Overview of Fourier Series (Sect. 6.2).

- Origins of the Fourier Series.
- Periodic functions.
- Orthogonality of Sines and Cosines.
- Main result on Fourier Series.

Origins of the Fourier Series.

Summary:
Daniel Bernoulli (~ 1750) found solutions to the equation that describes waves propagating on a vibrating string.

Origins of the Fourier Series.

Summary:

Daniel Bernoulli (~ 1750) found solutions to the equation that describes waves propagating on a vibrating string.

Origins of the Fourier Series.

Summary:
Daniel Bernoulli (~ 1750) found solutions to the equation that describes waves propagating on a vibrating string.

The function u, measuring the vertical displacement of the string,

Origins of the Fourier Series.

Summary:
Daniel Bernoulli (~ 1750) found solutions to the equation that describes waves propagating on a vibrating string.

The function u, measuring the vertical displacement of the string, is the solution to the wave equation,

Origins of the Fourier Series.

Summary:

Daniel Bernoulli (~ 1750) found solutions to the equation that describes waves propagating on a vibrating string.

The function u, measuring the vertical displacement of the string, is the solution to the wave equation,

$$
\partial_{t}^{2} u(t, x)=v^{2} \partial_{x}^{2} u(t, x), \quad v \in \mathbb{R}, \quad x \in[0, L], \quad t \in[0, \infty)
$$

Origins of the Fourier Series.

Summary:

Daniel Bernoulli (~ 1750) found solutions to the equation that describes waves propagating on a vibrating string.

The function u, measuring the vertical displacement of the string, is the solution to the wave equation,

$$
\partial_{t}^{2} u(t, x)=v^{2} \partial_{x}^{2} u(t, x), \quad v \in \mathbb{R}, \quad x \in[0, L], \quad t \in[0, \infty)
$$

with initial conditions,

$$
u(0, x)=f(x), \quad \partial_{t} u(0, x)=0
$$

Origins of the Fourier Series.

Summary:

Daniel Bernoulli (~ 1750) found solutions to the equation that describes waves propagating on a vibrating string.

The function u, measuring the vertical displacement of the string, is the solution to the wave equation,

$$
\partial_{t}^{2} u(t, x)=v^{2} \partial_{x}^{2} u(t, x), \quad v \in \mathbb{R}, \quad x \in[0, L], \quad t \in[0, \infty)
$$

with initial conditions,

$$
u(0, x)=f(x), \quad \partial_{t} u(0, x)=0
$$

and boundary conditions,

$$
u(t, 0)=0, \quad u(t, L)=0
$$

Origins of the Fourier Series.

Summary:
Bernoulli found particular solutions to the wave equation.

Origins of the Fourier Series.

Summary:
Bernoulli found particular solutions to the wave equation.
If the initial condition is $f_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)$,

Origins of the Fourier Series.

Summary:
Bernoulli found particular solutions to the wave equation. If the initial condition is $f_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)$,
then the solution is $u_{n}(t, x)=\sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{v n \pi t}{L}\right)$.

Origins of the Fourier Series.

Summary:

Bernoulli found particular solutions to the wave equation. If the initial condition is $f_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)$,
then the solution is $u_{n}(t, x)=\sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{v n \pi t}{L}\right)$.
Bernoulli also realized that

$$
U_{N}(t, x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{v n \pi t}{L}\right), \quad a_{n} \in \mathbb{R}
$$

Origins of the Fourier Series.

Summary:

Bernoulli found particular solutions to the wave equation. If the initial condition is $f_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)$,
then the solution is $u_{n}(t, x)=\sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{v n \pi t}{L}\right)$.
Bernoulli also realized that

$$
U_{N}(t, x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{v n \pi t}{L}\right), \quad a_{n} \in \mathbb{R}
$$

is also solution of the wave equation with initial condition

$$
F_{N}(x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

Origins of the Fourier Series.

Summary:

Bernoulli found particular solutions to the wave equation. If the initial condition is $f_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)$,
then the solution is $u_{n}(t, x)=\sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{v n \pi t}{L}\right)$.
Bernoulli also realized that

$$
U_{N}(t, x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{v n \pi t}{L}\right), \quad a_{n} \in \mathbb{R}
$$

is also solution of the wave equation with initial condition

$$
F_{N}(x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

Remark: The wave equation and its solutions provide a mathematical description of music.

Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.

Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.

Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.
- A proof is: Given a function F with $F(0)=F(L)=0$, but otherwise arbitrary, find N and the coefficients a_{n} such that F is approximated by an expansion F_{N} given in the previous slide.

Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.
- A proof is: Given a function F with $F(0)=F(L)=0$, but otherwise arbitrary, find N and the coefficients a_{n} such that F is approximated by an expansion F_{N} given in the previous slide.
- Joseph Fourier (~ 1800) provided such formula for the coefficients a_{n}, while studying a different problem:

Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.
- A proof is: Given a function F with $F(0)=F(L)=0$, but otherwise arbitrary, find N and the coefficients a_{n} such that F is approximated by an expansion F_{N} given in the previous slide.
- Joseph Fourier (~ 1800) provided such formula for the coefficients a_{n}, while studying a different problem:
The heat transport in a solid material.

Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.
- A proof is: Given a function F with $F(0)=F(L)=0$, but otherwise arbitrary, find N and the coefficients a_{n} such that F is approximated by an expansion F_{N} given in the previous slide.
- Joseph Fourier (~ 1800) provided such formula for the coefficients a_{n}, while studying a different problem:
The heat transport in a solid material.
- Find the temperature function u solution of the heat equation

$$
\partial_{t} u(t, x)=k \partial_{x}^{2} u(t, x)
$$

Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.
- A proof is: Given a function F with $F(0)=F(L)=0$, but otherwise arbitrary, find N and the coefficients a_{n} such that F is approximated by an expansion F_{N} given in the previous slide.
- Joseph Fourier (~ 1800) provided such formula for the coefficients a_{n}, while studying a different problem:
The heat transport in a solid material.
- Find the temperature function u solution of the heat equation

$$
\partial_{t} u(t, x)=k \partial_{x}^{2} u(t, x), \quad k>0,
$$

Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.
- A proof is: Given a function F with $F(0)=F(L)=0$, but otherwise arbitrary, find N and the coefficients a_{n} such that F is approximated by an expansion F_{N} given in the previous slide.
- Joseph Fourier (~ 1800) provided such formula for the coefficients a_{n}, while studying a different problem:
The heat transport in a solid material.
- Find the temperature function u solution of the heat equation

$$
\partial_{t} u(t, x)=k \partial_{x}^{2} u(t, x), \quad k>0, \quad x \in[0, L],
$$

Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.
- A proof is: Given a function F with $F(0)=F(L)=0$, but otherwise arbitrary, find N and the coefficients a_{n} such that F is approximated by an expansion F_{N} given in the previous slide.
- Joseph Fourier (~ 1800) provided such formula for the coefficients a_{n}, while studying a different problem:
The heat transport in a solid material.
- Find the temperature function u solution of the heat equation

$$
\partial_{t} u(t, x)=k \partial_{x}^{2} u(t, x), \quad k>0, \quad x \in[0, L], \quad t \in[0, \infty)
$$

Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.
- A proof is: Given a function F with $F(0)=F(L)=0$, but otherwise arbitrary, find N and the coefficients a_{n} such that F is approximated by an expansion F_{N} given in the previous slide.
- Joseph Fourier (~ 1800) provided such formula for the coefficients a_{n}, while studying a different problem:
The heat transport in a solid material.
- Find the temperature function u solution of the heat equation

$$
\begin{gathered}
\partial_{t} u(t, x)=k \partial_{x}^{2} u(t, x), \quad k>0, \quad x \in[0, L], \quad t \in[0, \infty), \\
\text { I.C. } u(0, x)=f(x),
\end{gathered}
$$

Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.
- A proof is: Given a function F with $F(0)=F(L)=0$, but otherwise arbitrary, find N and the coefficients a_{n} such that F is approximated by an expansion F_{N} given in the previous slide.
- Joseph Fourier (~ 1800) provided such formula for the coefficients a_{n}, while studying a different problem:
The heat transport in a solid material.
- Find the temperature function u solution of the heat equation

$$
\begin{gathered}
\partial_{t} u(t, x)=k \partial_{x}^{2} u(t, x), \quad k>0, \quad x \in[0, L], \quad t \in[0, \infty), \\
\text { I.C. } u(0, x)=f(x) \\
\text { B.C. } u(t, 0)=0, \quad u(t, L)=0 .
\end{gathered}
$$

Origins of the Fourier Series.

Remarks:

Fourier found particular solutions to the heat equation.

Origins of the Fourier Series.

Remarks:

Fourier found particular solutions to the heat equation.
If the initial condition is $f_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)$,

Origins of the Fourier Series.

Remarks:
Fourier found particular solutions to the heat equation.
If the initial condition is $f_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)$,
then the solution is $u_{n}(t, x)=\sin \left(\frac{n \pi x}{L}\right) e^{-k\left(\frac{n \pi}{L}\right)^{2} t}$.

Origins of the Fourier Series.

Remarks:

Fourier found particular solutions to the heat equation.
If the initial condition is $f_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)$,
then the solution is $u_{n}(t, x)=\sin \left(\frac{n \pi x}{L}\right) e^{-k\left(\frac{n \pi}{L}\right)^{2} t}$.
Fourier also realized that

$$
U_{N}(t, x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right) e^{-k\left(\frac{n \pi}{L}\right)^{2} t}, \quad a_{n} \in \mathbb{R}
$$

Origins of the Fourier Series.

Remarks:

Fourier found particular solutions to the heat equation.
If the initial condition is $f_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)$,
then the solution is $u_{n}(t, x)=\sin \left(\frac{n \pi x}{L}\right) e^{-k\left(\frac{n \pi}{L}\right)^{2} t}$.
Fourier also realized that

$$
U_{N}(t, x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right) e^{-k\left(\frac{n \pi}{L}\right)^{2} t}, \quad a_{n} \in \mathbb{R}
$$

is also solution of the heat equation with initial condition

$$
F_{N}(x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

Origins of the Fourier Series.

Remarks:
Fourier found particular solutions to the heat equation.
If the initial condition is $f_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)$,
then the solution is $u_{n}(t, x)=\sin \left(\frac{n \pi x}{L}\right) e^{-k\left(\frac{n \pi}{L}\right)^{2} t}$.
Fourier also realized that

$$
U_{N}(t, x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right) e^{-k\left(\frac{n \pi}{L}\right)^{2} t}, \quad a_{n} \in \mathbb{R}
$$

is also solution of the heat equation with initial condition

$$
F_{N}(x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

Remark: The heat equation and its solutions provide a mathematical description of heat transport in a solid material.

Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli.

Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_{n} in terms of the function F.

Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_{n} in terms of the function F.
- Given an initial data function F, satisfying $F(0)=F(L)=0$, but otherwise arbitrary,

Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_{n} in terms of the function F.
- Given an initial data function F, satisfying $F(0)=F(L)=0$, but otherwise arbitrary, Fourier proved that one can construct an expansion F_{N}

Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_{n} in terms of the function F.
- Given an initial data function F, satisfying $F(0)=F(L)=0$, but otherwise arbitrary, Fourier proved that one can construct an expansion F_{N} as follows,

$$
F_{N}(x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_{n} in terms of the function F.
- Given an initial data function F, satisfying $F(0)=F(L)=0$, but otherwise arbitrary, Fourier proved that one can construct an expansion F_{N} as follows,

$$
F_{N}(x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

for N any positive integer,

Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_{n} in terms of the function F.
- Given an initial data function F, satisfying $F(0)=F(L)=0$, but otherwise arbitrary, Fourier proved that one can construct an expansion F_{N} as follows,

$$
F_{N}(x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

for N any positive integer, where the a_{n} are given by

$$
a_{n}=\frac{2}{L} \int_{0}^{L} F(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_{n} in terms of the function F.
- Given an initial data function F, satisfying $F(0)=F(L)=0$, but otherwise arbitrary, Fourier proved that one can construct an expansion F_{N} as follows,

$$
F_{N}(x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

for N any positive integer, where the a_{n} are given by

$$
a_{n}=\frac{2}{L} \int_{0}^{L} F(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

- To find all solutions to the heat equation problem above one must prove one more thing:

Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_{n} in terms of the function F.
- Given an initial data function F, satisfying $F(0)=F(L)=0$, but otherwise arbitrary, Fourier proved that one can construct an expansion F_{N} as follows,

$$
F_{N}(x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

for N any positive integer, where the a_{n} are given by

$$
a_{n}=\frac{2}{L} \int_{0}^{L} F(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

- To find all solutions to the heat equation problem above one must prove one more thing: That F_{N} approximates F for large enough N.

Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_{n} in terms of the function F.
- Given an initial data function F, satisfying $F(0)=F(L)=0$, but otherwise arbitrary, Fourier proved that one can construct an expansion F_{N} as follows,

$$
F_{N}(x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

for N any positive integer, where the a_{n} are given by

$$
a_{n}=\frac{2}{L} \int_{0}^{L} F(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

- To find all solutions to the heat equation problem above one must prove one more thing: That F_{N} approximates F for large enough N. That is, $\lim _{N \rightarrow \infty} F_{N}=F$.

Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_{n} in terms of the function F.
- Given an initial data function F, satisfying $F(0)=F(L)=0$, but otherwise arbitrary, Fourier proved that one can construct an expansion F_{N} as follows,

$$
F_{N}(x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

for N any positive integer, where the a_{n} are given by

$$
a_{n}=\frac{2}{L} \int_{0}^{L} F(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

- To find all solutions to the heat equation problem above one must prove one more thing: That F_{N} approximates F for large enough N. That is, $\lim _{N \rightarrow \infty} F_{N}=F$. Fourier didn't show this.

Origins of the Fourier Series.

Remarks:

- Based on Bernoulli and Fourier works, people have been able to prove that.

Origins of the Fourier Series.

Remarks:

- Based on Bernoulli and Fourier works, people have been able to prove that. Every continuous, τ-periodic function can be expressed as an infinite linear combination of sine and cosine functions.

Origins of the Fourier Series.

Remarks:

- Based on Bernoulli and Fourier works, people have been able to prove that. Every continuous, τ-periodic function can be expressed as an infinite linear combination of sine and cosine functions.
- More precisely: Every continuous, τ-periodic function F, there exist constants a_{0}, a_{n}, b_{n}, for $n=1,2, \cdots$ such that

$$
F_{N}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{N}\left[a_{n} \cos \left(\frac{2 n \pi x}{\tau}\right)+b_{n} \sin \left(\frac{2 n \pi x}{\tau}\right)\right]
$$

satisfies $\lim _{N \rightarrow \infty} F_{N}(x)=F(x)$ for every $x \in \mathbb{R}$.

Origins of the Fourier Series.

Remarks:

- Based on Bernoulli and Fourier works, people have been able to prove that. Every continuous, τ-periodic function can be expressed as an infinite linear combination of sine and cosine functions.
- More precisely: Every continuous, τ-periodic function F, there exist constants a_{0}, a_{n}, b_{n}, for $n=1,2, \cdots$ such that

$$
F_{N}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{N}\left[a_{n} \cos \left(\frac{2 n \pi x}{\tau}\right)+b_{n} \sin \left(\frac{2 n \pi x}{\tau}\right)\right]
$$

satisfies $\lim _{N \rightarrow \infty} F_{N}(x)=F(x)$ for every $x \in \mathbb{R}$.
Notation: $\quad F(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{2 n \pi x}{\tau}\right)+b_{n} \sin \left(\frac{2 n \pi x}{\tau}\right)\right]$.

Origins of the Fourier Series.

The main problem in our class:
Given a continuous, τ-periodic function f, find the formulas for a_{n} and b_{n} such that

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{2 n \pi x}{\tau}\right)+b_{n} \sin \left(\frac{2 n \pi x}{\tau}\right)\right] .
$$

Origins of the Fourier Series.

The main problem in our class:
Given a continuous, τ-periodic function f, find the formulas for a_{n} and b_{n} such that

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{2 n \pi x}{\tau}\right)+b_{n} \sin \left(\frac{2 n \pi x}{\tau}\right)\right] .
$$

Remarks: We need to review two main concepts:

Origins of the Fourier Series.

The main problem in our class:
Given a continuous, τ-periodic function f, find the formulas for a_{n} and b_{n} such that

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{2 n \pi x}{\tau}\right)+b_{n} \sin \left(\frac{2 n \pi x}{\tau}\right)\right] .
$$

Remarks: We need to review two main concepts:

- The notion of periodic functions.

Origins of the Fourier Series.

The main problem in our class:
Given a continuous, τ-periodic function f, find the formulas for a_{n} and b_{n} such that

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{2 n \pi x}{\tau}\right)+b_{n} \sin \left(\frac{2 n \pi x}{\tau}\right)\right] .
$$

Remarks: We need to review two main concepts:

- The notion of periodic functions.
- The notion of orthogonal functions, in particular the orthogonality of Sines and Cosines.

Fourier Series (Sect. 6.2).

- Origins of the Fourier Series.
- Periodic functions.
- Orthogonality of Sines and Cosines.
- Main result on Fourier Series.

Periodic functions.

Definition
A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called periodic iff there exists $\tau>0$ such that for all $x \in \mathbb{R}$ holds

$$
f(x+\tau)=f(x)
$$

Periodic functions.

Definition
A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called periodic iff there exists $\tau>0$ such that for all $x \in \mathbb{R}$ holds

$$
f(x+\tau)=f(x)
$$

Remark: f is invariant under translations by τ.

Periodic functions.

Definition

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called periodic iff there exists $\tau>0$ such that for all $x \in \mathbb{R}$ holds

$$
f(x+\tau)=f(x)
$$

Remark: f is invariant under translations by τ.

Definition

A period T of a periodic function f is the smallest value of τ such that $f(x+\tau)=f(x)$ holds.

Periodic functions.

Definition

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called periodic iff there exists $\tau>0$ such that for all $x \in \mathbb{R}$ holds

$$
f(x+\tau)=f(x)
$$

Remark: f is invariant under translations by τ.

Definition

A period T of a periodic function f is the smallest value of τ such that $f(x+\tau)=f(x)$ holds.

Notation:
A periodic function with period T is also called T-periodic.

Periodic functions.

Example

The following functions are periodic, with period T,

$$
\begin{aligned}
f(x)=\sin (x), & T=2 \pi \\
f(x)=\cos (x), & T=2 \pi \\
f(x)=\tan (x), & T=\pi \\
f(x)=\sin (a x), & T=\frac{2 \pi}{a}
\end{aligned}
$$

Periodic functions.

Example

The following functions are periodic, with period T,

$$
\begin{aligned}
f(x)=\sin (x), & T=2 \pi \\
f(x)=\cos (x), & T=2 \pi \\
f(x)=\tan (x), & T=\pi \\
f(x)=\sin (a x), & T=\frac{2 \pi}{a}
\end{aligned}
$$

The proof of the latter statement is the following:

Periodic functions.

Example

The following functions are periodic, with period T,

$$
\begin{aligned}
f(x)=\sin (x), & T=2 \pi \\
f(x)=\cos (x), & T=2 \pi \\
f(x)=\tan (x), & T=\pi \\
f(x)=\sin (a x), & T=\frac{2 \pi}{a}
\end{aligned}
$$

The proof of the latter statement is the following:

$$
f\left(x+\frac{2 \pi}{a}\right)
$$

Periodic functions.

Example

The following functions are periodic, with period T,

$$
\begin{aligned}
f(x)=\sin (x), & T=2 \pi \\
f(x)=\cos (x), & T=2 \pi \\
f(x)=\tan (x), & T=\pi \\
f(x)=\sin (a x), & T=\frac{2 \pi}{a}
\end{aligned}
$$

The proof of the latter statement is the following:

$$
f\left(x+\frac{2 \pi}{a}\right)=\sin \left(a x+a \frac{2 \pi}{a}\right)
$$

Periodic functions.

Example

The following functions are periodic, with period T,

$$
\begin{aligned}
f(x)=\sin (x), & T=2 \pi \\
f(x)=\cos (x), & T=2 \pi \\
f(x)=\tan (x), & T=\pi \\
f(x)=\sin (a x), & T=\frac{2 \pi}{a}
\end{aligned}
$$

The proof of the latter statement is the following:

$$
f\left(x+\frac{2 \pi}{a}\right)=\sin \left(a x+a \frac{2 \pi}{a}\right)=\sin (a x+2 \pi)
$$

Periodic functions.

Example

The following functions are periodic, with period T,

$$
\begin{aligned}
f(x)=\sin (x), & T=2 \pi \\
f(x)=\cos (x), & T=2 \pi \\
f(x)=\tan (x), & T=\pi \\
f(x)=\sin (a x), & T=\frac{2 \pi}{a}
\end{aligned}
$$

The proof of the latter statement is the following:

$$
f\left(x+\frac{2 \pi}{a}\right)=\sin \left(a x+a \frac{2 \pi}{a}\right)=\sin (a x+2 \pi)=\sin (a x)
$$

Periodic functions.

Example

The following functions are periodic, with period T,

$$
\begin{aligned}
f(x)=\sin (x), & T=2 \pi \\
f(x)=\cos (x), & T=2 \pi \\
f(x)=\tan (x), & T=\pi \\
f(x)=\sin (a x), & T=\frac{2 \pi}{a}
\end{aligned}
$$

The proof of the latter statement is the following:

$$
f\left(x+\frac{2 \pi}{a}\right)=\sin \left(a x+a \frac{2 \pi}{a}\right)=\sin (a x+2 \pi)=\sin (a x)=f(x)
$$

Periodic functions.

Example

Show that the function below is periodic, and find its period,

$$
f(x)=e^{x}, \quad x \in[0,2), \quad f(x-2)=f(x) .
$$

Periodic functions.

Example

Show that the function below is periodic, and find its period,

$$
f(x)=e^{x}, \quad x \in[0,2), \quad f(x-2)=f(x) .
$$

Solution: We just graph the function,

Periodic functions.

Example

Show that the function below is periodic, and find its period,

$$
f(x)=e^{x}, \quad x \in[0,2), \quad f(x-2)=f(x)
$$

Solution: We just graph the function,

So the function is periodic with period $T=2$.

Periodic functions.

Theorem
A linear combination of T-periodic functions is also T-periodic.

Periodic functions.

Theorem
A linear combination of T-periodic functions is also T-periodic.
Proof: If $f(x+T)=f(x)$ and $g(x+T)=g(x)$, then

$$
a f(x+T)+b g(x+T)=a f(x)+b g(x)
$$

so $(a f+b g)$ is also T-periodic.

Periodic functions.

Theorem
A linear combination of T-periodic functions is also T-periodic.
Proof: If $f(x+T)=f(x)$ and $g(x+T)=g(x)$, then

$$
a f(x+T)+b g(x+T)=a f(x)+b g(x)
$$

so $(a f+b g)$ is also T-periodic.
Example
$f(x)=2 \sin (3 x)+7 \cos (3 x)$ is periodic with period $T=2 \pi / 3 . \triangleleft$

Periodic functions.

Theorem
A linear combination of T-periodic functions is also T-periodic.
Proof: If $f(x+T)=f(x)$ and $g(x+T)=g(x)$, then

$$
a f(x+T)+b g(x+T)=a f(x)+b g(x)
$$

so $(a f+b g)$ is also T-periodic.
Example
$f(x)=2 \sin (3 x)+7 \cos (3 x)$ is periodic with period $T=2 \pi / 3 . \triangleleft$
Remark: The functions below are periodic with period $T=\frac{\tau}{n}$,

$$
f(x)=\cos \left(\frac{2 \pi n x}{\tau}\right), \quad g(x)=\sin \left(\frac{2 \pi n x}{\tau}\right)
$$

Periodic functions.

Theorem
A linear combination of T-periodic functions is also T-periodic.
Proof: If $f(x+T)=f(x)$ and $g(x+T)=g(x)$, then

$$
a f(x+T)+b g(x+T)=a f(x)+b g(x)
$$

so $(a f+b g)$ is also T-periodic.
Example
$f(x)=2 \sin (3 x)+7 \cos (3 x)$ is periodic with period $T=2 \pi / 3 . \triangleleft$
Remark: The functions below are periodic with period $T=\frac{\tau}{n}$,

$$
f(x)=\cos \left(\frac{2 \pi n x}{\tau}\right), \quad g(x)=\sin \left(\frac{2 \pi n x}{\tau}\right)
$$

Since f and g are invariant under translations by τ / n, they are also invariant under translations by τ.

