Review for Final Exam.

- Exam is cumulative.
- Heat equation not included.
- 15 problems.
- Two and half hours.
- Fourier Series expansions (Chptr.6).
- Eigenvalue-Eigenfunction BVP (Chptr. 6).
- Systems of linear Equations (Chptr. 5).
- Laplace transforms (Chptr. 4).
- Second order linear equations (Chptr. 2).
- First order differential equations (Chptr. 1).

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=1$ for $x \in(-1,0)$, and then find the Fourier Series of this extension.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=1$ for $x \in(-1,0)$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=1$ for $x \in(-1,0)$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]
$$

Since f is odd and periodic,

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=1$ for $x \in(-1,0)$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is odd and periodic, then the Fourier Series is a Sine Series,

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=1$ for $x \in(-1,0)$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_{n}=0$.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=1$ for $x \in(-1,0)$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_{n}=0$.

$$
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=1$ for $x \in(-1,0)$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_{n}=0$.

$$
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x .
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=1$ for $x \in(-1,0)$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_{n}=0$.

$$
\begin{aligned}
b_{n} & =\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x . \\
b_{n} & =2 \int_{0}^{1}(-1) \sin (n \pi x) d x
\end{aligned}
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=1$ for $x \in(-1,0)$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_{n}=0$.

$$
\begin{gathered}
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x . \\
b_{n}=2 \int_{0}^{1}(-1) \sin (n \pi x) d x=\left.(-2) \frac{(-1)}{n \pi} \cos (n \pi x)\right|_{0} ^{1},
\end{gathered}
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=1$ for $x \in(-1,0)$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_{n}=0$.

$$
\begin{aligned}
b_{n} & =\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x . \\
b_{n} & =2 \int_{0}^{1}(-1) \sin (n \pi x) d x=\left.(-2) \frac{(-1)}{n \pi} \cos (n \pi x)\right|_{0} ^{1} \\
b_{n} & =\frac{2}{n \pi}[\cos (n \pi)-1]
\end{aligned}
$$

Fourier Series: Even/Odd-periodic extensions.

Example
Graph the odd-periodic extension of $f(x)=1$ for $x \in(-1,0)$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_{n}=0$.

$$
\begin{aligned}
& b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x . \\
& b_{n}=2 \int_{0}^{1}(-1) \sin (n \pi x) d x=\left.(-2) \frac{(-1)}{n \pi} \cos (n \pi x)\right|_{0} ^{1}, \\
& b_{n}=\frac{2}{n \pi}[\cos (n \pi)-1] \Rightarrow b_{n}=\frac{2}{n \pi}\left[(-1)^{n}-1\right] \text {. }
\end{aligned}
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=1$ for $x \in(-1,0)$, and then find the Fourier Series of this extension.

Solution: Recall: $\quad b_{n}=\frac{2}{n \pi}\left[(-1)^{n}-1\right]$.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=1$ for $x \in(-1,0)$, and then find the Fourier Series of this extension.

Solution: Recall: $\quad b_{n}=\frac{2}{n \pi}\left[(-1)^{n}-1\right]$.

If $n=2 k$,

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=1$ for $x \in(-1,0)$, and then find the Fourier Series of this extension.

Solution: Recall: $\quad b_{n}=\frac{2}{n \pi}\left[(-1)^{n}-1\right]$.
If $n=2 k$, then $b_{2 k}=\frac{2}{2 k \pi}\left[(-1)^{2 k}-1\right]$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=1$ for $x \in(-1,0)$, and then find the Fourier Series of this extension.

Solution: Recall: $\quad b_{n}=\frac{2}{n \pi}\left[(-1)^{n}-1\right]$.
If $n=2 k$, then $b_{2 k}=\frac{2}{2 k \pi}\left[(-1)^{2 k}-1\right]=0$.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=1$ for $x \in(-1,0)$, and then find the Fourier Series of this extension.

Solution: Recall: $\quad b_{n}=\frac{2}{n \pi}\left[(-1)^{n}-1\right]$.
If $n=2 k$, then $b_{2 k}=\frac{2}{2 k \pi}\left[(-1)^{2 k}-1\right]=0$.
If $n=2 k-1$,

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=1$ for $x \in(-1,0)$, and then find the Fourier Series of this extension.

Solution: Recall: $\quad b_{n}=\frac{2}{n \pi}\left[(-1)^{n}-1\right]$.
If $n=2 k$, then $b_{2 k}=\frac{2}{2 k \pi}\left[(-1)^{2 k}-1\right]=0$.
If $n=2 k-1$,
$b_{(2 k-1)}=\frac{2}{(2 k-1) \pi}\left[(-1)^{2 k-1}-1\right]$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=1$ for $x \in(-1,0)$, and then find the Fourier Series of this extension.

Solution: Recall: $\quad b_{n}=\frac{2}{n \pi}\left[(-1)^{n}-1\right]$.
If $n=2 k$, then $b_{2 k}=\frac{2}{2 k \pi}\left[(-1)^{2 k}-1\right]=0$.
If $n=2 k-1$,
$b_{(2 k-1)}=\frac{2}{(2 k-1) \pi}\left[(-1)^{2 k-1}-1\right]=-\frac{4}{(2 k-1) \pi}$.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=1$ for $x \in(-1,0)$, and then find the Fourier Series of this extension.

Solution: Recall: $\quad b_{n}=\frac{2}{n \pi}\left[(-1)^{n}-1\right]$.
If $n=2 k$, then $b_{2 k}=\frac{2}{2 k \pi}\left[(-1)^{2 k}-1\right]=0$.
If $n=2 k-1$,
$b_{(2 k-1)}=\frac{2}{(2 k-1) \pi}\left[(-1)^{2 k-1}-1\right]=-\frac{4}{(2 k-1) \pi}$.
We conclude: $f(x)=-\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{1}{(2 k-1)} \sin [(2 k-1) \pi x]$.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]
$$

Since f is odd and periodic,

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is odd and periodic, then the Fourier Series is a Sine Series,

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_{n}=0$.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]
$$

Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_{n}=0$.

$$
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_{n}=0$.

$$
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x,
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_{n}=0$.

$$
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, L=2,
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_{n}=0$.

$$
\begin{gathered}
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, L=2, \\
b_{n}=\int_{0}^{2}(2-x) \sin \left(\frac{n \pi x}{2}\right) d x . a
\end{gathered}
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.
Solution: $b_{n}=2 \int_{0}^{2} \sin \left(\frac{n \pi x}{2}\right) d x-\int_{0}^{2} x \sin \left(\frac{n \pi x}{2}\right) d x$.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.
Solution: $b_{n}=2 \int_{0}^{2} \sin \left(\frac{n \pi x}{2}\right) d x-\int_{0}^{2} x \sin \left(\frac{n \pi x}{2}\right) d x$.

$$
\int \sin \left(\frac{n \pi x}{2}\right) d x=\frac{-2}{n \pi} \cos \left(\frac{n \pi x}{2}\right),
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.
Solution: $b_{n}=2 \int_{0}^{2} \sin \left(\frac{n \pi x}{2}\right) d x-\int_{0}^{2} x \sin \left(\frac{n \pi x}{2}\right) d x$.

$$
\int \sin \left(\frac{n \pi x}{2}\right) d x=\frac{-2}{n \pi} \cos \left(\frac{n \pi x}{2}\right),
$$

The other integral is done by parts,

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.
Solution: $b_{n}=2 \int_{0}^{2} \sin \left(\frac{n \pi x}{2}\right) d x-\int_{0}^{2} x \sin \left(\frac{n \pi x}{2}\right) d x$.

$$
\int \sin \left(\frac{n \pi x}{2}\right) d x=\frac{-2}{n \pi} \cos \left(\frac{n \pi x}{2}\right),
$$

The other integral is done by parts,

$$
I=\int x \sin \left(\frac{n \pi x}{2}\right) d x
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.
Solution: $b_{n}=2 \int_{0}^{2} \sin \left(\frac{n \pi x}{2}\right) d x-\int_{0}^{2} x \sin \left(\frac{n \pi x}{2}\right) d x$.

$$
\int \sin \left(\frac{n \pi x}{2}\right) d x=\frac{-2}{n \pi} \cos \left(\frac{n \pi x}{2}\right),
$$

The other integral is done by parts,

$$
I=\int x \sin \left(\frac{n \pi x}{2}\right) d x, \quad\left\{\quad u=x, \quad v^{\prime}=\sin \left(\frac{n \pi x}{2}\right)\right.
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.
Solution: $b_{n}=2 \int_{0}^{2} \sin \left(\frac{n \pi x}{2}\right) d x-\int_{0}^{2} x \sin \left(\frac{n \pi x}{2}\right) d x$.

$$
\int \sin \left(\frac{n \pi x}{2}\right) d x=\frac{-2}{n \pi} \cos \left(\frac{n \pi x}{2}\right),
$$

The other integral is done by parts,

$$
I=\int x \sin \left(\frac{n \pi x}{2}\right) d x, \quad\left\{\begin{array}{r}
u=x, \quad v^{\prime}=\sin \left(\frac{n \pi x}{2}\right) \\
u^{\prime}=1, \quad v=-\frac{2}{n \pi} \cos \left(\frac{n \pi x}{2}\right)
\end{array}\right.
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.
Solution: $b_{n}=2 \int_{0}^{2} \sin \left(\frac{n \pi x}{2}\right) d x-\int_{0}^{2} x \sin \left(\frac{n \pi x}{2}\right) d x$.

$$
\int \sin \left(\frac{n \pi x}{2}\right) d x=\frac{-2}{n \pi} \cos \left(\frac{n \pi x}{2}\right),
$$

The other integral is done by parts,

$$
\begin{aligned}
& I=\int x \sin \left(\frac{n \pi x}{2}\right) d x, \quad\left\{\begin{array}{c}
u=x, \quad v^{\prime}=\sin \left(\frac{n \pi x}{2}\right) \\
u^{\prime}=1, \quad v=-\frac{2}{n \pi} \cos \left(\frac{n \pi x}{2}\right)
\end{array}\right. \\
& I=\frac{-2 x}{n \pi} \cos \left(\frac{n \pi x}{2}\right)-\int\left(\frac{-2}{n \pi}\right) \cos \left(\frac{n \pi x}{2}\right) d x .
\end{aligned}
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.

Solution: $I=\frac{-2 x}{n \pi} \cos \left(\frac{n \pi x}{2}\right)-\int\left(\frac{-2}{n \pi}\right) \cos \left(\frac{n \pi x}{2}\right) d x$.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.
Solution: $I=\frac{-2 x}{n \pi} \cos \left(\frac{n \pi x}{2}\right)-\int\left(\frac{-2}{n \pi}\right) \cos \left(\frac{n \pi x}{2}\right) d x$.
$I=-\frac{2 x}{n \pi} \cos \left(\frac{n \pi x}{2}\right)+\left(\frac{2}{n \pi}\right)^{2} \sin \left(\frac{n \pi x}{2}\right)$.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.
Solution: $I=\frac{-2 x}{n \pi} \cos \left(\frac{n \pi x}{2}\right)-\int\left(\frac{-2}{n \pi}\right) \cos \left(\frac{n \pi x}{2}\right) d x$.
$I=-\frac{2 x}{n \pi} \cos \left(\frac{n \pi x}{2}\right)+\left(\frac{2}{n \pi}\right)^{2} \sin \left(\frac{n \pi x}{2}\right)$. So, we get

$$
b_{n}=\left.2\left[\frac{-2}{n \pi} \cos \left(\frac{n \pi x}{2}\right)\right]\right|_{0} ^{2}+\left.\left[\frac{2 x}{n \pi} \cos \left(\frac{n \pi x}{2}\right)\right]\right|_{0} ^{2}-\left.\left(\frac{2}{n \pi}\right)^{2} \sin \left(\frac{n \pi x}{2}\right)\right|_{0} ^{2}
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.
Solution: $I=\frac{-2 x}{n \pi} \cos \left(\frac{n \pi x}{2}\right)-\int\left(\frac{-2}{n \pi}\right) \cos \left(\frac{n \pi x}{2}\right) d x$.
$I=-\frac{2 x}{n \pi} \cos \left(\frac{n \pi x}{2}\right)+\left(\frac{2}{n \pi}\right)^{2} \sin \left(\frac{n \pi x}{2}\right)$. So, we get
$b_{n}=\left.2\left[\frac{-2}{n \pi} \cos \left(\frac{n \pi x}{2}\right)\right]\right|_{0} ^{2}+\left.\left[\frac{2 x}{n \pi} \cos \left(\frac{n \pi x}{2}\right)\right]\right|_{0} ^{2}-\left.\left(\frac{2}{n \pi}\right)^{2} \sin \left(\frac{n \pi x}{2}\right)\right|_{0} ^{2}$
$b_{n}=\frac{-4}{n \pi}[\cos (n \pi)-1]+\left[\frac{4}{n \pi} \cos (n \pi)-0\right]$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.
Solution: $I=\frac{-2 x}{n \pi} \cos \left(\frac{n \pi x}{2}\right)-\int\left(\frac{-2}{n \pi}\right) \cos \left(\frac{n \pi x}{2}\right) d x$.
$I=-\frac{2 x}{n \pi} \cos \left(\frac{n \pi x}{2}\right)+\left(\frac{2}{n \pi}\right)^{2} \sin \left(\frac{n \pi x}{2}\right)$. So, we get
$b_{n}=\left.2\left[\frac{-2}{n \pi} \cos \left(\frac{n \pi x}{2}\right)\right]\right|_{0} ^{2}+\left.\left[\frac{2 x}{n \pi} \cos \left(\frac{n \pi x}{2}\right)\right]\right|_{0} ^{2}-\left.\left(\frac{2}{n \pi}\right)^{2} \sin \left(\frac{n \pi x}{2}\right)\right|_{0} ^{2}$

$$
b_{n}=\frac{-4}{n \pi}[\cos (n \pi)-1]+\left[\frac{4}{n \pi} \cos (n \pi)-0\right] \Rightarrow b_{n}=\frac{4}{n \pi} .
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x)=2-x$ for $x \in(0,2)$, and then find the Fourier Series of this extension.

Solution: $I=\frac{-2 x}{n \pi} \cos \left(\frac{n \pi x}{2}\right)-\int\left(\frac{-2}{n \pi}\right) \cos \left(\frac{n \pi x}{2}\right) d x$.
$I=-\frac{2 x}{n \pi} \cos \left(\frac{n \pi x}{2}\right)+\left(\frac{2}{n \pi}\right)^{2} \sin \left(\frac{n \pi x}{2}\right)$. So, we get
$b_{n}=\left.2\left[\frac{-2}{n \pi} \cos \left(\frac{n \pi x}{2}\right)\right]\right|_{0} ^{2}+\left.\left[\frac{2 x}{n \pi} \cos \left(\frac{n \pi x}{2}\right)\right]\right|_{0} ^{2}-\left.\left(\frac{2}{n \pi}\right)^{2} \sin \left(\frac{n \pi x}{2}\right)\right|_{0} ^{2}$

$$
b_{n}=\frac{-4}{n \pi}[\cos (n \pi)-1]+\left[\frac{4}{n \pi} \cos (n \pi)-0\right] \Rightarrow b_{n}=\frac{4}{n \pi} .
$$

We conclude: $f(x)=\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \left(\frac{n \pi x}{2}\right)$.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is even and periodic,

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is even and periodic, then the Fourier Series is a Cosine Series,

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is even and periodic, then the Fourier Series is a Cosine Series, that is, $b_{n}=0$.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is even and periodic, then the Fourier Series is a Cosine Series, that is, $b_{n}=0$.

$$
a_{0}=\frac{1}{2} \int_{-2}^{2} f(x) d x
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is even and periodic, then the Fourier Series is a Cosine Series, that is, $b_{n}=0$.

$$
a_{0}=\frac{1}{2} \int_{-2}^{2} f(x) d x=\int_{0}^{2}(2-x) d x
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is even and periodic, then the Fourier Series is a Cosine Series, that is, $b_{n}=0$.

$$
a_{0}=\frac{1}{2} \int_{-2}^{2} f(x) d x=\int_{0}^{2}(2-x) d x=\frac{\text { base } \times \text { height }}{2}
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is even and periodic, then the Fourier Series is a Cosine Series, that is, $b_{n}=0$.

$$
a_{0}=\frac{1}{2} \int_{-2}^{2} f(x) d x=\int_{0}^{2}(2-x) d x=\frac{\text { base } x \text { height }}{2} \Rightarrow a_{0}=2 .
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is even and periodic, then the Fourier Series is a Cosine Series, that is, $b_{n}=0$.

$$
\begin{aligned}
& a_{0}=\frac{1}{2} \int_{-2}^{2} f(x) d x=\int_{0}^{2}(2-x) d x=\frac{\text { base } x \text { height }}{2} \Rightarrow a_{0}=2 . \\
& a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x
\end{aligned}
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is even and periodic, then the Fourier Series is a Cosine Series, that is, $b_{n}=0$.

$$
\begin{aligned}
& a_{0}=\frac{1}{2} \int_{-2}^{2} f(x) d x=\int_{0}^{2}(2-x) d x=\frac{\text { base } x \text { height }}{2} \Rightarrow a_{0}=2 . \\
& a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x,
\end{aligned}
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is even and periodic, then the Fourier Series is a Cosine Series, that is, $b_{n}=0$.

$$
\begin{aligned}
& a_{0}=\frac{1}{2} \int_{-2}^{2} f(x) d x=\int_{0}^{2}(2-x) d x=\frac{\text { base } x \text { height }}{2} \Rightarrow a_{0}=2 . \\
& a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, L=2,
\end{aligned}
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: The Fourier series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Since f is even and periodic, then the Fourier Series is a Cosine Series, that is, $b_{n}=0$.

$$
\begin{gathered}
a_{0}=\frac{1}{2} \int_{-2}^{2} f(x) d x=\int_{0}^{2}(2-x) d x=\frac{\text { base } x \text { height }}{2} \Rightarrow a_{0}=2 . \\
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, L=2, \\
a_{n}=\int_{0}^{2}(2-x) \cos \left(\frac{n \pi x}{2}\right) d x .
\end{gathered}
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.

Solution: $a_{n}=2 \int_{0}^{2} \cos \left(\frac{n \pi x}{2}\right) d x-\int_{0}^{2} x \cos \left(\frac{n \pi x}{2}\right) d x$.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: $a_{n}=2 \int_{0}^{2} \cos \left(\frac{n \pi x}{2}\right) d x-\int_{0}^{2} x \cos \left(\frac{n \pi x}{2}\right) d x$.

$$
\int \cos \left(\frac{n \pi x}{2}\right) d x=\frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right)
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: $a_{n}=2 \int_{0}^{2} \cos \left(\frac{n \pi x}{2}\right) d x-\int_{0}^{2} x \cos \left(\frac{n \pi x}{2}\right) d x$.

$$
\int \cos \left(\frac{n \pi x}{2}\right) d x=\frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right),
$$

The other integral is done by parts,

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: $a_{n}=2 \int_{0}^{2} \cos \left(\frac{n \pi x}{2}\right) d x-\int_{0}^{2} x \cos \left(\frac{n \pi x}{2}\right) d x$.

$$
\int \cos \left(\frac{n \pi x}{2}\right) d x=\frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right),
$$

The other integral is done by parts,

$$
I=\int x \cos \left(\frac{n \pi x}{2}\right) d x
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: $a_{n}=2 \int_{0}^{2} \cos \left(\frac{n \pi x}{2}\right) d x-\int_{0}^{2} x \cos \left(\frac{n \pi x}{2}\right) d x$.

$$
\int \cos \left(\frac{n \pi x}{2}\right) d x=\frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right),
$$

The other integral is done by parts,

$$
I=\int x \cos \left(\frac{n \pi x}{2}\right) d x, \quad\left\{\begin{array}{l}
u=x, \quad v^{\prime}=\cos \left(\frac{n \pi x}{2}\right) \\
\end{array}\right.
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: $a_{n}=2 \int_{0}^{2} \cos \left(\frac{n \pi x}{2}\right) d x-\int_{0}^{2} x \cos \left(\frac{n \pi x}{2}\right) d x$.

$$
\int \cos \left(\frac{n \pi x}{2}\right) d x=\frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right),
$$

The other integral is done by parts,

$$
I=\int x \cos \left(\frac{n \pi x}{2}\right) d x, \quad\left\{\begin{array}{cc}
u=x, & v^{\prime}=\cos \left(\frac{n \pi x}{2}\right) \\
u^{\prime}=1, & v=\frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right)
\end{array}\right.
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: $a_{n}=2 \int_{0}^{2} \cos \left(\frac{n \pi x}{2}\right) d x-\int_{0}^{2} x \cos \left(\frac{n \pi x}{2}\right) d x$.

$$
\int \cos \left(\frac{n \pi x}{2}\right) d x=\frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right),
$$

The other integral is done by parts,

$$
\begin{gathered}
I=\int x \cos \left(\frac{n \pi x}{2}\right) d x, \quad\left\{\begin{array}{cc}
u=x, & v^{\prime}=\cos \left(\frac{n \pi x}{2}\right) \\
u^{\prime}=1, & v=\frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right)
\end{array}\right. \\
I=\frac{2 x}{n \pi} \sin \left(\frac{n \pi x}{2}\right)-\int \frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right) d x .
\end{gathered}
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: Recall: $\quad I=\frac{2 x}{n \pi} \sin \left(\frac{n \pi x}{2}\right)-\int \frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right) d x$.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: Recall: $I=\frac{2 x}{n \pi} \sin \left(\frac{n \pi x}{2}\right)-\int \frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right) d x$.
$I=\frac{2 x}{n \pi} \sin \left(\frac{n \pi x}{2}\right)+\left(\frac{2}{n \pi}\right)^{2} \cos \left(\frac{n \pi x}{2}\right)$.

Fourier Series: Even/Odd-periodic extensions.

Example
Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: Recall: $I=\frac{2 x}{n \pi} \sin \left(\frac{n \pi x}{2}\right)-\int \frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right) d x$.
$I=\frac{2 x}{n \pi} \sin \left(\frac{n \pi x}{2}\right)+\left(\frac{2}{n \pi}\right)^{2} \cos \left(\frac{n \pi x}{2}\right)$. So, we get
$a_{n}=\left.2\left[\frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right)\right]\right|_{0} ^{2}-\left.\left[\frac{2 x}{n \pi} \sin \left(\frac{n \pi x}{2}\right)\right]\right|_{0} ^{2}-\left.\left(\frac{2}{n \pi}\right)^{2} \cos \left(\frac{n \pi x}{2}\right)\right|_{0} ^{2}$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: Recall: $I=\frac{2 x}{n \pi} \sin \left(\frac{n \pi x}{2}\right)-\int \frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right) d x$.
$I=\frac{2 x}{n \pi} \sin \left(\frac{n \pi x}{2}\right)+\left(\frac{2}{n \pi}\right)^{2} \cos \left(\frac{n \pi x}{2}\right)$. So, we get
$a_{n}=\left.2\left[\frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right)\right]\right|_{0} ^{2}-\left.\left[\frac{2 x}{n \pi} \sin \left(\frac{n \pi x}{2}\right)\right]\right|_{0} ^{2}-\left.\left(\frac{2}{n \pi}\right)^{2} \cos \left(\frac{n \pi x}{2}\right)\right|_{0} ^{2}$
$a_{n}=0-0-\frac{4}{n^{2} \pi^{2}}[\cos (n \pi)-1]$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: Recall: $I=\frac{2 x}{n \pi} \sin \left(\frac{n \pi x}{2}\right)-\int \frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right) d x$.
$I=\frac{2 x}{n \pi} \sin \left(\frac{n \pi x}{2}\right)+\left(\frac{2}{n \pi}\right)^{2} \cos \left(\frac{n \pi x}{2}\right)$. So, we get
$a_{n}=\left.2\left[\frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right)\right]\right|_{0} ^{2}-\left.\left[\frac{2 x}{n \pi} \sin \left(\frac{n \pi x}{2}\right)\right]\right|_{0} ^{2}-\left.\left(\frac{2}{n \pi}\right)^{2} \cos \left(\frac{n \pi x}{2}\right)\right|_{0} ^{2}$

$$
a_{n}=0-0-\frac{4}{n^{2} \pi^{2}}[\cos (n \pi)-1] \quad \Rightarrow \quad a_{n}=\frac{4}{n^{2} \pi^{2}}\left[1-(-1)^{n}\right]
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.

