Review of Linear Algebra (Sect. 5.2, 5.3)

This Class:

- $n \times n$ systems of linear algebraic equations.
- The matrix-vector product.
- A matrix is a function.
- The inverse of a square matrix.
- The determinant of a square matrix.

Next Class:

- Eigenvalues, eigenvectors of a matrix.
- Computing eigenvalues and eigenvectors.
- Diagonalizable matrices.

$n \times n$ systems of linear algebraic equations.

Definition

An $n \times n$ algebraic system of linear equations is the following: Given constants $a_{i j}$ and b_{i}, where indices $i, j=1 \cdots, n \geqslant 1$, find the constants x_{j} solutions of the system

$$
\begin{aligned}
a_{11} x_{1}+\cdots+a_{1 n} x_{n} & =b_{1}, \\
& \vdots \\
a_{n 1} x_{1}+\cdots+a_{n n} x_{n} & =b_{n} .
\end{aligned}
$$

The system is called homogeneous iff the sources vanish, that is, $b_{1}=\cdots=b_{n}=0$.

$n \times n$ systems of linear algebraic equations.

Definition

An $n \times n$ algebraic system of linear equations is the following:
Given constants $a_{i j}$ and b_{i}, where indices $i, j=1 \cdots, n \geqslant 1$, find the constants x_{j} solutions of the system

$$
\begin{aligned}
a_{11} x_{1}+\cdots+a_{1 n} x_{n} & =b_{1}, \\
& \vdots \\
a_{n 1} x_{1}+\cdots+a_{n n} x_{n} & =b_{n} .
\end{aligned}
$$

The system is called homogeneous iff the sources vanish, that is, $b_{1}=\cdots=b_{n}=0$.
Example
$2 \times 2: \begin{aligned} 2 x_{1}-x_{2} & =0, \\ -x_{1}+2 x_{2} & =3 .\end{aligned}$

$n \times n$ systems of linear algebraic equations.

Definition

An $n \times n$ algebraic system of linear equations is the following:
Given constants $a_{i j}$ and b_{i}, where indices $i, j=1 \cdots, n \geqslant 1$, find the constants x_{j} solutions of the system

$$
\begin{aligned}
a_{11} x_{1}+\cdots+a_{1 n} x_{n} & =b_{1} \\
& \vdots \\
a_{n 1} x_{1}+\cdots+a_{n n} x_{n} & =b_{n}
\end{aligned}
$$

The system is called homogeneous iff the sources vanish, that is, $b_{1}=\cdots=b_{n}=0$.
Example
$2 \times 2: \begin{aligned} 2 x_{1}-x_{2} & =0, \\ -x_{1}+2 x_{2} & =3 .\end{aligned}$

$$
\begin{align*}
x_{1}+2 x_{2}+x_{3} & =1, \\
3 \times 3:-3 x_{1}+x_{2}+3 x_{3} & =24, \\
x_{2}-4 x_{3} & =-1 .
\end{align*}
$$

Review of Linear Algebra (Sect. 5.2, 5.3)

- $n \times n$ systems of linear algebraic equations.
- The matrix-vector product.
- A matrix is a function.
- The inverse of a square matrix.
- The determinant of a square matrix.

The matrix-vector product.

Definition
The matrix-vector product is the matrix multiplication of an $n \times n$ matrix A and an n-vector \mathbf{v}, resulting in an n-vector $A \mathbf{v}$, that is,

$$
\begin{array}{cc}
A & \mathbf{v} \\
n \times n & \longrightarrow
\end{array} \begin{gathered}
A \mathbf{v} \\
n \times 1
\end{gathered}
$$

The matrix-vector product.

Definition

The matrix-vector product is the matrix multiplication of an $n \times n$ matrix A and an n-vector \mathbf{v}, resulting in an n-vector $A \mathbf{v}$, that is,

$$
\begin{array}{cc}
A & \mathbf{v} \\
n \times n & \longrightarrow
\end{array} \begin{gathered}
A \mathbf{v} \\
n \times 1
\end{gathered}
$$

Example

Find the matrix-vector product $A \mathbf{v}$ for

$$
A=\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{l}
1 \\
3
\end{array}\right] .
$$

The matrix-vector product.

Definition

The matrix-vector product is the matrix multiplication of an $n \times n$ matrix A and an n-vector \mathbf{v}, resulting in an n-vector $A \mathbf{v}$, that is,

$$
\begin{array}{cc}
A & \mathbf{v} \\
n \times n & \longrightarrow \times 1
\end{array} \quad \begin{gathered}
A \mathbf{v} \\
n \times 1
\end{gathered}
$$

Example

Find the matrix-vector product $A \mathbf{v}$ for

$$
A=\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{l}
1 \\
3
\end{array}\right] .
$$

Solution: This is a straightforward computation,

$$
A \mathbf{v}=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

The matrix-vector product.

Definition

The matrix-vector product is the matrix multiplication of an $n \times n$ matrix A and an n-vector \mathbf{v}, resulting in an n-vector $A \mathbf{v}$, that is,

$$
\begin{array}{cc}
A & \mathbf{v} \\
n \times n & \longrightarrow \times 1
\end{array} \quad \longrightarrow \begin{gathered}
A \mathbf{v} \\
n \times 1
\end{gathered}
$$

Example

Find the matrix-vector product $A \mathbf{v}$ for

$$
A=\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{l}
1 \\
3
\end{array}\right] .
$$

Solution: This is a straightforward computation,

$$
A \mathbf{v}=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{c}
2-3 \\
-1+6
\end{array}\right]
$$

The matrix-vector product.

Definition

The matrix-vector product is the matrix multiplication of an $n \times n$ matrix A and an n-vector \mathbf{v}, resulting in an n-vector $A \mathbf{v}$, that is,

$$
\begin{array}{cc}
A & \mathbf{v} \\
n \times n & \longrightarrow \times 1
\end{array} \quad \longrightarrow \begin{gathered}
A \mathbf{v} \\
n \times 1
\end{gathered}
$$

Example

Find the matrix-vector product $A \mathbf{v}$ for

$$
A=\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{l}
1 \\
3
\end{array}\right] .
$$

Solution: This is a straightforward computation,

$$
A \mathbf{v}=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{c}
2-3 \\
-1+6
\end{array}\right] \quad \Rightarrow \quad A \mathbf{v}=\left[\begin{array}{c}
-1 \\
5
\end{array}\right] . \quad \triangleleft
$$

$n \times n$ systems of linear algebraic equations.
Remark: Matrix notation is useful to work with systems of linear algebraic equations.

$n \times n$ systems of linear algebraic equations.

Remark: Matrix notation is useful to work with systems of linear algebraic equations.

Introduce the coefficient matrix, the source vector, and the unknown vector, respectively,

$$
A=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] .
$$

$n \times n$ systems of linear algebraic equations.

Remark: Matrix notation is useful to work with systems of linear algebraic equations.

Introduce the coefficient matrix, the source vector, and the unknown vector, respectively,

$$
A=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] .
$$

Using this matrix notation and the matrix-vector product, the linear algebraic system above can be written as

$$
\begin{gathered}
a_{11} x_{1}+\cdots+a_{1 n} x_{n}=b_{1}, \\
\vdots \\
a_{n 1} x_{1}+\cdots+a_{n n} x_{n}=b_{n} .
\end{gathered}
$$

$n \times n$ systems of linear algebraic equations.

Remark: Matrix notation is useful to work with systems of linear algebraic equations.

Introduce the coefficient matrix, the source vector, and the unknown vector, respectively,

$$
A=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] .
$$

Using this matrix notation and the matrix-vector product, the linear algebraic system above can be written as

$$
\begin{gathered}
a_{11} x_{1}+\cdots+a_{1 n} x_{n}=b_{1}, \\
\vdots \\
a_{n 1} x_{1}+\cdots+a_{n n} x_{n}=b_{n} .
\end{gathered} \Leftrightarrow\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]
$$

$n \times n$ systems of linear algebraic equations.

Remark: Matrix notation is useful to work with systems of linear algebraic equations.

Introduce the coefficient matrix, the source vector, and the unknown vector, respectively,

$$
A=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] .
$$

Using this matrix notation and the matrix-vector product, the linear algebraic system above can be written as

$$
\begin{gathered}
a_{11} x_{1}+\cdots+a_{1 n} x_{n}=b_{1}, \\
\vdots \\
a_{n 1} x_{1}+\cdots+a_{n n} x_{n}=b_{n} .
\end{gathered} \Leftrightarrow\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]
$$

$n \times n$ systems of linear algebraic equations.

Example

Find the solution to the linear system $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
0 \\
3
\end{array}\right] .
$$

$n \times n$ systems of linear algebraic equations.

Example

Find the solution to the linear system $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
0 \\
3
\end{array}\right] .
$$

Solution: The linear system is

$$
\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
3
\end{array}\right]
$$

$n \times n$ systems of linear algebraic equations.

Example

Find the solution to the linear system $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
0 \\
3
\end{array}\right] .
$$

Solution: The linear system is

$$
\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
3
\end{array}\right] \quad \Leftrightarrow \quad \begin{array}{r}
2 x_{1}-x_{2}=0, \\
-x_{1}+2 x_{2}=3 .
\end{array}
$$

$n \times n$ systems of linear algebraic equations.

Example

Find the solution to the linear system $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
0 \\
3
\end{array}\right] .
$$

Solution: The linear system is

$$
\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
3
\end{array}\right] \quad \Leftrightarrow \quad \begin{array}{r}
2 x_{1}-x_{2}=0 \\
-x_{1}+2 x_{2}=3
\end{array}
$$

Since $x_{2}=2 x_{1}$,
$n \times n$ systems of linear algebraic equations.

Example

Find the solution to the linear system $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
0 \\
3
\end{array}\right]
$$

Solution: The linear system is

$$
\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
3
\end{array}\right] \quad \Leftrightarrow \quad \begin{array}{r}
2 x_{1}-x_{2}=0 \\
-x_{1}+2 x_{2}=3
\end{array}
$$

Since $x_{2}=2 x_{1}$, then $-x_{1}+4 x_{1}=3$,
$n \times n$ systems of linear algebraic equations.

Example

Find the solution to the linear system $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
0 \\
3
\end{array}\right]
$$

Solution: The linear system is

$$
\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
3
\end{array}\right] \quad \Leftrightarrow \quad \begin{array}{r}
2 x_{1}-x_{2}=0 \\
-x_{1}+2 x_{2}=3
\end{array}
$$

Since $x_{2}=2 x_{1}$, then $-x_{1}+4 x_{1}=3$, that is $x_{1}=1$,
$n \times n$ systems of linear algebraic equations.

Example

Find the solution to the linear system $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
0 \\
3
\end{array}\right]
$$

Solution: The linear system is

$$
\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
3
\end{array}\right] \quad \Leftrightarrow \quad \begin{array}{r}
2 x_{1}-x_{2}=0 \\
-x_{1}+2 x_{2}=3
\end{array}
$$

Since $x_{2}=2 x_{1}$, then $-x_{1}+4 x_{1}=3$, that is $x_{1}=1$, hence $x_{2}=2$.
$n \times n$ systems of linear algebraic equations.

Example

Find the solution to the linear system $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
0 \\
3
\end{array}\right]
$$

Solution: The linear system is

$$
\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
3
\end{array}\right] \quad \Leftrightarrow \quad \begin{array}{r}
2 x_{1}-x_{2}=0 \\
-x_{1}+2 x_{2}=3
\end{array}
$$

Since $x_{2}=2 x_{1}$, then $-x_{1}+4 x_{1}=3$, that is $x_{1}=1$, hence $x_{2}=2$.
The solution is: $\mathbf{x}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.

Review of Linear Algebra (Sect. 5.2, 5.3)

- $n \times n$ systems of linear algebraic equations.
- The matrix-vector product.
- A matrix is a function.
- The inverse of a square matrix.
- The determinant of a square matrix.

A matrix is a function.

Remark:

- The matrix-vector product provides a new interpretation for a matrix.

A matrix is a function.

Remark:

- The matrix-vector product provides a new interpretation for a matrix. A matrix is a function.

A matrix is a function.

Remark:

- The matrix-vector product provides a new interpretation for a matrix. A matrix is a function.
- An $n \times n$ matrix A is a function $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$,

A matrix is a function.

Remark:

- The matrix-vector product provides a new interpretation for a matrix. A matrix is a function.
- An $n \times n$ matrix A is a function $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, given by $\mathbf{v} \mapsto A \mathbf{v}$.

A matrix is a function.

Remark:

- The matrix-vector product provides a new interpretation for a matrix. A matrix is a function.
- An $n \times n$ matrix A is a function $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, given by $\mathbf{v} \mapsto A \mathbf{v}$.
For example, $A=\left[\begin{array}{rr}2 & -1 \\ -1 & 2\end{array}\right]: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$,

A matrix is a function.

