Review for Final Exam.
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Exam is cumulative.
Heat equation not included.
15 problems.

Two and half hours.

Fourier Series expansions (Chptr.6).
Eigenvalue-Eigenfunction BVP (Chptr. 6).
Systems of linear Equations (Chptr. 5).
Laplace transforms (Chptr. 4).

Second order linear equations (Chptr. 2).
First order differential equations (Chptr. 1).



Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

Solution: The Fourier series is

700 = 243 [ancos( ™) + bysin(").
n=1



Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

Solution: The Fourier series is
o
_ap nmwx . /nTXx
f(x) = > + Z:l[an cos(T> + by sm(T)].
n=

Since f is odd and periodic,



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

Solution: The Fourier series is

+Z[ancos( =) + busin( 7).

Since f is odd and periodic, then the Fourier Series is a Sine
Series,



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

Solution: The Fourier series is

+Z[ancos( =) + busin( 7).

Since f is odd and periodic, then the Fourier Series is a Sine
Series, that is, a, = 0.



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

Solution: The Fourier series is

+Z[ancos( =) + busin( 7).

Since f is odd and periodic, then the Fourier Series is a Sine
Series, that is, a, = 0.

1 [t . [/ nmx
bn = L/_L f(X) Sln(T) dx



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

Solution: The Fourier series is

+Z[ancos( =) + busin( 7).

Since f is odd and periodic, then the Fourier Series is a Sine
Series, that is, a, = 0.

L nmx L . [ NTX
by = i/_ f(x) sin(T) dx = i/o f(x) sm(T) dx.

L



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

Solution: The Fourier series is

+Z[ancos( =) + busin( 7).

Since f is odd and periodic, then the Fourier Series is a Sine
Series, that is, a, = 0.

L nmx L . [ NTX
by = i/ f(x) sin(T) dx = i/o f(x) sm(T) dx.

—L

1
b, = 2/0 (—1) sin(nmx) dx



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

Solution: The Fourier series is

+Z[ancos( =) + busin( 7).

Since f is odd and periodic, then the Fourier Series is a Sine
Series, that is, a, = 0.

L nmx L . [ NTX
bn:i/ f(x)sin( 1 )dx—i/o f(x)sm(T) dx.

—L

1
b, = 2/0 (—1) sin(nmx) dx = (—2)



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

Solution: The Fourier series is

+Z[ancos( =) + busin( 7).

Since f is odd and periodic, then the Fourier Series is a Sine
Series, that is, a, = 0.

L nmx L . [ NTX
bn:i/ f(x)sin( 1 )dx—i/o f(x)sm(T) dx.

—L

1
b, = 2/0 (—1) sin(nmx) dx = (—2)

b, = 2 [cos(nT) — 1]

nm



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

Solution: The Fourier series is

+Z[ancos( =) + busin( 7).

Since f is odd and periodic, then the Fourier Series is a Sine
Series, that is, a, = 0.

L nmx L . [ NTX
bn:i/ f(x)sin( 1 )dx—i/o f(x)sm(T) dx.

—L

= 1— sin(nmx) dx = (— (=1) cos(nmx '
by =2 [ (1) sin(rmx) e = (<2) ) cos(om)|
bn:%[cos(nﬂ)—l} = bn:%[(—l)”—l].



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

2
lution: Recall: b, = — [(—1)" —1].
Solution: Reca - [(-1) ]



Fourier Series: Even/Odd-periodic extensions.
Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and

then find the Fourier Series of this extension.

2
lution: Recall: b, = — [(—1)" —1].
Solution: Reca - [(-1) ]

If n =2k,



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

2
jon: : b,=—|(-1)"—1}|.
Solution: Reca o [( ) ]

— _ 2 2k
If n =2k, then by = Sk [(-1) 1]



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

2
jon: : b,=—|(-1)"—1}|.
Solution: Reca o [( ) ]

_ _ 2 2k _ 1] —
If n = 2k, then by, = 5 — [(-1)**—1] =0.



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

2
lution: Recall: b, = — [(—1)" — 1.
Solution: Reca - [(-1) ]

_ _ 2 2k _ 1] —
If n = 2k, then by, = 5 — [(-1)**—1] =0.

If n=2k—1,



Fourier Series: Even/Odd-periodic extensions.
Example

Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

2
lution: Recall: b, = — [(—1)" — 1.
Solution: Reca - [(-1) ]

_ _ 2 2k 1] —
If n = 2k, then by, = 5 — [(-1)**—1] =0.
|fn=2/<—1,2
bok-1) = = [(-1)* T -1



Fourier Series: Even/Odd-periodic extensions.
Example

Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

2
lution: Recall: b, = — [(—1)" — 1.
Solution: Reca - [(-1) ]

_ _ 2 2% _
If n = 2k, then by, = 5 — [(-1)**—1] =0.
fn=2k-1, .
bok_1) = = [(-1)* 1 1] = = —
k=17 2k — 1) (1) ) (2k — D



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

2
lution: Recall: b, = — [(—1)" — 1.
Solution: Reca - [(-1) ]

_ _ 2 2k _ 1] —
If n = 2k, then by, = 5 — [(-1)**—1] =0.

If n =2k —1, .
= [~ loq]=-__"
Bak-1) (2k — D)7 (1) ) (2k — D

4 )
W lude: —— (2k -1 .
e conclude - Z sm[ )mx] <

k:l



Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: The Fourier series is

f(x) = % + i[an cos(nLLX> + b, sin(mrTX)].
n=1



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: The Fourier series is
_o v X in (T
f(x) = 5 —i—;[ancos( 1 )—i—b,,sm( T )]

Since f is odd and periodic,



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: The Fourier series is
_o v X in (T
f(x) = 5 —i—;[ancos( 1 )—i—b,,sm( T )]

Since f is odd and periodic, then the Fourier Series is a Sine
Series,



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: The Fourier series is
_o v X in (T
f(x) = 5 —i—;[ancos( 1 )—i—b,,sm( T )]

Since f is odd and periodic, then the Fourier Series is a Sine
Series, that is, a, = 0.



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: The Fourier series is
_o v X in (T
f(x) = 5 —i—;[ancos( 1 )—i—bnsm( T )]

Since f is odd and periodic, then the Fourier Series is a Sine
Series, that is, a, = 0.



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: The Fourier series is
_o v X in (T
f(x) = 5 —i—;[ancos( 1 )—i—bnsm( T )]

Since f is odd and periodic, then the Fourier Series is a Sine
Series, that is, a, = 0.



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: The Fourier series is
_o v X in (T
f(x) = 5 —i—;[ancos( 1 )—i—bnsm( T )]

Since f is odd and periodic, then the Fourier Series is a Sine
Series, that is, a, = 0.



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: The Fourier series is
_o v X in (T
f(x) = 5 —i—;[ancos( 1 )—i—bnsm( T )]

Since f is odd and periodic, then the Fourier Series is a Sine
Series, that is, a, = 0.

b, = /02(2 - Xx) sin(?) dx.a



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0,2),
and then find the Fourier Series of this extension.

2 2
Solution: b, = 2/ sin(@) dx—/
0 2 0

nmx

X Sln(T> dx.



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0,2),
and then find the Fourier Series of this extension.

2 2

Solution: b, = 2/ sin(@) dx—/
0 2 0

. <n7rx> dx — -2 (mrx>

sin( =~ ) dx = —— cos( —~ ),

nmx

X Sln(7> dx.



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0,2),
and then find the Fourier Series of this extension.

2

2
Solution: b, = 2/ sin(@) dx—/ X Sin(@) dx.
0 2 0 2
. (an'X)d 2 (mrx>
SNl = —— cos(—= ),

The other integral is done by parts,



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0,2),
and then find the Fourier Series of this extension.

2

2
Solution: b, = 2/ sin(@) dx—/ X Sin(@) dx.
0 2 0 2
. (an'X)d 2 (mrx>
SNl = —— cos(—= ),

The other integral is done by parts,

I = /xsin(ngx) dx,



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0,2),
and then find the Fourier Series of this extension.

2

2
Solution: b, = 2/ sin(ﬂ) dx—/ X sin(ﬂ) dx.
0 2 0 2
. (an'X)d 2 (mrx>
SNl = —— cos(—= ),

The other integral is done by parts,

, . [/ nmx
u=x, V =sin

I = /xsin(ngx) dx, 2



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0,2),
and then find the Fourier Series of this extension.