Solution: Recall: $\quad b_{n}=0, \quad a_{0}=2, \quad a_{n}=\frac{4}{n^{2} \pi^{2}}\left[1-(-1)^{n}\right]$.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.

Solution: Recall: $\quad b_{n}=0, \quad a_{0}=2, \quad a_{n}=\frac{4}{n^{2} \pi^{2}}\left[1-(-1)^{n}\right]$.

If $n=2 k$,

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.

Solution: Recall: $\quad b_{n}=0, \quad a_{0}=2, \quad a_{n}=\frac{4}{n^{2} \pi^{2}}\left[1-(-1)^{n}\right]$.
If $n=2 k$, then $a_{2 k}=\frac{4}{(2 k)^{2} \pi^{2}}\left[1-(-1)^{2 k}\right]$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.

Solution: Recall: $\quad b_{n}=0, \quad a_{0}=2, \quad a_{n}=\frac{4}{n^{2} \pi^{2}}\left[1-(-1)^{n}\right]$.
If $n=2 k$, then $a_{2 k}=\frac{4}{(2 k)^{2} \pi^{2}}\left[1-(-1)^{2 k}\right]=0$.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.

Solution: Recall: $\quad b_{n}=0, \quad a_{0}=2, \quad a_{n}=\frac{4}{n^{2} \pi^{2}}\left[1-(-1)^{n}\right]$.
If $n=2 k$, then $a_{2 k}=\frac{4}{(2 k)^{2} \pi^{2}}\left[1-(-1)^{2 k}\right]=0$.
If $n=2 k-1$,

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: Recall: $\quad b_{n}=0, \quad a_{0}=2, \quad a_{n}=\frac{4}{n^{2} \pi^{2}}\left[1-(-1)^{n}\right]$.
If $n=2 k$, then $a_{2 k}=\frac{4}{(2 k)^{2} \pi^{2}}\left[1-(-1)^{2 k}\right]=0$.
If $n=2 k-1$, then we obtain
$a_{(2 k-1)}=\frac{4}{(2 k-1)^{2} \pi^{2}}\left[1-(-1)^{2 k-1}\right]$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: Recall: $\quad b_{n}=0, \quad a_{0}=2, \quad a_{n}=\frac{4}{n^{2} \pi^{2}}\left[1-(-1)^{n}\right]$.
If $n=2 k$, then $a_{2 k}=\frac{4}{(2 k)^{2} \pi^{2}}\left[1-(-1)^{2 k}\right]=0$.
If $n=2 k-1$, then we obtain
$a_{(2 k-1)}=\frac{4}{(2 k-1)^{2} \pi^{2}}\left[1-(-1)^{2 k-1}\right]=\frac{8}{(2 k-1)^{2} \pi^{2}}$.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x)=2-x$ for $x \in[0,2]$, and then find the Fourier Series of this extension.
Solution: Recall: $\quad b_{n}=0, \quad a_{0}=2, \quad a_{n}=\frac{4}{n^{2} \pi^{2}}\left[1-(-1)^{n}\right]$.
If $n=2 k$, then $a_{2 k}=\frac{4}{(2 k)^{2} \pi^{2}}\left[1-(-1)^{2 k}\right]=0$.
If $n=2 k-1$, then we obtain
$a_{(2 k-1)}=\frac{4}{(2 k-1)^{2} \pi^{2}}\left[1-(-1)^{2 k-1}\right]=\frac{8}{(2 k-1)^{2} \pi^{2}}$.
We conclude: $f(x)=1+\frac{8}{\pi^{2}} \sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{2}} \cos \left(\frac{(2 k-1) \pi x}{2}\right) \cdot \triangleleft$

Review for Final Exam.

- Fourier Series expansions (Chptr.6).
- Eigenvalue-Eigenfunction BVP (Chptr. 6).
- Systems of linear Equations (Chptr. 5).
- Laplace transforms (Chptr. 4).
- Second order linear equations (Chptr. 2).
- First order differential equations (Chptr. 1).

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(8)=0 .
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(8)=0 .
$$

Solution: Since $\lambda>0$,

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(8)=0 .
$$

Solution: Since $\lambda>0$, introduce $\lambda=\mu^{2}$,

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(8)=0 .
$$

Solution: Since $\lambda>0$, introduce $\lambda=\mu^{2}$, with $\mu>0$.

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(8)=0
$$

Solution: Since $\lambda>0$, introduce $\lambda=\mu^{2}$, with $\mu>0$. $y(x)=e^{r x}$ implies that r is solution of

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(8)=0
$$

Solution: Since $\lambda>0$, introduce $\lambda=\mu^{2}$, with $\mu>0$. $y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(8)=0
$$

Solution: Since $\lambda>0$, introduce $\lambda=\mu^{2}$, with $\mu>0$. $y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu i .
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(8)=0
$$

Solution: Since $\lambda>0$, introduce $\lambda=\mu^{2}$, with $\mu>0$. $y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu i .
$$

The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(8)=0
$$

Solution: Since $\lambda>0$, introduce $\lambda=\mu^{2}$, with $\mu>0$.
$y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu i .
$$

The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
The boundary conditions imply:

$$
0=y(0)
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(8)=0
$$

Solution: Since $\lambda>0$, introduce $\lambda=\mu^{2}$, with $\mu>0$.
$y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu i .
$$

The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
The boundary conditions imply:

$$
0=y(0)=c_{1}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(8)=0
$$

Solution: Since $\lambda>0$, introduce $\lambda=\mu^{2}$, with $\mu>0$.
$y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu i .
$$

The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
The boundary conditions imply:

$$
0=y(0)=c_{1} \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x)
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(8)=0
$$

Solution: Since $\lambda>0$, introduce $\lambda=\mu^{2}$, with $\mu>0$.
$y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu i .
$$

The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
The boundary conditions imply:

$$
\begin{aligned}
& 0=y(0)=c_{1} \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x) \\
& 0=y(8)=c_{2} \sin (\mu 8)
\end{aligned}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(8)=0
$$

Solution: Since $\lambda>0$, introduce $\lambda=\mu^{2}$, with $\mu>0$.
$y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu i .
$$

The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
The boundary conditions imply:

$$
\begin{gathered}
0=y(0)=c_{1} \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x) . \\
0=y(8)=c_{2} \sin (\mu 8), \quad c_{2} \neq 0
\end{gathered}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(8)=0
$$

Solution: Since $\lambda>0$, introduce $\lambda=\mu^{2}$, with $\mu>0$.
$y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu i .
$$

The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
The boundary conditions imply:

$$
\begin{gathered}
0=y(0)=c_{1} \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x) \\
0=y(8)=c_{2} \sin (\mu 8), \quad c_{2} \neq 0 \quad \Rightarrow \quad \sin (\mu 8)=0 .
\end{gathered}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(8)=0
$$

Solution: Since $\lambda>0$, introduce $\lambda=\mu^{2}$, with $\mu>0$.
$y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu i .
$$

The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
The boundary conditions imply:

$$
\begin{aligned}
& 0=y(0)=c_{1} \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x) . \\
& 0=y(8)=c_{2} \sin (\mu 8), \quad c_{2} \neq 0 \Rightarrow \sin (\mu 8)=0 . \\
& \mu=\frac{n \pi}{8},
\end{aligned}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(8)=0
$$

Solution: Since $\lambda>0$, introduce $\lambda=\mu^{2}$, with $\mu>0$.
$y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu i .
$$

The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
The boundary conditions imply:

$$
\begin{gathered}
0=y(0)=c_{1} \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x) . \\
0=y(8)=c_{2} \sin (\mu 8), \quad c_{2} \neq 0 \Rightarrow \sin (\mu 8)=0 . \\
\mu=\frac{n \pi}{8}, \quad \lambda=\left(\frac{n \pi}{8}\right)^{2},
\end{gathered}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(8)=0
$$

Solution: Since $\lambda>0$, introduce $\lambda=\mu^{2}$, with $\mu>0$.
$y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \Rightarrow r_{ \pm}= \pm \mu i .
$$

The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
The boundary conditions imply:

$$
\begin{gathered}
0=y(0)=c_{1} \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x) \\
0=y(8)=c_{2} \sin (\mu 8), \quad c_{2} \neq 0 \quad \Rightarrow \quad \sin (\mu 8)=0 . \\
\mu=\frac{n \pi}{8}, \quad \lambda=\left(\frac{n \pi}{8}\right)^{2}, \quad y_{n}(x)=\sin \left(\frac{n \pi x}{8}\right), \quad n=1,2, \cdots \triangleleft
\end{gathered}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y^{\prime}(8)=0
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y^{\prime}(8)=0
$$

Solution: The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y^{\prime}(8)=0
$$

Solution: The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
The boundary conditions imply:

$$
0=y(0)
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y^{\prime}(8)=0
$$

Solution: The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
The boundary conditions imply:

$$
0=y(0)=c_{1}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y^{\prime}(8)=0
$$

Solution: The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
The boundary conditions imply:

$$
0=y(0)=c_{1} \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x)
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y^{\prime}(8)=0
$$

Solution: The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
The boundary conditions imply:

$$
\begin{aligned}
& 0=y(0)=c_{1} \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x) . \\
& 0=y^{\prime}(8)=c_{2} \mu \cos (\mu 8)
\end{aligned}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y^{\prime}(8)=0
$$

Solution: The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
The boundary conditions imply:

$$
\begin{aligned}
& 0=y(0)=c_{1} \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x) . \\
& 0=y^{\prime}(8)=c_{2} \mu \cos (\mu 8), \quad c_{2} \neq 0
\end{aligned}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y^{\prime}(8)=0
$$

Solution: The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
The boundary conditions imply:

$$
\begin{gathered}
0=y(0)=c_{1} \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x) . \\
0=y^{\prime}(8)=c_{2} \mu \cos (\mu 8), \quad c_{2} \neq 0 \quad \Rightarrow \quad \cos (\mu 8)=0
\end{gathered}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y^{\prime}(8)=0
$$

Solution: The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
The boundary conditions imply:

$$
\begin{aligned}
& 0=y(0)=c_{1} \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x) . \\
& 0=y^{\prime}(8)=c_{2} \mu \cos (\mu 8), \quad c_{2} \neq 0 \quad \Rightarrow \quad \cos (\mu 8)=0 . \\
& 8 \mu=(2 n+1) \frac{\pi}{2}
\end{aligned}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y^{\prime}(8)=0
$$

Solution: The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
The boundary conditions imply:

$$
\begin{gathered}
0=y(0)=c_{1} \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x) . \\
0=y^{\prime}(8)=c_{2} \mu \cos (\mu 8), \quad c_{2} \neq 0 \quad \Rightarrow \quad \cos (\mu 8)=0 . \\
8 \mu=(2 n+1) \frac{\pi}{2}, \quad \Rightarrow \quad \mu=\frac{(2 n+1) \pi}{16} .
\end{gathered}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y^{\prime}(8)=0
$$

Solution: The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
The boundary conditions imply:

$$
\begin{gathered}
0=y(0)=c_{1} \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x) . \\
0=y^{\prime}(8)=c_{2} \mu \cos (\mu 8), \quad c_{2} \neq 0 \quad \Rightarrow \quad \cos (\mu 8)=0 . \\
8 \mu=(2 n+1) \frac{\pi}{2}, \quad \Rightarrow \quad \mu=\frac{(2 n+1) \pi}{16} .
\end{gathered}
$$

Then, for $n=1,2, \cdots$ holds

$$
\lambda=\left[\frac{(2 n+1) \pi}{16}\right]^{2}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunction of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y^{\prime}(8)=0
$$

Solution: The general solution is $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
The boundary conditions imply:

$$
\begin{gathered}
0=y(0)=c_{1} \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x) . \\
0=y^{\prime}(8)=c_{2} \mu \cos (\mu 8), \quad c_{2} \neq 0 \quad \Rightarrow \quad \cos (\mu 8)=0 . \\
8 \mu=(2 n+1) \frac{\pi}{2}, \quad \Rightarrow \quad \mu=\frac{(2 n+1) \pi}{16} .
\end{gathered}
$$

Then, for $n=1,2, \cdots$ holds

$$
\lambda=\left[\frac{(2 n+1) \pi}{16}\right]^{2}, \quad y_{n}(x)=\sin \left(\frac{(2 n+1) \pi x}{16}\right) .
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: Case $\lambda>0$.

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: Case $\lambda>0$. Then, $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: Case $\lambda>0$. Then, $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
Then, $y^{\prime}(x)=-c_{1} \mu \sin (\mu x)+c_{2} \mu \cos (\mu x)$.

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: Case $\lambda>0$. Then, $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
Then, $y^{\prime}(x)=-c_{1} \mu \sin (\mu x)+c_{2} \mu \cos (\mu x)$. The B.C. imply:

$$
0=y^{\prime}(0)
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: Case $\lambda>0$. Then, $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
Then, $y^{\prime}(x)=-c_{1} \mu \sin (\mu x)+c_{2} \mu \cos (\mu x)$. The B.C. imply:

$$
0=y^{\prime}(0)=c_{2}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: Case $\lambda>0$. Then, $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
Then, $y^{\prime}(x)=-c_{1} \mu \sin (\mu x)+c_{2} \mu \cos (\mu x)$. The B.C. imply:

$$
0=y^{\prime}(0)=c_{2} \Rightarrow y(x)=c_{1} \cos (\mu x)
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: Case $\lambda>0$. Then, $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
Then, $y^{\prime}(x)=-c_{1} \mu \sin (\mu x)+c_{2} \mu \cos (\mu x)$. The B.C. imply:

$$
0=y^{\prime}(0)=c_{2} \Rightarrow y(x)=c_{1} \cos (\mu x), y^{\prime}(x)=-c_{1} \mu \sin (\mu x)
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: Case $\lambda>0$. Then, $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
Then, $y^{\prime}(x)=-c_{1} \mu \sin (\mu x)+c_{2} \mu \cos (\mu x)$. The B.C. imply:

$$
\begin{aligned}
0= & y^{\prime}(0)=c_{2} \Rightarrow y(x)=c_{1} \cos (\mu x), y^{\prime}(x)=-c_{1} \mu \sin (\mu x) \\
& 0=y^{\prime}(8)=c_{1} \mu \sin (\mu 8),
\end{aligned}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: Case $\lambda>0$. Then, $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
Then, $y^{\prime}(x)=-c_{1} \mu \sin (\mu x)+c_{2} \mu \cos (\mu x)$. The B.C. imply:

$$
\begin{aligned}
& 0=y^{\prime}(0)=c_{2} \Rightarrow y(x)=c_{1} \cos (\mu x), y^{\prime}(x)=-c_{1} \mu \sin (\mu x) \\
& 0=y^{\prime}(8)=c_{1} \mu \sin (\mu 8), \quad c_{1} \neq 0
\end{aligned}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: Case $\lambda>0$. Then, $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
Then, $y^{\prime}(x)=-c_{1} \mu \sin (\mu x)+c_{2} \mu \cos (\mu x)$. The B.C. imply:

$$
\begin{gathered}
0=y^{\prime}(0)=c_{2} \Rightarrow y(x)=c_{1} \cos (\mu x), y^{\prime}(x)=-c_{1} \mu \sin (\mu x) . \\
0=y^{\prime}(8)=c_{1} \mu \sin (\mu 8), \quad c_{1} \neq 0 \quad \Rightarrow \quad \sin (\mu 8)=0 .
\end{gathered}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: Case $\lambda>0$. Then, $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
Then, $y^{\prime}(x)=-c_{1} \mu \sin (\mu x)+c_{2} \mu \cos (\mu x)$. The B.C. imply:

$$
\begin{gathered}
0=y^{\prime}(0)=c_{2} \Rightarrow y(x)=c_{1} \cos (\mu x), \quad y^{\prime}(x)=-c_{1} \mu \sin (\mu x) . \\
0=y^{\prime}(8)=c_{1} \mu \sin (\mu 8), \quad c_{1} \neq 0 \quad \Rightarrow \quad \sin (\mu 8)=0 .
\end{gathered}
$$

$$
8 \mu=n \pi
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: Case $\lambda>0$. Then, $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
Then, $y^{\prime}(x)=-c_{1} \mu \sin (\mu x)+c_{2} \mu \cos (\mu x)$. The B.C. imply:

$$
\begin{gathered}
0=y^{\prime}(0)=c_{2} \Rightarrow y(x)=c_{1} \cos (\mu x), \quad y^{\prime}(x)=-c_{1} \mu \sin (\mu x) . \\
0=y^{\prime}(8)=c_{1} \mu \sin (\mu 8), \quad c_{1} \neq 0 \quad \Rightarrow \quad \sin (\mu 8)=0 . \\
8 \mu=n \pi, \quad \Rightarrow \quad \mu=\frac{n \pi}{8} .
\end{gathered}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: Case $\lambda>0$. Then, $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
Then, $y^{\prime}(x)=-c_{1} \mu \sin (\mu x)+c_{2} \mu \cos (\mu x)$. The B.C. imply:

$$
\begin{gathered}
0=y^{\prime}(0)=c_{2} \Rightarrow y(x)=c_{1} \cos (\mu x), \quad y^{\prime}(x)=-c_{1} \mu \sin (\mu x) . \\
0=y^{\prime}(8)=c_{1} \mu \sin (\mu 8), \quad c_{1} \neq 0 \quad \Rightarrow \quad \sin (\mu 8)=0 . \\
8 \mu=n \pi, \quad \Rightarrow \quad \mu=\frac{n \pi}{8} .
\end{gathered}
$$

Then, choosing $c_{1}=1$, for $n=1,2, \cdots$ holds

$$
\lambda=\left(\frac{n \pi}{8}\right)^{2}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: Case $\lambda>0$. Then, $y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.
Then, $y^{\prime}(x)=-c_{1} \mu \sin (\mu x)+c_{2} \mu \cos (\mu x)$. The B.C. imply:

$$
\begin{gathered}
0=y^{\prime}(0)=c_{2} \Rightarrow y(x)=c_{1} \cos (\mu x), \quad y^{\prime}(x)=-c_{1} \mu \sin (\mu x) . \\
0=y^{\prime}(8)=c_{1} \mu \sin (\mu 8), \quad c_{1} \neq 0 \quad \Rightarrow \quad \sin (\mu 8)=0 . \\
8 \mu=n \pi, \quad \Rightarrow \quad \mu=\frac{n \pi}{8} .
\end{gathered}
$$

Then, choosing $c_{1}=1$, for $n=1,2, \cdots$ holds

$$
\lambda=\left(\frac{n \pi}{8}\right)^{2}, \quad y_{n}(x)=\cos \left(\frac{n \pi x}{8}\right) .
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: The case $\lambda=0$. The general solution is

$$
y(x)=c_{1}+c_{2} x
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: The case $\lambda=0$. The general solution is

$$
y(x)=c_{1}+c_{2} x
$$

The B.C. imply:

$$
0=y^{\prime}(0)
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: The case $\lambda=0$. The general solution is

$$
y(x)=c_{1}+c_{2} x
$$

The B.C. imply:

$$
0=y^{\prime}(0)=c_{2}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: The case $\lambda=0$. The general solution is

$$
y(x)=c_{1}+c_{2} x
$$

The B.C. imply:

$$
0=y^{\prime}(0)=c_{2} \quad \Rightarrow \quad y(x)=c_{1}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0 .
$$

Solution: The case $\lambda=0$. The general solution is

$$
y(x)=c_{1}+c_{2} x
$$

The B.C. imply:

$$
0=y^{\prime}(0)=c_{2} \quad \Rightarrow \quad y(x)=c_{1}, \quad y^{\prime}(x)=0
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: The case $\lambda=0$. The general solution is

$$
y(x)=c_{1}+c_{2} x
$$

The B.C. imply:

$$
\begin{gathered}
0=y^{\prime}(0)=c_{2} \quad \Rightarrow \quad y(x)=c_{1}, \quad y^{\prime}(x)=0 . \\
0=y^{\prime}(8)
\end{gathered}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0 .
$$

Solution: The case $\lambda=0$. The general solution is

$$
y(x)=c_{1}+c_{2} x
$$

The B.C. imply:

$$
\begin{gathered}
0=y^{\prime}(0)=c_{2} \quad \Rightarrow \quad y(x)=c_{1}, \quad y^{\prime}(x)=0 . \\
0=y^{\prime}(8)=0 .
\end{gathered}
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: The case $\lambda=0$. The general solution is

$$
y(x)=c_{1}+c_{2} x
$$

The B.C. imply:

$$
\begin{gathered}
0=y^{\prime}(0)=c_{2} \quad \Rightarrow \quad y(x)=c_{1}, \quad y^{\prime}(x)=0 . \\
0=y^{\prime}(8)=0 .
\end{gathered}
$$

Then, choosing $c_{1}=1$, holds,

$$
\lambda=0
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunction of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(8)=0
$$

Solution: The case $\lambda=0$. The general solution is

$$
y(x)=c_{1}+c_{2} x
$$

The B.C. imply:

$$
\begin{gathered}
0=y^{\prime}(0)=c_{2} \quad \Rightarrow \quad y(x)=c_{1}, \quad y^{\prime}(x)=0 . \\
0=y^{\prime}(8)=0 .
\end{gathered}
$$

Then, choosing $c_{1}=1$, holds,

$$
\lambda=0, \quad y_{0}(x)=1
$$

A Boundary Value Problem.

Example

Find the solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y^{\prime}(0)=1, \quad y(\pi / 3)=0
$$

A Boundary Value Problem.

Example

Find the solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y^{\prime}(0)=1, \quad y(\pi / 3)=0
$$

Solution: $y(x)=e^{r x}$ implies that r is solution of

A Boundary Value Problem.

Example

Find the solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y^{\prime}(0)=1, \quad y(\pi / 3)=0
$$

Solution: $y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0
$$

A Boundary Value Problem.

Example

Find the solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y^{\prime}(0)=1, \quad y(\pi / 3)=0
$$

Solution: $y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

A Boundary Value Problem.

Example

Find the solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y^{\prime}(0)=1, \quad y(\pi / 3)=0
$$

Solution: $y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \Rightarrow r_{ \pm}= \pm i
$$

The general solution is $y(x)=c_{1} \cos (x)+c_{2} \sin (x)$.

A Boundary Value Problem.

Example

Find the solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y^{\prime}(0)=1, \quad y(\pi / 3)=0
$$

Solution: $y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is $y(x)=c_{1} \cos (x)+c_{2} \sin (x)$.
Then, $y^{\prime}(x)=-c_{1} \sin (x)+c_{2} \cos (x)$.

A Boundary Value Problem.

Example

Find the solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y^{\prime}(0)=1, \quad y(\pi / 3)=0
$$

Solution: $y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is $y(x)=c_{1} \cos (x)+c_{2} \sin (x)$.
Then, $y^{\prime}(x)=-c_{1} \sin (x)+c_{2} \cos (x)$. The B.C. imply:

$$
1=y^{\prime}(0)
$$

A Boundary Value Problem.

Example

Find the solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y^{\prime}(0)=1, \quad y(\pi / 3)=0
$$

Solution: $y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is $y(x)=c_{1} \cos (x)+c_{2} \sin (x)$.
Then, $y^{\prime}(x)=-c_{1} \sin (x)+c_{2} \cos (x)$. The B.C. imply:

$$
1=y^{\prime}(0)=c_{2}
$$

A Boundary Value Problem.

