
Overview of Fourier Series (Sect. 6.2).

I Origins of the Fourier Series.

I Periodic functions.

I Orthogonality of Sines and Cosines.

I Main result on Fourier Series.



Origins of the Fourier Series.

Summary:
Daniel Bernoulli (∼ 1750) found
solutions to the equation that
describes waves propagating on a
vibrating string.
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The function u, measuring the vertical displacement of the string,
is the solution to the wave equation,

∂2
t u(t, x) = v2 ∂2

xu(t, x), v ∈ R, x ∈ [0, L], t ∈ [0,∞),

with initial conditions,

u(0, x) = f (x), ∂tu(0, x) = 0,

and boundary conditions,

u(t, 0) = 0, u(t, L) = 0.
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Origins of the Fourier Series.

Summary:
Bernoulli found particular solutions to the wave equation.

If the initial condition is fn(x) = sin
(nπx

L

)
,

then the solution is un(t, x) = sin
(nπx

L

)
cos

(vnπt

L

)
.

Bernoulli also realized that

UN(t, x) =
N∑

n=1

an sin
(nπx

L

)
cos

(vnπt

L

)
, an ∈ R

is also solution of the wave equation with initial condition

FN(x) =
N∑

n=1

an sin
(nπx

L

)
.

Remark: The wave equation and its solutions provide a
mathematical description of music.
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Origins of the Fourier Series.

Remarks:
I Bernoulli claimed he had obtained all solutions to the problem

above for the wave equation.

I However, he did not prove that claim.

I A proof is: Given a function F with F (0) = F (L) = 0, but
otherwise arbitrary, find N and the coefficients an such that F
is approximated by an expansion FN given in the previous slide.

I Joseph Fourier (∼ 1800) provided such formula for the
coefficients an, while studying a different problem:
The heat transport in a solid material.

I Find the temperature function u solution of the heat equation

∂tu(t, x) = k ∂2
xu(t, x), k > 0, x ∈ [0, L], t ∈ [0,∞),

I.C. u(0, x) = f (x),

B.C. u(t, 0) = 0, u(t, L) = 0.
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Origins of the Fourier Series.

Remarks:

I However, Fourier went farther than Bernoulli.

Fourier found a
formula for the coefficients an in terms of the function F .

I Given an initial data function F , satisfying F (0) = F (L) = 0,
but otherwise arbitrary, Fourier proved that one can construct
an expansion FN as follows,

FN(x) =
N∑

n=1

an sin
(nπx

L

)
,

for N any positive integer, where the an are given by

an =
2

L

∫ L

0
F (x) sin

(nπx

L

)
dx .

I To find all solutions to the heat equation problem above one
must prove one more thing: That FN approximates F for large
enough N. That is, limN→∞ FN = F . Fourier didn’t show this.
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n=1

an sin
(nπx

L

)
,

for N any positive integer, where the an are given by

an =
2

L

∫ L

0
F (x) sin

(nπx

L

)
dx .

I To find all solutions to the heat equation problem above one
must prove one more thing: That FN approximates F for large
enough N. That is, limN→∞ FN = F . Fourier didn’t show this.
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Origins of the Fourier Series.

Remarks:

I Based on Bernoulli and Fourier works, people have been able
to prove that.

Every continuous, τ -periodic function can be
expressed as an infinite linear combination of sine and cosine
functions.

I More precisely: Every continuous, τ -periodic function F , there
exist constants a0, an, bn, for n = 1, 2, · · · such that

FN(x) =
a0

2
+

N∑
n=1

[
an cos

(2nπx

τ

)
+ bn sin

(2nπx

τ

)]
,

satisfies lim
N→∞

FN(x) = F (x) for every x ∈ R.

Notation: F (x) =
a0

2
+
∞∑

n=1

[
an cos

(2nπx

τ

)
+ bn sin

(2nπx

τ

)]
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Origins of the Fourier Series.