2

2
Solution: b, = 2/ sin(ﬂ) dx—/ X sin(ﬂ) dx.
0 2 0 2
. (an'X)d 2 (mrx>
SNl = —— cos(—= ),

The other integral is done by parts,
nmx

I = /xsin(m) dx, = :;in(znz

2 =1 v=-— cos(—x>
nm 2



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0,2),
and then find the Fourier Series of this extension.

2

2
Solution: b, = 2/ sin(ﬂ) dx—/ X sin(ﬂ) dx.
0 2 0 2
. <n7rx>d 2 (mrx>
SNl = —— cos(—= ),

The other integral is done by parts,
nmx

I = /xsin(m) dx, = :;in(znz

2 =1 v=-— cos(—x>
nm 2



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: | = _n—ix cos(%) — /(;j) cos(%) dx.



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: | = _n—ix cos(?) — /(;j) cos(%) dx.

2x nmx 2\2 . /nmx
| = —— cos(—) + (*) sm(—).
nm 2 nm 2



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: | = % cos(ngx> — /(;j) cos(%) dx.

2x nmx 2\2 . /nmx
| = —— cos(—) + (*) sm(—). So, we get
nm 2 nm 2

2

o =22 eos( )], + [ o], - () s ()N,



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: | = % cos(ngx> — /(;j) cos(%) dx.

2x nmx 2\2 . /nmx
| = —— cos(—) + (*) sm(T) So, we get

nm 2 nm

2

o =22 eos( )], + [ o], - () s ()N,



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: | = % cos(ngx> — /(;j) cos(%) dx.

2x nmx 2\2 . /nmx
| = —— cos(—) + (*) sm(T) So, we get

nm 2 nm
in =2l oo, + [ s~ () o)
b, = ;—:[cos(mr) -1] + {ni;r cos(nm) O} = b,= %



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: | = % cos(ngx> — /(;j) cos(%) dx.

2x nmx 2\2 . /nmx
| = —— cos(—) + (*) sm(T) So, we get

nm 2 nm
tn=2[ % eos( )|+ [ eos(F][, ~ () s (),
b, = ;—:[cos(mr) -1] + {ni;r cos(nm) — O} =  b,= %
We conclude: % i}) i <n7rx> <

n=1



Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is

700 = 243 [ancos( ™) + bysin( ™).
n=1



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is
(o]
_a nmwx ./ NTX
f(x) = > + ngl [a,,cos(—l_ ) +b,,sm(—L )]

Since f is even and periodic,



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is

+Z[ancos( =) + basin (7).

Since f is even and periodic, then the Fourier Series is a Cosine
Series,



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is

+Z[ancos( =) + basin (7).

Since f is even and periodic, then the Fourier Series is a Cosine
Series, that is, b, = 0.



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is

+Z[ancos( =) + basin (7).

Since f is even and periodic, then the Fourier Series is a Cosine
Series, that is, b, = 0.

1 /2
a) = = / f(x) dx
2 ).,



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is

+Z[ancos( =) + basin (7).

Since f is even and periodic, then the Fourier Series is a Cosine
Series, that is, b, = 0.

ao:;/:f(x)dx:/;@—x)dx



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is

+Z[ancos( =) + basin (7).

Since f is even and periodic, then the Fourier Series is a Cosine
Series, that is, b, = 0.

1 /2 2 b height
3022/ f(X)dX:/(2—X)dX:aseX2elg
-2 0



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is

+Z[ancos( =) + basin (7).

Since f is even and periodic, then the Fourier Series is a Cosine
Series, that is, b, = 0.

1 [? 2 b height
30:2/ f(x)dx:/(2—x)dx:asex2e'g:>aoz2.
-2 0



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is

+Z[ancos( =) + basin (7).

Since f is even and periodic, then the Fourier Series is a Cosine
Series, that is, b, = 0.

1 [? 2 b height
30:2/ f(x)dx:/(2—x)dx:asex2e'g:>aoz2.
-2 0

1 [t nmx
ap = L/—L f(x)cos(T) dx



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is

+Z[ancos( =) + basin (7).

Since f is even and periodic, then the Fourier Series is a Cosine
Series, that is, b, = 0.

1 [? 2 b height
30:2/ f(x)dx:/(2—x)dx:asex2e'g:>aoz2.
-2 0

ap = i/L f(x) cos(nLLX) dx = i/OL (x)cos(mzx> dx,

—L



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is

+Z[ancos( =) + basin (7).

Since f is even and periodic, then the Fourier Series is a Cosine
Series, that is, b, = 0.

1 [? 2 b height
30:2/ f(x)dx:/(2—x)dx:asex2e'g:>aoz2.
-2 0

an:i/L f(x)cos(nLLX) dx:i/L (x)cos(nL )dx L=2,
0

—L



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is

+Z[ancos( =) + basin (7).

Since f is even and periodic, then the Fourier Series is a Cosine
Series, that is, b, = 0.

1 [? 2 b height
30:2/ f(x)dx:/(2—x)dx:asex2e'g:>aoz2.
-2 0

an:i/L f(x)cos(mLTX) dx—i/L (x)cos(nL )dx L=2,
0

—L
an = /02(2 - Xx) cos(mzr—x> dx.



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

2 2
Solution: a, = 2/ cos(ﬂ) dx —/
0 2 0

nmx

X COS(T) dx.



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

2 2

Solution: a, :2/ cos(ﬂ) dx—/
0 2 0

(n7rx>d 2 <n7rx>

cos > Ix = o sin 5 )

nmx

X COS(T) dx.



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

2

2
Solution: an:2/ cos(ﬂ) dx—/ XCOS(%) dx.
0 2 0 2
(n7rx>d 2 <n7rx>
cos > X—mrsm 5 )

The other integral is done by parts,



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

2

2
Solution: an:2/ cos(ﬂ) dx—/ XCOS(%) dx.
0 2 0 2
(n7rx>d 2 <n7rx>
cos > X—mrsm 5 )

The other integral is done by parts,

| = /xcos<m2TX> dx,



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

2

2
Solution: an:2/ cos(ﬂ) dx—/ XCOS(ﬂ) dx.
0 2 0 2
(n7rx>d 2 (I'IT['X)
cos > X—mrsm 5 )

The other integral is done by parts,

, nmx
u=x, VvV =cosl—

| = /xcos<m2TX> dx, 2



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

2

2
Solution: an:2/ cos(ﬂ) dx—/ XCOS(ﬂ) dx.
0 2 0 2
(n7rx>d 2 (I'IT['X)
cos > X—mrsm 5 )

The other integral is done by parts,

, nmx
u=x, v =cos{—

nmwx
| = /xcos<2> dx, / 2 nmx
u=1, = — sm( )

V —
nm

2



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

2

2
Solution: an:2/ cos(ﬂ) dx—/ XCOS(ﬂ) dx.
0 2 0 2
(n7rx>d 2 (I'IT['X)
cos > X—mrsm 5 )

The other integral is done by parts,

nmx

o u=x, cos( 5 )
I:/xcos< )dx
2 , 2 . /nmx
u=1, :—sm( )

nm

2



Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

Solution: Recall: | = 2—X sin(m;—x> /2 sin(?) dx.

nm nm



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

Solution: Recall: | = 2—X sin(m7x> /2 Sin(ﬂ) dx.
nr 2 nm 2

2x . /nTX 2\2 nmx
| = — sm(—) + (—) cos(—).
nm 2 nm 2
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Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
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Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

Solution: Recall: | = 2—X sin(m7x> /2 Sin(ﬂ) dx.
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Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

Solution: Recall: | = 2—X sin(m7x> /2 Sin(ﬂ) dx.
nr 2 nm 2

2x . /nTXx 2\2 nmx
| =— sm(T) + (—) cos(T). So, we get

= (- [ w3 () (5]

4 4 .
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Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

: 4 n
Solution: Recall: b, =0, ap =2, a, = W[l —(-1)".
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Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

: 4 n
Solution: Recall: b, =0, ap =2, a, = W[l —(-1)".