Example

Find the solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y^{\prime}(0)=1, \quad y(\pi / 3)=0
$$

Solution: $y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is $y(x)=c_{1} \cos (x)+c_{2} \sin (x)$.
Then, $y^{\prime}(x)=-c_{1} \sin (x)+c_{2} \cos (x)$. The B.C. imply:

$$
1=y^{\prime}(0)=c_{2} \quad \Rightarrow \quad y(x)=c_{1} \cos (x)+\sin (x)
$$

A Boundary Value Problem.

Example

Find the solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y^{\prime}(0)=1, \quad y(\pi / 3)=0
$$

Solution: $y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is $y(x)=c_{1} \cos (x)+c_{2} \sin (x)$.
Then, $y^{\prime}(x)=-c_{1} \sin (x)+c_{2} \cos (x)$. The B.C. imply:

$$
\begin{aligned}
& \quad 1=y^{\prime}(0)=c_{2} \quad \Rightarrow \quad y(x)=c_{1} \cos (x)+\sin (x) . \\
& 0=y(\pi / 3)
\end{aligned}
$$

A Boundary Value Problem.

Example

Find the solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y^{\prime}(0)=1, \quad y(\pi / 3)=0
$$

Solution: $y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is $y(x)=c_{1} \cos (x)+c_{2} \sin (x)$.
Then, $y^{\prime}(x)=-c_{1} \sin (x)+c_{2} \cos (x)$. The B.C. imply:

$$
\begin{aligned}
& 1=y^{\prime}(0)=c_{2} \quad \Rightarrow \quad y(x)=c_{1} \cos (x)+\sin (x) . \\
& 0=y(\pi / 3)=c_{1} \cos (\pi / 3)+\sin (\pi / 3)
\end{aligned}
$$

A Boundary Value Problem.

Example

Find the solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y^{\prime}(0)=1, \quad y(\pi / 3)=0
$$

Solution: $y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is $y(x)=c_{1} \cos (x)+c_{2} \sin (x)$.
Then, $y^{\prime}(x)=-c_{1} \sin (x)+c_{2} \cos (x)$. The B.C. imply:

$$
\begin{gathered}
1=y^{\prime}(0)=c_{2} \Rightarrow y(x)=c_{1} \cos (x)+\sin (x) \\
0=y(\pi / 3)=c_{1} \cos (\pi / 3)+\sin (\pi / 3) \Rightarrow c_{1}=-\frac{\sin (\pi / 3)}{\cos (\pi / 3)}
\end{gathered}
$$

A Boundary Value Problem.

Example

Find the solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y^{\prime}(0)=1, \quad y(\pi / 3)=0
$$

Solution: $y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is $y(x)=c_{1} \cos (x)+c_{2} \sin (x)$.
Then, $y^{\prime}(x)=-c_{1} \sin (x)+c_{2} \cos (x)$. The B.C. imply:

$$
\begin{aligned}
& 1=y^{\prime}(0)=c_{2} \Rightarrow y(x)=c_{1} \cos (x)+\sin (x) \\
& 0=y(\pi / 3)=c_{1} \cos (\pi / 3)+\sin (\pi / 3) \Rightarrow c_{1}=-\frac{\sin (\pi / 3)}{\cos (\pi / 3)} \\
& c_{1}=-\frac{\sqrt{3} / 2}{1 / 2}
\end{aligned}
$$

A Boundary Value Problem.

Example

Find the solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y^{\prime}(0)=1, \quad y(\pi / 3)=0
$$

Solution: $y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is $y(x)=c_{1} \cos (x)+c_{2} \sin (x)$.
Then, $y^{\prime}(x)=-c_{1} \sin (x)+c_{2} \cos (x)$. The B.C. imply:

$$
\begin{gathered}
1=y^{\prime}(0)=c_{2} \Rightarrow y(x)=c_{1} \cos (x)+\sin (x) \\
0=y(\pi / 3)=c_{1} \cos (\pi / 3)+\sin (\pi / 3) \Rightarrow c_{1}=-\frac{\sin (\pi / 3)}{\cos (\pi / 3)} \\
c_{1}=-\frac{\sqrt{3} / 2}{1 / 2}=-\sqrt{3}
\end{gathered}
$$

A Boundary Value Problem.

Example

Find the solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y^{\prime}(0)=1, \quad y(\pi / 3)=0
$$

Solution: $y(x)=e^{r x}$ implies that r is solution of

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is $y(x)=c_{1} \cos (x)+c_{2} \sin (x)$.
Then, $y^{\prime}(x)=-c_{1} \sin (x)+c_{2} \cos (x)$. The B.C. imply:

$$
\begin{gathered}
1=y^{\prime}(0)=c_{2} \Rightarrow y(x)=c_{1} \cos (x)+\sin (x) \\
0=y(\pi / 3)=c_{1} \cos (\pi / 3)+\sin (\pi / 3) \Rightarrow c_{1}=-\frac{\sin (\pi / 3)}{\cos (\pi / 3)} \\
c_{1}=-\frac{\sqrt{3} / 2}{1 / 2}=-\sqrt{3} \Rightarrow y(x)=-\sqrt{3} \cos (x)+\sin (x)
\end{gathered}
$$

Review for Final Exam.

- Fourier Series expansions (Chptr.6).
- Eigenvalue-Eigenfunction BVP (Chptr. 6).
- Systems of linear Equations (Chptr. 5).
- Laplace transforms (Chptr. 4).
- Second order linear equations (Chptr. 2).
- First order differential equations (Chptr. 1).

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(a) If $\lambda_{1} \neq \lambda_{2}$, real,

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(a) If $\lambda_{1} \neq \lambda_{2}$, real, then $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ are linearly independent,

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(a) If $\lambda_{1} \neq \lambda_{2}$, real, then $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ are linearly independent, and the general solution is $\mathbf{x}(x)=c_{1} \mathbf{v}^{(1)} e^{\lambda_{1} t}+c_{2} \mathbf{v}^{(2)} e^{\lambda_{2} t}$.

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(a) If $\lambda_{1} \neq \lambda_{2}$, real, then $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ are linearly independent, and the general solution is $\mathbf{x}(x)=c_{1} \mathbf{v}^{(1)} e^{\lambda_{1} t}+c_{2} \mathbf{v}^{(2)} e^{\lambda_{2} t}$.
(b) If $\lambda_{1} \neq \lambda_{2}$, complex,

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(a) If $\lambda_{1} \neq \lambda_{2}$, real, then $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ are linearly independent, and the general solution is $\mathbf{x}(x)=c_{1} \mathbf{v}^{(1)} e^{\lambda_{1} t}+c_{2} \mathbf{v}^{(2)} e^{\lambda_{2} t}$.
(b) If $\lambda_{1} \neq \lambda_{2}$, complex, then denoting $\lambda_{ \pm}=\alpha \pm \beta i$ and $\mathbf{v}^{(\pm)}=\mathbf{a} \pm \mathbf{b} i$,

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(a) If $\lambda_{1} \neq \lambda_{2}$, real, then $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ are linearly independent, and the general solution is $\mathbf{x}(x)=c_{1} \mathbf{v}^{(1)} e^{\lambda_{1} t}+c_{2} \mathbf{v}^{(2)} e^{\lambda_{2} t}$.
(b) If $\lambda_{1} \neq \lambda_{2}$, complex, then denoting $\lambda_{ \pm}=\alpha \pm \beta i$ and $\mathbf{v}^{(\pm)}=\mathbf{a} \pm \mathbf{b}$ i, the complex-valued fundamental solutions

$$
\mathbf{x}^{(\pm)}=(\mathbf{a} \pm \mathbf{b} i) e^{(\alpha \pm \beta i) t}
$$

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(a) If $\lambda_{1} \neq \lambda_{2}$, real, then $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ are linearly independent, and the general solution is $\mathbf{x}(x)=c_{1} \mathbf{v}^{(1)} e^{\lambda_{1} t}+c_{2} \mathbf{v}^{(2)} e^{\lambda_{2} t}$.
(b) If $\lambda_{1} \neq \lambda_{2}$, complex, then denoting $\lambda_{ \pm}=\alpha \pm \beta i$ and $\mathbf{v}^{(\pm)}=\mathbf{a} \pm \mathbf{b}$ i, the complex-valued fundamental solutions

$$
\begin{gathered}
\mathbf{x}^{(\pm)}=(\mathbf{a} \pm \mathbf{b} i) e^{(\alpha \pm \beta i) t} \\
\mathbf{x}^{(\pm)}=e^{\alpha t}(\mathbf{a} \pm \mathbf{b} i)[\cos (\beta t)+i \sin (\beta t)]
\end{gathered}
$$

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(a) If $\lambda_{1} \neq \lambda_{2}$, real, then $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ are linearly independent, and the general solution is $\mathbf{x}(x)=c_{1} \mathbf{v}^{(1)} e^{\lambda_{1} t}+c_{2} \mathbf{v}^{(2)} e^{\lambda_{2} t}$.
(b) If $\lambda_{1} \neq \lambda_{2}$, complex, then denoting $\lambda_{ \pm}=\alpha \pm \beta i$ and $\mathbf{v}^{(\pm)}=\mathbf{a} \pm \mathbf{b} \boldsymbol{i}$, the complex-valued fundamental solutions

$$
\begin{gathered}
\mathbf{x}^{(\pm)}=(\mathbf{a} \pm \mathbf{b} \boldsymbol{i}) e^{(\alpha \pm \beta i) t} \\
\mathbf{x}^{(\pm)}=e^{\alpha t}(\mathbf{a} \pm \mathbf{b} i)[\cos (\beta t)+i \sin (\beta t)]
\end{gathered}
$$

$$
\mathbf{x}^{(\pm)}=e^{\alpha t}[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] \pm i e^{\alpha t}[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)]
$$

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(a) If $\lambda_{1} \neq \lambda_{2}$, real, then $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ are linearly independent, and the general solution is $\mathbf{x}(x)=c_{1} \mathbf{v}^{(1)} e^{\lambda_{1} t}+c_{2} \mathbf{v}^{(2)} e^{\lambda_{2} t}$.
(b) If $\lambda_{1} \neq \lambda_{2}$, complex, then denoting $\lambda_{ \pm}=\alpha \pm \beta i$ and $\mathbf{v}^{(\pm)}=\mathbf{a} \pm \mathbf{b}$ i, the complex-valued fundamental solutions

$$
\begin{gathered}
\mathbf{x}^{(\pm)}=(\mathbf{a} \pm \mathbf{b} \boldsymbol{i}) e^{(\alpha \pm \beta i) t} \\
\mathbf{x}^{(\pm)}=e^{\alpha t}(\mathbf{a} \pm \mathbf{b} \boldsymbol{i})[\cos (\beta t)+i \sin (\beta t)] \\
\mathbf{x}^{(\pm)}=e^{\alpha t}[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] \pm i e^{\alpha t}[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)]
\end{gathered}
$$

Real-valued fundamental solutions are

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(a) If $\lambda_{1} \neq \lambda_{2}$, real, then $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ are linearly independent, and the general solution is $\mathbf{x}(x)=c_{1} \mathbf{v}^{(1)} e^{\lambda_{1} t}+c_{2} \mathbf{v}^{(2)} e^{\lambda_{2} t}$.
(b) If $\lambda_{1} \neq \lambda_{2}$, complex, then denoting $\lambda_{ \pm}=\alpha \pm \beta i$ and $\mathbf{v}^{(\pm)}=\mathbf{a} \pm \mathbf{b}$ i, the complex-valued fundamental solutions

$$
\begin{gathered}
\mathbf{x}^{(\pm)}=(\mathbf{a} \pm \mathbf{b} \boldsymbol{i}) e^{(\alpha \pm \beta i) t} \\
\mathbf{x}^{(\pm)}=e^{\alpha t}(\mathbf{a} \pm \mathbf{b} \boldsymbol{i})[\cos (\beta t)+i \sin (\beta t)] \\
\mathbf{x}^{(\pm)}=e^{\alpha t}[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] \pm i e^{\alpha t}[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)]
\end{gathered}
$$

Real-valued fundamental solutions are

$$
\mathbf{x}^{(1)}=e^{\alpha t}[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)]
$$

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(a) If $\lambda_{1} \neq \lambda_{2}$, real, then $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ are linearly independent, and the general solution is $\mathbf{x}(x)=c_{1} \mathbf{v}^{(1)} e^{\lambda_{1} t}+c_{2} \mathbf{v}^{(2)} e^{\lambda_{2} t}$.
(b) If $\lambda_{1} \neq \lambda_{2}$, complex, then denoting $\lambda_{ \pm}=\alpha \pm \beta i$ and $\mathbf{v}^{(\pm)}=\mathbf{a} \pm \mathbf{b}$ i, the complex-valued fundamental solutions

$$
\begin{gathered}
\mathbf{x}^{(\pm)}=(\mathbf{a} \pm \mathbf{b} i) e^{(\alpha \pm \beta i) t} \\
\mathbf{x}^{(\pm)}=e^{\alpha t}(\mathbf{a} \pm \mathbf{b} i)[\cos (\beta t)+i \sin (\beta t)] \\
\mathbf{x}^{(\pm)}=e^{\alpha t}[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] \pm i e^{\alpha t}[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)]
\end{gathered}
$$

Real-valued fundamental solutions are

$$
\begin{aligned}
& \mathbf{x}^{(1)}=e^{\alpha t}[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] \\
& \mathbf{x}^{(2)}=e^{\alpha t}[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)]
\end{aligned}
$$

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(c) If $\lambda_{1}=\lambda_{2}=\lambda$, real,

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(c) If $\lambda_{1}=\lambda_{2}=\lambda$, real, and their eigenvectors $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ are linearly independent,

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(c) If $\lambda_{1}=\lambda_{2}=\lambda$, real, and their eigenvectors $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ are linearly independent, then the general solution is

$$
\mathbf{x}(x)=c_{1} \mathbf{v}^{(1)} e^{\lambda t}+c_{2} \mathbf{v}^{(2)} e^{\lambda t}
$$

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(c) If $\lambda_{1}=\lambda_{2}=\lambda$, real, and their eigenvectors $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ are linearly independent, then the general solution is

$$
\mathbf{x}(x)=c_{1} \mathbf{v}^{(1)} e^{\lambda t}+c_{2} \mathbf{v}^{(2)} e^{\lambda t}
$$

(d) If $\lambda_{1}=\lambda_{2}=\lambda$, real,

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(c) If $\lambda_{1}=\lambda_{2}=\lambda$, real, and their eigenvectors $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ are linearly independent, then the general solution is

$$
\mathbf{x}(x)=c_{1} \mathbf{v}^{(1)} e^{\lambda t}+c_{2} \mathbf{v}^{(2)} e^{\lambda t}
$$

(d) If $\lambda_{1}=\lambda_{2}=\lambda$, real, and there is only one eigendirection \mathbf{v},

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(c) If $\lambda_{1}=\lambda_{2}=\lambda$, real, and their eigenvectors $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ are linearly independent, then the general solution is

$$
\mathbf{x}(x)=c_{1} \mathbf{v}^{(1)} e^{\lambda t}+c_{2} \mathbf{v}^{(2)} e^{\lambda t}
$$

(d) If $\lambda_{1}=\lambda_{2}=\lambda$, real, and there is only one eigendirection \mathbf{v}, then find \mathbf{w} solution of $(A-\lambda /) \mathbf{w}=\mathbf{v}$.

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(c) If $\lambda_{1}=\lambda_{2}=\lambda$, real, and their eigenvectors $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ are linearly independent, then the general solution is

$$
\mathbf{x}(x)=c_{1} \mathbf{v}^{(1)} e^{\lambda t}+c_{2} \mathbf{v}^{(2)} e^{\lambda t}
$$

(d) If $\lambda_{1}=\lambda_{2}=\lambda$, real, and there is only one eigendirection \mathbf{v}, then find \mathbf{w} solution of $(A-\lambda /) \mathbf{w}=\mathbf{v}$. Then fundamental solutions to the differential equation are given by

$$
\mathbf{x}^{(1)}=\mathbf{v} e^{\lambda t},
$$

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(c) If $\lambda_{1}=\lambda_{2}=\lambda$, real, and their eigenvectors $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ are linearly independent, then the general solution is

$$
\mathbf{x}(x)=c_{1} \mathbf{v}^{(1)} e^{\lambda t}+c_{2} \mathbf{v}^{(2)} e^{\lambda t}
$$

(d) If $\lambda_{1}=\lambda_{2}=\lambda$, real, and there is only one eigendirection \mathbf{v}, then find \mathbf{w} solution of $(A-\lambda /) \mathbf{w}=\mathbf{v}$. Then fundamental solutions to the differential equation are given by

$$
\mathbf{x}^{(1)}=\mathbf{v} e^{\lambda t}, \quad \mathbf{x}^{(2)}=(\mathbf{v} t+\mathbf{w}) e^{\lambda t} .
$$

Systems of linear Equations.

Summary: Find solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with A a 2×2 matrix.
First find the eigenvalues λ_{i} and the eigenvectors $\mathbf{v}^{(i)}$ of A.
(c) If $\lambda_{1}=\lambda_{2}=\lambda$, real, and their eigenvectors $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ are linearly independent, then the general solution is

$$
\mathbf{x}(x)=c_{1} \mathbf{v}^{(1)} e^{\lambda t}+c_{2} \mathbf{v}^{(2)} e^{\lambda t}
$$

(d) If $\lambda_{1}=\lambda_{2}=\lambda$, real, and there is only one eigendirection \mathbf{v}, then find \mathbf{w} solution of $(A-\lambda /) \mathbf{w}=\mathbf{v}$. Then fundamental solutions to the differential equation are given by

$$
\mathbf{x}^{(1)}=\mathbf{v} e^{\lambda t}, \quad \mathbf{x}^{(2)}=(\mathbf{v} t+\mathbf{w}) e^{\lambda t} .
$$

Then, the general solution is

$$
\mathbf{x}=c_{1} \mathbf{v} e^{\lambda t}+c_{2}(\mathbf{v} t+\mathbf{w}) e^{\lambda t}
$$

Systems of linear Equations.

Example
Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$.

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$. Solution:

$$
p(\lambda)=\left|\begin{array}{cc}
(1-\lambda) & 4 \\
2 & (-1-\lambda)
\end{array}\right|
$$

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$. Solution:

$$
p(\lambda)=\left|\begin{array}{cc}
(1-\lambda) & 4 \\
2 & (-1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+1)-8
$$

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$. Solution:

$$
p(\lambda)=\left|\begin{array}{cc}
(1-\lambda) & 4 \\
2 & (-1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+1)-8=\lambda^{2}-1-8,
$$

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$. Solution:

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(1-\lambda) & 4 \\
2 & (-1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+1)-8=\lambda^{2}-1-8, \\
p(\lambda)=\lambda^{2}-9=0
\end{gathered}
$$

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$.
Solution:

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(1-\lambda) & 4 \\
2 & (-1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+1)-8=\lambda^{2}-1-8 \\
p(\lambda)=\lambda^{2}-9=0 \quad \Rightarrow \quad \lambda_{ \pm}= \pm 3
\end{gathered}
$$

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$.
Solution:

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(1-\lambda) & 4 \\
2 & (-1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+1)-8=\lambda^{2}-1-8, \\
p(\lambda)=\lambda^{2}-9=0 \quad \Rightarrow \quad \lambda_{ \pm}= \pm 3 .
\end{gathered}
$$

Case $\lambda_{+}=3$,

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$. Solution:

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(1-\lambda) & 4 \\
2 & (-1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+1)-8=\lambda^{2}-1-8, \\
p(\lambda)=\lambda^{2}-9=0 \quad \Rightarrow \quad \lambda_{ \pm}= \pm 3 .
\end{gathered}
$$

Case $\lambda_{+}=3$,
$A-31$

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$. Solution:

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(1-\lambda) & 4 \\
2 & (-1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+1)-8=\lambda^{2}-1-8, \\
p(\lambda)=\lambda^{2}-9=0 \quad \Rightarrow \quad \lambda_{ \pm}= \pm 3 .
\end{gathered}
$$

Case $\lambda_{+}=3$,

$$
A-3 I=\left[\begin{array}{cc}
-2 & 4 \\
2 & -4
\end{array}\right]
$$

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$.
Solution:

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(1-\lambda) & 4 \\
2 & (-1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+1)-8=\lambda^{2}-1-8 \\
p(\lambda)=\lambda^{2}-9=0 \quad \Rightarrow \quad \lambda_{ \pm}= \pm 3
\end{gathered}
$$

Case $\lambda_{+}=3$,

$$
A-3 I=\left[\begin{array}{cc}
-2 & 4 \\
2 & -4
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right]
$$

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$.
Solution:

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(1-\lambda) & 4 \\
2 & (-1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+1)-8=\lambda^{2}-1-8 \\
p(\lambda)=\lambda^{2}-9=0 \quad \Rightarrow \quad \lambda_{ \pm}= \pm 3
\end{gathered}
$$

Case $\lambda_{+}=3$,

$$
A-3 I=\left[\begin{array}{cc}
-2 & 4 \\
2 & -4
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right] \Rightarrow v_{1}=2 v_{2}
$$

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$.
Solution:

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(1-\lambda) & 4 \\
2 & (-1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+1)-8=\lambda^{2}-1-8 \\
p(\lambda)=\lambda^{2}-9=0 \quad \Rightarrow \quad \lambda_{ \pm}= \pm 3
\end{gathered}
$$

Case $\lambda_{+}=3$,

$$
A-3 I=\left[\begin{array}{cc}
-2 & 4 \\
2 & -4
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right] \Rightarrow v_{1}=2 v_{2} \Rightarrow \mathbf{v}^{(+)}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$. Solution:

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(1-\lambda) & 4 \\
2 & (-1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+1)-8=\lambda^{2}-1-8 \\
p(\lambda)=\lambda^{2}-9=0 \quad \Rightarrow \quad \lambda_{ \pm}= \pm 3
\end{gathered}
$$

Case $\lambda_{+}=3$,

$$
A-3 I=\left[\begin{array}{cc}
-2 & 4 \\
2 & -4
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right] \Rightarrow v_{1}=2 v_{2} \Rightarrow \mathbf{v}^{(+)}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Case $\lambda_{-}=-3$,

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$.
Solution:

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(1-\lambda) & 4 \\
2 & (-1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+1)-8=\lambda^{2}-1-8 \\
p(\lambda)=\lambda^{2}-9=0 \quad \Rightarrow \quad \lambda_{ \pm}= \pm 3
\end{gathered}
$$

Case $\lambda_{+}=3$,

$$
A-3 I=\left[\begin{array}{cc}
-2 & 4 \\
2 & -4
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right] \Rightarrow v_{1}=2 v_{2} \Rightarrow \mathbf{v}^{(+)}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Case $\lambda_{-}=-3$,

$$
A+3 I
$$

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$. Solution:

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(1-\lambda) & 4 \\
2 & (-1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+1)-8=\lambda^{2}-1-8 \\
p(\lambda)=\lambda^{2}-9=0 \quad \Rightarrow \quad \lambda_{ \pm}= \pm 3
\end{gathered}
$$

Case $\lambda_{+}=3$,

$$
A-3 I=\left[\begin{array}{cc}
-2 & 4 \\
2 & -4
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right] \Rightarrow v_{1}=2 v_{2} \Rightarrow \mathbf{v}^{(+)}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Case $\lambda_{-}=-3$,

$$
A+3 I=\left[\begin{array}{ll}
4 & 4 \\
2 & 2
\end{array}\right]
$$

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$. Solution:

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(1-\lambda) & 4 \\
2 & (-1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+1)-8=\lambda^{2}-1-8 \\
p(\lambda)=\lambda^{2}-9=0 \quad \Rightarrow \quad \lambda_{ \pm}= \pm 3
\end{gathered}
$$

Case $\lambda_{+}=3$,

$$
A-3 I=\left[\begin{array}{cc}
-2 & 4 \\
2 & -4
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right] \Rightarrow v_{1}=2 v_{2} \Rightarrow \mathbf{v}^{(+)}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Case $\lambda_{-}=-3$,

$$
A+3 I=\left[\begin{array}{ll}
4 & 4 \\
2 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]
$$

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$. Solution:

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(1-\lambda) & 4 \\
2 & (-1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+1)-8=\lambda^{2}-1-8 \\
p(\lambda)=\lambda^{2}-9=0 \quad \Rightarrow \quad \lambda_{ \pm}= \pm 3
\end{gathered}
$$

Case $\lambda_{+}=3$,

$$
A-3 I=\left[\begin{array}{cc}
-2 & 4 \\
2 & -4
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right] \Rightarrow v_{1}=2 v_{2} \Rightarrow \mathbf{v}^{(+)}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Case $\lambda_{-}=-3$,

$$
A+3 I=\left[\begin{array}{ll}
4 & 4 \\
2 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \Rightarrow v_{1}=-v_{2}
$$

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$. Solution:

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(1-\lambda) & 4 \\
2 & (-1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+1)-8=\lambda^{2}-1-8 \\
p(\lambda)=\lambda^{2}-9=0 \quad \Rightarrow \quad \lambda_{ \pm}= \pm 3
\end{gathered}
$$

Case $\lambda_{+}=3$,

$$
A-3 I=\left[\begin{array}{cc}
-2 & 4 \\
2 & -4
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right] \Rightarrow v_{1}=2 v_{2} \Rightarrow \mathbf{v}^{(+)}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Case $\lambda_{-}=-3$,

$$
A+3 I=\left[\begin{array}{ll}
4 & 4 \\
2 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \Rightarrow v_{1}=-v_{2} \Rightarrow \mathbf{v}^{(-)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Systems of linear Equations.