The main problem in our class:
Given a continuous, τ -periodic function f , find the formulas for an

and bn such that

f (x) =
a0

2
+
∞∑

n=1

[
an cos

(2nπx

τ

)
+ bn sin

(2nπx

τ

)]
.

Remarks: We need to review two main concepts:

I The notion of periodic functions.

I The notion of orthogonal functions, in particular the
orthogonality of Sines and Cosines.
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Fourier Series (Sect. 6.2).

I Origins of the Fourier Series.

I Periodic functions.

I Orthogonality of Sines and Cosines.

I Main result on Fourier Series.



Periodic functions.

Definition
A function f : R → R is called periodic iff there exists τ > 0 such
that for all x ∈ R holds

f (x + τ) = f (x).

Remark: f is invariant under translations by τ .

Definition
A period T of a periodic function f is the smallest value of τ such
that f (x + τ) = f (x) holds.

Notation:
A periodic function with period T is also called T -periodic.
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Periodic functions.

Example

The following functions are periodic, with period T ,

f (x) = sin(x), T = 2π.

f (x) = cos(x), T = 2π.

f (x) = tan(x), T = π.

f (x) = sin(ax), T =
2π

a
.

The proof of the latter statement is the following:

f
(
x +

2π

a

)
= sin

(
ax + a

2π

a

)
= sin(ax + 2π) = sin(ax) = f (x).

C
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Periodic functions.

Example

Show that the function below is periodic, and find its period,

f (x) = ex , x ∈ [0, 2), f (x − 2) = f (x).

Solution: We just graph the function,

y = f(x)y

0 1 x

So the function is periodic with period T = 2. C
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Periodic functions.

Theorem
A linear combination of T -periodic functions is also T-periodic.

Proof: If f (x + T ) = f (x) and g(x + T ) = g(x), then

af (x + T ) + bg(x + T ) = af (x) + bg(x),

so (af + bg) is also T -periodic.

Example

f (x) = 2 sin(3x) + 7 cos(3x) is periodic with period T = 2π/3. C

Remark: The functions below are periodic with period T =
τ

n
,

f (x) = cos
(2πnx

τ

)
, g(x) = sin

(2πnx

τ

)
,

Since f and g are invariant under translations by τ/n, they are also
invariant under translations by τ .
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Periodic functions.

Corollary

Any function f given by

f (x) =
a0

2
+
∞∑

n=1

[
an cos

(2nπx

τ

)
+ bn sin

(2nπx

τ

)]
is periodic with period τ .

Remark: We will show that the converse statement is true.

Theorem
A function f is τ -periodic iff holds

f (x) =
a0

2
+
∞∑

n=1

[
an cos

(2nπx

τ

)
+ bn sin

(2nπx

τ

)]
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Fourier Series (Sect. 6.2).

I Origins of the Fourier Series.

I Periodic functions.

I Orthogonality of Sines and Cosines.

I Main result on Fourier Series.



Orthogonality of Sines and Cosines.

Remark:
From now on we work on the following domain: [−L, L].

L x

y

T = 2 L

cos ( pi x / L )

sin ( pi x / L )

−L
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Orthogonality of Sines and Cosines.

Theorem (Orthogonality)

The following relations hold for all n, m ∈ N,∫ L

−L
cos

(nπx

L

)
cos

(mπx

L

)
dx =


0 n 6= m,

L n = m 6= 0,

2L n = m = 0,∫ L

−L
sin

(nπx

L

)
sin

(mπx

L

)
dx =

{
0 n 6= m,

L n = m,∫ L

−L
cos

(nπx

L

)
sin

(mπx

L

)
dx = 0.

Remark:

I The operation f · g =

∫ L

−L
f (x) g(x) dx is an inner product in

the vector space of functions. Like the dot product is in R2.

I Two functions f , g , are orthogonal iff f · g = 0.
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Orthogonality of Sines and Cosines.

