Linear Variable coefficient equations (Sect. 1.2)

- ▶ Review: Linear constant coefficient equations.
- ► The Initial Value Problem.
- ▶ Linear variable coefficients equations.
- ▶ The Bernoulli equation: A nonlinear equation.

Review: Linear constant coefficient equations

Definition

Given functions a, b, a first order, linear ODE in the unknown function y is the equation

$$y'(t) = a(t) y(t) + b(t).$$

Theorem (Constant coefficients)

Given constants $a, b \in \mathbb{R}$ with $a \neq 0$, the linear differential equation

$$y'(t) = ay(t) + b$$

has infinitely many solutions, one for each value of $c \in \mathbb{R}$, given by

$$y(t) = c e^{at} - \frac{b}{a}.$$

Review: Linear constant coefficient equations

Example

Find all functions y solution of the ODE y' = 2y + 3.

Solution:

We concluded that the ODE has infinitely many solutions, given by

$$y(t) = c e^{2t} - \frac{3}{2}, \qquad c \in \mathbb{R}.$$

Since we did one integration, it is reasonable that the solution contains a constant of integration, $c \in \mathbb{R}$.

Verification: $y' = 2c e^{2t}$, but we know that $2c e^{2t} = 2y + 3$, therefore we conclude that y satisfies the ODE y' = 2y + 3.

Linear Variable coefficient equations (Sect. 1.2)

- ▶ Review: Linear constant coefficient equations.
- ► The Initial Value Problem.
- ► Linear variable coefficients equations.
- ► The Bernoulli equation: A nonlinear equation.

The Initial Value Problem

Definition

The *Initial Value Problem* (IVP) for a linear ODE is the following: Given functions a, b and constants t_0 , y_0 , find a function y solving

$$y' = a(t) y + b(t),$$
 $y(t_0) = y_0.$

Remark: The initial condition selects one solution of the ODE.

Theorem (Constant coefficients)

Given constants a, b, t_0 , y_0 , with $a \neq 0$, the initial value problem

$$y' = ay + b, \qquad y(t_0) = y_0$$

has the unique solution

$$y(t) = \left(y_0 + \frac{b}{a}\right)e^{a(t-t_0)} - \frac{b}{a}.$$

The Initial Value Problem

Example

Find the solution to the initial value problem

$$y' = 2y + 3,$$
 $y(0) = 1.$

Solution: Every solution of the ODE above is given by

$$y(t)=c\,e^{2t}-rac{3}{2},\qquad c\in\mathbb{R}.$$

The initial condition y(0) = 1 selects only one solution:

$$1 = y(0) = c - \frac{3}{2} \quad \Rightarrow \quad c = \frac{5}{2}.$$

We conclude that
$$y(t) = \frac{5}{2} e^{2t} - \frac{3}{2}$$
.

Linear Variable coefficient equations (Sect. 1.2)

- ▶ Review: Linear constant coefficient equations.
- ▶ The Initial Value Problem.
- ► Linear variable coefficients equations.
- ▶ The Bernoulli equation: A nonlinear equation.

Linear variable coefficients equations

Theorem (Variable coefficients)

Given continuous functions a, b and constants t_0 , y_0 , all solutions to the equation

$$y' = a(t)y + b(t)$$

are given by

$$y(t) = c e^{A(t)} + e^{A(t)} \int e^{-A(t)} b(t) dt,$$

where we have introduced the function $A(t) = \int a(t)dt$.

Remarks:

- (a) The function $\mu(t) = e^{-A(t)}$ is called an integrating factor.
- (b) See the proof in the Lecture Notes.

Linear variable coefficients equations

Example

Find all solutions y to the equation

$$t\,y'=-2y+4t^2,$$

Solution: We first express the equation as in the Theorem,

$$y' = -\frac{2}{t}y + 4t \quad \Rightarrow \quad y' + \frac{2}{t}y = 4.$$

$$e^{f(t)} y' + \frac{2}{t} e^{f(t)} y = 4t e^{f(t)}, \quad f'(t) = \frac{2}{t}.$$

This function $\mu = e^{f(t)}$ is an integrating factor.

$$f(t) = \int \frac{2}{t} dt = 2 \ln(t) = \ln(t^2)$$

Therefore, $\mu(t) = e^{f(t)} = t^2$.

