_{m} t^{m}+\cdots+k_{0}\right)$
$K e^{a t} \cos (b t)$	$e^{a t}\left[k_{1} \cos (b t)+k_{2} \sin (b t)\right]$
$K K e^{a t} \sin (b t)$	$e^{a t}\left[k_{1} \cos (b t)+k_{2} \sin (b t)\right]$
$K t^{m} \cos (b t)$	$\left(k_{m} t^{m}+\cdots+k_{0}\right)\left[a_{1} \cos (b t)+a_{2} \sin (b t)\right]$
$K t^{m} \sin (b t)$	$\left(k_{m} t^{m}+\cdots+k_{0}\right)\left[a_{1} \cos (b t)+a_{2} \sin (b t)\right]$

Summary of the undetermined coefficients method.

Summary (cont.):
(4) If any guessed function $y_{p_{i}}$ satisfies the homogeneous equation $L\left(y_{p_{i}}\right)=0$, then change the guess to the function

$$
t^{s} y_{p_{i}}, \quad \text { with } \quad s \geqslant 1,
$$

and s sufficiently large such that $L\left(t^{s} y_{p_{i}}\right) \neq 0$.
(5) Impose the equation $L\left(y_{p_{i}}\right)=f_{i}$ to find the undetermined constants k_{1}, \cdots, k_{m}, for the appropriate m, given in the table above.
(6) The general solution to the original differential equation $L(y)=f$ is then given by

$$
y(t)=y_{h}(t)+y_{p_{1}}+\cdots+y_{p_{n}} .
$$

- We study: $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=b(t)$.
- Operator notation and preliminary results.
- Summary of the undetermined coefficients method.
- Using the method in few examples.
- The guessing solution table.

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t}
$$

Solution: Notice: $L(y)=y^{\prime \prime}-3 y^{\prime}-4 y$ and $f(t)=3 e^{2 t}$.
(1) Find all solutions y_{h} to the homogeneous equation $L\left(y_{h}\right)=0$.

The characteristic equation is

$$
\begin{gathered}
r^{2}-3 r-4=0 \Rightarrow\left\{\begin{array}{l}
r_{1}=4 \\
r_{2}=-1
\end{array}\right. \\
y_{h}(t)=c_{1} e^{4 t}+c_{2} e^{-t}
\end{gathered}
$$

(2) Trivial in our case. The source function $f(t)=3 e^{2 t}$ cannot be simplified into a sum of simpler functions.
(3) Table says: For $f(t)=3 e^{2 t}$ guess $y_{p}(t)=k e^{2 t}$

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t}
$$

Solution: Recall: $y_{p}(t)=k e^{2 t}$. We need to find k.
(4) Trivial here, since $L\left(y_{p}\right) \neq 0$, we do not modify our guess.
(Recall: $L\left(y_{h}\right)=0$ iff $y_{h}(t)=c_{1} e^{4 t}+c_{2} e^{-t}$.)
(5) Introduce y_{p} into $L\left(y_{p}\right)=f$ and find k.

$$
\left(2^{2}-6-4\right) k e^{2 t}=3 e^{2 t} \quad \Rightarrow \quad-6 k=3 \quad \Rightarrow \quad k=-\frac{1}{2}
$$

We have obtained that $y_{p}(t)=-\frac{1}{2} e^{2 t}$.
(6) The general solution to the inhomogeneous equation is

$$
y(t)=c_{1} e^{4 t}+c_{2} e^{-t}-\frac{1}{2} e^{2 t}
$$

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{4 t}
$$

Solution: We know that the general solution to homogeneous equation is $y_{h}(t)=c_{1} e^{4 t}+c_{2} e^{-t}$.
Following the table we guess y_{p} as $y_{p}=k e^{4 t}$.
However, this guess satisfies $L\left(y_{p}\right)=0$.
So we modify the guess to $y_{p}=k t e^{4 t}$.
Introduce the guess into $L\left(y_{p}\right)=f$. We need to compute

$$
y_{p}^{\prime}=k e^{4 t}+4 k t e^{4 t}, \quad y_{p}^{\prime \prime}=8 k e^{4 t}+16 k t e^{4 t}
$$

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{4 t}
$$

Solution: Recall:

$$
\begin{gathered}
y_{p}=k t e^{4 t}, \quad y_{p}^{\prime}=k e^{4 t}+4 k t e^{4 t}, \quad y_{p}^{\prime \prime}=8 k e^{4 t}+16 k t e^{4 t} . \\
{[(8 k+16 k t)-3(k+4 k t)-4 k t] e^{4 t}=3 e^{4 t} .} \\
{[(8+16 t)-3(1+4 t)-4 t] k=3 \Rightarrow[5+(16-12-4) t] k=3}
\end{gathered}
$$

We obtain that $k=\frac{3}{5}$. Therefore, $y_{p}(t)=\frac{3}{5} t e^{4 t}$, and

$$
y(t)=c_{1} e^{4 t}+c_{2} e^{-t}+\frac{3}{5} t e^{4 t}
$$

Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: We know that the general solution to homogeneous equation is $y(t)=c_{1} e^{4 t}+c_{2} e^{-t}$.