Periodic functions.

Corollary

Any function f given by

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{2 n \pi x}{\tau}\right)+b_{n} \sin \left(\frac{2 n \pi x}{\tau}\right)\right]
$$

is periodic with period τ.

Periodic functions.

Corollary
Any function f given by

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{2 n \pi x}{\tau}\right)+b_{n} \sin \left(\frac{2 n \pi x}{\tau}\right)\right]
$$

is periodic with period τ.

Remark: We will show that the converse statement is true.

Periodic functions.

Corollary
Any function f given by

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{2 n \pi x}{\tau}\right)+b_{n} \sin \left(\frac{2 n \pi x}{\tau}\right)\right]
$$

is periodic with period τ.
Remark: We will show that the converse statement is true.
Theorem
A function f is τ-periodic iff holds

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{2 n \pi x}{\tau}\right)+b_{n} \sin \left(\frac{2 n \pi x}{\tau}\right)\right] .
$$

Fourier Series (Sect. 6.2).

- Origins of the Fourier Series.
- Periodic functions.
- Orthogonality of Sines and Cosines.
- Main result on Fourier Series.

Orthogonality of Sines and Cosines.

Remark:
From now on we work on the following domain: $[-L, L]$.

Orthogonality of Sines and Cosines.

Remark:
From now on we work on the following domain: $[-L, L]$.

Orthogonality of Sines and Cosines.

Theorem (Orthogonality)
The following relations hold for all $n, m \in \mathbb{N}$,

$$
\begin{aligned}
& \int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0 & n \neq m \\
L & n=m \neq 0 \\
2 L & n=m=0\end{cases} \\
& \int_{-L}^{L} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0 & n \neq m \\
L & n=m\end{cases} \\
& \int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x=0
\end{aligned}
$$

Orthogonality of Sines and Cosines.

Theorem (Orthogonality)

The following relations hold for all $n, m \in \mathbb{N}$,

$$
\begin{aligned}
& \int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0 & n \neq m \\
L & n=m \neq 0 \\
2 L & n=m=0\end{cases} \\
& \int_{-L}^{L} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0 & n \neq m \\
L & n=m\end{cases} \\
& \int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x=0
\end{aligned}
$$

Remark:

- The operation $f \cdot g=\int_{-L}^{L} f(x) g(x) d x$ is an inner product in the vector space of functions.

Orthogonality of Sines and Cosines.

Theorem (Orthogonality)

The following relations hold for all $n, m \in \mathbb{N}$,

$$
\begin{aligned}
& \int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0 & n \neq m \\
L & n=m \neq 0 \\
2 L & n=m=0\end{cases} \\
& \int_{-L}^{L} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0 & n \neq m \\
L & n=m\end{cases} \\
& \int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x=0
\end{aligned}
$$

Remark:

- The operation $f \cdot g=\int_{-L}^{L} f(x) g(x) d x$ is an inner product in the vector space of functions. Like the dot product is in \mathbb{R}^{2}.

Orthogonality of Sines and Cosines.

Theorem (Orthogonality)

The following relations hold for all $n, m \in \mathbb{N}$,

$$
\begin{aligned}
& \int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0 & n \neq m \\
L & n=m \neq 0 \\
2 L & n=m=0\end{cases} \\
& \int_{-L}^{L} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0 & n \neq m \\
L & n=m\end{cases} \\
& \int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x=0
\end{aligned}
$$

Remark:

- The operation $f \cdot g=\int_{-L}^{L} f(x) g(x) d x$ is an inner product in the vector space of functions. Like the dot product is in \mathbb{R}^{2}.
- Two functions f, g, are orthogonal iff $f \cdot g=0$.

Orthogonality of Sines and Cosines.
Recall: $\quad \cos (\theta) \cos (\phi)=\frac{1}{2}[\cos (\theta+\phi)+\cos (\theta-\phi)] ;$

$$
\begin{aligned}
& \sin (\theta) \sin (\phi)=\frac{1}{2}[\cos (\theta-\phi)-\cos (\theta+\phi)] ; \\
& \sin (\theta) \cos (\phi)=\frac{1}{2}[\sin (\theta+\phi)+\sin (\theta-\phi)] .
\end{aligned}
$$

Orthogonality of Sines and Cosines.

Recall: $\quad \cos (\theta) \cos (\phi)=\frac{1}{2}[\cos (\theta+\phi)+\cos (\theta-\phi)] ;$

$$
\begin{aligned}
& \sin (\theta) \sin (\phi)=\frac{1}{2}[\cos (\theta-\phi)-\cos (\theta+\phi)] ; \\
& \sin (\theta) \cos (\phi)=\frac{1}{2}[\sin (\theta+\phi)+\sin (\theta-\phi)] .
\end{aligned}
$$

Proof: First formula:

Orthogonality of Sines and Cosines.

Recall: $\quad \cos (\theta) \cos (\phi)=\frac{1}{2}[\cos (\theta+\phi)+\cos (\theta-\phi)] ;$

$$
\begin{aligned}
& \sin (\theta) \sin (\phi)=\frac{1}{2}[\cos (\theta-\phi)-\cos (\theta+\phi)] ; \\
& \sin (\theta) \cos (\phi)=\frac{1}{2}[\sin (\theta+\phi)+\sin (\theta-\phi)] .
\end{aligned}
$$

Proof: First formula: If $n=m=0$, it is simple to see that

$$
\int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x=\int_{-L}^{L} d x=2 L .
$$

Orthogonality of Sines and Cosines.

Recall: $\quad \cos (\theta) \cos (\phi)=\frac{1}{2}[\cos (\theta+\phi)+\cos (\theta-\phi)] ;$

$$
\begin{aligned}
& \sin (\theta) \sin (\phi)=\frac{1}{2}[\cos (\theta-\phi)-\cos (\theta+\phi)] ; \\
& \sin (\theta) \cos (\phi)=\frac{1}{2}[\sin (\theta+\phi)+\sin (\theta-\phi)] .
\end{aligned}
$$

Proof: First formula: If $n=m=0$, it is simple to see that

$$
\int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x=\int_{-L}^{L} d x=2 L .
$$

In the case where one of n or m is non-zero, use the relation

$$
\begin{aligned}
\int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) & \cos \left(\frac{m \pi x}{L}\right) d x=\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n+m) \pi x}{L}\right] d x \\
& +\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x .
\end{aligned}
$$

Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero,

Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero, holds

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n+m) \pi x}{L}\right] d x=\left.\frac{L}{2(n+m) \pi} \sin \left[\frac{(n+m) \pi x}{L}\right]\right|_{-L} ^{L}=0
$$

Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero, holds

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n+m) \pi x}{L}\right] d x=\left.\frac{L}{2(n+m) \pi} \sin \left[\frac{(n+m) \pi x}{L}\right]\right|_{-L} ^{L}=0
$$

We obtain that

$$
\int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x=\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x
$$

Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero, holds

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n+m) \pi x}{L}\right] d x=\left.\frac{L}{2(n+m) \pi} \sin \left[\frac{(n+m) \pi x}{L}\right]\right|_{-L} ^{L}=0
$$

We obtain that

$$
\int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x=\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x .
$$

If we further restrict $n \neq m$, then

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x=\left.\frac{L}{2(n-m) \pi} \sin \left[\frac{(n-m) \pi x}{L}\right]\right|_{-L} ^{L}=0
$$

Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero, holds

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n+m) \pi x}{L}\right] d x=\left.\frac{L}{2(n+m) \pi} \sin \left[\frac{(n+m) \pi x}{L}\right]\right|_{-L} ^{L}=0
$$

We obtain that

$$
\int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x=\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x .
$$

If we further restrict $n \neq m$, then

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x=\left.\frac{L}{2(n-m) \pi} \sin \left[\frac{(n-m) \pi x}{L}\right]\right|_{-L} ^{L}=0
$$

If $n=m \neq 0$, we have that

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x=\frac{1}{2} \int_{-L}^{L} d x=L
$$

Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero, holds

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n+m) \pi x}{L}\right] d x=\left.\frac{L}{2(n+m) \pi} \sin \left[\frac{(n+m) \pi x}{L}\right]\right|_{-L} ^{L}=0
$$

We obtain that

$$
\int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x=\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x .
$$

If we further restrict $n \neq m$, then

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x=\left.\frac{L}{2(n-m) \pi} \sin \left[\frac{(n-m) \pi x}{L}\right]\right|_{-L} ^{L}=0
$$

If $n=m \neq 0$, we have that

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x=\frac{1}{2} \int_{-L}^{L} d x=L
$$

This establishes the first equation in the Theorem. The remaining equations are proven in a similar way.

Overview of Fourier Series (Sect. 6.2).

- Origins of the Fourier Series.
- Periodic functions.
- Orthogonality of Sines and Cosines.
- Main result on Fourier Series.

Main result on Fourier Series.

Theorem (Fourier Series)
If the function $f:[-L, L] \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous, then f can be expressed as an infinite series

$$
\begin{equation*}
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] \tag{1}
\end{equation*}
$$

with the constants a_{n} and b_{n} given by

$$
\begin{array}{ll}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 0, \\
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 1 .
\end{array}
$$

Furthermore, the Fourier series in Eq. (1) provides a $2 L$-periodic extension of f from the domain $[-L, L] \subset \mathbb{R}$ to \mathbb{R}.

Examples of the Fourier Theorem (Sect. 6.2).

- The Fourier Theorem: Continuous case.
- Example: Using the Fourier Theorem.
- The Fourier Theorem: Piecewise continuous case.
- Example: Using the Fourier Theorem.

The Fourier Theorem: Continuous case.

Theorem (Fourier Series)
If the function $f:[-L, L] \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous, then f can be expressed as an infinite series

$$
\begin{equation*}
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] \tag{2}
\end{equation*}
$$

with the constants a_{n} and b_{n} given by

$$
\begin{array}{ll}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 0, \\
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 1 .
\end{array}
$$

Furthermore, the Fourier series in Eq. (2) provides a $2 L$-periodic extension of function f from the domain $[-L, L] \subset \mathbb{R}$ to \mathbb{R}.

The Fourier Theorem: Continuous case.

Sketch of the Proof:

- Define the partial sum functions

$$
f_{N}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{N}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]
$$

The Fourier Theorem: Continuous case.
Sketch of the Proof:

- Define the partial sum functions

$$
f_{N}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{N}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]
$$

with a_{n} and b_{n} given by

$$
\begin{array}{ll}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 0, \\
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 1 .
\end{array}
$$

The Fourier Theorem: Continuous case.

Sketch of the Proof:

- Define the partial sum functions

$$
f_{N}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{N}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]
$$

with a_{n} and b_{n} given by

$$
\begin{array}{ll}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 0, \\
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 1 .
\end{array}
$$

- Express f_{N} as a convolution of Sine, Cosine, functions and the original function f.

The Fourier Theorem: Continuous case.

Sketch of the Proof:

- Define the partial sum functions

$$
f_{N}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{N}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]
$$

with a_{n} and b_{n} given by

$$
\begin{array}{ll}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 0, \\
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 1 .
\end{array}
$$

- Express f_{N} as a convolution of Sine, Cosine, functions and the original function f.
- Use the convolution properties to show that

$$
\lim _{N \rightarrow \infty} f_{N}(x)=f(x), \quad x \in[-L, L]
$$

Examples of the Fourier Theorem (Sect. 6.2).

- The Fourier Theorem: Continuous case.
- Example: Using the Fourier Theorem.
- The Fourier Theorem: Piecewise continuous case.
- Example: Using the Fourier Theorem.

