Review for Final Exam.

- Exam is cumulative.
- Heat equation not included.
- 15 problems.
- Two and half hours.
- Fourier Series expansions (Chptr.6).
- Eigenvalue-Eigenfunction BVP (Chptr. 6).
- Systems of linear Equations (Chptr. 5).
- Laplace transforms (Chptr. 4).
- Second order linear equations (Chptr. 2).
- ▶ First order differential equations (Chptr. 1).

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

Example

Graph the odd-periodic extension of f(x) = 1 for $x \in (-1, 0)$, and then find the Fourier Series of this extension.

Example

Graph the odd-periodic extension of f(x) = 1 for $x \in (-1, 0)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].$$

Example

Graph the odd-periodic extension of f(x) = 1 for $x \in (-1, 0)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Since f is odd and periodic,

Example

Graph the odd-periodic extension of f(x) = 1 for $x \in (-1, 0)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Since f is odd and periodic, then the Fourier Series is a Sine Series,

Example

Graph the odd-periodic extension of f(x) = 1 for $x \in (-1, 0)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

Graph the odd-periodic extension of f(x) = 1 for $x \in (-1, 0)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx$$

Example

Graph the odd-periodic extension of f(x) = 1 for $x \in (-1, 0)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].$$

Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_n = 0$.

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx = \frac{2}{L} \int_{0}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx.$$

Example

Graph the odd-periodic extension of f(x) = 1 for $x \in (-1, 0)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].$$

Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_n = 0$.

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx = \frac{2}{L} \int_{0}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx.$$
$$b_n = 2 \int_{0}^{1} (-1) \sin(n\pi x) dx$$

Example

Graph the odd-periodic extension of f(x) = 1 for $x \in (-1, 0)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].$$

Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_n = 0$.

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx = \frac{2}{L} \int_{0}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx.$$
$$b_n = 2 \int_{0}^{1} (-1) \sin(n\pi x) dx = (-2) \frac{(-1)}{n\pi} \cos(n\pi x) \Big|_{0}^{1},$$

Example

Graph the odd-periodic extension of f(x) = 1 for $x \in (-1, 0)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].$$

Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_n = 0$.

$$b_{n} = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx = \frac{2}{L} \int_{0}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx.$$
$$b_{n} = 2 \int_{0}^{1} (-1) \sin(n\pi x) dx = (-2) \frac{(-1)}{n\pi} \cos(n\pi x) \Big|_{0}^{1},$$
$$b_{n} = \frac{2}{n\pi} [\cos(n\pi) - 1]$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Graph the odd-periodic extension of f(x) = 1 for $x \in (-1, 0)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].$$

Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_n = 0$.

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx = \frac{2}{L} \int_{0}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx.$$

$$b_n = 2 \int_{0}^{1} (-1) \sin(n\pi x) dx = (-2) \frac{(-1)}{n\pi} \cos(n\pi x) \Big|_{0}^{1},$$

$$b_n = \frac{2}{n\pi} [\cos(n\pi) - 1] \quad \Rightarrow \quad b_n = \frac{2}{n\pi} [(-1)^n - 1].$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Example

Graph the odd-periodic extension of f(x) = 1 for $x \in (-1, 0)$, and then find the Fourier Series of this extension.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Solution: Recall:
$$b_n = \frac{2}{n\pi} \left[(-1)^n - 1 \right].$$

Example

Graph the odd-periodic extension of f(x) = 1 for $x \in (-1, 0)$, and then find the Fourier Series of this extension.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Solution: Recall:
$$b_n = \frac{2}{n\pi} [(-1)^n - 1].$$

If n = 2k,

Example

Graph the odd-periodic extension of f(x) = 1 for $x \in (-1, 0)$, and then find the Fourier Series of this extension.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Solution: Recall:
$$b_n = \frac{2}{n\pi} [(-1)^n - 1].$$

If
$$n = 2k$$
, then $b_{2k} = \frac{2}{2k\pi} \left[(-1)^{2k} - 1 \right]$

Example

Graph the odd-periodic extension of f(x) = 1 for $x \in (-1, 0)$, and then find the Fourier Series of this extension.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Solution: Recall:
$$b_n = \frac{2}{n\pi} [(-1)^n - 1].$$

If
$$n = 2k$$
, then $b_{2k} = \frac{2}{2k\pi} \left[(-1)^{2k} - 1 \right] = 0.$

Example

Graph the odd-periodic extension of f(x) = 1 for $x \in (-1, 0)$, and then find the Fourier Series of this extension.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Solution: Recall:
$$b_n = \frac{2}{n\pi} [(-1)^n - 1].$$

If
$$n = 2k$$
, then $b_{2k} = \frac{2}{2k\pi} \left[(-1)^{2k} - 1 \right] = 0.$

If n = 2k - 1,

Example

Graph the odd-periodic extension of f(x) = 1 for $x \in (-1, 0)$, and then find the Fourier Series of this extension.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Solution: Recall:
$$b_n = \frac{2}{n\pi} [(-1)^n - 1].$$

If
$$n = 2k$$
, then $b_{2k} = \frac{2}{2k\pi} \left[(-1)^{2k} - 1 \right] = 0.$

If
$$n = 2k - 1$$
,
 $b_{(2k-1)} = \frac{2}{(2k-1)\pi} \left[(-1)^{2k-1} - 1 \right]$

Example

Graph the odd-periodic extension of f(x) = 1 for $x \in (-1, 0)$, and then find the Fourier Series of this extension.

Solution: Recall:
$$b_n = \frac{2}{n\pi} [(-1)^n - 1].$$

If
$$n = 2k$$
, then $b_{2k} = \frac{2}{2k\pi} \left[(-1)^{2k} - 1 \right] = 0.$

If
$$n = 2k - 1$$
,
 $b_{(2k-1)} = \frac{2}{(2k-1)\pi} \left[(-1)^{2k-1} - 1 \right] = -\frac{4}{(2k-1)\pi}$

Example

Graph the odd-periodic extension of f(x) = 1 for $x \in (-1, 0)$, and then find the Fourier Series of this extension.

Solution: Recall:
$$b_n = \frac{2}{n\pi} [(-1)^n - 1].$$

If
$$n = 2k$$
, then $b_{2k} = \frac{2}{2k\pi} \left[(-1)^{2k} - 1 \right] = 0.$

If
$$n = 2k - 1$$
,
 $b_{(2k-1)} = \frac{2}{(2k-1)\pi} \left[(-1)^{2k-1} - 1 \right] = -\frac{4}{(2k-1)\pi}$

We conclude:
$$f(x) = -\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{1}{(2k-1)} \sin[(2k-1)\pi x].$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Graph the odd-periodic extension of f(x) = 2 - x for $x \in (0, 2)$, and then find the Fourier Series of this extension.

Example

Graph the odd-periodic extension of f(x) = 2 - x for $x \in (0, 2)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].$$

Example

Graph the odd-periodic extension of f(x) = 2 - x for $x \in (0, 2)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Since f is odd and periodic,

Example

Graph the odd-periodic extension of f(x) = 2 - x for $x \in (0, 2)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Since f is odd and periodic, then the Fourier Series is a Sine Series,

Example

Graph the odd-periodic extension of f(x) = 2 - x for $x \in (0, 2)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Graph the odd-periodic extension of f(x) = 2 - x for $x \in (0, 2)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx$$

Example

Graph the odd-periodic extension of f(x) = 2 - x for $x \in (0, 2)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx = \frac{2}{L} \int_{0}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx,$$

Example

Graph the odd-periodic extension of f(x) = 2 - x for $x \in (0, 2)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].$$

Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_n = 0$.

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx = \frac{2}{L} \int_{0}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx, \ L = 2,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Graph the odd-periodic extension of f(x) = 2 - x for $x \in (0, 2)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].$$

Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_n = 0$.

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx = \frac{2}{L} \int_{0}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx, \ L = 2,$$

$$b_n = \int_0^2 (2-x) \sin\left(\frac{n\pi x}{2}\right) dx.a$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Graph the odd-periodic extension of f(x) = 2 - x for $x \in (0, 2)$, and then find the Fourier Series of this extension.

Solution:
$$b_n = 2 \int_0^2 \sin\left(\frac{n\pi x}{2}\right) dx - \int_0^2 x \sin\left(\frac{n\pi x}{2}\right) dx.$$

Example

Graph the odd-periodic extension of f(x) = 2 - x for $x \in (0, 2)$, and then find the Fourier Series of this extension.

Solution:
$$b_n = 2 \int_0^2 \sin\left(\frac{n\pi x}{2}\right) dx - \int_0^2 x \sin\left(\frac{n\pi x}{2}\right) dx.$$
$$\int \sin\left(\frac{n\pi x}{2}\right) dx = \frac{-2}{n\pi} \cos\left(\frac{n\pi x}{2}\right),$$

Example

Graph the odd-periodic extension of f(x) = 2 - x for $x \in (0, 2)$, and then find the Fourier Series of this extension.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Solution:
$$b_n = 2 \int_0^2 \sin\left(\frac{n\pi x}{2}\right) dx - \int_0^2 x \sin\left(\frac{n\pi x}{2}\right) dx.$$
$$\int \sin\left(\frac{n\pi x}{2}\right) dx = \frac{-2}{n\pi} \cos\left(\frac{n\pi x}{2}\right),$$

The other integral is done by parts,

Example

Graph the odd-periodic extension of f(x) = 2 - x for $x \in (0, 2)$, and then find the Fourier Series of this extension.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Solution:
$$b_n = 2 \int_0^2 \sin\left(\frac{n\pi x}{2}\right) dx - \int_0^2 x \sin\left(\frac{n\pi x}{2}\right) dx.$$
$$\int \sin\left(\frac{n\pi x}{2}\right) dx = \frac{-2}{n\pi} \cos\left(\frac{n\pi x}{2}\right),$$

The other integral is done by parts,

$$I=\int x\sin\Bigl(\frac{n\pi x}{2}\Bigr)\,dx,$$

Example

Graph the odd-periodic extension of f(x) = 2 - x for $x \in (0, 2)$, and then find the Fourier Series of this extension.

Solution:
$$b_n = 2 \int_0^2 \sin\left(\frac{n\pi x}{2}\right) dx - \int_0^2 x \sin\left(\frac{n\pi x}{2}\right) dx.$$
$$\int \sin\left(\frac{n\pi x}{2}\right) dx = \frac{-2}{n\pi} \cos\left(\frac{n\pi x}{2}\right),$$

The other integral is done by parts,

$$I = \int x \sin\left(\frac{n\pi x}{2}\right) dx, \quad \begin{cases} u = x, \quad v' = \sin\left(\frac{n\pi x}{2}\right) \end{cases}$$

Example

Graph the odd-periodic extension of f(x) = 2 - x for $x \in (0, 2)$, and then find the Fourier Series of this extension.

Solution:
$$b_n = 2 \int_0^2 \sin\left(\frac{n\pi x}{2}\right) dx - \int_0^2 x \sin\left(\frac{n\pi x}{2}\right) dx.$$
$$\int \sin\left(\frac{n\pi x}{2}\right) dx = \frac{-2}{n\pi} \cos\left(\frac{n\pi x}{2}\right),$$

The other integral is done by parts,

$$I = \int x \sin\left(\frac{n\pi x}{2}\right) dx, \quad \begin{cases} u = x, \quad v' = \sin\left(\frac{n\pi x}{2}\right) \\ u' = 1, \quad v = -\frac{2}{n\pi} \cos\left(\frac{n\pi x}{2}\right) \end{cases}$$

Example

Graph the odd-periodic extension of f(x) = 2 - x for $x \in (0, 2)$, and then find the Fourier Series of this extension.

Solution:
$$b_n = 2 \int_0^2 \sin\left(\frac{n\pi x}{2}\right) dx - \int_0^2 x \sin\left(\frac{n\pi x}{2}\right) dx.$$
$$\int \sin\left(\frac{n\pi x}{2}\right) dx = \frac{-2}{n\pi} \cos\left(\frac{n\pi x}{2}\right),$$

The other integral is done by parts,

$$I = \int x \sin\left(\frac{n\pi x}{2}\right) dx, \quad \begin{cases} u = x, \quad v' = \sin\left(\frac{n\pi x}{2}\right) \\ u' = 1, \quad v = -\frac{2}{n\pi} \cos\left(\frac{n\pi x}{2}\right) \end{cases}$$

$$I = \frac{-2x}{n\pi} \cos\left(\frac{n\pi x}{2}\right) - \int \left(\frac{-2}{n\pi}\right) \cos\left(\frac{n\pi x}{2}\right) dx.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Example

Graph the odd-periodic extension of f(x) = 2 - x for $x \in (0, 2)$, and then find the Fourier Series of this extension.

Solution:
$$I = \frac{-2x}{n\pi} \cos\left(\frac{n\pi x}{2}\right) - \int \left(\frac{-2}{n\pi}\right) \cos\left(\frac{n\pi x}{2}\right) dx.$$

Example

Graph the odd-periodic extension of f(x) = 2 - x for $x \in (0, 2)$, and then find the Fourier Series of this extension.

Solution:
$$I = \frac{-2x}{n\pi} \cos\left(\frac{n\pi x}{2}\right) - \int \left(\frac{-2}{n\pi}\right) \cos\left(\frac{n\pi x}{2}\right) dx$$
.
 $I = -\frac{2x}{n\pi} \cos\left(\frac{n\pi x}{2}\right) + \left(\frac{2}{n\pi}\right)^2 \sin\left(\frac{n\pi x}{2}\right)$.

Example

Graph the odd-periodic extension of f(x) = 2 - x for $x \in (0, 2)$, and then find the Fourier Series of this extension.

Solution:
$$I = \frac{-2x}{n\pi} \cos\left(\frac{n\pi x}{2}\right) - \int \left(\frac{-2}{n\pi}\right) \cos\left(\frac{n\pi x}{2}\right) dx.$$
$$I = -\frac{2x}{n\pi} \cos\left(\frac{n\pi x}{2}\right) + \left(\frac{2}{n\pi}\right)^2 \sin\left(\frac{n\pi x}{2}\right).$$
So, we get
$$b_n = 2\left[\frac{-2}{n\pi} \cos\left(\frac{n\pi x}{2}\right)\right]\Big|_0^2 + \left[\frac{2x}{n\pi} \cos\left(\frac{n\pi x}{2}\right)\right]\Big|_0^2 - \left(\frac{2}{n\pi}\right)^2 \sin\left(\frac{n\pi x}{2}\right)\Big|_0^2$$

Example

Graph the odd-periodic extension of f(x) = 2 - x for $x \in (0, 2)$, and then find the Fourier Series of this extension.

Solution:
$$I = \frac{-2x}{n\pi} \cos\left(\frac{n\pi x}{2}\right) - \int \left(\frac{-2}{n\pi}\right) \cos\left(\frac{n\pi x}{2}\right) dx.$$
$$I = -\frac{2x}{n\pi} \cos\left(\frac{n\pi x}{2}\right) + \left(\frac{2}{n\pi}\right)^2 \sin\left(\frac{n\pi x}{2}\right).$$
So, we get
$$b_n = 2\left[\frac{-2}{n\pi} \cos\left(\frac{n\pi x}{2}\right)\right]\Big|_0^2 + \left[\frac{2x}{n\pi} \cos\left(\frac{n\pi x}{2}\right)\right]\Big|_0^2 - \left(\frac{2}{n\pi}\right)^2 \sin\left(\frac{n\pi x}{2}\right)\Big|_0^2$$
$$b_n = \frac{-4}{n\pi} \left[\cos(n\pi) - 1\right] + \left[\frac{4}{n\pi} \cos(n\pi) - 0\right]$$

Example

Graph the odd-periodic extension of f(x) = 2 - x for $x \in (0, 2)$, and then find the Fourier Series of this extension.

Solution:
$$I = \frac{-2x}{n\pi} \cos\left(\frac{n\pi x}{2}\right) - \int \left(\frac{-2}{n\pi}\right) \cos\left(\frac{n\pi x}{2}\right) dx.$$
$$I = -\frac{2x}{n\pi} \cos\left(\frac{n\pi x}{2}\right) + \left(\frac{2}{n\pi}\right)^2 \sin\left(\frac{n\pi x}{2}\right).$$
So, we get
$$b_n = 2\left[\frac{-2}{n\pi} \cos\left(\frac{n\pi x}{2}\right)\right]\Big|_0^2 + \left[\frac{2x}{n\pi} \cos\left(\frac{n\pi x}{2}\right)\right]\Big|_0^2 - \left(\frac{2}{n\pi}\right)^2 \sin\left(\frac{n\pi x}{2}\right)\Big|_0^2$$
$$b_n = \frac{-4}{n\pi} [\cos(n\pi) - 1] + \left[\frac{4}{n\pi} \cos(n\pi) - 0\right] \Rightarrow b_n = \frac{4}{n\pi}.$$

Example

Graph the odd-periodic extension of f(x) = 2 - x for $x \in (0, 2)$, and then find the Fourier Series of this extension.

Solution:
$$I = \frac{-2x}{n\pi} \cos\left(\frac{n\pi x}{2}\right) - \int \left(\frac{-2}{n\pi}\right) \cos\left(\frac{n\pi x}{2}\right) dx.$$

 $I = -\frac{2x}{n\pi} \cos\left(\frac{n\pi x}{2}\right) + \left(\frac{2}{n\pi}\right)^2 \sin\left(\frac{n\pi x}{2}\right).$ So, we get
 $b_n = 2\left[\frac{-2}{n\pi} \cos\left(\frac{n\pi x}{2}\right)\right]\Big|_0^2 + \left[\frac{2x}{n\pi} \cos\left(\frac{n\pi x}{2}\right)\right]\Big|_0^2 - \left(\frac{2}{n\pi}\right)^2 \sin\left(\frac{n\pi x}{2}\right)\Big|_0^2$
 $b_n = \frac{-4}{n\pi} \left[\cos(n\pi) - 1\right] + \left[\frac{4}{n\pi} \cos(n\pi) - 0\right] \Rightarrow b_n = \frac{4}{n\pi}.$
We conclude: $f(x) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin\left(\frac{n\pi x}{2}\right).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Graph the even-periodic extension of f(x) = 2 - x for $x \in [0, 2]$, and then find the Fourier Series of this extension.

Example

Graph the even-periodic extension of f(x) = 2 - x for $x \in [0, 2]$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].$$

Example

Graph the even-periodic extension of f(x) = 2 - x for $x \in [0, 2]$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

Since f is even and periodic,

Example

Graph the even-periodic extension of f(x) = 2 - x for $x \in [0, 2]$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

Since f is even and periodic, then the Fourier Series is a Cosine Series,

Example

Graph the even-periodic extension of f(x) = 2 - x for $x \in [0, 2]$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

Example

Graph the even-periodic extension of f(x) = 2 - x for $x \in [0, 2]$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

$$a_0 = \frac{1}{2} \int_{-2}^{2} f(x) \, dx$$

Example

Graph the even-periodic extension of f(x) = 2 - x for $x \in [0, 2]$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].$$

$$a_0 = \frac{1}{2} \int_{-2}^{2} f(x) \, dx = \int_{0}^{2} (2-x) \, dx$$

Example

Graph the even-periodic extension of f(x) = 2 - x for $x \in [0, 2]$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

$$a_0 = \frac{1}{2} \int_{-2}^{2} f(x) \, dx = \int_{0}^{2} (2-x) \, dx = \frac{\text{base x height}}{2}$$

Example

Graph the even-periodic extension of f(x) = 2 - x for $x \in [0, 2]$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].$$

Since f is even and periodic, then the Fourier Series is a Cosine Series, that is, $b_n = 0$.

$$a_0 = \frac{1}{2} \int_{-2}^{2} f(x) \, dx = \int_{0}^{2} (2-x) \, dx = \frac{\text{base x height}}{2} \Rightarrow a_0 = 2.$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

Example

Graph the even-periodic extension of f(x) = 2 - x for $x \in [0, 2]$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].$$

Since f is even and periodic, then the Fourier Series is a Cosine Series, that is, $b_n = 0$.

$$a_{0} = \frac{1}{2} \int_{-2}^{2} f(x) dx = \int_{0}^{2} (2 - x) dx = \frac{\text{base x height}}{2} \Rightarrow a_{0} = 2.$$
$$a_{n} = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

Example

Graph the even-periodic extension of f(x) = 2 - x for $x \in [0, 2]$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].$$

$$a_{0} = \frac{1}{2} \int_{-2}^{2} f(x) dx = \int_{0}^{2} (2 - x) dx = \frac{\text{base x height}}{2} \Rightarrow a_{0} = 2.$$

$$a_{n} = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx = \frac{2}{L} \int_{0}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx,$$

Example

Graph the even-periodic extension of f(x) = 2 - x for $x \in [0, 2]$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].$$

$$a_{0} = \frac{1}{2} \int_{-2}^{2} f(x) dx = \int_{0}^{2} (2 - x) dx = \frac{\text{base x height}}{2} \Rightarrow a_{0} = 2.$$

$$a_{n} = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx = \frac{2}{L} \int_{0}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx, \ L = 2,$$

Example

Graph the even-periodic extension of f(x) = 2 - x for $x \in [0, 2]$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].$$

Since f is even and periodic, then the Fourier Series is a Cosine Series, that is, $b_n = 0$.

$$a_{0} = \frac{1}{2} \int_{-2}^{2} f(x) dx = \int_{0}^{2} (2 - x) dx = \frac{\text{base x height}}{2} \Rightarrow a_{0} = 2.$$

$$a_{n} = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx = \frac{2}{L} \int_{0}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx, \ L = 2,$$

$$a_{n} = \int_{0}^{2} (2 - x) \cos\left(\frac{n\pi x}{2}\right) dx.$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

Example

Graph the even-periodic extension of f(x) = 2 - x for $x \in [0, 2]$, and then find the Fourier Series of this extension.

Solution:
$$a_n = 2 \int_0^2 \cos\left(\frac{n\pi x}{2}\right) dx - \int_0^2 x \cos\left(\frac{n\pi x}{2}\right) dx.$$

Example

Graph the even-periodic extension of f(x) = 2 - x for $x \in [0, 2]$, and then find the Fourier Series of this extension.

Solution:
$$a_n = 2 \int_0^2 \cos\left(\frac{n\pi x}{2}\right) dx - \int_0^2 x \cos\left(\frac{n\pi x}{2}\right) dx.$$
$$\int \cos\left(\frac{n\pi x}{2}\right) dx = \frac{2}{n\pi} \sin\left(\frac{n\pi x}{2}\right),$$

Example

Graph the even-periodic extension of f(x) = 2 - x for $x \in [0, 2]$, and then find the Fourier Series of this extension.

Solution:
$$a_n = 2 \int_0^2 \cos\left(\frac{n\pi x}{2}\right) dx - \int_0^2 x \cos\left(\frac{n\pi x}{2}\right) dx.$$
$$\int \cos\left(\frac{n\pi x}{2}\right) dx = \frac{2}{n\pi} \sin\left(\frac{n\pi x}{2}\right),$$

The other integral is done by parts,

Example

Graph the even-periodic extension of f(x) = 2 - x for $x \in [0, 2]$, and then find the Fourier Series of this extension.

Solution:
$$a_n = 2 \int_0^2 \cos\left(\frac{n\pi x}{2}\right) dx - \int_0^2 x \cos\left(\frac{n\pi x}{2}\right) dx.$$
$$\int \cos\left(\frac{n\pi x}{2}\right) dx = \frac{2}{n\pi} \sin\left(\frac{n\pi x}{2}\right),$$

The other integral is done by parts,

$$I=\int x\cos\Bigl(\frac{n\pi x}{2}\Bigr)\,dx,$$

Example

Graph the even-periodic extension of f(x) = 2 - x for $x \in [0, 2]$, and then find the Fourier Series of this extension.

Solution:
$$a_n = 2 \int_0^2 \cos\left(\frac{n\pi x}{2}\right) dx - \int_0^2 x \cos\left(\frac{n\pi x}{2}\right) dx.$$
$$\int \cos\left(\frac{n\pi x}{2}\right) dx = \frac{2}{n\pi} \sin\left(\frac{n\pi x}{2}\right),$$

The other integral is done by parts,

$$I = \int x \cos\left(\frac{n\pi x}{2}\right) dx, \quad \begin{cases} u = x, \quad v' = \cos\left(\frac{n\pi x}{2}\right) \end{cases}$$

Example

Graph the even-periodic extension of f(x) = 2 - x for $x \in [0, 2]$, and then find the Fourier Series of this extension.

Solution:
$$a_n = 2 \int_0^2 \cos\left(\frac{n\pi x}{2}\right) dx - \int_0^2 x \cos\left(\frac{n\pi x}{2}\right) dx.$$
$$\int \cos\left(\frac{n\pi x}{2}\right) dx = \frac{2}{n\pi} \sin\left(\frac{n\pi x}{2}\right),$$

The other integral is done by parts,

$$I = \int x \cos\left(\frac{n\pi x}{2}\right) dx, \quad \begin{cases} u = x, \quad v' = \cos\left(\frac{n\pi x}{2}\right) \\ u' = 1, \quad v = \frac{2}{n\pi} \sin\left(\frac{n\pi x}{2}\right) \end{cases}$$

Example

Graph the even-periodic extension of f(x) = 2 - x for $x \in [0, 2]$, and then find the Fourier Series of this extension.