Example
Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$.
Solution: Recall: $\lambda_{ \pm}= \pm 3, \mathbf{v}^{(+)}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \mathbf{v}^{(-)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.

Systems of linear Equations.

Example
Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$.
Solution: Recall: $\lambda_{ \pm}= \pm 3, \mathbf{v}^{(+)}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \mathbf{v}^{(-)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.
The general solution is $\mathbf{x}(t)=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right] e^{3 t}+c_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-3 t}$.

Systems of linear Equations.

Example
Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$.
Solution: Recall: $\lambda_{ \pm}= \pm 3, \mathbf{v}^{(+)}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \mathbf{v}^{(-)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.
The general solution is $\mathbf{x}(t)=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right] e^{3 t}+c_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-3 t}$.
The initial condition implies,

$$
\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\mathbf{x}(0)
$$

Systems of linear Equations.

Example
Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$.
Solution: Recall: $\lambda_{ \pm}= \pm 3, \mathbf{v}^{(+)}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \mathbf{v}^{(-)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.
The general solution is $\mathbf{x}(t)=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right] e^{3 t}+c_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-3 t}$.
The initial condition implies,

$$
\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\mathbf{x}(0)=c_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Systems of linear Equations.

Example
Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$.
Solution: Recall: $\lambda_{ \pm}= \pm 3, \mathbf{v}^{(+)}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \mathbf{v}^{(-)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.
The general solution is $\mathbf{x}(t)=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right] e^{3 t}+c_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-3 t}$.
The initial condition implies,

$$
\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\mathbf{x}(0)=c_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$.
Solution: Recall: $\lambda_{ \pm}= \pm 3, \mathbf{v}^{(+)}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \mathbf{v}^{(-)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.
The general solution is $\mathbf{x}(t)=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right] e^{3 t}+c_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-3 t}$. The initial condition implies,

$$
\begin{gathered}
{\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\mathbf{x}(0)=c_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right]} \\
{\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\frac{1}{(2+1)}\left[\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
3 \\
2
\end{array}\right]}
\end{gathered}
$$

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$.
Solution: Recall: $\lambda_{ \pm}= \pm 3, \mathbf{v}^{(+)}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \mathbf{v}^{(-)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.
The general solution is $\mathbf{x}(t)=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right] e^{3 t}+c_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-3 t}$. The initial condition implies,

$$
\begin{gathered}
{\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\mathbf{x}(0)=c_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right] .} \\
{\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\frac{1}{(2+1)}\left[\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
3 \\
2
\end{array}\right] \Rightarrow\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{l}
5 \\
1
\end{array}\right] .}
\end{gathered}
$$

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right], \quad A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$.
Solution: Recall: $\lambda_{ \pm}= \pm 3, \mathbf{v}^{(+)}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \mathbf{v}^{(-)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.
The general solution is $\mathbf{x}(t)=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right] e^{3 t}+c_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-3 t}$. The initial condition implies,

$$
\begin{gathered}
{\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\mathbf{x}(0)=c_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right] .} \\
{\left[\begin{array}{l}
l_{1} \\
c_{2}
\end{array}\right]=\frac{1}{(2+1)}\left[\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
3 \\
2
\end{array}\right] \Rightarrow\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{l}
5 \\
1
\end{array}\right] .}
\end{gathered}
$$

We conclude: $\mathbf{x}(t)=\frac{5}{3}\left[\begin{array}{l}2 \\ 1\end{array}\right] e^{3 t}+\frac{1}{3}\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-3 t}$.

Review for Final Exam.

- Fourier Series expansions (Chptr.6).
- Eigenvalue-Eigenfunction BVP (Chptr. 6).
- Systems of linear Equations (Chptr. 5).
- Laplace transforms (Chptr. 4).
- Second order linear equations (Chptr. 2).
- First order differential equations (Chptr. 1).

Laplace transforms.

Summary:

- Main Properties:

Laplace transforms.

Summary:

- Main Properties:

$$
\begin{equation*}
\mathcal{L}\left[f^{(n)}(t)\right]=s^{n} \mathcal{L}[f(t)]-s^{(n-1)} f(0)-\cdots-f^{(n-1)}(0) ; \tag{18}
\end{equation*}
$$

Laplace transforms.

Summary:

- Main Properties:

$$
\begin{align*}
& \mathcal{L}\left[f^{(n)}(t)\right]=s^{n} \mathcal{L}[f(t)]-s^{(n-1)} f(0)-\cdots-f^{(n-1)}(0) \tag{18}\\
& e^{-c s} \mathcal{L}[f(t)]=\mathcal{L}\left[u_{c}(t) f(t-c)\right] \tag{13}
\end{align*}
$$

Laplace transforms.

Summary:

- Main Properties:

$$
\begin{align*}
& \mathcal{L}\left[f^{(n)}(t)\right]=s^{n} \mathcal{L}[f(t)]-s^{(n-1)} f(0)-\cdots-f^{(n-1)}(0) \tag{18}\\
& e^{-c s} \mathcal{L}[f(t)]=\mathcal{L}\left[u_{c}(t) f(t-c)\right] \tag{13}\\
& \left.\mathcal{L}[f(t)]\right|_{(s-c)}=\mathcal{L}\left[e^{c t} f(t)\right] \tag{14}
\end{align*}
$$

Laplace transforms.

Summary:

- Main Properties:

$$
\begin{align*}
& \mathcal{L}\left[f^{(n)}(t)\right]=s^{n} \mathcal{L}[f(t)]-s^{(n-1)} f(0)-\cdots-f^{(n-1)}(0) \tag{18}\\
& e^{-c s} \mathcal{L}[f(t)]=\mathcal{L}\left[u_{c}(t) f(t-c)\right] \tag{13}\\
& \left.\mathcal{L}[f(t)]\right|_{(s-c)}=\mathcal{L}\left[e^{c t} f(t)\right] \tag{14}
\end{align*}
$$

- Convolutions:

Laplace transforms.

Summary:

- Main Properties:

$$
\begin{align*}
& \mathcal{L}\left[f^{(n)}(t)\right]=s^{n} \mathcal{L}[f(t)]-s^{(n-1)} f(0)-\cdots-f^{(n-1)}(0) \tag{18}\\
& e^{-c s} \mathcal{L}[f(t)]=\mathcal{L}\left[u_{c}(t) f(t-c)\right] \tag{13}\\
& \left.\mathcal{L}[f(t)]\right|_{(s-c)}=\mathcal{L}\left[e^{c t} f(t)\right] \tag{14}
\end{align*}
$$

- Convolutions:

$$
\mathcal{L}[(f * g)(t)]=\mathcal{L}[f(t)] \mathcal{L}[g(t)]
$$

Laplace transforms.

Summary:

- Main Properties:

$$
\begin{align*}
& \mathcal{L}\left[f^{(n)}(t)\right]=s^{n} \mathcal{L}[f(t)]-s^{(n-1)} f(0)-\cdots-f^{(n-1)}(0) \tag{18}\\
& e^{-c s} \mathcal{L}[f(t)]=\mathcal{L}\left[u_{c}(t) f(t-c)\right] \tag{13}\\
& \left.\mathcal{L}[f(t)]\right|_{(s-c)}=\mathcal{L}\left[e^{c t} f(t)\right] \tag{14}
\end{align*}
$$

- Convolutions:

$$
\mathcal{L}[(f * g)(t)]=\mathcal{L}[f(t)] \mathcal{L}[g(t)]
$$

- Partial fraction decompositions, completing the squares.

Laplace transforms.

Example
Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2
$$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2 .
$$

Solution: Compute $\mathcal{L}\left[y^{\prime \prime}\right]+9 \mathcal{L}[y]=\mathcal{L}\left[u_{5}(t)\right]$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2 .
$$

Solution: Compute $\mathcal{L}\left[y^{\prime \prime}\right]+9 \mathcal{L}[y]=\mathcal{L}\left[u_{5}(t)\right]=\frac{e^{-5 s}}{s}$,

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2
$$

Solution: Compute $\mathcal{L}\left[y^{\prime \prime}\right]+9 \mathcal{L}[y]=\mathcal{L}\left[u_{5}(t)\right]=\frac{e^{-5 s}}{s}$, and recall,
$\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]-s y(0)-y^{\prime}(0)$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2
$$

Solution: Compute $\mathcal{L}\left[y^{\prime \prime}\right]+9 \mathcal{L}[y]=\mathcal{L}\left[u_{5}(t)\right]=\frac{e^{-5 s}}{s}$, and recall,
$\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]-s y(0)-y^{\prime}(0) \quad \Rightarrow \quad \mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]-3 s-2$.

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2
$$

Solution: Compute $\mathcal{L}\left[y^{\prime \prime}\right]+9 \mathcal{L}[y]=\mathcal{L}\left[u_{5}(t)\right]=\frac{e^{-5 s}}{s}$, and recall,

$$
\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]-s y(0)-y^{\prime}(0) \quad \Rightarrow \quad \mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]-3 s-2 .
$$

$$
\left(s^{2}+9\right) \mathcal{L}[y]-3 s-2=\frac{e^{-5 s}}{s}
$$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2
$$

Solution: Compute $\mathcal{L}\left[y^{\prime \prime}\right]+9 \mathcal{L}[y]=\mathcal{L}\left[u_{5}(t)\right]=\frac{e^{-5 s}}{s}$, and recall,

$$
\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]-s y(0)-y^{\prime}(0) \quad \Rightarrow \quad \mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]-3 s-2 .
$$

$$
\begin{gathered}
\left(s^{2}+9\right) \mathcal{L}[y]-3 s-2=\frac{e^{-5 s}}{s} \\
\mathcal{L}[y]=\frac{(3 s+2)}{\left(s^{2}+9\right)}+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}
\end{gathered}
$$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2 .
$$

Solution: Compute $\mathcal{L}\left[y^{\prime \prime}\right]+9 \mathcal{L}[y]=\mathcal{L}\left[u_{5}(t)\right]=\frac{e^{-5 s}}{s}$, and recall,

$$
\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]-s y(0)-y^{\prime}(0) \quad \Rightarrow \quad \mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]-3 s-2 .
$$

$$
\begin{gathered}
\left(s^{2}+9\right) \mathcal{L}[y]-3 s-2=\frac{e^{-5 s}}{s} \\
\mathcal{L}[y]=\frac{(3 s+2)}{\left(s^{2}+9\right)}+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)} . \\
\mathcal{L}[y]=3 \frac{s}{\left(s^{2}+9\right)}+\frac{2}{3} \frac{3}{\left(s^{2}+9\right)}+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)} .
\end{gathered}
$$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2 .
$$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2 .
$$

Solution: Recall $\mathcal{L}[y]=3 \frac{s}{\left(s^{2}+9\right)}+\frac{2}{3} \frac{3}{\left(s^{2}+9\right)}+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}$.

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2
$$

Solution: Recall $\mathcal{L}[y]=3 \frac{s}{\left(s^{2}+9\right)}+\frac{2}{3} \frac{3}{\left(s^{2}+9\right)}+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}$.

$$
\mathcal{L}[y]=3 \mathcal{L}[\cos (3 t)]+\frac{2}{3} \mathcal{L}[\sin (3 t)]+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}
$$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2
$$

Solution: Recall $\mathcal{L}[y]=3 \frac{s}{\left(s^{2}+9\right)}+\frac{2}{3} \frac{3}{\left(s^{2}+9\right)}+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}$.

$$
\mathcal{L}[y]=3 \mathcal{L}[\cos (3 t)]+\frac{2}{3} \mathcal{L}[\sin (3 t)]+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}
$$

Partial fractions on

$$
H(s)=\frac{1}{s\left(s^{2}+9\right)}
$$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2
$$

Solution: Recall $\mathcal{L}[y]=3 \frac{s}{\left(s^{2}+9\right)}+\frac{2}{3} \frac{3}{\left(s^{2}+9\right)}+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}$.

$$
\mathcal{L}[y]=3 \mathcal{L}[\cos (3 t)]+\frac{2}{3} \mathcal{L}[\sin (3 t)]+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}
$$

Partial fractions on

$$
H(s)=\frac{1}{s\left(s^{2}+9\right)}=\frac{a}{s}+\frac{(b s+c)}{\left(s^{2}+9\right)}
$$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2
$$

Solution: Recall $\mathcal{L}[y]=3 \frac{s}{\left(s^{2}+9\right)}+\frac{2}{3} \frac{3}{\left(s^{2}+9\right)}+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}$.

$$
\mathcal{L}[y]=3 \mathcal{L}[\cos (3 t)]+\frac{2}{3} \mathcal{L}[\sin (3 t)]+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}
$$

Partial fractions on

$$
H(s)=\frac{1}{s\left(s^{2}+9\right)}=\frac{a}{s}+\frac{(b s+c)}{\left(s^{2}+9\right)}=\frac{a\left(s^{2}+9\right)+(b s+c) s}{s\left(s^{2}+9\right)}
$$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2
$$

Solution: Recall $\mathcal{L}[y]=3 \frac{s}{\left(s^{2}+9\right)}+\frac{2}{3} \frac{3}{\left(s^{2}+9\right)}+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}$.

$$
\mathcal{L}[y]=3 \mathcal{L}[\cos (3 t)]+\frac{2}{3} \mathcal{L}[\sin (3 t)]+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}
$$

Partial fractions on

$$
\begin{aligned}
H(s)= & \frac{1}{s\left(s^{2}+9\right)}=\frac{a}{s}+\frac{(b s+c)}{\left(s^{2}+9\right)}=\frac{a\left(s^{2}+9\right)+(b s+c) s}{s\left(s^{2}+9\right)} \\
1 & =a s^{2}+9 a+b s^{2}+c s
\end{aligned}
$$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2
$$

Solution: Recall $\mathcal{L}[y]=3 \frac{s}{\left(s^{2}+9\right)}+\frac{2}{3} \frac{3}{\left(s^{2}+9\right)}+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}$.

$$
\mathcal{L}[y]=3 \mathcal{L}[\cos (3 t)]+\frac{2}{3} \mathcal{L}[\sin (3 t)]+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}
$$

Partial fractions on

$$
\begin{gathered}
H(s)=\frac{1}{s\left(s^{2}+9\right)}=\frac{a}{s}+\frac{(b s+c)}{\left(s^{2}+9\right)}=\frac{a\left(s^{2}+9\right)+(b s+c) s}{s\left(s^{2}+9\right)} \\
1=a s^{2}+9 a+b s^{2}+c s=(a+b) s^{2}+c s+9 a
\end{gathered}
$$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2
$$

Solution: Recall $\mathcal{L}[y]=3 \frac{s}{\left(s^{2}+9\right)}+\frac{2}{3} \frac{3}{\left(s^{2}+9\right)}+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}$.

$$
\mathcal{L}[y]=3 \mathcal{L}[\cos (3 t)]+\frac{2}{3} \mathcal{L}[\sin (3 t)]+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}
$$

Partial fractions on

$$
\begin{aligned}
H(s)= & \frac{1}{s\left(s^{2}+9\right)}=\frac{a}{s}+\frac{(b s+c)}{\left(s^{2}+9\right)}=\frac{a\left(s^{2}+9\right)+(b s+c) s}{s\left(s^{2}+9\right)} \\
1= & a s^{2}+9 a+b s^{2}+c s=(a+b) s^{2}+c s+9 a \\
& a=\frac{1}{9}
\end{aligned}
$$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2
$$

Solution: Recall $\mathcal{L}[y]=3 \frac{s}{\left(s^{2}+9\right)}+\frac{2}{3} \frac{3}{\left(s^{2}+9\right)}+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}$.

$$
\mathcal{L}[y]=3 \mathcal{L}[\cos (3 t)]+\frac{2}{3} \mathcal{L}[\sin (3 t)]+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}
$$

Partial fractions on

$$
\begin{aligned}
& H(s)= \frac{1}{s\left(s^{2}+9\right)}=\frac{a}{s}+\frac{(b s+c)}{\left(s^{2}+9\right)}=\frac{a\left(s^{2}+9\right)+(b s+c) s}{s\left(s^{2}+9\right)} \\
& 1=a s^{2}+9 a+b s^{2}+c s=(a+b) s^{2}+c s+9 a \\
& a=\frac{1}{9}, \quad c=0
\end{aligned}
$$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2
$$

Solution: Recall $\mathcal{L}[y]=3 \frac{s}{\left(s^{2}+9\right)}+\frac{2}{3} \frac{3}{\left(s^{2}+9\right)}+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}$.

$$
\mathcal{L}[y]=3 \mathcal{L}[\cos (3 t)]+\frac{2}{3} \mathcal{L}[\sin (3 t)]+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}
$$

Partial fractions on

$$
\begin{gathered}
H(s)=\frac{1}{s\left(s^{2}+9\right)}=\frac{a}{s}+\frac{(b s+c)}{\left(s^{2}+9\right)}=\frac{a\left(s^{2}+9\right)+(b s+c) s}{s\left(s^{2}+9\right)} \\
1=a s^{2}+9 a+b s^{2}+c s=(a+b) s^{2}+c s+9 a \\
a=\frac{1}{9}, \quad c=0, \quad b=-a
\end{gathered}
$$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2
$$

Solution: Recall $\mathcal{L}[y]=3 \frac{s}{\left(s^{2}+9\right)}+\frac{2}{3} \frac{3}{\left(s^{2}+9\right)}+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}$.

$$
\mathcal{L}[y]=3 \mathcal{L}[\cos (3 t)]+\frac{2}{3} \mathcal{L}[\sin (3 t)]+e^{-5 s} \frac{1}{s\left(s^{2}+9\right)}
$$

Partial fractions on

$$
\begin{gathered}
H(s)=\frac{1}{s\left(s^{2}+9\right)}=\frac{a}{s}+\frac{(b s+c)}{\left(s^{2}+9\right)}=\frac{a\left(s^{2}+9\right)+(b s+c) s}{s\left(s^{2}+9\right)} \\
1=a s^{2}+9 a+b s^{2}+c s=(a+b) s^{2}+c s+9 a \\
a=\frac{1}{9}, \quad c=0, \quad b=-a \quad \Rightarrow \quad b=-\frac{1}{9}
\end{gathered}
$$

Laplace transforms.

Example
Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2 .
$$

Solution: So, $\mathcal{L}[y]=3 \mathcal{L}[\cos (3 t)]+\frac{2}{3} \mathcal{L}[\sin (3 t)]+e^{-5 s} H(s)$, and

$$
H(s)=\frac{1}{s\left(s^{2}+9\right)}=\frac{1}{9}\left[\frac{1}{s}-\frac{s}{s^{2}+9}\right]
$$

Laplace transforms.

Example
Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2 .
$$

Solution: So, $\mathcal{L}[y]=3 \mathcal{L}[\cos (3 t)]+\frac{2}{3} \mathcal{L}[\sin (3 t)]+e^{-5 s} H(s)$, and

$$
H(s)=\frac{1}{s\left(s^{2}+9\right)}=\frac{1}{9}\left[\frac{1}{s}-\frac{s}{s^{2}+9}\right]=\frac{1}{9}(\mathcal{L}[u(t)]-\mathcal{L}[\cos (3 t)])
$$

Laplace transforms.

Example
Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2 .
$$

Solution: So, $\mathcal{L}[y]=3 \mathcal{L}[\cos (3 t)]+\frac{2}{3} \mathcal{L}[\sin (3 t)]+e^{-5 s} H(s)$, and

$$
\begin{aligned}
& H(s)= \frac{1}{s\left(s^{2}+9\right)}=\frac{1}{9}\left[\frac{1}{s}-\frac{s}{s^{2}+9}\right]=\frac{1}{9}(\mathcal{L}[u(t)]-\mathcal{L}[\cos (3 t)]) \\
& e^{-5 s} H(s)=\frac{1}{9}\left(e^{-5 s} \mathcal{L}[u(t)]-e^{-5 s} \mathcal{L}[\cos (3 t)]\right)
\end{aligned}
$$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2
$$

Solution: So, $\mathcal{L}[y]=3 \mathcal{L}[\cos (3 t)]+\frac{2}{3} \mathcal{L}[\sin (3 t)]+e^{-5 s} H(s)$, and

$$
\begin{aligned}
& H(s)= \frac{1}{s\left(s^{2}+9\right)}=\frac{1}{9}\left[\frac{1}{s}-\frac{s}{s^{2}+9}\right]=\frac{1}{9}(\mathcal{L}[u(t)]-\mathcal{L}[\cos (3 t)]) \\
& e^{-5 s} H(s)=\frac{1}{9}\left(e^{-5 s} \mathcal{L}[u(t)]-e^{-5 s} \mathcal{L}[\cos (3 t)]\right) \\
& e^{-5 s} H(s)=\frac{1}{9}\left(\mathcal{L}\left[u_{5}(t)\right]-\mathcal{L}\left[u_{5}(t) \cos (3(t-5))\right]\right) .
\end{aligned}
$$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2
$$

Solution: So, $\mathcal{L}[y]=3 \mathcal{L}[\cos (3 t)]+\frac{2}{3} \mathcal{L}[\sin (3 t)]+e^{-5 s} H(s)$, and

$$
\begin{gathered}
H(s)=\frac{1}{s\left(s^{2}+9\right)}=\frac{1}{9}\left[\frac{1}{s}-\frac{s}{s^{2}+9}\right]=\frac{1}{9}(\mathcal{L}[u(t)]-\mathcal{L}[\cos (3 t)]) \\
e^{-5 s} H(s)=\frac{1}{9}\left(e^{-5 s} \mathcal{L}[u(t)]-e^{-5 s} \mathcal{L}[\cos (3 t)]\right) \\
e^{-5 s} H(s)=\frac{1}{9}\left(\mathcal{L}\left[u_{5}(t)\right]-\mathcal{L}\left[u_{5}(t) \cos (3(t-5))\right]\right) \\
\mathcal{L}[y]=3 \mathcal{L}[\cos (3 t)]+\frac{2}{3} \mathcal{L}[\sin (3 t)]+\frac{1}{9}\left(\mathcal{L}\left[u_{5}(t)\right]-\mathcal{L}\left[u_{5}(t) \cos (3(t-5))\right]\right) .
\end{gathered}
$$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2
$$

Solution:
$\mathcal{L}[y]=3 \mathcal{L}[\cos (3 t)]+\frac{2}{3} \mathcal{L}[\sin (3 t)]+\frac{1}{9}\left(\mathcal{L}\left[u_{5}(t)\right]-\mathcal{L}\left[u_{5}(t) \cos (3(t-5))\right]\right)$.