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: In this case $L=1$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: In this case $L=1$. The Fourier series expansion is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x)\right]
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: In this case $L=1$. The Fourier series expansion is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x)\right],
$$

where the a_{n}, b_{n} are given in the Theorem.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: In this case $L=1$. The Fourier series expansion is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x)\right],
$$

where the a_{n}, b_{n} are given in the Theorem. We start with a_{0},

$$
a_{0}=\int_{-1}^{1} f(x) d x
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: In this case $L=1$. The Fourier series expansion is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x)\right]
$$

where the a_{n}, b_{n} are given in the Theorem. We start with a_{0},

$$
a_{0}=\int_{-1}^{1} f(x) d x=\int_{-1}^{0}(1+x) d x+\int_{0}^{1}(1-x) d x
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: In this case $L=1$. The Fourier series expansion is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x)\right]
$$

where the a_{n}, b_{n} are given in the Theorem. We start with a_{0},

$$
\begin{aligned}
& a_{0}=\int_{-1}^{1} f(x) d x=\int_{-1}^{0}(1+x) d x+\int_{0}^{1}(1-x) d x \\
& a_{0}=\left.\left(x+\frac{x^{2}}{2}\right)\right|_{-1} ^{0}+\left.\left(x-\frac{x^{2}}{2}\right)\right|_{0} ^{1}
\end{aligned}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0), \\ 1-x & x \in[0,1] .\end{cases}
$$

Solution: In this case $L=1$. The Fourier series expansion is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x)\right],
$$

where the a_{n}, b_{n} are given in the Theorem. We start with a_{0},

$$
\begin{gathered}
a_{0}=\int_{-1}^{1} f(x) d x=\int_{-1}^{0}(1+x) d x+\int_{0}^{1}(1-x) d x . \\
a_{0}=\left.\left(x+\frac{x^{2}}{2}\right)\right|_{-1} ^{0}+\left.\left(x-\frac{x^{2}}{2}\right)\right|_{0} ^{1}=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{2}\right)
\end{gathered}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: In this case $L=1$. The Fourier series expansion is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x)\right]
$$

where the a_{n}, b_{n} are given in the Theorem. We start with a_{0},

$$
\begin{gathered}
a_{0}=\int_{-1}^{1} f(x) d x=\int_{-1}^{0}(1+x) d x+\int_{0}^{1}(1-x) d x \\
a_{0}=\left.\left(x+\frac{x^{2}}{2}\right)\right|_{-1} ^{0}+\left.\left(x-\frac{x^{2}}{2}\right)\right|_{0} ^{1}=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{2}\right)
\end{gathered}
$$

We obtain: $a_{0}=1$.

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $a_{0}=1$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $a_{0}=1$. Similarly, the rest of the a_{n} are given by,

$$
a_{n}=\int_{-1}^{1} f(x) \cos (n \pi x) d x
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $a_{0}=1$. Similarly, the rest of the a_{n} are given by,

$$
\begin{gathered}
a_{n}=\int_{-1}^{1} f(x) \cos (n \pi x) d x \\
a_{n}=\int_{-1}^{0}(1+x) \cos (n \pi x) d x+\int_{0}^{1}(1-x) \cos (n \pi x) d x
\end{gathered}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $a_{0}=1$. Similarly, the rest of the a_{n} are given by,

$$
\begin{gathered}
a_{n}=\int_{-1}^{1} f(x) \cos (n \pi x) d x \\
a_{n}=\int_{-1}^{0}(1+x) \cos (n \pi x) d x+\int_{0}^{1}(1-x) \cos (n \pi x) d x
\end{gathered}
$$

Recall the integrals $\int \cos (n \pi x) d x=\frac{1}{n \pi} \sin (n \pi x)$,

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $a_{0}=1$. Similarly, the rest of the a_{n} are given by,

$$
\begin{gathered}
a_{n}=\int_{-1}^{1} f(x) \cos (n \pi x) d x \\
a_{n}=\int_{-1}^{0}(1+x) \cos (n \pi x) d x+\int_{0}^{1}(1-x) \cos (n \pi x) d x
\end{gathered}
$$

Recall the integrals $\int \cos (n \pi x) d x=\frac{1}{n \pi} \sin (n \pi x)$, and

$$
\int x \cos (n \pi x) d x=\frac{x}{n \pi} \sin (n \pi x)+\frac{1}{n^{2} \pi^{2}} \cos (n \pi x)
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: It is not difficult to see that

$$
\begin{aligned}
a_{n} & =\left.\frac{1}{n \pi} \sin (n \pi x)\right|_{-1} ^{0}+\left.\left[\frac{x}{n \pi} \sin (n \pi x)+\frac{1}{n^{2} \pi^{2}} \cos (n \pi x)\right]\right|_{-1} ^{0} \\
& +\left.\frac{1}{n \pi} \sin (n \pi x)\right|_{0} ^{1}-\left.\left[\frac{x}{n \pi} \sin (n \pi x)+\frac{1}{n^{2} \pi^{2}} \cos (n \pi x)\right]\right|_{0} ^{1}
\end{aligned}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: It is not difficult to see that

$$
\begin{aligned}
a_{n} & =\left.\frac{1}{n \pi} \sin (n \pi x)\right|_{-1} ^{0}+\left.\left[\frac{x}{n \pi} \sin (n \pi x)+\frac{1}{n^{2} \pi^{2}} \cos (n \pi x)\right]\right|_{-1} ^{0} \\
& +\left.\frac{1}{n \pi} \sin (n \pi x)\right|_{0} ^{1}-\left.\left[\frac{x}{n \pi} \sin (n \pi x)+\frac{1}{n^{2} \pi^{2}} \cos (n \pi x)\right]\right|_{0} ^{1} \\
a_{n} & =\left[\frac{1}{n^{2} \pi^{2}}-\frac{1}{n^{2} \pi^{2}} \cos (-n \pi)\right]-\left[\frac{1}{n^{2} \pi^{2}} \cos (n \pi)-\frac{1}{n^{2} \pi^{2}}\right] .
\end{aligned}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: It is not difficult to see that

$$
\begin{aligned}
a_{n} & =\left.\frac{1}{n \pi} \sin (n \pi x)\right|_{-1} ^{0}+\left.\left[\frac{x}{n \pi} \sin (n \pi x)+\frac{1}{n^{2} \pi^{2}} \cos (n \pi x)\right]\right|_{-1} ^{0} \\
& +\left.\frac{1}{n \pi} \sin (n \pi x)\right|_{0} ^{1}-\left.\left[\frac{x}{n \pi} \sin (n \pi x)+\frac{1}{n^{2} \pi^{2}} \cos (n \pi x)\right]\right|_{0} ^{1} \\
a_{n} & =\left[\frac{1}{n^{2} \pi^{2}}-\frac{1}{n^{2} \pi^{2}} \cos (-n \pi)\right]-\left[\frac{1}{n^{2} \pi^{2}} \cos (n \pi)-\frac{1}{n^{2} \pi^{2}}\right] .
\end{aligned}
$$

We then conclude that $a_{n}=\frac{2}{n^{2} \pi^{2}}[1-\cos (n \pi)]$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $a_{0}=1$, and $a_{n}=\frac{2}{n^{2} \pi^{2}}[1-\cos (n \pi)]$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0), \\ 1-x & x \in[0,1] .\end{cases}
$$

Solution: Recall: $a_{0}=1$, and $a_{n}=\frac{2}{n^{2} \pi^{2}}[1-\cos (n \pi)]$.
Finally, we must find the coefficients b_{n}.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $a_{0}=1$, and $a_{n}=\frac{2}{n^{2} \pi^{2}}[1-\cos (n \pi)]$.
Finally, we must find the coefficients b_{n}.
A similar calculation shows that $b_{n}=0$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $a_{0}=1$, and $a_{n}=\frac{2}{n^{2} \pi^{2}}[1-\cos (n \pi)]$.
Finally, we must find the coefficients b_{n}.
A similar calculation shows that $b_{n}=0$.
Then, the Fourier series of f is given by

$$
f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}[1-\cos (n \pi)] \cos (n \pi x)
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}[1-\cos (n \pi)] \cos (n \pi x)$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}[1-\cos (n \pi)] \cos (n \pi x)$.
We can obtain a simpler expression for the Fourier coefficients a_{n}.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}[1-\cos (n \pi)] \cos (n \pi x)$.
We can obtain a simpler expression for the Fourier coefficients a_{n}.
Recall the relations $\cos (n \pi)=(-1)^{n}$,

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}[1-\cos (n \pi)] \cos (n \pi x)$.
We can obtain a simpler expression for the Fourier coefficients a_{n}.
Recall the relations $\cos (n \pi)=(-1)^{n}$, then

$$
f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1-(-1)^{n}\right] \cos (n \pi x) .
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0), \\ 1-x & x \in[0,1] .\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}[1-\cos (n \pi)] \cos (n \pi x)$.
We can obtain a simpler expression for the Fourier coefficients a_{n}. Recall the relations $\cos (n \pi)=(-1)^{n}$, then

$$
\begin{aligned}
& f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1-(-1)^{n}\right] \cos (n \pi x) \\
& f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)
\end{aligned}
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$,

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$, so n is even,

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$, so n is even, so $n+1=2 k+1$ is odd,

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$, so n is even, so $n+1=2 k+1$ is odd, then

$$
a_{2 k}=\frac{2}{(2 k)^{2} \pi^{2}}(1-1)
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$, so n is even, so $n+1=2 k+1$ is odd, then

$$
a_{2 k}=\frac{2}{(2 k)^{2} \pi^{2}}(1-1) \quad \Rightarrow \quad a_{2 k}=0
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$, so n is even, so $n+1=2 k+1$ is odd, then

$$
a_{2 k}=\frac{2}{(2 k)^{2} \pi^{2}}(1-1) \quad \Rightarrow \quad a_{2 k}=0
$$

If $n=2 k-1$,

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$, so n is even, so $n+1=2 k+1$ is odd, then

$$
a_{2 k}=\frac{2}{(2 k)^{2} \pi^{2}}(1-1) \quad \Rightarrow \quad a_{2 k}=0
$$

If $n=2 k-1$, so n is odd,

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$, so n is even, so $n+1=2 k+1$ is odd, then

$$
a_{2 k}=\frac{2}{(2 k)^{2} \pi^{2}}(1-1) \quad \Rightarrow \quad a_{2 k}=0
$$

If $n=2 k-1$, so n is odd, so $n+1=2 k$ is even,

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$, so n is even, so $n+1=2 k+1$ is odd, then

$$
a_{2 k}=\frac{2}{(2 k)^{2} \pi^{2}}(1-1) \quad \Rightarrow \quad a_{2 k}=0
$$

If $n=2 k-1$, so n is odd, so $n+1=2 k$ is even, then

$$
a_{2 k-1}=\frac{2}{(2 k-1)^{2} \pi^{2}}(1+1)
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$, so n is even, so $n+1=2 k+1$ is odd, then

$$
a_{2 k}=\frac{2}{(2 k)^{2} \pi^{2}}(1-1) \quad \Rightarrow \quad a_{2 k}=0
$$

If $n=2 k-1$, so n is odd, so $n+1=2 k$ is even, then

$$
a_{2 k-1}=\frac{2}{(2 k-1)^{2} \pi^{2}}(1+1) \quad \Rightarrow \quad a_{2 k-1}=\frac{4}{(2 k-1)^{2} \pi^{2}} .
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution:
Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$, and

$$
a_{2 k}=0, \quad a_{2 k-1}=\frac{4}{(2 k-1)^{2} \pi^{2}}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution:
Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$, and

$$
a_{2 k}=0, \quad a_{2 k-1}=\frac{4}{(2 k-1)^{2} \pi^{2}} .
$$

We conclude: $\quad f(x)=\frac{1}{2}+\sum_{k=1}^{\infty} \frac{4}{(2 k-1)^{2} \pi^{2}} \cos ((2 k-1) \pi x) . \quad \triangleleft$

Examples of the Fourier Theorem (Sect. 6.2).

- The Fourier Theorem: Continuous case.
- Example: Using the Fourier Theorem.
- The Fourier Theorem: Piecewise continuous case.
- Example: Using the Fourier Theorem.

The Fourier Theorem: Piecewise continuous case.

Recall:

Definition
A function $f:[a, b] \rightarrow \mathbb{R}$ is called piecewise continuous iff holds,
(a) $[a, b]$ can be partitioned in a finite number of sub-intervals such that f is continuous on the interior of these sub-intervals.
(b) f has finite limits at the endpoints of all sub-intervals.

The Fourier Theorem: Piecewise continuous case.

Theorem (Fourier Series)
If $f:[-L, L] \subset \mathbb{R} \rightarrow \mathbb{R}$ is piecewise continuous, then the function

$$
f_{F}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]
$$

where a_{n} and b_{n} given by

$$
\begin{array}{ll}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 0, \\
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 1 .
\end{array}
$$

satisfies that:
(a) $f_{F}(x)=f(x)$ for all x where f is continuous;
(b) $f_{F}\left(x_{0}\right)=\frac{1}{2}\left[\lim _{x \rightarrow x_{0}^{+}} f(x)+\lim _{x \rightarrow x_{0}^{-}} f(x)\right]$ for all x_{0} where f is discontinuous.