Remark:

- The matrix-vector product provides a new interpretation for a matrix. A matrix is a function.
- An $n \times n$ matrix A is a function $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, given by $\mathbf{v} \mapsto A \mathbf{v}$.
For example, $A=\left[\begin{array}{rr}2 & -1 \\ -1 & 2\end{array}\right]: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, is a function

A matrix is a function.

Remark:

- The matrix-vector product provides a new interpretation for a matrix. A matrix is a function.
- An $n \times n$ matrix A is a function $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, given by $\mathbf{v} \mapsto A \mathbf{v}$.
For example, $A=\left[\begin{array}{rr}2 & -1 \\ -1 & 2\end{array}\right]: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, is a function that
associates $\left[\begin{array}{l}1 \\ 3\end{array}\right] \rightarrow\left[\begin{array}{c}-1 \\ 5\end{array}\right]$,

A matrix is a function.

Remark:

- The matrix-vector product provides a new interpretation for a matrix. A matrix is a function.
- An $n \times n$ matrix A is a function $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, given by $\mathbf{v} \mapsto A \mathbf{v}$.
For example, $A=\left[\begin{array}{rr}2 & -1 \\ -1 & 2\end{array}\right]: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, is a function that
associates $\left[\begin{array}{l}1 \\ 3\end{array}\right] \rightarrow\left[\begin{array}{c}-1 \\ 5\end{array}\right]$, since,

$$
\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{c}
-1 \\
5
\end{array}\right]
$$

A matrix is a function.

Remark:

- The matrix-vector product provides a new interpretation for a matrix. A matrix is a function.
- An $n \times n$ matrix A is a function $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, given by $\mathbf{v} \mapsto A \mathbf{v}$.
For example, $A=\left[\begin{array}{rr}2 & -1 \\ -1 & 2\end{array}\right]: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, is a function that associates $\left[\begin{array}{l}1 \\ 3\end{array}\right] \rightarrow\left[\begin{array}{c}-1 \\ 5\end{array}\right]$, since,

$$
\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{c}
-1 \\
5
\end{array}\right]
$$

- A matrix is a function, and matrix multiplication is equivalent to function composition.

A matrix is a function.

Example

Show that $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ is a rotation in \mathbb{R}^{2} by $\pi / 2$ counterclockwise.

A matrix is a function.

Example

Show that $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ is a rotation in \mathbb{R}^{2} by $\pi / 2$ counterclockwise.

Solution: Matrix A is 2×2,

A matrix is a function.

Example

Show that $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ is a rotation in \mathbb{R}^{2} by $\pi / 2$ counterclockwise.

Solution: Matrix A is 2×2, so $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.

A matrix is a function.

Example

Show that $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ is a rotation in \mathbb{R}^{2} by $\pi / 2$ counterclockwise.

Solution: Matrix A is 2×2, so $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Given $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \in \mathbb{R}^{2}$,

$$
A \mathbf{x}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

A matrix is a function.

Example

Show that $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ is a rotation in \mathbb{R}^{2} by $\pi / 2$ counterclockwise.

Solution: Matrix A is 2×2, so $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Given $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \in \mathbb{R}^{2}$,

$$
A \mathbf{x}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-x_{2} \\
x_{1}
\end{array}\right]
$$

A matrix is a function.

Example

Show that $A=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$ is a rotation in \mathbb{R}^{2} by $\pi / 2$ counterclockwise.

Solution: Matrix A is 2×2, so $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Given $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \in \mathbb{R}^{2}$,

$$
A \mathbf{x}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-x_{2} \\
x_{1}
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

A matrix is a function.

Example

Show that $A=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$ is a rotation in \mathbb{R}^{2} by $\pi / 2$ counterclockwise.

Solution: Matrix A is 2×2, so $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Given $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \in \mathbb{R}^{2}$,

$$
A \mathbf{x}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-x_{2} \\
x_{1}
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

A matrix is a function.

Example

Show that $A=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$ is a rotation in \mathbb{R}^{2} by $\pi / 2$ counterclockwise.

Solution: Matrix A is 2×2, so $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Given $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \in \mathbb{R}^{2}$,

$$
\begin{aligned}
& A \mathbf{x}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-x_{2} \\
x_{1}
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& {\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]}
\end{aligned}
$$

A matrix is a function.

Example

Show that $A=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$ is a rotation in \mathbb{R}^{2} by $\pi / 2$ counterclockwise.

Solution: Matrix A is 2×2, so $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Given $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \in \mathbb{R}^{2}$,

$$
\begin{aligned}
& A \mathbf{x}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-x_{2} \\
x_{1}
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& {\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]}
\end{aligned}
$$

A matrix is a function.

Example

Show that $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ is a rotation in \mathbb{R}^{2} by $\pi / 2$ counterclockwise.

Solution: Matrix A is 2×2, so $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Given $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \in \mathbb{R}^{2}$,

$$
\begin{aligned}
& A \mathbf{x}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-x_{2} \\
x_{1}
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& {\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]} \\
& {\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
-1 \\
0
\end{array}\right]}
\end{aligned}
$$

A matrix is a function.

Example

Show that $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ is a rotation in \mathbb{R}^{2} by $\pi / 2$ counterclockwise.

Solution: Matrix A is 2×2, so $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Given $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \in \mathbb{R}^{2}$,

$$
\begin{aligned}
& A \mathbf{x}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-x_{2} \\
x_{1}
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& {\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]} \\
& {\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
-1 \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1
\end{array}\right]}
\end{aligned}
$$

A matrix is a function.

Example

Show that $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ is a rotation in \mathbb{R}^{2} by $\pi / 2$ counterclockwise.

Solution: Matrix A is 2×2, so $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Given $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \in \mathbb{R}^{2}$,

$$
\begin{aligned}
& A \mathbf{x}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-x_{2} \\
x_{1}
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& {\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right],} \\
& {\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
-1 \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1
\end{array}\right] .}
\end{aligned}
$$

A matrix is a function.

Definition

An $n \times n$ matrix I_{n} is called the identity matrix iff holds

$$
I_{n} \mathbf{x}=\mathbf{x} \quad \text { for all } \mathbf{x} \in \mathbb{R}^{n} .
$$

A matrix is a function.

Definition
An $n \times n$ matrix I_{n} is called the identity matrix iff holds

$$
I_{n} \mathbf{x}=\mathbf{x} \quad \text { for all } \mathbf{x} \in \mathbb{R}^{n} .
$$

Example
Write down the identity matrices I_{2}, I_{3}, and I_{n}.

A matrix is a function.

Definition
An $n \times n$ matrix I_{n} is called the identity matrix iff holds

$$
I_{n} \mathbf{x}=\mathbf{x} \quad \text { for all } \mathbf{x} \in \mathbb{R}^{n} .
$$

Example
Write down the identity matrices I_{2}, I_{3}, and I_{n}.
Solution:

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

A matrix is a function.

Definition

An $n \times n$ matrix I_{n} is called the identity matrix iff holds

$$
I_{n} \mathbf{x}=\mathbf{x} \quad \text { for all } \mathbf{x} \in \mathbb{R}^{n} .
$$

Example
Write down the identity matrices I_{2}, I_{3}, and I_{n}.
Solution:

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

A matrix is a function.

Definition

An $n \times n$ matrix I_{n} is called the identity matrix iff holds

$$
I_{n} \mathbf{x}=\mathbf{x} \quad \text { for all } \mathbf{x} \in \mathbb{R}^{n} .
$$

Example
Write down the identity matrices I_{2}, I_{3}, and I_{n}.
Solution:

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad I_{n}=\left[\begin{array}{ccc}
1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1
\end{array}\right]
$$

Review of Linear Algebra (Sect. 5.2, 5.3)

- $n \times n$ systems of linear algebraic equations.
- The matrix-vector product.
- A matrix is a function.
- The inverse of a square matrix.
- The determinant of a square matrix.

The inverse of a square matrix.

Definition
An $n \times n$ matrix A is called invertible iff there exists a matrix, denoted as A^{-1}, such

$$
\left(A^{-1}\right) A=I_{n}, \quad A\left(A^{-1}\right)=I_{n} .
$$

The inverse of a square matrix.

Definition

An $n \times n$ matrix A is called invertible iff there exists a matrix, denoted as A^{-1}, such

$$
\left(A^{-1}\right) A=I_{n}, \quad A\left(A^{-1}\right)=I_{n}
$$

Example
Show that $A=\left[\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right]$ has the inverse $A^{-1}=\frac{1}{4}\left[\begin{array}{rr}3 & -2 \\ -1 & 2\end{array}\right]$.

The inverse of a square matrix.

Definition

An $n \times n$ matrix A is called invertible iff there exists a matrix, denoted as A^{-1}, such

$$
\left(A^{-1}\right) A=I_{n}, \quad A\left(A^{-1}\right)=I_{n}
$$

Example
Show that $A=\left[\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right]$ has the inverse $A^{-1}=\frac{1}{4}\left[\begin{array}{rr}3 & -2 \\ -1 & 2\end{array}\right]$.
Solution: We have to compute the product
$A\left(A^{-1}\right)$

The inverse of a square matrix.

Definition

An $n \times n$ matrix A is called invertible iff there exists a matrix, denoted as A^{-1}, such

$$
\left(A^{-1}\right) A=I_{n}, \quad A\left(A^{-1}\right)=I_{n}
$$

Example
Show that $A=\left[\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right]$ has the inverse $A^{-1}=\frac{1}{4}\left[\begin{array}{rr}3 & -2 \\ -1 & 2\end{array}\right]$.
Solution: We have to compute the product

$$
A\left(A^{-1}\right)=\left[\begin{array}{ll}
2 & 2 \\
1 & 3
\end{array}\right] \frac{1}{4}\left[\begin{array}{rr}
3 & -2 \\
-1 & 2
\end{array}\right]
$$

The inverse of a square matrix.

Definition

An $n \times n$ matrix A is called invertible iff there exists a matrix, denoted as A^{-1}, such

$$
\left(A^{-1}\right) A=I_{n}, \quad A\left(A^{-1}\right)=I_{n}
$$

Example
Show that $A=\left[\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right]$ has the inverse $A^{-1}=\frac{1}{4}\left[\begin{array}{rr}3 & -2 \\ -1 & 2\end{array}\right]$.
Solution: We have to compute the product
$A\left(A^{-1}\right)=\left[\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right] \frac{1}{4}\left[\begin{array}{cc}3 & -2 \\ -1 & 2\end{array}\right]=\frac{1}{4}\left[\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right]$

The inverse of a square matrix.

Definition

An $n \times n$ matrix A is called invertible iff there exists a matrix, denoted as A^{-1}, such

$$
\left(A^{-1}\right) A=I_{n}, \quad A\left(A^{-1}\right)=I_{n}
$$

Example
Show that $A=\left[\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right]$ has the inverse $A^{-1}=\frac{1}{4}\left[\begin{array}{rr}3 & -2 \\ -1 & 2\end{array}\right]$.
Solution: We have to compute the product
$A\left(A^{-1}\right)=\left[\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right] \frac{1}{4}\left[\begin{array}{cc}3 & -2 \\ -1 & 2\end{array}\right]=\frac{1}{4}\left[\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right] \quad \Rightarrow \quad A\left(A^{-1}\right)=I_{2}$.

The inverse of a square matrix.

Definition

An $n \times n$ matrix A is called invertible of there exists a matrix, denoted as A^{-1}, such

$$
\left(A^{-1}\right) A=I_{n}, \quad A\left(A^{-1}\right)=I_{n}
$$

Example
Show that $A=\left[\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right]$ has the inverse $A^{-1}=\frac{1}{4}\left[\begin{array}{cc}3 & -2 \\ -1 & 2\end{array}\right]$.
Solution: We have to compute the product
$A\left(A^{-1}\right)=\left[\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right] \frac{1}{4}\left[\begin{array}{cc}3 & -2 \\ -1 & 2\end{array}\right]=\frac{1}{4}\left[\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right] \quad \Rightarrow \quad A\left(A^{-1}\right)=I_{2}$.
Check that $\left(A^{-1}\right) A=I_{2}$ also holds.

The inverse of a square matrix.

Remark: Not every $n \times n$ matrix is invertible.

The inverse of a square matrix.

Remark: Not every $n \times n$ matrix is invertible.
Theorem (2×2 case)
The matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is invertible iff holds that
$\Delta=a d-b c \neq 0$. Furthermore, if A is invertible, then

$$
A^{-1}=\frac{1}{\Delta}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] .
$$

The inverse of a square matrix.