Recall: cos(θ) cos(φ) =
1

2

[
cos(θ + φ) + cos(θ − φ)

]
;

sin(θ) sin(φ) =
1

2

[
cos(θ − φ)− cos(θ + φ)

]
;

sin(θ) cos(φ) =
1

2

[
sin(θ + φ) + sin(θ − φ)

]
.

Proof: First formula: If n = m = 0, it is simple to see that∫ L

−L
cos

(nπx

L

)
cos

(mπx

L

)
dx =

∫ L

−L
dx = 2L.

In the case where one of n or m is non-zero, use the relation∫ L

−L
cos

(nπx

L

)
cos

(mπx

L

)
dx =

1

2

∫ L

−L
cos

[(n + m)πx

L

]
dx

+
1

2

∫ L

−L
cos

[(n −m)πx

L

]
dx .
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Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero,
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1

2

∫ L

−L
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[(n + m)πx

L
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dx =

L

2(n + m)π
sin

[(n + m)πx
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]∣∣∣L
−L

= 0.

We obtain that∫ L
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∫ L

−L
cos

[(n −m)πx

L

]
dx .

If we further restrict n 6= m, then
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If n = m 6= 0, we have that

1

2

∫ L

−L
cos

[(n −m)πx
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dx =

1

2

∫ L

−L
dx = L.

This establishes the first equation in the Theorem. The remaining
equations are proven in a similar way.
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Overview of Fourier Series (Sect. 6.2).

I Origins of the Fourier Series.

I Periodic functions.

I Orthogonality of Sines and Cosines.

I Main result on Fourier Series.



Main result on Fourier Series.

Theorem (Fourier Series)

If the function f : [−L, L] ⊂ R → R is continuous, then f can be
expressed as an infinite series

f (x) =
a0

2
+
∞∑

n=1

[
an cos

(nπx

L

)
+ bn sin

(nπx

L

)]
(1)

with the constants an and bn given by

an =
1

L

∫ L

−L
f (x) cos

(nπx

L

)
dx , n > 0,

bn =
1

L

∫ L

−L
f (x) sin

(nπx

L

)
dx , n > 1.

Furthermore, the Fourier series in Eq. (1) provides a 2L-periodic
extension of f from the domain [−L, L] ⊂ R to R.



Examples of the Fourier Theorem (Sect. 6.2).

I The Fourier Theorem: Continuous case.

I Example: Using the Fourier Theorem.

I The Fourier Theorem: Piecewise continuous case.

I Example: Using the Fourier Theorem.



The Fourier Theorem: Continuous case.
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L

∫ L

−L
f (x) sin

(nπx

L
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dx , n > 1.

Furthermore, the Fourier series in Eq. (2) provides a 2L-periodic
extension of function f from the domain [−L, L] ⊂ R to R.



The Fourier Theorem: Continuous case.

Sketch of the Proof:

I Define the partial sum functions

fN(x) =
a0

2
+

N∑
n=1

[
an cos

(nπx

L

)
+ bn sin

(nπx

L

)]

with an and bn given by

an =
1

L

∫ L

−L
f (x) cos

(nπx

L

)
dx , n > 0,

bn =
1

L

∫ L

−L
f (x) sin

(nπx

L

)
dx , n > 1.

I Express fN as a convolution of Sine, Cosine, functions and the
original function f .

I Use the convolution properties to show that

lim
N→∞

fN(x) = f (x), x ∈ [−L, L].
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Example: Using the Fourier Theorem.
Example

Find the Fourier series expansion of the function

f (x) =

{
1 + x x ∈ [−1, 0),

1− x x ∈ [0, 1].

Solution: In this case L = 1. The Fourier series expansion is

f (x) =
a0

2
+
∞∑

n=1

[
an cos(nπx) + bn sin(nπx)

]
,

where the an, bn are given in the Theorem. We start with a0,

a0 =

∫ 1

−1
f (x) dx =

∫ 0

−1
(1 + x) dx +

∫ 1

0
(1− x) dx .

a0 =
(
x +

x2

2

)∣∣∣0
−1

+
(
x − x2

2

)∣∣∣1
0

=
(
1− 1

2

)
+

(
1− 1

2

)
We obtain: a0 = 1.
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Example

Find the Fourier series expansion of the function
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Solution: Recall: a0 = 1.