Following the table: Since $f=2 \sin (t)$, then we guess

$$
y_{p}=k_{1} \sin (t)+k_{2} \cos (t)
$$

This guess satisfies $L\left(y_{p}\right) \neq 0$.
Compute: $y_{p}^{\prime}=k_{1} \cos (t)-k_{2} \sin (t), y_{p}^{\prime \prime}=-k_{1} \sin (t)-k_{2} \cos (t)$.

$$
\begin{gathered}
L\left(y_{p}\right)=\left[-k_{1} \sin (t)-k_{2} \cos (t)\right]-3\left[k_{1} \cos (t)-k_{2} \sin (t)\right] \\
-4\left[k_{1} \sin (t)+k_{2} \cos (t)\right]=2 \sin (t)
\end{gathered}
$$

Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: Recall:

$$
\begin{aligned}
& L\left(y_{p}\right)=\left[-k_{1} \sin (t)-k_{2} \cos (t)\right]-3\left[k_{1} \cos (t)-k_{2} \sin (t)\right] \\
& \quad-4\left[k_{1} \sin (t)+k_{2} \cos (t)\right]=2 \sin (t), \\
& \left(-5 k_{1}+3 k_{2}\right) \sin (t)+\left(-3 k_{1}-5 k_{2}\right) \cos (t)=2 \sin (t) .
\end{aligned}
$$

This equation holds for all $t \in \mathbb{R}$. In particular, at $t=\frac{\pi}{2}, t=0$.

$$
\left.\begin{array}{l}
-5 k_{1}+3 k_{2}=2, \\
-3 k_{1}-5 k_{2}=0,
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
k_{1}=-\frac{5}{17} \\
k_{2}=\frac{3}{17}
\end{array}\right.
$$

Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: Recall: $k_{1}=-\frac{5}{17}$ and $k_{2}=\frac{3}{17}$.
So the particular solution to the inhomogeneous equation is

$$
y_{p}(t)=\frac{1}{17}[-5 \sin (t)+3 \cos (t)] .
$$

The general solution is

$$
y(t)=c_{1} e^{4 t}+c_{2} e^{-t}+\frac{1}{17}[-5 \sin (t)+3 \cos (t)]
$$

Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t}+2 \sin (t)
$$

Solution: We know that the general solution y is given by

$$
y(t)=y_{h}(t)+y_{p_{1}}(t)+y_{p_{2}}(t)
$$

where $y_{h}(t)=c_{1} e^{4 t}+c_{2} e^{2 t}, L\left(y_{p_{1}}\right)=3 e^{2 t}$, and $L\left(y_{p_{2}}\right)=2 \sin (t)$. We have just found out that

$$
y_{p}(t)=-\frac{1}{2} e^{2 t}, \quad y_{p_{2}}(t)=\frac{1}{17}[-5 \sin (t)+3 \cos (t)]
$$

We conclude that

$$
y(t)=c_{1} e^{4 t}+c_{2} e^{2 t}-\frac{1}{2} e^{2 t}+\frac{1}{17}[-5 \sin (t)+3 \cos (t)] .
$$

Using the method in few examples.

Example

- For $y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t} \sin (t)$, guess

$$
y_{p}(t)=\left[k_{1} \sin (t)+k_{2} \cos (t)\right] e^{2 t}
$$

- For $y^{\prime \prime}-3 y^{\prime}-4 y=2 t^{2} e^{3 t}$, guess

$$
y_{p}(t)=\left(k_{0}+k_{1} t+k_{2} t^{2}\right) e^{3 t}
$$

- For $y^{\prime \prime}-3 y^{\prime}-4 y=3 t \sin (t)$, guess

$$
y_{p}(t)=\left(1+k_{1} t\right)\left[k_{2} \sin (t)+k_{3} \cos (t)\right] .
$$

Non-homogeneous equations (Sect. 2.5).

- We study: $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=b(t)$.
- Operator notation and preliminary results.
- Summary of the undetermined coefficients method.
- Using the method in few examples.
- The guessing solution table.

The guessing solution table.
Guessing Solution Table.

$f_{i}(t) \quad(K, m, a, b$, given.)	$y_{p_{i}}(t) \quad$ (Guess) (k not given.)
$K e^{a t}$	$k e^{a t}$
$K t^{m}$	$k_{m} t^{m}+k_{m-1} t^{m-1}+\cdots+k_{0}$
$K \cos (b t)$	$k_{1} \cos (b t)+k_{2} \sin (b t)$
$K \sin (b t)$	$k_{1} \cos (b t)+k_{2} \sin (b t)$
$K t^{m} e^{a t}$	$e^{a t}\left(k_{m} t^{m}+\cdots+k_{0}\right)$
$K e^{a t} \cos (b t)$	$e^{a t}\left[k_{1} \cos (b t)+k_{2} \sin (b t)\right]$
$K K e^{a t} \sin (b t)$	$e^{a t}\left[k_{1} \cos (b t)+k_{2} \sin (b t)\right]$
$K t^{m} \cos (b t)$	$\left(k_{m} t^{m}+\cdots+k_{0}\right)\left[a_{1} \cos (b t)+a_{2} \sin (b t)\right]$
$K t^{m} \sin (b t)$	$\left(k_{m} t^{m}+\cdots+k_{0}\right)\left[a_{1} \cos (b t)+a_{2} \sin (b t)\right]$