Remark: Not every $n \times n$ matrix is invertible.
Theorem (2×2 case)
The matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is invertible iff holds that
$\Delta=a d-b c \neq 0$. Furthermore, if A is invertible, then

$$
A^{-1}=\frac{1}{\Delta}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] .
$$

Verify:

The inverse of a square matrix.

Remark: Not every $n \times n$ matrix is invertible.
Theorem (2×2 case)
The matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is invertible iff holds that
$\Delta=a d-b c \neq 0$. Furthermore, if A is invertible, then

$$
A^{-1}=\frac{1}{\Delta}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] .
$$

Verify:

$$
A\left(A^{-1}\right)
$$

The inverse of a square matrix.

Remark: Not every $n \times n$ matrix is invertible.
Theorem (2×2 case)
The matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is invertible iff holds that
$\Delta=a d-b c \neq 0$. Furthermore, if A is invertible, then

$$
A^{-1}=\frac{1}{\Delta}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] .
$$

Verify:

$$
A\left(A^{-1}\right)=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \frac{1}{\Delta}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

The inverse of a square matrix.

Remark: Not every $n \times n$ matrix is invertible.
Theorem (2×2 case)
The matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is invertible iff holds that
$\Delta=a d-b c \neq 0$. Furthermore, if A is invertible, then

$$
A^{-1}=\frac{1}{\Delta}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] .
$$

Verify:

$$
A\left(A^{-1}\right)=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \frac{1}{\Delta}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]=\frac{1}{\Delta}\left[\begin{array}{cc}
\Delta & -a b+b a \\
c d-d c & \Delta
\end{array}\right]
$$

The inverse of a square matrix.

Remark: Not every $n \times n$ matrix is invertible.
Theorem (2×2 case)
The matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is invertible iff holds that
$\Delta=a d-b c \neq 0$. Furthermore, if A is invertible, then

$$
A^{-1}=\frac{1}{\Delta}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] .
$$

Verify:

$$
A\left(A^{-1}\right)=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \frac{1}{\Delta}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]=\frac{1}{\Delta}\left[\begin{array}{cc}
\Delta & -a b+b a \\
c d-d c & \Delta
\end{array}\right]=I_{2} .
$$

The inverse of a square matrix.

Remark: Not every $n \times n$ matrix is invertible.
Theorem (2×2 case)
The matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is invertible iff holds that
$\Delta=a d-b c \neq 0$. Furthermore, if A is invertible, then

$$
A^{-1}=\frac{1}{\Delta}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] .
$$

Verify:

$$
A\left(A^{-1}\right)=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \frac{1}{\Delta}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]=\frac{1}{\Delta}\left[\begin{array}{cc}
\Delta & -a b+b a \\
c d-d c & \Delta
\end{array}\right]=I_{2} .
$$

It is not difficult to see that: $\left(A^{-1}\right) A=I_{2}$ also holds.

The inverse of a square matrix.

Example

Find A^{-1} for $A=\left[\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right]$.

The inverse of a square matrix.

Example

Find A^{-1} for $A=\left[\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right]$.
Solution:
We use the formula in the previous Theorem.

The inverse of a square matrix.

Example

Find A^{-1} for $A=\left[\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right]$.
Solution:
We use the formula in the previous Theorem.
In this case: $\Delta=6-2=4$,

The inverse of a square matrix.

Example

Find A^{-1} for $A=\left[\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right]$.
Solution:
We use the formula in the previous Theorem.
In this case: $\Delta=6-2=4$, and

$$
A^{-1}=\frac{1}{\Delta}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

The inverse of a square matrix.

Example

Find A^{-1} for $A=\left[\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right]$.
Solution:
We use the formula in the previous Theorem.
In this case: $\Delta=6-2=4$, and

$$
A^{-1}=\frac{1}{\Delta}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] \quad \Rightarrow \quad A^{-1}=\frac{1}{4}\left[\begin{array}{cc}
3 & -2 \\
-1 & 2
\end{array}\right] .
$$

The inverse of a square matrix.

Example

Find A^{-1} for $A=\left[\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right]$.
Solution:
We use the formula in the previous Theorem.
In this case: $\Delta=6-2=4$, and

$$
A^{-1}=\frac{1}{\Delta}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] \quad \Rightarrow \quad A^{-1}=\frac{1}{4}\left[\begin{array}{cc}
3 & -2 \\
-1 & 2
\end{array}\right] .
$$

Remark: The formula for the inverse matrix can be generalized to $n \times n$ matrices having non-zero determinant.

Review of Linear Algebra (Sect. 5.2, 5.3)

- $n \times n$ systems of linear algebraic equations.
- The matrix-vector product.
- A matrix is a function.
- The inverse of a square matrix.
- The determinant of a square matrix.

The determinant of a square matrix.

Definition
The determinant of a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is the number

$$
\Delta=a d-b c .
$$

The determinant of a square matrix.

Definition
The determinant of a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is the number

$$
\Delta=a d-b c .
$$

Notation: The determinant can be denoted in different ways:

The determinant of a square matrix.

Definition
The determinant of a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is the number

$$
\Delta=a d-b c .
$$

Notation: The determinant can be denoted in different ways:

$$
\Delta=\operatorname{det}(A)=|A|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right| .
$$

The determinant of a square matrix.

Definition
The determinant of a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is the number

$$
\Delta=a d-b c .
$$

Notation: The determinant can be denoted in different ways:

$$
\Delta=\operatorname{det}(A)=|A|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right| .
$$

Example
(a) $\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|$

The determinant of a square matrix.

Definition
The determinant of a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is the number

$$
\Delta=a d-b c .
$$

Notation: The determinant can be denoted in different ways:

$$
\Delta=\operatorname{det}(A)=|A|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|
$$

Example
(a) $\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|=4-6$

The determinant of a square matrix.

Definition
The determinant of a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is the number

$$
\Delta=a d-b c .
$$

Notation: The determinant can be denoted in different ways:

$$
\Delta=\operatorname{det}(A)=|A|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|
$$

Example
(a) $\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|=4-6=-2$.

The determinant of a square matrix.

Definition
The determinant of a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is the number

$$
\Delta=a d-b c .
$$

Notation: The determinant can be denoted in different ways:

$$
\Delta=\operatorname{det}(A)=|A|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|
$$

Example
(a) $\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|=4-6=-2$.
(b) $\left|\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right|$

The determinant of a square matrix.

Definition
The determinant of a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is the number

$$
\Delta=a d-b c .
$$

Notation: The determinant can be denoted in different ways:

$$
\Delta=\operatorname{det}(A)=|A|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|
$$

Example
(a) $\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|=4-6=-2$.
(b) $\left|\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right|=8-3$

The determinant of a square matrix.

Definition
The determinant of a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is the number

$$
\Delta=a d-b c .
$$

Notation: The determinant can be denoted in different ways:

$$
\Delta=\operatorname{det}(A)=|A|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|
$$

Example
(a) $\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|=4-6=-2$.
(b) $\left|\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right|=8-3=5$.

The determinant of a square matrix.

Definition
The determinant of a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is the number

$$
\Delta=a d-b c .
$$

Notation: The determinant can be denoted in different ways:

$$
\Delta=\operatorname{det}(A)=|A|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right| .
$$

Example
(a) $\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|=4-6=-2$.
(b) $\left|\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right|=8-3=5$.
(c) $\left|\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right|$

The determinant of a square matrix.

Definition
The determinant of a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is the number

$$
\Delta=a d-b c .
$$

Notation: The determinant can be denoted in different ways:

$$
\Delta=\operatorname{det}(A)=|A|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|
$$

Example
(a) $\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|=4-6=-2$.
(b) $\left|\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right|=8-3=5$.
(c) $\left|\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right|=4-4$

The determinant of a square matrix.

Definition
The determinant of a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is the number

$$
\Delta=a d-b c .
$$

Notation: The determinant can be denoted in different ways:

$$
\Delta=\operatorname{det}(A)=|A|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|
$$

Example
(a) $\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|=4-6=-2$.
(b) $\left|\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right|=8-3=5$.
(c) $\left|\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right|=4-4=0$.

The determinant of a square matrix.

Definition
The determinant of a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is the number

$$
\Delta=a d-b c .
$$

Notation: The determinant can be denoted in different ways:

$$
\Delta=\operatorname{det}(A)=|A|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right| .
$$

Example
(a) $\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|=4-6=-2$.
(b) $\left|\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right|=8-3=5$.
(c) $\left|\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right|=4-4=0$.

Remark: $\left|\operatorname{det}\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)\right|$ is the area of the parallelogram formed by the vectors

$$
\left[\begin{array}{l}
a \\
c
\end{array}\right] \text { and }\left[\begin{array}{l}
b \\
d
\end{array}\right]
$$

The determinant of a square matrix.

Definition

The determinant of a 3×3 matrix A is given by

$$
\begin{gathered}
\operatorname{det}(A)=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \\
=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| .
\end{gathered}
$$

The determinant of a square matrix.

Definition

The determinant of a 3×3 matrix A is given by

$$
\begin{gathered}
\operatorname{det}(A)=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \\
=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| .
\end{gathered}
$$

Remark: The $|\operatorname{det}(A)|$ is the volume of the parallelepiped formed by the column vectors of A.

The determinant of a square matrix.

Example
Find the determinant of $A=\left[\begin{array}{ccc}1 & 3 & -1 \\ 2 & 1 & 1 \\ 3 & 2 & 1\end{array}\right]$.

The determinant of a square matrix.

Example
Find the determinant of $A=\left[\begin{array}{ccc}1 & 3 & -1 \\ 2 & 1 & 1 \\ 3 & 2 & 1\end{array}\right]$.
Solution: We use the definition above, that is,

$$
\operatorname{det}(A)=\left|\begin{array}{rrr}
1 & 3 & -1 \\
2 & 1 & 1 \\
3 & 2 & 1
\end{array}\right|=1\left|\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right|-3\left|\begin{array}{ll}
2 & 1 \\
3 & 1
\end{array}\right|+(-1)\left|\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right|
$$

The determinant of a square matrix.

Example
Find the determinant of $A=\left[\begin{array}{ccc}1 & 3 & -1 \\ 2 & 1 & 1 \\ 3 & 2 & 1\end{array}\right]$.
Solution: We use the definition above, that is,

$$
\begin{gathered}
\operatorname{det}(A)=\left|\begin{array}{ccc}
1 & 3 & -1 \\
2 & 1 & 1 \\
3 & 2 & 1
\end{array}\right|=1\left|\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right|-3\left|\begin{array}{ll}
2 & 1 \\
3 & 1
\end{array}\right|+(-1)\left|\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right|, \\
\operatorname{det}(A)=(1-2)-3(2-3)-(4-3)
\end{gathered}
$$

The determinant of a square matrix.

Example
Find the determinant of $A=\left[\begin{array}{ccc}1 & 3 & -1 \\ 2 & 1 & 1 \\ 3 & 2 & 1\end{array}\right]$.
Solution: We use the definition above, that is,

$$
\begin{gathered}
\operatorname{det}(A)=\left|\begin{array}{ccc}
1 & 3 & -1 \\
2 & 1 & 1 \\
3 & 2 & 1
\end{array}\right|=1\left|\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right|-3\left|\begin{array}{ll}
2 & 1 \\
3 & 1
\end{array}\right|+(-1)\left|\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right|, \\
\operatorname{det}(A)=(1-2)-3(2-3)-(4-3)=-1+3-1 .
\end{gathered}
$$

The determinant of a square matrix.

Example
Find the determinant of $A=\left[\begin{array}{ccc}1 & 3 & -1 \\ 2 & 1 & 1 \\ 3 & 2 & 1\end{array}\right]$.
Solution: We use the definition above, that is,

$$
\begin{gathered}
\operatorname{det}(A)=\left|\begin{array}{ccc}
1 & 3 & -1 \\
2 & 1 & 1 \\
3 & 2 & 1
\end{array}\right|=1\left|\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right|-3\left|\begin{array}{ll}
2 & 1 \\
3 & 1
\end{array}\right|+(-1)\left|\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right|, \\
\operatorname{det}(A)=(1-2)-3(2-3)-(4-3)=-1+3-1 .
\end{gathered}
$$

We conclude: $\operatorname{det}(A)=1$.

Linear Algebra and differential systems (Sect. 5.4, 5.5, 5.6)

- Eigenvalues, eigenvectors of a matrix (5.5).
- Computing eigenvalues and eigenvectors (5.5).
- Diagonalizable matrices (5.5).
- $n \times n$ linear differential systems (5.4).
- Constant coefficients homogenoues systems (5.6).
- Examples: 2×2 linear systems (5.6).