Similarly, the rest of the an are given by,
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∫ 1
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f (x) cos(nπx) dx
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∫ 0
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0
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∫
cos(nπx) dx =

1

nπ
sin(nπx), and∫

x cos(nπx) dx =
x

nπ
sin(nπx) +

1

n2π2
cos(nπx).
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Examples of the Fourier Theorem (Sect. 6.2).

I The Fourier Theorem: Continuous case.

I Example: Using the Fourier Theorem.

I The Fourier Theorem: Piecewise continuous case.

I Example: Using the Fourier Theorem.



The Fourier Theorem: Piecewise continuous case.

Recall:

Definition
A function f : [a, b]→ R is called piecewise continuous iff holds,

(a) [a, b] can be partitioned in a finite number of sub-intervals
such that f is continuous on the interior of these sub-intervals.

(b) f has finite limits at the endpoints of all sub-intervals.



The Fourier Theorem: Piecewise continuous case.

Theorem (Fourier Series)

If f : [−L, L] ⊂ R → R is piecewise continuous, then the function

fF (x) =
a0

2
+
∞∑

n=1

[
an cos

(nπx

L

)
+ bn sin

(nπx

L

)]
where an and bn given by

an =
1

L

∫ L

−L
f (x) cos

(nπx

L

)
dx , n > 0,

bn =
1

L

∫ L

−L
f (x) sin

(nπx

L

)
dx , n > 1.

satisfies that:

(a) fF (x) = f (x) for all x where f is continuous;

(b) fF (x0) =
1

2

[
lim

x→x+
0

f (x) + lim
x→x−0

f (x)
]

for all x0 where f is

discontinuous.
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Example: Using the Fourier Theorem.

Example

Find the Fourier series of f (x) =

{
− 1 x ∈ [−1, 0),

1 x ∈ [0, 1).

and periodic with period T = 2.

Solution: We start computing the Fourier coefficients bn;

bn =
1

L

∫ L

−L
f (x) sin

(nπx

L

)
dx , L = 1,

bn =

∫ 0

−1
(−1) sin

(
nπx

)
dx +

∫ 1

0
(1) sin

(
nπx

)
dx ,

bn =
(−1)

nπ

[
− cos(nπx)

∣∣∣0
−1

]
+

1

nπ

[
− cos(nπx)

∣∣∣1
0

]
,

bn =
(−1)

nπ

[
−1 + cos(−nπ)

]
+

1

nπ

[
− cos(nπ) + 1

]
.
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Sine and Cosine Series (Sect. 6.2).

I Even, odd functions.

I Main properties of even, odd functions.

I Sine and cosine series.

I Even-periodic, odd-periodic extensions of functions.



Even, odd functions.

Definition
A function f : [−L, L]→ R is even iff for all x ∈ [−L, L] holds

f (−x) = f (x).

A function f : [−L, L]→ R is odd iff for all x ∈ [−L, L] holds

f (−x) = −f (x).

Remarks:

I The only function that is both odd and even is f = 0.

I Most functions are neither odd nor even.
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Even, odd functions.

Example

Show that the function f (x) = x2 is even on [−L, L].

Solution: The function is even, since

f (−x) = (−x)2 = x2 = f (x).

2

f(x)f(−x)

−x x x

y f(x) = x

C
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Even, odd functions.

Example

Show that the function f (x) = x3 is odd on [−L, L].

Solution: The function is odd, since

f (−x) = (−x)3 = −x3 = −f (x).
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Even, odd functions.

Example

(1) The function f (x) = cos(ax) is even on [−L, L];

(2) The function f (x) = sin(ax) is odd on [−L, L];

(3) The functions f (x) = ex and f (x) = (x − 2)2 are neither even
nor odd.
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Sine and Cosine Series (Sect. 6.2).