4
If n= 2k, then azg = W [1 — (—1)2k]



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

: 4 n
Solution: Recall: b, =0, ap =2, a, = W[l —(-1)".
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Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

: 4 n
Solution: Recall: b, =0, ap =2, a, = W[l —(-1)".

4
If n =2k, then ayy = ——— |1 — (-1 2 = 0.
(2k)?m2
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Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

: 4 n
Solution: Recall: b, =0, ap =2, a, = W[l —(-1)".

4
If n =2k, then ayy = ——— |1 — (-1 2 = 0.
(2k)?m2

If n=2k —1, then we obtain
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Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

: 4 n
Solution: Recall: b, =0, ap =2, a, = W[l —(-1)".

4

2k1 __
Ifn:2k, then QQkZW [1—(—1) ] =0.
If n=2k —1, then we obtain
4 2%-1 8
d(2k-1) = (2/( _ 1)27].2 [1 - (_1) ] = (2/( _ 1)271.2'



Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

: 4 n
Solution: Recall: b, =0, ap =2, a, = W[l —(-1)".

4 2k
Ifn:2k, then a2k:W[l_(_1) ] =0.
If n=2k —1, then we obtain
4 8

S S— G A ULS ) [

a(2k—1) (2k _ 1)27].2 [1 ( ) ] (2/( _ 1)271.2
_ 8 — 1 (2k — 1)mx

We conclude: f(x):1+; g 2k —1)2 cos( 5 >.<

k=1



Review for Final Exam.

Fourier Series expansions (Chptr.6).
Eigenvalue-Eigenfunction BVP (Chptr. 6).
Systems of linear Equations (Chptr. 5).
Laplace transforms (Chptr. 4).

Second order linear equations (Chptr. 2).

vV v v v v Y

First order differential equations (Chptr. 1).



Eigenvalue-Eigenfunction BVP.
Example
Find the positive eigenvalues and their eigenfunctions of

y"+Ay =0, y(0)=0, y(8)=0.
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Example
Find the positive eigenvalues and their eigenfunctions of

y"+Ay =0, y(0)=0, y(8)=0.

Solution: Since A > 0, introduce A = p?, with > 0.
y(x) = e™ implies that r is solution of
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The general solution is y(x) = ¢ cos(ux) + ¢ sin(ux).



Eigenvalue-Eigenfunction BVP.
Example
Find the positive eigenvalues and their eigenfunctions of

y'+Ay=0, y(0)=0, y(8)=0.
Solution: Since A > 0, introduce A = p2, with > 0.
y(x) = e™ implies that r is solution of

p(r)=r*+u2=0 = r=4pui
The general solution is y(x) = ¢ cos(ux) + ¢ sin(ux).

The boundary conditions imply:
0 =y(0)
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Example
Find the positive eigenvalues and their eigenfunctions of

y'+Ay=0, y(0)=0, y(8)=0.
Solution: Since A > 0, introduce A = p2, with > 0.
y(x) = e™ implies that r is solution of
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The boundary conditions imply:
0=y(0)=q
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Example
Find the positive eigenvalues and their eigenfunctions of

y"+Ay =0 y(0)=0, y(8)=0.
Solution: Since A > 0, introduce A = p?, with > 0.
y(x) = e™ implies that r is solution of
p(r)=r*+u2=0 = r=4pui
The general solution is y(x) = ¢1 cos(ux) + ¢z sin(ux).
The boundary conditions imply:
0=y(0)=ca = y(x)=csin(ux).
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Example
Find the positive eigenvalues and their eigenfunctions of

y"+Ay =0 y(0)=0, y(8)=0.
Solution: Since A > 0, introduce A = p?, with > 0.
y(x) = e™ implies that r is solution of
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y"+Ay =0 y(0)=0, y(8)=0.
Solution: Since A > 0, introduce A = p?, with > 0.
y(x) = e™ implies that r is solution of
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0=y(0)=ca = y(x)=csin(ux).

0=y(8) =csin(u8), c#0



Eigenvalue-Eigenfunction BVP.
Example
Find the positive eigenvalues and their eigenfunctions of

y"+Ay =0 y(0)=0, y(8)=0.
Solution: Since A > 0, introduce A = p?, with > 0.
y(x) = e™ implies that r is solution of

p(r)=r*+u2=0 = r=4pui
The general solution is y(x) = ¢1 cos(ux) + ¢z sin(ux).
The boundary conditions imply:

0=y(0)=ca = y(x)=csin(ux).
0=y(8)=csin(u8), cw#0 = sin(u8)=0.



Eigenvalue-Eigenfunction BVP.
Example
Find the positive eigenvalues and their eigenfunctions of

y"+Ay =0 y(0)=0, y(8)=0.
Solution: Since A > 0, introduce A = p?, with > 0.
y(x) = e™ implies that r is solution of

p(r)=r*+u2=0 = r=4pui
The general solution is y(x) = ¢1 cos(ux) + ¢z sin(ux).
The boundary conditions imply:

0=y(0)=ca = y(x)=csin(ux).
0=y(8)=csin(u8), cw#0 = sin(u8)=0.
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Eigenvalue-Eigenfunction BVP.
Example
Find the positive eigenvalues and their eigenfunctions of

y"+Ay =0 y(0)=0, y(8)=0.
Solution: Since A > 0, introduce A = p?, with > 0.
y(x) = e™ implies that r is solution of

p(r)=r*+u2=0 = r=4pui
The general solution is y(x) = ¢1 cos(ux) + ¢z sin(ux).
The boundary conditions imply:

0=y(0)=ca = y(x)=csin(ux).
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Eigenvalue-Eigenfunction BVP.
Example
Find the positive eigenvalues and their eigenfunctions of

y"+Ay =0 y(0)=0, y(8)=0.
Solution: Since A > 0, introduce A = p?, with > 0.
y(x) = e™ implies that r is solution of

p(r)=r*+u2=0 = r=4pui
The general solution is y(x) = ¢1 cos(ux) + ¢z sin(ux).
The boundary conditions imply:

0=y(0)=ca = y(x)=csin(ux).
0=y(8)=csin(u8), cw#0 = sin(u8)=0.

MZ%T, AZ(%Y, yn(x):sin<m%x>, n=12-- 4
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Example

Find the positive eigenvalues and their eigenfunctions of
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Solution: The general solution is y(x) = ¢1 cos(ux) + ¢ sin(pux).

The boundary conditions imply:
0 =y(0)
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Example

Find the positive eigenvalues and their eigenfunctions of
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Example

Find the positive eigenvalues and their eigenfunctions of
y'+Ay =0 y(0)=0, y(8)=0.
Solution: The general solution is y(x) = c1 cos(ux) + ¢ sin(ux).
The boundary conditions imply:
0=y(0)=ca = y(x)=csin(ux).
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Find the positive eigenvalues and their eigenfunctions of
y'+Ay =0 y(0)=0, y(8)=0.
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Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of
y'+Ay =0 y(0)=0, y(8)=0.
Solution: The general solution is y(x) = c1 cos(ux) + ¢ sin(ux).
The boundary conditions imply:
0=y(0)=ca = y(x)=csin(ux).
0=y'(8) = cpuucos(u8), c#0 = cos(u8)=0.



Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of
y'+Ay=0, y(0)=0, y'(8)=0.
Solution: The general solution is y(x) = c1 cos(ux) + ¢ sin(ux).
The boundary conditions imply:
0=y(0)=c = y(x)=csin(ux).
0=y'(8) = cpuucos(u8), c#0 = cos(u8)=0.
™
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Eigenvalue-Eigenfunction BVP.
Example
Find the positive eigenvalues and their eigenfunctions of

y'+Ay=0, y(0)=0, y'(8)=0.
Solution: The general solution is y(x) = c1 cos(ux) + ¢ sin(ux).
The boundary conditions imply:
0=y(0)=ca = y(x)=csin(ux).
0=y'(8) = cpuucos(u8), c#0 = cos(u8)=0.
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Eigenvalue-Eigenfunction BVP.

Example
Find the positive eigenvalues and their eigenfunctions of

y'+Ay =0 y(0)=0, y(8)=0.
Solution: The general solution is y(x) = c1 cos(ux) + ¢ sin(ux).
The boundary conditions imply:

0=y(0)=ca = y(x)=csin(ux).