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y^{\prime \prime}+9 y=u_{5}(t), \quad y(0)=3, \quad y^{\prime}(0)=2
$$

Solution:

$$
\mathcal{L}[y]=3 \mathcal{L}[\cos (3 t)]+\frac{2}{3} \mathcal{L}[\sin (3 t)]+\frac{1}{9}\left(\mathcal{L}\left[u_{5}(t)\right]-\mathcal{L}\left[u_{5}(t) \cos (3(t-5))\right]\right)
$$

Therefore, we conclude that,

$$
y(t)=3 \cos (3 t)+\frac{2}{3} \sin (3 t)+\frac{u_{5}(t)}{9}[1-\cos (3(t-5))] .
$$

Review for Final Exam.

- Fourier Series expansions (Chptr. 6).
- Eigenvalue-Eigenfunction BVP (Chptr. 6).
- Systems of linear Equations (Chptr. 5).
- Laplace transforms (Chptr. 4).
- Second order linear equations (Chptr. 2).
- First order differential equations (Chptr. 1).

Second order linear equations.

Summary: Solve $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(t)$.

Second order linear equations.

Summary: Solve $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(t)$.
First find fundamental solutions $y(t)=e^{r t}$ to the case $g=0$,

Second order linear equations.

Summary: Solve $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(t)$.
First find fundamental solutions $y(t)=e^{r t}$ to the case $g=0$, where r is a root of $p(r)=r^{2}+a_{1} r+a_{0}$.

Second order linear equations.

Summary: Solve $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(t)$.
First find fundamental solutions $y(t)=e^{r t}$ to the case $g=0$, where r is a root of $p(r)=r^{2}+a_{1} r+a_{0}$.
(a) If $r_{1} \neq r_{2}$, real,

Second order linear equations.

Summary: Solve $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(t)$.
First find fundamental solutions $y(t)=e^{r t}$ to the case $g=0$, where r is a root of $p(r)=r^{2}+a_{1} r+a_{0}$.
(a) If $r_{1} \neq r_{2}$, real, then the general solution is

$$
y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t} .
$$

Second order linear equations.

Summary: Solve $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(t)$.
First find fundamental solutions $y(t)=e^{r t}$ to the case $g=0$, where r is a root of $p(r)=r^{2}+a_{1} r+a_{0}$.
(a) If $r_{1} \neq r_{2}$, real, then the general solution is

$$
y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t} .
$$

(b) If $r_{1} \neq r_{2}$, complex,

Second order linear equations.

Summary: Solve $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(t)$.
First find fundamental solutions $y(t)=e^{r t}$ to the case $g=0$, where r is a root of $p(r)=r^{2}+a_{1} r+a_{0}$.
(a) If $r_{1} \neq r_{2}$, real, then the general solution is

$$
y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t} .
$$

(b) If $r_{1} \neq r_{2}$, complex, then denoting $r_{ \pm}=\alpha \pm \beta i$,

Second order linear equations.

Summary: Solve $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(t)$.
First find fundamental solutions $y(t)=e^{r t}$ to the case $g=0$, where r is a root of $p(r)=r^{2}+a_{1} r+a_{0}$.
(a) If $r_{1} \neq r_{2}$, real, then the general solution is

$$
y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t} .
$$

(b) If $r_{1} \neq r_{2}$, complex, then denoting $r_{ \pm}=\alpha \pm \beta i$, complex-valued fundamental solutions are

$$
y_{ \pm}(t)=e^{(\alpha \pm \beta i) t}
$$

Second order linear equations.

Summary: Solve $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(t)$.
First find fundamental solutions $y(t)=e^{r t}$ to the case $g=0$, where r is a root of $p(r)=r^{2}+a_{1} r+a_{0}$.
(a) If $r_{1} \neq r_{2}$, real, then the general solution is

$$
y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t} .
$$

(b) If $r_{1} \neq r_{2}$, complex, then denoting $r_{ \pm}=\alpha \pm \beta i$, complex-valued fundamental solutions are

$$
y_{ \pm}(t)=e^{(\alpha \pm \beta i) t} \quad \Leftrightarrow \quad y_{ \pm}(t)=e^{\alpha t}[\cos (\beta t) \pm i \sin (\beta t)]
$$

Second order linear equations.

Summary: Solve $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(t)$.
First find fundamental solutions $y(t)=e^{r t}$ to the case $g=0$, where r is a root of $p(r)=r^{2}+a_{1} r+a_{0}$.
(a) If $r_{1} \neq r_{2}$, real, then the general solution is

$$
y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}
$$

(b) If $r_{1} \neq r_{2}$, complex, then denoting $r_{ \pm}=\alpha \pm \beta i$, complex-valued fundamental solutions are

$$
y_{ \pm}(t)=e^{(\alpha \pm \beta i) t} \quad \Leftrightarrow \quad y_{ \pm}(t)=e^{\alpha t}[\cos (\beta t) \pm i \sin (\beta t)]
$$

and real-valued fundamental solutions are

Second order linear equations.

Summary: Solve $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(t)$.
First find fundamental solutions $y(t)=e^{r t}$ to the case $g=0$, where r is a root of $p(r)=r^{2}+a_{1} r+a_{0}$.
(a) If $r_{1} \neq r_{2}$, real, then the general solution is

$$
y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}
$$

(b) If $r_{1} \neq r_{2}$, complex, then denoting $r_{ \pm}=\alpha \pm \beta i$, complex-valued fundamental solutions are

$$
y_{ \pm}(t)=e^{(\alpha \pm \beta i) t} \quad \Leftrightarrow \quad y_{ \pm}(t)=e^{\alpha t}[\cos (\beta t) \pm i \sin (\beta t)]
$$

and real-valued fundamental solutions are

$$
y_{1}(t)=e^{\alpha t} \cos (\beta t)
$$

Second order linear equations.

Summary: Solve $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(t)$.
First find fundamental solutions $y(t)=e^{r t}$ to the case $g=0$, where r is a root of $p(r)=r^{2}+a_{1} r+a_{0}$.
(a) If $r_{1} \neq r_{2}$, real, then the general solution is

$$
y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}
$$

(b) If $r_{1} \neq r_{2}$, complex, then denoting $r_{ \pm}=\alpha \pm \beta i$, complex-valued fundamental solutions are

$$
y_{ \pm}(t)=e^{(\alpha \pm \beta i) t} \quad \Leftrightarrow \quad y_{ \pm}(t)=e^{\alpha t}[\cos (\beta t) \pm i \sin (\beta t)]
$$

and real-valued fundamental solutions are

$$
y_{1}(t)=e^{\alpha t} \cos (\beta t), \quad y_{2}(t)=e^{\alpha t} \sin (\beta t)
$$

Second order linear equations.

Summary: Solve $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(t)$.
First find fundamental solutions $y(t)=e^{r t}$ to the case $g=0$, where r is a root of $p(r)=r^{2}+a_{1} r+a_{0}$.
(a) If $r_{1} \neq r_{2}$, real, then the general solution is

$$
y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}
$$

(b) If $r_{1} \neq r_{2}$, complex, then denoting $r_{ \pm}=\alpha \pm \beta i$, complex-valued fundamental solutions are

$$
y_{ \pm}(t)=e^{(\alpha \pm \beta i) t} \quad \Leftrightarrow \quad y_{ \pm}(t)=e^{\alpha t}[\cos (\beta t) \pm i \sin (\beta t)]
$$

and real-valued fundamental solutions are

$$
y_{1}(t)=e^{\alpha t} \cos (\beta t), \quad y_{2}(t)=e^{\alpha t} \sin (\beta t)
$$

If $r_{1}=r_{2}=r$, real,

Second order linear equations.

Summary: Solve $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(t)$.
First find fundamental solutions $y(t)=e^{r t}$ to the case $g=0$, where r is a root of $p(r)=r^{2}+a_{1} r+a_{0}$.
(a) If $r_{1} \neq r_{2}$, real, then the general solution is

$$
y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t} .
$$

(b) If $r_{1} \neq r_{2}$, complex, then denoting $r_{ \pm}=\alpha \pm \beta i$, complex-valued fundamental solutions are

$$
y_{ \pm}(t)=e^{(\alpha \pm \beta i) t} \quad \Leftrightarrow \quad y_{ \pm}(t)=e^{\alpha t}[\cos (\beta t) \pm i \sin (\beta t)]
$$

and real-valued fundamental solutions are

$$
y_{1}(t)=e^{\alpha t} \cos (\beta t), \quad y_{2}(t)=e^{\alpha t} \sin (\beta t)
$$

If $r_{1}=r_{2}=r$, real, then the general solution is

$$
y(t)=\left(c_{1}+c_{2} t\right) e^{r t}
$$

Second order linear equations.

Remark: Case (c) is solved using the reduction of order method.

Second order linear equations.

Remark: Case (c) is solved using the reduction of order method. See page 170 in the textbook.

Second order linear equations.

Remark: Case (c) is solved using the reduction of order method. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Second order linear equations.

Remark: Case (c) is solved using the reduction of order method. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:
Non-homogeneous equations: $g \neq 0$.

Second order linear equations.

Remark: Case (c) is solved using the reduction of order method. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:
Non-homogeneous equations: $g \neq 0$.
(i) Undetermined coefficients:

Second order linear equations.

Remark: Case (c) is solved using the reduction of order method. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:
Non-homogeneous equations: $g \neq 0$.
(i) Undetermined coefficients: Guess the particular solution y_{p}

Second order linear equations.

Remark: Case (c) is solved using the reduction of order method. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:
Non-homogeneous equations: $g \neq 0$.
(i) Undetermined coefficients: Guess the particular solution y_{p} using the guessing table, $g \rightarrow y_{p}$.

Second order linear equations.

Remark: Case (c) is solved using the reduction of order method. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:
Non-homogeneous equations: $g \neq 0$.
(i) Undetermined coefficients: Guess the particular solution y_{p} using the guessing table, $g \rightarrow y_{p}$.
(ii) Variation of parameters:

Second order linear equations.

Remark: Case (c) is solved using the reduction of order method. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:
Non-homogeneous equations: $g \neq 0$.
(i) Undetermined coefficients: Guess the particular solution y_{p} using the guessing table, $g \rightarrow y_{p}$.
(ii) Variation of parameters: If y_{1} and y_{2} are fundamental solutions to the homogeneous equation,

Second order linear equations.

Remark: Case (c) is solved using the reduction of order method. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:
Non-homogeneous equations: $g \neq 0$.
(i) Undetermined coefficients: Guess the particular solution y_{p} using the guessing table, $g \rightarrow y_{p}$.
(ii) Variation of parameters: If y_{1} and y_{2} are fundamental solutions to the homogeneous equation, and W is their Wronskian,

Second order linear equations.

Remark: Case (c) is solved using the reduction of order method. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:
Non-homogeneous equations: $g \neq 0$.
(i) Undetermined coefficients: Guess the particular solution y_{p} using the guessing table, $g \rightarrow y_{p}$.
(ii) Variation of parameters: If y_{1} and y_{2} are fundamental solutions to the homogeneous equation, and W is their Wronskian, then $y_{p}=u_{1} y_{1}+u_{2} y_{2}$,

Second order linear equations.

Remark: Case (c) is solved using the reduction of order method. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:
Non-homogeneous equations: $g \neq 0$.
(i) Undetermined coefficients: Guess the particular solution y_{p} using the guessing table, $g \rightarrow y_{p}$.
(ii) Variation of parameters: If y_{1} and y_{2} are fundamental solutions to the homogeneous equation, and W is their Wronskian, then $y_{p}=u_{1} y_{1}+u_{2} y_{2}$, where

$$
u_{1}^{\prime}=-\frac{y_{2} g}{W},
$$

Second order linear equations.

Remark: Case (c) is solved using the reduction of order method. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:
Non-homogeneous equations: $g \neq 0$.
(i) Undetermined coefficients: Guess the particular solution y_{p} using the guessing table, $g \rightarrow y_{p}$.
(ii) Variation of parameters: If y_{1} and y_{2} are fundamental solutions to the homogeneous equation, and W is their Wronskian, then $y_{p}=u_{1} y_{1}+u_{2} y_{2}$, where

$$
u_{1}^{\prime}=-\frac{y_{2} g}{W}, \quad u_{2}^{\prime}=\frac{y_{1} g}{W}
$$

Second order linear equations.

Example

Knowing that $y_{1}(x)=x^{2}$ solves $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$, with $x>0$, find a second solution y_{2} not proportional to y_{1}.

Second order linear equations.

Example

Knowing that $y_{1}(x)=x^{2}$ solves $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$, with $x>0$, find a second solution y_{2} not proportional to y_{1}.

Solution: Use the reduction of order method.

Second order linear equations.

Example

Knowing that $y_{1}(x)=x^{2}$ solves $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$, with $x>0$, find a second solution y_{2} not proportional to y_{1}.

Solution: Use the reduction of order method. We verify that $y_{1}=x^{2}$ solves the equation,

Second order linear equations.

Example

Knowing that $y_{1}(x)=x^{2}$ solves $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$, with $x>0$, find a second solution y_{2} not proportional to y_{1}.

Solution: Use the reduction of order method. We verify that $y_{1}=x^{2}$ solves the equation,

$$
x^{2}(2)-4 x(2 x)+6 x^{2}=0
$$

Second order linear equations.

Example

Knowing that $y_{1}(x)=x^{2}$ solves $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$, with $x>0$, find a second solution y_{2} not proportional to y_{1}.

Solution: Use the reduction of order method. We verify that $y_{1}=x^{2}$ solves the equation,

$$
x^{2}(2)-4 x(2 x)+6 x^{2}=0
$$

Look for a solution $y_{2}(x)=v(x) y_{1}(x)$,

Second order linear equations.

Example

Knowing that $y_{1}(x)=x^{2}$ solves $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$, with $x>0$, find a second solution y_{2} not proportional to y_{1}.

Solution: Use the reduction of order method. We verify that $y_{1}=x^{2}$ solves the equation,

$$
x^{2}(2)-4 x(2 x)+6 x^{2}=0
$$

Look for a solution $y_{2}(x)=v(x) y_{1}(x)$, and find an equation for v.

Second order linear equations.

Example

Knowing that $y_{1}(x)=x^{2}$ solves $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$, with $x>0$, find a second solution y_{2} not proportional to y_{1}.

Solution: Use the reduction of order method. We verify that $y_{1}=x^{2}$ solves the equation,

$$
x^{2}(2)-4 x(2 x)+6 x^{2}=0
$$

Look for a solution $y_{2}(x)=v(x) y_{1}(x)$, and find an equation for v.

$$
y_{2}=x^{2} v
$$

Second order linear equations.

Example

Knowing that $y_{1}(x)=x^{2}$ solves $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$, with $x>0$, find a second solution y_{2} not proportional to y_{1}.

Solution: Use the reduction of order method. We verify that $y_{1}=x^{2}$ solves the equation,

$$
x^{2}(2)-4 x(2 x)+6 x^{2}=0
$$

Look for a solution $y_{2}(x)=v(x) y_{1}(x)$, and find an equation for v.

$$
y_{2}=x^{2} v, \quad y_{2}^{\prime}=x^{2} v^{\prime}+2 x v
$$

Second order linear equations.

Example

Knowing that $y_{1}(x)=x^{2}$ solves $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$, with $x>0$, find a second solution y_{2} not proportional to y_{1}.

Solution: Use the reduction of order method. We verify that $y_{1}=x^{2}$ solves the equation,

$$
x^{2}(2)-4 x(2 x)+6 x^{2}=0
$$

Look for a solution $y_{2}(x)=v(x) y_{1}(x)$, and find an equation for v.

$$
y_{2}=x^{2} v, \quad y_{2}^{\prime}=x^{2} v^{\prime}+2 x v, \quad y_{2}^{\prime \prime}=x^{2} v^{\prime \prime}+4 x v^{\prime}+2 v .
$$

Second order linear equations.

Example

Knowing that $y_{1}(x)=x^{2}$ solves $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$, with $x>0$, find a second solution y_{2} not proportional to y_{1}.

Solution: Use the reduction of order method. We verify that $y_{1}=x^{2}$ solves the equation,

$$
x^{2}(2)-4 x(2 x)+6 x^{2}=0
$$

Look for a solution $y_{2}(x)=v(x) y_{1}(x)$, and find an equation for v.

$$
\begin{aligned}
& y_{2}=x^{2} v, \quad y_{2}^{\prime}=x^{2} v^{\prime}+2 x v, \quad y_{2}^{\prime \prime}=x^{2} v^{\prime \prime}+4 x v^{\prime}+2 v . \\
& x^{2}\left(x^{2} v^{\prime \prime}+4 x v^{\prime}+2 v\right)-4 x\left(x^{2} v^{\prime}+2 x v\right)+6\left(x^{2} v\right)=0 .
\end{aligned}
$$

Second order linear equations.

Example

Knowing that $y_{1}(x)=x^{2}$ solves $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$, with $x>0$, find a second solution y_{2} not proportional to y_{1}.

Solution: Use the reduction of order method. We verify that $y_{1}=x^{2}$ solves the equation,

$$
x^{2}(2)-4 x(2 x)+6 x^{2}=0
$$

Look for a solution $y_{2}(x)=v(x) y_{1}(x)$, and find an equation for v.

$$
\begin{gathered}
y_{2}=x^{2} v, \quad y_{2}^{\prime}=x^{2} v^{\prime}+2 x v, \quad y_{2}^{\prime \prime}=x^{2} v^{\prime \prime}+4 x v^{\prime}+2 v . \\
x^{2}\left(x^{2} v^{\prime \prime}+4 x v^{\prime}+2 v\right)-4 x\left(x^{2} v^{\prime}+2 x v\right)+6\left(x^{2} v\right)=0 . \\
x^{4} v^{\prime \prime}+\left(4 x^{3}-4 x^{3}\right) v^{\prime}+\left(2 x^{2}-8 x^{2}+6 x^{2}\right) v=0 .
\end{gathered}
$$

Second order linear equations.

Example

Knowing that $y_{1}(x)=x^{2}$ solves $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$, with $x>0$, find a second solution y_{2} not proportional to y_{1}.

Solution: Use the reduction of order method. We verify that $y_{1}=x^{2}$ solves the equation,

$$
x^{2}(2)-4 x(2 x)+6 x^{2}=0
$$

Look for a solution $y_{2}(x)=v(x) y_{1}(x)$, and find an equation for v.

$$
\begin{aligned}
& y_{2}=x^{2} v, \quad y_{2}^{\prime}=x^{2} v^{\prime}+2 x v, \quad y_{2}^{\prime \prime}=x^{2} v^{\prime \prime}+4 x v^{\prime}+2 v . \\
& x^{2}\left(x^{2} v^{\prime \prime}+4 x v^{\prime}+2 v\right)-4 x\left(x^{2} v^{\prime}+2 x v\right)+6\left(x^{2} v\right)=0 . \\
& \quad x^{4} v^{\prime \prime}+\left(4 x^{3}-4 x^{3}\right) v^{\prime}+\left(2 x^{2}-8 x^{2}+6 x^{2}\right) v=0 . \\
& v^{\prime \prime}=0
\end{aligned}
$$

Second order linear equations.

Example

Knowing that $y_{1}(x)=x^{2}$ solves $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$, with $x>0$, find a second solution y_{2} not proportional to y_{1}.

Solution: Use the reduction of order method. We verify that $y_{1}=x^{2}$ solves the equation,

$$
x^{2}(2)-4 x(2 x)+6 x^{2}=0
$$

Look for a solution $y_{2}(x)=v(x) y_{1}(x)$, and find an equation for v.

$$
\begin{aligned}
& y_{2}=x^{2} v, \quad y_{2}^{\prime}=x^{2} v^{\prime}+2 x v, \quad y_{2}^{\prime \prime}=x^{2} v^{\prime \prime}+4 x v^{\prime}+2 v . \\
& x^{2}\left(x^{2} v^{\prime \prime}+4 x v^{\prime}+2 v\right)-4 x\left(x^{2} v^{\prime}+2 x v\right)+6\left(x^{2} v\right)=0 . \\
& x^{4} v^{\prime \prime}+\left(4 x^{3}-4 x^{3}\right) v^{\prime}+\left(2 x^{2}-8 x^{2}+6 x^{2}\right) v=0 . \\
& v^{\prime \prime}=0 \Rightarrow \quad \Rightarrow=c_{1}+c_{2} x
\end{aligned}
$$

Second order linear equations.

Example

Knowing that $y_{1}(x)=x^{2}$ solves $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$, with $x>0$, find a second solution y_{2} not proportional to y_{1}.

Solution: Use the reduction of order method. We verify that $y_{1}=x^{2}$ solves the equation,

$$
x^{2}(2)-4 x(2 x)+6 x^{2}=0
$$

Look for a solution $y_{2}(x)=v(x) y_{1}(x)$, and find an equation for v.

$$
\begin{aligned}
& y_{2}=x^{2} v, \quad y_{2}^{\prime}=x^{2} v^{\prime}+2 x v, \quad y_{2}^{\prime \prime}=x^{2} v^{\prime \prime}+4 x v^{\prime}+2 v . \\
& x^{2}\left(x^{2} v^{\prime \prime}+4 x v^{\prime}+2 v\right)-4 x\left(x^{2} v^{\prime}+2 x v\right)+6\left(x^{2} v\right)=0 . \\
& x^{4} v^{\prime \prime}+\left(4 x^{3}-4 x^{3}\right) v^{\prime}+\left(2 x^{2}-8 x^{2}+6 x^{2}\right) v=0 . \\
& v^{\prime \prime}=0 \quad \Rightarrow \quad v=c_{1}+c_{2} x \quad \Rightarrow \quad y_{2}=c_{1} y_{1}+c_{2} x y_{1} .
\end{aligned}
$$

Second order linear equations.

Example

Knowing that $y_{1}(x)=x^{2}$ solves $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$, with $x>0$, find a second solution y_{2} not proportional to y_{1}.

Solution: Use the reduction of order method. We verify that $y_{1}=x^{2}$ solves the equation,

$$
x^{2}(2)-4 x(2 x)+6 x^{2}=0
$$

Look for a solution $y_{2}(x)=v(x) y_{1}(x)$, and find an equation for v.

$$
\begin{gathered}
y_{2}=x^{2} v, \quad y_{2}^{\prime}=x^{2} v^{\prime}+2 x v, \quad y_{2}^{\prime \prime}=x^{2} v^{\prime \prime}+4 x v^{\prime}+2 v . \\
x^{2}\left(x^{2} v^{\prime \prime}+4 x v^{\prime}+2 v\right)-4 x\left(x^{2} v^{\prime}+2 x v\right)+6\left(x^{2} v\right)=0 . \\
x^{4} v^{\prime \prime}+\left(4 x^{3}-4 x^{3}\right) v^{\prime}+\left(2 x^{2}-8 x^{2}+6 x^{2}\right) v=0 . \\
v^{\prime \prime}=0 \quad \Rightarrow \quad v=c_{1}+c_{2} x \quad \Rightarrow \quad y_{2}=c_{1} y_{1}+c_{2} x y_{1} .
\end{gathered}
$$

Choose $c_{1}=0, c_{2}=1$.

Second order linear equations.