I Even, odd functions.

I Main properties of even, odd functions.

I Sine and cosine series.

I Even-periodic, odd-periodic extensions of functions.



Main properties of even, odd functions.

Theorem

(1) A linear combination of even (odd) functions is even (odd).

(2) The product of two odd functions is even.

(3) The product of two even functions is even.

(4) The product of an even function by an odd function is odd.

Proof:
(1) Let f and g be even, that is, f (−x) = f (x), g(−x) = g(x).
Then, for all a, b ∈ R holds,

(af +bg)(−x) = af (−x)+bg(−x) = af (x)+bg(x) = (af +bg)(x).

Case ”odd” is similar.
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Main properties of even, odd functions.

Theorem

If f : [−L, L]→ R is even, then

∫ L
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f (x) dx = 2
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0
f (x) dx.

If f : [−L, L]→ R is odd, then
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f (x) dx = 0.
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Main properties of even, odd functions.

Proof:

I =
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f (x) dx

=

∫ 0
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f (x) dx +
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f (x) dx y = −x , dy = −dx .
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f (−y) (−dy) +
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f (−y) dy +
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f (x) dx .

Even case: f (−y) = f (y), therefore,
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0
f (y) dy +

∫ L

0
f (x) dx ⇒

∫ L

−L
f (x) dx = 2

∫ L

0
f (x) dx .

Odd case: f (−y) = −f (y), therefore,
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0
f (y) dy +
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0
f (x) dx ⇒
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−L
f (x) dx = 0.
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Sine and cosine series.

Theorem (Cosine and Sine Series)

Consider the function f : [−L, L]→ R with Fourier expansion
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a0

2
+
∞∑

n=1

[
an cos

(nπx

L

)
+ bn sin

(nπx

L

)]
.

(1) If f is even, then bn = 0 for n = 1, 2, · · · , and the Fourier
series

f (x) =
a0

2
+
∞∑

n=1

an cos
(nπx

L

)
is called a Cosine Series.

(2) If f is odd, then an = 0 for n = 0, 1, · · · , and the Fourier
series

f (x) =
∞∑

n=1

bn sin
(nπx

L

)
is called a Sine Series.



Sine and cosine series.

Proof:
If f is even, and since the Sine function is odd,

then

bn =
1

L

∫ L

−L
f (x) sin

(nπx

L

)
dx = 0,

since we are integrating an odd function on [−L, L].

If f is odd, and since the Cosine function is even, then

an =
1

L

∫ L

−L
f (x) cos

(nπx

L

)
dx = 0,

since we are integrating an odd function on [−L, L].
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Even-periodic, odd-periodic extensions of functions.

(1) Even-periodic case:
A function f : [0, L]→ R can be extended as an even function
f : [−L, L]→ R requiring for x ∈ [0, L] that

f (−x) = f (x).

This function f : [−L, L]→ R can be further extended as a
periodic function f : R → R requiring for x ∈ [−L, L] that

f (x + 2nL) = f (x).
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Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the even-periodic extension of f (x) = x5, with
x ∈ [0, 1].

Solution:
y

1

1−1

f(x) = x
5

x x−1

Even   extension of  f(x) = x
5

y

1

1

5

y

1

−1 x1

Even−periodic    extension of  f(x) = x

C
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Even-periodic, odd-periodic extensions of functions.

(2) Odd-periodic case:
A function f : (0, L)→ R can be extended as an odd function
f : (−L, L)→ R requiring for x ∈ (0, L) that

f (−x) = −f (x), f (0) = 0.

This function f : (−L, L)→ R can be further extended as a
periodic function f : R → R requiring for x ∈ (−L, L) and n
integer that

f (x + 2nL) = f (x), and f (nL) = 0.

Remark: At x = ±L, the extension f must satisfy:

(a) f is odd, hence f (−L) = −f (L);

(b) f is periodic, hence f (−L) = f (−L + 2L) = f (L).