Solution:
$$a_n = 2 \int_0^2 \cos\left(\frac{n\pi x}{2}\right) dx - \int_0^2 x \cos\left(\frac{n\pi x}{2}\right) dx.$$
$$\int \cos\left(\frac{n\pi x}{2}\right) dx = \frac{2}{n\pi} \sin\left(\frac{n\pi x}{2}\right),$$

The other integral is done by parts,

$$I = \int x \cos\left(\frac{n\pi x}{2}\right) dx, \quad \begin{cases} u = x, \quad v' = \cos\left(\frac{n\pi x}{2}\right) \\ u' = 1, \quad v = \frac{2}{n\pi} \sin\left(\frac{n\pi x}{2}\right) \end{cases}$$

$$I = \frac{2x}{n\pi} \sin\left(\frac{n\pi x}{2}\right) - \int \frac{2}{n\pi} \sin\left(\frac{n\pi x}{2}\right) dx.$$

Example

Graph the even-periodic extension of f(x) = 2 - x for $x \in [0, 2]$, and then find the Fourier Series of this extension.

Solution: Recall:
$$I = \frac{2x}{n\pi} \sin\left(\frac{n\pi x}{2}\right) - \int \frac{2}{n\pi} \sin\left(\frac{n\pi x}{2}\right) dx.$$

Example

Graph the even-periodic extension of f(x) = 2 - x for $x \in [0, 2]$, and then find the Fourier Series of this extension.

Solution: Recall:
$$I = \frac{2x}{n\pi} \sin\left(\frac{n\pi x}{2}\right) - \int \frac{2}{n\pi} \sin\left(\frac{n\pi x}{2}\right) dx.$$

$$I = \frac{2x}{n\pi} \sin\left(\frac{n\pi x}{2}\right) + \left(\frac{2}{n\pi}\right)^2 \cos\left(\frac{n\pi x}{2}\right).$$

Example

Graph the even-periodic extension of f(x) = 2 - x for $x \in [0, 2]$, and then find the Fourier Series of this extension.

Solution: Recall:
$$I = \frac{2x}{n\pi} \sin\left(\frac{n\pi x}{2}\right) - \int \frac{2}{n\pi} \sin\left(\frac{n\pi x}{2}\right) dx.$$

$$I = \frac{2x}{n\pi} \sin\left(\frac{n\pi x}{2}\right) + \left(\frac{2}{n\pi}\right)^2 \cos\left(\frac{n\pi x}{2}\right).$$
 So, we get

$$a_n = 2\left[\frac{2}{n\pi}\sin\left(\frac{n\pi x}{2}\right)\right]\Big|_0^2 - \left[\frac{2x}{n\pi}\sin\left(\frac{n\pi x}{2}\right)\right]\Big|_0^2 - \left(\frac{2}{n\pi}\right)^2\cos\left(\frac{n\pi x}{2}\right)\Big|_0^2$$

Example

Graph the even-periodic extension of f(x) = 2 - x for $x \in [0, 2]$, and then find the Fourier Series of this extension.

Solution: Recall:
$$I = \frac{2x}{n\pi} \sin\left(\frac{n\pi x}{2}\right) - \int \frac{2}{n\pi} \sin\left(\frac{n\pi x}{2}\right) dx.$$

 $I = \frac{2x}{n\pi} \sin\left(\frac{n\pi x}{2}\right) + \left(\frac{2}{n\pi}\right)^2 \cos\left(\frac{n\pi x}{2}\right).$ So, we get

$$a_n = 2\left[\frac{2}{n\pi}\sin\left(\frac{n\pi x}{2}\right)\right]\Big|_0^2 - \left[\frac{2x}{n\pi}\sin\left(\frac{n\pi x}{2}\right)\right]\Big|_0^2 - \left(\frac{2}{n\pi}\right)^2\cos\left(\frac{n\pi x}{2}\right)\Big|_0^2$$

$$a_n = 0 - 0 - \frac{4}{n^2 \pi^2} [\cos(n\pi) - 1]$$

Example

Graph the even-periodic extension of f(x) = 2 - x for $x \in [0, 2]$, and then find the Fourier Series of this extension.

Solution: Recall:
$$I = \frac{2x}{n\pi} \sin\left(\frac{n\pi x}{2}\right) - \int \frac{2}{n\pi} \sin\left(\frac{n\pi x}{2}\right) dx.$$

 $I = \frac{2x}{n\pi} \sin\left(\frac{n\pi x}{2}\right) + \left(\frac{2}{n\pi}\right)^2 \cos\left(\frac{n\pi x}{2}\right).$ So, we get

$$a_n = 2\left[\frac{2}{n\pi}\sin\left(\frac{n\pi x}{2}\right)\right]\Big|_0^2 - \left[\frac{2x}{n\pi}\sin\left(\frac{n\pi x}{2}\right)\right]\Big|_0^2 - \left(\frac{2}{n\pi}\right)^2\cos\left(\frac{n\pi x}{2}\right)\Big|_0^2$$

$$a_n = 0 - 0 - \frac{4}{n^2 \pi^2} [\cos(n\pi) - 1] \quad \Rightarrow \quad a_n = \frac{4}{n^2 \pi^2} [1 - (-1)^n].$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三臣 - のへで

Example

Graph the even-periodic extension of f(x) = 2 - x for $x \in [0, 2]$, and then find the Fourier Series of this extension.

Solution: Recall: $b_n = 0$, $a_0 = 2$, $a_n = \frac{4}{n^2 \pi^2} [1 - (-1)^n]$.

Example

Graph the even-periodic extension of f(x) = 2 - x for $x \in [0, 2]$, and then find the Fourier Series of this extension.

- ロ ト - 4 回 ト - 4 □ - 4

Solution: Recall: $b_n = 0$, $a_0 = 2$, $a_n = \frac{4}{n^2 \pi^2} [1 - (-1)^n]$.

If n = 2k,

Example

Graph the even-periodic extension of f(x) = 2 - x for $x \in [0, 2]$, and then find the Fourier Series of this extension.

Solution: Recall: $b_n = 0$, $a_0 = 2$, $a_n = \frac{4}{n^2 \pi^2} [1 - (-1)^n]$.

If
$$n = 2k$$
, then $a_{2k} = \frac{4}{(2k)^2 \pi^2} \left[1 - (-1)^{2k} \right]$

Example

Graph the even-periodic extension of f(x) = 2 - x for $x \in [0, 2]$, and then find the Fourier Series of this extension.

Solution: Recall: $b_n = 0$, $a_0 = 2$, $a_n = \frac{4}{n^2 \pi^2} [1 - (-1)^n]$.

If
$$n = 2k$$
, then $a_{2k} = \frac{4}{(2k)^2 \pi^2} \left[1 - (-1)^{2k} \right] = 0.$

Example

Graph the even-periodic extension of f(x) = 2 - x for $x \in [0, 2]$, and then find the Fourier Series of this extension.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Solution: Recall: $b_n = 0$, $a_0 = 2$, $a_n = \frac{4}{n^2 \pi^2} [1 - (-1)^n]$.

If
$$n = 2k$$
, then $a_{2k} = \frac{4}{(2k)^2 \pi^2} \left[1 - (-1)^{2k} \right] = 0.$

If n = 2k - 1,

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of f(x) = 2 - x for $x \in [0, 2]$, and then find the Fourier Series of this extension.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Solution: Recall:
$$b_n = 0$$
, $a_0 = 2$, $a_n = \frac{4}{n^2 \pi^2} [1 - (-1)^n]$.

If
$$n = 2k$$
, then $a_{2k} = \frac{4}{(2k)^2 \pi^2} \left[1 - (-1)^{2k} \right] = 0.$

If n = 2k - 1, then we obtain $a_{(2k-1)} = \frac{4}{(2k-1)^2 \pi^2} \left[1 - (-1)^{2k-1}\right]$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of f(x) = 2 - x for $x \in [0, 2]$, and then find the Fourier Series of this extension.

8

Solution: Recall: $b_n = 0$, $a_0 = 2$, $a_n = \frac{4}{n^2 \pi^2} [1 - (-1)^n]$.

If
$$n = 2k$$
, then $a_{2k} = \frac{4}{(2k)^2 \pi^2} \left[1 - (-1)^{2k} \right] = 0.$

If n = 2k - 1, then we obtain $a_{(2k-1)} = \frac{4}{(2k-1)^{2k-1}} [1 - (-1)^{2k-1}] = -$

$$A_{(2k-1)} = \frac{1}{(2k-1)^2 \pi^2} \begin{bmatrix} 1 - (-1) \end{bmatrix} = \frac{1}{(2k-1)^2 \pi^2}$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of f(x) = 2 - x for $x \in [0, 2]$, and then find the Fourier Series of this extension.

Solution: Recall:
$$b_n = 0$$
, $a_0 = 2$, $a_n = \frac{4}{n^2 \pi^2} [1 - (-1)^n]$.

If
$$n = 2k$$
, then $a_{2k} = \frac{4}{(2k)^2 \pi^2} \left[1 - (-1)^{2k} \right] = 0.$

If n = 2k - 1, then we obtain $a_{(2k-1)} = \frac{4}{(2k-1)^2 \pi^2} \left[1 - (-1)^{2k-1} \right] = \frac{8}{(2k-1)^2 \pi^2}.$ We conclude: $f(x) = 1 + \frac{8}{\pi^2} \sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} \cos\left(\frac{(2k-1)\pi x}{2}\right). \triangleleft$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Review for Final Exam.

- Fourier Series expansions (Chptr.6).
- ► Eigenvalue-Eigenfunction BVP (Chptr. 6).
- Systems of linear Equations (Chptr. 5).
- Laplace transforms (Chptr. 4).
- Second order linear equations (Chptr. 2).
- First order differential equations (Chptr. 1).

Example

Find the positive eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y(8) = 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Find the positive eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y(8) = 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Solution: Since $\lambda > 0$,

Example

Find the positive eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y(8) = 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Solution: Since $\lambda > 0$, introduce $\lambda = \mu^2$,

Find the positive eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y(8) = 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Solution: Since $\lambda > 0$, introduce $\lambda = \mu^2$, with $\mu > 0$.

Find the positive eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y(8) = 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solution: Since $\lambda > 0$, introduce $\lambda = \mu^2$, with $\mu > 0$.

 $y(x) = e^{rx}$ implies that r is solution of

Find the positive eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y(8) = 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solution: Since $\lambda > 0$, introduce $\lambda = \mu^2$, with $\mu > 0$.

 $y(x) = e^{rx}$ implies that r is solution of

$$p(r)=r^2+\mu^2=0$$

Find the positive eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y(8) = 0$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Solution: Since $\lambda > 0$, introduce $\lambda = \mu^2$, with $\mu > 0$.

 $y(x) = e^{rx}$ implies that r is solution of $p(r) = r^2 + \mu^2 = 0 \implies r_+ = \pm \mu i.$

Find the positive eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y(8) = 0$.

Solution: Since $\lambda > 0$, introduce $\lambda = \mu^2$, with $\mu > 0$.

 $y(x) = e^{rx}$ implies that r is solution of $p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu i.$

The general solution is $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$.

Find the positive eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y(8) = 0$.

Solution: Since $\lambda > 0$, introduce $\lambda = \mu^2$, with $\mu > 0$.

 $y(x)=e^{rx}$ implies that r is solution of $p(r)=r^2+\mu^2=0 \quad \Rightarrow \quad r_\pm=\pm\mu i.$

The general solution is $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$.

The boundary conditions imply:

$$0 = y(0)$$

Find the positive eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y(8) = 0$.

Solution: Since $\lambda > 0$, introduce $\lambda = \mu^2$, with $\mu > 0$.

 $y(x)=e^{rx}$ implies that r is solution of $p(r)=r^2+\mu^2=0 \quad \Rightarrow \quad r_\pm=\pm\mu i.$

The general solution is $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$.

The boundary conditions imply:

$$0=y(0)=c_1$$

Find the positive eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y(8) = 0$.

Solution: Since $\lambda > 0$, introduce $\lambda = \mu^2$, with $\mu > 0$.

$$y(x)=e^{rx}$$
 implies that r is solution of $p(r)=r^2+\mu^2=0 \quad \Rightarrow \quad r_\pm=\pm\mu i.$

The general solution is $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$. The boundary conditions imply:

$$0 = y(0) = c_1 \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x).$$

Find the positive eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y(8) = 0$.

Solution: Since $\lambda > 0$, introduce $\lambda = \mu^2$, with $\mu > 0$.

$$y(x)=e^{rx}$$
 implies that r is solution of $p(r)=r^2+\mu^2=0 \quad \Rightarrow \quad r_\pm=\pm\mu i.$

The general solution is $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$. The boundary conditions imply:

$$0 = y(0) = c_1 \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x).$$
$$0 = y(8) = c_2 \sin(\mu 8),$$

Find the positive eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y(8) = 0$.

Solution: Since $\lambda > 0$, introduce $\lambda = \mu^2$, with $\mu > 0$.

$$y(x)=e^{rx}$$
 implies that r is solution of $p(r)=r^2+\mu^2=0 \quad \Rightarrow \quad r_\pm=\pm\mu i.$

The general solution is $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$. The boundary conditions imply:

$$0 = y(0) = c_1 \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x).$$
$$0 = y(8) = c_2 \sin(\mu 8), \quad c_2 \neq 0$$

Find the positive eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y(8) = 0$.

Solution: Since $\lambda > 0$, introduce $\lambda = \mu^2$, with $\mu > 0$.

$$y(x)=e^{rx}$$
 implies that r is solution of $p(r)=r^2+\mu^2=0 \quad \Rightarrow \quad r_\pm=\pm\mu i.$

The general solution is $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$. The boundary conditions imply:

$$0 = y(0) = c_1 \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x).$$
$$0 = y(8) = c_2 \sin(\mu 8), \quad c_2 \neq 0 \quad \Rightarrow \quad \sin(\mu 8) = 0.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Find the positive eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y(8) = 0$.

Solution: Since $\lambda > 0$, introduce $\lambda = \mu^2$, with $\mu > 0$.

$$y(x)=e^{rx}$$
 implies that r is solution of $p(r)=r^2+\mu^2=0 \quad \Rightarrow \quad r_\pm=\pm\mu i.$

The general solution is $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$. The boundary conditions imply:

$$0 = y(0) = c_1 \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x).$$
$$0 = y(8) = c_2 \sin(\mu 8), \quad c_2 \neq 0 \quad \Rightarrow \quad \sin(\mu 8) = 0.$$
$$\mu = \frac{n\pi}{8},$$

Find the positive eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y(8) = 0$.

Solution: Since $\lambda > 0$, introduce $\lambda = \mu^2$, with $\mu > 0$.

$$y(x)=e^{rx}$$
 implies that r is solution of $p(r)=r^2+\mu^2=0 \quad \Rightarrow \quad r_\pm=\pm\mu i.$

The general solution is $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$. The boundary conditions imply:

$$0 = y(0) = c_1 \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x).$$
$$0 = y(8) = c_2 \sin(\mu 8), \quad c_2 \neq 0 \quad \Rightarrow \quad \sin(\mu 8) = 0.$$
$$u = \frac{n\pi}{8}, \quad \lambda = \left(\frac{n\pi}{8}\right)^2,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Find the positive eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y(8) = 0$.

Solution: Since $\lambda > 0$, introduce $\lambda = \mu^2$, with $\mu > 0$.

$$y(x)=e^{rx}$$
 implies that r is solution of $p(r)=r^2+\mu^2=0 \quad \Rightarrow \quad r_\pm=\pm\mu i.$

The general solution is $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$. The boundary conditions imply:

$$0 = y(0) = c_1 \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x).$$

$$0 = y(8) = c_2 \sin(\mu 8), \quad c_2 \neq 0 \quad \Rightarrow \quad \sin(\mu 8) = 0.$$

$$\mu = \frac{n\pi}{8}, \quad \lambda = \left(\frac{n\pi}{8}\right)^2, \quad y_n(x) = \sin\left(\frac{n\pi x}{8}\right), \quad n = 1, 2, \dots < 1$$

Example

Find the positive eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y'(8) = 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Find the positive eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y'(8) = 0$.

Solution: The general solution is $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Example

Find the positive eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y'(8) = 0$.

Solution: The general solution is $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$. The boundary conditions imply:

$$0 = y(0)$$

Example

Find the positive eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y'(8) = 0$.

Solution: The general solution is $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$. The boundary conditions imply:

$$0=y(0)=c_1$$

Example

Find the positive eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y'(8) = 0$.

Solution: The general solution is $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$. The boundary conditions imply:

$$0 = y(0) = c_1 \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x).$$

Example

Find the positive eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y'(8) = 0$.

Solution: The general solution is $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$. The boundary conditions imply:

$$0 = y(0) = c_1 \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x).$$
$$0 = y'(8) = c_2 \mu \cos(\mu 8),$$

Example

Find the positive eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y'(8) = 0$.

Solution: The general solution is $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$. The boundary conditions imply:

$$0 = y(0) = c_1 \implies y(x) = c_2 \sin(\mu x).$$

 $0 = y'(8) = c_2 \mu \cos(\mu 8), \quad c_2 \neq 0$

Example

Find the positive eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y'(8) = 0$.

Solution: The general solution is $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$. The boundary conditions imply:

$$0 = y(0) = c_1 \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x).$$
$$0 = y'(8) = c_2 \mu \cos(\mu 8), \quad c_2 \neq 0 \quad \Rightarrow \quad \cos(\mu 8) = 0.$$

Example

Find the positive eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y'(8) = 0$.

Solution: The general solution is $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$. The boundary conditions imply:

$$0 = y(0) = c_1 \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x).$$

$$0 = y'(8) = c_2 \mu \cos(\mu 8), \quad c_2 \neq 0 \quad \Rightarrow \quad \cos(\mu 8) = 0.$$

$$8\mu = (2n+1)\frac{\pi}{2},$$

Example

Find the positive eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y'(8) = 0$.

Solution: The general solution is $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$. The boundary conditions imply:

$$0 = y(0) = c_1 \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x).$$

$$0 = y'(8) = c_2 \mu \cos(\mu 8), \quad c_2 \neq 0 \quad \Rightarrow \quad \cos(\mu 8) = 0.$$

$$8\mu = (2n+1)\frac{\pi}{2}, \quad \Rightarrow \quad \mu = \frac{(2n+1)\pi}{16}.$$

Example

Find the positive eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y'(8) = 0$.

Solution: The general solution is $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$. The boundary conditions imply:

$$0 = y(0) = c_1 \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x).$$

$$0 = y'(8) = c_2 \mu \cos(\mu 8), \quad c_2 \neq 0 \quad \Rightarrow \quad \cos(\mu 8) = 0.$$

$$8\mu = (2n+1)\frac{\pi}{2}, \quad \Rightarrow \quad \mu = \frac{(2n+1)\pi}{16}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Then, for $n = 1, 2, \cdots$ holds

$$\lambda = \left[\frac{(2n+1)\pi}{16}\right]^2,$$

Example

Find the positive eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y'(8) = 0$.

Solution: The general solution is $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$. The boundary conditions imply:

$$0 = y(0) = c_1 \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x).$$

$$0 = y'(8) = c_2 \mu \cos(\mu 8), \quad c_2 \neq 0 \quad \Rightarrow \quad \cos(\mu 8) = 0.$$

$$8\mu = (2n+1)\frac{\pi}{2}, \quad \Rightarrow \quad \mu = \frac{(2n+1)\pi}{16}.$$

Then, for $n = 1, 2, \cdots$ holds

$$\lambda = \left[\frac{(2n+1)\pi}{16}\right]^2, \quad y_n(x) = \sin\left(\frac{(2n+1)\pi x}{16}\right). \qquad \triangleleft$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y'(0) = 0$, $y'(8) = 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0, \quad y'(0) = 0, \quad y'(8) = 0.$$

Solution: Case $\lambda > 0$.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y'(0) = 0$, $y'(8) = 0$.

・ロト・日本・モート モー うへで

Solution: Case $\lambda > 0$. Then, $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0, \quad y'(0) = 0, \quad y'(8) = 0.$$

Solution: Case $\lambda > 0$. Then, $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$. Then, $y'(x) = -c_1 \mu \sin(\mu x) + c_2 \mu \cos(\mu x)$.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y'(0) = 0$, $y'(8) = 0$.

Solution: Case $\lambda > 0$. Then, $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$. Then, $y'(x) = -c_1\mu \sin(\mu x) + c_2\mu \cos(\mu x)$. The B.C. imply: 0 = y'(0)

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y'(0) = 0$, $y'(8) = 0$.

Solution: Case $\lambda > 0$. Then, $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$. Then, $y'(x) = -c_1 \mu \sin(\mu x) + c_2 \mu \cos(\mu x)$. The B.C. imply: $0 = y'(0) = c_2$

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y'(0) = 0$, $y'(8) = 0$.

Solution: Case $\lambda > 0$. Then, $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$. Then, $y'(x) = -c_1 \mu \sin(\mu x) + c_2 \mu \cos(\mu x)$. The B.C. imply: $0 = y'(0) = c_2 \Rightarrow y(x) = c_1 \cos(\mu x)$,

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y'(0) = 0$, $y'(8) = 0$.

Solution: Case $\lambda > 0$. Then, $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$. Then, $y'(x) = -c_1 \mu \sin(\mu x) + c_2 \mu \cos(\mu x)$. The B.C. imply: $0 = y'(0) = c_2 \Rightarrow y(x) = c_1 \cos(\mu x), \ y'(x) = -c_1 \mu \sin(\mu x)$.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y'(0) = 0$, $y'(8) = 0$.

Solution: Case $\lambda > 0$. Then, $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$. Then, $y'(x) = -c_1 \mu \sin(\mu x) + c_2 \mu \cos(\mu x)$. The B.C. imply: $0 = y'(0) = c_2 \Rightarrow y(x) = c_1 \cos(\mu x), y'(x) = -c_1 \mu \sin(\mu x)$. $0 = y'(8) = c_1 \mu \sin(\mu 8)$,

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y'(0) = 0$, $y'(8) = 0$.

Solution: Case $\lambda > 0$. Then, $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$. Then, $y'(x) = -c_1 \mu \sin(\mu x) + c_2 \mu \cos(\mu x)$. The B.C. imply: $0 = y'(0) = c_2 \Rightarrow y(x) = c_1 \cos(\mu x), y'(x) = -c_1 \mu \sin(\mu x)$. $0 = y'(8) = c_1 \mu \sin(\mu 8), \quad c_1 \neq 0$

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y'(0) = 0$, $y'(8) = 0$.

Solution: Case $\lambda > 0$. Then, $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$. Then, $y'(x) = -c_1 \mu \sin(\mu x) + c_2 \mu \cos(\mu x)$. The B.C. imply: $0 = y'(0) = c_2 \Rightarrow y(x) = c_1 \cos(\mu x), y'(x) = -c_1 \mu \sin(\mu x)$. $0 = y'(8) = c_1 \mu \sin(\mu 8), \quad c_1 \neq 0 \Rightarrow \sin(\mu 8) = 0$.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y'(0) = 0$, $y'(8) = 0$.

Solution: Case $\lambda > 0$. Then, $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$. Then, $y'(x) = -c_1 \mu \sin(\mu x) + c_2 \mu \cos(\mu x)$. The B.C. imply: $0 = y'(0) = c_2 \Rightarrow y(x) = c_1 \cos(\mu x), \ y'(x) = -c_1 \mu \sin(\mu x)$. $0 = y'(8) = c_1 \mu \sin(\mu 8), \ c_1 \neq 0 \Rightarrow \sin(\mu 8) = 0$. $8\mu = n\pi$,

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y'(0) = 0$, $y'(8) = 0$.

Solution: Case $\lambda > 0$. Then, $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$. Then, $y'(x) = -c_1\mu \sin(\mu x) + c_2\mu \cos(\mu x)$. The B.C. imply: $0 = y'(0) = c_2 \Rightarrow y(x) = c_1 \cos(\mu x), \ y'(x) = -c_1\mu \sin(\mu x)$. $0 = y'(8) = c_1\mu \sin(\mu 8), \ c_1 \neq 0 \Rightarrow \sin(\mu 8) = 0$. $8\mu = n\pi, \Rightarrow \mu = \frac{n\pi}{8}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0, \quad y'(0) = 0, \quad y'(8) = 0.$$

Solution: Case $\lambda > 0$. Then, $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$. Then, $y'(x) = -c_1 \mu \sin(\mu x) + c_2 \mu \cos(\mu x)$. The B.C. imply: $0 = y'(0) = c_2 \Rightarrow y(x) = c_1 \cos(\mu x), \ y'(x) = -c_1 \mu \sin(\mu x)$. $0 = y'(8) = c_1 \mu \sin(\mu 8), \ c_1 \neq 0 \Rightarrow \sin(\mu 8) = 0$. $8\mu = n\pi, \Rightarrow \mu = \frac{n\pi}{8}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Then, choosing $c_1 = 1$, for $n = 1, 2, \cdots$ holds

$$\lambda = \left(\frac{n\pi}{8}\right)^2,$$

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0, \quad y'(0) = 0, \quad y'(8) = 0.$$

Solution: Case $\lambda > 0$. Then, $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$. Then, $y'(x) = -c_1\mu \sin(\mu x) + c_2\mu \cos(\mu x)$. The B.C. imply: $0 = y'(0) = c_2 \Rightarrow y(x) = c_1 \cos(\mu x), \ y'(x) = -c_1\mu \sin(\mu x)$. $0 = y'(8) = c_1\mu \sin(\mu 8), \ c_1 \neq 0 \Rightarrow \sin(\mu 8) = 0$. $8\mu = n\pi, \Rightarrow \mu = \frac{n\pi}{8}$.

Then, choosing $c_1 = 1$, for $n = 1, 2, \cdots$ holds

$$\lambda = \left(\frac{n\pi}{8}\right)^2, \quad y_n(x) = \cos\left(\frac{n\pi x}{8}\right).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y'(0) = 0$, $y'(8) = 0$.

Solution: The case $\lambda = 0$. The general solution is

$$y(x)=c_1+c_2x.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y'(0) = 0$, $y'(8) = 0$.

Solution: The case $\lambda = 0$. The general solution is

$$y(x)=c_1+c_2x.$$

The B.C. imply:

0 = y'(0)

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y'(0) = 0$, $y'(8) = 0$.