Example

Knowing that $y_{1}(x)=x^{2}$ solves $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$, with $x>0$, find a second solution y_{2} not proportional to y_{1}.

Solution: Use the reduction of order method. We verify that $y_{1}=x^{2}$ solves the equation,

$$
x^{2}(2)-4 x(2 x)+6 x^{2}=0
$$

Look for a solution $y_{2}(x)=v(x) y_{1}(x)$, and find an equation for v.

$$
\begin{gathered}
y_{2}=x^{2} v, \quad y_{2}^{\prime}=x^{2} v^{\prime}+2 x v, \quad y_{2}^{\prime \prime}=x^{2} v^{\prime \prime}+4 x v^{\prime}+2 v . \\
x^{2}\left(x^{2} v^{\prime \prime}+4 x v^{\prime}+2 v\right)-4 x\left(x^{2} v^{\prime}+2 x v\right)+6\left(x^{2} v\right)=0 . \\
x^{4} v^{\prime \prime}+\left(4 x^{3}-4 x^{3}\right) v^{\prime}+\left(2 x^{2}-8 x^{2}+6 x^{2}\right) v=0 . \\
v^{\prime \prime}=0 \quad \Rightarrow \quad v=c_{1}+c_{2} x \quad \Rightarrow \quad y_{2}=c_{1} y_{1}+c_{2} x y_{1} .
\end{gathered}
$$

Choose $c_{1}=0, c_{2}=1$. Hence $y_{2}(x)=x^{3}$, and $y_{1}(x)=x^{2}$.

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4}
$$

Solution: (1) Solve the homogeneous equation.

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4}
$$

Solution: (1) Solve the homogeneous equation.

$$
y(t)=e^{r t}
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: (1) Solve the homogeneous equation.

$$
y(t)=e^{r t}, \quad p(r)=r^{2}-2 r-3
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: (1) Solve the homogeneous equation.

$$
y(t)=e^{r t}, \quad p(r)=r^{2}-2 r-3=0 .
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4}
$$

Solution: (1) Solve the homogeneous equation.

$$
\begin{aligned}
& \quad y(t)=e^{r t}, \quad p(r)=r^{2}-2 r-3=0 . \\
& r_{ \pm}=\frac{1}{2}[2 \pm \sqrt{4+12}]
\end{aligned}
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: (1) Solve the homogeneous equation.

$$
\begin{gathered}
y(t)=e^{r t}, \quad p(r)=r^{2}-2 r-3=0 . \\
r_{ \pm}=\frac{1}{2}[2 \pm \sqrt{4+12}]=\frac{1}{2}[2 \pm \sqrt{16}]
\end{gathered}
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: (1) Solve the homogeneous equation.

$$
\begin{array}{r}
y(t)=e^{r t}, \quad p(r)=r^{2}-2 r-3=0 . \\
r_{ \pm}=\frac{1}{2}[2 \pm \sqrt{4+12}]=\frac{1}{2}[2 \pm \sqrt{16}]=1 \pm 2
\end{array}
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4}
$$

Solution: (1) Solve the homogeneous equation.

$$
\begin{gathered}
y(t)=e^{r t}, \quad p(r)=r^{2}-2 r-3=0 . \\
r_{ \pm}=\frac{1}{2}[2 \pm \sqrt{4+12}]=\frac{1}{2}[2 \pm \sqrt{16}]=1 \pm 2 \Rightarrow\left\{\begin{array}{l}
r_{+}=3, \\
r_{-}=-1 .
\end{array}\right.
\end{gathered}
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: (1) Solve the homogeneous equation.

$$
\begin{gathered}
y(t)=e^{r t}, \quad p(r)=r^{2}-2 r-3=0 . \\
r_{ \pm}=\frac{1}{2}[2 \pm \sqrt{4+12}]=\frac{1}{2}[2 \pm \sqrt{16}]=1 \pm 2 \Rightarrow\left\{\begin{array}{l}
r_{+}=3 \\
r_{-}=-1 .
\end{array}\right.
\end{gathered}
$$

Fundamental solutions: $y_{1}(t)=e^{3 t}$ and $y_{2}(t)=e^{-t}$.

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: (1) Solve the homogeneous equation.

$$
\begin{gathered}
y(t)=e^{r t}, \quad p(r)=r^{2}-2 r-3=0 . \\
r_{ \pm}=\frac{1}{2}[2 \pm \sqrt{4+12}]=\frac{1}{2}[2 \pm \sqrt{16}]=1 \pm 2 \Rightarrow\left\{\begin{array}{l}
r_{+}=3, \\
r_{-}=-1 .
\end{array}\right.
\end{gathered}
$$

Fundamental solutions: $y_{1}(t)=e^{3 t}$ and $y_{2}(t)=e^{-t}$.
(2) Guess y_{p}.

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: (1) Solve the homogeneous equation.

$$
\begin{gathered}
y(t)=e^{r t}, \quad p(r)=r^{2}-2 r-3=0 . \\
r_{ \pm}=\frac{1}{2}[2 \pm \sqrt{4+12}]=\frac{1}{2}[2 \pm \sqrt{16}]=1 \pm 2 \Rightarrow\left\{\begin{array}{l}
r_{+}=3, \\
r_{-}=-1 .
\end{array}\right.
\end{gathered}
$$

Fundamental solutions: $y_{1}(t)=e^{3 t}$ and $y_{2}(t)=e^{-t}$.
(2) Guess y_{p}. Since $g(t)=3 e^{-t}$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: (1) Solve the homogeneous equation.

$$
\begin{gathered}
y(t)=e^{r t}, \quad p(r)=r^{2}-2 r-3=0 . \\
r_{ \pm}=\frac{1}{2}[2 \pm \sqrt{4+12}]=\frac{1}{2}[2 \pm \sqrt{16}]=1 \pm 2 \Rightarrow\left\{\begin{array}{l}
r_{+}=3, \\
r_{-}=-1 .
\end{array}\right.
\end{gathered}
$$

Fundamental solutions: $y_{1}(t)=e^{3 t}$ and $y_{2}(t)=e^{-t}$.
(2) Guess y_{p}. Since $g(t)=3 e^{-t} \quad \Rightarrow \quad y_{p}(t)=k e^{-t}$.

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: (1) Solve the homogeneous equation.

$$
\begin{gathered}
y(t)=e^{r t}, \quad p(r)=r^{2}-2 r-3=0 . \\
r_{ \pm}=\frac{1}{2}[2 \pm \sqrt{4+12}]=\frac{1}{2}[2 \pm \sqrt{16}]=1 \pm 2 \Rightarrow\left\{\begin{array}{l}
r_{+}=3, \\
r_{-}=-1 .
\end{array}\right.
\end{gathered}
$$

Fundamental solutions: $y_{1}(t)=e^{3 t}$ and $y_{2}(t)=e^{-t}$.
(2) Guess y_{p}. Since $g(t)=3 e^{-t} \quad \Rightarrow \quad y_{p}(t)=k e^{-t}$.

But this $y_{p}=k e^{-t}$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4}
$$

Solution: (1) Solve the homogeneous equation.

$$
\begin{gathered}
y(t)=e^{r t}, \quad p(r)=r^{2}-2 r-3=0 . \\
r_{ \pm}=\frac{1}{2}[2 \pm \sqrt{4+12}]=\frac{1}{2}[2 \pm \sqrt{16}]=1 \pm 2 \Rightarrow\left\{\begin{array}{l}
r_{+}=3 \\
r_{-}=-1
\end{array}\right.
\end{gathered}
$$

Fundamental solutions: $y_{1}(t)=e^{3 t}$ and $y_{2}(t)=e^{-t}$.
(2) Guess y_{p}. Since $g(t)=3 e^{-t} \quad \Rightarrow \quad y_{p}(t)=k e^{-t}$.

But this $y_{p}=k e^{-t}$ is solution of the homogeneous equation.

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4}
$$

Solution: (1) Solve the homogeneous equation.

$$
\begin{gathered}
y(t)=e^{r t}, \quad p(r)=r^{2}-2 r-3=0 . \\
r_{ \pm}=\frac{1}{2}[2 \pm \sqrt{4+12}]=\frac{1}{2}[2 \pm \sqrt{16}]=1 \pm 2 \Rightarrow\left\{\begin{array}{l}
r_{+}=3 \\
r_{-}=-1
\end{array}\right.
\end{gathered}
$$

Fundamental solutions: $y_{1}(t)=e^{3 t}$ and $y_{2}(t)=e^{-t}$.
(2) Guess y_{p}. Since $g(t)=3 e^{-t} \quad \Rightarrow \quad y_{p}(t)=k e^{-t}$.

But this $y_{p}=k e^{-t}$ is solution of the homogeneous equation.
Then propose $y_{p}(t)=k t e^{-t}$.

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4}
$$

Solution: Recall: $\quad y_{p}(t)=k t e^{-t}$.

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4}
$$

Solution: Recall: $y_{p}(t)=k t e^{-t}$. This is correct, since $t e^{-t}$ is not solution of the homogeneous equation.

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4}
$$

Solution: Recall: $y_{p}(t)=k t e^{-t}$. This is correct, since $t e^{-t}$ is not solution of the homogeneous equation.
(3) Find the undetermined coefficient k.

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4}
$$

Solution: Recall: $y_{p}(t)=k t e^{-t}$. This is correct, since $t e^{-t}$ is not solution of the homogeneous equation.
(3) Find the undetermined coefficient k.

$$
y_{p}^{\prime}=k e^{-t}-k t e^{-t}
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4}
$$

Solution: Recall: $y_{p}(t)=k t e^{-t}$. This is correct, since $t e^{-t}$ is not solution of the homogeneous equation.
(3) Find the undetermined coefficient k.

$$
y_{p}^{\prime}=k e^{-t}-k t e^{-t}, \quad y_{p}^{\prime \prime}=-2 k e^{-t}+k t e^{-t}
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4}
$$

Solution: Recall: $y_{p}(t)=k t e^{-t}$. This is correct, since $t e^{-t}$ is not solution of the homogeneous equation.
(3) Find the undetermined coefficient k.

$$
\begin{gathered}
y_{p}^{\prime}=k e^{-t}-k t e^{-t}, \quad y_{p}^{\prime \prime}=-2 k e^{-t}+k t e^{-t} . \\
\left(-2 k e^{-t}+k t e^{-t}\right)-2\left(k e^{-t}-k t e^{-t}\right)-3\left(k t e^{-t}\right)=3 e^{-t}
\end{gathered}
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4}
$$

Solution: Recall: $y_{p}(t)=k t e^{-t}$. This is correct, since $t e^{-t}$ is not solution of the homogeneous equation.
(3) Find the undetermined coefficient k.

$$
\begin{gathered}
y_{p}^{\prime}=k e^{-t}-k t e^{-t}, \quad y_{p}^{\prime \prime}=-2 k e^{-t}+k t e^{-t} \\
\left(-2 k e^{-t}+k t e^{-t}\right)-2\left(k e^{-t}-k t e^{-t}\right)-3\left(k t e^{-t}\right)=3 e^{-t} \\
(-2+t-2+2 t-3 t) k e^{-t}=3 e^{-t}
\end{gathered}
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4}
$$

Solution: Recall: $y_{p}(t)=k t e^{-t}$. This is correct, since $t e^{-t}$ is not solution of the homogeneous equation.
(3) Find the undetermined coefficient k.

$$
\begin{gathered}
y_{p}^{\prime}=k e^{-t}-k t e^{-t}, \quad y_{p}^{\prime \prime}=-2 k e^{-t}+k t e^{-t} \\
\left(-2 k e^{-t}+k t e^{-t}\right)-2\left(k e^{-t}-k t e^{-t}\right)-3\left(k t e^{-t}\right)=3 e^{-t} \\
(-2+t-2+2 t-3 t) k e^{-t}=3 e^{-t} \Rightarrow-4 k=3
\end{gathered}
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4}
$$

Solution: Recall: $y_{p}(t)=k t e^{-t}$. This is correct, since $t e^{-t}$ is not solution of the homogeneous equation.
(3) Find the undetermined coefficient k.

$$
\begin{gathered}
y_{p}^{\prime}=k e^{-t}-k t e^{-t}, \quad y_{p}^{\prime \prime}=-2 k e^{-t}+k t e^{-t} \\
\left(-2 k e^{-t}+k t e^{-t}\right)-2\left(k e^{-t}-k t e^{-t}\right)-3\left(k t e^{-t}\right)=3 e^{-t} \\
(-2+t-2+2 t-3 t) k e^{-t}=3 e^{-t} \Rightarrow-4 k=3 \Rightarrow k=-\frac{3}{4} .
\end{gathered}
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4}
$$

Solution: Recall: $y_{p}(t)=k t e^{-t}$. This is correct, since $t e^{-t}$ is not solution of the homogeneous equation.
(3) Find the undetermined coefficient k.

$$
\begin{gathered}
y_{p}^{\prime}=k e^{-t}-k t e^{-t}, \quad y_{p}^{\prime \prime}=-2 k e^{-t}+k t e^{-t} . \\
\left(-2 k e^{-t}+k t e^{-t}\right)-2\left(k e^{-t}-k t e^{-t}\right)-3\left(k t e^{-t}\right)=3 e^{-t} \\
(-2+t-2+2 t-3 t) k e^{-t}=3 e^{-t} \Rightarrow-4 k=3 \Rightarrow k=-\frac{3}{4} .
\end{gathered}
$$

We obtain: $\quad y_{p}(t)=-\frac{3}{4} t e^{-t}$.

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4}
$$

Solution: Recall: $\quad y_{p}(t)=-\frac{3}{4} t e^{-t}$.

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4}
$$

Solution: Recall: $\quad y_{p}(t)=-\frac{3}{4} t e^{-t}$.
(4) Find the general solution:

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4}
$$

Solution: Recall: $\quad y_{p}(t)=-\frac{3}{4} t e^{-t}$.
(4) Find the general solution: $y(t)=c_{1} e^{3 t}+c_{2} e^{-t}-\frac{3}{4} t e^{-t}$.

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: Recall: $\quad y_{p}(t)=-\frac{3}{4} t e^{-t}$.
(4) Find the general solution: $y(t)=c_{1} e^{3 t}+c_{2} e^{-t}-\frac{3}{4} t e^{-t}$.
(5) Impose the initial conditions.

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: Recall: $\quad y_{p}(t)=-\frac{3}{4} t e^{-t}$.
(4) Find the general solution: $y(t)=c_{1} e^{3 t}+c_{2} e^{-t}-\frac{3}{4} t e^{-t}$.
(5) Impose the initial conditions. The derivative function is

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: Recall: $\quad y_{p}(t)=-\frac{3}{4} t e^{-t}$.
(4) Find the general solution: $y(t)=c_{1} e^{3 t}+c_{2} e^{-t}-\frac{3}{4} t e^{-t}$.
(5) Impose the initial conditions. The derivative function is

$$
y^{\prime}(t)=3 c_{1} e^{3 t}-c_{2} e^{-t}-\frac{3}{4}\left(e^{-t}-t e^{-t}\right) .
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: Recall: $\quad y_{p}(t)=-\frac{3}{4} t e^{-t}$.
(4) Find the general solution: $y(t)=c_{1} e^{3 t}+c_{2} e^{-t}-\frac{3}{4} t e^{-t}$.
(5) Impose the initial conditions. The derivative function is

$$
\begin{aligned}
& y^{\prime}(t)=3 c_{1} e^{3 t}-c_{2} e^{-t}-\frac{3}{4}\left(e^{-t}-t e^{-t}\right) . \\
1= & y(0)
\end{aligned}
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: Recall: $\quad y_{p}(t)=-\frac{3}{4} t e^{-t}$.
(4) Find the general solution: $y(t)=c_{1} e^{3 t}+c_{2} e^{-t}-\frac{3}{4} t e^{-t}$.
(5) Impose the initial conditions. The derivative function is

$$
\begin{aligned}
& y^{\prime}(t)= 3 c_{1} e^{3 t}-c_{2} e^{-t}-\frac{3}{4}\left(e^{-t}-t e^{-t}\right) . \\
& 1=y(0)=c_{1}+c_{2},
\end{aligned}
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: Recall: $\quad y_{p}(t)=-\frac{3}{4} t e^{-t}$.
(4) Find the general solution: $y(t)=c_{1} e^{3 t}+c_{2} e^{-t}-\frac{3}{4} t e^{-t}$.
(5) Impose the initial conditions. The derivative function is

$$
\begin{aligned}
y^{\prime}(t) & =3 c_{1} e^{3 t}-c_{2} e^{-t}-\frac{3}{4}\left(e^{-t}-t e^{-t}\right) . \\
1=y(0) & =c_{1}+c_{2}, \quad \frac{1}{4}=y^{\prime}(0)
\end{aligned}
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: Recall: $\quad y_{p}(t)=-\frac{3}{4} t e^{-t}$.
(4) Find the general solution: $y(t)=c_{1} e^{3 t}+c_{2} e^{-t}-\frac{3}{4} t e^{-t}$.
(5) Impose the initial conditions. The derivative function is

$$
\begin{gathered}
y^{\prime}(t)=3 c_{1} e^{3 t}-c_{2} e^{-t}-\frac{3}{4}\left(e^{-t}-t e^{-t}\right) . \\
1=y(0)=c_{1}+c_{2}, \quad \frac{1}{4}=y^{\prime}(0)=3 c_{1}-c_{2}-\frac{3}{4} .
\end{gathered}
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: Recall: $\quad y_{p}(t)=-\frac{3}{4} t e^{-t}$.
(4) Find the general solution: $y(t)=c_{1} e^{3 t}+c_{2} e^{-t}-\frac{3}{4} t e^{-t}$.
(5) Impose the initial conditions. The derivative function is

$$
\left.\begin{array}{l}
y^{\prime}(t)=3 c_{1} e^{3 t}-c_{2} e^{-t}-\frac{3}{4}\left(e^{-t}-t e^{-t}\right) . \\
1=y(0)=c_{1}+c_{2}, \quad \frac{1}{4}=y^{\prime}(0)=3 c_{1}-c_{2}-\frac{3}{4} . \\
c_{1}+c_{2}=1, \\
3_{1}-c_{2}=1
\end{array}\right\} .
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: Recall: $\quad y_{p}(t)=-\frac{3}{4} t e^{-t}$.
(4) Find the general solution: $y(t)=c_{1} e^{3 t}+c_{2} e^{-t}-\frac{3}{4} t e^{-t}$.
(5) Impose the initial conditions. The derivative function is

$$
\begin{aligned}
& y^{\prime}(t)=3 c_{1} e^{3 t}-c_{2} e^{-t}-\frac{3}{4}\left(e^{-t}-t e^{-t}\right) . \\
& 1=y(0)=c_{1}+c_{2}, \quad \frac{1}{4}=y^{\prime}(0)=3 c_{1}-c_{2}-\frac{3}{4} . \\
& \left.\begin{array}{l}
c_{1}+c_{2}=1 \\
3_{1}-c_{2}=1
\end{array}\right\} \Rightarrow\left[\begin{array}{rr}
1 & 1 \\
3 & -1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
\end{aligned}
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: Recall: $y(t)=c_{1} e^{3 t}+c_{2} e^{-t}-\frac{3}{4} t e^{-t}$, and

$$
\left[\begin{array}{cc}
1 & 1 \\
3 & -1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: Recall: $y(t)=c_{1} e^{3 t}+c_{2} e^{-t}-\frac{3}{4} t e^{-t}$, and

$$
\left[\begin{array}{rr}
1 & 1 \\
3 & -1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\frac{1}{-4}\left[\begin{array}{cc}
-1 & -1 \\
-3 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: Recall: $y(t)=c_{1} e^{3 t}+c_{2} e^{-t}-\frac{3}{4} t e^{-t}$, and

$$
\left[\begin{array}{cc}
1 & 1 \\
3 & -1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\frac{1}{-4}\left[\begin{array}{cc}
-1 & -1 \\
-3 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\frac{1}{4}\left[\begin{array}{l}
2 \\
2
\end{array}\right] .
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: Recall: $y(t)=c_{1} e^{3 t}+c_{2} e^{-t}-\frac{3}{4} t e^{-t}$, and

$$
\left[\begin{array}{rr}
1 & 1 \\
3 & -1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\frac{1}{-4}\left[\begin{array}{cc}
-1 & -1 \\
-3 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\frac{1}{4}\left[\begin{array}{l}
2 \\
2
\end{array}\right] .
$$

Since $c_{1}=\frac{1}{2}$ and $c_{2}=\frac{1}{2}$,

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=\frac{1}{4} .
$$

Solution: Recall: $y(t)=c_{1} e^{3 t}+c_{2} e^{-t}-\frac{3}{4} t e^{-t}$, and

$$
\left[\begin{array}{cc}
1 & 1 \\
3 & -1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\frac{1}{-4}\left[\begin{array}{cc}
-1 & -1 \\
-3 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\frac{1}{4}\left[\begin{array}{l}
2 \\
2
\end{array}\right] .
$$

Since $c_{1}=\frac{1}{2}$ and $c_{2}=\frac{1}{2}$, we obtain,

$$
y(t)=\frac{1}{2}\left(e^{3 t}+e^{-t}\right)-\frac{3}{4} t e^{-t} .
$$

Review for Final Exam.

- Fourier Series expansions (Chptr.6).
- Eigenvalue-Eigenfunction BVP (Chptr. 6).
- Systems of linear Equations (Chptr. 5).
- Laplace transforms (Chptr. 4).
- Second order linear equations (Chptr. 2).
- First order differential equations (Chptr. 1).

First order differential equations.

Summary:

- Linear, first order equations: $y^{\prime}+p(t) y=q(t)$.

First order differential equations.

Summary:

- Linear, first order equations: $y^{\prime}+p(t) y=q(t)$.

Use the integrating factor method: $\mu(t)=e^{\int p(t) d t}$.

First order differential equations.

Summary:

- Linear, first order equations: $y^{\prime}+p(t) y=q(t)$.

Use the integrating factor method: $\mu(t)=e^{\int p(t) d t}$.

- Separable, non-linear equations: $h(y) y^{\prime}=g(t)$.

First order differential equations.

Summary:

- Linear, first order equations: $y^{\prime}+p(t) y=q(t)$.

Use the integrating factor method: $\mu(t)=e^{\int p(t) d t}$.

- Separable, non-linear equations: $h(y) y^{\prime}=g(t)$. Integrate with the substitution: $u=y(t), d u=y^{\prime}(t) d t$,

First order differential equations.

Summary:

- Linear, first order equations: $y^{\prime}+p(t) y=q(t)$.

Use the integrating factor method: $\mu(t)=e^{\int p(t) d t}$.

- Separable, non-linear equations: $h(y) y^{\prime}=g(t)$. Integrate with the substitution: $u=y(t), d u=y^{\prime}(t) d t$, that is,

$$
\int h(u) d u=\int g(t) d t+c
$$

First order differential equations.

Summary:

- Linear, first order equations: $y^{\prime}+p(t) y=q(t)$.

Use the integrating factor method: $\mu(t)=e^{\int p(t) d t}$.

- Separable, non-linear equations: $h(y) y^{\prime}=g(t)$. Integrate with the substitution: $u=y(t), d u=y^{\prime}(t) d t$, that is,

$$
\int h(u) d u=\int g(t) d t+c
$$

The solution can be found in implicit of explicit form.

First order differential equations.

Summary:

- Linear, first order equations: $y^{\prime}+p(t) y=q(t)$.

Use the integrating factor method: $\mu(t)=e^{\int p(t) d t}$.

- Separable, non-linear equations: $h(y) y^{\prime}=g(t)$. Integrate with the substitution: $u=y(t), d u=y^{\prime}(t) d t$, that is,

$$
\int h(u) d u=\int g(t) d t+c
$$

The solution can be found in implicit of explicit form.

- Homogeneous equations can be converted into separable equations.