Eigenvalues, eigenvectors of a matrix

Definition

A number λ and a non-zero n-vector \mathbf{v} are respectively called an eigenvalue and eigenvector of an $n \times n$ matrix A iff the following equation holds,

$$
A \mathbf{v}=\lambda \mathbf{v} .
$$

Eigenvalues, eigenvectors of a matrix

Definition

A number λ and a non-zero n-vector \mathbf{v} are respectively called an eigenvalue and eigenvector of an $n \times n$ matrix A iff the following equation holds,

$$
A \mathbf{v}=\lambda \mathbf{v} .
$$

Example
Verify that the pair $\lambda_{1}=4, \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\lambda_{2}=-2, \mathbf{v}_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ are eigenvalue and eigenvector pairs of matrix $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.

Eigenvalues, eigenvectors of a matrix

Definition

A number λ and a non-zero n-vector \mathbf{v} are respectively called an eigenvalue and eigenvector of an $n \times n$ matrix A iff the following equation holds,

$$
A \mathbf{v}=\lambda \mathbf{v} .
$$

Example
Verify that the pair $\lambda_{1}=4, \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\lambda_{2}=-2, \mathbf{v}_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ are eigenvalue and eigenvector pairs of matrix $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.

Solution: $A \mathbf{v}_{1}$

Eigenvalues, eigenvectors of a matrix

Definition

A number λ and a non-zero n-vector \mathbf{v} are respectively called an eigenvalue and eigenvector of an $n \times n$ matrix A iff the following equation holds,

$$
A \mathbf{v}=\lambda \mathbf{v} .
$$

Example
Verify that the pair $\lambda_{1}=4, \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\lambda_{2}=-2, \mathbf{v}_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ are eigenvalue and eigenvector pairs of matrix $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.

Solution: $A \mathbf{v}_{1}=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Eigenvalues, eigenvectors of a matrix

Definition

A number λ and a non-zero n-vector \mathbf{v} are respectively called an eigenvalue and eigenvector of an $n \times n$ matrix A iff the following equation holds,

$$
A \mathbf{v}=\lambda \mathbf{v} .
$$

Example
Verify that the pair $\lambda_{1}=4, \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\lambda_{2}=-2, \mathbf{v}_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ are eigenvalue and eigenvector pairs of matrix $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.

Solution: $A \mathbf{v}_{1}=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}4 \\ 4\end{array}\right]$

Eigenvalues, eigenvectors of a matrix

Definition

A number λ and a non-zero n-vector \mathbf{v} are respectively called an eigenvalue and eigenvector of an $n \times n$ matrix A iff the following equation holds,

$$
A \mathbf{v}=\lambda \mathbf{v} .
$$

Example
Verify that the pair $\lambda_{1}=4, \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\lambda_{2}=-2, \mathbf{v}_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ are eigenvalue and eigenvector pairs of matrix $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.

Solution: $A \mathbf{v}_{1}=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}4 \\ 4\end{array}\right]=4\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Eigenvalues, eigenvectors of a matrix

Definition

A number λ and a non-zero n-vector \mathbf{v} are respectively called an eigenvalue and eigenvector of an $n \times n$ matrix A iff the following equation holds,

$$
A \mathbf{v}=\lambda \mathbf{v} .
$$

Example
Verify that the pair $\lambda_{1}=4, \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\lambda_{2}=-2, \mathbf{v}_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ are eigenvalue and eigenvector pairs of matrix $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.

Solution: $A \mathbf{v}_{1}=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}4 \\ 4\end{array}\right]=4\left[\begin{array}{l}1 \\ 1\end{array}\right]=\lambda_{1} \mathbf{v}_{1}$.

Eigenvalues, eigenvectors of a matrix

Definition

A number λ and a non-zero n-vector \mathbf{v} are respectively called an eigenvalue and eigenvector of an $n \times n$ matrix A iff the following equation holds,

$$
A \mathbf{v}=\lambda \mathbf{v} .
$$

Example
Verify that the pair $\lambda_{1}=4, \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\lambda_{2}=-2, \mathbf{v}_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ are eigenvalue and eigenvector pairs of matrix $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.

Solution: $A \mathbf{v}_{1}=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}4 \\ 4\end{array}\right]=4\left[\begin{array}{l}1 \\ 1\end{array}\right]=\lambda_{1} \mathbf{v}_{1}$.
$A \mathbf{v}_{2}$

Eigenvalues, eigenvectors of a matrix

Definition

A number λ and a non-zero n-vector \mathbf{v} are respectively called an eigenvalue and eigenvector of an $n \times n$ matrix A iff the following equation holds,

$$
A \mathbf{v}=\lambda \mathbf{v} .
$$

Example
Verify that the pair $\lambda_{1}=4, \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\lambda_{2}=-2, \mathbf{v}_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ are eigenvalue and eigenvector pairs of matrix $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.

Solution: $A \mathbf{v}_{1}=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}4 \\ 4\end{array}\right]=4\left[\begin{array}{l}1 \\ 1\end{array}\right]=\lambda_{1} \mathbf{v}_{1}$.
$A \mathbf{v}_{2}=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

Eigenvalues, eigenvectors of a matrix

Definition

A number λ and a non-zero n-vector \mathbf{v} are respectively called an eigenvalue and eigenvector of an $n \times n$ matrix A iff the following equation holds,

$$
A \mathbf{v}=\lambda \mathbf{v} .
$$

Example
Verify that the pair $\lambda_{1}=4, \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\lambda_{2}=-2, \mathbf{v}_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ are eigenvalue and eigenvector pairs of matrix $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.

Solution: $A \mathbf{v}_{1}=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}4 \\ 4\end{array}\right]=4\left[\begin{array}{l}1 \\ 1\end{array}\right]=\lambda_{1} \mathbf{v}_{1}$.
$A \mathbf{v}_{2}=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]\left[\begin{array}{c}-1 \\ 1\end{array}\right]=\left[\begin{array}{c}2 \\ -2\end{array}\right]$

Eigenvalues, eigenvectors of a matrix

Definition

A number λ and a non-zero n-vector \mathbf{v} are respectively called an eigenvalue and eigenvector of an $n \times n$ matrix A iff the following equation holds,

$$
A \mathbf{v}=\lambda \mathbf{v} .
$$

Example
Verify that the pair $\lambda_{1}=4, \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\lambda_{2}=-2, \mathbf{v}_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ are eigenvalue and eigenvector pairs of matrix $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.

Solution: $A \mathbf{v}_{1}=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}4 \\ 4\end{array}\right]=4\left[\begin{array}{l}1 \\ 1\end{array}\right]=\lambda_{1} \mathbf{v}_{1}$.
$A \mathbf{v}_{2}=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]\left[\begin{array}{c}-1 \\ 1\end{array}\right]=\left[\begin{array}{c}2 \\ -2\end{array}\right]=-2\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

Eigenvalues, eigenvectors of a matrix

Definition

A number λ and a non-zero n-vector \mathbf{v} are respectively called an eigenvalue and eigenvector of an $n \times n$ matrix A ff the following equation holds,

$$
A \mathbf{v}=\lambda \mathbf{v} .
$$

Example
Verify that the pair $\lambda_{1}=4, \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\lambda_{2}=-2, \mathbf{v}_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ are eigenvalue and eigenvector pairs of matrix $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.

Solution: $A \mathbf{v}_{1}=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}4 \\ 4\end{array}\right]=4\left[\begin{array}{l}1 \\ 1\end{array}\right]=\lambda_{1} \mathbf{v}_{1}$.
$A \mathbf{v}_{2}=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]\left[\begin{array}{c}-1 \\ 1\end{array}\right]=\left[\begin{array}{c}2 \\ -2\end{array}\right]=-2\left[\begin{array}{c}-1 \\ 1\end{array}\right]=\lambda_{2} \mathbf{v}_{2}$.

Eigenvalues, eigenvectors of a matrix

Remarks:

- If we interpret an $n \times n$ matrix A as a function $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, then the eigenvector \mathbf{v} determines a particular direction on \mathbb{R}^{n} where the action of A is simple:

Eigenvalues, eigenvectors of a matrix

Remarks:

- If we interpret an $n \times n$ matrix A as a function $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, then the eigenvector \mathbf{v} determines a particular direction on \mathbb{R}^{n} where the action of A is simple: $A \mathbf{v}$ is proportional to \mathbf{v}.

Eigenvalues, eigenvectors of a matrix

Remarks:

- If we interpret an $n \times n$ matrix A as a function $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, then the eigenvector \mathbf{v} determines a particular direction on \mathbb{R}^{n} where the action of A is simple: $A \mathbf{v}$ is proportional to \mathbf{v}.
- Matrices usually change the direction of the vector,

Eigenvalues, eigenvectors of a matrix

Remarks:

- If we interpret an $n \times n$ matrix A as a function $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, then the eigenvector \mathbf{v} determines a particular direction on \mathbb{R}^{n} where the action of A is simple: $A \mathbf{v}$ is proportional to \mathbf{v}.
- Matrices usually change the direction of the vector, like

$$
\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Eigenvalues, eigenvectors of a matrix

Remarks:

- If we interpret an $n \times n$ matrix A as a function $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, then the eigenvector \mathbf{v} determines a particular direction on \mathbb{R}^{n} where the action of A is simple: $A \mathbf{v}$ is proportional to \mathbf{v}.
- Matrices usually change the direction of the vector, like

$$
\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
7 \\
5
\end{array}\right] .
$$

Eigenvalues, eigenvectors of a matrix

Remarks:

- If we interpret an $n \times n$ matrix A as a function $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, then the eigenvector \mathbf{v} determines a particular direction on \mathbb{R}^{n} where the action of A is simple: $A \mathbf{v}$ is proportional to \mathbf{v}.
- Matrices usually change the direction of the vector, like

$$
\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
7 \\
5
\end{array}\right] .
$$

- This is not the case for eigenvectors,

Eigenvalues, eigenvectors of a matrix

Remarks:

- If we interpret an $n \times n$ matrix A as a function $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, then the eigenvector \mathbf{v} determines a particular direction on \mathbb{R}^{n} where the action of A is simple: $A \mathbf{v}$ is proportional to \mathbf{v}.
- Matrices usually change the direction of the vector, like

$$
\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
7 \\
5
\end{array}\right] .
$$

- This is not the case for eigenvectors, like

$$
\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Eigenvalues, eigenvectors of a matrix

Remarks:

- If we interpret an $n \times n$ matrix A as a function $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, then the eigenvector \mathbf{v} determines a particular direction on \mathbb{R}^{n} where the action of A is simple: $A \mathbf{v}$ is proportional to \mathbf{v}.
- Matrices usually change the direction of the vector, like

$$
\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
7 \\
5
\end{array}\right] .
$$

- This is not the case for eigenvectors, like

$$
\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
4
\end{array}\right] .
$$

Eigenvalues, eigenvectors of a matrix

Example

Find the eigenvalues and eigenvectors of the matrix $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

Eigenvalues, eigenvectors of a matrix

Example

Find the eigenvalues and eigenvectors of the matrix $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
Solution:
The function $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a reflection along $x_{1}=x_{2}$ axis.

Eigenvalues, eigenvectors of a matrix

Example

Find the eigenvalues and eigenvectors of the matrix $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
Solution:
The function $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a reflection along $x_{1}=x_{2}$ axis.

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Eigenvalues, eigenvectors of a matrix

Example

Find the eigenvalues and eigenvectors of the matrix $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
Solution:
The function $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a reflection along $x_{1}=x_{2}$ axis.

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{2} \\
x_{1}
\end{array}\right]
$$

Eigenvalues, eigenvectors of a matrix

Example

Find the eigenvalues and eigenvectors of the matrix $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

Solution:

The function $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a reflection along $x_{1}=x_{2}$ axis.

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{2} \\
x_{1}
\end{array}\right]
$$

Eigenvalues, eigenvectors of a matrix

Example

Find the eigenvalues and eigenvectors of the matrix $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

Solution:

The function $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a reflection along $x_{1}=x_{2}$ axis.

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{2} \\
x_{1}
\end{array}\right]
$$

The line $x_{1}=x_{2}$ is invariant under A.

Eigenvalues, eigenvectors of a matrix

Example

Find the eigenvalues and eigenvectors of the matrix $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

Solution:

The function $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a reflection along $x_{1}=x_{2}$ axis.

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{2} \\
x_{1}
\end{array}\right]
$$

The line $x_{1}=x_{2}$ is invariant under A. Hence,

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Eigenvalues, eigenvectors of a matrix

Example

Find the eigenvalues and eigenvectors of the matrix $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

Solution:

The function $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a reflection along $x_{1}=x_{2}$ axis.

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{2} \\
x_{1}
\end{array}\right]
$$

The line $x_{1}=x_{2}$ is invariant under A. Hence,

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \Rightarrow \quad\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Eigenvalues, eigenvectors of a matrix

Example

Find the eigenvalues and eigenvectors of the matrix $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

Solution:

The function $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a reflection along $x_{1}=x_{2}$ axis.