We then conclude that −f (L) = f (L), hence f (L) = 0.
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Even-periodic, odd-periodic extensions of functions.
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Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the even-periodic extension of f (x) = x , with
x ∈ [0, 1], and then find its Fourier Series.

Solution:
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y
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Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the even-periodic extension of f (x) = x , with
x ∈ [0, 1], and then find its Fourier Series.

Solution: Since f is even and periodic, then the Fourier Series is a
Cosine Series, that is, bn = 0. From the graph: a0 = 1.

an =
1

L

∫ L

−L
f (x) cos

(nπx

L

)
dx =

2

L

∫ L

0
f (x) cos

(nπx

L

)
dx .

an = 2

∫ 1

0
x cos(nπx) dx = 2

[x sin(nπx)

nπ
+

cos(nπx)

(nπ)2

]∣∣∣1
0
,

an =
2

(nπ)2
[
cos(nπ)− 1

]
⇒ an =

2

(nπ)2
[
(−1)n − 1

]
.
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Solution: Since f is odd and periodic, then the Fourier Series is a
Sine Series, that is, an = 0.
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nπ

[
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nπ
.



Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the odd-periodic extension of f (x) = x , with
x ∈ (0, 1), and then find its Fourier Series.

Solution: Since f is odd and periodic,

then the Fourier Series is a
Sine Series, that is, an = 0.

bn =
1

L

∫ L

−L
f (x) sin

(nπx

L

)
dx =

2

L

∫ L

0
f (x) sin

(nπx

L

)
dx .

bn = 2

∫ 1

0
x sin(nπx) dx = 2

[
−x cos(nπx)

nπ
+

sin(nπx)

(nπ)2

]∣∣∣1
0
,

bn =
−2

nπ

[
cos(nπ)− 0

]
⇒ bn =

−2 (−1)n

nπ
.



Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the odd-periodic extension of f (x) = x , with
x ∈ (0, 1), and then find its Fourier Series.

Solution: Since f is odd and periodic, then the Fourier Series is a
Sine Series,

that is, an = 0.

bn =
1

L

∫ L

−L
f (x) sin

(nπx

L

)
dx =

2

L

∫ L

0
f (x) sin

(nπx

L

)
dx .

bn = 2

∫ 1

0
x sin(nπx) dx = 2

[
−x cos(nπx)

nπ
+

sin(nπx)

(nπ)2

]∣∣∣1
0
,

bn =
−2

nπ

[
cos(nπ)− 0

]
⇒ bn =

−2 (−1)n

nπ
.



Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the odd-periodic extension of f (x) = x , with
x ∈ (0, 1), and then find its Fourier Series.

Solution: Since f is odd and periodic, then the Fourier Series is a
Sine Series, that is, an = 0.

bn =
1

L

∫ L

−L
f (x) sin

(nπx

L

)
dx =

2

L

∫ L

0
f (x) sin

(nπx

L

)
dx .

bn = 2

∫ 1

0
x sin(nπx) dx = 2

[
−x cos(nπx)

nπ
+

sin(nπx)

(nπ)2

]∣∣∣1
0
,

bn =
−2

nπ

[
cos(nπ)− 0

]
⇒ bn =

−2 (−1)n

nπ
.



Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the odd-periodic extension of f (x) = x , with
x ∈ (0, 1), and then find its Fourier Series.

Solution: Since f is odd and periodic, then the Fourier Series is a
Sine Series, that is, an = 0.

bn =
1

L

∫ L

−L
f (x) sin

(nπx

L

)
dx

=
2

L

∫ L

0
f (x) sin

(nπx

L

)
dx .

bn = 2

∫ 1

0
x sin(nπx) dx = 2

[
−x cos(nπx)

nπ
+

sin(nπx)

(nπ)2

]∣∣∣1
0
,

bn =
−2

nπ

[
cos(nπ)− 0

]
⇒ bn =

−2 (−1)n

nπ
.



Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the odd-periodic extension of f (x) = x , with
x ∈ (0, 1), and then find its Fourier Series.