0=y'(8) = coprcos(u8), @ #0 = cos(u8)=0.

s (2n+1)m
=(2 1)—= =—
8u=(2n+1)7, = u 16
Then, for n=1,2,--- holds
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Eigenvalue-Eigenfunction BVP.

Example
Find the positive eigenvalues and their eigenfunctions of

y'+Ay =0 y(0)=0, y(8)=0.
Solution: The general solution is y(x) = c1 cos(ux) + ¢ sin(ux).
The boundary conditions imply:

0=y(0)=ca = y(x)=csin(ux).

0=y'(8) = coprcos(u8), @ #0 = cos(u8)=0.

s (2n+1)m
8 ( n+ )2a = W 16
Then, for n=1,2,--- holds
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Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

y'+Ay=0, y'(0)=0, y(8)=0
Solution: Case A > 0. Then, y(x) = c1 cos(ux) + ¢z sin(px).
Then, y'(x) = —cyp sin(ux) + cop cos(x).
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Example

Find the non-negative eigenvalues and their eigenfunctions of
y'+Ay=0, y'(0)=0, y(8)=0
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Example
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Example

Find the non-negative eigenvalues and their eigenfunctions of
y'+Ay=0, y'(0)=0, y(8)=0
Solution: Case A > 0. Then, y(x) = c1 cos(ux) + ¢z sin(px).
Then, y'(x) = —c1p sin(ux) 4+ cop cos(ux). The B.C. imply:
0=y'(0)=c = y(x)=cicos(ux), y'(x) = —crp sin(ux).
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Example

Find the non-negative eigenvalues and their eigenfunctions of
y'+Ay=0, y'(0)=0, y(8)=0
Solution: Case A > 0. Then, y(x) = c1 cos(ux) + ¢z sin(px).
Then, y'(x) = —c1p sin(ux) 4+ cop cos(ux). The B.C. imply:
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Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

y'+Ay=0, y'(0)=0, y(8)=0
Solution: Case A > 0. Then, y(x) = c1 cos(ux) + ¢z sin(px).
Then, y'(x) = —c1p sin(ux) 4+ cop cos(ux). The B.C. imply:
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Eigenvalue-Eigenfunction BVP.

Example
Find the non-negative eigenvalues and their eigenfunctions of

y'+Ay=0, y'(0)=0, y(8)=0
Solution: Case A > 0. Then, y(x) = c1 cos(ux) + ¢z sin(px).
Then, y'(x) = —c1p sin(ux) 4+ cop cos(ux). The B.C. imply:
0=y'(0)=c = y(x)=cicos(ux), y'(x) = —crp sin(ux).
0=y'(8) =ciusin(u8), c #0 = sin(u8)=0.
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Then, choosing ¢; =1, for n =1,2,--- holds
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Eigenvalue-Eigenfunction BVP.
Example
Find the non-negative eigenvalues and their eigenfunctions of

y'+Ay=0, y'(0)=0, y(8)=0
Solution: Case A > 0. Then, y(x) = c1 cos(ux) + ¢z sin(px).
Then, y'(x) = —c1p sin(ux) 4+ cop cos(ux). The B.C. imply:
0=y'(0)=c = y(x)=cicos(ux), y'(x) = —crp sin(ux).
0=y'(8) =ciusin(u8), c #0 = sin(u8)=0.
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Eigenvalue-Eigenfunction BVP.

Example
Find the non-negative eigenvalues and their eigenfunctions of

y"+ Xy =0, y'(0)=0, y'(8)=0.

Solution: The case A = 0. The general solution is

y(x) = a + ax.
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Example
Find the non-negative eigenvalues and their eigenfunctions of
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Solution: The case A = 0. The general solution is
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The B.C. imply:
0=y'(0)
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Example
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Eigenvalue-Eigenfunction BVP.

Example
Find the non-negative eigenvalues and their eigenfunctions of

y'+Ay =0, y'(0)=0, y(8)=0.
Solution: The case A = 0. The general solution is
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The B.C. imply:
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Example
Find the non-negative eigenvalues and their eigenfunctions of

y'+Ay =0, y'(0)=0, y(8)=0.
Solution: The case A = 0. The general solution is
y(x) = a + ax.
The B.C. imply:
0=y'0)=cc = y(x)=a, y(x)=0



Eigenvalue-Eigenfunction BVP.

Example
Find the non-negative eigenvalues and their eigenfunctions of

y'+Ay =0, y'(0)=0, y(8)=0.
Solution: The case A = 0. The general solution is
y(x) = a + ax.
The B.C. imply:
0=y'0)=cc = y(x)=a, y(x)=0

0=y'(8)



Eigenvalue-Eigenfunction BVP.

Example
Find the non-negative eigenvalues and their eigenfunctions of

y'+Ay =0, y'(0)=0, y(8)=0.
Solution: The case A = 0. The general solution is
y(x) = a + ax.
The B.C. imply:
0=y'0)=cc = y(x)=a, y(x)=0
0=y'(8) =0.



Eigenvalue-Eigenfunction BVP.

Example
Find the non-negative eigenvalues and their eigenfunctions of

y'+Ay =0, y'(0)=0, y(8)=0.
Solution: The case A = 0. The general solution is
y(x) = a + ax.
The B.C. imply:
0=y0)=c = yx)=a, y(x)=0.
0=y'(8) =0.

Then, choosing ¢; = 1, holds,

A=0,



Eigenvalue-Eigenfunction BVP.

Example
Find the non-negative eigenvalues and their eigenfunctions of

y'+Ay =0, y'(0)=0, y(8)=0.
Solution: The case A = 0. The general solution is
y(x) = a + ax.
The B.C. imply:
0=y0)=c = yx)=a, y(x)=0.
0=y'(8) =0.
Then, choosing ¢; = 1, holds,
A=0, y(x) =1



A Boundary Value Problem.

Example
Find the solution of the BVP

y'"+y=0, y(0)=1, y(x/3)=0.



A Boundary Value Problem.

Example
Find the solution of the BVP

y'"+y=0, y(0)=1, y(x/3)=0.

Solution: y(x) = e™ implies that r is solution of



A Boundary Value Problem.

Example
Find the solution of the BVP

y'+y=0, y(0)=1, y(x/3)=0.
Solution: y(x) = e™ implies that r is solution of

p(r)=r’+p*=0



A Boundary Value Problem.

Example
Find the solution of the BVP

y'+y=0, y(0)=1, y(x/3)=0.
Solution: y(x) = e™ implies that r is solution of

p(r)=r*+u>=0 = ry=-=+i



A Boundary Value Problem.

Example
Find the solution of the BVP

y'+y=0, y(0)=1, y(x/3)=0.
Solution: y(x) = e™ implies that r is solution of

p(r)=r*+u>=0 = ry=-=+i

The general solution is y(x) = ¢1 cos(x) + ¢ sin(x).



A Boundary Value Problem.

Example
Find the solution of the BVP

y'+y=0, y(0)=1, y(r/3)=0.
Solution: y(x) = e™ implies that r is solution of
p(r)=r*+u>=0 = ry=-=+i
The general solution is y(x) = ¢1 cos(x) + ¢ sin(x).

Then, y'(x) = —c¢ sin(x) + ¢, cos(x).



A Boundary Value Problem.

Example
Find the solution of the BVP

y'+y=0, y(0)=1, y(r/3)=0.
Solution: y(x) = e™ implies that r is solution of
p(r)=r*+u>=0 = ry=-=+i
The general solution is y(x) = ¢1 cos(x) + ¢ sin(x).
Then, y'(x) = —c1 sin(x) 4+ 2 cos(x). The B.C. imply:
1=y'(0)



A Boundary Value Problem.

Example
Find the solution of the BVP

y'+y=0, y(0)=1, y(x/3)=0.
Solution: y(x) = e™ implies that r is solution of

p(r)=r*+u>=0 = ry=-=+i
The general solution is y(x) = ¢; cos(x) + ¢ sin(x).
Then, y'(x) = —c1 sin(x) 4+ 2 cos(x). The B.C. imply:
1= y'(O) =



A Boundary Value Problem.