Solution: The case $\lambda = 0$. The general solution is

$$y(x)=c_1+c_2x.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The B.C. imply:

$$0=y'(0)=c_2$$

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y'(0) = 0$, $y'(8) = 0$.

Solution: The case $\lambda = 0$. The general solution is

$$y(x)=c_1+c_2x.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The B.C. imply:

$$0 = y'(0) = c_2 \quad \Rightarrow \quad y(x) = c_1,$$

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y'(0) = 0$, $y'(8) = 0$.

Solution: The case $\lambda = 0$. The general solution is

$$y(x)=c_1+c_2x.$$

The B.C. imply:

$$0 = y'(0) = c_2 \quad \Rightarrow \quad y(x) = c_1, \quad y'(x) = 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y'(0) = 0$, $y'(8) = 0$.

Solution: The case $\lambda = 0$. The general solution is

$$y(x)=c_1+c_2x.$$

The B.C. imply:

$$0 = y'(0) = c_2 \quad \Rightarrow \quad y(x) = c_1, \quad y'(x) = 0.$$
$$0 = y'(8)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y'(0) = 0$, $y'(8) = 0$.

Solution: The case $\lambda = 0$. The general solution is

$$y(x)=c_1+c_2x.$$

The B.C. imply:

$$0 = y'(0) = c_2 \implies y(x) = c_1, \quad y'(x) = 0.$$

 $0 = y'(8) = 0.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y'(0) = 0$, $y'(8) = 0$.

Solution: The case $\lambda = 0$. The general solution is

$$y(x)=c_1+c_2x.$$

The B.C. imply:

$$0 = y'(0) = c_2 \implies y(x) = c_1, \quad y'(x) = 0.$$

 $0 = y'(8) = 0.$

Then, choosing $c_1 = 1$, holds,

$$\lambda = 0$$

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$y'' + \lambda y = 0$$
, $y'(0) = 0$, $y'(8) = 0$.

Solution: The case $\lambda = 0$. The general solution is

$$y(x)=c_1+c_2x.$$

The B.C. imply:

$$0 = y'(0) = c_2 \implies y(x) = c_1, \quad y'(x) = 0.$$

 $0 = y'(8) = 0.$

Then, choosing $c_1 = 1$, holds,

$$\lambda = 0, \qquad y_0(x) = 1.$$

 \triangleleft

Example

Find the solution of the BVP

$$y'' + y = 0, \quad y'(0) = 1, \quad y(\pi/3) = 0.$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Example

Find the solution of the BVP

$$y'' + y = 0$$
, $y'(0) = 1$, $y(\pi/3) = 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Solution: $y(x) = e^{rx}$ implies that r is solution of

Example

Find the solution of the BVP

$$y'' + y = 0$$
, $y'(0) = 1$, $y(\pi/3) = 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Solution: $y(x) = e^{rx}$ implies that r is solution of $p(r) = r^2 + \mu^2 = 0$

Example

Find the solution of the BVP

$$y'' + y = 0$$
, $y'(0) = 1$, $y(\pi/3) = 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Solution: $y(x) = e^{rx}$ implies that r is solution of $p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm i.$

Example

Find the solution of the BVP

$$y'' + y = 0$$
, $y'(0) = 1$, $y(\pi/3) = 0$.

Solution: $y(x) = e^{rx}$ implies that r is solution of $p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm i.$

The general solution is $y(x) = c_1 \cos(x) + c_2 \sin(x)$.

Example

Find the solution of the BVP

$$y'' + y = 0$$
, $y'(0) = 1$, $y(\pi/3) = 0$.

Solution: $y(x) = e^{rx}$ implies that r is solution of $p(r) = r^2 + \mu^2 = 0 \implies r_+ = \pm i.$

The general solution is $y(x) = c_1 \cos(x) + c_2 \sin(x)$. Then, $y'(x) = -c_1 \sin(x) + c_2 \cos(x)$.

Example

Find the solution of the BVP

$$y'' + y = 0$$
, $y'(0) = 1$, $y(\pi/3) = 0$.

Solution: $y(x) = e^{rx}$ implies that r is solution of

$$p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm i.$$

The general solution is $y(x) = c_1 \cos(x) + c_2 \sin(x)$. Then, $y'(x) = -c_1 \sin(x) + c_2 \cos(x)$. The B.C. imply:

$$1 = y'(0)$$

Example

Find the solution of the BVP

$$y'' + y = 0$$
, $y'(0) = 1$, $y(\pi/3) = 0$.

Solution: $y(x) = e^{rx}$ implies that r is solution of

$$p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm i.$$

The general solution is $y(x) = c_1 \cos(x) + c_2 \sin(x)$. Then, $y'(x) = -c_1 \sin(x) + c_2 \cos(x)$. The B.C. imply: $1 = y'(0) = c_2$

Example

Find the solution of the BVP

$$y'' + y = 0$$
, $y'(0) = 1$, $y(\pi/3) = 0$.

Solution: $y(x) = e^{rx}$ implies that r is solution of

$$p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm i.$$

The general solution is $y(x) = c_1 \cos(x) + c_2 \sin(x)$. Then, $y'(x) = -c_1 \sin(x) + c_2 \cos(x)$. The B.C. imply:

$$1 = y'(0) = c_2 \quad \Rightarrow \quad y(x) = c_1 \cos(x) + \sin(x).$$

Example

Find the solution of the BVP

$$y'' + y = 0$$
, $y'(0) = 1$, $y(\pi/3) = 0$.

Solution: $y(x) = e^{rx}$ implies that r is solution of

$$p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm i.$$

The general solution is $y(x) = c_1 \cos(x) + c_2 \sin(x)$.

Then, $y'(x) = -c_1 \sin(x) + c_2 \cos(x)$. The B.C. imply: $1 = y'(0) = c_2 \implies y(x) = c_1 \cos(x) + \sin(x)$.

$$0 = y(\pi/3)$$

Example

Find the solution of the BVP

$$y'' + y = 0$$
, $y'(0) = 1$, $y(\pi/3) = 0$.

Solution: $y(x) = e^{rx}$ implies that r is solution of $p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm i.$

The general solution is $y(x) = c_1 \cos(x) + c_2 \sin(x)$.

Then, $y'(x) = -c_1 \sin(x) + c_2 \cos(x)$. The B.C. imply: $1 = y'(0) = c_2 \implies y(x) = c_1 \cos(x) + \sin(x)$.

$$0 = y(\pi/3) = c_1 \cos(\pi/3) + \sin(\pi/3)$$

Example

Find the solution of the BVP

$$y'' + y = 0$$
, $y'(0) = 1$, $y(\pi/3) = 0$.

Solution: $y(x) = e^{rx}$ implies that r is solution of $p(r) = r^2 + \mu^2 = 0 \implies r_+ = \pm i.$

The general solution is $y(x) = c_1 \cos(x) + c_2 \sin(x)$. Then, $y'(x) = -c_1 \sin(x) + c_2 \cos(x)$. The B.C. imply: $1 = y'(0) = c_2 \Rightarrow y(x) = c_1 \cos(x) + \sin(x)$. $0 = y(\pi/3) = c_1 \cos(\pi/3) + \sin(\pi/3) \Rightarrow c_1 = -\frac{\sin(\pi/3)}{2}$

$$0 = y(\pi/3) = c_1 \cos(\pi/3) + \sin(\pi/3) \Rightarrow c_1 = -\frac{\sin(\pi/3)}{\cos(\pi/3)}$$

(ロ)、(型)、(E)、(E)、 E) の(()

Example

Find the solution of the BVP

$$y'' + y = 0$$
, $y'(0) = 1$, $y(\pi/3) = 0$.

Solution: $y(x) = e^{rx}$ implies that r is solution of $p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm i.$

The general solution is $y(x) = c_1 \cos(x) + c_2 \sin(x)$.

Then, $y'(x) = -c_1 \sin(x) + c_2 \cos(x)$. The B.C. imply: $1 = y'(0) = c_2 \Rightarrow y(x) = c_1 \cos(x) + \sin(x)$. $0 = y(\pi/3) = c_1 \cos(\pi/3) + \sin(\pi/3) \Rightarrow c_1 = -\frac{\sin(\pi/3)}{\cos(\pi/3)}$.

$$c_1 = -\frac{\sqrt{3/2}}{1/2}$$

Example

Find the solution of the BVP

$$y'' + y = 0$$
, $y'(0) = 1$, $y(\pi/3) = 0$.

Solution: $y(x) = e^{rx}$ implies that r is solution of $p(r) = r^2 + \mu^2 = 0 \implies r_{\pm} = \pm i.$

The general solution is $y(x) = c_1 \cos(x) + c_2 \sin(x)$. Then, $y'(x) = -c_1 \sin(x) + c_2 \cos(x)$. The B.C. imply: $1 = y'(0) = c_2 \implies y(x) = c_1 \cos(x) + \sin(x)$.

$$0 = y(\pi/3) = c_1 \cos(\pi/3) + \sin(\pi/3) \implies c_1 = -\frac{\sin(\pi/3)}{\cos(\pi/3)}.$$
$$c_1 = -\frac{\sqrt{3}/2}{1/2} = -\sqrt{3}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

Find the solution of the BVP

$$y'' + y = 0$$
, $y'(0) = 1$, $y(\pi/3) = 0$.

Solution: $y(x) = e^{rx}$ implies that r is solution of $p(r) = r^2 + \mu^2 = 0 \implies r_{\pm} = \pm i.$

The general solution is $y(x) = c_1 \cos(x) + c_2 \sin(x)$.

Then, $y'(x) = -c_1 \sin(x) + c_2 \cos(x)$. The B.C. imply:

$$1 = y'(0) = c_2 \quad \Rightarrow \quad y(x) = c_1 \cos(x) + \sin(x).$$

$$0 = y(\pi/3) = c_1 \cos(\pi/3) + \sin(\pi/3) \implies c_1 = -\frac{\sin(\pi/3)}{\cos(\pi/3)}.$$

$$c_1 = -\frac{\sqrt{3}/2}{1/2} = -\sqrt{3} \Rightarrow y(x) = -\sqrt{3}\cos(x) + \sin(x).$$

Review for Final Exam.

- Fourier Series expansions (Chptr.6).
- Eigenvalue-Eigenfunction BVP (Chptr. 6).
- Systems of linear Equations (Chptr. 5).
- Laplace transforms (Chptr. 4).
- Second order linear equations (Chptr. 2).
- First order differential equations (Chptr. 1).

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

Summary: Find solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = 2 \times 2$ matrix.

(ロ)、(型)、(E)、(E)、 E、 の(の)

Summary: Find solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = 2 \times 2$ matrix. First find the eigenvalues λ_i and the eigenvectors $\mathbf{v}^{(i)}$ of A.

Summary: Find solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = 2 \times 2$ matrix. First find the eigenvalues λ_i and the eigenvectors $\mathbf{v}^{(i)}$ of A. (a) If $\lambda_1 \neq \lambda_2$, real,

・ロト・日本・モート モー うへで

Summary: Find solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = 2 \times 2$ matrix. First find the eigenvalues λ_i and the eigenvectors $\mathbf{v}^{(i)}$ of A. (a) If $\lambda_1 \neq \lambda_2$, real, then $\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\}$ are linearly independent,

Summary: Find solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = 2 \times 2$ matrix. First find the eigenvalues λ_i and the eigenvectors $\mathbf{v}^{(i)}$ of A.

(a) If $\lambda_1 \neq \lambda_2$, real, then $\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\}\$ are linearly independent, and the general solution is $\mathbf{x}(x) = c_1 \mathbf{v}^{(1)} e^{\lambda_1 t} + c_2 \mathbf{v}^{(2)} e^{\lambda_2 t}$.

(日) (同) (三) (三) (三) (○) (○)

Summary: Find solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = 2 \times 2$ matrix. First find the eigenvalues λ_i and the eigenvectors $\mathbf{v}^{(i)}$ of A.

(a) If $\lambda_1 \neq \lambda_2$, real, then $\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\}\$ are linearly independent, and the general solution is $\mathbf{x}(x) = c_1 \mathbf{v}^{(1)} e^{\lambda_1 t} + c_2 \mathbf{v}^{(2)} e^{\lambda_2 t}$.

(日) (同) (三) (三) (三) (○) (○)

(b) If $\lambda_1 \neq \lambda_2$, complex,

Summary: Find solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = 2 \times 2$ matrix.

First find the eigenvalues λ_i and the eigenvectors $\mathbf{v}^{(i)}$ of A.

(a) If $\lambda_1 \neq \lambda_2$, real, then $\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\}\$ are linearly independent, and the general solution is $\mathbf{x}(x) = c_1 \mathbf{v}^{(1)} e^{\lambda_1 t} + c_2 \mathbf{v}^{(2)} e^{\lambda_2 t}$.

(日) (同) (三) (三) (三) (○) (○)

(b) If $\lambda_1 \neq \lambda_2$, complex, then denoting $\lambda_{\pm} = \alpha \pm \beta i$ and $\mathbf{v}^{(\pm)} = \mathbf{a} \pm \mathbf{b}i$,

Summary: Find solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = 2 \times 2$ matrix. First find the eigenvalues λ_i and the eigenvectors $\mathbf{v}^{(i)}$ of A.

(a) If $\lambda_1 \neq \lambda_2$, real, then $\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\}\$ are linearly independent, and the general solution is $\mathbf{x}(x) = c_1 \mathbf{v}^{(1)} e^{\lambda_1 t} + c_2 \mathbf{v}^{(2)} e^{\lambda_2 t}$.

(b) If $\lambda_1 \neq \lambda_2$, complex, then denoting $\lambda_{\pm} = \alpha \pm \beta i$ and $\mathbf{v}^{(\pm)} = \mathbf{a} \pm \mathbf{b}i$, the complex-valued fundamental solutions $\mathbf{x}^{(\pm)} = (\mathbf{a} \pm \mathbf{b}i) e^{(\alpha \pm \beta i)t}$

Summary: Find solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = 2 \times 2$ matrix. First find the eigenvalues λ_i and the eigenvectors $\mathbf{v}^{(i)}$ of A.

(a) If $\lambda_1 \neq \lambda_2$, real, then $\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\}\$ are linearly independent, and the general solution is $\mathbf{x}(x) = c_1 \mathbf{v}^{(1)} e^{\lambda_1 t} + c_2 \mathbf{v}^{(2)} e^{\lambda_2 t}$.

(b) If $\lambda_1 \neq \lambda_2$, complex, then denoting $\lambda_{\pm} = \alpha \pm \beta i$ and $\mathbf{v}^{(\pm)} = \mathbf{a} \pm \mathbf{b}i$, the complex-valued fundamental solutions $\mathbf{x}^{(\pm)} = (\mathbf{a} \pm \mathbf{b}i) e^{(\alpha \pm \beta i)t}$ $\mathbf{x}^{(\pm)} = e^{\alpha t} (\mathbf{a} \pm \mathbf{b}i) [\cos(\beta t) + i\sin(\beta t)].$

Summary: Find solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = 2 \times 2$ matrix. First find the eigenvalues λ_i and the eigenvectors $\mathbf{v}^{(i)}$ of A.

(a) If $\lambda_1 \neq \lambda_2$, real, then $\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\}\$ are linearly independent, and the general solution is $\mathbf{x}(x) = c_1 \mathbf{v}^{(1)} e^{\lambda_1 t} + c_2 \mathbf{v}^{(2)} e^{\lambda_2 t}$.

(b) If $\lambda_1 \neq \lambda_2$, complex, then denoting $\lambda_{\pm} = \alpha \pm \beta i$ and $\mathbf{v}^{(\pm)} = \mathbf{a} \pm \mathbf{b}i$, the complex-valued fundamental solutions $\mathbf{x}^{(\pm)} = (\mathbf{a} \pm \mathbf{b}i) e^{(\alpha \pm \beta i)t}$ $\mathbf{x}^{(\pm)} = e^{\alpha t} (\mathbf{a} \pm \mathbf{b}i) [\cos(\beta t) + i\sin(\beta t)].$ $\mathbf{x}^{(\pm)} = e^{\alpha t} [\mathbf{a}\cos(\beta t) - \mathbf{b}\sin(\beta t)] \pm ie^{\alpha t} [\mathbf{a}\sin(\beta t) + \mathbf{b}\cos(\beta t)].$

Summary: Find solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = 2 \times 2$ matrix.

First find the eigenvalues λ_i and the eigenvectors $\mathbf{v}^{(i)}$ of A.

(a) If $\lambda_1 \neq \lambda_2$, real, then $\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\}\$ are linearly independent, and the general solution is $\mathbf{x}(x) = c_1 \mathbf{v}^{(1)} e^{\lambda_1 t} + c_2 \mathbf{v}^{(2)} e^{\lambda_2 t}$.

(b) If $\lambda_1 \neq \lambda_2$, complex, then denoting $\lambda_{\pm} = \alpha \pm \beta i$ and $\mathbf{v}^{(\pm)} = \mathbf{a} \pm \mathbf{b}i$, the complex-valued fundamental solutions $\mathbf{x}^{(\pm)} = (\mathbf{a} \pm \mathbf{b}i) e^{(\alpha \pm \beta i)t}$ $\mathbf{x}^{(\pm)} = e^{\alpha t} (\mathbf{a} \pm \mathbf{b}i) [\cos(\beta t) + i\sin(\beta t)].$ $\mathbf{x}^{(\pm)} = e^{\alpha t} [\mathbf{a}\cos(\beta t) - \mathbf{b}\sin(\beta t)] \pm ie^{\alpha t} [\mathbf{a}\sin(\beta t) + \mathbf{b}\cos(\beta t)].$

Real-valued fundamental solutions are

Summary: Find solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = 2 \times 2$ matrix.

First find the eigenvalues λ_i and the eigenvectors $\mathbf{v}^{(i)}$ of A.

(a) If $\lambda_1 \neq \lambda_2$, real, then $\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\}\$ are linearly independent, and the general solution is $\mathbf{x}(x) = c_1 \mathbf{v}^{(1)} e^{\lambda_1 t} + c_2 \mathbf{v}^{(2)} e^{\lambda_2 t}$.

(b) If $\lambda_1 \neq \lambda_2$, complex, then denoting $\lambda_{\pm} = \alpha \pm \beta i$ and $\mathbf{v}^{(\pm)} = \mathbf{a} \pm \mathbf{b}i$, the complex-valued fundamental solutions $\mathbf{x}^{(\pm)} = (\mathbf{a} \pm \mathbf{b}i) e^{(\alpha \pm \beta i)t}$ $\mathbf{x}^{(\pm)} = e^{\alpha t} (\mathbf{a} \pm \mathbf{b}i) [\cos(\beta t) + i\sin(\beta t)].$ $\mathbf{x}^{(\pm)} = e^{\alpha t} [\mathbf{a}\cos(\beta t) - \mathbf{b}\sin(\beta t)] \pm ie^{\alpha t} [\mathbf{a}\sin(\beta t) + \mathbf{b}\cos(\beta t)].$

Real-valued fundamental solutions are

$$\mathbf{x}^{(1)} = e^{lpha t} \left[\mathbf{a} \cos(eta t) - \mathbf{b} \sin(eta t)
ight],$$

Summary: Find solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = 2 \times 2$ matrix.

First find the eigenvalues λ_i and the eigenvectors $\mathbf{v}^{(i)}$ of A.

(a) If $\lambda_1 \neq \lambda_2$, real, then $\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\}\$ are linearly independent, and the general solution is $\mathbf{x}(x) = c_1 \mathbf{v}^{(1)} e^{\lambda_1 t} + c_2 \mathbf{v}^{(2)} e^{\lambda_2 t}$.

(b) If $\lambda_1 \neq \lambda_2$, complex, then denoting $\lambda_{\pm} = \alpha \pm \beta i$ and $\mathbf{v}^{(\pm)} = \mathbf{a} \pm \mathbf{b}i$, the complex-valued fundamental solutions $\mathbf{x}^{(\pm)} = (\mathbf{a} \pm \mathbf{b}i) e^{(\alpha \pm \beta i)t}$ $\mathbf{x}^{(\pm)} = e^{\alpha t} (\mathbf{a} \pm \mathbf{b}i) [\cos(\beta t) + i\sin(\beta t)].$ $\mathbf{x}^{(\pm)} = e^{\alpha t} [\mathbf{a}\cos(\beta t) - \mathbf{b}\sin(\beta t)] \pm ie^{\alpha t} [\mathbf{a}\sin(\beta t) + \mathbf{b}\cos(\beta t)].$

Real-valued fundamental solutions are

 $\mathbf{x}^{(1)} = e^{\alpha t} \left[\mathbf{a} \cos(\beta t) - \mathbf{b} \sin(\beta t) \right],$ $\mathbf{x}^{(2)} = e^{\alpha t} \left[\mathbf{a} \sin(\beta t) + \mathbf{b} \cos(\beta t) \right].$

Summary: Find solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = 2 \times 2$ matrix. First find the eigenvalues λ_i and the eigenvectors $\mathbf{v}^{(i)}$ of A.

・ロト・日本・モン・モン・モー うへぐ

Summary: Find solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = 2 \times 2$ matrix. First find the eigenvalues λ_i and the eigenvectors $\mathbf{v}^{(i)}$ of A. (c) If $\lambda_1 = \lambda_2 = \lambda$, real,

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Summary: Find solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = 2 \times 2$ matrix. First find the eigenvalues λ_i and the eigenvectors $\mathbf{v}^{(i)}$ of A.

(c) If $\lambda_1 = \lambda_2 = \lambda$, real, and their eigenvectors $\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\}$ are linearly independent,

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Summary: Find solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = 2 \times 2$ matrix. First find the eigenvalues λ_i and the eigenvectors $\mathbf{v}^{(i)}$ of A.

(c) If $\lambda_1 = \lambda_2 = \lambda$, real, and their eigenvectors $\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\}$ are linearly independent, then the general solution is

 $\mathbf{x}(x) = c_1 \, \mathbf{v}^{(1)} \, e^{\lambda t} + c_2 \, \mathbf{v}^{(2)} \, e^{\lambda t}.$

(日) (同) (三) (三) (三) (○) (○)

Summary: Find solutions of x' = Ax, with A a 2 × 2 matrix.
First find the eigenvalues λ_i and the eigenvectors v⁽ⁱ⁾ of A.
(c) If λ₁ = λ₂ = λ, real, and their eigenvectors {v⁽¹⁾, v⁽²⁾} are linearly independent, then the general solution is

 $\mathbf{x}(x) = c_1 \, \mathbf{v}^{(1)} \, e^{\lambda t} + c_2 \, \mathbf{v}^{(2)} \, e^{\lambda t}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(d) If $\lambda_1 = \lambda_2 = \lambda$, real,

Summary: Find solutions of x' = Ax, with A a 2 × 2 matrix.
First find the eigenvalues λ_i and the eigenvectors v⁽ⁱ⁾ of A.
(c) If λ₁ = λ₂ = λ, real, and their eigenvectors {v⁽¹⁾, v⁽²⁾} are linearly independent, then the general solution is

 $\mathbf{x}(x) = c_1 \, \mathbf{v}^{(1)} \, e^{\lambda t} + c_2 \, \mathbf{v}^{(2)} \, e^{\lambda t}.$

(日) (同) (三) (三) (三) (○) (○)

(d) If $\lambda_1 = \lambda_2 = \lambda$, real, and there is only one eigendirection **v**,

Summary: Find solutions of x' = Ax, with A a 2 × 2 matrix.
First find the eigenvalues λ_i and the eigenvectors v⁽ⁱ⁾ of A.
(c) If λ₁ = λ₂ = λ, real, and their eigenvectors {v⁽¹⁾, v⁽²⁾} are linearly independent, then the general solution is

 $\mathbf{x}(x) = c_1 \, \mathbf{v}^{(1)} \, e^{\lambda t} + c_2 \, \mathbf{v}^{(2)} \, e^{\lambda t}.$

(日) (同) (三) (三) (三) (○) (○)

(d) If $\lambda_1 = \lambda_2 = \lambda$, real, and there is only one eigendirection **v**, then find **w** solution of $(A - \lambda I)\mathbf{w} = \mathbf{v}$.