Linear variable coefficients equations

Example

Find the solution y to the IVP

$$t y' + 2y = 4t^2, y(1) = 2.$$

Solution: The integrating factor is $\mu(t) = t^2$. Hence,

$$t^{2}(y' + \frac{2}{t}y) = t^{2}(4t) \Leftrightarrow t^{2}y' + 2ty = 4t^{3}$$

$$(t^2y)' = 4t^3 \quad \Leftrightarrow \quad t^2y = t^4 + c \quad \Leftrightarrow \quad y = t^2 + \frac{c}{t^2}.$$

We conclude $y(t) = t^2 + \frac{c}{t^2}$ for any $c \in \mathbb{R}$.

Linear variable coefficients equations

Theorem (Variable coefficients)

Given continuous functions $a, b : \mathbb{R} \to \mathbb{R}$ and given constants $t_0, y_0 \in \mathbb{R}$, the IVP

$$y' = a(t)y + b(t)$$
 $y(t_0) = y_0$

has the unique solution

$$y(t) = e^{A(t)} \left(y_0 + \int_{t_0}^t e^{-A(s)} b(s) ds \right),$$

where we have introduced the function $A(t) = \int_{t_0}^t a(s)ds$.

Remarks:

- (a) The function $\mu(t) = e^{-A(t)}$ is called an integrating factor.
- (b) See the proof in the Lecture Notes.

Linear variable coefficients equations

Example

Find the solution y to the IVP

$$t y' + 2y = 4t^2, y(1) = 2.$$

Solution: We already know that all solutions to the differential equation are

$$y=t^2+\frac{c}{t^2}.$$

The initial condition implies

$$2 = y(1) = 1 + c, \quad \Rightarrow \quad c = 1.$$

We conclude that
$$y(t) = t^2 + \frac{1}{t^2}$$
.

Linear Variable coefficient equations (Sect. 1.2)

- ▶ Review: Linear constant coefficient equations.
- ▶ The Initial Value Problem.
- ▶ Linear variable coefficients equations.
- ► The Bernoulli equation: A nonlinear equation.

The Bernoulli equation

Remark: The Bernoulli equation is a non-linear differential equation that can be transformed into a linear differential equation.

Definition

Given functions p, $q: \mathbb{R} \to \mathbb{R}$ and a real number n, the differential equation in the unknown function $y: \mathbb{R} \to \mathbb{R}$ given by

$$y' + p(t)y = q(t)y^n$$

is called the Bernoulli equation.

Theorem

The function $y : \mathbb{R} \to \mathbb{R}$ is a solution of the Bernoulli equation for

$$y' + p(t) y = q(t) y^n, \qquad n \neq 1,$$

iff the function $v = 1/y^{(n-1)}$ is solution of the linear differential equation v' - (n-1)p(t) v = -(n-1)q(t).

The Bernoulli equation

Example

Given arbitrary constants $a \neq 0$ and b, find every solution of the differential equation

$$y' = ay + by^3.$$

Solution: This is a Bernoulli equation. Divide the equation by y^3 ,

$$\frac{y'}{y^3} = \frac{a}{y^2} + b.$$

Introduce the function $v=1/y^2$, with derivative $v'=-2\left(\frac{y'}{y^3}\right)$, into the differential equation above,

$$-\frac{v'}{2} = av + b \quad \Rightarrow \quad v' = -2av - 2b \quad \Rightarrow \quad v' + 2av = -2b.$$

The Bernoulli equation

Example

Given arbitrary constants $a \neq 0$ and b, find every solution of the differential equation $v' = av + bv^3$.

Solution: Recall: v' + 2av = -2b.

The last equation is a linear differential equation for v. This equation can be solved using the integrating factor method. Multiply the equation by $\mu(t)=e^{2at}$,

$$(e^{2at}v)' = -2be^{2at}$$
 \Rightarrow $e^{2at}v = -\frac{b}{a}e^{2at} + c$

We obtain that $v = c e^{-2at} - \frac{b}{a}$. Since $v = 1/y^2$,

$$\frac{1}{y^2} = c e^{-2at} - \frac{b}{a} \quad \Rightarrow \quad y(t) = \pm \frac{1}{\left(c e^{-2at} - \frac{b}{a}\right)^{1/2}}.$$