Examples of the Fourier Theorem (Sect. 6.2).

- The Fourier Theorem: Continuous case.
- Example: Using the Fourier Theorem.
- The Fourier Theorem: Piecewise continuous case.
- Example: Using the Fourier Theorem.

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: We start computing the Fourier coefficients b_{n};

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: We start computing the Fourier coefficients b_{n};

$$
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: We start computing the Fourier coefficients b_{n};

$$
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, \quad L=1
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: We start computing the Fourier coefficients b_{n};

$$
\begin{gathered}
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, \quad L=1, \\
b_{n}=\int_{-1}^{0}(-1) \sin (n \pi x) d x+\int_{0}^{1}(1) \sin (n \pi x) d x
\end{gathered}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: We start computing the Fourier coefficients b_{n};

$$
\begin{gathered}
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, \quad L=1, \\
b_{n}=\int_{-1}^{0}(-1) \sin (n \pi x) d x+\int_{0}^{1}(1) \sin (n \pi x) d x, \\
b_{n}=\frac{(-1)}{n \pi}\left[-\left.\cos (n \pi x)\right|_{-1} ^{0}\right]+\frac{1}{n \pi}\left[-\left.\cos (n \pi x)\right|_{0} ^{1}\right],
\end{gathered}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: We start computing the Fourier coefficients b_{n};

$$
\begin{gathered}
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, \quad L=1, \\
b_{n}=\int_{-1}^{0}(-1) \sin (n \pi x) d x+\int_{0}^{1}(1) \sin (n \pi x) d x, \\
b_{n}=\frac{(-1)}{n \pi}\left[-\left.\cos (n \pi x)\right|_{-1} ^{0}\right]+\frac{1}{n \pi}\left[-\left.\cos (n \pi x)\right|_{0} ^{1}\right], \\
b_{n}= \\
\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1] .
\end{gathered}
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

$$
b_{n}=\frac{1}{n \pi}[1-\cos (-n \pi)-\cos (n \pi)+1]
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.
Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

$$
b_{n}=\frac{1}{n \pi}[1-\cos (-n \pi)-\cos (n \pi)+1]=\frac{2}{n \pi}[1-\cos (n \pi)],
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

$$
b_{n}=\frac{1}{n \pi}[1-\cos (-n \pi)-\cos (n \pi)+1]=\frac{2}{n \pi}[1-\cos (n \pi)],
$$

We obtain: $\quad b_{n}=\frac{2}{n \pi}\left[1-(-1)^{n}\right]$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

$$
b_{n}=\frac{1}{n \pi}[1-\cos (-n \pi)-\cos (n \pi)+1]=\frac{2}{n \pi}[1-\cos (n \pi)],
$$

We obtain: $\quad b_{n}=\frac{2}{n \pi}\left[1-(-1)^{n}\right]$.
If $n=2 k$,

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

$$
b_{n}=\frac{1}{n \pi}[1-\cos (-n \pi)-\cos (n \pi)+1]=\frac{2}{n \pi}[1-\cos (n \pi)],
$$

We obtain: $\quad b_{n}=\frac{2}{n \pi}\left[1-(-1)^{n}\right]$.
If $n=2 k$, then $b_{2 k}=\frac{2}{2 k \pi}\left[1-(-1)^{2 k}\right]$,

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

$$
b_{n}=\frac{1}{n \pi}[1-\cos (-n \pi)-\cos (n \pi)+1]=\frac{2}{n \pi}[1-\cos (n \pi)],
$$

We obtain: $\quad b_{n}=\frac{2}{n \pi}\left[1-(-1)^{n}\right]$.
If $n=2 k$, then $b_{2 k}=\frac{2}{2 k \pi}\left[1-(-1)^{2 k}\right]$, hence $b_{2 k}=0$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

$$
b_{n}=\frac{1}{n \pi}[1-\cos (-n \pi)-\cos (n \pi)+1]=\frac{2}{n \pi}[1-\cos (n \pi)],
$$

We obtain: $\quad b_{n}=\frac{2}{n \pi}\left[1-(-1)^{n}\right]$.
If $n=2 k$, then $b_{2 k}=\frac{2}{2 k \pi}\left[1-(-1)^{2 k}\right]$, hence $b_{2 k}=0$.
If $n=2 k-1$,

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

$$
b_{n}=\frac{1}{n \pi}[1-\cos (-n \pi)-\cos (n \pi)+1]=\frac{2}{n \pi}[1-\cos (n \pi)],
$$

We obtain: $\quad b_{n}=\frac{2}{n \pi}\left[1-(-1)^{n}\right]$.
If $n=2 k$, then $b_{2 k}=\frac{2}{2 k \pi}\left[1-(-1)^{2 k}\right]$, hence $b_{2 k}=0$.
If $n=2 k-1$, then $b_{2 k-1}=\frac{2}{(2 k-1) \pi}\left[1-(-1)^{2 k-1}\right]$,

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

$$
b_{n}=\frac{1}{n \pi}[1-\cos (-n \pi)-\cos (n \pi)+1]=\frac{2}{n \pi}[1-\cos (n \pi)],
$$

We obtain: $\quad b_{n}=\frac{2}{n \pi}\left[1-(-1)^{n}\right]$.
If $n=2 k$, then $b_{2 k}=\frac{2}{2 k \pi}\left[1-(-1)^{2 k}\right]$, hence $b_{2 k}=0$.
If $n=2 k-1$, then $b_{2 k-1}=\frac{2}{(2 k-1) \pi}\left[1-(-1)^{2 k-1}\right]$,
hence $\quad b_{2 k}=\frac{4}{(2 k-1) \pi}$.

Example: Using the Fourier Theorem.

Example
Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: Recall: $\quad b_{2 k}=0$, and $\quad b_{2 k}=\frac{4}{(2 k-1) \pi}$.

Example: Using the Fourier Theorem.

Example
Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: Recall: $\quad b_{2 k}=0$, and $\quad b_{2 k}=\frac{4}{(2 k-1) \pi}$.

$$
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: Recall: $\quad b_{2 k}=0$, and $\quad b_{2 k}=\frac{4}{(2 k-1) \pi}$.

$$
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, \quad L=1
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: Recall: $\quad b_{2 k}=0$, and $\quad b_{2 k}=\frac{4}{(2 k-1) \pi}$.

$$
\begin{gathered}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, \quad L=1, \\
a_{n}=\int_{-1}^{0}(-1) \cos (n \pi x) d x+\int_{0}^{1}(1) \cos (n \pi x) d x
\end{gathered}
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) \text {. }\end{array}\right.$ and periodic with period $T=2$.

Solution: Recall: $\quad b_{2 k}=0$, and $\quad b_{2 k}=\frac{4}{(2 k-1) \pi}$.

$$
\begin{gathered}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, \quad L=1, \\
a_{n}=\int_{-1}^{0}(-1) \cos (n \pi x) d x+\int_{0}^{1}(1) \cos (n \pi x) d x, \\
a_{n}=\frac{(-1)}{n \pi}\left[\left.\sin (n \pi x)\right|_{-1} ^{0}\right]+\frac{1}{n \pi}\left[\left.\sin (n \pi x)\right|_{0} ^{1}\right],
\end{gathered}
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) \text {. }\end{array}\right.$ and periodic with period $T=2$.

Solution: Recall: $\quad b_{2 k}=0$, and $\quad b_{2 k}=\frac{4}{(2 k-1) \pi}$.

$$
\begin{gathered}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, \quad L=1, \\
a_{n}=\int_{-1}^{0}(-1) \cos (n \pi x) d x+\int_{0}^{1}(1) \cos (n \pi x) d x, \\
a_{n}=\frac{(-1)}{n \pi}\left[\left.\sin (n \pi x)\right|_{-1} ^{0}\right]+\frac{1}{n \pi}\left[\left.\sin (n \pi x)\right|_{0} ^{1}\right], \\
a_{n}=\frac{(-1)}{n \pi}[0-\sin (-n \pi)]+\frac{1}{n \pi}[\sin (n \pi)-0]
\end{gathered}
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) \text {. }\end{array}\right.$ and periodic with period $T=2$.

Solution: Recall: $\quad b_{2 k}=0$, and $\quad b_{2 k}=\frac{4}{(2 k-1) \pi}$.

$$
\begin{gathered}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, \quad L=1, \\
a_{n}=\int_{-1}^{0}(-1) \cos (n \pi x) d x+\int_{0}^{1}(1) \cos (n \pi x) d x, \\
a_{n}=\frac{(-1)}{n \pi}\left[\left.\sin (n \pi x)\right|_{-1} ^{0}\right]+\frac{1}{n \pi}\left[\left.\sin (n \pi x)\right|_{0} ^{1}\right], \\
a_{n}=\frac{(-1)}{n \pi}[0-\sin (-n \pi)]+\frac{1}{n \pi}[\sin (n \pi)-0] \Rightarrow a_{n}=0 .
\end{gathered}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: Recall: $\quad b_{2 k}=0, \quad b_{2 k}=\frac{4}{(2 k-1) \pi}, \quad$ and $\quad a_{n}=0$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: Recall: $\quad b_{2 k}=0, \quad b_{2 k}=\frac{4}{(2 k-1) \pi}, \quad$ and $\quad a_{n}=0$.
Therefore, we conclude that

$$
f_{F}(x)=\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{1}{(2 k-1)} \sin ((2 k-1) \pi x) .
$$

Sine and Cosine Series (Sect. 6.2).

- Even, odd functions.
- Main properties of even, odd functions.
- Sine and cosine series.
- Even-periodic, odd-periodic extensions of functions.

Even, odd functions.

Definition

A function $f:[-L, L] \rightarrow \mathbb{R}$ is even iff for all $x \in[-L, L]$ holds

$$
f(-x)=f(x)
$$

A function $f:[-L, L] \rightarrow \mathbb{R}$ is odd iff for all $x \in[-L, L]$ holds

$$
f(-x)=-f(x)
$$

Even, odd functions.

Definition

A function $f:[-L, L] \rightarrow \mathbb{R}$ is even iff for all $x \in[-L, L]$ holds

$$
f(-x)=f(x) .
$$

A function $f:[-L, L] \rightarrow \mathbb{R}$ is odd iff for all $x \in[-L, L]$ holds

$$
f(-x)=-f(x) .
$$

Remarks:

- The only function that is both odd and even is $f=0$.

Even, odd functions.

Definition

A function $f:[-L, L] \rightarrow \mathbb{R}$ is even iff for all $x \in[-L, L]$ holds

$$
f(-x)=f(x) .
$$

A function $f:[-L, L] \rightarrow \mathbb{R}$ is odd iff for all $x \in[-L, L]$ holds

$$
f(-x)=-f(x)
$$

Remarks:

- The only function that is both odd and even is $f=0$.
- Most functions are neither odd nor even.

Even, odd functions.

Example

Show that the function $f(x)=x^{2}$ is even on $[-L, L]$.

Even, odd functions.

Example

Show that the function $f(x)=x^{2}$ is even on $[-L, L]$.
Solution: The function is even, since

$$
f(-x)=(-x)^{2}
$$

Even, odd functions.

Example

Show that the function $f(x)=x^{2}$ is even on $[-L, L]$.
Solution: The function is even, since

$$
f(-x)=(-x)^{2}=x^{2}
$$

Even, odd functions.

Example

Show that the function $f(x)=x^{2}$ is even on $[-L, L]$.
Solution: The function is even, since

$$
f(-x)=(-x)^{2}=x^{2}=f(x)
$$

Even, odd functions.

Example

Show that the function $f(x)=x^{2}$ is even on $[-L, L]$.
Solution: The function is even, since

$$
f(-x)=(-x)^{2}=x^{2}=f(x)
$$

Even, odd functions.

Example

Show that the function $f(x)=x^{3}$ is odd on $[-L, L]$.

Even, odd functions.

Example

Show that the function $f(x)=x^{3}$ is odd on $[-L, L]$.
Solution: The function is odd, since

$$
f(-x)=(-x)^{3}
$$

Even, odd functions.

Example

Show that the function $f(x)=x^{3}$ is odd on $[-L, L]$.
Solution: The function is odd, since

$$
f(-x)=(-x)^{3}=-x^{3}
$$

Even, odd functions.