Summary: Find solutions of x' = Ax, with A a 2 × 2 matrix.
First find the eigenvalues λ_i and the eigenvectors v⁽ⁱ⁾ of A.
(c) If λ₁ = λ₂ = λ, real, and their eigenvectors {v⁽¹⁾, v⁽²⁾} are linearly independent, then the general solution is

 $\mathbf{x}(x) = c_1 \, \mathbf{v}^{(1)} \, e^{\lambda t} + c_2 \, \mathbf{v}^{(2)} \, e^{\lambda t}.$

(日) (同) (三) (三) (三) (○) (○)

(d) If $\lambda_1 = \lambda_2 = \lambda$, real, and there is only one eigendirection **v**, then find **w** solution of $(A - \lambda I)\mathbf{w} = \mathbf{v}$. Then fundamental solutions to the differential equation are given by

$$\mathbf{x}^{(1)} = \mathbf{v} \, e^{\lambda t},$$

Summary: Find solutions of x' = Ax, with A a 2 × 2 matrix.
First find the eigenvalues λ_i and the eigenvectors v⁽ⁱ⁾ of A.
(c) If λ₁ = λ₂ = λ, real, and their eigenvectors {v⁽¹⁾, v⁽²⁾} are linearly independent, then the general solution is

 $\mathbf{x}(x) = c_1 \, \mathbf{v}^{(1)} \, e^{\lambda t} + c_2 \, \mathbf{v}^{(2)} \, e^{\lambda t}.$

(d) If $\lambda_1 = \lambda_2 = \lambda$, real, and there is only one eigendirection **v**, then find **w** solution of $(A - \lambda I)\mathbf{w} = \mathbf{v}$. Then fundamental solutions to the differential equation are given by

$$\mathbf{x}^{(1)} = \mathbf{v} \, e^{\lambda t}, \quad \mathbf{x}^{(2)} = (\mathbf{v} \, t + \mathbf{w}) \, e^{\lambda t}.$$

(日) (同) (三) (三) (三) (○) (○)

Summary: Find solutions of x' = Ax, with A a 2 × 2 matrix.
First find the eigenvalues λ_i and the eigenvectors v⁽ⁱ⁾ of A.
(c) If λ₁ = λ₂ = λ, real, and their eigenvectors {v⁽¹⁾, v⁽²⁾} are linearly independent, then the general solution is

 $\mathbf{x}(x) = c_1 \, \mathbf{v}^{(1)} \, e^{\lambda t} + c_2 \, \mathbf{v}^{(2)} \, e^{\lambda t}.$

(d) If $\lambda_1 = \lambda_2 = \lambda$, real, and there is only one eigendirection **v**, then find **w** solution of $(A - \lambda I)\mathbf{w} = \mathbf{v}$. Then fundamental solutions to the differential equation are given by

$$\mathbf{x}^{(1)} = \mathbf{v} \, e^{\lambda t}, \quad \mathbf{x}^{(2)} = (\mathbf{v} \, t + \mathbf{w}) \, e^{\lambda t}.$$

Then, the general solution is

$$\mathbf{x} = c_1 \, \mathbf{v} \, e^{\lambda t} + c_2 \left(\mathbf{v} \, t + \mathbf{w}
ight) e^{\lambda t}.$$

(日) (同) (三) (三) (三) (○) (○)

Example

Find the solution to:
$$\mathbf{x}' = A\mathbf{x}$$
, $\mathbf{x}(0) = \begin{bmatrix} 3\\ 2 \end{bmatrix}$, $A = \begin{bmatrix} 1 & 4\\ 2 & -1 \end{bmatrix}$.

Example

Find the solution to: $\mathbf{x}' = A\mathbf{x}$, $\mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}$. Solution:

$$p(\lambda) = \begin{vmatrix} (1-\lambda) & 4 \\ 2 & (-1-\lambda) \end{vmatrix}$$

Example

Find the solution to: $\mathbf{x}' = A\mathbf{x}$, $\mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}$. Solution:

$$p(\lambda) = egin{pmatrix} (1-\lambda) & 4 \ 2 & (-1-\lambda) \end{bmatrix} = (\lambda-1)(\lambda+1) - 8$$

Example

Find the solution to: $\mathbf{x}' = A\mathbf{x}$, $\mathbf{x}(0) = \begin{bmatrix} 3\\ 2 \end{bmatrix}$, $A = \begin{bmatrix} 1 & 4\\ 2 & -1 \end{bmatrix}$. Solution:

$$p(\lambda) = \begin{vmatrix} (1-\lambda) & 4 \\ 2 & (-1-\lambda) \end{vmatrix} = (\lambda-1)(\lambda+1) - 8 = \lambda^2 - 1 - 8,$$

Example

Find the solution to: $\mathbf{x}' = A\mathbf{x}$, $\mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}$. Solution:

$$p(\lambda) = \begin{vmatrix} (1-\lambda) & 4\\ 2 & (-1-\lambda) \end{vmatrix} = (\lambda-1)(\lambda+1) - 8 = \lambda^2 - 1 - 8,$$
$$p(\lambda) = \lambda^2 - 9 = 0$$

Example

Find the solution to: $\mathbf{x}' = A\mathbf{x}$, $\mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}$. Solution:

$$p(\lambda) = \begin{vmatrix} (1-\lambda) & 4 \\ 2 & (-1-\lambda) \end{vmatrix} = (\lambda-1)(\lambda+1) - 8 = \lambda^2 - 1 - 8,$$
$$p(\lambda) = \lambda^2 - 9 = 0 \quad \Rightarrow \quad \lambda_{\pm} = \pm 3.$$

Example

Find the solution to: $\mathbf{x}' = A\mathbf{x}$, $\mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}$. Solution:

$$p(\lambda) = egin{pmatrix} (1-\lambda) & 4 \ 2 & (-1-\lambda) \end{bmatrix} = (\lambda-1)(\lambda+1) - 8 = \lambda^2 - 1 - 8,$$
 $p(\lambda) = \lambda^2 - 9 = 0 \quad \Rightarrow \quad \lambda_{\pm} = \pm 3.$

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

Case $\lambda_+ = 3$,

Example

Find the solution to: $\mathbf{x}' = A\mathbf{x}$, $\mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}$. Solution:

$$p(\lambda) = \begin{vmatrix} (1-\lambda) & 4 \\ 2 & (-1-\lambda) \end{vmatrix} = (\lambda - 1)(\lambda + 1) - 8 = \lambda^2 - 1 - 8,$$
$$p(\lambda) = \lambda^2 - 9 = 0 \quad \Rightarrow \quad \lambda_{\pm} = \pm 3.$$
Case $\lambda_{\pm} = 3$,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A - 3I

Example

Find the solution to: $\mathbf{x}' = A\mathbf{x}$, $\mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}$. Solution:

$$p(\lambda) = \begin{vmatrix} (1-\lambda) & 4 \\ 2 & (-1-\lambda) \end{vmatrix} = (\lambda-1)(\lambda+1) - 8 = \lambda^2 - 1 - 8,$$

$$p(\lambda) = \lambda^2 - 9 = 0 \quad \Rightarrow \quad \lambda_{\pm} = \pm 3.$$

Case $\lambda_+ = 3$,

 $A-3I = \begin{bmatrix} -2 & 4\\ 2 & -4 \end{bmatrix}$

Example

Find the solution to: $\mathbf{x}' = A\mathbf{x}$, $\mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}$. Solution:

$$p(\lambda) = \begin{vmatrix} (1-\lambda) & 4 \\ 2 & (-1-\lambda) \end{vmatrix} = (\lambda-1)(\lambda+1) - 8 = \lambda^2 - 1 - 8,$$
$$p(\lambda) = \lambda^2 - 9 = 0 \quad \Rightarrow \quad \lambda_{\pm} = \pm 3.$$

Case $\lambda_+ = 3$,

$$A - 3I = \begin{bmatrix} -2 & 4 \\ 2 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix}$$

Example

Find the solution to: $\mathbf{x}' = A\mathbf{x}$, $\mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}$. Solution:

$$p(\lambda) = \begin{vmatrix} (1-\lambda) & 4 \\ 2 & (-1-\lambda) \end{vmatrix} = (\lambda-1)(\lambda+1) - 8 = \lambda^2 - 1 - 8,$$

$$p(\lambda) = \lambda^2 - 9 = 0 \quad \Rightarrow \quad \lambda_{\pm} = \pm 3.$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

Case $\lambda_+ = 3$,

$$A-3I = \begin{bmatrix} -2 & 4 \\ 2 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix} \Rightarrow v_1 = 2v_2$$

Example

Find the solution to: $\mathbf{x}' = A\mathbf{x}$, $\mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}$. Solution:

$$p(\lambda) = \begin{vmatrix} (1-\lambda) & 4 \\ 2 & (-1-\lambda) \end{vmatrix} = (\lambda - 1)(\lambda + 1) - 8 = \lambda^2 - 1 - 8,$$

$$p(\lambda) = \lambda^2 - 9 = 0 \quad \Rightarrow \quad \lambda_{\pm} = \pm 3.$$

Case $\lambda_+ = 3$,

$$A - 3I = \begin{bmatrix} -2 & 4 \\ 2 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix} \Rightarrow v_1 = 2v_2 \Rightarrow \mathbf{v}^{(+)} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

Example

Find the solution to: $\mathbf{x}' = A\mathbf{x}$, $\mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}$. Solution:

$$p(\lambda) = \begin{vmatrix} (1-\lambda) & 4 \\ 2 & (-1-\lambda) \end{vmatrix} = (\lambda - 1)(\lambda + 1) - 8 = \lambda^2 - 1 - 8,$$

 $p(\lambda) = \lambda^2 - 9 = 0 \quad \Rightarrow \quad \lambda_{\pm} = \pm 3.$

Case $\lambda_{+} = 3$, $A - 3I = \begin{bmatrix} -2 & 4 \\ 2 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix} \Rightarrow v_{1} = 2v_{2} \Rightarrow \mathbf{v}^{(+)} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ Case $\lambda_{-} = -3$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

Example

Find the solution to: $\mathbf{x}' = A\mathbf{x}$, $\mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}$. Solution:

$$p(\lambda) = \begin{vmatrix} (1-\lambda) & 4 \\ 2 & (-1-\lambda) \end{vmatrix} = (\lambda - 1)(\lambda + 1) - 8 = \lambda^2 - 1 - 8,$$

$$p(\lambda) = \lambda^2 - 9 = 0 \quad \Rightarrow \quad \lambda_{\pm} = \pm 3.$$

Case $\lambda_+ = 3$, $A - 3I = \begin{bmatrix} -2 & 4 \\ 2 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix} \Rightarrow v_1 = 2v_2 \Rightarrow \mathbf{v}^{(+)} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Case $\lambda_{-} = -3$,

A + 3I

Example

Find the solution to: $\mathbf{x}' = A\mathbf{x}$, $\mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}$. Solution:

$$p(\lambda) = \begin{vmatrix} (1-\lambda) & 4 \\ 2 & (-1-\lambda) \end{vmatrix} = (\lambda - 1)(\lambda + 1) - 8 = \lambda^2 - 1 - 8,$$

$$p(\lambda) = \lambda^2 - 9 = 0 \quad \Rightarrow \quad \lambda_{\pm} = \pm 3.$$

Case $\lambda_+ = 3$,

$$A - 3I = \begin{bmatrix} -2 & 4 \\ 2 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix} \Rightarrow v_1 = 2v_2 \Rightarrow \mathbf{v}^{(+)} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

Case $\lambda_{-} = -3$,

$$A+3I = \begin{bmatrix} 4 & 4 \\ 2 & 2 \end{bmatrix}$$

Example

Find the solution to: $\mathbf{x}' = A\mathbf{x}$, $\mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}$. Solution:

$$p(\lambda) = egin{pmatrix} (1-\lambda) & 4 \ 2 & (-1-\lambda) \end{bmatrix} = (\lambda-1)(\lambda+1) - 8 = \lambda^2 - 1 - 8,$$
 $p(\lambda) = \lambda^2 - 9 = 0 \quad \Rightarrow \quad \lambda_{\pm} = \pm 3.$

Case $\lambda_{+} = 3$, $A - 3I = \begin{bmatrix} -2 & 4 \\ 2 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix} \Rightarrow v_{1} = 2v_{2} \Rightarrow \mathbf{v}^{(+)} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

Case $\lambda_{-} = -3$,

$$A + 3I = \begin{bmatrix} 4 & 4 \\ 2 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

Example

Find the solution to: $\mathbf{x}' = A\mathbf{x}$, $\mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}$. Solution:

$$p(\lambda) = \begin{vmatrix} (1-\lambda) & 4 \\ 2 & (-1-\lambda) \end{vmatrix} = (\lambda-1)(\lambda+1) - 8 = \lambda^2 - 1 - 8,$$
$$p(\lambda) = \lambda^2 - 0 = 0 \quad \Rightarrow \quad \lambda = +3$$

 $p(\lambda) = \lambda^2 - 9 = 0 \quad \Rightarrow \quad \lambda_{\pm} = \pm 3.$

Case $\lambda_+ = 3$,

$$A - 3I = \begin{bmatrix} -2 & 4 \\ 2 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix} \Rightarrow v_1 = 2v_2 \Rightarrow \mathbf{v}^{(+)} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Case $\lambda_{-} = -3$,

$$A+3I = \begin{bmatrix} 4 & 4 \\ 2 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \Rightarrow v_1 = -v_2$$

Example

Find the solution to: $\mathbf{x}' = A\mathbf{x}$, $\mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}$. Solution:

$$p(\lambda) = \begin{vmatrix} (1-\lambda) & 4 \\ 2 & (-1-\lambda) \end{vmatrix} = (\lambda - 1)(\lambda + 1) - 8 = \lambda^2 - 1 - 8,$$
$$p(\lambda) = \lambda^2 - 0 = 0 \quad \Rightarrow \quad \lambda = +3$$

 $p(\lambda) = \lambda^2 - 9 = 0 \quad \Rightarrow \quad \lambda_{\pm} = \pm 3.$

Case $\lambda_+ = 3$,

$$A - 3I = \begin{bmatrix} -2 & 4 \\ 2 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix} \Rightarrow v_1 = 2v_2 \Rightarrow \mathbf{v}^{(+)} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Case $\lambda_{-} = -3$,

$$A + 3I = \begin{bmatrix} 4 & 4 \\ 2 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \Rightarrow v_1 = -v_2 \Rightarrow \mathbf{v}^{(-)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ = 三 のへで

Example

Find the solution to:
$$\mathbf{x}' = A\mathbf{x}$$
, $\mathbf{x}(0) = \begin{bmatrix} 3\\2 \end{bmatrix}$, $A = \begin{bmatrix} 1 & 4\\2 & -1 \end{bmatrix}$.
Solution: Recall: $\lambda_{\pm} = \pm 3$, $\mathbf{v}^{(+)} = \begin{bmatrix} 2\\1 \end{bmatrix}$, $\mathbf{v}^{(-)} = \begin{bmatrix} -1\\1 \end{bmatrix}$.

Example

Find the solution to:
$$\mathbf{x}' = A\mathbf{x}$$
, $\mathbf{x}(0) = \begin{bmatrix} 3\\2 \end{bmatrix}$, $A = \begin{bmatrix} 1 & 4\\2 & -1 \end{bmatrix}$.
Solution: Recall: $\lambda_{\pm} = \pm 3$, $\mathbf{v}^{(+)} = \begin{bmatrix} 2\\1 \end{bmatrix}$, $\mathbf{v}^{(-)} = \begin{bmatrix} -1\\1 \end{bmatrix}$.
The general solution is $\mathbf{x}(t) = c_1 \begin{bmatrix} 2\\1 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} -1\\1 \end{bmatrix} e^{-3t}$.

Example

Find the solution to:
$$\mathbf{x}' = A\mathbf{x}$$
, $\mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}$.

Solution: Recall: $\lambda_{\pm} = \pm 3$, $\mathbf{v}^{(+)} = \begin{bmatrix} 2\\1 \end{bmatrix}$, $\mathbf{v}^{(-)} = \begin{bmatrix} -1\\1 \end{bmatrix}$.

The general solution is $\mathbf{x}(t) = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-3t}$. The initial condition implies,

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

$$\begin{bmatrix} 3 \\ 2 \end{bmatrix} = \mathbf{x}(0)$$

Example

Find the solution to:
$$\mathbf{x}' = A\mathbf{x}$$
, $\mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}$.

Solution: Recall:
$$\lambda_{\pm} = \pm 3$$
, $\mathbf{v}^{(+)} = \begin{bmatrix} 2\\1 \end{bmatrix}$, $\mathbf{v}^{(-)} = \begin{bmatrix} -1\\1 \end{bmatrix}$.

The general solution is $\mathbf{x}(t) = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-3t}$. The initial condition implies,

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

$$\begin{bmatrix} 3 \\ 2 \end{bmatrix} = \mathbf{x}(0) = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Example

Find the solution to:
$$\mathbf{x}' = A\mathbf{x}$$
, $\mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}$.

Solution: Recall:
$$\lambda_{\pm} = \pm 3$$
, $\mathbf{v}^{(+)} = \begin{bmatrix} 2\\1 \end{bmatrix}$, $\mathbf{v}^{(-)} = \begin{bmatrix} -1\\1 \end{bmatrix}$

The general solution is $\mathbf{x}(t) = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-3t}$. The initial condition implies,

$$\begin{bmatrix} 3\\2 \end{bmatrix} = \mathbf{x}(0) = c_1 \begin{bmatrix} 2\\1 \end{bmatrix} + c_2 \begin{bmatrix} -1\\1 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} 2 & -1\\1 & 1 \end{bmatrix} \begin{bmatrix} c_1\\c_2 \end{bmatrix} = \begin{bmatrix} 3\\2 \end{bmatrix}.$$

Example

Find the solution to:
$$\mathbf{x}' = A\mathbf{x}$$
, $\mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}$.

Solution: Recall:
$$\lambda_{\pm} = \pm 3$$
, $\mathbf{v}^{(+)} = \begin{bmatrix} 2\\1 \end{bmatrix}$, $\mathbf{v}^{(-)} = \begin{bmatrix} -1\\1 \end{bmatrix}$.

The general solution is $\mathbf{x}(t) = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-3t}$. The initial condition implies,

$$\begin{bmatrix} 3\\2 \end{bmatrix} = \mathbf{x}(0) = c_1 \begin{bmatrix} 2\\1 \end{bmatrix} + c_2 \begin{bmatrix} -1\\1 \end{bmatrix} \implies \begin{bmatrix} 2 & -1\\1 & 1 \end{bmatrix} \begin{bmatrix} c_1\\c_2 \end{bmatrix} = \begin{bmatrix} 3\\2 \end{bmatrix} + \begin{bmatrix} 2\\2 \end{bmatrix} = \begin{bmatrix} 3\\2 \end{bmatrix}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

Example

Find the solution to:
$$\mathbf{x}' = A\mathbf{x}$$
, $\mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}$.

Solution: Recall:
$$\lambda_{\pm} = \pm 3$$
, $\mathbf{v}^{(+)} = \begin{bmatrix} 2\\1 \end{bmatrix}$, $\mathbf{v}^{(-)} = \begin{bmatrix} -1\\1 \end{bmatrix}$

The general solution is $\mathbf{x}(t) = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-3t}$. The initial condition implies,

$$\begin{bmatrix} 3\\2 \end{bmatrix} = \mathbf{x}(0) = c_1 \begin{bmatrix} 2\\1 \end{bmatrix} + c_2 \begin{bmatrix} -1\\1 \end{bmatrix} \implies \begin{bmatrix} 2 & -1\\1 & 1 \end{bmatrix} \begin{bmatrix} c_1\\c_2 \end{bmatrix} = \begin{bmatrix} 3\\2 \end{bmatrix}$$
$$\begin{bmatrix} c_1\\c_2 \end{bmatrix} = \frac{1}{(2+1)} \begin{bmatrix} 1 & 1\\-1 & 2 \end{bmatrix} \begin{bmatrix} 3\\2 \end{bmatrix} \implies \begin{bmatrix} c_1\\c_2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 5\\1 \end{bmatrix} .$$

Example

Find the solution to:
$$\mathbf{x}' = A\mathbf{x}$$
, $\mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}$.

Solution: Recall:
$$\lambda_{\pm} = \pm 3$$
, $\mathbf{v}^{(+)} = \begin{bmatrix} 2\\ 1 \end{bmatrix}$, $\mathbf{v}^{(-)} = \begin{bmatrix} -1\\ 1 \end{bmatrix}$.

The general solution is
$$\mathbf{x}(t) = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-3t}$$
.
The initial condition implies,

$$\begin{bmatrix} 3\\2 \end{bmatrix} = \mathbf{x}(0) = c_1 \begin{bmatrix} 2\\1 \end{bmatrix} + c_2 \begin{bmatrix} -1\\1 \end{bmatrix} \implies \begin{bmatrix} 2 & -1\\1 & 1 \end{bmatrix} \begin{bmatrix} c_1\\c_2 \end{bmatrix} = \begin{bmatrix} 3\\2 \end{bmatrix}.$$
$$\begin{bmatrix} c_1\\c_2 \end{bmatrix} = \frac{1}{(2+1)} \begin{bmatrix} 1 & 1\\-1 & 2 \end{bmatrix} \begin{bmatrix} 3\\2 \end{bmatrix} \implies \begin{bmatrix} c_1\\c_2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 5\\1 \end{bmatrix}.$$
We conclude: $\mathbf{x}(t) = \frac{5}{3} \begin{bmatrix} 2\\1 \end{bmatrix} e^{3t} + \frac{1}{3} \begin{bmatrix} -1\\1 \end{bmatrix} e^{-3t}.$

Review for Final Exam.

- Fourier Series expansions (Chptr.6).
- Eigenvalue-Eigenfunction BVP (Chptr. 6).
- Systems of linear Equations (Chptr. 5).
- ► Laplace transforms (Chptr. 4).
- Second order linear equations (Chptr. 2).
- First order differential equations (Chptr. 1).

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

Summary:

► Main Properties:

(ロ)、

Summary:

Main Properties:

 $\mathcal{L}[f^{(n)}(t)] = s^n \mathcal{L}[f(t)] - s^{(n-1)} f(0) - \dots - f^{(n-1)}(0); \quad (18)$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Summary:

Main Properties:

 $\mathcal{L}[f^{(n)}(t)] = s^n \mathcal{L}[f(t)] - s^{(n-1)} f(0) - \dots - f^{(n-1)}(0); \quad (18)$

$$e^{-cs} \mathcal{L}[f(t)] = \mathcal{L}[u_c(t) f(t-c)]; \qquad (13)$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Summary:

Main Properties:

$$\mathcal{L}[f^{(n)}(t)] = s^n \mathcal{L}[f(t)] - s^{(n-1)} f(0) - \dots - f^{(n-1)}(0); \quad (18)$$

$$e^{-cs} \mathcal{L}[f(t)] = \mathcal{L}[u_c(t) f(t-c)]; \qquad (13)$$

$$\mathcal{L}[f(t)]\Big|_{(s-c)} = \mathcal{L}[e^{ct} f(t)].$$
(14)

(ロ)、(型)、(E)、(E)、 E、 の(の)

Summary:

Main Properties:

$$\mathcal{L}[f^{(n)}(t)] = s^n \mathcal{L}[f(t)] - s^{(n-1)} f(0) - \dots - f^{(n-1)}(0); \quad (18)$$

$$e^{-cs} \mathcal{L}[f(t)] = \mathcal{L}[u_c(t) f(t-c)]; \qquad (13)$$

$$\mathcal{L}[f(t)]\Big|_{(s-c)} = \mathcal{L}[e^{ct} f(t)].$$
(14)

(ロ)、(型)、(E)、(E)、 E、 の(の)

Convolutions:

Summary:

Main Properties:

$$\mathcal{L}[f^{(n)}(t)] = s^n \mathcal{L}[f(t)] - s^{(n-1)} f(0) - \dots - f^{(n-1)}(0); \quad (18)$$

$$e^{-cs} \mathcal{L}[f(t)] = \mathcal{L}[u_c(t) f(t-c)]; \qquad (13)$$

$$\mathcal{L}[f(t)]\Big|_{(s-c)} = \mathcal{L}[e^{ct} f(t)].$$
(14)

Convolutions:

 $\mathcal{L}[(f * g)(t)] = \mathcal{L}[f(t)]\mathcal{L}[g(t)].$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Summary:

Main Properties:

 $\mathcal{L}[f^{(n)}(t)] = s^n \mathcal{L}[f(t)] - s^{(n-1)} f(0) - \dots - f^{(n-1)}(0); \quad (18)$

$$e^{-cs} \mathcal{L}[f(t)] = \mathcal{L}[u_c(t) f(t-c)]; \qquad (13)$$

$$\mathcal{L}[f(t)]\Big|_{(s-c)} = \mathcal{L}[e^{ct} f(t)].$$
(14)

Convolutions:

$$\mathcal{L}[(f * g)(t)] = \mathcal{L}[f(t)] \mathcal{L}[g(t)].$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Partial fraction decompositions, completing the squares.