Example
Find the solution of the BVP

y'+y=0, y(0)=1, y(r/3)=0.
Solution: y(x) = e™ implies that r is solution of
p(r)=r*+u>=0 = ry=-=+i
The general solution is y(x) = ¢1 cos(x) + ¢ sin(x).
Then, y'(x) = —c1 sin(x) 4+ 2 cos(x). The B.C. imply:
1=y'(0)=c = y(x)=c cos(x) +sin(x).



A Boundary Value Problem.

Example
Find the solution of the BVP

y'+y=0, y(0)=1, y(r/3)=0.
Solution: y(x) = e™ implies that r is solution of
p(r)=r*+u>=0 = ry=-=+i
The general solution is y(x) = ¢1 cos(x) + ¢ sin(x).
Then, y'(x) = —c1 sin(x) 4+ 2 cos(x). The B.C. imply:
1=y'(0)=c = y(x)=c cos(x) +sin(x).

0=y(n/3)



A Boundary Value Problem.

Example
Find the solution of the BVP
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Then, y'(x) = —c1 sin(x) 4+ 2 cos(x). The B.C. imply:
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y'+y=0, y(0)=1, y(r/3)=0.
Solution: y(x) = e™ implies that r is solution of
p(r)=r*+u>=0 = ry=-=+i
The general solution is y(x) = ¢1 cos(x) + ¢ sin(x).
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Example
Find the solution of the BVP

y'+y=0, y(0)=1, y(x/3)=0.
Solution: y(x) = e™ implies that r is solution of

p(r)=r*+u>=0 = ry=-=+i

The general solution is y(x) = ¢; cos(x) + ¢ sin(x).
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A Boundary Value Problem.

Example
Find the solution of the BVP

y'+y=0, y(0)=1, y(r/3)=0.
Solution: y(x) = e™ implies that r is solution of
p(r)=r*+u>=0 = ry=-=+i
The general solution is y(x) = ¢1 cos(x) + ¢ sin(x).
Then, y'(x) = —c1 sin(x) 4+ 2 cos(x). The B.C. imply:
1=y'(0)=c = y(x)=c cos(x) +sin(x).

B B _ _ sin(m/3)
0=y(n/3) = ¢ cos(w/3) +sin(w/3) = = ~cos(n/3)"
= —@ = —V3 = y(x) = —V/3 cos(x) + sin(x).
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Review for Final Exam.

Fourier Series expansions (Chptr.6).
Eigenvalue-Eigenfunction BVP (Chptr. 6).
Systems of linear Equations (Chptr. 5).
Laplace transforms (Chptr. 4).

Second order linear equations (Chptr. 2).

vV v v v v Y

First order differential equations (Chptr. 1).
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First find the eigenvalues )\; and the eigenvectors v(7) of A.
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First find the eigenvalues )\; and the eigenvectors v(7) of A.
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Systems of linear Equations.

Summary: Find solutions of x’ = Ax, with A a 2 x 2 matrix.

First find the eigenvalues )\; and the eigenvectors v(7) of A.

(a) If Ay # Ao, real, then {v(1) v(®)} are linearly independent, and
the general solution is x(x) = c; v eMt 4 ¢, v(?) Mot

(b) If A1 # A2, complex, then denoting Ay = o £+ 37 and
v —a+ b/, the complex-valued fundamental solutions

x(F) = (a+bi) eloEBt
x(*) = e (a + bi) [cos(Bt) + isin(Bt)].
x5 = et [acos(At) —bsin(Bt)] £ie®* [asin(3t)+bcos(Gt)].
Real-valued fundamental solutions are
x(D) = et [acos(8t) — bsin(Bt)],

x?) = e [asin((t) + b cos(5t)].
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First find the eigenvalues \; and the eigenvectors v() of A.
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Systems of linear Equations.

Summary: Find solutions of X’ = Ax, with A a 2 x 2 matrix.

First find the eigenvalues \; and the eigenvectors v() of A.

(c) If A\; = X\a = ), real, and their eigenvectors {v(}) v(?)} are
linearly independent, then the general solution is

x(x) = co vV M 4 v et

(d) If Ay = A2 = A, real, and there is only one eigendirection v,
then find w solution of (A — A/)w = v. Then fundamental
solutions to the differential equation are given by

x =ver  x®) = (vt+w)e.

Then, the general solution is

x=cveM 4o (vt+w)er
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Solution:
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Systems of linear Equations.

Example
. . / 3 1 4
Find the solution to: x' = Ax, x(0) = , A= .
2 2 -1
=) = |71
=7
~3t

The general solution is x(t) = ¢ [2} e+ o [_ } e

Solution: Recall: Ay = 43, vit) = [ﬂ

1 1
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Example
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Find the solution to: x' = Ax, x(0) = , A= .
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Systems of linear Equations.

Example
: . / 3 1 4
Find the solution to: x' = Ax, x(0) = , A= .

-1
The general solution is x(t) = ¢ [2} e+ o [ } e 3t
The initial condition implies,

[ o-afl-ali] - B
a2 98 - -

We conclude: x(t) = g
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Systems of linear Equations (Chptr. 5).
Laplace transforms (Chptr. 4).

Second order linear equations (Chptr. 2).
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Laplace transforms.

Summary:
» Main Properties:
LlfO(8)] = s" LIF(1)] — s £(0) — - — F"7D(0); - (18)
e~ LIF(£)] = Llue(t) F(t — O)]; (13)
LI, = £le™ F(0)] (14)

» Convolutions:
L[(f = g)(1)] = L[f(1)] Lg(1)]-

» Partial fraction decompositions, completing the squares.
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Example
Use L.T. to find the solution to the IVP

y'+9y =us(t), y(0)=3, y(0)=2
Solution: So, L[y] =3 L[cos(3t)] + 2 C[sin(3t)] + e % H(s), and

1 1

HE) = g = 55— o] = 5 (ctuon - creos(an)

e 55 H(s) = %( =55 Llu(t)] — e*5sc[cos(3t)])

=55 H(s) = <£[U5(t)]— [u (t)cos(s(t—s))]).

[0}

Lly] = 3£[cos(3t)]+ L[sin(3t)]+ = (ﬁ[u5( )] —L[us(t) cos(3(t—5))]).
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Laplace transforms.

Example
Use L.T. to find the solution to the IVP

y'+9y =us(t), y(0)=3,  y'(0)=2
Solution:

L[y] = 3 L[cos(3t)]+ % L[sin(3t)]+ % (E[u5(t)] — L[us(t) cos(3(t—5))] ) :

Therefore, we conclude that,

y(t) = 3cos(3t) + % sin(3t) + “59“) 1 cos(3(t — 5)|-
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First find fundamental solutions y(t) = e'* to the case g = 0,
where r is a root of p(r) = r?> + air + ag.
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Second order linear equations.
Summary: Solve y”" + a1y’ + agy = g(t).

First find fundamental solutions y(t) = e'* to the case g = 0,
where r is a root of p(r) = r?> + air + ag.

(a) If rn # ra, real, then the general solution is
y(t) = cp et 4 et

(b) If r1 # rp, complex, then denoting ri = o & i,
complex-valued fundamental solutions are

yi(t) = e@ENt oy (1) = et [cos(Bt) £ isin(Bt)],
and real-valued fundamental solutions are
y1(t) = e cos(pt), yo(t) = et sin(St).
If n = r = r, real, then the general solution is

y(t) = (a1 + at) e™.
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Second order linear equations.

Example
Knowing that y1(x) = x2 solves x? y” — 4xy’ + 6y = 0, with
x > 0, find a second solution y» not proportional to y;.

Solution: Use the reduction of order method. We verify that
y1= x2 solves the equation,
x?(2) — 4x(2x) +6x* = 0.

Look for a solution y»(x) = v(x) y1(x), and find an equation for v.



Second order linear equations.

Example
Knowing that y1(x) = x2 solves x? y” — 4xy’ + 6y = 0, with
x > 0, find a second solution y» not proportional to y;.

Solution: Use the reduction of order method. We verify that
y1= x2 solves the equation,
x?(2) — 4x(2x) +6x* = 0.
Look for a solution y»(x) = v(x) y1(x), and find an equation for v.

2
Y2 =XV,



Second order linear equations.

Example
Knowing that y1(x) = x2 solves x? y” — 4xy’ + 6y = 0, with
x > 0, find a second solution y» not proportional to y;.