Example

Show that the function $f(x)=x^{3}$ is odd on $[-L, L]$.
Solution: The function is odd, since

$$
f(-x)=(-x)^{3}=-x^{3}=-f(x) .
$$

Even, odd functions.

Example

Show that the function $f(x)=x^{3}$ is odd on $[-L, L]$.
Solution: The function is odd, since

$$
f(-x)=(-x)^{3}=-x^{3}=-f(x) .
$$

Even, odd functions.

Example
(1) The function $f(x)=\cos (a x)$ is even on $[-L, L]$;

Even, odd functions.

Example
(1) The function $f(x)=\cos (a x)$ is even on $[-L, L]$;
(2) The function $f(x)=\sin (a x)$ is odd on $[-L, L]$;

Even, odd functions.

Example

(1) The function $f(x)=\cos (a x)$ is even on $[-L, L]$;
(2) The function $f(x)=\sin (a x)$ is odd on $[-L, L]$;
(3) The functions $f(x)=e^{x}$ and $f(x)=(x-2)^{2}$ are neither even nor odd.

Even, odd functions.

Example

(1) The function $f(x)=\cos (a x)$ is even on $[-L, L]$;
(2) The function $f(x)=\sin (a x)$ is odd on $[-L, L]$;
(3) The functions $f(x)=e^{x}$ and $f(x)=(x-2)^{2}$ are neither even nor odd.

Even, odd functions.

Example

(1) The function $f(x)=\cos (a x)$ is even on $[-L, L]$;
(2) The function $f(x)=\sin (a x)$ is odd on $[-L, L]$;
(3) The functions $f(x)=e^{x}$ and $f(x)=(x-2)^{2}$ are neither even nor odd.

Sine and Cosine Series (Sect. 6.2).

- Even, odd functions.
- Main properties of even, odd functions.
- Sine and cosine series.
- Even-periodic, odd-periodic extensions of functions.

Main properties of even, odd functions.

Theorem
(1) A linear combination of even (odd) functions is even (odd).
(2) The product of two odd functions is even.
(3) The product of two even functions is even.
(4) The product of an even function by an odd function is odd.

Main properties of even, odd functions.

Theorem
(1) A linear combination of even (odd) functions is even (odd).
(2) The product of two odd functions is even.
(3) The product of two even functions is even.
(4) The product of an even function by an odd function is odd.

Proof:
(1) Let f and g be even,

Main properties of even, odd functions.

Theorem
(1) A linear combination of even (odd) functions is even (odd).
(2) The product of two odd functions is even.
(3) The product of two even functions is even.
(4) The product of an even function by an odd function is odd.

Proof:
(1) Let f and g be even, that is, $f(-x)=f(x), g(-x)=g(x)$.

Main properties of even, odd functions.

Theorem
(1) A linear combination of even (odd) functions is even (odd).
(2) The product of two odd functions is even.
(3) The product of two even functions is even.
(4) The product of an even function by an odd function is odd.

Proof:
(1) Let f and g be even, that is, $f(-x)=f(x), g(-x)=g(x)$.

Then, for all $a, b \in \mathbb{R}$ holds,
$(a f+b g)(-x)$

Main properties of even, odd functions.

Theorem
(1) A linear combination of even (odd) functions is even (odd).
(2) The product of two odd functions is even.
(3) The product of two even functions is even.
(4) The product of an even function by an odd function is odd.

Proof:
(1) Let f and g be even, that is, $f(-x)=f(x), g(-x)=g(x)$.

Then, for all $a, b \in \mathbb{R}$ holds,
$(a f+b g)(-x)=a f(-x)+b g(-x)$

Main properties of even, odd functions.

Theorem
(1) A linear combination of even (odd) functions is even (odd).
(2) The product of two odd functions is even.
(3) The product of two even functions is even.
(4) The product of an even function by an odd function is odd.

Proof:
(1) Let f and g be even, that is, $f(-x)=f(x), g(-x)=g(x)$.

Then, for all $a, b \in \mathbb{R}$ holds,
$(a f+b g)(-x)=a f(-x)+b g(-x)=a f(x)+b g(x)$

Main properties of even, odd functions.

Theorem

(1) A linear combination of even (odd) functions is even (odd).
(2) The product of two odd functions is even.
(3) The product of two even functions is even.
(4) The product of an even function by an odd function is odd.

Proof:
(1) Let f and g be even, that is, $f(-x)=f(x), g(-x)=g(x)$.

Then, for all $a, b \in \mathbb{R}$ holds,

$$
(a f+b g)(-x)=a f(-x)+b g(-x)=a f(x)+b g(x)=(a f+b g)(x)
$$

Main properties of even, odd functions.

Theorem

(1) A linear combination of even (odd) functions is even (odd).
(2) The product of two odd functions is even.
(3) The product of two even functions is even.
(4) The product of an even function by an odd function is odd.

Proof:
(1) Let f and g be even, that is, $f(-x)=f(x), g(-x)=g(x)$.

Then, for all $a, b \in \mathbb{R}$ holds,
$(a f+b g)(-x)=a f(-x)+b g(-x)=a f(x)+b g(x)=(a f+b g)(x)$.
Case "odd" is similar.

Main properties of even, odd functions.

Theorem

(1) A linear combination of even (odd) functions is even (odd).
(2) The product of two odd functions is even.
(3) The product of two even functions is even.
(4) The product of an even function by an odd function is odd.

Proof:
(2) Let f and g be odd,

Main properties of even, odd functions.

Theorem

(1) A linear combination of even (odd) functions is even (odd).
(2) The product of two odd functions is even.
(3) The product of two even functions is even.
(4) The product of an even function by an odd function is odd.

Proof:
(2) Let f and g be odd, that is, $f(-x)=-f(x)$, $g(-x)=-g(x)$.

Main properties of even, odd functions.

Theorem

(1) A linear combination of even (odd) functions is even (odd).
(2) The product of two odd functions is even.
(3) The product of two even functions is even.
(4) The product of an even function by an odd function is odd.

Proof:
(2) Let f and g be odd, that is, $f(-x)=-f(x)$, $g(-x)=-g(x)$. Then, for all $a, b \in \mathbb{R}$ holds,
$(f g)(-x)$

Main properties of even, odd functions.

Theorem

(1) A linear combination of even (odd) functions is even (odd).
(2) The product of two odd functions is even.
(3) The product of two even functions is even.
(4) The product of an even function by an odd function is odd.

Proof:
(2) Let f and g be odd, that is, $f(-x)=-f(x)$, $g(-x)=-g(x)$. Then, for all $a, b \in \mathbb{R}$ holds,

$$
(f g)(-x)=f(-x) g(-x)
$$

Main properties of even, odd functions.

Theorem

(1) A linear combination of even (odd) functions is even (odd).
(2) The product of two odd functions is even.
(3) The product of two even functions is even.
(4) The product of an even function by an odd function is odd.

Proof:
(2) Let f and g be odd, that is, $f(-x)=-f(x)$, $g(-x)=-g(x)$. Then, for all $a, b \in \mathbb{R}$ holds,

$$
(f g)(-x)=f(-x) g(-x)=(-f(x))(-g(x))
$$

Main properties of even, odd functions.

Theorem

(1) A linear combination of even (odd) functions is even (odd).
(2) The product of two odd functions is even.
(3) The product of two even functions is even.
(4) The product of an even function by an odd function is odd.

Proof:
(2) Let f and g be odd, that is, $f(-x)=-f(x)$, $g(-x)=-g(x)$. Then, for all $a, b \in \mathbb{R}$ holds,

$$
(f g)(-x)=f(-x) g(-x)=(-f(x))(-g(x))=f(x) g(x)
$$

Main properties of even, odd functions.

Theorem

(1) A linear combination of even (odd) functions is even (odd).
(2) The product of two odd functions is even.
(3) The product of two even functions is even.
(4) The product of an even function by an odd function is odd.

Proof:
(2) Let f and g be odd, that is, $f(-x)=-f(x)$, $g(-x)=-g(x)$. Then, for all $a, b \in \mathbb{R}$ holds,

$$
(f g)(-x)=f(-x) g(-x)=(-f(x))(-g(x))=f(x) g(x)=(f g)(x) .
$$

Main properties of even, odd functions.

Theorem

(1) A linear combination of even (odd) functions is even (odd).
(2) The product of two odd functions is even.
(3) The product of two even functions is even.
(4) The product of an even function by an odd function is odd.

Proof:
(2) Let f and g be odd, that is, $f(-x)=-f(x)$, $g(-x)=-g(x)$. Then, for all $a, b \in \mathbb{R}$ holds,

$$
(f g)(-x)=f(-x) g(-x)=(-f(x))(-g(x))=f(x) g(x)=(f g)(x) .
$$

Cases (3), (4) are similar.

Main properties of even, odd functions.

Theorem
If $f:[-L, L] \rightarrow \mathbb{R}$ is even, then $\int_{-L}^{L} f(x) d x=2 \int_{0}^{L} f(x) d x$.
If $f:[-L, L] \rightarrow \mathbb{R}$ is odd, then $\int_{-L}^{L} f(x) d x=0$.

Main properties of even, odd functions.

Theorem
If $f:[-L, L] \rightarrow \mathbb{R}$ is even, then $\int_{-L}^{L} f(x) d x=2 \int_{0}^{L} f(x) d x$.
If $f:[-L, L] \rightarrow \mathbb{R}$ is odd, then $\int_{-L}^{L} f(x) d x=0$.

Main properties of even, odd functions.

Theorem
If $f:[-L, L] \rightarrow \mathbb{R}$ is even, then $\int_{-L}^{L} f(x) d x=2 \int_{0}^{L} f(x) d x$.
If $f:[-L, L] \rightarrow \mathbb{R}$ is odd, then $\int_{-L}^{L} f(x) d x=0$.

Main properties of even, odd functions.
Proof:
$I=\int_{-L}^{L} f(x) d x$

Main properties of even, odd functions.
Proof:
$I=\int_{-L}^{L} f(x) d x=\int_{-L}^{0} f(x) d x+\int_{0}^{L} f(x) d x$

Main properties of even, odd functions.
Proof:
$I=\int_{-L}^{L} f(x) d x=\int_{-L}^{0} f(x) d x+\int_{0}^{L} f(x) d x \quad y=-x, d y=-d x$.

Main properties of even, odd functions.
Proof:

$$
\begin{aligned}
& I=\int_{-L}^{L} f(x) d x=\int_{-L}^{0} f(x) d x+\int_{0}^{L} f(x) d x \quad y=-x, d y=-d x . \\
& I=\int_{L}^{0} f(-y)(-d y)+\int_{0}^{L} f(x) d x
\end{aligned}
$$

Main properties of even, odd functions.
Proof:

$$
\begin{aligned}
& I=\int_{-L}^{L} f(x) d x=\int_{-L}^{0} f(x) d x+\int_{0}^{L} f(x) d x \quad y=-x, d y=-d x . \\
& I=\int_{L}^{0} f(-y)(-d y)+\int_{0}^{L} f(x) d x=\int_{0}^{L} f(-y) d y+\int_{0}^{L} f(x) d x .
\end{aligned}
$$

Main properties of even, odd functions.
Proof:
$I=\int_{-L}^{L} f(x) d x=\int_{-L}^{0} f(x) d x+\int_{0}^{L} f(x) d x \quad y=-x, d y=-d x$.
$I=\int_{L}^{0} f(-y)(-d y)+\int_{0}^{L} f(x) d x=\int_{0}^{L} f(-y) d y+\int_{0}^{L} f(x) d x$.
Even case: $f(-y)=f(y)$,

Main properties of even, odd functions.
Proof:
$I=\int_{-L}^{L} f(x) d x=\int_{-L}^{0} f(x) d x+\int_{0}^{L} f(x) d x \quad y=-x, d y=-d x$.
$I=\int_{L}^{0} f(-y)(-d y)+\int_{0}^{L} f(x) d x=\int_{0}^{L} f(-y) d y+\int_{0}^{L} f(x) d x$.
Even case: $f(-y)=f(y)$, therefore,

$$
I=\int_{0}^{L} f(y) d y+\int_{0}^{L} f(x) d x
$$

Main properties of even, odd functions.
Proof:
$I=\int_{-L}^{L} f(x) d x=\int_{-L}^{0} f(x) d x+\int_{0}^{L} f(x) d x \quad y=-x, d y=-d x$.
$I=\int_{L}^{0} f(-y)(-d y)+\int_{0}^{L} f(x) d x=\int_{0}^{L} f(-y) d y+\int_{0}^{L} f(x) d x$.
Even case: $f(-y)=f(y)$, therefore,

$$
I=\int_{0}^{L} f(y) d y+\int_{0}^{L} f(x) d x \Rightarrow \int_{-L}^{L} f(x) d x=2 \int_{0}^{L} f(x) d x
$$

Main properties of even, odd functions.