Example

Use L.T. to find the solution to the IVP

$$y'' + 9y = u_5(t),$$
 $y(0) = 3,$ $y'(0) = 2.$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

Example

Use L.T. to find the solution to the $\ensuremath{\mathsf{IVP}}$

$$y'' + 9y = u_5(t),$$
 $y(0) = 3,$ $y'(0) = 2.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Solution: Compute $\mathcal{L}[y''] + 9 \mathcal{L}[y] = \mathcal{L}[u_5(t)]$

Example

Use L.T. to find the solution to the IVP

$$y'' + 9y = u_5(t),$$
 $y(0) = 3,$ $y'(0) = 2.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Solution: Compute $\mathcal{L}[y''] + 9\mathcal{L}[y] = \mathcal{L}[u_5(t)] = \frac{e^{-5s}}{s}$,

Example

Use L.T. to find the solution to the IVP

$$y'' + 9y = u_5(t),$$
 $y(0) = 3,$ $y'(0) = 2.$

Solution: Compute $\mathcal{L}[y''] + 9 \mathcal{L}[y] = \mathcal{L}[u_5(t)] = \frac{e^{-5s}}{s}$, and recall,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\mathcal{L}[y''] = s^2 \, \mathcal{L}[y] - s \, y(0) - y'(0)$$

Example

Use L.T. to find the solution to the IVP

$$y'' + 9y = u_5(t),$$
 $y(0) = 3,$ $y'(0) = 2.$

Solution: Compute $\mathcal{L}[y''] + 9 \mathcal{L}[y] = \mathcal{L}[u_5(t)] = \frac{e^{-5s}}{s}$, and recall,

 $\mathcal{L}[y''] = s^2 \mathcal{L}[y] - s y(0) - y'(0) \quad \Rightarrow \quad \mathcal{L}[y''] = s^2 \mathcal{L}[y] - 3s - 2.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Use L.T. to find the solution to the IVP

$$y'' + 9y = u_5(t),$$
 $y(0) = 3,$ $y'(0) = 2.$

Solution: Compute $\mathcal{L}[y''] + 9\mathcal{L}[y] = \mathcal{L}[u_5(t)] = \frac{e^{-5s}}{s}$, and recall,

$$\mathcal{L}[y''] = s^2 \mathcal{L}[y] - s y(0) - y'(0) \quad \Rightarrow \quad \mathcal{L}[y''] = s^2 \mathcal{L}[y] - 3s - 2.$$

$$(s^2+9)\mathcal{L}[y]-3s-2=\frac{e^{-5s}}{s}$$

Example

Use L.T. to find the solution to the IVP

$$y'' + 9y = u_5(t),$$
 $y(0) = 3,$ $y'(0) = 2.$

Solution: Compute $\mathcal{L}[y''] + 9\mathcal{L}[y] = \mathcal{L}[u_5(t)] = \frac{e^{-5s}}{s}$, and recall,

$$\mathcal{L}[y''] = s^2 \mathcal{L}[y] - s y(0) - y'(0) \quad \Rightarrow \quad \mathcal{L}[y''] = s^2 \mathcal{L}[y] - 3s - 2.$$

- -

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$(s^{2}+9)\mathcal{L}[y] - 3s - 2 = \frac{e^{-3s}}{s}$$
$$\mathcal{L}[y] = \frac{(3s+2)}{(s^{2}+9)} + e^{-5s} \frac{1}{s(s^{2}+9)}$$

Example

Use L.T. to find the solution to the IVP

$$y'' + 9y = u_5(t),$$
 $y(0) = 3,$ $y'(0) = 2.$

Solution: Compute $\mathcal{L}[y''] + 9\mathcal{L}[y] = \mathcal{L}[u_5(t)] = \frac{e^{-5s}}{s}$, and recall,

$$\mathcal{L}[y''] = s^2 \mathcal{L}[y] - s y(0) - y'(0) \quad \Rightarrow \quad \mathcal{L}[y''] = s^2 \mathcal{L}[y] - 3s - 2.$$

$$(s^2+9)\mathcal{L}[y]-3s-2=rac{e^{-5s}}{s}$$

$$\mathcal{L}[y] = \frac{(3s+2)}{(s^2+9)} + e^{-5s} \frac{1}{s(s^2+9)}.$$
$$\mathcal{L}[y] = 3\frac{s}{(s^2+9)} + \frac{2}{3}\frac{3}{(s^2+9)} + e^{-5s}\frac{1}{s(s^2+9)}.$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

Example

Use L.T. to find the solution to the $\ensuremath{\mathsf{IVP}}$

$$y'' + 9y = u_5(t),$$
 $y(0) = 3,$ $y'(0) = 2.$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

Example

Use L.T. to find the solution to the $\ensuremath{\mathsf{IVP}}$

$$y'' + 9y = u_5(t),$$
 $y(0) = 3,$ $y'(0) = 2.$
Solution: Recall $\mathcal{L}[y] = 3 \frac{s}{(s^2 + 9)} + \frac{2}{3} \frac{3}{(s^2 + 9)} + e^{-5s} \frac{1}{s(s^2 + 9)}.$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Example

Use L.T. to find the solution to the $\ensuremath{\mathsf{IVP}}$

$$y'' + 9y = u_5(t), \qquad y(0) = 3, \qquad y'(0) = 2.$$

Solution: Recall $\mathcal{L}[y] = 3 \frac{s}{(s^2 + 9)} + \frac{2}{3} \frac{3}{(s^2 + 9)} + e^{-5s} \frac{1}{s(s^2 + 9)}.$
 $\mathcal{L}[y] = 3 \mathcal{L}[\cos(3t)] + \frac{2}{3} \mathcal{L}[\sin(3t)] + e^{-5s} \frac{1}{s(s^2 + 9)}.$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Example

Use L.T. to find the solution to the $\ensuremath{\mathsf{IVP}}$

$$y'' + 9y = u_5(t),$$
 $y(0) = 3,$ $y'(0) = 2.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Solution: Recall
$$\mathcal{L}[y] = 3 \frac{s}{(s^2 + 9)} + \frac{2}{3} \frac{3}{(s^2 + 9)} + e^{-5s} \frac{1}{s(s^2 + 9)}$$
.
 $\mathcal{L}[y] = 3 \mathcal{L}[\cos(3t)] + \frac{2}{3} \mathcal{L}[\sin(3t)] + e^{-5s} \frac{1}{s(s^2 + 9)}$.

Partial fractions on

$$H(s) = \frac{1}{s(s^2+9)}$$

Example

Use L.T. to find the solution to the $\ensuremath{\mathsf{IVP}}$

$$y'' + 9y = u_5(t),$$
 $y(0) = 3,$ $y'(0) = 2.$

Solution: Recall
$$\mathcal{L}[y] = 3 \frac{s}{(s^2 + 9)} + \frac{2}{3} \frac{3}{(s^2 + 9)} + e^{-5s} \frac{1}{s(s^2 + 9)}$$
.
 $\mathcal{L}[y] = 3 \mathcal{L}[\cos(3t)] + \frac{2}{3} \mathcal{L}[\sin(3t)] + e^{-5s} \frac{1}{s(s^2 + 9)}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Partial fractions on

$$H(s) = \frac{1}{s(s^2 + 9)} = \frac{a}{s} + \frac{(bs + c)}{(s^2 + 9)}$$

Example

Use L.T. to find the solution to the $\ensuremath{\mathsf{IVP}}$

$$y'' + 9y = u_5(t),$$
 $y(0) = 3,$ $y'(0) = 2.$

Solution: Recall
$$\mathcal{L}[y] = 3 \frac{s}{(s^2 + 9)} + \frac{2}{3} \frac{3}{(s^2 + 9)} + e^{-5s} \frac{1}{s(s^2 + 9)}$$
.
 $\mathcal{L}[y] = 3 \mathcal{L}[\cos(3t)] + \frac{2}{3} \mathcal{L}[\sin(3t)] + e^{-5s} \frac{1}{s(s^2 + 9)}$.

Partial fractions on

$$H(s) = \frac{1}{s(s^2+9)} = \frac{a}{s} + \frac{(bs+c)}{(s^2+9)} = \frac{a(s^2+9) + (bs+c)s}{s(s^2+9)},$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Use L.T. to find the solution to the $\ensuremath{\mathsf{IVP}}$

$$y'' + 9y = u_5(t),$$
 $y(0) = 3,$ $y'(0) = 2.$

Solution: Recall
$$\mathcal{L}[y] = 3 \frac{s}{(s^2 + 9)} + \frac{2}{3} \frac{3}{(s^2 + 9)} + e^{-5s} \frac{1}{s(s^2 + 9)}$$
.
 $\mathcal{L}[y] = 3 \mathcal{L}[\cos(3t)] + \frac{2}{3} \mathcal{L}[\sin(3t)] + e^{-5s} \frac{1}{s(s^2 + 9)}$.

Partial fractions on

$$H(s) = \frac{1}{s(s^2 + 9)} = \frac{a}{s} + \frac{(bs + c)}{(s^2 + 9)} = \frac{a(s^2 + 9) + (bs + c)s}{s(s^2 + 9)},$$
$$1 = as^2 + 9a + bs^2 + cs$$

Example

Use L.T. to find the solution to the $\ensuremath{\mathsf{IVP}}$

$$y'' + 9y = u_5(t),$$
 $y(0) = 3,$ $y'(0) = 2.$

Solution: Recall
$$\mathcal{L}[y] = 3 \frac{s}{(s^2 + 9)} + \frac{2}{3} \frac{3}{(s^2 + 9)} + e^{-5s} \frac{1}{s(s^2 + 9)}$$
.
 $\mathcal{L}[y] = 3 \mathcal{L}[\cos(3t)] + \frac{2}{3} \mathcal{L}[\sin(3t)] + e^{-5s} \frac{1}{s(s^2 + 9)}$.

Partial fractions on

$$H(s) = \frac{1}{s(s^2+9)} = \frac{a}{s} + \frac{(bs+c)}{(s^2+9)} = \frac{a(s^2+9) + (bs+c)s}{s(s^2+9)},$$
$$1 = as^2 + 9a + bs^2 + cs = (a+b)s^2 + cs + 9a$$

Example

Use L.T. to find the solution to the $\ensuremath{\mathsf{IVP}}$

$$y'' + 9y = u_5(t),$$
 $y(0) = 3,$ $y'(0) = 2.$

Solution: Recall
$$\mathcal{L}[y] = 3 \frac{s}{(s^2 + 9)} + \frac{2}{3} \frac{3}{(s^2 + 9)} + e^{-5s} \frac{1}{s(s^2 + 9)}$$
.
 $\mathcal{L}[y] = 3 \mathcal{L}[\cos(3t)] + \frac{2}{3} \mathcal{L}[\sin(3t)] + e^{-5s} \frac{1}{s(s^2 + 9)}$.

Partial fractions on

$$H(s) = \frac{1}{s(s^2 + 9)} = \frac{a}{s} + \frac{(bs + c)}{(s^2 + 9)} = \frac{a(s^2 + 9) + (bs + c)s}{s(s^2 + 9)},$$
$$1 = as^2 + 9a + bs^2 + cs = (a + b)s^2 + cs + 9a$$
$$a = \frac{1}{9},$$

Example

Use L.T. to find the solution to the $\ensuremath{\mathsf{IVP}}$

$$y'' + 9y = u_5(t),$$
 $y(0) = 3,$ $y'(0) = 2.$

Solution: Recall
$$\mathcal{L}[y] = 3 \frac{s}{(s^2 + 9)} + \frac{2}{3} \frac{3}{(s^2 + 9)} + e^{-5s} \frac{1}{s(s^2 + 9)}$$
.
 $\mathcal{L}[y] = 3 \mathcal{L}[\cos(3t)] + \frac{2}{3} \mathcal{L}[\sin(3t)] + e^{-5s} \frac{1}{s(s^2 + 9)}$.

Partial fractions on

$$H(s) = \frac{1}{s(s^2 + 9)} = \frac{a}{s} + \frac{(bs + c)}{(s^2 + 9)} = \frac{a(s^2 + 9) + (bs + c)s}{s(s^2 + 9)},$$
$$1 = as^2 + 9a + bs^2 + cs = (a + b)s^2 + cs + 9a$$
$$a = \frac{1}{9}, \quad c = 0,$$

Example

Use L.T. to find the solution to the $\ensuremath{\mathsf{IVP}}$

$$y'' + 9y = u_5(t),$$
 $y(0) = 3,$ $y'(0) = 2.$

Solution: Recall
$$\mathcal{L}[y] = 3 \frac{s}{(s^2 + 9)} + \frac{2}{3} \frac{3}{(s^2 + 9)} + e^{-5s} \frac{1}{s(s^2 + 9)}$$
.
 $\mathcal{L}[y] = 3 \mathcal{L}[\cos(3t)] + \frac{2}{3} \mathcal{L}[\sin(3t)] + e^{-5s} \frac{1}{s(s^2 + 9)}$.

Partial fractions on

$$H(s) = \frac{1}{s(s^2 + 9)} = \frac{a}{s} + \frac{(bs + c)}{(s^2 + 9)} = \frac{a(s^2 + 9) + (bs + c)s}{s(s^2 + 9)},$$
$$1 = as^2 + 9a + bs^2 + cs = (a + b)s^2 + cs + 9a$$
$$a = \frac{1}{9}, \quad c = 0, \quad b = -a$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Use L.T. to find the solution to the $\ensuremath{\mathsf{IVP}}$

$$y'' + 9y = u_5(t),$$
 $y(0) = 3,$ $y'(0) = 2.$

Solution: Recall
$$\mathcal{L}[y] = 3 \frac{s}{(s^2 + 9)} + \frac{2}{3} \frac{3}{(s^2 + 9)} + e^{-5s} \frac{1}{s(s^2 + 9)}$$
.
 $\mathcal{L}[y] = 3 \mathcal{L}[\cos(3t)] + \frac{2}{3} \mathcal{L}[\sin(3t)] + e^{-5s} \frac{1}{s(s^2 + 9)}$.

Partial fractions on

$$H(s) = \frac{1}{s(s^2 + 9)} = \frac{a}{s} + \frac{(bs + c)}{(s^2 + 9)} = \frac{a(s^2 + 9) + (bs + c)s}{s(s^2 + 9)},$$

$$1 = as^2 + 9a + bs^2 + cs = (a + b)s^2 + cs + 9a$$

$$a = \frac{1}{9}, \quad c = 0, \quad b = -a \quad \Rightarrow \quad b = -\frac{1}{9}.$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Example

Use L.T. to find the solution to the IVP

$$y'' + 9y = u_5(t), \qquad y(0) = 3, \qquad y'(0) = 2.$$

Solution: So, $\mathcal{L}[y] = 3\mathcal{L}[\cos(3t)] + \frac{2}{3}\mathcal{L}[\sin(3t)] + e^{-5s}H(s)$, and

$$H(s) = \frac{1}{s(s^2 + 9)} = \frac{1}{9} \left[\frac{1}{s} - \frac{s}{s^2 + 9} \right]$$

Example

Use L.T. to find the solution to the IVP

$$y'' + 9y = u_5(t),$$
 $y(0) = 3,$ $y'(0) = 2.$

Solution: So, $\mathcal{L}[y] = 3\mathcal{L}[\cos(3t)] + \frac{2}{3}\mathcal{L}[\sin(3t)] + e^{-5s}H(s)$, and

$$H(s) = \frac{1}{s(s^2+9)} = \frac{1}{9} \left[\frac{1}{s} - \frac{s}{s^2+9} \right] = \frac{1}{9} \left(\mathcal{L}[u(t)] - \mathcal{L}[\cos(3t)] \right)$$

Example

Use L.T. to find the solution to the IVP

$$y'' + 9y = u_5(t),$$
 $y(0) = 3,$ $y'(0) = 2.$

Solution: So, $\mathcal{L}[y] = 3\mathcal{L}[\cos(3t)] + \frac{2}{3}\mathcal{L}[\sin(3t)] + e^{-5s}H(s)$, and

$$H(s) = \frac{1}{s(s^2+9)} = \frac{1}{9} \left[\frac{1}{s} - \frac{s}{s^2+9} \right] = \frac{1}{9} \left(\mathcal{L}[u(t)] - \mathcal{L}[\cos(3t)] \right)$$

$$e^{-5s} H(s) = \frac{1}{9} \Big(e^{-5s} \mathcal{L}[u(t)] - e^{-5s} \mathcal{L}[\cos(3t)] \Big)$$

Example

Use L.T. to find the solution to the IVP

$$y'' + 9y = u_5(t),$$
 $y(0) = 3,$ $y'(0) = 2.$

Solution: So, $\mathcal{L}[y] = 3\mathcal{L}[\cos(3t)] + \frac{2}{3}\mathcal{L}[\sin(3t)] + e^{-5s}H(s)$, and

$$H(s) = \frac{1}{s(s^2 + 9)} = \frac{1}{9} \left[\frac{1}{s} - \frac{s}{s^2 + 9} \right] = \frac{1}{9} \left(\mathcal{L}[u(t)] - \mathcal{L}[\cos(3t)] \right)$$

$$e^{-5s} H(s) = \frac{1}{9} \Big(e^{-5s} \mathcal{L}[u(t)] - e^{-5s} \mathcal{L}[\cos(3t)] \Big)$$
$$e^{-5s} H(s) = \frac{1}{9} \Big(\mathcal{L}[u_5(t)] - \mathcal{L}[u_5(t)\cos(3(t-5))] \Big).$$

Example

Use L.T. to find the solution to the IVP

$$y'' + 9y = u_5(t),$$
 $y(0) = 3,$ $y'(0) = 2.$

Solution: So, $\mathcal{L}[y] = 3\mathcal{L}[\cos(3t)] + \frac{2}{3}\mathcal{L}[\sin(3t)] + e^{-5s}H(s)$, and

$$H(s) = \frac{1}{s(s^2 + 9)} = \frac{1}{9} \left[\frac{1}{s} - \frac{s}{s^2 + 9} \right] = \frac{1}{9} \left(\mathcal{L}[u(t)] - \mathcal{L}[\cos(3t)] \right)$$

$$e^{-5s} H(s) = \frac{1}{9} \Big(e^{-5s} \mathcal{L}[u(t)] - e^{-5s} \mathcal{L}[\cos(3t)] \Big)$$
$$e^{-5s} H(s) = \frac{1}{9} \Big(\mathcal{L}[u_5(t)] - \mathcal{L}[u_5(t)\cos(3(t-5))] \Big).$$

 $\mathcal{L}[y] = 3\mathcal{L}[\cos(3t)] + \frac{2}{3}\mathcal{L}[\sin(3t)] + \frac{1}{9}\Big(\mathcal{L}[u_5(t)] - \mathcal{L}[u_5(t)\cos(3(t-5))]\Big).$

(日) (同) (三) (三) (三) (○) (○)

Example

Use L.T. to find the solution to the $\ensuremath{\mathsf{IVP}}$

$$y'' + 9y = u_5(t),$$
 $y(0) = 3,$ $y'(0) = 2.$

Solution:

$$\mathcal{L}[y] = 3\mathcal{L}[\cos(3t)] + \frac{2}{3}\mathcal{L}[\sin(3t)] + \frac{1}{9}\Big(\mathcal{L}[u_5(t)] - \mathcal{L}[u_5(t)\cos(3(t-5))]\Big).$$

Example

Use L.T. to find the solution to the $\ensuremath{\mathsf{IVP}}$

$$y'' + 9y = u_5(t),$$
 $y(0) = 3,$ $y'(0) = 2.$

Solution:

$$\mathcal{L}[y] = 3\mathcal{L}[\cos(3t)] + \frac{2}{3}\mathcal{L}[\sin(3t)] + \frac{1}{9}\Big(\mathcal{L}[u_5(t)] - \mathcal{L}[u_5(t)\cos(3(t-5))]\Big).$$

Therefore, we conclude that,

$$y(t) = 3\cos(3t) + \frac{2}{3}\sin(3t) + \frac{u_5(t)}{9} \Big[1 - \cos(3(t-5)) \Big].$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Review for Final Exam.

- Fourier Series expansions (Chptr. 6).
- Eigenvalue-Eigenfunction BVP (Chptr. 6).
- Systems of linear Equations (Chptr. 5).
- Laplace transforms (Chptr. 4).
- ► Second order linear equations (Chptr. 2).

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

First order differential equations (Chptr. 1).

Summary: Solve $y'' + a_1 y' + a_0 y = g(t)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Summary: Solve $y'' + a_1 y' + a_0 y = g(t)$.

First find fundamental solutions $y(t) = e^{rt}$ to the case g = 0,

Summary: Solve $y'' + a_1 y' + a_0 y = g(t)$.

First find fundamental solutions $y(t) = e^{rt}$ to the case g = 0, where r is a root of $p(r) = r^2 + a_1r + a_0$.

・ロト・日本・モート モー うへで

Summary: Solve $y'' + a_1 y' + a_0 y = g(t)$.

First find fundamental solutions $y(t) = e^{rt}$ to the case g = 0, where r is a root of $p(r) = r^2 + a_1r + a_0$.

(a) If $r_1 \neq r_2$, real,

Summary: Solve $y'' + a_1 y' + a_0 y = g(t)$.

First find fundamental solutions $y(t) = e^{rt}$ to the case g = 0, where r is a root of $p(r) = r^2 + a_1r + a_0$.

(a) If $r_1 \neq r_2$, real, then the general solution is

 $y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}.$

Summary: Solve $y'' + a_1 y' + a_0 y = g(t)$.

First find fundamental solutions $y(t) = e^{rt}$ to the case g = 0, where r is a root of $p(r) = r^2 + a_1r + a_0$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(a) If $r_1 \neq r_2$, real, then the general solution is $y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}.$

(b) If $r_1 \neq r_2$, complex,

Summary: Solve $y'' + a_1 y' + a_0 y = g(t)$.

First find fundamental solutions $y(t) = e^{rt}$ to the case g = 0, where r is a root of $p(r) = r^2 + a_1r + a_0$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(a) If $r_1 \neq r_2$, real, then the general solution is $y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}.$

(b) If $r_1 \neq r_2$, complex, then denoting $r_{\pm} = \alpha \pm \beta i$,

Summary: Solve $y'' + a_1 y' + a_0 y = g(t)$.

First find fundamental solutions $y(t) = e^{rt}$ to the case g = 0, where r is a root of $p(r) = r^2 + a_1r + a_0$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(a) If $r_1 \neq r_2$, real, then the general solution is $v(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$.

(b) If r₁ ≠ r₂, complex, then denoting r_± = α ± βi, complex-valued fundamental solutions are
 (t) = c^{(α±βi)t}

$$y_{\pm}(t) = e^{(\alpha \pm \beta t)}$$

Summary: Solve $y'' + a_1 y' + a_0 y = g(t)$.

First find fundamental solutions $y(t) = e^{rt}$ to the case g = 0, where r is a root of $p(r) = r^2 + a_1r + a_0$.

(a) If $r_1 \neq r_2$, real, then the general solution is

 $y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}.$

(b) If $r_1 \neq r_2$, complex, then denoting $r_{\pm} = \alpha \pm \beta i$, complex-valued fundamental solutions are

$$y_{\pm}(t) = e^{(\alpha \pm \beta i)t} \quad \Leftrightarrow \quad y_{\pm}(t) = e^{\alpha t} \left[\cos(\beta t) \pm i \sin(\beta t)\right],$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Summary: Solve $y'' + a_1 y' + a_0 y = g(t)$.

First find fundamental solutions $y(t) = e^{rt}$ to the case g = 0, where r is a root of $p(r) = r^2 + a_1r + a_0$.

(a) If $r_1 \neq r_2$, real, then the general solution is $v(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$.

(b) If r₁ ≠ r₂, complex, then denoting r_± = α ± βi, complex-valued fundamental solutions are
 y_±(t) = e^{(α±βi)t} ⇔ y_±(t) = e^{αt} [cos(βt) ± i sin(βt)], and real-valued fundamental solutions are

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Summary: Solve $y'' + a_1 y' + a_0 y = g(t)$.

First find fundamental solutions $y(t) = e^{rt}$ to the case g = 0, where r is a root of $p(r) = r^2 + a_1r + a_0$.

(a) If $r_1 \neq r_2$, real, then the general solution is $y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$.

(b) If $r_1 \neq r_2$, complex, then denoting $r_{\pm} = \alpha \pm \beta i$, complex-valued fundamental solutions are

$$y_{\pm}(t) = e^{(\alpha \pm \beta i)t} \quad \Leftrightarrow \quad y_{\pm}(t) = e^{\alpha t} \left[\cos(\beta t) \pm i \sin(\beta t)\right],$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

and real-valued fundamental solutions are

 $y_1(t)=e^{\alpha t}\,\cos(\beta t),$

Summary: Solve $y'' + a_1 y' + a_0 y = g(t)$.

First find fundamental solutions $y(t) = e^{rt}$ to the case g = 0, where r is a root of $p(r) = r^2 + a_1r + a_0$.

(a) If $r_1 \neq r_2$, real, then the general solution is $y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$.

(b) If $r_1 \neq r_2$, complex, then denoting $r_{\pm} = \alpha \pm \beta i$, complex-valued fundamental solutions are

 $y_{\pm}(t) = e^{(\alpha \pm \beta i)t} \quad \Leftrightarrow \quad y_{\pm}(t) = e^{\alpha t} \left[\cos(\beta t) \pm i \sin(\beta t) \right],$

and real-valued fundamental solutions are

$$y_1(t) = e^{\alpha t} \cos(\beta t), \qquad y_2(t) = e^{\alpha t} \sin(\beta t).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Summary: Solve $y'' + a_1 y' + a_0 y = g(t)$.

First find fundamental solutions $y(t) = e^{rt}$ to the case g = 0, where r is a root of $p(r) = r^2 + a_1r + a_0$.

(a) If $r_1 \neq r_2$, real, then the general solution is $y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$.

(b) If $r_1 \neq r_2$, complex, then denoting $r_{\pm} = \alpha \pm \beta i$, complex-valued fundamental solutions are

 $y_{\pm}(t) = e^{(\alpha \pm \beta i)t} \quad \Leftrightarrow \quad y_{\pm}(t) = e^{\alpha t} \left[\cos(\beta t) \pm i \sin(\beta t) \right],$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

and real-valued fundamental solutions are

 $y_1(t)=e^{\alpha t}\,\cos(\beta t),\qquad y_2(t)=e^{\alpha t}\,\sin(\beta t).$ If $r_1=r_2=r,$ real,

Summary: Solve $y'' + a_1 y' + a_0 y = g(t)$.

First find fundamental solutions $y(t) = e^{rt}$ to the case g = 0, where r is a root of $p(r) = r^2 + a_1r + a_0$.

(a) If $r_1 \neq r_2$, real, then the general solution is $y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$.

(b) If $r_1 \neq r_2$, complex, then denoting $r_{\pm} = \alpha \pm \beta i$, complex-valued fundamental solutions are

 $y_{\pm}(t) = e^{(\alpha \pm \beta i)t} \quad \Leftrightarrow \quad y_{\pm}(t) = e^{\alpha t} \left[\cos(\beta t) \pm i \sin(\beta t) \right],$

and real-valued fundamental solutions are

 $y_1(t) = e^{\alpha t} \cos(\beta t),$ $y_2(t) = e^{\alpha t} \sin(\beta t).$ If $r_1 = r_2 = r$, real, then the general solution is $y(t) = (c_1 + c_2 t) e^{rt}.$

Remark: Case (c) is solved using the reduction of order method.

Remark: Case (c) is solved using the *reduction of order method*. See page 170 in the textbook.

Remark: Case (c) is solved using the *reduction of order method*. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Remark: Case (c) is solved using the *reduction of order method*. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary: Non-homogeneous equations: $g \neq 0$.

Remark: Case (c) is solved using the *reduction of order method*. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:

Non-homogeneous equations: $g \neq 0$.