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{2} \\
x_{1}
\end{array}\right]
$$

The line $x_{1}=x_{2}$ is invariant under A. Hence,

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \Rightarrow\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Eigenvalues, eigenvectors of a matrix

Example

Find the eigenvalues and eigenvectors of the matrix $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

Solution:

The function $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a reflection along $x_{1}=x_{2}$ axis.

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{2} \\
x_{1}
\end{array}\right]
$$

The line $x_{1}=x_{2}$ is invariant under A. Hence,

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \Rightarrow \quad\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \Rightarrow \quad \lambda_{1}=1
$$

Eigenvalues, eigenvectors of a matrix

Example

Find the eigenvalues and eigenvectors of the matrix $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

Solution:

The function $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a reflection along $x_{1}=x_{2}$ axis.

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{2} \\
x_{1}
\end{array}\right]
$$

The line $x_{1}=x_{2}$ is invariant under A. Hence,

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \Rightarrow \quad\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \Rightarrow \quad \lambda_{1}=1
$$

An eigenvalue eigenvector pair is: $\lambda_{1}=1, \quad \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

Eigenvalues, eigenvectors of a matrix

Example

Find the eigenvalues and eigenvectors of the matrix $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

Solution: Eigenvalue eigenvector pair:

$$
\lambda_{1}=1, \quad \mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Eigenvalues, eigenvectors of a matrix

Example

Find the eigenvalues and eigenvectors of the matrix $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

Solution: Eigenvalue eigenvector pair:

$$
\lambda_{1}=1, \quad \mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Eigenvalues, eigenvectors of a matrix

Example

Find the eigenvalues and eigenvectors of the matrix $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

Solution: Eigenvalue eigenvector pair:

$$
\lambda_{1}=1, \quad \mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

A second eigenvector eigenvalue pair is:

Eigenvalues, eigenvectors of a matrix

Example

Find the eigenvalues and eigenvectors of the matrix $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

Solution: Eigenvalue eigenvector pair:

$$
\lambda_{1}=1, \quad \mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

A second eigenvector eigenvalue pair is:

$$
\mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Eigenvalues, eigenvectors of a matrix

Example

Find the eigenvalues and eigenvectors of the matrix $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

Solution: Eigenvalue eigenvector pair:

$$
\lambda_{1}=1, \quad \mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

A second eigenvector eigenvalue pair is:

$$
\mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Eigenvalues, eigenvectors of a matrix

Example

Find the eigenvalues and eigenvectors of the matrix $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

Solution: Eigenvalue eigenvector pair:

$$
\lambda_{1}=1, \quad \mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

A second eigenvector eigenvalue pair is:

$$
\mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

Eigenvalues, eigenvectors of a matrix

Example

Find the eigenvalues and eigenvectors of the matrix $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

Solution: Eigenvalue eigenvector pair:

$$
\lambda_{1}=1, \quad \mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

A second eigenvector eigenvalue pair is:

$$
\mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=(-1)\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Eigenvalues, eigenvectors of a matrix

Example

Find the eigenvalues and eigenvectors of the matrix $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

Solution: Eigenvalue eigenvector pair:

$$
\lambda_{1}=1, \quad \mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

A second eigenvector eigenvalue pair is:

$$
\mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=(-1)\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \Rightarrow \lambda_{2}=-1
$$

Eigenvalues, eigenvectors of a matrix

Example

Find the eigenvalues and eigenvectors of the matrix $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

Solution: Eigenvalue eigenvector pair:

$$
\lambda_{1}=1, \quad \mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

A second eigenvector eigenvalue pair is:

$$
\mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=(-1)\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \Rightarrow \lambda_{2}=-1
$$

A second eigenvalue eigenvector pair: $\lambda_{2}=-1, \mathbf{v}_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.

Eigenvalues, eigenvectors of a matrix
Remark: Not every $n \times n$ matrix has real eigenvalues.

Eigenvalues, eigenvectors of a matrix

Remark: Not every $n \times n$ matrix has real eigenvalues.
Example
Fix $\theta \in(0, \pi)$ and define $A=\left[\begin{array}{rr}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$.
Show that A has no real eigenvalues.

Eigenvalues, eigenvectors of a matrix

Remark: Not every $n \times n$ matrix has real eigenvalues.
Example
Fix $\theta \in(0, \pi)$ and define $A=\left[\begin{array}{rr}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$.
Show that A has no real eigenvalues.

Solution: Matrix $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a rotation by θ counterclockwise.

Eigenvalues, eigenvectors of a matrix

Remark: Not every $n \times n$ matrix has real eigenvalues.
Example
Fix $\theta \in(0, \pi)$ and define $A=\left[\begin{array}{rr}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$.
Show that A has no real eigenvalues.

Solution: Matrix $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a rotation by θ counterclockwise.
There is no direction left invariant by the function A.

Eigenvalues, eigenvectors of a matrix

Remark: Not every $n \times n$ matrix has real eigenvalues.
Example
Fix $\theta \in(0, \pi)$ and define $A=\left[\begin{array}{rr}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$.
Show that A has no real eigenvalues.

Solution: Matrix $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a rotation by θ counterclockwise. There is no direction left invariant by the function A.

Eigenvalues, eigenvectors of a matrix

Remark: Not every $n \times n$ matrix has real eigenvalues.
Example
Fix $\theta \in(0, \pi)$ and define $A=\left[\begin{array}{rr}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$.
Show that A has no real eigenvalues.

Solution: Matrix $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a rotation by θ counterclockwise.
There is no direction left invariant by the function A.

We conclude: Matrix A has no eigenvalues eigenvector pairs.

Eigenvalues, eigenvectors of a matrix

Remark: Not every $n \times n$ matrix has real eigenvalues.
Example
Fix $\theta \in(0, \pi)$ and define $A=\left[\begin{array}{rr}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$.
Show that A has no real eigenvalues.

Solution: Matrix $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a rotation by θ counterclockwise.
There is no direction left invariant by the function A.

We conclude: Matrix A has no eigenvalues eigenvector pairs.
Remark:
Matrix A has complex-values eigenvalues and eigenvectors.

Linear Algebra and differential systems (Sect. 5.4, 5.5, 5.6)

- Eigenvalues, eigenvectors of a matrix (5.5).
- Computing eigenvalues and eigenvectors (5.5).
- Diagonalizable matrices (5.5).
- $n \times n$ linear differential systems (5.4).
- Constant coefficients homogenoues systems (5.6).
- Examples: 2×2 linear systems (5.6).

Computing eigenvalues and eigenvectors.

Problem:
Given an $n \times n$ matrix A, find, if possible, λ and $\mathbf{v} \neq \mathbf{0}$ solution of

$$
A \mathbf{v}=\lambda \mathbf{v}
$$

Computing eigenvalues and eigenvectors.

Problem:
Given an $n \times n$ matrix A, find, if possible, λ and $\mathbf{v} \neq \mathbf{0}$ solution of

$$
A \mathbf{v}=\lambda \mathbf{v}
$$

Remark:
This is more complicated than solving a linear system $A \mathbf{v}=\mathbf{b}$,

Computing eigenvalues and eigenvectors.

Problem:
Given an $n \times n$ matrix A, find, if possible, λ and $\mathbf{v} \neq \mathbf{0}$ solution of

$$
A \mathbf{v}=\lambda \mathbf{v}
$$

Remark:
This is more complicated than solving a linear system $A \mathbf{v}=\mathbf{b}$, since in our case we do not know the source vector $\mathbf{b}=\lambda \mathbf{v}$.

Computing eigenvalues and eigenvectors.

Problem:
Given an $n \times n$ matrix A, find, if possible, λ and $\mathbf{v} \neq \mathbf{0}$ solution of

$$
A \mathbf{v}=\lambda \mathbf{v}
$$

Remark:
This is more complicated than solving a linear system $A \mathbf{v}=\mathbf{b}$, since in our case we do not know the source vector $\mathbf{b}=\lambda \mathbf{v}$.

Solution:
(a) First solve for λ.

Computing eigenvalues and eigenvectors.

Problem:
Given an $n \times n$ matrix A, find, if possible, λ and $\mathbf{v} \neq \mathbf{0}$ solution of

$$
A \mathbf{v}=\lambda \mathbf{v}
$$

Remark:
This is more complicated than solving a linear system $A \mathbf{v}=\mathbf{b}$, since in our case we do not know the source vector $\mathbf{b}=\lambda \mathbf{v}$.

Solution:
(a) First solve for λ.
(b) Having λ, then solve for \mathbf{v}.

Computing eigenvalues and eigenvectors.

Theorem (Eigenvalues-eigenvectors)
(a) The number λ is an eigenvalue of an $n \times n$ matrix A iff

$$
\operatorname{det}(A-\lambda I)=0
$$

(b) Given an eigenvalue λ of matrix A, the corresponding eigenvectors \mathbf{v} are the non-zero solutions to the homogeneous linear system

$$
(A-\lambda I) \mathbf{v}=\mathbf{0} .
$$

Computing eigenvalues and eigenvectors.

Theorem (Eigenvalues-eigenvectors)
(a) The number λ is an eigenvalue of an $n \times n$ matrix A iff

$$
\operatorname{det}(A-\lambda I)=0 .
$$

(b) Given an eigenvalue λ of matrix A, the corresponding eigenvectors \mathbf{v} are the non-zero solutions to the homogeneous linear system

$$
(A-\lambda I) \mathbf{v}=\mathbf{0} .
$$

Notation:
$p(\lambda)=\operatorname{det}(A-\lambda I)$ is called the characteristic polynomial.

Computing eigenvalues and eigenvectors.

Theorem (Eigenvalues-eigenvectors)
(a) The number λ is an eigenvalue of an $n \times n$ matrix A iff

$$
\operatorname{det}(A-\lambda I)=0 .
$$

(b) Given an eigenvalue λ of matrix A, the corresponding eigenvectors \mathbf{v} are the non-zero solutions to the homogeneous linear system

$$
(A-\lambda I) \mathbf{v}=\mathbf{0} .
$$

Notation:
$p(\lambda)=\operatorname{det}(A-\lambda I)$ is called the characteristic polynomial.
If A is $n \times n$, then p is degree n.

Computing eigenvalues and eigenvectors.

Theorem (Eigenvalues-eigenvectors)
(a) The number λ is an eigenvalue of an $n \times n$ matrix A iff

$$
\operatorname{det}(A-\lambda I)=0 .
$$

(b) Given an eigenvalue λ of matrix A, the corresponding eigenvectors \mathbf{v} are the non-zero solutions to the homogeneous linear system

$$
(A-\lambda I) \mathbf{v}=\mathbf{0} .
$$

Notation:
$p(\lambda)=\operatorname{det}(A-\lambda /)$ is called the characteristic polynomial.
If A is $n \times n$, then p is degree n.
Remark: An eigenvalue is a root of the characteristic polynomial.

Computing eigenvalues and eigenvectors.

Proof:
Find λ such that for a non-zero vector \mathbf{v} holds,

$$
A \mathbf{v}=\lambda \mathbf{v}
$$

Computing eigenvalues and eigenvectors.

Proof:
Find λ such that for a non-zero vector \mathbf{v} holds,

$$
A \mathbf{v}=\lambda \mathbf{v} \quad \Leftrightarrow \quad(A-\lambda I) \mathbf{v}=\mathbf{0} .
$$

Computing eigenvalues and eigenvectors.

Proof:
Find λ such that for a non-zero vector \mathbf{v} holds,

$$
A \mathbf{v}=\lambda \mathbf{v} \quad \Leftrightarrow \quad(A-\lambda I) \mathbf{v}=\mathbf{0} .
$$

Recall, $\mathbf{v} \neq \mathbf{0}$.

Computing eigenvalues and eigenvectors.

Proof:
Find λ such that for a non-zero vector \mathbf{v} holds,

$$
A \mathbf{v}=\lambda \mathbf{v} \quad \Leftrightarrow \quad(A-\lambda I) \mathbf{v}=\mathbf{0} .
$$

Recall, $\mathbf{v} \neq \mathbf{0}$.
This last condition implies that matrix $(A-\lambda I)$ is not invertible.

Computing eigenvalues and eigenvectors.

Proof:
Find λ such that for a non-zero vector \mathbf{v} holds,

$$
A \mathbf{v}=\lambda \mathbf{v} \quad \Leftrightarrow \quad(A-\lambda I) \mathbf{v}=\mathbf{0} .
$$

Recall, $\mathbf{v} \neq \mathbf{0}$.
This last condition implies that matrix $(A-\lambda I)$ is not invertible.
(Proof: If $(A-\lambda I)$ invertible,

Computing eigenvalues and eigenvectors.