Solution: Use the reduction of order method. We verify that
y1= x2 solves the equation,

x?(2) — 4x(2x) +6x* = 0.

Look for a solution y»(x) = v(x) y1(x), and find an equation for v.

o = x2v, y2—x v+ 2xv,



Second order linear equations.

Example
Knowing that y1(x) = x2 solves x? y” — 4xy’ + 6y = 0, with
x > 0, find a second solution y» not proportional to y;.
Solution: Use the reduction of order method. We verify that
y1= x2 solves the equation,
x?(2) — 4x(2x) +6x* = 0.
Look for a solution y»(x) = v(x) y1(x), and find an equation for v.

o = x2v, V5= X2V + 2xv, vy = x>V 4+ 4xv' + 2v.



Second order linear equations.

Example
Knowing that y1(x) = x2 solves x? y” — 4xy’ + 6y = 0, with
x > 0, find a second solution y» not proportional to y;.

Solution: Use the reduction of order method. We verify that
y1= x2 solves the equation,

x?(2) — 4x(2x) +6x* = 0.
Look for a solution y»(x) = v(x) y1(x), and find an equation for v.

o = x2v, V5= X2V + 2xv, vy = x>V 4+ 4xv' + 2v.

X ( 2y 1 axy' +2v) — 4X(X2vl+2xv)+6(X2v) =0.



Second order linear equations.

Example
Knowing that y1(x) = x2 solves x? y” — 4xy’ + 6y = 0, with
x > 0, find a second solution y» not proportional to y;.

Solution: Use the reduction of order method. We verify that
y1= x2 solves the equation,

x?(2) — 4x(2x) +6x* = 0.
Look for a solution y»(x) = v(x) y1(x), and find an equation for v.
o = x2v, V5= X2V + 2xv, vy = x>V 4+ 4xv' + 2v.
X2(x2V" 4+ axv' +2v) — 4x (x*V/ 4 2xv) + 6 (x*v) = 0.

XMW+ (83 — a3)V 4 (2x% — 8x2 +6x%) v = 0.



Second order linear equations.

Example
Knowing that y1(x) = x2 solves x? y” — 4xy’ + 6y = 0, with
x > 0, find a second solution y» not proportional to y;.

Solution: Use the reduction of order method. We verify that
y1= x2 solves the equation,

x?(2) — 4x(2x) +6x* = 0.

Look for a solution y»(x) = v(x) y1(x), and find an equation for v.

Yo =Xx°v, V5 = X2V + 2xv, vy = x2V" + 4xv' + 2v.

X ( 2y 1 axy' +2v) — 4X(X2vl+2xv)+6(X2v) =0.
XMW+ (83 — a3)V 4 (2x% — 8x2 +6x%) v = 0.
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Second order linear equations.

Example
Knowing that y1(x) = x2 solves x? y” — 4xy’ + 6y = 0, with
x > 0, find a second solution y» not proportional to y;.

Solution: Use the reduction of order method. We verify that
y1= x2 solves the equation,

x?(2) — 4x(2x) +6x* = 0.

Look for a solution y»(x) = v(x) y1(x), and find an equation for v.

Yo =Xx°v, V5 = X2V + 2xv, vy = x2V" + 4xv' + 2v.

X ( 2y 1 axy' +2v) — 4X(X2vl+2xv)+6(X2v) =0.
XMW+ (83 — a3)V 4 (2x% — 8x2 +6x%) v = 0.

vVi=0 = v=oqc+ ox



Second order linear equations.

Example
Knowing that y1(x) = x2 solves x? y” — 4xy’ + 6y = 0, with
x > 0, find a second solution y» not proportional to y;.

Solution: Use the reduction of order method. We verify that
y1= x2 solves the equation,

x?(2) — 4x(2x) +6x* = 0.

Look for a solution y»(x) = v(x) y1(x), and find an equation for v.

Yo =Xx°v, V5 = X2V + 2xv, vy = x2V" + 4xv' + 2v.

X ( 2y 1 axy' +2v) — 4X(X2vl+2xv)+6(X2v) =0.
XMW+ (83 — a3)V 4 (2x% — 8x2 +6x%) v = 0.

Vi=0 = v=ca+tox = wm=ocy+oxn.



Second order linear equations.

Example
Knowing that y1(x) = x2 solves x? y” — 4xy’ + 6y = 0, with
x > 0, find a second solution y» not proportional to y;.

Solution: Use the reduction of order method. We verify that
y1= x2 solves the equation,

x?(2) — 4x(2x) +6x* = 0.

Look for a solution y»(x) = v(x) y1(x), and find an equation for v.

Yo =Xx°v, V5 = X2V + 2xv, vy = x2V" + 4xv' + 2v.

X2(x2V" 4+ axv' +2v) — 4x (x*V/ 4 2xv) + 6 (x*v) = 0.
X 4 (4x3 = 4x3) vV + (2x° — 8x2 + 6x) v = 0.
Vi=0 = v=ca+tox = wm=ocy+oxn.

Choose ¢ =0, cp = 1.



Second order linear equations.

Example
Knowing that y1(x) = x2 solves x? y” — 4xy’ + 6y = 0, with
x > 0, find a second solution y» not proportional to y;.

Solution: Use the reduction of order method. We verify that
y1= x2 solves the equation,

x?(2) — 4x(2x) +6x* = 0.
Look for a solution y»(x) = v(x) y1(x), and find an equation for v.

Yo =Xx°v, V5 = X2V + 2xv, vy = x2V" + 4xv' + 2v.

X2(x2V" 4+ axv' +2v) — 4x (x*V/ 4 2xv) + 6 (x*v) = 0.
X 4 (4x3 = 4x3) vV + (2x° — 8x2 + 6x) v = 0.
Vi=0 = v=ca+tox = wm=ocy+oxn.

Choose ¢; =0, c; = 1. Hence y»(x) = x3, and y;(x) = x°. <
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y'=2y' =3y =3e"", y(0)=1, y'(0)= T
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Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: (1) Solve the homogeneous equation.

y(t) =e",



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: (1) Solve the homogeneous equation.

yt)=e", p(r)=r —2r-3



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: (1) Solve the homogeneous equation.

y(t)=e" p(r)=r*-2r-3=0.



Second order linear equations.

Example
Find the solution y to the initial value problem

_ 1
y'=2 =3y =3e" y(0)=1, y(0) =7
Solution: (1) Solve the homogeneous equation.

y(t)=e" p(r)=r*-2r-3=0.

ri:%[2j:\/4+12]



Second order linear equations.

Example
Find the solution y to the initial value problem

_ 1
y'=2 =3y =3e" y(0)=1, y(0) =7
Solution: (1) Solve the homogeneous equation.

y(t)=e" p(r)=r*-2r-3=0.

ri:%[2j:\/4—l—12] :%[ux/ﬁ]



Second order linear equations.

Example
Find the solution y to the initial value problem

_ 1
y'=2 =3y =3e" y(0)=1, y(0) =7
Solution: (1) Solve the homogeneous equation.

y(t)=e" p(r)=r*-2r-3=0.

ri:%[2j:\/4+12] :%[21@] =142



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: (1) Solve the homogeneous equation.

y(t)=e" p(r)=r*-2r-3=0.

r— =-1.

ri:%[2j:\/4+12] :%[21@] =1+2 = {r+:



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: (1) Solve the homogeneous equation.

y(t)=e" p(r)=r*-2r-3=0.

r— =-1.

ri:%[2j:\/4+12] :%[21@] =1+2 = {r+:

Fundamental solutions: yi(t) = €3t and y(t) = e L.



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: (1) Solve the homogeneous equation.
y(t)=e" p(r)=r*-2r-3=0.

r— =-1.

ri:%[2j:\/4+12] :%[21@] =1+2 = {r+:

3t t

Fundamental solutions: y;(t) = e’ and ys(t) = e~

(2) Guess yp.



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: (1) Solve the homogeneous equation.

y(t)=e" p(r)=r*-2r-3=0.

1 1 ry =

=2+ VAT =224 Vie =1£2 = { i .

ro=-1.