Solution: Since f is odd and periodic, then the Fourier Series is a
Sine Series, that is, an = 0.

bn =
1

L

∫ L

−L
f (x) sin

(nπx

L

)
dx =

2

L

∫ L

0
f (x) sin

(nπx

L

)
dx .

bn = 2

∫ 1

0
x sin(nπx) dx = 2

[
−x cos(nπx)

nπ
+

sin(nπx)

(nπ)2

]∣∣∣1
0
,

bn =
−2

nπ

[
cos(nπ)− 0

]
⇒ bn =

−2 (−1)n

nπ
.



Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the odd-periodic extension of f (x) = x , with
x ∈ (0, 1), and then find its Fourier Series.

Solution: Since f is odd and periodic, then the Fourier Series is a
Sine Series, that is, an = 0.

bn =
1

L

∫ L

−L
f (x) sin

(nπx

L

)
dx =

2

L

∫ L

0
f (x) sin

(nπx

L

)
dx .

bn = 2

∫ 1

0
x sin(nπx) dx

= 2
[
−x cos(nπx)

nπ
+

sin(nπx)

(nπ)2

]∣∣∣1
0
,

bn =
−2

nπ

[
cos(nπ)− 0

]
⇒ bn =

−2 (−1)n

nπ
.



Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the odd-periodic extension of f (x) = x , with
x ∈ (0, 1), and then find its Fourier Series.

Solution: Since f is odd and periodic, then the Fourier Series is a
Sine Series, that is, an = 0.

bn =
1

L

∫ L

−L
f (x) sin

(nπx

L

)
dx =

2

L

∫ L

0
f (x) sin

(nπx

L

)
dx .

bn = 2

∫ 1

0
x sin(nπx) dx = 2

[
−x cos(nπx)

nπ
+

sin(nπx)

(nπ)2

]∣∣∣1
0
,

bn =
−2

nπ

[
cos(nπ)− 0

]
⇒ bn =

−2 (−1)n

nπ
.



Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the odd-periodic extension of f (x) = x , with
x ∈ (0, 1), and then find its Fourier Series.

Solution: Since f is odd and periodic, then the Fourier Series is a
Sine Series, that is, an = 0.

bn =
1

L

∫ L

−L
f (x) sin

(nπx

L

)
dx =

2

L

∫ L

0
f (x) sin

(nπx

L

)
dx .

bn = 2

∫ 1

0
x sin(nπx) dx = 2

[
−x cos(nπx)

nπ
+

sin(nπx)

(nπ)2

]∣∣∣1
0
,

bn =
−2

nπ

[
cos(nπ)− 0

]

⇒ bn =
−2 (−1)n

nπ
.



Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the odd-periodic extension of f (x) = x , with
x ∈ (0, 1), and then find its Fourier Series.

Solution: Since f is odd and periodic, then the Fourier Series is a
Sine Series, that is, an = 0.

bn =
1

L

∫ L

−L
f (x) sin

(nπx

L

)
dx =

2

L

∫ L

0
f (x) sin

(nπx

L

)
dx .

bn = 2

∫ 1

0
x sin(nπx) dx = 2

[
−x cos(nπx)

nπ
+

sin(nπx)

(nπ)2

]∣∣∣1
0
,

bn =
−2

nπ

[
cos(nπ)− 0

]
⇒ bn =

−2 (−1)n

nπ
.



Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the odd-periodic extension of f (x) = x , with
x ∈ (0, 1), and then find its Fourier Series.

Solution: Recall: an = 0, and bn =
2 (−1)n+1

nπ
.

Therefore,

f (x) =
2

π

∞∑
n=1

(−1)(n+1)

n
sin(nπx). C



Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the odd-periodic extension of f (x) = x , with
x ∈ (0, 1), and then find its Fourier Series.

Solution: Recall: an = 0, and bn =
2 (−1)n+1

nπ
. Therefore,

f (x) =
2

π

∞∑
n=1

(−1)(n+1)

n
sin(nπx). C