Proof:
$I=\int_{-L}^{L} f(x) d x=\int_{-L}^{0} f(x) d x+\int_{0}^{L} f(x) d x \quad y=-x, d y=-d x$.
$I=\int_{L}^{0} f(-y)(-d y)+\int_{0}^{L} f(x) d x=\int_{0}^{L} f(-y) d y+\int_{0}^{L} f(x) d x$.
Even case: $f(-y)=f(y)$, therefore,

$$
I=\int_{0}^{L} f(y) d y+\int_{0}^{L} f(x) d x \Rightarrow \int_{-L}^{L} f(x) d x=2 \int_{0}^{L} f(x) d x .
$$

Odd case: $f(-y)=-f(y)$,

Main properties of even, odd functions.

Proof:
$I=\int_{-L}^{L} f(x) d x=\int_{-L}^{0} f(x) d x+\int_{0}^{L} f(x) d x \quad y=-x, d y=-d x$.
$I=\int_{L}^{0} f(-y)(-d y)+\int_{0}^{L} f(x) d x=\int_{0}^{L} f(-y) d y+\int_{0}^{L} f(x) d x$.
Even case: $f(-y)=f(y)$, therefore,

$$
I=\int_{0}^{L} f(y) d y+\int_{0}^{L} f(x) d x \Rightarrow \int_{-L}^{L} f(x) d x=2 \int_{0}^{L} f(x) d x .
$$

Odd case: $f(-y)=-f(y)$, therefore,

$$
I=-\int_{0}^{L} f(y) d y+\int_{0}^{L} f(x) d x
$$

Main properties of even, odd functions.

Proof:
$I=\int_{-L}^{L} f(x) d x=\int_{-L}^{0} f(x) d x+\int_{0}^{L} f(x) d x \quad y=-x, d y=-d x$.
$I=\int_{L}^{0} f(-y)(-d y)+\int_{0}^{L} f(x) d x=\int_{0}^{L} f(-y) d y+\int_{0}^{L} f(x) d x$.
Even case: $f(-y)=f(y)$, therefore,

$$
I=\int_{0}^{L} f(y) d y+\int_{0}^{L} f(x) d x \Rightarrow \int_{-L}^{L} f(x) d x=2 \int_{0}^{L} f(x) d x
$$

Odd case: $f(-y)=-f(y)$, therefore,

$$
I=-\int_{0}^{L} f(y) d y+\int_{0}^{L} f(x) d x \Rightarrow \int_{-L}^{L} f(x) d x=0
$$

Sine and Cosine Series (Sect. 6.2).

- Even, odd functions.
- Main properties of even, odd functions.
- Sine and cosine series.
- Even-periodic, odd-periodic extensions of functions.

Sine and cosine series.

Theorem (Cosine and Sine Series)
Consider the function $f:[-L, L] \rightarrow \mathbb{R}$ with Fourier expansion

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

(1) If f is even, then $b_{n}=0$ for $n=1,2, \cdots$, and the Fourier series

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{L}\right)
$$

is called a Cosine Series.
(2) If f is odd, then $a_{n}=0$ for $n=0,1, \cdots$, and the Fourier series

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

is called a Sine Series.

Sine and cosine series.

Proof:
If f is even, and since the Sine function is odd,

Sine and cosine series.

Proof:
If f is even, and since the Sine function is odd, then

$$
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x=0
$$

Sine and cosine series.

Proof:
If f is even, and since the Sine function is odd, then

$$
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x=0
$$

since we are integrating an odd function on $[-L, L]$.

Sine and cosine series.

Proof:

If f is even, and since the Sine function is odd, then

$$
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x=0
$$

since we are integrating an odd function on $[-L, L]$.
If f is odd, and since the Cosine function is even,

Sine and cosine series.

Proof:

If f is even, and since the Sine function is odd, then

$$
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x=0
$$

since we are integrating an odd function on $[-L, L]$.
If f is odd, and since the Cosine function is even, then

$$
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x=0
$$

Sine and cosine series.

Proof:

If f is even, and since the Sine function is odd, then

$$
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x=0
$$

since we are integrating an odd function on $[-L, L]$.
If f is odd, and since the Cosine function is even, then

$$
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x=0
$$

since we are integrating an odd function on $[-L, L]$.

Sine and Cosine Series (Sect. 6.2).

- Even, odd functions.
- Main properties of even, odd functions.
- Sine and cosine series.
- Even-periodic, odd-periodic extensions of functions.

Even-periodic, odd-periodic extensions of functions.

(1) Even-periodic case:

A function $f:[0, L] \rightarrow \mathbb{R}$ can be extended as an even function $f:[-L, L] \rightarrow \mathbb{R}$ requiring for $x \in[0, L]$ that

$$
f(-x)=f(x) .
$$

Even-periodic, odd-periodic extensions of functions.

(1) Even-periodic case:

A function $f:[0, L] \rightarrow \mathbb{R}$ can be extended as an even function $f:[-L, L] \rightarrow \mathbb{R}$ requiring for $x \in[0, L]$ that

$$
f(-x)=f(x) .
$$

This function $f:[-L, L] \rightarrow \mathbb{R}$ can be further extended as a periodic function $f: \mathbb{R} \rightarrow \mathbb{R}$ requiring for $x \in[-L, L]$ that

$$
f(x+2 n L)=f(x) .
$$

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the even-periodic extension of $f(x)=x^{5}$, with $x \in[0,1]$.

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the even-periodic extension of $f(x)=x^{5}$, with $x \in[0,1]$.

Solution:

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the even-periodic extension of $f(x)=x^{5}$, with $x \in[0,1]$.

Solution:

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the even-periodic extension of $f(x)=x^{5}$, with $x \in[0,1]$.

Solution:

Even-periodic, odd-periodic extensions of functions.

(2) Odd-periodic case:

A function $f:(0, L) \rightarrow \mathbb{R}$ can be extended as an odd function $f:(-L, L) \rightarrow \mathbb{R}$ requiring for $x \in(0, L)$ that

$$
f(-x)=-f(x), \quad f(0)=0 .
$$

Even-periodic, odd-periodic extensions of functions.

(2) Odd-periodic case:

A function $f:(0, L) \rightarrow \mathbb{R}$ can be extended as an odd function $f:(-L, L) \rightarrow \mathbb{R}$ requiring for $x \in(0, L)$ that

$$
f(-x)=-f(x), \quad f(0)=0 .
$$

This function $f:(-L, L) \rightarrow \mathbb{R}$ can be further extended as a periodic function $f: \mathbb{R} \rightarrow \mathbb{R}$ requiring for $x \in(-L, L)$ and n integer that

$$
f(x+2 n L)=f(x), \quad \text { and } \quad f(n L)=0
$$

Even-periodic, odd-periodic extensions of functions.

(2) Odd-periodic case:

A function $f:(0, L) \rightarrow \mathbb{R}$ can be extended as an odd function $f:(-L, L) \rightarrow \mathbb{R}$ requiring for $x \in(0, L)$ that

$$
f(-x)=-f(x), \quad f(0)=0 .
$$

This function $f:(-L, L) \rightarrow \mathbb{R}$ can be further extended as a periodic function $f: \mathbb{R} \rightarrow \mathbb{R}$ requiring for $x \in(-L, L)$ and n integer that

$$
f(x+2 n L)=f(x), \quad \text { and } \quad f(n L)=0
$$

Remark: At $x= \pm L$, the extension f must satisfy:

Even-periodic, odd-periodic extensions of functions.

(2) Odd-periodic case:

A function $f:(0, L) \rightarrow \mathbb{R}$ can be extended as an odd function $f:(-L, L) \rightarrow \mathbb{R}$ requiring for $x \in(0, L)$ that

$$
f(-x)=-f(x), \quad f(0)=0 .
$$

This function $f:(-L, L) \rightarrow \mathbb{R}$ can be further extended as a periodic function $f: \mathbb{R} \rightarrow \mathbb{R}$ requiring for $x \in(-L, L)$ and n integer that

$$
f(x+2 n L)=f(x), \quad \text { and } \quad f(n L)=0
$$

Remark: At $x= \pm L$, the extension f must satisfy:
(a) f is odd, hence $f(-L)=-f(L)$;

Even-periodic, odd-periodic extensions of functions.

(2) Odd-periodic case:

A function $f:(0, L) \rightarrow \mathbb{R}$ can be extended as an odd function $f:(-L, L) \rightarrow \mathbb{R}$ requiring for $x \in(0, L)$ that

$$
f(-x)=-f(x), \quad f(0)=0 .
$$

This function $f:(-L, L) \rightarrow \mathbb{R}$ can be further extended as a periodic function $f: \mathbb{R} \rightarrow \mathbb{R}$ requiring for $x \in(-L, L)$ and n integer that

$$
f(x+2 n L)=f(x), \quad \text { and } \quad f(n L)=0
$$

Remark: At $x= \pm L$, the extension f must satisfy:
(a) f is odd, hence $f(-L)=-f(L)$;
(b) f is periodic, hence $f(-L)=f(-L+2 L)=f(L)$.

Even-periodic, odd-periodic extensions of functions.

(2) Odd-periodic case:

A function $f:(0, L) \rightarrow \mathbb{R}$ can be extended as an odd function $f:(-L, L) \rightarrow \mathbb{R}$ requiring for $x \in(0, L)$ that

$$
f(-x)=-f(x), \quad f(0)=0 .
$$

This function $f:(-L, L) \rightarrow \mathbb{R}$ can be further extended as a periodic function $f: \mathbb{R} \rightarrow \mathbb{R}$ requiring for $x \in(-L, L)$ and n integer that

$$
f(x+2 n L)=f(x), \quad \text { and } \quad f(n L)=0 .
$$

Remark: At $x= \pm L$, the extension f must satisfy:
(a) f is odd, hence $f(-L)=-f(L)$;
(b) f is periodic, hence $f(-L)=f(-L+2 L)=f(L)$.

We then conclude that $-f(L)=f(L)$,

Even-periodic, odd-periodic extensions of functions.

(2) Odd-periodic case:

A function $f:(0, L) \rightarrow \mathbb{R}$ can be extended as an odd function $f:(-L, L) \rightarrow \mathbb{R}$ requiring for $x \in(0, L)$ that

$$
f(-x)=-f(x), \quad f(0)=0 .
$$

This function $f:(-L, L) \rightarrow \mathbb{R}$ can be further extended as a periodic function $f: \mathbb{R} \rightarrow \mathbb{R}$ requiring for $x \in(-L, L)$ and n integer that

$$
f(x+2 n L)=f(x), \quad \text { and } \quad f(n L)=0 .
$$

Remark: At $x= \pm L$, the extension f must satisfy:
(a) f is odd, hence $f(-L)=-f(L)$;
(b) f is periodic, hence $f(-L)=f(-L+2 L)=f(L)$.

We then conclude that $-f(L)=f(L)$, hence $f(L)=0$.

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the odd-periodic extension of $f(x)=x^{5}$, with $x \in(0,1)$.

Even-periodic, odd-periodic extensions of functions.

Example
Sketch the graph of the odd-periodic extension of $f(x)=x^{5}$, with $x \in(0,1)$.

Solution:

Even-periodic, odd-periodic extensions of functions.

Example
Sketch the graph of the odd-periodic extension of $f(x)=x^{5}$, with $x \in(0,1)$.

Solution:

Even-periodic, odd-periodic extensions of functions.

Example
Sketch the graph of the odd-periodic extension of $f(x)=x^{5}$, with $x \in(0,1)$.

Solution:

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the even-periodic extension of $f(x)=x$, with $x \in[0,1]$, and then find its Fourier Series.

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the even-periodic extension of $f(x)=x$, with $x \in[0,1]$, and then find its Fourier Series.