(i) Undetermined coefficients:

Remark: Case (c) is solved using the *reduction of order method*. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:

Non-homogeneous equations: $g \neq 0$.

(i) Undetermined coefficients: Guess the particular solution y_p

Remark: Case (c) is solved using the *reduction of order method*. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:

Non-homogeneous equations: $g \neq 0$.

(i) Undetermined coefficients: Guess the particular solution y_p using the guessing table, $g \rightarrow y_p$.

Remark: Case (c) is solved using the *reduction of order method*. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:

Non-homogeneous equations: $g \neq 0$.

(i) Undetermined coefficients: Guess the particular solution y_p using the guessing table, $g \rightarrow y_p$.

(ii) Variation of parameters:

Remark: Case (c) is solved using the *reduction of order method*. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:

Non-homogeneous equations: $g \neq 0$.

(i) Undetermined coefficients: Guess the particular solution y_p using the guessing table, $g \rightarrow y_p$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(ii) Variation of parameters: If y_1 and y_2 are fundamental solutions to the homogeneous equation,

Remark: Case (c) is solved using the *reduction of order method*. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:

Non-homogeneous equations: $g \neq 0$.

(i) Undetermined coefficients: Guess the particular solution y_p using the guessing table, $g \rightarrow y_p$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(ii) Variation of parameters: If y_1 and y_2 are fundamental solutions to the homogeneous equation, and W is their Wronskian,

Remark: Case (c) is solved using the *reduction of order method*. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:

Non-homogeneous equations: $g \neq 0$.

(i) Undetermined coefficients: Guess the particular solution y_p using the guessing table, $g \rightarrow y_p$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(ii) Variation of parameters: If y_1 and y_2 are fundamental solutions to the homogeneous equation, and W is their Wronskian, then $y_p = u_1y_1 + u_2y_2$,

Remark: Case (c) is solved using the *reduction of order method*. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:

Non-homogeneous equations: $g \neq 0$.

(i) Undetermined coefficients: Guess the particular solution y_p using the guessing table, $g \rightarrow y_p$.

(ii) Variation of parameters: If y_1 and y_2 are fundamental solutions to the homogeneous equation, and W is their Wronskian, then $y_p = u_1y_1 + u_2y_2$, where

$$u_1'=-\frac{y_2g}{W},$$

Remark: Case (c) is solved using the *reduction of order method*. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:

Non-homogeneous equations: $g \neq 0$.

- (i) Undetermined coefficients: Guess the particular solution y_p using the guessing table, $g \rightarrow y_p$.
- (ii) Variation of parameters: If y_1 and y_2 are fundamental solutions to the homogeneous equation, and W is their Wronskian, then $y_p = u_1y_1 + u_2y_2$, where

$$u_1' = -\frac{y_2g}{W}, \qquad u_2' = \frac{y_1g}{W},$$

Example

Knowing that $y_1(x) = x^2$ solves $x^2 y'' - 4x y' + 6y = 0$, with x > 0, find a second solution y_2 not proportional to y_1 .

・ロト・日本・モート モー うへで

Example

Knowing that $y_1(x) = x^2$ solves $x^2 y'' - 4x y' + 6y = 0$, with x > 0, find a second solution y_2 not proportional to y_1 .

Solution: Use the reduction of order method.

Example

Knowing that $y_1(x) = x^2$ solves $x^2 y'' - 4x y' + 6y = 0$, with x > 0, find a second solution y_2 not proportional to y_1 .

Solution: Use the reduction of order method. We verify that $y_1 = x^2$ solves the equation,

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

Knowing that $y_1(x) = x^2$ solves $x^2 y'' - 4x y' + 6y = 0$, with x > 0, find a second solution y_2 not proportional to y_1 .

Solution: Use the reduction of order method. We verify that $y_1 = x^2$ solves the equation,

$$x^{2}(2) - 4x(2x) + 6x^{2} = 0.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

Knowing that $y_1(x) = x^2$ solves $x^2 y'' - 4x y' + 6y = 0$, with x > 0, find a second solution y_2 not proportional to y_1 .

Solution: Use the reduction of order method. We verify that $y_1 = x^2$ solves the equation,

$$x^{2}(2) - 4x(2x) + 6x^{2} = 0.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Look for a solution $y_2(x) = v(x) y_1(x)$,

Example

Knowing that $y_1(x) = x^2$ solves $x^2 y'' - 4x y' + 6y = 0$, with x > 0, find a second solution y_2 not proportional to y_1 .

Solution: Use the reduction of order method. We verify that $y_1 = x^2$ solves the equation,

$$x^{2}(2) - 4x(2x) + 6x^{2} = 0.$$

Look for a solution $y_2(x) = v(x) y_1(x)$, and find an equation for v.

Example

Knowing that $y_1(x) = x^2$ solves $x^2 y'' - 4x y' + 6y = 0$, with x > 0, find a second solution y_2 not proportional to y_1 .

Solution: Use the reduction of order method. We verify that $y_1 = x^2$ solves the equation,

$$x^{2}(2) - 4x(2x) + 6x^{2} = 0.$$

Look for a solution $y_2(x) = v(x) y_1(x)$, and find an equation for v.

$$y_2 = x^2 v,$$

Example

Knowing that $y_1(x) = x^2$ solves $x^2 y'' - 4x y' + 6y = 0$, with x > 0, find a second solution y_2 not proportional to y_1 .

Solution: Use the reduction of order method. We verify that $y_1 = x^2$ solves the equation,

$$x^{2}(2) - 4x(2x) + 6x^{2} = 0.$$

Look for a solution $y_2(x) = v(x) y_1(x)$, and find an equation for v.

$$y_2 = x^2 v, \quad y'_2 = x^2 v' + 2xv,$$

Example

Knowing that $y_1(x) = x^2$ solves $x^2 y'' - 4x y' + 6y = 0$, with x > 0, find a second solution y_2 not proportional to y_1 .

Solution: Use the reduction of order method. We verify that $y_1 = x^2$ solves the equation,

$$x^{2}(2) - 4x(2x) + 6x^{2} = 0.$$

Look for a solution $y_2(x) = v(x) y_1(x)$, and find an equation for v.

$$y_2 = x^2 v$$
, $y'_2 = x^2 v' + 2xv$, $y''_2 = x^2 v'' + 4xv' + 2v$.

Example

Knowing that $y_1(x) = x^2$ solves $x^2 y'' - 4x y' + 6y = 0$, with x > 0, find a second solution y_2 not proportional to y_1 .

Solution: Use the reduction of order method. We verify that $y_1 = x^2$ solves the equation,

$$x^{2}(2) - 4x(2x) + 6x^{2} = 0.$$

Look for a solution $y_2(x) = v(x) y_1(x)$, and find an equation for v.

$$y_2 = x^2 v, \quad y'_2 = x^2 v' + 2xv, \quad y''_2 = x^2 v'' + 4xv' + 2v.$$
$$x^2 (x^2 v'' + 4xv' + 2v) - 4x (x^2 v' + 2xv) + 6 (x^2 v) = 0.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Knowing that $y_1(x) = x^2$ solves $x^2 y'' - 4x y' + 6y = 0$, with x > 0, find a second solution y_2 not proportional to y_1 .

Solution: Use the reduction of order method. We verify that $y_1 = x^2$ solves the equation,

$$x^{2}(2) - 4x(2x) + 6x^{2} = 0.$$

Look for a solution $y_2(x) = v(x) y_1(x)$, and find an equation for v.

$$y_{2} = x^{2}v, \quad y_{2}' = x^{2}v' + 2xv, \quad y_{2}'' = x^{2}v'' + 4xv' + 2v.$$
$$x^{2}(x^{2}v'' + 4xv' + 2v) - 4x(x^{2}v' + 2xv) + 6(x^{2}v) = 0.$$
$$x^{4}v'' + (4x^{3} - 4x^{3})v' + (2x^{2} - 8x^{2} + 6x^{2})v = 0.$$

Example

Knowing that $y_1(x) = x^2$ solves $x^2 y'' - 4x y' + 6y = 0$, with x > 0, find a second solution y_2 not proportional to y_1 .

Solution: Use the reduction of order method. We verify that $y_1 = x^2$ solves the equation,

$$x^{2}(2) - 4x(2x) + 6x^{2} = 0.$$

Look for a solution $y_2(x) = v(x) y_1(x)$, and find an equation for v.

$$y_{2} = x^{2}v, \quad y_{2}' = x^{2}v' + 2xv, \quad y_{2}'' = x^{2}v'' + 4xv' + 2v.$$
$$x^{2}(x^{2}v'' + 4xv' + 2v) - 4x(x^{2}v' + 2xv) + 6(x^{2}v) = 0.$$
$$x^{4}v'' + (4x^{3} - 4x^{3})v' + (2x^{2} - 8x^{2} + 6x^{2})v = 0.$$
$$v'' = 0$$

Example

Knowing that $y_1(x) = x^2$ solves $x^2 y'' - 4x y' + 6y = 0$, with x > 0, find a second solution y_2 not proportional to y_1 .

Solution: Use the reduction of order method. We verify that $y_1 = x^2$ solves the equation,

$$x^{2}(2) - 4x(2x) + 6x^{2} = 0.$$

Look for a solution $y_2(x) = v(x) y_1(x)$, and find an equation for v.

$$y_{2} = x^{2}v, \quad y_{2}' = x^{2}v' + 2xv, \quad y_{2}'' = x^{2}v'' + 4xv' + 2v.$$

$$x^{2}(x^{2}v'' + 4xv' + 2v) - 4x(x^{2}v' + 2xv) + 6(x^{2}v) = 0.$$

$$x^{4}v'' + (4x^{3} - 4x^{3})v' + (2x^{2} - 8x^{2} + 6x^{2})v = 0.$$

$$v'' = 0 \quad \Rightarrow \quad v = c_{1} + c_{2}x$$

Example

Knowing that $y_1(x) = x^2$ solves $x^2 y'' - 4x y' + 6y = 0$, with x > 0, find a second solution y_2 not proportional to y_1 .

Solution: Use the reduction of order method. We verify that $y_1 = x^2$ solves the equation,

$$x^{2}(2) - 4x(2x) + 6x^{2} = 0.$$

Look for a solution $y_2(x) = v(x) y_1(x)$, and find an equation for v.

$$y_{2} = x^{2}v, \quad y_{2}' = x^{2}v' + 2xv, \quad y_{2}'' = x^{2}v'' + 4xv' + 2v.$$

$$x^{2}(x^{2}v'' + 4xv' + 2v) - 4x(x^{2}v' + 2xv) + 6(x^{2}v) = 0.$$

$$x^{4}v'' + (4x^{3} - 4x^{3})v' + (2x^{2} - 8x^{2} + 6x^{2})v = 0.$$

$$v'' = 0 \quad \Rightarrow \quad v = c_{1} + c_{2}x \quad \Rightarrow \quad y_{2} = c_{1}y_{1} + c_{2}xy_{1}.$$

Example

Knowing that $y_1(x) = x^2$ solves $x^2 y'' - 4x y' + 6y = 0$, with x > 0, find a second solution y_2 not proportional to y_1 .

Solution: Use the reduction of order method. We verify that $y_1 = x^2$ solves the equation,

$$x^{2}(2) - 4x(2x) + 6x^{2} = 0.$$

Look for a solution $y_2(x) = v(x) y_1(x)$, and find an equation for v.

$$y_{2} = x^{2}v, \quad y_{2}' = x^{2}v' + 2xv, \quad y_{2}'' = x^{2}v'' + 4xv' + 2v.$$

$$x^{2}(x^{2}v'' + 4xv' + 2v) - 4x(x^{2}v' + 2xv) + 6(x^{2}v) = 0.$$

$$x^{4}v'' + (4x^{3} - 4x^{3})v' + (2x^{2} - 8x^{2} + 6x^{2})v = 0.$$

$$v'' = 0 \quad \Rightarrow \quad v = c_{1} + c_{2}x \quad \Rightarrow \quad y_{2} = c_{1}y_{1} + c_{2}xy_{1}.$$

Choose $c_1 = 0$, $c_2 = 1$.

Example

Knowing that $y_1(x) = x^2$ solves $x^2 y'' - 4x y' + 6y = 0$, with x > 0, find a second solution y_2 not proportional to y_1 .

Solution: Use the reduction of order method. We verify that $y_1 = x^2$ solves the equation,

$$x^{2}(2) - 4x(2x) + 6x^{2} = 0.$$

Look for a solution $y_2(x) = v(x) y_1(x)$, and find an equation for v.

$$y_{2} = x^{2}v, \quad y_{2}' = x^{2}v' + 2xv, \quad y_{2}'' = x^{2}v'' + 4xv' + 2v.$$

$$x^{2}(x^{2}v'' + 4xv' + 2v) - 4x(x^{2}v' + 2xv) + 6(x^{2}v) = 0.$$

$$x^{4}v'' + (4x^{3} - 4x^{3})v' + (2x^{2} - 8x^{2} + 6x^{2})v = 0.$$

$$v'' = 0 \quad \Rightarrow \quad v = c_{1} + c_{2}x \quad \Rightarrow \quad y_{2} = c_{1}y_{1} + c_{2}xy_{1}.$$

Choose $c_1 = 0$, $c_2 = 1$. Hence $y_2(x) = x^3$, and $y_1(x) = x^2$.

(ロ)、

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Solution: (1) Solve the homogeneous equation.

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Solution: (1) Solve the homogeneous equation.

 $y(t)=e^{rt},$

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Solution: (1) Solve the homogeneous equation.

$$y(t) = e^{rt}, \quad p(r) = r^2 - 2r - 3$$

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: (1) Solve the homogeneous equation.

$$y(t) = e^{rt}$$
, $p(r) = r^2 - 2r - 3 = 0$.

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: (1) Solve the homogeneous equation.

$$y(t) = e^{rt}$$
, $p(r) = r^2 - 2r - 3 = 0$.

$$r_{\pm} = \frac{1}{2} \left[2 \pm \sqrt{4 + 12} \right]$$

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: (1) Solve the homogeneous equation.

$$y(t) = e^{rt}$$
, $p(r) = r^2 - 2r - 3 = 0$.

$$r_{\pm} = \frac{1}{2} \left[2 \pm \sqrt{4 + 12} \right] = \frac{1}{2} \left[2 \pm \sqrt{16} \right]$$

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: (1) Solve the homogeneous equation.

$$y(t) = e^{rt}$$
, $p(r) = r^2 - 2r - 3 = 0$.

$$r_{\pm} = \frac{1}{2} [2 \pm \sqrt{4 + 12}] = \frac{1}{2} [2 \pm \sqrt{16}] = 1 \pm 2$$

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: (1) Solve the homogeneous equation.

$$y(t) = e^{rt}$$
, $p(r) = r^2 - 2r - 3 = 0$.

$$r_{\pm} = \frac{1}{2} \left[2 \pm \sqrt{4 + 12} \right] = \frac{1}{2} \left[2 \pm \sqrt{16} \right] = 1 \pm 2 \implies \begin{cases} r_{+} = 3, \\ r_{-} = -1. \end{cases}$$

・ロト ・ 画 ・ ・ 画 ・ ・ 画 ・ うらぐ

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: (1) Solve the homogeneous equation.

$$y(t) = e^{rt}$$
, $p(r) = r^2 - 2r - 3 = 0$.

$$r_{\pm} = \frac{1}{2} [2 \pm \sqrt{4 + 12}] = \frac{1}{2} [2 \pm \sqrt{16}] = 1 \pm 2 \Rightarrow \begin{cases} r_{+} = 3, \\ r_{-} = -1. \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Fundamental solutions: $y_1(t) = e^{3t}$ and $y_2(t) = e^{-t}$.

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: (1) Solve the homogeneous equation.

$$y(t) = e^{rt}$$
, $p(r) = r^2 - 2r - 3 = 0$.

$$r_{\pm} = \frac{1}{2} [2 \pm \sqrt{4 + 12}] = \frac{1}{2} [2 \pm \sqrt{16}] = 1 \pm 2 \Rightarrow \begin{cases} r_{+} = 3, \\ r_{-} = -1. \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Fundamental solutions: $y_1(t) = e^{3t}$ and $y_2(t) = e^{-t}$. (2) Guess y_p .

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: (1) Solve the homogeneous equation.

$$y(t) = e^{rt}$$
, $p(r) = r^2 - 2r - 3 = 0$.

$$r_{\pm} = \frac{1}{2} [2 \pm \sqrt{4 + 12}] = \frac{1}{2} [2 \pm \sqrt{16}] = 1 \pm 2 \Rightarrow \begin{cases} r_{+} = 3, \\ r_{-} = -1. \end{cases}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Fundamental solutions: $y_1(t) = e^{3t}$ and $y_2(t) = e^{-t}$. (2) Guess y_p . Since $g(t) = 3 e^{-t}$

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: (1) Solve the homogeneous equation.

$$y(t) = e^{rt}$$
, $p(r) = r^2 - 2r - 3 = 0$.

$$r_{\pm} = \frac{1}{2} [2 \pm \sqrt{4 + 12}] = \frac{1}{2} [2 \pm \sqrt{16}] = 1 \pm 2 \Rightarrow \begin{cases} r_{+} = 3, \\ r_{-} = -1. \end{cases}$$

Fundamental solutions: $y_1(t) = e^{3t}$ and $y_2(t) = e^{-t}$. (2) Guess y_p . Since $g(t) = 3e^{-t} \Rightarrow y_p(t) = ke^{-t}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: (1) Solve the homogeneous equation.

$$y(t) = e^{rt}$$
, $p(r) = r^2 - 2r - 3 = 0$.

$$r_{\pm} = \frac{1}{2} [2 \pm \sqrt{4 + 12}] = \frac{1}{2} [2 \pm \sqrt{16}] = 1 \pm 2 \Rightarrow \begin{cases} r_{+} = 3, \\ r_{-} = -1. \end{cases}$$

Fundamental solutions: $y_1(t) = e^{3t}$ and $y_2(t) = e^{-t}$. (2) Guess y_p . Since $g(t) = 3e^{-t} \Rightarrow y_p(t) = ke^{-t}$. But this $y_p = ke^{-t}$

◆ロト ◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● ④ ● ●

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: (1) Solve the homogeneous equation.

$$y(t) = e^{rt}$$
, $p(r) = r^2 - 2r - 3 = 0$.

$$r_{\pm} = \frac{1}{2} [2 \pm \sqrt{4 + 12}] = \frac{1}{2} [2 \pm \sqrt{16}] = 1 \pm 2 \Rightarrow \begin{cases} r_{+} = 3, \\ r_{-} = -1. \end{cases}$$

Fundamental solutions: $y_1(t) = e^{3t}$ and $y_2(t) = e^{-t}$. (2) Guess y_p . Since $g(t) = 3e^{-t} \Rightarrow y_p(t) = ke^{-t}$. But this $y_p = ke^{-t}$ is solution of the homogeneous equation.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: (1) Solve the homogeneous equation.

$$y(t) = e^{rt}$$
, $p(r) = r^2 - 2r - 3 = 0$.

$$r_{\pm} = \frac{1}{2} [2 \pm \sqrt{4 + 12}] = \frac{1}{2} [2 \pm \sqrt{16}] = 1 \pm 2 \Rightarrow \begin{cases} r_{+} = 3, \\ r_{-} = -1. \end{cases}$$

Fundamental solutions: $y_1(t) = e^{3t}$ and $y_2(t) = e^{-t}$. (2) Guess y_p . Since $g(t) = 3e^{-t} \Rightarrow y_p(t) = ke^{-t}$. But this $y_p = ke^{-t}$ is solution of the homogeneous equation. Then propose $y_p(t) = kte^{-t}$.

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Solution: Recall: $y_p(t) = kt e^{-t}$.

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: Recall: $y_{\rho}(t) = kt e^{-t}$. This is correct, since te^{-t} is not solution of the homogeneous equation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: Recall: $y_{\rho}(t) = kt e^{-t}$. This is correct, since te^{-t} is not solution of the homogeneous equation.

- ロ ト - 4 回 ト - 4 □ - 4

(3) Find the undetermined coefficient k.

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: Recall: $y_p(t) = kt e^{-t}$. This is correct, since te^{-t} is not solution of the homogeneous equation.

- ロ ト - 4 回 ト - 4 □ - 4

(3) Find the undetermined coefficient k.

$$y_p' = k e^{-t} - kt e^{-t},$$

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3 e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: Recall: $y_p(t) = kt e^{-t}$. This is correct, since te^{-t} is not solution of the homogeneous equation.

(3) Find the undetermined coefficient k.

$$y'_p = k e^{-t} - kt e^{-t}, \quad y''_p = -2k e^{-t} + kt e^{-t}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3 e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: Recall: $y_p(t) = kt e^{-t}$. This is correct, since te^{-t} is not solution of the homogeneous equation.

(3) Find the undetermined coefficient k.

$$y'_{p} = k e^{-t} - kt e^{-t}, \quad y''_{p} = -2k e^{-t} + kt e^{-t}.$$

$$(-2k e^{-t} + kt e^{-t}) - 2(k e^{-t} - kt e^{-t}) - 3(kt e^{-t}) = 3 e^{-t}$$

- ロ ト - 4 回 ト - 4 □ - 4

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: Recall: $y_p(t) = kt e^{-t}$. This is correct, since te^{-t} is not solution of the homogeneous equation.

(3) Find the undetermined coefficient k.

$$y'_{p} = k e^{-t} - kt e^{-t}, \quad y''_{p} = -2k e^{-t} + kt e^{-t}.$$
$$(-2k e^{-t} + kt e^{-t}) - 2(k e^{-t} - kt e^{-t}) - 3(kt e^{-t}) = 3 e^{-t}$$
$$(-2 + t - 2 + 2t - 3t) k e^{-t} = 3 e^{-t}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: Recall: $y_p(t) = kt e^{-t}$. This is correct, since te^{-t} is not solution of the homogeneous equation.

(3) Find the undetermined coefficient k.

$$y'_{p} = k e^{-t} - kt e^{-t}, \quad y''_{p} = -2k e^{-t} + kt e^{-t}.$$
$$(-2k e^{-t} + kt e^{-t}) - 2(k e^{-t} - kt e^{-t}) - 3(kt e^{-t}) = 3 e^{-t}$$
$$(-2 + t - 2 + 2t - 3t) k e^{-t} = 3 e^{-t} \Rightarrow -4k = 3$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: Recall: $y_p(t) = kt e^{-t}$. This is correct, since te^{-t} is not solution of the homogeneous equation.

(3) Find the undetermined coefficient k.

$$y'_{p} = k e^{-t} - kt e^{-t}, \quad y''_{p} = -2k e^{-t} + kt e^{-t}.$$
$$(-2k e^{-t} + kt e^{-t}) - 2(k e^{-t} - kt e^{-t}) - 3(kt e^{-t}) = 3 e^{-t}$$
$$(-2 + t - 2 + 2t - 3t) k e^{-t} = 3 e^{-t} \Rightarrow -4k = 3 \Rightarrow k = -\frac{3}{4}.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: Recall: $y_p(t) = kt e^{-t}$. This is correct, since te^{-t} is not solution of the homogeneous equation.

(3) Find the undetermined coefficient k.

$$y'_{p} = k e^{-t} - kt e^{-t}, \quad y''_{p} = -2k e^{-t} + kt e^{-t}.$$

$$(-2k e^{-t} + kt e^{-t}) - 2(k e^{-t} - kt e^{-t}) - 3(kt e^{-t}) = 3 e^{-t}$$

$$(-2 + t - 2 + 2t - 3t) k e^{-t} = 3 e^{-t} \Rightarrow -4k = 3 \Rightarrow k = -\frac{3}{4}.$$
We obtain: $y_{p}(t) = -\frac{3}{4}t e^{-t}.$

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}$$

Solution: Recall: $y_p(t) = -\frac{3}{4}t e^{-t}$.

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solution: Recall: $y_p(t) = -\frac{3}{4}t e^{-t}$.

(4) Find the general solution:

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}$$

Solution: Recall: $y_p(t) = -\frac{3}{4}t e^{-t}$.

(4) Find the general solution: $y(t) = c_1 e^{3t} + c_2 e^{-t} - \frac{3}{4} t e^{-t}$.

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}$$

Solution: Recall: $y_p(t) = -\frac{3}{4}t e^{-t}$.

(4) Find the general solution: $y(t) = c_1 e^{3t} + c_2 e^{-t} - \frac{3}{4}t e^{-t}$. (5) Impose the initial conditions.

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}$$

Solution: Recall: $y_p(t) = -\frac{3}{4}t e^{-t}$.

(4) Find the general solution: $y(t) = c_1 e^{3t} + c_2 e^{-t} - \frac{3}{4}t e^{-t}$. (5) Impose the initial conditions. The derivative function is

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}$$

Solution: Recall: $y_p(t) = -\frac{3}{4}t e^{-t}$.

(4) Find the general solution: $y(t) = c_1 e^{3t} + c_2 e^{-t} - \frac{3}{4}t e^{-t}$. (5) Impose the initial conditions. The derivative function is

$$y'(t) = 3c_1 e^{3t} - c_2 e^{-t} - \frac{3}{4}(e^{-t} - t e^{-t}).$$

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}$$

Solution: Recall: $y_p(t) = -\frac{3}{4}t e^{-t}$.

(4) Find the general solution: $y(t) = c_1 e^{3t} + c_2 e^{-t} - \frac{3}{4}t e^{-t}$. (5) Impose the initial conditions. The derivative function is

$$y'(t) = 3c_1 e^{3t} - c_2 e^{-t} - \frac{3}{4}(e^{-t} - t e^{-t}).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

1 = y(0)

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}$$

Solution: Recall: $y_p(t) = -\frac{3}{4}t e^{-t}$.