Proof:
Find λ such that for a non-zero vector \mathbf{v} holds,

$$
A \mathbf{v}=\lambda \mathbf{v} \quad \Leftrightarrow \quad(A-\lambda I) \mathbf{v}=\mathbf{0} .
$$

Recall, $\mathbf{v} \neq \mathbf{0}$.
This last condition implies that matrix $(A-\lambda I)$ is not invertible.
(Proof: If $(A-\lambda I)$ invertible, then $(A-\lambda I)^{-1}(A-\lambda I) \mathbf{v}=\mathbf{0}$,

Computing eigenvalues and eigenvectors.

Proof:
Find λ such that for a non-zero vector \mathbf{v} holds,

$$
A \mathbf{v}=\lambda \mathbf{v} \quad \Leftrightarrow \quad(A-\lambda I) \mathbf{v}=\mathbf{0} .
$$

Recall, $\mathbf{v} \neq \mathbf{0}$.
This last condition implies that matrix $(A-\lambda I)$ is not invertible.
(Proof: If $(A-\lambda I)$ invertible, then $(A-\lambda I)^{-1}(A-\lambda I) \mathbf{v}=\mathbf{0}$, that is, $\mathbf{v}=\mathbf{0}$.)

Computing eigenvalues and eigenvectors.

Proof:
Find λ such that for a non-zero vector \mathbf{v} holds,

$$
A \mathbf{v}=\lambda \mathbf{v} \quad \Leftrightarrow \quad(A-\lambda I) \mathbf{v}=\mathbf{0} .
$$

Recall, $\mathbf{v} \neq \mathbf{0}$.
This last condition implies that matrix $(A-\lambda I)$ is not invertible.
(Proof: If $(A-\lambda I)$ invertible, then $(A-\lambda I)^{-1}(A-\lambda I) \mathbf{v}=\mathbf{0}$, that is, $\mathbf{v}=\mathbf{0}$.)

Since $(A-\lambda I)$ is not invertible, then $\operatorname{det}(A-\lambda I)=0$.

Computing eigenvalues and eigenvectors.

Proof:
Find λ such that for a non-zero vector \mathbf{v} holds,

$$
A \mathbf{v}=\lambda \mathbf{v} \quad \Leftrightarrow \quad(A-\lambda I) \mathbf{v}=\mathbf{0}
$$

Recall, $\mathbf{v} \neq \mathbf{0}$.
This last condition implies that matrix $(A-\lambda I)$ is not invertible.
(Proof: If $(A-\lambda I)$ invertible, then $(A-\lambda I)^{-1}(A-\lambda I) \mathbf{v}=\mathbf{0}$, that is, $\mathbf{v}=\mathbf{0}$.)

Since $(A-\lambda I)$ is not invertible, then $\operatorname{det}(A-\lambda I)=0$.
Once λ is known, the original eigenvalue-eigenvector equation $A \mathbf{v}=\lambda \mathbf{v}$ is equivalent to $(A-\lambda I) \mathbf{v}=\mathbf{0}$.

Computing eigenvalues and eigenvectors.

Example

Find the eigenvalues λ and eigenvectors v of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.

Computing eigenvalues and eigenvectors.

Example

Find the eigenvalues λ and eigenvectors v of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution:
The eigenvalues are the roots of the characteristic polynomial.

Computing eigenvalues and eigenvectors.

Example

Find the eigenvalues λ and eigenvectors v of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution:
The eigenvalues are the roots of the characteristic polynomial.
$A-\lambda I$

Computing eigenvalues and eigenvectors.

Example

Find the eigenvalues λ and eigenvectors v of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$. Solution:
The eigenvalues are the roots of the characteristic polynomial.
$A-\lambda I=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]-\lambda\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Computing eigenvalues and eigenvectors.

Example

Find the eigenvalues λ and eigenvectors v of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$. Solution:
The eigenvalues are the roots of the characteristic polynomial.
$A-\lambda I=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]-\lambda\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]-\left[\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right]$

Computing eigenvalues and eigenvectors.

Example

Find the eigenvalues λ and eigenvectors v of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$. Solution:
The eigenvalues are the roots of the characteristic polynomial.
$A-\lambda I=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]-\lambda\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]-\left[\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right]=\left[\begin{array}{cc}(1-\lambda) & 3 \\ 3 & (1-\lambda)\end{array}\right]$

Computing eigenvalues and eigenvectors.

Example

Find the eigenvalues λ and eigenvectors v of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$. Solution:
The eigenvalues are the roots of the characteristic polynomial.
$A-\lambda I=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]-\lambda\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]-\left[\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right]=\left[\begin{array}{cc}(1-\lambda) & 3 \\ 3 & (1-\lambda)\end{array}\right]$
The characteristic polynomial is

$$
p(\lambda)=\operatorname{det}(A-\lambda I)
$$

Computing eigenvalues and eigenvectors.

Example

Find the eigenvalues λ and eigenvectors v of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$. Solution:
The eigenvalues are the roots of the characteristic polynomial.
$A-\lambda I=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]-\lambda\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]-\left[\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right]=\left[\begin{array}{cc}(1-\lambda) & 3 \\ 3 & (1-\lambda)\end{array}\right]$
The characteristic polynomial is

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
(1-\lambda) & 3 \\
3 & (1-\lambda)
\end{array}\right|
$$

Computing eigenvalues and eigenvectors.

Example

Find the eigenvalues λ and eigenvectors v of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$. Solution:
The eigenvalues are the roots of the characteristic polynomial.
$A-\lambda I=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]-\lambda\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]-\left[\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right]=\left[\begin{array}{cc}(1-\lambda) & 3 \\ 3 & (1-\lambda)\end{array}\right]$
The characteristic polynomial is

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
(1-\lambda) & 3 \\
3 & (1-\lambda)
\end{array}\right|=(\lambda-1)^{2}-9
$$

Computing eigenvalues and eigenvectors.

Example

Find the eigenvalues λ and eigenvectors v of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$. Solution:
The eigenvalues are the roots of the characteristic polynomial.
$A-\lambda I=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]-\lambda\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]-\left[\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right]=\left[\begin{array}{cc}(1-\lambda) & 3 \\ 3 & (1-\lambda)\end{array}\right]$
The characteristic polynomial is

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
(1-\lambda) & 3 \\
3 & (1-\lambda)
\end{array}\right|=(\lambda-1)^{2}-9
$$

The roots are $\lambda_{+}=4$ and $\lambda_{-}=-2$.

Computing eigenvalues and eigenvectors.

Example

Find the eigenvalues λ and eigenvectors v of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$. Solution:
The eigenvalues are the roots of the characteristic polynomial.
$A-\lambda I=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]-\lambda\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]-\left[\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right]=\left[\begin{array}{cc}(1-\lambda) & 3 \\ 3 & (1-\lambda)\end{array}\right]$
The characteristic polynomial is

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
(1-\lambda) & 3 \\
3 & (1-\lambda)
\end{array}\right|=(\lambda-1)^{2}-9
$$

The roots are $\lambda_{+}=4$ and $\lambda_{-}=-2$.
Compute the eigenvector for $\lambda_{+}=4$.

Computing eigenvalues and eigenvectors.

Example

Find the eigenvalues λ and eigenvectors v of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$. Solution:
The eigenvalues are the roots of the characteristic polynomial.
$A-\lambda I=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]-\lambda\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]-\left[\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right]=\left[\begin{array}{cc}(1-\lambda) & 3 \\ 3 & (1-\lambda)\end{array}\right]$
The characteristic polynomial is

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
(1-\lambda) & 3 \\
3 & (1-\lambda)
\end{array}\right|=(\lambda-1)^{2}-9
$$

The roots are $\lambda_{+}=4$ and $\lambda_{-}=-2$.
Compute the eigenvector for $\lambda_{+}=4$. Solve $(A-4 I) \mathbf{v}_{+}=\mathbf{0}$.

Computing eigenvalues and eigenvectors.

Example

Find the eigenvalues λ and eigenvectors v of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$. Solution:
The eigenvalues are the roots of the characteristic polynomial.
$A-\lambda I=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]-\lambda\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]-\left[\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right]=\left[\begin{array}{cc}(1-\lambda) & 3 \\ 3 & (1-\lambda)\end{array}\right]$
The characteristic polynomial is

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
(1-\lambda) & 3 \\
3 & (1-\lambda)
\end{array}\right|=(\lambda-1)^{2}-9
$$

The roots are $\lambda_{+}=4$ and $\lambda_{-}=-2$.
Compute the eigenvector for $\lambda_{+}=4$. Solve $(A-4 I) \mathbf{v}_{+}=\mathbf{0}$.

$$
A-4 I=\left[\begin{array}{cc}
1-4 & 3 \\
3 & 1-4
\end{array}\right]
$$

Computing eigenvalues and eigenvectors.

Example

Find the eigenvalues λ and eigenvectors v of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$. Solution:
The eigenvalues are the roots of the characteristic polynomial.
$A-\lambda I=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]-\lambda\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]-\left[\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right]=\left[\begin{array}{cc}(1-\lambda) & 3 \\ 3 & (1-\lambda)\end{array}\right]$
The characteristic polynomial is

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
(1-\lambda) & 3 \\
3 & (1-\lambda)
\end{array}\right|=(\lambda-1)^{2}-9
$$

The roots are $\lambda_{+}=4$ and $\lambda_{-}=-2$.
Compute the eigenvector for $\lambda_{+}=4$. Solve $(A-4 I) \mathbf{v}_{+}=\mathbf{0}$.

$$
A-4 I=\left[\begin{array}{cc}
1-4 & 3 \\
3 & 1-4
\end{array}\right]=\left[\begin{array}{cc}
-3 & 3 \\
3 & -3
\end{array}\right] .
$$

Computing eigenvalues and eigenvectors.

Example
Find the eigenvalues λ and eigenvectors \mathbf{v} of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Recall: $\lambda_{+}=4, \quad \lambda_{-}=-2, \quad A-4 I=\left[\begin{array}{cc}-3 & 3 \\ 3 & -3\end{array}\right]$.

Computing eigenvalues and eigenvectors.

Example
Find the eigenvalues λ and eigenvectors \mathbf{v} of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Recall: $\lambda_{+}=4, \quad \lambda_{-}=-2, \quad A-4 I=\left[\begin{array}{cc}-3 & 3 \\ 3 & -3\end{array}\right]$.
We solve $(A-4 I) \mathbf{v}_{+}=\mathbf{0}$,

Computing eigenvalues and eigenvectors.

Example
Find the eigenvalues λ and eigenvectors \mathbf{v} of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Recall: $\lambda_{+}=4, \quad \lambda_{-}=-2, \quad A-4 I=\left[\begin{array}{cc}-3 & 3 \\ 3 & -3\end{array}\right]$.
We solve $(A-4 I) \mathbf{v}_{+}=\mathbf{0}$, using Gauss elimination,

Computing eigenvalues and eigenvectors.

Example
Find the eigenvalues λ and eigenvectors \mathbf{v} of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Recall: $\lambda_{+}=4, \quad \lambda_{-}=-2, \quad A-4 I=\left[\begin{array}{cc}-3 & 3 \\ 3 & -3\end{array}\right]$.
We solve $(A-4 I) \mathbf{v}_{+}=\mathbf{0}$, using Gauss elimination,

$$
\left[\begin{array}{cc}
-3 & 3 \\
3 & -3
\end{array}\right]
$$

Computing eigenvalues and eigenvectors.

Example
Find the eigenvalues λ and eigenvectors \mathbf{v} of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Recall: $\lambda_{+}=4, \quad \lambda_{-}=-2, \quad A-4 I=\left[\begin{array}{cc}-3 & 3 \\ 3 & -3\end{array}\right]$.
We solve $(A-4 I) \mathbf{v}_{+}=\mathbf{0}$, using Gauss elimination,

$$
\left[\begin{array}{cc}
-3 & 3 \\
3 & -3
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & -1 \\
3 & -3
\end{array}\right]
$$

Computing eigenvalues and eigenvectors.

Example
Find the eigenvalues λ and eigenvectors \mathbf{v} of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Recall: $\lambda_{+}=4, \quad \lambda_{-}=-2, \quad A-4 I=\left[\begin{array}{cc}-3 & 3 \\ 3 & -3\end{array}\right]$.
We solve $(A-4 I) \mathbf{v}_{+}=\mathbf{0}$, using Gauss elimination,

$$
\left[\begin{array}{cc}
-3 & 3 \\
3 & -3
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & -1 \\
3 & -3
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right]
$$

Computing eigenvalues and eigenvectors.