Fundamental solutions: yi(t) = €3t and y(t) = e L.
t

(2) Guess yp. Since g(t) =3e”



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: (1) Solve the homogeneous equation.

y(t)=e" p(r)=r*-2r-3=0.

r— =-1.

ri:%[2j:\/4+12] :%[21@] =1+2 = {r+:

Fundamental solutions: yi(t) = €3t and y(t) = e L.

t t

(2) Guess yp. Since g(t) =3e™ " = yy(t)=ke "



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: (1) Solve the homogeneous equation.
y(t)=e" p(r)=r*-2r-3=0.

ri:%[2j:\/4+12] :%[21@] =142 = {:*i_l

Fundamental solutions: yi(t) = €3t and y(t) = e L.

(2) Guess y,. Since g(t)=3e™ " = y,(t)=ke "

But this y, = ke™*



Second order linear equations.
Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: (1) Solve the homogeneous equation.

y(t)=e" p(r)=r*-2r-3=0.

ri:%[2j:\/4+12] :%[21@] =142 = {:*i_l

Fundamental solutions: yi(t) = €3t and y(t) = e L.
(2) Guess y,. Since g(t)=3e™ " = y,(t)=ke "

But this y, = ket is solution of the homogeneous equation.



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: (1) Solve the homogeneous equation.

y(t)=e" p(r)=r*-2r-3=0.

r— =-1.

ri:%[2j:\/4+12] :%[21@] =1+2 = {r+:

Fundamental solutions: yi(t) = €3t and y(t) = e L.

(2) Guess y,. Since g(t)=3e™ " = y,(t)=ke "

But this y, = ket is solution of the homogeneous equation.

Then propose y,(t) = kte™".



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: Recall: y,(t) = kte .
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Example
Find the solution y to the initial value problem
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Solution: Recall: y,(t) = kte™". This is correct, since te"* is not
solution of the homogeneous equation.
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(3) Find the undetermined coefficient k.



Second order linear equations.

Example
Find the solution y to the initial value problem

1

y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: Recall: y,(t) = kte™". This is correct, since te"* is not
solution of the homogeneous equation.

(3) Find the undetermined coefficient k.
yl’, =ke ' —kte t,



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: Recall: y,(t) = kte™". This is correct, since te"* is not
solution of the homogeneous equation.

(3) Find the undetermined coefficient k.
yl’, =ke ' —kte t, y,’)’ = 2ke ' kte l.



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: Recall: y,(t) = kte™". This is correct, since te"* is not
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(3) Find the undetermined coefficient k.
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Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: Recall: y,(t) = kte™". This is correct, since te"* is not
solution of the homogeneous equation.

(3) Find the undetermined coefficient k.
yl’, =ke ' —kte t, y,’)’ = 2ke ' kte l.

(—2ke "+ kte ') —2(ke t—kte ') —3(kte F)=3e "

(—2+t—2+2t—3t)ke " =3¢ "



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: Recall: y,(t) = kte™". This is correct, since te"* is not
solution of the homogeneous equation.

(3) Find the undetermined coefficient k.
yl’, =ke ' —kte t, y,’)’ = 2ke ' kte l.

(—2ke "+ kte ') —2(ke t—kte ') —3(kte F)=3e "

(—2+t—2+2t—3t)ke " =3e " = —4k=3



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: Recall: y,(t) = kte™". This is correct, since te"* is not
solution of the homogeneous equation.

(3) Find the undetermined coefficient k.
yl’, =ke ' —kte t, y,’)’ = 2ke ' kte l.

(—2ke "+ kte ') —2(ke t—kte ') —3(kte F)=3e "

(—2+t—2+2t—-3t)ke ' =3e "' = —4k=3 = k:%,



Second order linear equations.

Example
Find the solution y to the initial value problem
1
y'=2 =3y =3e" y(0)=1, y(0)=7.

Solution: Recall: y,(t) = kte™". This is correct, since te"* is not
solution of the homogeneous equation.

(3) Find the undetermined coefficient k.
yl’, =ke ' —kte t, y,’)’ = 2ke ' kte l.
(—2ke "+ kte ') —2(ke t—kte ') —3(kte F)=3e "
(—2+t—2+2t—3t)ke '=3e ' = —4k=3 = k:—§

We obtain: y,(t) = —Zte*t.



Second order linear equations.

Example
Find the solution y to the initial value problem
1
y'=2y =3y =3e", y(0) =1, y(0)=7.

Solution: Recall: y,(t) = —§te_t.

4



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= 7

3
Solution: Recall: y,(t) = —Zte_t.

(4) Find the general solution:



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= 7

3
Solution: Recall: y,(t) = —Zte_t.
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(4) Find the general solution: y(t) =c e + e f — ite £



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= 7

3
Solution: Recall: y,(t) = —Zte_t.

. . P
(4) Find the general solution: y(t) =c e + e f — ite £

(5) Impose the initial conditions.



Second order linear equations.

Example

Find the solution y to the initial value problem
1
y'=2y =3y =3e", y(0) =1, y(0)=7.

3
Solution: Recall: y,(t) = —Zte_t.

3
- z t eit.
(5) Impose the initial conditions. The derivative function is

(4) Find the general solution: y(t) =ci e’ + e’



Second order linear equations.

Example

Find the solution y to the initial value problem
1
y'=2y =3y =3e", y(0) =1, y(0)=7.

Solution: Recall: y,(t) = —§te_t.

4
. : 3
(4) Find the general solution: y(t) =c e + e f — ite*t.
(5) Impose the initial conditions. The derivative function is

3
y(t)=3c e —cet - Z(e_t —te t).



Second order linear equations.

Example

Find the solution y to the initial value problem
1
y'=2y =3y =3e", y(0) =1, y(0)=7.

Solution: Recall: y,(t) = —§te_t.

4
. : 3
(4) Find the general solution: y(t) =c e + e f — ite*t.
(5) Impose the initial conditions. The derivative function is

3
y(t)=3c e —cet - Z(e_t —te t).

1=y(0)



Second order linear equations.

Example

Find the solution y to the initial value problem
1
y'=2y =3y =3e", y(0) =1, y(0)=7.

Solution: Recall: y,(t) = —§te_t.

4
. : 3
(4) Find the general solution: y(t) =c e + e f — ite*t.
(5) Impose the initial conditions. The derivative function is

3
y(t)=3c e —cet - Z(e_t —te t).

1=y(0)=c + c,



Second order linear equations.

Example

Find the solution y to the initial value problem
1
y'=2y =3y =3e", y(0) =1, y(0)=7.

Solution: Recall: y,(t) = —§te_t.

4
. : 3
(4) Find the general solution: y(t) =c e + e f — ite*t.
(5) Impose the initial conditions. The derivative function is

3
y(t)=3c e —cet - Z(e_t —te t).

1
1=y(0)=c1 + o, Z:y'(O)



Second order linear equations.

Example

Find the solution y to the initial value problem
1
y'=2y =3y =3e", y(0) =1, y(0)=7.

3
Solution: Recall: y,(t) = —Zte_t.

3
- z t eit.
(5) Impose the initial conditions. The derivative function is

3
y(t)=3c e —cet - Z(e_t —te t).

(4) Find the general solution: y(t) =ci e’ + e’

1 3
1=y(0)=c + o, Z:y'(O):3q—c2—Z.



Second order linear equations.

Example

Find the solution y to the initial value problem
1
y'=2y =3y =3e", y(0) =1, y(0)=7.

Solution: Recall: y,(t) = —§te_t.

4

t t

3
- z te .
(5) Impose the initial conditions. The derivative function is

3
y(t)=3c e —cet - Z(e_t —te t).

(4) Find the general solution: y(t) =c e + e

1 3
1=y(0)=c + o, Z:y'(O):3q—c2—f.

4
at+ca=1,
31—C2:1



Second order linear equations.

Example

Find the solution y to the initial value problem
y'=2y'=3y=3e"f, y(0)=1 y'(0)=-

Solution: Recall: y,(t) = —Zte_t.

3
(4) Find the general solution: y(t) =ci e + et~ "te "

4
(5) Impose the initial conditions. The derivative function is

y(t)=3c e —cet - %(e‘t —te t).
1 3
1=y(0) =a+e, )’(0)_361—C2—Z-

srem -]



Second order linear equations.