(4) Find the general solution: $y(t) = c_1 e^{3t} + c_2 e^{-t} - \frac{3}{4}t e^{-t}$. (5) Impose the initial conditions. The derivative function is

$$y'(t) = 3c_1 e^{3t} - c_2 e^{-t} - \frac{3}{4}(e^{-t} - t e^{-t}).$$

$$1 = y(0) = c_1 + c_2,$$

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}$$

Solution: Recall: $y_p(t) = -\frac{3}{4}t e^{-t}$.

(4) Find the general solution: $y(t) = c_1 e^{3t} + c_2 e^{-t} - \frac{3}{4}t e^{-t}$. (5) Impose the initial conditions. The derivative function is

$$y'(t) = 3c_1 e^{3t} - c_2 e^{-t} - \frac{3}{4}(e^{-t} - t e^{-t}).$$

$$1 = y(0) = c_1 + c_2, \qquad \frac{1}{4} = y'(0)$$

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}$$

Solution: Recall: $y_p(t) = -\frac{3}{4}t e^{-t}$.

(4) Find the general solution: $y(t) = c_1 e^{3t} + c_2 e^{-t} - \frac{3}{4}t e^{-t}$. (5) Impose the initial conditions. The derivative function is

$$y'(t) = 3c_1 e^{3t} - c_2 e^{-t} - \frac{3}{4}(e^{-t} - t e^{-t}).$$

$$1 = y(0) = c_1 + c_2, \qquad \frac{1}{4} = y'(0) = 3c_1 - c_2 - \frac{3}{4}.$$

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}$$

Solution: Recall: $y_p(t) = -\frac{3}{4}t e^{-t}$.

(4) Find the general solution: $y(t) = c_1 e^{3t} + c_2 e^{-t} - \frac{3}{4}t e^{-t}$. (5) Impose the initial conditions. The derivative function is

$$y'(t) = 3c_1 e^{3t} - c_2 e^{-t} - \frac{3}{4}(e^{-t} - t e^{-t}).$$

$$1 = y(0) = c_1 + c_2, \qquad \frac{1}{4} = y'(0) = 3c_1 - c_2 - \frac{3}{4}.$$

$$c_1 + c_2 = 1,$$

$$3_1 - c_2 = 1$$

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3 e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}$$

Solution: Recall: $y_p(t) = -\frac{3}{4}t e^{-t}$.

(4) Find the general solution: $y(t) = c_1 e^{3t} + c_2 e^{-t} - \frac{3}{4}t e^{-t}$. (5) Impose the initial conditions. The derivative function is

$$y'(t) = 3c_1 e^{3t} - c_2 e^{-t} - \frac{3}{4}(e^{-t} - t e^{-t}).$$

$$1 = y(0) = c_1 + c_2, \qquad \frac{1}{4} = y'(0) = 3c_1 - c_2 - \frac{3}{4}.$$

$$c_1 + c_2 = 1, \\ 3_1 - c_2 = 1 \end{cases} \Rightarrow \begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Example

S

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$
olution: Recall: $y(t) = c_1 e^{3t} + c_2 e^{-t} - \frac{3}{4}t e^{-t}$, and

$$\begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: Recall: $y(t) = c_1 e^{3t} + c_2 e^{-t} - \frac{3}{4}t e^{-t}$, and
 $\begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \Rightarrow \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \frac{1}{-4} \begin{bmatrix} -1 & -1 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: Recall: $y(t) = c_1 e^{3t} + c_2 e^{-t} - \frac{3}{4}t e^{-t}$, and
 $\begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \Rightarrow \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \frac{1}{-4} \begin{bmatrix} -1 & -1 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 2 \\ 2 \end{bmatrix}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: Recall: $y(t) = c_1 e^{3t} + c_2 e^{-t} - \frac{3}{4}t e^{-t}$, and
 $\begin{bmatrix} 1 & 1\\ 3 & -1 \end{bmatrix} \begin{bmatrix} c_1\\ c_2 \end{bmatrix} = \begin{bmatrix} 1\\ 1 \end{bmatrix} \Rightarrow \begin{bmatrix} c_1\\ c_2 \end{bmatrix} = \frac{1}{-4} \begin{bmatrix} -1 & -1\\ -3 & 1 \end{bmatrix} \begin{bmatrix} 1\\ 1 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 2\\ 2 \end{bmatrix}.$
Since $c_1 = \frac{1}{2}$ and $c_2 = \frac{1}{2}$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Find the solution y to the initial value problem

$$y'' - 2y' - 3y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = \frac{1}{4}.$$

Solution: Recall: $y(t) = c_1 e^{3t} + c_2 e^{-t} - \frac{3}{4}t e^{-t}$, and
 $\begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \Rightarrow \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \frac{1}{-4} \begin{bmatrix} -1 & -1 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 2 \\ 2 \end{bmatrix}.$
Since $c_1 = \frac{1}{2}$ and $c_2 = \frac{1}{2}$, we obtain,
 $y(t) = \frac{1}{2} (e^{3t} + e^{-t}) - \frac{3}{4}t e^{-t}.$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Review for Final Exam.

- Fourier Series expansions (Chptr.6).
- Eigenvalue-Eigenfunction BVP (Chptr. 6).
- Systems of linear Equations (Chptr. 5).
- Laplace transforms (Chptr. 4).
- Second order linear equations (Chptr. 2).
- ▶ First order differential equations (Chptr. 1).

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

Summary:

• Linear, first order equations: y' + p(t)y = q(t).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Summary:

• Linear, first order equations: y' + p(t)y = q(t).

Use the integrating factor method: $\mu(t) = e^{\int p(t) dt}$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Summary:

Linear, first order equations: y' + p(t) y = q(t).
 Use the integrating factor method: μ(t) = e^{∫ p(t) dt}.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Separable, non-linear equations: h(y) y' = g(t).

Summary:

- Linear, first order equations: y' + p(t) y = q(t).
 Use the integrating factor method: μ(t) = e^{∫ p(t) dt}.
- Separable, non-linear equations: h(y) y' = g(t).
 Integrate with the substitution: u = y(t), du = y'(t) dt,

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Summary:

- Linear, first order equations: y' + p(t) y = q(t).
 Use the integrating factor method: μ(t) = e^{∫ p(t) dt}.
- Separable, non-linear equations: h(y) y' = g(t).
 Integrate with the substitution: u = y(t), du = y'(t) dt, that is,

$$\int h(u)\,du=\int g(t)\,dt+c.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Summary:

- Linear, first order equations: y' + p(t) y = q(t).
 Use the integrating factor method: μ(t) = e^{∫ p(t) dt}.
- Separable, non-linear equations: h(y) y' = g(t).
 Integrate with the substitution: u = y(t), du = y'(t) dt, that is,

$$\int h(u) \, du = \int g(t) \, dt + c.$$

The solution can be found in implicit of explicit form.

Summary:

- Linear, first order equations: y' + p(t) y = q(t).
 Use the integrating factor method: μ(t) = e^{∫ p(t) dt}.
- Separable, non-linear equations: h(y) y' = g(t).
 Integrate with the substitution: u = y(t), du = y'(t) dt, that is,

$$\int h(u) \, du = \int g(t) \, dt + c.$$

The solution can be found in implicit of explicit form.

 Homogeneous equations can be converted into separable equations.

Summary:

- Linear, first order equations: y' + p(t) y = q(t).
 Use the integrating factor method: μ(t) = e^{∫ p(t) dt}.
- Separable, non-linear equations: h(y) y' = g(t).
 Integrate with the substitution: u = y(t), du = y'(t) dt, that is,

$$\int h(u) \, du = \int g(t) \, dt + c.$$

The solution can be found in implicit of explicit form.

 Homogeneous equations can be converted into separable equations.

Read page 49 in the textbook.

Summary:

- Linear, first order equations: y' + p(t) y = q(t).
 Use the integrating factor method: μ(t) = e^{∫ p(t) dt}.
- Separable, non-linear equations: h(y) y' = g(t).
 Integrate with the substitution: u = y(t), du = y'(t) dt, that is,

$$\int h(u) \, du = \int g(t) \, dt + c.$$

The solution can be found in implicit of explicit form.

 Homogeneous equations can be converted into separable equations.

Read page 49 in the textbook.

► No modeling problems from Sect. 2.3.

Summary:

▶ Bernoulli equations: $y' + p(t) y = q(t) y^n$, with $n \in \mathbb{R}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Summary:

▶ Bernoulli equations: $y' + p(t) y = q(t) y^n$, with $n \in \mathbb{R}$.

(ロ)、(型)、(E)、(E)、 E、 の(の)

Read page 77 in the textbook,

Summary:

▶ Bernoulli equations: $y' + p(t) y = q(t) y^n$, with $n \in \mathbb{R}$.

Read page 77 in the textbook, page 11 in the Lecture Notes.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Summary:

▶ Bernoulli equations: y' + p(t) y = q(t) yⁿ, with n ∈ ℝ.
 Read page 77 in the textbook, page 11 in the Lecture Notes.
 A Bernoulli equation for y can be converted into a linear

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

equation for

Summary:

▶ Bernoulli equations: $y' + p(t) y = q(t) y^n$, with $n \in \mathbb{R}$.

Read page 77 in the textbook, page 11 in the Lecture Notes. A Bernoulli equation for y can be converted into a linear equation for $v = \frac{1}{y^{n-1}}$.

・ロト・日本・モート モー うへで

Summary:

▶ Bernoulli equations: $y' + p(t) y = q(t) y^n$, with $n \in \mathbb{R}$.

Read page 77 in the textbook, page 11 in the Lecture Notes. A Bernoulli equation for y can be converted into a linear equation for $v = \frac{1}{y^{n-1}}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Exact equations and integrating factors.

Summary:

▶ Bernoulli equations: $y' + p(t) y = q(t) y^n$, with $n \in \mathbb{R}$.

Read page 77 in the textbook, page 11 in the Lecture Notes. A Bernoulli equation for y can be converted into a linear equation for $v = \frac{1}{y^{n-1}}$.

• Exact equations and integrating factors.

N(x,y)y'+M(x,y)=0.

- ロ ト - 4 回 ト - 4 □ - 4

Summary:

▶ Bernoulli equations: $y' + p(t) y = q(t) y^n$, with $n \in \mathbb{R}$.

Read page 77 in the textbook, page 11 in the Lecture Notes. A Bernoulli equation for y can be converted into a linear equation for $v = \frac{1}{y^{n-1}}$.

• Exact equations and integrating factors.

N(x,y)y'+M(x,y)=0.

The equation is exact iff $\partial_x N = \partial_y M$.

Summary:

▶ Bernoulli equations: $y' + p(t) y = q(t) y^n$, with $n \in \mathbb{R}$.

Read page 77 in the textbook, page 11 in the Lecture Notes. A Bernoulli equation for y can be converted into a linear equation for $v = \frac{1}{y^{n-1}}$.

• Exact equations and integrating factors.

N(x,y)y'+M(x,y)=0.

The equation is exact iff $\partial_x N = \partial_y M$.

If the equation is exact, then there is a potential function ψ ,

Summary:

▶ Bernoulli equations: $y' + p(t) y = q(t) y^n$, with $n \in \mathbb{R}$.

Read page 77 in the textbook, page 11 in the Lecture Notes. A Bernoulli equation for y can be converted into a linear equation for $v = \frac{1}{y^{n-1}}$.

• Exact equations and integrating factors.

N(x,y)y'+M(x,y)=0.

The equation is exact iff $\partial_x N = \partial_y M$.

If the equation is exact, then there is a potential function ψ , such that $N=\partial_y\psi$

Summary:

▶ Bernoulli equations: $y' + p(t) y = q(t) y^n$, with $n \in \mathbb{R}$.

Read page 77 in the textbook, page 11 in the Lecture Notes. A Bernoulli equation for y can be converted into a linear equation for $v = \frac{1}{y^{n-1}}$.

• Exact equations and integrating factors.

N(x,y)y'+M(x,y)=0.

The equation is exact iff $\partial_x N = \partial_y M$.

If the equation is exact, then there is a potential function ψ , such that $N = \partial_y \psi$ and $M = \partial_x \psi$.

Summary:

▶ Bernoulli equations: $y' + p(t) y = q(t) y^n$, with $n \in \mathbb{R}$.

Read page 77 in the textbook, page 11 in the Lecture Notes. A Bernoulli equation for y can be converted into a linear equation for $v = \frac{1}{y^{n-1}}$.

• Exact equations and integrating factors.

N(x,y)y'+M(x,y)=0.

The equation is exact iff $\partial_x N = \partial_y M$.

If the equation is exact, then there is a potential function ψ , such that $N = \partial_y \psi$ and $M = \partial_x \psi$.

The solution of the differential equation is

 $\psi(x,y(x))=c.$

Advice: In order to find out what type of equation is the one you have to solve, check from simple types to the more difficult types:

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Advice: In order to find out what type of equation is the one you have to solve, check from simple types to the more difficult types:

1. Linear equations.

(Just by looking at it: y' + a(t)y = b(t).)

Advice: In order to find out what type of equation is the one you have to solve, check from simple types to the more difficult types:

1. Linear equations.

(Just by looking at it: y' + a(t)y = b(t).)

2. Bernoulli equations.

(Just by looking at it: $y' + a(t)y = b(t)y^n$.)

Advice: In order to find out what type of equation is the one you have to solve, check from simple types to the more difficult types:

1. Linear equations.

(Just by looking at it: y' + a(t)y = b(t).)

2. Bernoulli equations.

(Just by looking at it: $y' + a(t)y = b(t)y^n$.)

3. Separable equations.

(Few manipulations: h(y) y' = g(t).)

Advice: In order to find out what type of equation is the one you have to solve, check from simple types to the more difficult types:

1. Linear equations.

(Just by looking at it: y' + a(t)y = b(t).)

2. Bernoulli equations.

(Just by looking at it: $y' + a(t)y = b(t)y^n$.)

3. Separable equations.

(Few manipulations: h(y) y' = g(t).)

4. Homogeneous equations.

(Several manipulations: y' = F(y/t).)

Advice: In order to find out what type of equation is the one you have to solve, check from simple types to the more difficult types:

1. Linear equations.

(Just by looking at it: y' + a(t)y = b(t).)

2. Bernoulli equations.

(Just by looking at it: $y' + a(t)y = b(t)y^n$.)

3. Separable equations.

(Few manipulations: h(y) y' = g(t).)

4. Homogeneous equations.

(Several manipulations: y' = F(y/t).)

5. Exact equations.

(Check one equation: N y' + M = 0, and $\partial_t N = \partial_y M$.)

Advice: In order to find out what type of equation is the one you have to solve, check from simple types to the more difficult types:

1. Linear equations.

(Just by looking at it: y' + a(t)y = b(t).)

2. Bernoulli equations.

(Just by looking at it: $y' + a(t)y = b(t)y^n$.)

3. Separable equations.

(Few manipulations: h(y) y' = g(t).)

4. Homogeneous equations.

(Several manipulations: y' = F(y/t).)

5. Exact equations.

(Check one equation: N y' + M = 0, and $\partial_t N = \partial_y M$.)

 Exact equation with integrating factor. (Very complicated to check.)

Example

Find all solutions of $y' = \frac{x^2 + xy + y^2}{xy}$.

(ロ)、(型)、(E)、(E)、 E、 の(の)

Example

Find all solutions of $y' = \frac{x^2 + xy + y^2}{xy}$.

Solution: The sum of the powers in x and y on every term is the same number,

Example

Find all solutions of
$$y' = \frac{x^2 + xy + y^2}{xy}$$
.

Solution: The sum of the powers in x and y on every term is the same number, two in this example.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Find all solutions of $y' = \frac{x^2 + xy + y^2}{xy}$.

Solution: The sum of the powers in x and y on every term is the same number, two in this example. The equation is homogeneous.

Example

Find all solutions of
$$y' = \frac{x^2 + xy + y^2}{xy}$$
.

Solution: The sum of the powers in x and y on every term is the same number, two in this example. The equation is homogeneous.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

$$y' = \frac{x^2 + xy + y^2}{xy} \frac{(1/x^2)}{(1/x^2)}$$

Example

Find all solutions of $y' = \frac{x^2 + xy + y^2}{xy}$.

Solution: The sum of the powers in x and y on every term is the same number, two in this example. The equation is homogeneous.

$$y' = rac{x^2 + xy + y^2}{xy} rac{(1/x^2)}{(1/x^2)} \quad \Rightarrow \quad y' = rac{1 + (rac{y}{x}) + (rac{y}{x})^2}{(rac{y}{x})}.$$

Example

Find all solutions of $y' = \frac{x^2 + xy + y^2}{xy}$.

Solution: The sum of the powers in x and y on every term is the same number, two in this example. The equation is homogeneous.

$$y' = \frac{x^2 + xy + y^2}{xy} \frac{(1/x^2)}{(1/x^2)} \quad \Rightarrow \quad y' = \frac{1 + \left(\frac{y}{x}\right) + \left(\frac{y}{x}\right)^2}{\left(\frac{y}{x}\right)}.$$
$$v(x) = \frac{y}{x}$$

Example

Find all solutions of
$$y' = \frac{x^2 + xy + y^2}{xy}$$
.

Solution: The sum of the powers in x and y on every term is the same number, two in this example. The equation is homogeneous.

$$y' = \frac{x^2 + xy + y^2}{xy} \frac{(1/x^2)}{(1/x^2)} \quad \Rightarrow \quad y' = \frac{1 + \left(\frac{y}{x}\right) + \left(\frac{y}{x}\right)^2}{\left(\frac{y}{x}\right)}.$$
$$v(x) = \frac{y}{x} \quad \Rightarrow \quad y' = \frac{1 + v + v^2}{v}.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Example

Find all solutions of
$$y' = \frac{x^2 + xy + y^2}{xy}$$
.

Solution: The sum of the powers in x and y on every term is the same number, two in this example. The equation is homogeneous.

$$y' = \frac{x^2 + xy + y^2}{xy} \frac{(1/x^2)}{(1/x^2)} \quad \Rightarrow \quad y' = \frac{1 + \left(\frac{y}{x}\right) + \left(\frac{y}{x}\right)^2}{\left(\frac{y}{x}\right)}.$$
$$v(x) = \frac{y}{x} \quad \Rightarrow \quad y' = \frac{1 + v + v^2}{v}.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

$$y = x v$$
,

Example

Find all solutions of $y' = \frac{x^2 + xy + y^2}{xy}$.

Solution: The sum of the powers in x and y on every term is the same number, two in this example. The equation is homogeneous.

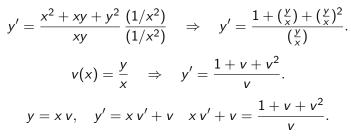
$$y' = \frac{x^2 + xy + y^2}{xy} \frac{(1/x^2)}{(1/x^2)} \quad \Rightarrow \quad y' = \frac{1 + \left(\frac{y}{x}\right) + \left(\frac{y}{x}\right)^2}{\left(\frac{y}{x}\right)}.$$
$$v(x) = \frac{y}{x} \quad \Rightarrow \quad y' = \frac{1 + v + v^2}{v}.$$

$$y = x v, \quad y' = x v' + v$$

Example

Find all solutions of $y' = \frac{x^2 + xy + y^2}{xy}$.

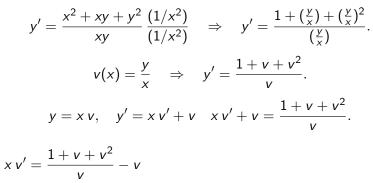
Solution: The sum of the powers in x and y on every term is the same number, two in this example. The equation is homogeneous.



Example

Find all solutions of $y' = \frac{x^2 + xy + y^2}{xy}$.

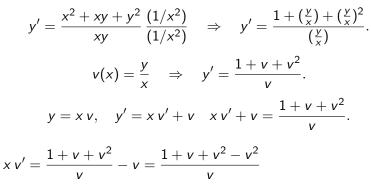
Solution: The sum of the powers in x and y on every term is the same number, two in this example. The equation is homogeneous.



Example

Find all solutions of $y' = \frac{x^2 + xy + y^2}{xy}$.

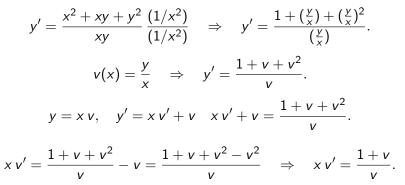
Solution: The sum of the powers in x and y on every term is the same number, two in this example. The equation is homogeneous.



Example

Find all solutions of $y' = \frac{x^2 + xy + y^2}{xy}$.

Solution: The sum of the powers in x and y on every term is the same number, two in this example. The equation is homogeneous.



Example Find all solutions of $y' = \frac{x^2 + xy + y^2}{xy}$. Solution: Recall: $v' = \frac{1+v}{v}$.

- ロ ト - 4 回 ト - 4 □ - 4

Example Find all solutions of $y' = \frac{x^2 + xy + y^2}{xy}$. Solution: Recall: $v' = \frac{1+v}{v}$. This is a separable equation.

Example Find all solutions of $y' = \frac{x^2 + xy + y^2}{xy}$. Solution: Recall: $v' = \frac{1+v}{v}$. This is a separable equation. $\frac{v(x)}{1+v(x)}v'(x) = \frac{1}{x}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example Find all solutions of $y' = \frac{x^2 + xy + y^2}{xy}$. Solution: Recall: $v' = \frac{1+v}{v}$. This is a separable equation. $\frac{v(x)}{1+v(x)}v'(x) = \frac{1}{x} \Rightarrow \int \frac{v(x)}{1+v(x)}v'(x) dx = \int \frac{dx}{x} + c$.

Example Find all solutions of $y' = \frac{x^2 + xy + y^2}{xy}$. Solution: Recall: $v' = \frac{1+v}{v}$. This is a separable equation. $\frac{v(x)}{1+v(x)}v'(x) = \frac{1}{x} \Rightarrow \int \frac{v(x)}{1+v(x)}v'(x) dx = \int \frac{dx}{x} + c$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Use the substitution u = 1 + v,

Example Find all solutions of $y' = \frac{x^2 + xy + y^2}{xy}$. Solution: Recall: $v' = \frac{1+v}{v}$. This is a separable equation. $\frac{v(x)}{1+v(x)}v'(x) = \frac{1}{x} \Rightarrow \int \frac{v(x)}{1+v(x)}v'(x) dx = \int \frac{dx}{x} + c$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Use the substitution u = 1 + v, hence du = v'(x) dx.

Example Find all solutions of $y' = \frac{x^2 + xy + y^2}{xy}$. Solution: Recall: $v' = \frac{1+v}{v}$. This is a separable equation. $\frac{v(x)}{1+v(x)}v'(x) = \frac{1}{x} \Rightarrow \int \frac{v(x)}{1+v(x)}v'(x) dx = \int \frac{dx}{x} + c$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Use the substitution u = 1 + v, hence du = v'(x) dx.

$$\int \frac{(u-1)}{u} \, du = \int \frac{dx}{x} + c$$

Example Find all solutions of $y' = \frac{x^2 + xy + y^2}{xy}$. Solution: Recall: $v' = \frac{1+v}{v}$. This is a separable equation. $\frac{v(x)}{1+v(x)}v'(x) = \frac{1}{x} \Rightarrow \int \frac{v(x)}{1+v(x)}v'(x) dx = \int \frac{dx}{x} + c$.

Use the substitution u = 1 + v, hence du = v'(x) dx.

$$\int \frac{(u-1)}{u} \, du = \int \frac{dx}{x} + c \quad \Rightarrow \quad \int \left(1 - \frac{1}{u}\right) \, du = \int \frac{dx}{x} + c$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example Find all solutions of $y' = \frac{x^2 + xy + y^2}{xy}$. Solution: Recall: $v' = \frac{1+v}{v}$. This is a separable equation. $\frac{v(x)}{1+v(x)}v'(x) = \frac{1}{x} \Rightarrow \int \frac{v(x)}{1+v(x)}v'(x) dx = \int \frac{dx}{x} + c$.

Use the substitution u = 1 + v, hence du = v'(x) dx.

$$\int \frac{(u-1)}{u} \, du = \int \frac{dx}{x} + c \quad \Rightarrow \quad \int \left(1 - \frac{1}{u}\right) \, du = \int \frac{dx}{x} + c$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $u - \ln|u| = \ln|x| + c$

Example Find all solutions of $y' = \frac{x^2 + xy + y^2}{xy}$. Solution: Recall: $v' = \frac{1+v}{v}$. This is a separable equation. $\frac{v(x)}{1+v(x)}v'(x) = \frac{1}{x} \Rightarrow \int \frac{v(x)}{1+v(x)}v'(x) dx = \int \frac{dx}{x} + c$.

Use the substitution u = 1 + v, hence du = v'(x) dx.

$$\int \frac{(u-1)}{u} \, du = \int \frac{dx}{x} + c \quad \Rightarrow \quad \int \left(1 - \frac{1}{u}\right) \, du = \int \frac{dx}{x} + c$$

 $u - \ln |u| = \ln |x| + c \quad \Rightarrow \quad 1 + v - \ln |1 + v| = \ln |x| + c.$

(日) (同) (三) (三) (三) (○) (○)

Example Find all solutions of $y' = \frac{x^2 + xy + y^2}{xy}$. Solution: Recall: $v' = \frac{1+v}{v}$. This is a separable equation. $\frac{v(x)}{1+v(x)}v'(x) = \frac{1}{x} \Rightarrow \int \frac{v(x)}{1+v(x)}v'(x) dx = \int \frac{dx}{x} + c$.