First order differential equations.

Summary:

- Linear, first order equations: $y^{\prime}+p(t) y=q(t)$.

Use the integrating factor method: $\mu(t)=e^{\int p(t) d t}$.

- Separable, non-linear equations: $h(y) y^{\prime}=g(t)$. Integrate with the substitution: $u=y(t), d u=y^{\prime}(t) d t$, that is,

$$
\int h(u) d u=\int g(t) d t+c
$$

The solution can be found in implicit of explicit form.

- Homogeneous equations can be converted into separable equations.

Read page 49 in the textbook.

First order differential equations.

Summary:

- Linear, first order equations: $y^{\prime}+p(t) y=q(t)$.

Use the integrating factor method: $\mu(t)=e^{\int p(t) d t}$.

- Separable, non-linear equations: $h(y) y^{\prime}=g(t)$. Integrate with the substitution: $u=y(t), d u=y^{\prime}(t) d t$, that is,

$$
\int h(u) d u=\int g(t) d t+c
$$

The solution can be found in implicit of explicit form.

- Homogeneous equations can be converted into separable equations.

Read page 49 in the textbook.

- No modeling problems from Sect. 2.3.

First order differential equations.

Summary:

- Bernoulli equations: $y^{\prime}+p(t) y=q(t) y^{n}$, with $n \in \mathbb{R}$.

First order differential equations.

Summary:

- Bernoulli equations: $y^{\prime}+p(t) y=q(t) y^{n}$, with $n \in \mathbb{R}$.

Read page 77 in the textbook,

First order differential equations.

Summary:

- Bernoulli equations: $y^{\prime}+p(t) y=q(t) y^{n}$, with $n \in \mathbb{R}$.

Read page 77 in the textbook, page 11 in the Lecture Notes.

First order differential equations.

Summary:

- Bernoulli equations: $y^{\prime}+p(t) y=q(t) y^{n}$, with $n \in \mathbb{R}$. Read page 77 in the textbook, page 11 in the Lecture Notes.

A Bernoulli equation for y can be converted into a linear equation for

First order differential equations.

Summary:

- Bernoulli equations: $y^{\prime}+p(t) y=q(t) y^{n}$, with $n \in \mathbb{R}$. Read page 77 in the textbook, page 11 in the Lecture Notes.

A Bernoulli equation for y can be converted into a linear equation for $v=\frac{1}{y^{n-1}}$.

First order differential equations.

Summary:

- Bernoulli equations: $y^{\prime}+p(t) y=q(t) y^{n}$, with $n \in \mathbb{R}$. Read page 77 in the textbook, page 11 in the Lecture Notes.

A Bernoulli equation for y can be converted into a linear equation for $v=\frac{1}{y^{n-1}}$.

- Exact equations and integrating factors.

First order differential equations.

Summary:

- Bernoulli equations: $y^{\prime}+p(t) y=q(t) y^{n}$, with $n \in \mathbb{R}$.

Read page 77 in the textbook, page 11 in the Lecture Notes.
A Bernoulli equation for y can be converted into a linear equation for $v=\frac{1}{y^{n-1}}$.

- Exact equations and integrating factors.

$$
N(x, y) y^{\prime}+M(x, y)=0
$$

First order differential equations.

Summary:

- Bernoulli equations: $y^{\prime}+p(t) y=q(t) y^{n}$, with $n \in \mathbb{R}$.

Read page 77 in the textbook, page 11 in the Lecture Notes.
A Bernoulli equation for y can be converted into a linear equation for $v=\frac{1}{y^{n-1}}$.

- Exact equations and integrating factors.

$$
N(x, y) y^{\prime}+M(x, y)=0
$$

The equation is exact iff $\partial_{x} N=\partial_{y} M$.

First order differential equations.

Summary:

- Bernoulli equations: $y^{\prime}+p(t) y=q(t) y^{n}$, with $n \in \mathbb{R}$.

Read page 77 in the textbook, page 11 in the Lecture Notes.
A Bernoulli equation for y can be converted into a linear equation for $v=\frac{1}{y^{n-1}}$.

- Exact equations and integrating factors.

$$
N(x, y) y^{\prime}+M(x, y)=0
$$

The equation is exact iff $\partial_{x} N=\partial_{y} M$.
If the equation is exact, then there is a potential function ψ,

First order differential equations.

Summary:

- Bernoulli equations: $y^{\prime}+p(t) y=q(t) y^{n}$, with $n \in \mathbb{R}$.

Read page 77 in the textbook, page 11 in the Lecture Notes.
A Bernoulli equation for y can be converted into a linear equation for $v=\frac{1}{y^{n-1}}$.

- Exact equations and integrating factors.

$$
N(x, y) y^{\prime}+M(x, y)=0
$$

The equation is exact iff $\partial_{x} N=\partial_{y} M$.
If the equation is exact, then there is a potential function ψ, such that $N=\partial_{y} \psi$

First order differential equations.

Summary:

- Bernoulli equations: $y^{\prime}+p(t) y=q(t) y^{n}$, with $n \in \mathbb{R}$.

Read page 77 in the textbook, page 11 in the Lecture Notes.
A Bernoulli equation for y can be converted into a linear equation for $v=\frac{1}{y^{n-1}}$.

- Exact equations and integrating factors.

$$
N(x, y) y^{\prime}+M(x, y)=0
$$

The equation is exact iff $\partial_{x} N=\partial_{y} M$.
If the equation is exact, then there is a potential function ψ, such that $N=\partial_{y} \psi$ and $M=\partial_{x} \psi$.

First order differential equations.

Summary:

- Bernoulli equations: $y^{\prime}+p(t) y=q(t) y^{n}$, with $n \in \mathbb{R}$.

Read page 77 in the textbook, page 11 in the Lecture Notes.
A Bernoulli equation for y can be converted into a linear equation for $v=\frac{1}{y^{n-1}}$.

- Exact equations and integrating factors.

$$
N(x, y) y^{\prime}+M(x, y)=0
$$

The equation is exact iff $\partial_{x} N=\partial_{y} M$.
If the equation is exact, then there is a potential function ψ, such that $N=\partial_{y} \psi$ and $M=\partial_{x} \psi$.
The solution of the differential equation is

$$
\psi(x, y(x))=c
$$

First order differential equations.

Advice: In order to find out what type of equation is the one you have to solve, check from simple types to the more difficult types:

First order differential equations.

Advice: In order to find out what type of equation is the one you have to solve, check from simple types to the more difficult types:

1. Linear equations.
(Just by looking at it: $y^{\prime}+a(t) y=b(t)$.)

First order differential equations.

Advice: In order to find out what type of equation is the one you have to solve, check from simple types to the more difficult types:

1. Linear equations.
(Just by looking at it: $y^{\prime}+a(t) y=b(t)$.)
2. Bernoulli equations.
(Just by looking at it: $y^{\prime}+a(t) y=b(t) y^{n}$.)

First order differential equations.

Advice: In order to find out what type of equation is the one you have to solve, check from simple types to the more difficult types:

1. Linear equations.
(Just by looking at it: $y^{\prime}+a(t) y=b(t)$.)
2. Bernoulli equations.
(Just by looking at it: $y^{\prime}+a(t) y=b(t) y^{n}$.)
3. Separable equations.
(Few manipulations: $h(y) y^{\prime}=g(t)$.)

First order differential equations.

Advice: In order to find out what type of equation is the one you have to solve, check from simple types to the more difficult types:

1. Linear equations.
(Just by looking at it: $y^{\prime}+a(t) y=b(t)$.)
2. Bernoulli equations.
(Just by looking at it: $y^{\prime}+a(t) y=b(t) y^{n}$.)
3. Separable equations.
(Few manipulations: $h(y) y^{\prime}=g(t)$.)
4. Homogeneous equations.
(Several manipulations: $y^{\prime}=F(y / t)$.)

First order differential equations.

Advice: In order to find out what type of equation is the one you have to solve, check from simple types to the more difficult types:

1. Linear equations.
(Just by looking at it: $y^{\prime}+a(t) y=b(t)$.)
2. Bernoulli equations.
(Just by looking at it: $y^{\prime}+a(t) y=b(t) y^{n}$.)
3. Separable equations.
(Few manipulations: $h(y) y^{\prime}=g(t)$.)
4. Homogeneous equations.
(Several manipulations: $y^{\prime}=F(y / t)$.)
5. Exact equations.
(Check one equation: $N y^{\prime}+M=0$, and $\partial_{t} N=\partial_{y} M$.)

First order differential equations.

Advice: In order to find out what type of equation is the one you have to solve, check from simple types to the more difficult types:

1. Linear equations.
(Just by looking at it: $y^{\prime}+a(t) y=b(t)$.)
2. Bernoulli equations.
(Just by looking at it: $y^{\prime}+a(t) y=b(t) y^{n}$.)
3. Separable equations.
(Few manipulations: $h(y) y^{\prime}=g(t)$.)
4. Homogeneous equations.
(Several manipulations: $y^{\prime}=F(y / t)$.)
5. Exact equations.
(Check one equation: $N y^{\prime}+M=0$, and $\partial_{t} N=\partial_{y} M$.)
6. Exact equation with integrating factor.
(Very complicated to check.)

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: The sum of the powers in x and y on every term is the same number,

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: The sum of the powers in x and y on every term is the same number, two in this example.

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: The sum of the powers in x and y on every term is the same number, two in this example. The equation is homogeneous.

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: The sum of the powers in x and y on every term is the same number, two in this example. The equation is homogeneous.

$$
y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y} \frac{\left(1 / x^{2}\right)}{\left(1 / x^{2}\right)}
$$

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: The sum of the powers in x and y on every term is the same number, two in this example. The equation is homogeneous.

$$
y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y} \frac{\left(1 / x^{2}\right)}{\left(1 / x^{2}\right)} \Rightarrow \quad y^{\prime}=\frac{1+\left(\frac{y}{x}\right)+\left(\frac{y}{x}\right)^{2}}{\left(\frac{y}{x}\right)} .
$$

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: The sum of the powers in x and y on every term is the same number, two in this example. The equation is homogeneous.

$$
\begin{gathered}
y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y} \frac{\left(1 / x^{2}\right)}{\left(1 / x^{2}\right)} \Rightarrow y^{\prime}=\frac{1+\left(\frac{y}{x}\right)+\left(\frac{y}{x}\right)^{2}}{\left(\frac{y}{x}\right)} . \\
v(x)=\frac{y}{x}
\end{gathered}
$$

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: The sum of the powers in x and y on every term is the same number, two in this example. The equation is homogeneous.

$$
\begin{gathered}
y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y} \frac{\left(1 / x^{2}\right)}{\left(1 / x^{2}\right)} \Rightarrow y^{\prime}=\frac{1+\left(\frac{y}{x}\right)+\left(\frac{y}{x}\right)^{2}}{\left(\frac{y}{x}\right)} . \\
v(x)=\frac{y}{x} \Rightarrow y^{\prime}=\frac{1+v+v^{2}}{v} .
\end{gathered}
$$

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: The sum of the powers in x and y on every term is the same number, two in this example. The equation is homogeneous.

$$
\begin{aligned}
& y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y} \frac{\left(1 / x^{2}\right)}{\left(1 / x^{2}\right)} \Rightarrow y^{\prime}=\frac{1+\left(\frac{y}{x}\right)+\left(\frac{y}{x}\right)^{2}}{\left(\frac{y}{x}\right)} . \\
& v(x)=\frac{y}{x} \Rightarrow y^{\prime}=\frac{1+v+v^{2}}{v} . \\
& y=x v,
\end{aligned}
$$

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: The sum of the powers in x and y on every term is the same number, two in this example. The equation is homogeneous.

$$
\begin{gathered}
y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y} \frac{\left(1 / x^{2}\right)}{\left(1 / x^{2}\right)} \Rightarrow y^{\prime}=\frac{1+\left(\frac{y}{x}\right)+\left(\frac{y}{x}\right)^{2}}{\left(\frac{y}{x}\right)} . \\
v(x)=\frac{y}{x} \Rightarrow y^{\prime}=\frac{1+v+v^{2}}{v} . \\
y=x v, \quad y^{\prime}=x v^{\prime}+v
\end{gathered}
$$

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: The sum of the powers in x and y on every term is the same number, two in this example. The equation is homogeneous.

$$
\begin{gathered}
y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y} \frac{\left(1 / x^{2}\right)}{\left(1 / x^{2}\right)} \Rightarrow y^{\prime}=\frac{1+\left(\frac{y}{x}\right)+\left(\frac{y}{x}\right)^{2}}{\left(\frac{y}{x}\right)} . \\
v(x)=\frac{y}{x} \Rightarrow \quad y^{\prime}=\frac{1+v+v^{2}}{v} . \\
y=x v, \quad y^{\prime}=x v^{\prime}+v \quad x v^{\prime}+v=\frac{1+v+v^{2}}{v} .
\end{gathered}
$$

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: The sum of the powers in x and y on every term is the same number, two in this example. The equation is homogeneous.

$$
\begin{gathered}
y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y} \frac{\left(1 / x^{2}\right)}{\left(1 / x^{2}\right)} \Rightarrow y^{\prime}=\frac{1+\left(\frac{y}{x}\right)+\left(\frac{y}{x}\right)^{2}}{\left(\frac{y}{x}\right)} . \\
v(x)=\frac{y}{x} \Rightarrow \quad y^{\prime}=\frac{1+v+v^{2}}{v} . \\
y=x v, \quad y^{\prime}=x v^{\prime}+v \quad x v^{\prime}+v=\frac{1+v+v^{2}}{v} . \\
x v^{\prime}=\frac{1+v+v^{2}}{v}-v
\end{gathered}
$$

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: The sum of the powers in x and y on every term is the same number, two in this example. The equation is homogeneous.

$$
\begin{gathered}
y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y} \frac{\left(1 / x^{2}\right)}{\left(1 / x^{2}\right)} \Rightarrow \quad y^{\prime}=\frac{1+\left(\frac{y}{x}\right)+\left(\frac{y}{x}\right)^{2}}{\left(\frac{y}{x}\right)} . \\
v(x)=\frac{y}{x} \Rightarrow \quad y^{\prime}=\frac{1+v+v^{2}}{v} . \\
y=x v, \quad y^{\prime}=x v^{\prime}+v \quad x v^{\prime}+v=\frac{1+v+v^{2}}{v} . \\
x v^{\prime}=\frac{1+v+v^{2}}{v}-v=\frac{1+v+v^{2}-v^{2}}{v}
\end{gathered}
$$

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: The sum of the powers in x and y on every term is the same number, two in this example. The equation is homogeneous.

$$
\begin{gathered}
y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y} \frac{\left(1 / x^{2}\right)}{\left(1 / x^{2}\right)} \Rightarrow y^{\prime}=\frac{1+\left(\frac{y}{x}\right)+\left(\frac{y}{x}\right)^{2}}{\left(\frac{y}{x}\right)} . \\
v(x)=\frac{y}{x} \Rightarrow \quad y^{\prime}=\frac{1+v+v^{2}}{v} . \\
y=x v, \quad y^{\prime}=x v^{\prime}+v \quad x v^{\prime}+v=\frac{1+v+v^{2}}{v} . \\
x v^{\prime}=\frac{1+v+v^{2}}{v}-v=\frac{1+v+v^{2}-v^{2}}{v} \Rightarrow x v^{\prime}=\frac{1+v}{v} .
\end{gathered}
$$

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: Recall: $\quad v^{\prime}=\frac{1+v}{v}$.

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: Recall: $\quad v^{\prime}=\frac{1+v}{v}$. This is a separable equation.

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: Recall: $v^{\prime}=\frac{1+v}{v}$. This is a separable equation.

$$
\frac{v(x)}{1+v(x)} v^{\prime}(x)=\frac{1}{x}
$$

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: Recall: $v^{\prime}=\frac{1+v}{v}$. This is a separable equation.

$$
\frac{v(x)}{1+v(x)} v^{\prime}(x)=\frac{1}{x} \Rightarrow \int \frac{v(x)}{1+v(x)} v^{\prime}(x) d x=\int \frac{d x}{x}+c .
$$

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: Recall: $v^{\prime}=\frac{1+v}{v}$. This is a separable equation.

$$
\frac{v(x)}{1+v(x)} v^{\prime}(x)=\frac{1}{x} \Rightarrow \int \frac{v(x)}{1+v(x)} v^{\prime}(x) d x=\int \frac{d x}{x}+c .
$$

Use the substitution $u=1+v$,

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: Recall: $v^{\prime}=\frac{1+v}{v}$. This is a separable equation.

$$
\frac{v(x)}{1+v(x)} v^{\prime}(x)=\frac{1}{x} \Rightarrow \int \frac{v(x)}{1+v(x)} v^{\prime}(x) d x=\int \frac{d x}{x}+c .
$$

Use the substitution $u=1+v$, hence $d u=v^{\prime}(x) d x$.

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: Recall: $v^{\prime}=\frac{1+v}{v}$. This is a separable equation.

$$
\frac{v(x)}{1+v(x)} v^{\prime}(x)=\frac{1}{x} \Rightarrow \int \frac{v(x)}{1+v(x)} v^{\prime}(x) d x=\int \frac{d x}{x}+c
$$

Use the substitution $u=1+v$, hence $d u=v^{\prime}(x) d x$.

$$
\int \frac{(u-1)}{u} d u=\int \frac{d x}{x}+c
$$

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: Recall: $v^{\prime}=\frac{1+v}{v}$. This is a separable equation.

$$
\frac{v(x)}{1+v(x)} v^{\prime}(x)=\frac{1}{x} \Rightarrow \int \frac{v(x)}{1+v(x)} v^{\prime}(x) d x=\int \frac{d x}{x}+c .
$$

Use the substitution $u=1+v$, hence $d u=v^{\prime}(x) d x$.

$$
\int \frac{(u-1)}{u} d u=\int \frac{d x}{x}+c \Rightarrow \int\left(1-\frac{1}{u}\right) d u=\int \frac{d x}{x}+c
$$

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: Recall: $v^{\prime}=\frac{1+v}{v}$. This is a separable equation.

$$
\frac{v(x)}{1+v(x)} v^{\prime}(x)=\frac{1}{x} \Rightarrow \int \frac{v(x)}{1+v(x)} v^{\prime}(x) d x=\int \frac{d x}{x}+c
$$

Use the substitution $u=1+v$, hence $d u=v^{\prime}(x) d x$.

$$
\begin{aligned}
& \int \frac{(u-1)}{u} d u=\int \frac{d x}{x}+c \Rightarrow \int\left(1-\frac{1}{u}\right) d u=\int \frac{d x}{x}+c \\
& u-\ln |u|=\ln |x|+c
\end{aligned}
$$

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: Recall: $v^{\prime}=\frac{1+v}{v}$. This is a separable equation.

$$
\frac{v(x)}{1+v(x)} v^{\prime}(x)=\frac{1}{x} \Rightarrow \int \frac{v(x)}{1+v(x)} v^{\prime}(x) d x=\int \frac{d x}{x}+c
$$

Use the substitution $u=1+v$, hence $d u=v^{\prime}(x) d x$.

$$
\begin{aligned}
& \int \frac{(u-1)}{u} d u=\int \frac{d x}{x}+c \quad \Rightarrow \quad \int\left(1-\frac{1}{u}\right) d u=\int \frac{d x}{x}+c \\
& u-\ln |u|=\ln |x|+c \quad \Rightarrow \quad 1+v-\ln |1+v|=\ln |x|+c .
\end{aligned}
$$

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: Recall: $v^{\prime}=\frac{1+v}{v}$. This is a separable equation.

$$
\frac{v(x)}{1+v(x)} v^{\prime}(x)=\frac{1}{x} \Rightarrow \int \frac{v(x)}{1+v(x)} v^{\prime}(x) d x=\int \frac{d x}{x}+c
$$

Use the substitution $u=1+v$, hence $d u=v^{\prime}(x) d x$.

$$
\begin{aligned}
& \int \frac{(u-1)}{u} d u=\int \frac{d x}{x}+c \Rightarrow \int\left(1-\frac{1}{u}\right) d u=\int \frac{d x}{x}+c \\
& u-\ln |u|=\ln |x|+c \quad \Rightarrow \quad 1+v-\ln |1+v|=\ln |x|+c \\
& \quad v=\frac{y}{x}
\end{aligned}
$$

First order differential equations.

Example
Find all solutions of $y^{\prime}=\frac{x^{2}+x y+y^{2}}{x y}$.
Solution: Recall: $v^{\prime}=\frac{1+v}{v}$. This is a separable equation.

$$
\frac{v(x)}{1+v(x)} v^{\prime}(x)=\frac{1}{x} \Rightarrow \int \frac{v(x)}{1+v(x)} v^{\prime}(x) d x=\int \frac{d x}{x}+c
$$

Use the substitution $u=1+v$, hence $d u=v^{\prime}(x) d x$.

$$
\begin{gather*}
\int \frac{(u-1)}{u} d u=\int \frac{d x}{x}+c \Rightarrow \int\left(1-\frac{1}{u}\right) d u=\int \frac{d x}{x}+c \\
u-\ln |u|=\ln |x|+c \quad \Rightarrow \quad 1+v-\ln |1+v|=\ln |x|+c \\
v=\frac{y}{x} \Rightarrow 1+\frac{y(x)}{x}-\ln \left|1+\frac{y(x)}{x}\right|=\ln |x|+c
\end{gather*}
$$

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: This is a Bernoulli equation,

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: This is a Bernoulli equation, $y^{\prime}+y=-e^{2 x} y^{n}$,

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: This is a Bernoulli equation, $y^{\prime}+y=-e^{2 x} y^{n}, \quad n=3$.

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: This is a Bernoulli equation, $y^{\prime}+y=-e^{2 x} y^{n}, \quad n=3$.
Divide by y^{3}.

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: This is a Bernoulli equation, $y^{\prime}+y=-e^{2 x} y^{n}, \quad n=3$.
Divide by y^{3}. That is, $\frac{y^{\prime}}{y^{3}}+\frac{1}{y^{2}}=-e^{2 x}$.

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: This is a Bernoulli equation, $y^{\prime}+y=-e^{2 x} y^{n}, \quad n=3$.
Divide by y^{3}. That is, $\frac{y^{\prime}}{y^{3}}+\frac{1}{y^{2}}=-e^{2 x}$.
Let $\quad v=\frac{1}{y^{2}}$.

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: This is a Bernoulli equation, $y^{\prime}+y=-e^{2 x} y^{n}, \quad n=3$.
Divide by y^{3}. That is, $\frac{y^{\prime}}{y^{3}}+\frac{1}{y^{2}}=-e^{2 x}$.
Let $v=\frac{1}{y^{2}}$. Since $v^{\prime}=-2 \frac{y^{\prime}}{y^{3}}$,

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: This is a Bernoulli equation, $y^{\prime}+y=-e^{2 x} y^{n}, \quad n=3$.
Divide by y^{3}. That is, $\frac{y^{\prime}}{y^{3}}+\frac{1}{y^{2}}=-e^{2 x}$.
Let $v=\frac{1}{y^{2}}$. Since $v^{\prime}=-2 \frac{y^{\prime}}{y^{3}}$, we obtain

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: This is a Bernoulli equation, $y^{\prime}+y=-e^{2 x} y^{n}, \quad n=3$.
Divide by y^{3}. That is, $\frac{y^{\prime}}{y^{3}}+\frac{1}{y^{2}}=-e^{2 x}$.
Let $v=\frac{1}{y^{2}}$. Since $v^{\prime}=-2 \frac{y^{\prime}}{y^{3}}$, we obtain $-\frac{1}{2} v^{\prime}+v=-e^{2 x}$.