Example
Find the solution y to the initial value problem

y' =2y =3y =3¢t y(0)=1, y'(0)=

t t

. 3
Solution: Recall: y(t)=c e + et — Zte* , and

RS



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y' =2y =3y =3¢t y(0)=1, y'(0)= T

t t

. 3
Solution: Recall: y(t)=c e + et — Zte* , and

2l fe)=0 - 3= A



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y' =2y =3y =3¢t y(0)=1, y'(0)= T

t t

. 3
Solution: Recall: y(t)=c e + et — Zte* , and

A= =S A=l



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y' =2y =3y =3¢t y(0)=1, y'(0)= T

t t

. 3
Solution: Recall: y(t)=c e + et — Zte* , and

A= =S A=l

1
Since ¢; = 5 and ¢ = 5



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y' =2y =3y =3¢t y(0)=1, y'(0)= T

t t

. 3
Solution: Recall: y(t)=c e + et — Zte* , and

1 1] [a] 1 al 1 [-1 1] [1] _1]2
3 —1 |e| |1 ol =4 |-3 1] |1 4 |2
Since ¢ — = and ¢ — ~, we obtai
|ncec1—2an cz—2,weo ain,

(e3t + e_t) — %te‘t. 4

N —

y(t) =



Review for Final Exam.

Fourier Series expansions (Chptr.6).
Eigenvalue-Eigenfunction BVP (Chptr. 6).
Systems of linear Equations (Chptr. 5).
Laplace transforms (Chptr. 4).

Second order linear equations (Chptr. 2).

vV v v v v Y

First order differential equations (Chptr. 1).
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Summary:
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Use the integrating factor method: p(t) = e/ P(D)dt,
» Separable, non-linear equations: h(y)y’ = g(t).
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First order differential equations.

Summary:
» Linear, first order equations: y’ + p(t)y = q(t).

Use the integrating factor method: p(t) = e/ P(D)dt,
» Separable, non-linear equations: h(y)y’ = g(t).
Integrate with the substitution: v = y(t), du = y'(t) dt,

that is,
/h(u) du = /g(t) dt +c.

The solution can be found in implicit of explicit form.

» Homogeneous equations can be converted into separable
equations.

Read page 49 in the textbook.

» No modeling problems from Sect. 2.3.



First order differential equations.

Summary:
» Bernoulli equations: y’' + p(t)y = q(t) y", with n € R.



First order differential equations.

Summary:
» Bernoulli equations: y’' + p(t)y = q(t) y", with n € R.

Read page 77 in the textbook,



First order differential equations.

Summary:
» Bernoulli equations: y’' + p(t)y = q(t) y", with n € R.

Read page 77 in the textbook, page 11 in the Lecture Notes.



First order differential equations.

Summary:
» Bernoulli equations: y' + p(t)y = q(t) y", with n € R.

Read page 77 in the textbook, page 11 in the Lecture Notes.
A Bernoulli equation for y can be converted into a linear

equation for



First order differential equations.

Summary:
» Bernoulli equations: y' + p(t)y = q(t) y", with n € R.

Read page 77 in the textbook, page 11 in the Lecture Notes.

A Bernoulli equation for y can be converted into a linear

equation for v = =



First order differential equations.

Summary:
» Bernoulli equations: y' + p(t)y = q(t) y", with n € R.

Read page 77 in the textbook, page 11 in the Lecture Notes.

A Bernoulli equation for y can be converted into a linear

equation for v = =

» Exact equations and integrating factors.



First order differential equations.

Summary:
» Bernoulli equations: y' + p(t)y = q(t) y", with n € R.

Read page 77 in the textbook, page 11 in the Lecture Notes.

A Bernoulli equation for y can be converted into a linear

equation for v = =

» Exact equations and integrating factors.
N(x,y)y 4+ M(x,y) = 0.



First order differential equations.

Summary:
» Bernoulli equations: y' + p(t)y = q(t) y", with n € R.

Read page 77 in the textbook, page 11 in the Lecture Notes.

A Bernoulli equation for y can be converted into a linear

equation for v =——.

» Exact equations and integrating factors.
N(x,y)y 4+ M(x,y) = 0.
The equation is exact iff OxN = 9, M.



First order differential equations.

Summary:
» Bernoulli equations: y' + p(t)y = q(t) y", with n € R.

Read page 77 in the textbook, page 11 in the Lecture Notes.

A Bernoulli equation for y can be converted into a linear

equation for v = =

» Exact equations and integrating factors.
N(x,y)y 4+ M(x,y) = 0.
The equation is exact iff OxN = 9, M.

If the equation is exact, then there is a potential function 1,



First order differential equations.

Summary:
» Bernoulli equations: y' + p(t)y = q(t) y", with n € R.

Read page 77 in the textbook, page 11 in the Lecture Notes.

A Bernoulli equation for y can be converted into a linear

equation for v = =

» Exact equations and integrating factors.
N(x,y)y 4+ M(x,y) = 0.
The equation is exact iff OxN = 9, M.

If the equation is exact, then there is a potential function 1,
such that N =9,
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Summary:
» Bernoulli equations: y' + p(t)y = q(t) y", with n € R.

Read page 77 in the textbook, page 11 in the Lecture Notes.

A Bernoulli equation for y can be converted into a linear

equation for v = =

» Exact equations and integrating factors.
N(x,y)y 4+ M(x,y) = 0.
The equation is exact iff OxN = 9, M.
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First order differential equations.

Summary:
» Bernoulli equations: y' + p(t)y = q(t) y", with n € R.

Read page 77 in the textbook, page 11 in the Lecture Notes.

A Bernoulli equation for y can be converted into a linear

equation for v = =

» Exact equations and integrating factors.
N(x,y)y 4+ M(x,y) = 0.
The equation is exact iff OxN = 9, M.

If the equation is exact, then there is a potential function 1,
such that N =0,¢ and M = 0.

The solution of the differential equation is

w(x,y(x)) =c.
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First order differential equations.

Advice: In order to find out what type of equation is the one you
have to solve, check from simple types to the more difficult types:

1. Linear equations.
(Just by looking at it: y' + a(t)y = b(t).)
2. Bernoulli equations.
(Just by looking at it: y' + a(t)y = b(t) y".)
3. Separable equations.
(Few manipulations: h(y)y’ = g(t).)
4. Homogeneous equations.
(Several manipulations: y' = F(y/t).)
5. Exact equations.
(Check one equation: Ny’ + M =0, and 9;N = 0, M.)

6. Exact equation with integrating factor.
(Very complicated to check.)
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Example
x? 4+ xy +y?
Xy '
Solution: The sum of the powers in x and y on every term is the
same number, two in this example. The equation is homogeneous.
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Example
x? 4+ xy +y?
Xy '
Solution: The sum of the powers in x and y on every term is the
same number, two in this example. The equation is homogeneous.
/_X2+X}/+y2 (1/X2) /_1+(§)+(§)2
= 5 = ¥y =—5"
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differential equations.
2 2
Find all solutions of y/ = ~ Y T ¥~
Xy

Solution:

The sum of the powers in x and y on every term is the

same number, two in this example. The equation is homogeneous.

I

x? 4+ xy + y? (1/x?) I 1+ (£)+ (%)

y_
xy (1/x%) (%)
1 2
V(X):X :> y/:u.
X v
1 2
y =XV, y/:xv/—i—v xv/—l—v:u.
v
1+v4+v? 14 v4v?— 2 , 1+v

"4 14 |4
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Solution: Recall: v/ = ——. This is a separable equation.
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Find all solutions of y' = M
Xy

1
Solution: Recall: i This is a separable equation.

1_|‘i(:()x)v’(x)—1 = /1+(V(X dx—/+c

Use the substitution v = 1+ v, hence du = v/(x) dx
dx

/(u_l)du:/Cﬁ(—l—c = /(l—tl)du: Tt

u
l1+v—In|l4+v|=In|x|+c.

u—Injul=In|x|+c =
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X

v="*=-
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Example
Find the solution y to the initial value problem

Y +y+e¥y =0,  y(0)==.

Solution: This is a Bernoulli equation, y’ +y = —e>y", n=3.

y' 1
Divide by y3. Thatis, 25 + — = —e™.
y y
1 ! . 1
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