Use the substitution u = 1 + v, hence du = v'(x) dx.

$$\int \frac{(u-1)}{u} \, du = \int \frac{dx}{x} + c \quad \Rightarrow \quad \int \left(1 - \frac{1}{u}\right) \, du = \int \frac{dx}{x} + c$$

$$u - \ln |u| = \ln |x| + c \Rightarrow 1 + v - \ln |1 + v| = \ln |x| + c.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$v = \frac{y}{x}$$

Example Find all solutions of $y' = \frac{x^2 + xy + y^2}{xy}$. Solution: Recall: $v' = \frac{1+v}{v}$. This is a separable equation. $\frac{v(x)}{1+v(x)}v'(x) = \frac{1}{x} \Rightarrow \int \frac{v(x)}{1+v(x)}v'(x) dx = \int \frac{dx}{x} + c$.

Use the substitution u = 1 + v, hence du = v'(x) dx.

$$\int \frac{(u-1)}{u} \, du = \int \frac{dx}{x} + c \quad \Rightarrow \quad \int \left(1 - \frac{1}{u}\right) \, du = \int \frac{dx}{x} + c$$

$$u - \ln |u| = \ln |x| + c \quad \Rightarrow \quad 1 + v - \ln |1 + v| = \ln |x| + c.$$
$$v = \frac{y}{x} \quad \Rightarrow \quad 1 + \frac{y(x)}{x} - \ln \left| 1 + \frac{y(x)}{x} \right| = \ln |x| + c. \quad \vartriangleleft$$

Example

Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \qquad y(0) = \frac{1}{3}.$$

Example

Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \qquad y(0) = \frac{1}{3}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Solution: This is a Bernoulli equation,

Example

Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \qquad y(0) = \frac{1}{3}.$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Solution: This is a Bernoulli equation, $y' + y = -e^{2x} y^n$,

Example

Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \qquad y(0) = \frac{1}{3}.$$

Solution: This is a Bernoulli equation, $y' + y = -e^{2x} y^n$, n = 3.

Example

Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \qquad y(0) = \frac{1}{3}.$$

Solution: This is a Bernoulli equation, $y' + y = -e^{2x} y^n$, n = 3.

Divide by y^3 .

Example

Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \qquad y(0) = \frac{1}{3}.$$

Solution: This is a Bernoulli equation, $y' + y = -e^{2x} y^n$, n = 3.

Divide by
$$y^3$$
. That is, $\frac{y'}{y^3} + \frac{1}{y^2} = -e^{2x}$.

Example

Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \qquad y(0) = \frac{1}{3}.$$

Solution: This is a Bernoulli equation, $y' + y = -e^{2x} y^n$, n = 3.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Divide by
$$y^3$$
. That is, $\frac{y'}{y^3} + \frac{1}{y^2} = -e^{2x}$.

Let $v = \frac{1}{y^2}$.

Example

Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \qquad y(0) = \frac{1}{3}.$$

Solution: This is a Bernoulli equation, $y' + y = -e^{2x} y^n$, n = 3.

Divide by
$$y^3$$
. That is, $\frac{y'}{y^3} + \frac{1}{y^2} = -e^{2x}$
Let $v = \frac{1}{y^2}$. Since $v' = -2\frac{y'}{y^3}$,

Example

Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \qquad y(0) = \frac{1}{3}.$$

Solution: This is a Bernoulli equation, $y' + y = -e^{2x} y^n$, n = 3.

Divide by
$$y^3$$
. That is, $\frac{y'}{y^3} + \frac{1}{y^2} = -e^{2x}$.
Let $v = \frac{1}{y^2}$. Since $v' = -2\frac{y'}{y^3}$, we obtain

Example

Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \qquad y(0) = \frac{1}{3}.$$

Solution: This is a Bernoulli equation, $y' + y = -e^{2x} y^n$, n = 3.

Divide by
$$y^3$$
. That is, $\frac{y'}{y^3} + \frac{1}{y^2} = -e^{2x}$.
Let $v = \frac{1}{y^2}$. Since $v' = -2\frac{y'}{y^3}$, we obtain $-\frac{1}{2}v' + v = -e^{2x}$.

Example

Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \qquad y(0) = \frac{1}{3}.$$

Solution: This is a Bernoulli equation, $y' + y = -e^{2x} y^n$, n = 3.

Divide by
$$y^3$$
. That is, $\frac{y'}{y^3} + \frac{1}{y^2} = -e^{2x}$.
Let $v = \frac{1}{y^2}$. Since $v' = -2\frac{y'}{y^3}$, we obtain $-\frac{1}{2}v' + v = -e^{2x}$.
We obtain the linear equation $v' - 2v = 2e^{2x}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \qquad y(0) = \frac{1}{3}.$$

Solution: This is a Bernoulli equation, $y' + y = -e^{2x} y^n$, n = 3.

Divide by y^3 . That is, $\frac{y'}{y^3} + \frac{1}{y^2} = -e^{2x}$. Let $v = \frac{1}{y^2}$. Since $v' = -2\frac{y'}{y^3}$, we obtain $-\frac{1}{2}v' + v = -e^{2x}$. We obtain the linear equation $v' - 2v = 2e^{2x}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Use the integrating factor method.

Example

Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \qquad y(0) = \frac{1}{3}.$$

Solution: This is a Bernoulli equation, $y' + y = -e^{2x} y^n$, n = 3.

Divide by y^3 . That is, $\frac{y'}{y^3} + \frac{1}{y^2} = -e^{2x}$. Let $v = \frac{1}{y^2}$. Since $v' = -2\frac{y'}{y^3}$, we obtain $-\frac{1}{2}v' + v = -e^{2x}$. We obtain the linear equation $v' - 2v = 2e^{2x}$. Use the integrating factor method. $\mu(x) = e^{-2x}$.

Example

Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \qquad y(0) = \frac{1}{3}.$$

Solution: This is a Bernoulli equation, $y' + y = -e^{2x} y^n$, n = 3.

Divide by y^3 . That is, $\frac{y'}{y^3} + \frac{1}{y^2} = -e^{2x}$. Let $v = \frac{1}{y^2}$. Since $v' = -2\frac{y'}{y^3}$, we obtain $-\frac{1}{2}v' + v = -e^{2x}$. We obtain the linear equation $v' - 2v = 2e^{2x}$. Use the integrating factor method. $\mu(x) = e^{-2x}$.

$$e^{-2x} v' - 2 e^{-2x} v = 2$$

Example

Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \qquad y(0) = \frac{1}{3}.$$

Solution: This is a Bernoulli equation, $y' + y = -e^{2x} y^n$, n = 3.

Divide by y^3 . That is, $\frac{y'}{y^3} + \frac{1}{y^2} = -e^{2x}$. Let $v = \frac{1}{y^2}$. Since $v' = -2\frac{y'}{y^3}$, we obtain $-\frac{1}{2}v' + v = -e^{2x}$. We obtain the linear equation $v' - 2v = 2e^{2x}$. Use the integrating factor method. $\mu(x) = e^{-2x}$.

$$e^{-2x} v' - 2 e^{-2x} v = 2 \quad \Rightarrow \quad \left(e^{-2x} v\right)' = 2.$$

Example

Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0,$$
 $y(0) = \frac{1}{3}.$
Solution: Recall: $v = \frac{1}{y^2}$ and $(e^{-2x} v)' = 2.$

Example

Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0,$$
 $y(0) = \frac{1}{3}.$
Solution: Recall: $v = \frac{1}{y^2}$ and $(e^{-2x} v)' = 2.$

$$e^{-2x} v = 2x + c$$

Example

Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0,$$
 $y(0) = \frac{1}{3}.$
Solution: Recall: $v = \frac{1}{y^2}$ and $(e^{-2x} v)' = 2.$

$$e^{-2x} v = 2x + c \Rightarrow v(x) = (2x + c) e^{2x}$$

Example

Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \qquad y(0) = \frac{1}{3}.$$

Solution: Recall: $v = \frac{1}{y^2}$ and $(e^{-2x} v)' = 2.$
 $e^{-2x} v = 2x + c \Rightarrow v(x) = (2x + c) e^{2x} \Rightarrow \frac{1}{y^2} = (2x + c) e^{2x}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \qquad y(0) = \frac{1}{3}.$$

Solution: Recall: $v = \frac{1}{y^2}$ and $(e^{-2x} v)' = 2.$
 $e^{-2x} v = 2x + c \Rightarrow v(x) = (2x + c) e^{2x} \Rightarrow \frac{1}{y^2} = (2x + c) e^{2x}.$
 $y^2 = \frac{1}{e^2 x (2x + c)}$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Example

Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \qquad y(0) = \frac{1}{3}.$$

Solution: Recall: $v = \frac{1}{y^2}$ and $(e^{-2x} v)' = 2.$
 $e^{-2x} v = 2x + c \Rightarrow v(x) = (2x + c) e^{2x} \Rightarrow \frac{1}{y^2} = (2x + c) e^{2x}.$

$$y^2 = rac{1}{e^2 x \left(2x+c
ight)} \quad \Rightarrow \quad y_\pm(x) = \pm rac{e^{-x}}{\sqrt{2x+c}}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \qquad y(0) = \frac{1}{3}.$$

Solution: Recall: $v = \frac{1}{y^2}$ and $(e^{-2x} v)' = 2.$
 $e^{-2x} v = 2x + c \Rightarrow v(x) = (2x + c) e^{2x} \Rightarrow \frac{1}{y^2} = (2x + c) e^{2x}.$
 $y^2 = \frac{1}{e^{2x} (2x + c)} \Rightarrow y_{\pm}(x) = \pm \frac{e^{-x}}{\sqrt{2x + c}}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

The initial condition y(0) = 1/3

Example

Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \qquad y(0) = \frac{1}{3}.$$

Solution: Recall: $v = \frac{1}{y^2}$ and $(e^{-2x} v)' = 2.$
 $e^{-2x} v = 2x + c \Rightarrow v(x) = (2x + c) e^{2x} \Rightarrow \frac{1}{y^2} = (2x + c) e^{2x}.$
 $y^2 = \frac{1}{e^{2x} (2x + c)} \Rightarrow y_{\pm}(x) = \pm \frac{e^{-x}}{\sqrt{2x + c}}.$

(ロ)、(型)、(E)、(E)、 E、 の(の)

The initial condition y(0) = 1/3 > 0

Example

Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \qquad y(0) = \frac{1}{3}.$$

Solution: Recall: $v = \frac{1}{y^2}$ and $(e^{-2x} v)' = 2.$
 $e^{-2x} v = 2x + c \Rightarrow v(x) = (2x + c) e^{2x} \Rightarrow \frac{1}{y^2} = (2x + c) e^{2x}.$
 $y^2 = \frac{1}{e^{2x} (2x + c)} \Rightarrow y_{\pm}(x) = \pm \frac{e^{-x}}{\sqrt{2x + c}}.$

(ロ)、(型)、(E)、(E)、 E、 の(の)

The initial condition y(0) = 1/3 > 0 implies:

Example

Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \qquad y(0) = \frac{1}{3}.$$

Solution: Recall: $v = \frac{1}{y^2}$ and $(e^{-2x} v)' = 2.$
 $e^{-2x} v = 2x + c \Rightarrow v(x) = (2x + c) e^{2x} \Rightarrow \frac{1}{y^2} = (2x + c) e^{2x}.$
 $y^2 = \frac{1}{e^{2x} (2x + c)} \Rightarrow y_{\pm}(x) = \pm \frac{e^{-x}}{\sqrt{2x + c}}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

The initial condition y(0) = 1/3 > 0 implies: Choose y_+ .

Example

Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \qquad y(0) = \frac{1}{3}.$$

Solution: Recall: $v = \frac{1}{y^2}$ and $(e^{-2x}v)' = 2$.

$$e^{-2x} v = 2x + c \Rightarrow v(x) = (2x + c) e^{2x} \Rightarrow \frac{1}{y^2} = (2x + c) e^{2x}.$$

$$y^2 = rac{1}{e^2 x \left(2x+c
ight)} \quad \Rightarrow \quad y_{\pm}(x) = \pm rac{e^{-x}}{\sqrt{2x+c}}.$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The initial condition y(0) = 1/3 > 0 implies: Choose y_+ .

$$\frac{1}{3}=y_+(0)=\frac{1}{\sqrt{c}}$$

Example

Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0, \qquad y(0) = \frac{1}{3}.$$

Solution: Recall: $v = \frac{1}{y^2}$ and $(e^{-2x}v)' = 2$.

$$e^{-2x} v = 2x + c \Rightarrow v(x) = (2x + c) e^{2x} \Rightarrow \frac{1}{y^2} = (2x + c) e^{2x}.$$

$$y^2 = rac{1}{e^2 x \left(2x+c
ight)} \quad \Rightarrow \quad y_{\pm}(x) = \pm rac{e^{-x}}{\sqrt{2x+c}}$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The initial condition y(0) = 1/3 > 0 implies: Choose y_+ .

$$\frac{1}{3} = y_+(0) = \frac{1}{\sqrt{c}} \quad \Rightarrow \quad c = 9$$

Example

Find the solution y to the initial value problem

$$y' + y + e^{2x} y^3 = 0,$$
 $y(0) = \frac{1}{3}.$
Solution: Recall: $v = \frac{1}{y^2}$ and $(e^{-2x} v)' = 2.$

$$e^{-2x} v = 2x + c \Rightarrow v(x) = (2x + c) e^{2x} \Rightarrow \frac{1}{y^2} = (2x + c) e^{2x}.$$

$$y^2 = rac{1}{e^2 x \left(2x+c
ight)} \quad \Rightarrow \quad y_{\pm}(x) = \pm rac{e^{-x}}{\sqrt{2x+c}}.$$

The initial condition y(0) = 1/3 > 0 implies: Choose y_+ .

$$\frac{1}{3} = y_+(0) = \frac{1}{\sqrt{c}} \quad \Rightarrow \quad c = 9 \quad \Rightarrow \quad y(x) = \frac{e^{-x}}{\sqrt{2x+9}}. \quad \lhd$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example

Find all solutions of $2xy^2 + 2y + 2x^2y y' + 2x y' = 0$.

Example

Find all solutions of $2xy^2 + 2y + 2x^2y y' + 2x y' = 0$.

Solution: Re-write the equation is a more organized way,

Example

Find all solutions of $2xy^2 + 2y + 2x^2y y' + 2x y' = 0$.

Solution: Re-write the equation is a more organized way,

$$[2x^2y + 2x]y' + [2xy^2 + 2y] = 0.$$

Example

Find all solutions of $2xy^2 + 2y + 2x^2y y' + 2x y' = 0$.

Solution: Re-write the equation is a more organized way,

$$[2x^2y + 2x]y' + [2xy^2 + 2y] = 0.$$

・ロト・日本・モート モー うへで

 $N = [2x^2y + 2x]$

Example

Find all solutions of $2xy^2 + 2y + 2x^2y y' + 2x y' = 0$.

Solution: Re-write the equation is a more organized way,

$$[2x^2y + 2x]y' + [2xy^2 + 2y] = 0.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

 $N = [2x^2y + 2x] \quad \Rightarrow \quad \partial_x N = 4xy + 2.$

Example

Find all solutions of $2xy^2 + 2y + 2x^2y y' + 2x y' = 0$.

Solution: Re-write the equation is a more organized way,

$$[2x^2y + 2x]y' + [2xy^2 + 2y] = 0.$$

$$N = [2x^2y + 2x] \quad \Rightarrow \quad \partial_x N = 4xy + 2.$$
$$M = [2xy^2 + 2y]$$

Example

Find all solutions of $2xy^2 + 2y + 2x^2y y' + 2x y' = 0$.

Solution: Re-write the equation is a more organized way,

$$[2x^2y + 2x]y' + [2xy^2 + 2y] = 0.$$

$$N = [2x^2y + 2x] \quad \Rightarrow \quad \partial_x N = 4xy + 2.$$
$$M = [2xy^2 + 2y] \quad \Rightarrow \quad \partial_y M = 4xy + 2.$$

Example

Find all solutions of $2xy^2 + 2y + 2x^2y y' + 2x y' = 0$.

Solution: Re-write the equation is a more organized way,

$$[2x^2y + 2x]y' + [2xy^2 + 2y] = 0.$$

$$\begin{array}{ll} N = [2x^2y + 2x] & \Rightarrow & \partial_x N = 4xy + 2. \\ M = [2xy^2 + 2y] & \Rightarrow & \partial_y M = 4xy + 2. \end{array} \} \Rightarrow \partial_x N = \partial_y M.$$

Example

Find all solutions of $2xy^2 + 2y + 2x^2y y' + 2x y' = 0$.

Solution: Re-write the equation is a more organized way,

$$[2x^2y + 2x]y' + [2xy^2 + 2y] = 0.$$

$$\begin{array}{ll} N = [2x^2y + 2x] & \Rightarrow & \partial_x N = 4xy + 2. \\ M = [2xy^2 + 2y] & \Rightarrow & \partial_y M = 4xy + 2. \end{array} \} \Rightarrow \partial_x N = \partial_y M.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

The equation is exact.

Example

Find all solutions of $2xy^2 + 2y + 2x^2y y' + 2x y' = 0$.

Solution: Re-write the equation is a more organized way,

$$[2x^{2}y + 2x]y' + [2xy^{2} + 2y] = 0.$$

$$N = [2x^{2}y + 2x] \Rightarrow \partial_{x}N = 4xy + 2.$$

$$M = [2xy^{2} + 2y] \Rightarrow \partial_{y}M = 4xy + 2.$$

$$\Rightarrow \partial_{x}N = \partial_{y}M.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The equation is exact. There exists a potential function ψ with

Example

Find all solutions of $2xy^2 + 2y + 2x^2y y' + 2x y' = 0$.

Solution: Re-write the equation is a more organized way,

$$[2x^{2}y + 2x]y' + [2xy^{2} + 2y] = 0.$$

$$N = [2x^{2}y + 2x] \Rightarrow \partial_{x}N = 4xy + 2.$$

$$M = [2xy^{2} + 2y] \Rightarrow \partial_{y}M = 4xy + 2.$$

$$\Rightarrow \partial_{x}N = \partial_{y}M.$$

- ロ ト - 4 回 ト - 4 □ - 4

The equation is exact. There exists a potential function ψ with

$$\partial_y \psi = N,$$

Example

Find all solutions of $2xy^2 + 2y + 2x^2y y' + 2x y' = 0$.

Solution: Re-write the equation is a more organized way,

$$[2x^{2}y + 2x] y' + [2xy^{2} + 2y] = 0.$$

$$N = [2x^{2}y + 2x] \Rightarrow \partial_{x}N = 4xy + 2.$$

$$M = [2xy^{2} + 2y] \Rightarrow \partial_{y}M = 4xy + 2.$$

$$\Rightarrow \partial_{x}N = \partial_{y}M.$$

The equation is exact. There exists a potential function ψ with

$$\partial_y \psi = N, \qquad \partial_x \psi = M.$$

Example

Find all solutions of $2xy^2 + 2y + 2x^2y y' + 2x y' = 0$.

Solution: Re-write the equation is a more organized way,

$$[2x^{2}y + 2x]y' + [2xy^{2} + 2y] = 0.$$

$$N = [2x^{2}y + 2x] \Rightarrow \partial_{x}N = 4xy + 2.$$

$$M = [2xy^{2} + 2y] \Rightarrow \partial_{y}M = 4xy + 2.$$

$$\Rightarrow \partial_{x}N = \partial_{y}M.$$

The equation is exact. There exists a potential function ψ with

$$\partial_y \psi = N, \qquad \partial_x \psi = M.$$

 $\partial_y \psi = 2x^2y + 2x$

Example

Find all solutions of $2xy^2 + 2y + 2x^2y y' + 2x y' = 0$.

Solution: Re-write the equation is a more organized way,

$$[2x^{2}y + 2x] y' + [2xy^{2} + 2y] = 0.$$

$$N = [2x^{2}y + 2x] \Rightarrow \partial_{x}N = 4xy + 2.$$

$$M = [2xy^{2} + 2y] \Rightarrow \partial_{y}M = 4xy + 2.$$

$$\Rightarrow \partial_{x}N = \partial_{y}M.$$

The equation is exact. There exists a potential function ψ with

$$\partial_y \psi = N, \qquad \partial_x \psi = M.$$

 $\partial_y \psi = 2x^2y + 2x \quad \Rightarrow \quad \psi(x, y) = x^2y^2 + 2xy + g(x).$

Example

Find all solutions of $2xy^2 + 2y + 2x^2y y' + 2x y' = 0$.

Solution: Re-write the equation is a more organized way,

$$[2x^{2}y + 2x]y' + [2xy^{2} + 2y] = 0.$$

$$N = [2x^{2}y + 2x] \Rightarrow \partial_{x}N = 4xy + 2.$$

$$M = [2xy^{2} + 2y] \Rightarrow \partial_{y}M = 4xy + 2.$$

$$\Rightarrow \partial_{x}N = \partial_{y}M.$$

The equation is exact. There exists a potential function ψ with

$$\partial_y \psi = N, \qquad \partial_x \psi = M.$$

$$\partial_y \psi = 2x^2y + 2x \quad \Rightarrow \quad \psi(x, y) = x^2y^2 + 2xy + g(x).$$

$$2xy^2 + 2y + g'(x) = \partial_x \psi$$

Example

Find all solutions of $2xy^2 + 2y + 2x^2y y' + 2x y' = 0$.

Solution: Re-write the equation is a more organized way,

$$[2x^{2}y + 2x] y' + [2xy^{2} + 2y] = 0.$$

$$N = [2x^{2}y + 2x] \Rightarrow \partial_{x}N = 4xy + 2.$$

$$M = [2xy^{2} + 2y] \Rightarrow \partial_{y}M = 4xy + 2.$$

$$\Rightarrow \partial_{x}N = \partial_{y}M.$$

The equation is exact. There exists a potential function ψ with

$$\partial_y \psi = N, \qquad \partial_x \psi = M.$$

$$\partial_y \psi = 2x^2y + 2x \quad \Rightarrow \quad \psi(x, y) = x^2y^2 + 2xy + g(x).$$

$$2xy^2 + 2y + g'(x) = \partial_x \psi = M$$

Example

Find all solutions of $2xy^2 + 2y + 2x^2y y' + 2x y' = 0$.

Solution: Re-write the equation is a more organized way,

$$[2x^{2}y + 2x]y' + [2xy^{2} + 2y] = 0.$$

$$N = [2x^{2}y + 2x] \Rightarrow \partial_{x}N = 4xy + 2.$$

$$M = [2xy^{2} + 2y] \Rightarrow \partial_{y}M = 4xy + 2.$$

$$\Rightarrow \partial_{x}N = \partial_{y}M.$$

The equation is exact. There exists a potential function ψ with

$$\partial_y \psi = N, \qquad \partial_x \psi = M.$$
$$\partial_y \psi = 2x^2y + 2x \quad \Rightarrow \quad \psi(x, y) = x^2y^2 + 2xy + g(x).$$
$$2xy^2 + 2y + g'(x) = \partial_x \psi = M = 2xy^2 + 2y$$

Example

Find all solutions of $2xy^2 + 2y + 2x^2y y' + 2x y' = 0$.

Solution: Re-write the equation is a more organized way,

$$[2x^{2}y + 2x] y' + [2xy^{2} + 2y] = 0.$$

$$N = [2x^{2}y + 2x] \Rightarrow \partial_{x}N = 4xy + 2.$$

$$M = [2xy^{2} + 2y] \Rightarrow \partial_{y}M = 4xy + 2.$$

$$\Rightarrow \partial_{x}N = \partial_{y}M.$$

The equation is exact. There exists a potential function ψ with

$$\partial_y \psi = N, \qquad \partial_x \psi = M.$$

$$\partial_y \psi = 2x^2y + 2x \quad \Rightarrow \quad \psi(x, y) = x^2y^2 + 2xy + g(x).$$

$$2xy^2 + 2y + g'(x) = \partial_x \psi = M = 2xy^2 + 2y \quad \Rightarrow \quad g'(x) = 0.$$

Example

Find all solutions of $2xy^2 + 2y + 2x^2y y' + 2x y' = 0$.

Solution: Re-write the equation is a more organized way,

$$[2x^{2}y + 2x]y' + [2xy^{2} + 2y] = 0.$$

$$N = [2x^{2}y + 2x] \Rightarrow \partial_{x}N = 4xy + 2.$$

$$M = [2xy^{2} + 2y] \Rightarrow \partial_{y}M = 4xy + 2.$$

$$\Rightarrow \partial_{x}N = \partial_{y}M.$$

The equation is exact. There exists a potential function ψ with

$$\partial_y \psi = N, \qquad \partial_x \psi = M.$$

$$\partial_y \psi = 2x^2y + 2x \quad \Rightarrow \quad \psi(x, y) = x^2y^2 + 2xy + g(x).$$

$$2xy^2 + 2y + g'(x) = \partial_x \psi = M = 2xy^2 + 2y \quad \Rightarrow \quad g'(x) = 0.$$

$$\psi(x, y) = x^2y^2 + 2xy + c,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Example

Find all solutions of $2xy^2 + 2y + 2x^2y y' + 2x y' = 0$.

Solution: Re-write the equation is a more organized way,

$$[2x^{2}y + 2x] y' + [2xy^{2} + 2y] = 0.$$

$$N = [2x^{2}y + 2x] \Rightarrow \partial_{x}N = 4xy + 2.$$

$$M = [2xy^{2} + 2y] \Rightarrow \partial_{y}M = 4xy + 2.$$

$$\Rightarrow \partial_{x}N = \partial_{y}M.$$

The equation is exact. There exists a potential function ψ with

$$\partial_y \psi = N, \qquad \partial_x \psi = M.$$

$$\partial_y \psi = 2x^2y + 2x \quad \Rightarrow \quad \psi(x, y) = x^2y^2 + 2xy + g(x).$$

$$2xy^2 + 2y + g'(x) = \partial_x \psi = M = 2xy^2 + 2y \quad \Rightarrow \quad g'(x) = 0.$$

$$\psi(x, y) = x^2y^2 + 2xy + c, \qquad x^2y^2(x) + 2xy(x) + c = 0. \quad \triangleleft$$