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: This is a Bernoulli equation, $y^{\prime}+y=-e^{2 x} y^{n}, \quad n=3$.
Divide by y^{3}. That is, $\frac{y^{\prime}}{y^{3}}+\frac{1}{y^{2}}=-e^{2 x}$.
Let $v=\frac{1}{y^{2}}$. Since $v^{\prime}=-2 \frac{y^{\prime}}{y^{3}}$, we obtain $-\frac{1}{2} v^{\prime}+v=-e^{2 x}$.
We obtain the linear equation $v^{\prime}-2 v=2 e^{2 x}$.

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: This is a Bernoulli equation, $y^{\prime}+y=-e^{2 x} y^{n}, \quad n=3$.
Divide by y^{3}. That is, $\frac{y^{\prime}}{y^{3}}+\frac{1}{y^{2}}=-e^{2 x}$.
Let $v=\frac{1}{y^{2}}$. Since $v^{\prime}=-2 \frac{y^{\prime}}{y^{3}}$, we obtain $-\frac{1}{2} v^{\prime}+v=-e^{2 x}$.
We obtain the linear equation $v^{\prime}-2 v=2 e^{2 x}$.
Use the integrating factor method.

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: This is a Bernoulli equation, $y^{\prime}+y=-e^{2 x} y^{n}, \quad n=3$.
Divide by y^{3}. That is, $\frac{y^{\prime}}{y^{3}}+\frac{1}{y^{2}}=-e^{2 x}$.
Let $v=\frac{1}{y^{2}}$. Since $v^{\prime}=-2 \frac{y^{\prime}}{y^{3}}$, we obtain $-\frac{1}{2} v^{\prime}+v=-e^{2 x}$.
We obtain the linear equation $v^{\prime}-2 v=2 e^{2 x}$.
Use the integrating factor method. $\mu(x)=e^{-2 x}$.

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: This is a Bernoulli equation, $y^{\prime}+y=-e^{2 x} y^{n}, \quad n=3$.
Divide by y^{3}. That is, $\frac{y^{\prime}}{y^{3}}+\frac{1}{y^{2}}=-e^{2 x}$.
Let $v=\frac{1}{y^{2}}$. Since $v^{\prime}=-2 \frac{y^{\prime}}{y^{3}}$, we obtain $-\frac{1}{2} v^{\prime}+v=-e^{2 x}$.
We obtain the linear equation $v^{\prime}-2 v=2 e^{2 x}$.
Use the integrating factor method. $\mu(x)=e^{-2 x}$.

$$
e^{-2 x} v^{\prime}-2 e^{-2 x} v=2
$$

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3} .
$$

Solution: This is a Bernoulli equation, $y^{\prime}+y=-e^{2 x} y^{n}, \quad n=3$.
Divide by y^{3}. That is, $\frac{y^{\prime}}{y^{3}}+\frac{1}{y^{2}}=-e^{2 x}$.
Let $v=\frac{1}{y^{2}}$. Since $v^{\prime}=-2 \frac{y^{\prime}}{y^{3}}$, we obtain $-\frac{1}{2} v^{\prime}+v=-e^{2 x}$.
We obtain the linear equation $v^{\prime}-2 v=2 e^{2 x}$.
Use the integrating factor method. $\mu(x)=e^{-2 x}$.

$$
e^{-2 x} v^{\prime}-2 e^{-2 x} v=2 \quad \Rightarrow \quad\left(e^{-2 x} v\right)^{\prime}=2
$$

First order differential equations.

Example
Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: Recall: $v=\frac{1}{y^{2}}$ and $\left(e^{-2 x} v\right)^{\prime}=2$.

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: Recall: $v=\frac{1}{y^{2}}$ and $\left(e^{-2 x} v\right)^{\prime}=2$.

$$
e^{-2 x} v=2 x+c
$$

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: Recall: $v=\frac{1}{y^{2}}$ and $\left(e^{-2 x} v\right)^{\prime}=2$.

$$
e^{-2 x} v=2 x+c \Rightarrow v(x)=(2 x+c) e^{2 x}
$$

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: Recall: $v=\frac{1}{y^{2}}$ and $\left(e^{-2 x} v\right)^{\prime}=2$.

$$
e^{-2 x} v=2 x+c \Rightarrow v(x)=(2 x+c) e^{2 x} \Rightarrow \frac{1}{y^{2}}=(2 x+c) e^{2 x}
$$

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: Recall: $v=\frac{1}{y^{2}}$ and $\left(e^{-2 x} v\right)^{\prime}=2$.

$$
\begin{gathered}
e^{-2 x} v=2 x+c \Rightarrow v(x)=(2 x+c) e^{2 x} \Rightarrow \frac{1}{y^{2}}=(2 x+c) e^{2 x} \\
y^{2}=\frac{1}{e^{2} x(2 x+c)}
\end{gathered}
$$

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: Recall: $v=\frac{1}{y^{2}}$ and $\left(e^{-2 x} v\right)^{\prime}=2$.

$$
\begin{gathered}
e^{-2 x} v=2 x+c \Rightarrow v(x)=(2 x+c) e^{2 x} \Rightarrow \frac{1}{y^{2}}=(2 x+c) e^{2 x} \\
y^{2}=\frac{1}{e^{2} x(2 x+c)} \Rightarrow \quad y \pm(x)= \pm \frac{e^{-x}}{\sqrt{2 x+c}}
\end{gathered}
$$

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: Recall: $v=\frac{1}{y^{2}}$ and $\left(e^{-2 x} v\right)^{\prime}=2$.

$$
\begin{gathered}
e^{-2 x} v=2 x+c \Rightarrow v(x)=(2 x+c) e^{2 x} \Rightarrow \frac{1}{y^{2}}=(2 x+c) e^{2 x} \\
y^{2}=\frac{1}{e^{2} x(2 x+c)} \Rightarrow y_{ \pm}(x)= \pm \frac{e^{-x}}{\sqrt{2 x+c}}
\end{gathered}
$$

The initial condition $y(0)=1 / 3$

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: Recall: $v=\frac{1}{y^{2}}$ and $\left(e^{-2 x} v\right)^{\prime}=2$.

$$
\begin{gathered}
e^{-2 x} v=2 x+c \Rightarrow v(x)=(2 x+c) e^{2 x} \Rightarrow \frac{1}{y^{2}}=(2 x+c) e^{2 x} \\
y^{2}=\frac{1}{e^{2} x(2 x+c)} \Rightarrow y_{ \pm}(x)= \pm \frac{e^{-x}}{\sqrt{2 x+c}}
\end{gathered}
$$

The initial condition $y(0)=1 / 3>0$

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: Recall: $v=\frac{1}{y^{2}}$ and $\left(e^{-2 x} v\right)^{\prime}=2$.

$$
\begin{gathered}
e^{-2 x} v=2 x+c \Rightarrow v(x)=(2 x+c) e^{2 x} \Rightarrow \frac{1}{y^{2}}=(2 x+c) e^{2 x} \\
y^{2}=\frac{1}{e^{2} x(2 x+c)} \Rightarrow y_{ \pm}(x)= \pm \frac{e^{-x}}{\sqrt{2 x+c}}
\end{gathered}
$$

The initial condition $y(0)=1 / 3>0$ implies:

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: Recall: $v=\frac{1}{y^{2}}$ and $\left(e^{-2 x} v\right)^{\prime}=2$.

$$
\begin{gathered}
e^{-2 x} v=2 x+c \Rightarrow v(x)=(2 x+c) e^{2 x} \Rightarrow \frac{1}{y^{2}}=(2 x+c) e^{2 x} \\
y^{2}=\frac{1}{e^{2} x(2 x+c)} \Rightarrow y_{ \pm}(x)= \pm \frac{e^{-x}}{\sqrt{2 x+c}}
\end{gathered}
$$

The initial condition $y(0)=1 / 3>0$ implies: Choose y_{+}.

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: Recall: $v=\frac{1}{y^{2}}$ and $\left(e^{-2 x} v\right)^{\prime}=2$.

$$
\begin{gathered}
e^{-2 x} v=2 x+c \Rightarrow v(x)=(2 x+c) e^{2 x} \Rightarrow \frac{1}{y^{2}}=(2 x+c) e^{2 x} \\
y^{2}=\frac{1}{e^{2} x(2 x+c)} \Rightarrow \quad y \pm(x)= \pm \frac{e^{-x}}{\sqrt{2 x+c}}
\end{gathered}
$$

The initial condition $y(0)=1 / 3>0$ implies: Choose y_{+}.

$$
\frac{1}{3}=y_{+}(0)=\frac{1}{\sqrt{c}}
$$

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: Recall: $v=\frac{1}{y^{2}}$ and $\left(e^{-2 x} v\right)^{\prime}=2$.

$$
\begin{gathered}
e^{-2 x} v=2 x+c \Rightarrow v(x)=(2 x+c) e^{2 x} \Rightarrow \frac{1}{y^{2}}=(2 x+c) e^{2 x} \\
y^{2}=\frac{1}{e^{2} x(2 x+c)} \Rightarrow \quad y \pm(x)= \pm \frac{e^{-x}}{\sqrt{2 x+c}}
\end{gathered}
$$

The initial condition $y(0)=1 / 3>0$ implies: Choose y_{+}.

$$
\frac{1}{3}=y_{+}(0)=\frac{1}{\sqrt{c}} \quad \Rightarrow \quad c=9
$$

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y^{\prime}+y+e^{2 x} y^{3}=0, \quad y(0)=\frac{1}{3}
$$

Solution: Recall: $v=\frac{1}{y^{2}}$ and $\left(e^{-2 x} v\right)^{\prime}=2$.

$$
\begin{gathered}
e^{-2 x} v=2 x+c \Rightarrow v(x)=(2 x+c) e^{2 x} \Rightarrow \frac{1}{y^{2}}=(2 x+c) e^{2 x} \\
y^{2}=\frac{1}{e^{2} x(2 x+c)} \Rightarrow y_{ \pm}(x)= \pm \frac{e^{-x}}{\sqrt{2 x+c}}
\end{gathered}
$$

The initial condition $y(0)=1 / 3>0$ implies: Choose y_{+}.

$$
\frac{1}{3}=y_{+}(0)=\frac{1}{\sqrt{c}} \Rightarrow c=9 \quad \Rightarrow \quad y(x)=\frac{e^{-x}}{\sqrt{2 x+9}}
$$

First order differential equations.

Example

Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.

First order differential equations.

Example
Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.
Solution: Re-write the equation is a more organized way,

First order differential equations.

Example

Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.
Solution: Re-write the equation is a more organized way,

$$
\left[2 x^{2} y+2 x\right] y^{\prime}+\left[2 x y^{2}+2 y\right]=0
$$

First order differential equations.

Example

Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.
Solution: Re-write the equation is a more organized way,

$$
\left[2 x^{2} y+2 x\right] y^{\prime}+\left[2 x y^{2}+2 y\right]=0
$$

$$
N=\left[2 x^{2} y+2 x\right]
$$

First order differential equations.

Example

Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.
Solution: Re-write the equation is a more organized way,

$$
\begin{aligned}
& {\left[2 x^{2} y+2 x\right] y^{\prime}+\left[2 x y^{2}+2 y\right]=0} \\
& N=\left[2 x^{2} y+2 x\right] \quad \Rightarrow \quad \partial_{x} N=4 x y+2 .
\end{aligned}
$$

First order differential equations.

Example

Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.
Solution: Re-write the equation is a more organized way,

$$
\begin{aligned}
& \quad\left[2 x^{2} y+2 x\right] y^{\prime}+\left[2 x y^{2}+2 y\right]=0 \\
& N=\left[2 x^{2} y+2 x\right] \quad \Rightarrow \quad \partial_{x} N=4 x y+2 . \\
& M=\left[2 x y^{2}+2 y\right]
\end{aligned}
$$

First order differential equations.

Example

Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.
Solution: Re-write the equation is a more organized way,

$$
\begin{aligned}
& \quad\left[2 x^{2} y+2 x\right] y^{\prime}+\left[2 x y^{2}+2 y\right]=0 . \\
& N=\left[2 x^{2} y+2 x\right] \quad \Rightarrow \quad \partial_{x} N=4 x y+2 . \\
& M=\left[2 x y^{2}+2 y\right] \quad \Rightarrow \quad \partial_{y} M=4 x y+2 .
\end{aligned}
$$

First order differential equations.

Example

Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.
Solution: Re-write the equation is a more organized way,

$$
\left.\begin{array}{c}
{\left[2 x^{2} y+2 x\right] y^{\prime}+\left[2 x y^{2}+2 y\right]=0 .} \\
N=\left[2 x^{2} y+2 x\right] \quad \Rightarrow \quad \partial_{x} N=4 x y+2 . \\
M=\left[2 x y^{2}+2 y\right] \quad \Rightarrow \quad \partial_{y} M=4 x y+2 .
\end{array}\right\} \Rightarrow \partial_{x} N=\partial_{y} M .
$$

First order differential equations.

Example

Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.
Solution: Re-write the equation is a more organized way,

$$
\left.\begin{array}{c}
{\left[2 x^{2} y+2 x\right] y^{\prime}+\left[2 x y^{2}+2 y\right]=0} \\
N=\left[2 x^{2} y+2 x\right] \quad \Rightarrow \quad \partial_{x} N=4 x y+2 . \\
M=\left[2 x y^{2}+2 y\right] \quad \Rightarrow \quad \partial_{y} M=4 x y+2 .
\end{array}\right\} \Rightarrow \partial_{x} N=\partial_{y} M .
$$

The equation is exact.

First order differential equations.

Example

Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.
Solution: Re-write the equation is a more organized way,

$$
\left.\begin{array}{c}
{\left[2 x^{2} y+2 x\right] y^{\prime}+\left[2 x y^{2}+2 y\right]=0} \\
N=\left[2 x^{2} y+2 x\right] \quad \Rightarrow \quad \partial_{x} N=4 x y+2 . \\
M=\left[2 x y^{2}+2 y\right] \quad \Rightarrow \quad \partial_{y} M=4 x y+2 .
\end{array}\right\} \Rightarrow \partial_{x} N=\partial_{y} M .
$$

The equation is exact. There exists a potential function ψ with

First order differential equations.

Example

Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.
Solution: Re-write the equation is a more organized way,

$$
\left.\begin{array}{c}
{\left[2 x^{2} y+2 x\right] y^{\prime}+\left[2 x y^{2}+2 y\right]=0} \\
N=\left[2 x^{2} y+2 x\right] \quad \Rightarrow \quad \partial_{x} N=4 x y+2 . \\
M=\left[2 x y^{2}+2 y\right] \quad \Rightarrow \quad \partial_{y} M=4 x y+2 .
\end{array}\right\} \Rightarrow \partial_{x} N=\partial_{y} M .
$$

The equation is exact. There exists a potential function ψ with

$$
\partial_{y} \psi=N,
$$

First order differential equations.

Example

Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.
Solution: Re-write the equation is a more organized way,

$$
\left.\begin{array}{c}
{\left[2 x^{2} y+2 x\right] y^{\prime}+\left[2 x y^{2}+2 y\right]=0} \\
N=\left[2 x^{2} y+2 x\right] \quad \Rightarrow \quad \partial_{x} N=4 x y+2 . \\
M=\left[2 x y^{2}+2 y\right] \quad \Rightarrow \quad \partial_{y} M=4 x y+2 .
\end{array}\right\} \Rightarrow \partial_{x} N=\partial_{y} M .
$$

The equation is exact. There exists a potential function ψ with

$$
\partial_{y} \psi=N, \quad \partial_{x} \psi=M .
$$

First order differential equations.

Example

Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.
Solution: Re-write the equation is a more organized way,

$$
\left.\begin{array}{c}
{\left[2 x^{2} y+2 x\right] y^{\prime}+\left[2 x y^{2}+2 y\right]=0} \\
N=\left[2 x^{2} y+2 x\right] \quad \Rightarrow \quad \partial_{x} N=4 x y+2 . \\
M=\left[2 x y^{2}+2 y\right] \quad \Rightarrow \quad \partial_{y} M=4 x y+2 .
\end{array}\right\} \Rightarrow \partial_{x} N=\partial_{y} M .
$$

The equation is exact. There exists a potential function ψ with

$$
\begin{aligned}
& \quad \partial_{y} \psi=N, \quad \partial_{x} \psi=M . \\
& \partial_{y} \psi=2 x^{2} y+2 x
\end{aligned}
$$

First order differential equations.

Example

Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.
Solution: Re-write the equation is a more organized way,

$$
\left.\begin{array}{c}
{\left[2 x^{2} y+2 x\right] y^{\prime}+\left[2 x y^{2}+2 y\right]=0} \\
N=\left[2 x^{2} y+2 x\right] \quad \Rightarrow \quad \partial_{x} N=4 x y+2 . \\
M=\left[2 x y^{2}+2 y\right] \quad \Rightarrow \quad \partial_{y} M=4 x y+2 .
\end{array}\right\} \Rightarrow \partial_{x} N=\partial_{y} M .
$$

The equation is exact. There exists a potential function ψ with

$$
\begin{gathered}
\partial_{y} \psi=N, \quad \partial_{x} \psi=M . \\
\partial_{y} \psi=2 x^{2} y+2 x \quad \Rightarrow \quad \psi(x, y)=x^{2} y^{2}+2 x y+g(x)
\end{gathered}
$$

First order differential equations.

Example

Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.
Solution: Re-write the equation is a more organized way,

$$
\left.\begin{array}{c}
{\left[2 x^{2} y+2 x\right] y^{\prime}+\left[2 x y^{2}+2 y\right]=0} \\
N=\left[2 x^{2} y+2 x\right] \quad \Rightarrow \quad \partial_{x} N=4 x y+2 . \\
M=\left[2 x y^{2}+2 y\right] \quad \Rightarrow \quad \partial_{y} M=4 x y+2 .
\end{array}\right\} \Rightarrow \partial_{x} N=\partial_{y} M .
$$

The equation is exact. There exists a potential function ψ with

$$
\begin{gathered}
\partial_{y} \psi=N, \quad \partial_{x} \psi=M . \\
\partial_{y} \psi=2 x^{2} y+2 x \quad \Rightarrow \quad \psi(x, y)=x^{2} y^{2}+2 x y+g(x) \\
2 x y^{2}+2 y+g^{\prime}(x)=\partial_{x} \psi
\end{gathered}
$$

First order differential equations.

Example

Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.
Solution: Re-write the equation is a more organized way,

$$
\left.\begin{array}{c}
{\left[2 x^{2} y+2 x\right] y^{\prime}+\left[2 x y^{2}+2 y\right]=0} \\
N=\left[2 x^{2} y+2 x\right] \quad \Rightarrow \quad \partial_{x} N=4 x y+2 . \\
M=\left[2 x y^{2}+2 y\right] \quad \Rightarrow \quad \partial_{y} M=4 x y+2 .
\end{array}\right\} \Rightarrow \partial_{x} N=\partial_{y} M .
$$

The equation is exact. There exists a potential function ψ with

$$
\begin{gathered}
\partial_{y} \psi=N, \quad \partial_{x} \psi=M . \\
\partial_{y} \psi=2 x^{2} y+2 x \quad \Rightarrow \quad \psi(x, y)=x^{2} y^{2}+2 x y+g(x) \\
2 x y^{2}+2 y+g^{\prime}(x)=\partial_{x} \psi=M
\end{gathered}
$$

First order differential equations.

Example

Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.
Solution: Re-write the equation is a more organized way,

$$
\left.\begin{array}{c}
{\left[2 x^{2} y+2 x\right] y^{\prime}+\left[2 x y^{2}+2 y\right]=0} \\
N=\left[2 x^{2} y+2 x\right] \quad \Rightarrow \quad \partial_{x} N=4 x y+2 . \\
M=\left[2 x y^{2}+2 y\right] \quad \Rightarrow \quad \partial_{y} M=4 x y+2 .
\end{array}\right\} \Rightarrow \partial_{x} N=\partial_{y} M .
$$

The equation is exact. There exists a potential function ψ with

$$
\begin{gathered}
\partial_{y} \psi=N, \quad \partial_{x} \psi=M . \\
\partial_{y} \psi=2 x^{2} y+2 x \quad \Rightarrow \quad \psi(x, y)=x^{2} y^{2}+2 x y+g(x) \\
2 x y^{2}+2 y+g^{\prime}(x)=\partial_{x} \psi=M=2 x y^{2}+2 y
\end{gathered}
$$

First order differential equations.

Example

Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.
Solution: Re-write the equation is a more organized way,

$$
\left.\begin{array}{c}
{\left[2 x^{2} y+2 x\right] y^{\prime}+\left[2 x y^{2}+2 y\right]=0} \\
N=\left[2 x^{2} y+2 x\right] \quad \Rightarrow \quad \partial_{x} N=4 x y+2 . \\
M=\left[2 x y^{2}+2 y\right] \quad \Rightarrow \quad \partial_{y} M=4 x y+2 .
\end{array}\right\} \Rightarrow \partial_{x} N=\partial_{y} M .
$$

The equation is exact. There exists a potential function ψ with

$$
\begin{gathered}
\partial_{y} \psi=N, \quad \partial_{x} \psi=M . \\
\partial_{y} \psi=2 x^{2} y+2 x \Rightarrow \psi(x, y)=x^{2} y^{2}+2 x y+g(x) . \\
2 x y^{2}+2 y+g^{\prime}(x)=\partial_{x} \psi=M=2 x y^{2}+2 y \Rightarrow g^{\prime}(x)=0 .
\end{gathered}
$$

First order differential equations.

Example

Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.
Solution: Re-write the equation is a more organized way,

$$
\left.\begin{array}{c}
{\left[2 x^{2} y+2 x\right] y^{\prime}+\left[2 x y^{2}+2 y\right]=0} \\
N=\left[2 x^{2} y+2 x\right] \quad \Rightarrow \quad \partial_{x} N=4 x y+2 . \\
M=\left[2 x y^{2}+2 y\right] \quad \Rightarrow \quad \partial_{y} M=4 x y+2 .
\end{array}\right\} \Rightarrow \partial_{x} N=\partial_{y} M .
$$

The equation is exact. There exists a potential function ψ with

$$
\begin{gathered}
\partial_{y} \psi=N, \quad \partial_{x} \psi=M . \\
\partial_{y} \psi=2 x^{2} y+2 x \Rightarrow \quad \psi(x, y)=x^{2} y^{2}+2 x y+g(x) . \\
2 x y^{2}+2 y+g^{\prime}(x)=\partial_{x} \psi=M=2 x y^{2}+2 y \Rightarrow g^{\prime}(x)=0 . \\
\psi(x, y)=x^{2} y^{2}+2 x y+c
\end{gathered}
$$

First order differential equations.

Example

Find all solutions of $2 x y^{2}+2 y+2 x^{2} y y^{\prime}+2 x y^{\prime}=0$.
Solution: Re-write the equation is a more organized way,

$$
\left.\begin{array}{c}
{\left[2 x^{2} y+2 x\right] y^{\prime}+\left[2 x y^{2}+2 y\right]=0} \\
N=\left[2 x^{2} y+2 x\right] \quad \Rightarrow \quad \partial_{x} N=4 x y+2 . \\
M=\left[2 x y^{2}+2 y\right] \quad \Rightarrow \quad \partial_{y} M=4 x y+2 .
\end{array}\right\} \Rightarrow \partial_{x} N=\partial_{y} M .
$$

The equation is exact. There exists a potential function ψ with

$$
\begin{gathered}
\partial_{y} \psi=N, \quad \partial_{x} \psi=M \\
\partial_{y} \psi=2 x^{2} y+2 x \Rightarrow \psi(x, y)=x^{2} y^{2}+2 x y+g(x) \\
2 x y^{2}+2 y+g^{\prime}(x)=\partial_{x} \psi=M=2 x y^{2}+2 y \Rightarrow g^{\prime}(x)=0 \\
\psi(x, y)=x^{2} y^{2}+2 x y+c, \quad x^{2} y^{2}(x)+2 x y(x)+c=0 .
\end{gathered}
$$