Example
Find the eigenvalues λ and eigenvectors \mathbf{v} of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Recall: $\lambda_{+}=4, \quad \lambda_{-}=-2, \quad A-4 I=\left[\begin{array}{cc}-3 & 3 \\ 3 & -3\end{array}\right]$.
We solve $(A-4 I) \mathbf{v}_{+}=\mathbf{0}$, using Gauss elimination,

$$
\left[\begin{array}{cc}
-3 & 3 \\
3 & -3
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -1 \\
3 & -3
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right] \Rightarrow\left\{\begin{array}{l}
v_{1}^{+}=v_{2}^{+} \\
v_{2}^{+} \\
\text {free }
\end{array}\right.
$$

Computing eigenvalues and eigenvectors.

Example
Find the eigenvalues λ and eigenvectors \mathbf{v} of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Recall: $\quad \lambda_{+}=4, \quad \lambda_{-}=-2, \quad A-4 I=\left[\begin{array}{cc}-3 & 3 \\ 3 & -3\end{array}\right]$.
We solve $(A-4 I) \mathbf{v}_{+}=\mathbf{0}$, using Gauss elimination,

$$
\left[\begin{array}{cc}
-3 & 3 \\
3 & -3
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & -1 \\
3 & -3
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right] \Rightarrow\left\{\begin{array}{l}
v_{1}^{+}=v_{2}^{+} \\
v_{2}^{+} \\
\text {free }
\end{array}\right.
$$

Al solutions to the equation above are then given by

$$
\mathbf{v}_{+}=\left[\begin{array}{l}
v_{2}^{+} \\
v_{2}^{+}
\end{array}\right]
$$

Computing eigenvalues and eigenvectors.

Example
Find the eigenvalues λ and eigenvectors \mathbf{v} of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Recall: $\quad \lambda_{+}=4, \quad \lambda_{-}=-2, \quad A-4 I=\left[\begin{array}{cc}-3 & 3 \\ 3 & -3\end{array}\right]$.
We solve $(A-4 I) \mathbf{v}_{+}=\mathbf{0}$, using Gauss elimination,

$$
\left[\begin{array}{cc}
-3 & 3 \\
3 & -3
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & -1 \\
3 & -3
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right] \Rightarrow\left\{\begin{array}{l}
v_{1}^{+}=v_{2}^{+} \\
v_{2}^{+} \\
\text {free }
\end{array}\right.
$$

Al solutions to the equation above are then given by

$$
\mathbf{v}_{+}=\left[\begin{array}{l}
v_{2}^{+} \\
v_{2}^{+}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] v_{2}^{+}
$$

Computing eigenvalues and eigenvectors.

Example
Find the eigenvalues λ and eigenvectors \mathbf{v} of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Recall: $\quad \lambda_{+}=4, \quad \lambda_{-}=-2, \quad A-4 I=\left[\begin{array}{cc}-3 & 3 \\ 3 & -3\end{array}\right]$.
We solve $(A-4 I) \mathbf{v}_{+}=\mathbf{0}$, using Gauss elimination,

$$
\left[\begin{array}{cc}
-3 & 3 \\
3 & -3
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -1 \\
3 & -3
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right] \Rightarrow\left\{\begin{array}{l}
v_{1}^{+}=v_{2}^{+} \\
v_{2}^{+} \\
\text {free }
\end{array}\right.
$$

Al solutions to the equation above are then given by

$$
\mathbf{v}_{+}=\left[\begin{array}{l}
v_{2}^{+} \\
v_{2}^{+}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] v_{2}^{+} \quad \Rightarrow \quad \mathbf{v}_{+}=\left[\begin{array}{l}
1 \\
1
\end{array}\right],
$$

Computing eigenvalues and eigenvectors.

Example
Find the eigenvalues λ and eigenvectors \mathbf{v} of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Recall: $\quad \lambda_{+}=4, \quad \lambda_{-}=-2, \quad A-4 I=\left[\begin{array}{cc}-3 & 3 \\ 3 & -3\end{array}\right]$.
We solve $(A-4 I) \mathbf{v}_{+}=\mathbf{0}$, using Gauss elimination,

$$
\left[\begin{array}{cc}
-3 & 3 \\
3 & -3
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -1 \\
3 & -3
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right] \Rightarrow\left\{\begin{array}{l}
v_{1}^{+}=v_{2}^{+} \\
v_{2}^{+} \\
\text {free }
\end{array}\right.
$$

Al solutions to the equation above are then given by

The first eigenvalue eigenvector pair is $\lambda_{+}=4, \mathbf{v}_{+}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Computing eigenvalues and eigenvectors.

Example
Find the eigenvalues λ and eigenvectors \mathbf{v} of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Recall: $\lambda_{+}=4, \quad \mathbf{v}_{+}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \quad \lambda_{-}=-2$.

Computing eigenvalues and eigenvectors.

Example

Find the eigenvalues λ and eigenvectors \mathbf{v} of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Recall: $\lambda_{+}=4, \quad \mathbf{v}_{+}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \quad \lambda_{-}=-2$.
Solve $(A+2 I) \mathbf{v}_{-}=\mathbf{0}$,

Computing eigenvalues and eigenvectors.

Example

Find the eigenvalues λ and eigenvectors \mathbf{v} of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Recall: $\lambda_{+}=4, \mathbf{v}_{+}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \quad \lambda_{-}=-2$.
Solve $(A+2 I) \mathbf{v}_{-}=\mathbf{0}$, using Gauss operations on $A+2 I=\left[\begin{array}{ll}3 & 3 \\ 3 & 3\end{array}\right]$.

Computing eigenvalues and eigenvectors.

Example

Find the eigenvalues λ and eigenvectors \mathbf{v} of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Recall: $\lambda_{+}=4, \mathbf{v}_{+}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \quad \lambda_{-}=-2$.
Solve $(A+2 I) \mathbf{v}_{-}=\mathbf{0}$, using Gauss operations on $A+2 I=\left[\begin{array}{ll}3 & 3 \\ 3 & 3\end{array}\right]$.

$$
\left[\begin{array}{ll}
3 & 3 \\
3 & 3
\end{array}\right]
$$

Computing eigenvalues and eigenvectors.

Example
Find the eigenvalues λ and eigenvectors \mathbf{v} of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Recall: $\lambda_{+}=4, \quad \mathbf{v}_{+}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \quad \lambda_{-}=-2$.
Solve $(A+2 I) \mathbf{v}_{-}=\mathbf{0}$, using Gauss operations on $A+2 I=\left[\begin{array}{ll}3 & 3 \\ 3 & 3\end{array}\right]$.

$$
\left[\begin{array}{ll}
3 & 3 \\
3 & 3
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 1 \\
3 & 3
\end{array}\right]
$$

Computing eigenvalues and eigenvectors.

Example
Find the eigenvalues λ and eigenvectors \mathbf{v} of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Recall: $\lambda_{+}=4, \quad \mathbf{v}_{+}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \quad \lambda_{-}=-2$.
Solve $(A+2 I) \mathbf{v}_{-}=\mathbf{0}$, using Gauss operations on $A+2 I=\left[\begin{array}{ll}3 & 3 \\ 3 & 3\end{array}\right]$.

$$
\left[\begin{array}{ll}
3 & 3 \\
3 & 3
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 1 \\
3 & 3
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]
$$

Computing eigenvalues and eigenvectors.

Example
Find the eigenvalues λ and eigenvectors \mathbf{v} of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Recall: $\lambda_{+}=4, \mathbf{v}_{+}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \quad \lambda_{-}=-2$.
Solve $(A+2 I) \mathbf{v}_{-}=\mathbf{0}$, using Gauss operations on $A+2 I=\left[\begin{array}{ll}3 & 3 \\ 3 & 3\end{array}\right]$.

$$
\left[\begin{array}{ll}
3 & 3 \\
3 & 3
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 1 \\
3 & 3
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \Rightarrow\left\{\begin{array}{l}
v_{1}^{-}=-v_{2}^{-} \\
v_{2}^{-} \\
\text {free }
\end{array}\right.
$$

Computing eigenvalues and eigenvectors.

Example

Find the eigenvalues λ and eigenvectors \mathbf{v} of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Recall: $\lambda_{+}=4, v_{+}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \lambda_{-}=-2$.
Solve $(A+2 I) \mathbf{v}_{-}=\mathbf{0}$, using Gauss operations on $A+2 I=\left[\begin{array}{ll}3 & 3 \\ 3 & 3\end{array}\right]$.

$$
\left[\begin{array}{ll}
3 & 3 \\
3 & 3
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 1 \\
3 & 3
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \Rightarrow\left\{\begin{array}{l}
v_{1}^{-}=-v_{2}^{-}, \\
v_{2}^{-} \\
\text {free. }
\end{array}\right.
$$

Al solutions to the equation above are then given by

$$
\mathbf{v}_{-}=\left[\begin{array}{c}
-v_{2}^{-} \\
v_{2}^{-}
\end{array}\right]
$$

Computing eigenvalues and eigenvectors.

Example

Find the eigenvalues λ and eigenvectors \mathbf{v} of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Recall: $\lambda_{+}=4, v_{+}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \lambda_{-}=-2$.
Solve $(A+2 I) \mathbf{v}_{-}=\mathbf{0}$, using Gauss operations on $A+2 I=\left[\begin{array}{ll}3 & 3 \\ 3 & 3\end{array}\right]$.

$$
\left[\begin{array}{ll}
3 & 3 \\
3 & 3
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 1 \\
3 & 3
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \Rightarrow\left\{\begin{array}{l}
v_{1}^{-}=-v_{2}^{-}, \\
v_{2}^{-} \\
\text {free. }
\end{array}\right.
$$

Al solutions to the equation above are then given by

$$
v_{-}=\left[\begin{array}{c}
-v_{2}^{-} \\
v_{2}^{-}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] v_{2}^{-}
$$

Computing eigenvalues and eigenvectors.

Example

Find the eigenvalues λ and eigenvectors \mathbf{v} of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Recall: $\lambda_{+}=4, v_{+}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \lambda_{-}=-2$.
Solve $(A+2 I) \mathbf{v}_{-}=\mathbf{0}$, using Gauss operations on $A+2 I=\left[\begin{array}{ll}3 & 3 \\ 3 & 3\end{array}\right]$.

$$
\left[\begin{array}{ll}
3 & 3 \\
3 & 3
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 1 \\
3 & 3
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \Rightarrow\left\{\begin{array}{l}
v_{1}^{-}=-v_{2}^{-}, \\
v_{2}^{-} \\
\text {free. }
\end{array}\right.
$$

Al solutions to the equation above are then given by

$$
\mathbf{v}_{-}=\left[\begin{array}{c}
-v_{2}^{-} \\
v_{2}^{-}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] v_{2}^{-} \Rightarrow \mathbf{v}_{-}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right],
$$

Computing eigenvalues and eigenvectors.

Example

Find the eigenvalues λ and eigenvectors v of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Recall: $\lambda_{+}=4, v_{+}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \lambda_{-}=-2$.
Solve $(A+2 I) \mathbf{v}_{-}=\mathbf{0}$, using Gauss operations on $A+2 I=\left[\begin{array}{ll}3 & 3 \\ 3 & 3\end{array}\right]$.

$$
\left[\begin{array}{ll}
3 & 3 \\
3 & 3
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 1 \\
3 & 3
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \Rightarrow\left\{\begin{array}{l}
v_{1}^{-}=-v_{2}^{-}, \\
v_{2}^{-} \\
\text {free. }
\end{array}\right.
$$

Al solutions to the equation above are then given by

$$
\mathbf{v}_{-}=\left[\begin{array}{c}
-v_{2}^{-} \\
v_{2}^{-}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] v_{2}^{-} \Rightarrow v_{-}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right],
$$

The second eigenvalue eigenvector pair: $\lambda_{-}=-2, v_{-}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] \cdot \triangleleft$

Linear Algebra and differential systems (Sect. 5.4, 5.5, 5.6)

- Eigenvalues, eigenvectors of a matrix (5.5).
- Computing eigenvalues and eigenvectors (5.5).
- Diagonalizable matrices (5.5).
- $n \times n$ linear differential systems (5.4).
- Constant coefficients homogenoues systems (5.6).
- Examples: 2×2 linear systems (5.6).

Diagonalizable matrices.

Definition

An $n \times n$ matrix D is called diagonal iff $D=\left[\begin{array}{ccc}d_{11} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & d_{n n}\end{array}\right]$.

Diagonalizable matrices.

Definition

An $n \times n$ matrix D is called diagonal iff $D=\left[\begin{array}{ccc}d_{11} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & d_{n n}\end{array}\right]$.

Definition

An $n \times n$ matrix A is called diagonalizable iff there exists an invertible matrix P and a diagonal matrix D such that

$$
A=P D P^{-1}
$$

Diagonalizable matrices.

Definition

An $n \times n$ matrix D is called diagonal iff $D=\left[\begin{array}{ccc}d_{11} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & d_{n n}\end{array}\right]$.