Solution:

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the even-periodic extension of $f(x)=x$, with $x \in[0,1]$, and then find its Fourier Series.

Solution:

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the even-periodic extension of $f(x)=x$, with $x \in[0,1]$, and then find its Fourier Series.

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the even-periodic extension of $f(x)=x$, with $x \in[0,1]$, and then find its Fourier Series.

Solution: Since f is even and periodic,

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the even-periodic extension of $f(x)=x$, with $x \in[0,1]$, and then find its Fourier Series.

Solution: Since f is even and periodic, then the Fourier Series is a Cosine Series,

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the even-periodic extension of $f(x)=x$, with $x \in[0,1]$, and then find its Fourier Series.

Solution: Since f is even and periodic, then the Fourier Series is a Cosine Series, that is, $b_{n}=0$.

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the even-periodic extension of $f(x)=x$, with $x \in[0,1]$, and then find its Fourier Series.

Solution: Since f is even and periodic, then the Fourier Series is a Cosine Series, that is, $b_{n}=0$. From the graph: $a_{0}=1$.

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the even-periodic extension of $f(x)=x$, with $x \in[0,1]$, and then find its Fourier Series.

Solution: Since f is even and periodic, then the Fourier Series is a Cosine Series, that is, $b_{n}=0$. From the graph: $a_{0}=1$.

$$
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x
$$

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the even-periodic extension of $f(x)=x$, with $x \in[0,1]$, and then find its Fourier Series.

Solution: Since f is even and periodic, then the Fourier Series is a Cosine Series, that is, $b_{n}=0$. From the graph: $a_{0}=1$.

$$
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x
$$

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the even-periodic extension of $f(x)=x$, with $x \in[0,1]$, and then find its Fourier Series.

Solution: Since f is even and periodic, then the Fourier Series is a Cosine Series, that is, $b_{n}=0$. From the graph: $a_{0}=1$.

$$
\begin{aligned}
& a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x \\
& a_{n}=2 \int_{0}^{1} x \cos (n \pi x) d x
\end{aligned}
$$

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the even-periodic extension of $f(x)=x$, with $x \in[0,1]$, and then find its Fourier Series.

Solution: Since f is even and periodic, then the Fourier Series is a Cosine Series, that is, $b_{n}=0$. From the graph: $a_{0}=1$.

$$
\begin{aligned}
& a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x \\
& a_{n}=2 \int_{0}^{1} x \cos (n \pi x) d x=\left.2\left[\frac{x \sin (n \pi x)}{n \pi}+\frac{\cos (n \pi x)}{(n \pi)^{2}}\right]\right|_{0} ^{1}
\end{aligned}
$$

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the even-periodic extension of $f(x)=x$, with $x \in[0,1]$, and then find its Fourier Series.

Solution: Since f is even and periodic, then the Fourier Series is a Cosine Series, that is, $b_{n}=0$. From the graph: $a_{0}=1$.

$$
\begin{aligned}
& a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x . \\
& a_{n}=2 \int_{0}^{1} x \cos (n \pi x) d x=\left.2\left[\frac{x \sin (n \pi x)}{n \pi}+\frac{\cos (n \pi x)}{(n \pi)^{2}}\right]\right|_{0} ^{1} \\
& a_{n}=\frac{2}{(n \pi)^{2}}[\cos (n \pi)-1]
\end{aligned}
$$

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the even-periodic extension of $f(x)=x$, with $x \in[0,1]$, and then find its Fourier Series.

Solution: Since f is even and periodic, then the Fourier Series is a Cosine Series, that is, $b_{n}=0$. From the graph: $a_{0}=1$.

$$
\begin{aligned}
& a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x . \\
& a_{n}=2 \int_{0}^{1} x \cos (n \pi x) d x=\left.2\left[\frac{x \sin (n \pi x)}{n \pi}+\frac{\cos (n \pi x)}{(n \pi)^{2}}\right]\right|_{0} ^{1}, \\
& a_{n}=\frac{2}{(n \pi)^{2}}[\cos (n \pi)-1] \Rightarrow a_{n}=\frac{2}{(n \pi)^{2}}\left[(-1)^{n}-1\right] .
\end{aligned}
$$

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the even-periodic extension of $f(x)=x$, with $x \in[0,1]$, and then find its Fourier Series.

Solution: Recall: $b_{n}=0$, and $a_{n}=\frac{2}{(n \pi)^{2}}\left[(-1)^{n}-1\right]$.

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the even-periodic extension of $f(x)=x$, with $x \in[0,1]$, and then find its Fourier Series.

Solution: Recall: $b_{n}=0$, and $a_{n}=\frac{2}{(n \pi)^{2}}\left[(-1)^{n}-1\right]$.

$$
n=2 k
$$

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the even-periodic extension of $f(x)=x$, with $x \in[0,1]$, and then find its Fourier Series.

Solution: Recall: $b_{n}=0$, and $a_{n}=\frac{2}{(n \pi)^{2}}\left[(-1)^{n}-1\right]$.

$$
n=2 k \quad \Rightarrow \quad a_{2 k}=\frac{2}{[(2 k) \pi]^{2}}\left[(-1)^{2 k}-1\right]
$$

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the even-periodic extension of $f(x)=x$, with $x \in[0,1]$, and then find its Fourier Series.

Solution: Recall: $b_{n}=0$, and $a_{n}=\frac{2}{(n \pi)^{2}}\left[(-1)^{n}-1\right]$.

$$
n=2 k \quad \Rightarrow \quad a_{2 k}=\frac{2}{[(2 k) \pi]^{2}}\left[(-1)^{2 k}-1\right] \quad \Rightarrow \quad a_{2 k}=0 .
$$

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the even-periodic extension of $f(x)=x$, with $x \in[0,1]$, and then find its Fourier Series.

Solution: Recall: $\quad b_{n}=0$, and $a_{n}=\frac{2}{(n \pi)^{2}}\left[(-1)^{n}-1\right]$.

$$
\begin{aligned}
n & =2 k \quad \Rightarrow \quad a_{2 k}=\frac{2}{[(2 k) \pi]^{2}}\left[(-1)^{2 k}-1\right] \quad \Rightarrow \quad a_{2 k}=0 . \\
n & =2 k-1
\end{aligned}
$$

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the even-periodic extension of $f(x)=x$, with $x \in[0,1]$, and then find its Fourier Series.

Solution: Recall: $\quad b_{n}=0$, and $a_{n}=\frac{2}{(n \pi)^{2}}\left[(-1)^{n}-1\right]$.

$$
\begin{aligned}
n=2 k & \Rightarrow \quad a_{2 k}=\frac{2}{[(2 k) \pi]^{2}}\left[(-1)^{2 k}-1\right] \quad \Rightarrow \quad a_{2 k}=0 . \\
n=2 k-1 & \Rightarrow a_{2 k-1}=\frac{2[-1-1]}{[(2 k-1) \pi]^{2}}
\end{aligned}
$$

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the even-periodic extension of $f(x)=x$, with $x \in[0,1]$, and then find its Fourier Series.

Solution: Recall: $\quad b_{n}=0$, and $a_{n}=\frac{2}{(n \pi)^{2}}\left[(-1)^{n}-1\right]$.

$$
\begin{gathered}
n=2 k \quad \Rightarrow \quad a_{2 k}=\frac{2}{[(2 k) \pi]^{2}}\left[(-1)^{2 k}-1\right] \Rightarrow a_{2 k}=0 . \\
n=2 k-1 \Rightarrow a_{2 k-1}=\frac{2[-1-1]}{[(2 k-1) \pi]^{2}} \Rightarrow a_{2 k-1}=\frac{-4}{[(2 k-1) \pi]^{2}} .
\end{gathered}
$$

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the even-periodic extension of $f(x)=x$, with $x \in[0,1]$, and then find its Fourier Series.

Solution: Recall: $b_{n}=0$, and $a_{n}=\frac{2}{(n \pi)^{2}}\left[(-1)^{n}-1\right]$.

$$
\begin{gathered}
n=2 k \Rightarrow a_{2 k}=\frac{2}{[(2 k) \pi]^{2}}\left[(-1)^{2 k}-1\right] \Rightarrow a_{2 k}=0 . \\
n=2 k-1 \Rightarrow a_{2 k-1}=\frac{2[-1-1]}{[(2 k-1) \pi]^{2}} \Rightarrow a_{2 k-1}=\frac{-4}{[(2 k-1) \pi]^{2}} . \\
f(x)=\frac{1}{2}-\frac{4}{\pi^{2}} \sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{2}} \cos ((2 k-1) \pi x) .
\end{gathered}
$$

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the odd-periodic extension of $f(x)=x$, with $x \in(0,1)$, and then find its Fourier Series.

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the odd-periodic extension of $f(x)=x$, with $x \in(0,1)$, and then find its Fourier Series.

Solution:

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the odd-periodic extension of $f(x)=x$, with $x \in(0,1)$, and then find its Fourier Series.

Solution:

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the odd-periodic extension of $f(x)=x$, with $x \in(0,1)$, and then find its Fourier Series.

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the odd-periodic extension of $f(x)=x$, with $x \in(0,1)$, and then find its Fourier Series.

Solution: Since f is odd and periodic,

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the odd-periodic extension of $f(x)=x$, with $x \in(0,1)$, and then find its Fourier Series.

Solution: Since f is odd and periodic, then the Fourier Series is a Sine Series,

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the odd-periodic extension of $f(x)=x$, with $x \in(0,1)$, and then find its Fourier Series.

Solution: Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_{n}=0$.

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the odd-periodic extension of $f(x)=x$, with $x \in(0,1)$, and then find its Fourier Series.

Solution: Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_{n}=0$.

$$
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the odd-periodic extension of $f(x)=x$, with $x \in(0,1)$, and then find its Fourier Series.

Solution: Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_{n}=0$.

$$
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the odd-periodic extension of $f(x)=x$, with $x \in(0,1)$, and then find its Fourier Series.

Solution: Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_{n}=0$.

$$
\begin{aligned}
& b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x . \\
& b_{n}=2 \int_{0}^{1} x \sin (n \pi x) d x
\end{aligned}
$$

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the odd-periodic extension of $f(x)=x$, with $x \in(0,1)$, and then find its Fourier Series.

Solution: Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_{n}=0$.

$$
\begin{aligned}
& b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x \\
& b_{n}=2 \int_{0}^{1} x \sin (n \pi x) d x=\left.2\left[-\frac{x \cos (n \pi x)}{n \pi}+\frac{\sin (n \pi x)}{(n \pi)^{2}}\right]\right|_{0} ^{1}
\end{aligned}
$$

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the odd-periodic extension of $f(x)=x$, with $x \in(0,1)$, and then find its Fourier Series.

Solution: Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_{n}=0$.

$$
\begin{aligned}
& b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x \\
& b_{n}=2 \int_{0}^{1} x \sin (n \pi x) d x=\left.2\left[-\frac{x \cos (n \pi x)}{n \pi}+\frac{\sin (n \pi x)}{(n \pi)^{2}}\right]\right|_{0} ^{1} \\
& \quad b_{n}=\frac{-2}{n \pi}[\cos (n \pi)-0]
\end{aligned}
$$

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the odd-periodic extension of $f(x)=x$, with $x \in(0,1)$, and then find its Fourier Series.

Solution: Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_{n}=0$.

$$
\begin{gathered}
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x \\
b_{n}=2 \int_{0}^{1} x \sin (n \pi x) d x=\left.2\left[-\frac{x \cos (n \pi x)}{n \pi}+\frac{\sin (n \pi x)}{(n \pi)^{2}}\right]\right|_{0} ^{1} \\
b_{n}=\frac{-2}{n \pi}[\cos (n \pi)-0] \Rightarrow b_{n}=\frac{-2(-1)^{n}}{n \pi}
\end{gathered}
$$

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the odd-periodic extension of $f(x)=x$, with $x \in(0,1)$, and then find its Fourier Series.

Solution: Recall: $a_{n}=0$, and $b_{n}=\frac{2(-1)^{n+1}}{n \pi}$.

Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the odd-periodic extension of $f(x)=x$, with $x \in(0,1)$, and then find its Fourier Series.

Solution: Recall: $a_{n}=0$, and $b_{n}=\frac{2(-1)^{n+1}}{n \pi}$. Therefore,

$$
f(x)=\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{(n+1)}}{n} \sin (n \pi x)
$$