Definition

An $n \times n$ matrix A is called diagonalizable iff there exists an invertible matrix P and a diagonal matrix D such that

$$
A=P D P^{-1}
$$

Remark:

- Systems of linear differential equations are simple to solve in the case that the coefficient matrix A is diagonalizable.

Diagonalizable matrices.

Definition

An $n \times n$ matrix D is called diagonal iff $D=\left[\begin{array}{ccc}d_{11} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & d_{n n}\end{array}\right]$.

Definition

An $n \times n$ matrix A is called diagonalizable iff there exists an invertible matrix P and a diagonal matrix D such that

$$
A=P D P^{-1}
$$

Remark:

- Systems of linear differential equations are simple to solve in the case that the coefficient matrix A is diagonalizable.
- In such case, it is simple to decouple the differential equations.

Diagonalizable matrices.

Definition

An $n \times n$ matrix D is called diagonal iff $D=\left[\begin{array}{ccc}d_{11} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & d_{n n}\end{array}\right]$.

Definition

An $n \times n$ matrix A is called diagonalizable iff there exists an invertible matrix P and a diagonal matrix D such that

$$
A=P D P^{-1}
$$

Remark:

- Systems of linear differential equations are simple to solve in the case that the coefficient matrix A is diagonalizable.
- In such case, it is simple to decouple the differential equations.
- One solves the decoupled equations, and then transforms back to the original unknowns.

Diagonalizable matrices.

Theorem (Diagonalizability and eigenvectors)
An $n \times n$ matrix A is diagonalizable iff matrix A has a linearly independent set of n eigenvectors. Furthermore,

$$
A=P D P^{-1}, \quad P=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right], \quad D=\left[\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}
\end{array}\right],
$$

where $\lambda_{i}, \mathbf{v}_{i}$, for $i=1, \cdots, n$, are eigenvalue-eigenvector pairs of A.

Diagonalizable matrices.

Theorem (Diagonalizability and eigenvectors)

An $n \times n$ matrix A is diagonalizable iff matrix A has a linearly independent set of n eigenvectors. Furthermore,

$$
A=P D P^{-1}, \quad P=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right], \quad D=\left[\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}
\end{array}\right],
$$

where $\lambda_{i}, \mathbf{v}_{i}$, for $i=1, \cdots, n$, are eigenvalue-eigenvector pairs of A.
Remark: It is not simple to know whether an $n \times n$ matrix A has a linearly independent set of n eigenvectors.

Diagonalizable matrices.

Theorem (Diagonalizability and eigenvectors)

An $n \times n$ matrix A is diagonalizable iff matrix A has a linearly independent set of n eigenvectors. Furthermore,

$$
A=P D P^{-1}, \quad P=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right], \quad D=\left[\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}
\end{array}\right],
$$

where $\lambda_{i}, \mathbf{v}_{i}$, for $i=1, \cdots, n$, are eigenvalue-eigenvector pairs of A.
Remark: It is not simple to know whether an $n \times n$ matrix A has a linearly independent set of n eigenvectors. One simple case is given in the following result.

Diagonalizable matrices.

Theorem (Diagonalizability and eigenvectors)

An $n \times n$ matrix A is diagonalizable iff matrix A has a linearly independent set of n eigenvectors. Furthermore,

$$
A=P D P^{-1}, \quad P=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right], \quad D=\left[\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}
\end{array}\right],
$$

where $\lambda_{i}, \mathbf{v}_{i}$, for $i=1, \cdots, n$, are eigenvalue-eigenvector pairs of A.
Remark: It is not simple to know whether an $n \times n$ matrix A has a linearly independent set of n eigenvectors. One simple case is given in the following result.

Theorem (n different eigenvalues)
If an $n \times n$ matrix A has n different eigenvalues, then A is diagonalizable.

Diagonalizable matrices.

Example
Show that $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$ is diagonalizable.

Diagonalizable matrices.

Example
Show that $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$ is diagonalizable.
Solution: We known that the eigenvalue eigenvector pairs are

$$
\lambda_{1}=4, \quad \mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \text { and } \quad \lambda_{2}=-2, \quad \mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] .
$$

Diagonalizable matrices.

Example

Show that $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$ is diagonalizable.
Solution: We known that the eigenvalue eigenvector pairs are

$$
\lambda_{1}=4, \quad \mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \text { and } \quad \lambda_{2}=-2, \quad \mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] .
$$

Introduce P and D as follows,

Diagonalizable matrices.

Example
Show that $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$ is diagonalizable.
Solution: We known that the eigenvalue eigenvector pairs are

$$
\lambda_{1}=4, \quad \mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \text { and } \quad \lambda_{2}=-2, \quad \mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] .
$$

Introduce P and D as follows,

$$
P=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]
$$

Diagonalizable matrices.

Example
Show that $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$ is diagonalizable.
Solution: We known that the eigenvalue eigenvector pairs are

$$
\lambda_{1}=4, \quad \mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \text { and } \quad \lambda_{2}=-2, \quad \mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] .
$$

Introduce P and D as follows,

$$
P=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] \quad \Rightarrow \quad P^{-1}=\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right],
$$

Diagonalizable matrices.

Example
Show that $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$ is diagonalizable.
Solution: We known that the eigenvalue eigenvector pairs are

$$
\lambda_{1}=4, \quad \mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \text { and } \quad \lambda_{2}=-2, \quad \mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] .
$$

Introduce P and D as follows,

$$
P=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] \quad \Rightarrow \quad P^{-1}=\frac{1}{2}\left[\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right], \quad D=\left[\begin{array}{cc}
4 & 0 \\
0 & -2
\end{array}\right] .
$$

Diagonalizable matrices.

Example
Show that $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$ is diagonalizable.
Solution: We known that the eigenvalue eigenvector pairs are

$$
\lambda_{1}=4, \quad \mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \text { and } \quad \lambda_{2}=-2, \quad \mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] .
$$

Introduce P and D as follows,

$$
P=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] \quad \Rightarrow \quad P^{-1}=\frac{1}{2}\left[\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right], \quad D=\left[\begin{array}{cc}
4 & 0 \\
0 & -2
\end{array}\right] .
$$

Then

$$
P D P^{-1}
$$

Diagonalizable matrices.

Example
Show that $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$ is diagonalizable.
Solution: We known that the eigenvalue eigenvector pairs are

$$
\lambda_{1}=4, \quad \mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \text { and } \quad \lambda_{2}=-2, \quad \mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] .
$$

Introduce P and D as follows,

$$
P=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] \quad \Rightarrow \quad P^{-1}=\frac{1}{2}\left[\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right], \quad D=\left[\begin{array}{cc}
4 & 0 \\
0 & -2
\end{array}\right] .
$$

Then

$$
P D P^{-1}=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
4 & 0 \\
0 & -2
\end{array}\right] \frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right] .
$$

Diagonalizable matrices.

Example

Show that $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$ is diagonalizable.
Solution: Recall:

$$
P D P^{-1}=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
4 & 0 \\
0 & -2
\end{array}\right] \frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right] .
$$

Diagonalizable matrices.

Example

Show that $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$ is diagonalizable.
Solution: Recall:

$$
\begin{aligned}
& P D P^{-1}=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
4 & 0 \\
0 & -2
\end{array}\right] \frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right] . \\
& P D P^{-1}=\left[\begin{array}{cc}
4 & 2 \\
4 & -2
\end{array}\right] \frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]
\end{aligned}
$$

Diagonalizable matrices.

Example

Show that $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$ is diagonalizable.
Solution: Recall:

$$
\begin{gathered}
P D P^{-1}=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
4 & 0 \\
0 & -2
\end{array}\right] \frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right] . \\
P D P^{-1}=\left[\begin{array}{cc}
4 & 2 \\
4 & -2
\end{array}\right] \frac{1}{2}\left[\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{cc}
2 & 1 \\
2 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]
\end{gathered}
$$

Diagonalizable matrices.

Example

Show that $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$ is diagonalizable.
Solution: Recall:

$$
\begin{gathered}
P D P^{-1}=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
4 & 0 \\
0 & -2
\end{array}\right] \frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right] . \\
P D P^{-1}=\left[\begin{array}{cc}
4 & 2 \\
4 & -2
\end{array}\right] \frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{cc}
2 & 1 \\
2 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]
\end{gathered}
$$

We conclude,

$$
P D P^{-1}=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]
$$

Diagonalizable matrices.

Example

Show that $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$ is diagonalizable.
Solution: Recall:

$$
\begin{gathered}
P D P^{-1}=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
4 & 0 \\
0 & -2
\end{array}\right] \frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right] . \\
P D P^{-1}=\left[\begin{array}{cc}
4 & 2 \\
4 & -2
\end{array}\right] \frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{cc}
2 & 1 \\
2 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]
\end{gathered}
$$

We conclude,

$$
P D P^{-1}=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]=A
$$

Diagonalizable matrices.

Example

Show that $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$ is diagonalizable.
Solution: Recall:

$$
\begin{gathered}
P D P^{-1}=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
4 & 0 \\
0 & -2
\end{array}\right] \frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right] . \\
P D P^{-1}=\left[\begin{array}{cc}
4 & 2 \\
4 & -2
\end{array}\right] \frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{cc}
2 & 1 \\
2 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]
\end{gathered}
$$

We conclude,

$$
P D P^{-1}=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]=A
$$

that is, A is diagonalizable.

Linear Algebra and differential systems (Sect. 5.4, 5.5, 5.6)

- Eigenvalues, eigenvectors of a matrix (5.5).
- Computing eigenvalues and eigenvectors (5.5).
- Diagonalizable matrices (5.5).
- $n \times n$ linear differential systems (5.4).
- Constant coefficients homogenoues systems (5.6).
- Examples: 2×2 linear systems (5.6).

$n \times n$ linear differential systems (5.4).

Definition

An $n \times n$ linear differential system is a the following: Given an $n \times n$ matrix-valued function A, and an n-vector-valued function \mathbf{b}, find an n-vector-valued function x solution of

$$
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+\mathbf{b}(t) .
$$

The system above is called homogeneous iff holds $\mathbf{b}=0$.

$n \times n$ linear differential systems (5.4).

Definition

An $n \times n$ linear differential system is a the following: Given an $n \times n$ matrix-valued function A, and an n-vector-valued function \mathbf{b}, find an n-vector-valued function \mathbf{x} solution of

$$
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+\mathbf{b}(t) .
$$

The system above is called homogeneous iff holds $\mathbf{b}=0$.
Recall:

$$
A(t)=\left[\begin{array}{ccc}
a_{11}(t) & \cdots & a_{1 n}(t) \\
\vdots & & \vdots \\
a_{n 1}(t) & \cdots & a_{n n}(t)
\end{array}\right]
$$

$n \times n$ linear differential systems (5.4).

Definition

An $n \times n$ linear differential system is a the following: Given an $n \times n$ matrix-valued function A, and an n-vector-valued function \mathbf{b}, find an n-vector-valued function \mathbf{x} solution of

$$
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+\mathbf{b}(t) .
$$

The system above is called homogeneous iff holds $\mathbf{b}=0$.
Recall:

$$
A(t)=\left[\begin{array}{ccc}
a_{11}(t) & \cdots & a_{1 n}(t) \\
\vdots & & \vdots \\
a_{n 1}(t) & \cdots & a_{n n}(t)
\end{array}\right], \mathbf{b}(t)=\left[\begin{array}{c}
b_{1}(t) \\
\vdots \\
b_{n}(t)
\end{array}\right],
$$

$n \times n$ linear differential systems (5.4).

Definition

An $n \times n$ linear differential system is a the following: Given an $n \times n$ matrix-valued function A, and an n-vector-valued function \mathbf{b}, find an n-vector-valued function x solution of

$$
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+\mathbf{b}(t) .
$$

The system above is called homogeneous iff holds $\mathbf{b}=0$.
Recall:

$$
A(t)=\left[\begin{array}{ccc}
a_{11}(t) & \cdots & a_{1 n}(t) \\
\vdots & & \vdots \\
a_{n 1}(t) & \cdots & a_{n n}(t)
\end{array}\right], \mathbf{b}(t)=\left[\begin{array}{c}
b_{1}(t) \\
\vdots \\
b_{n}(t)
\end{array}\right], \mathbf{x}(t)=\left[\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right] .
$$

$n \times n$ linear differential systems (5.4).

Definition

An $n \times n$ linear differential system is a the following: Given an $n \times n$ matrix-valued function A, and an n-vector-valued function \mathbf{b}, find an n-vector-valued function x solution of

$$
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+\mathbf{b}(t) .
$$

The system above is called homogeneous iff holds $\mathbf{b}=0$.
Recall:

$$
\begin{aligned}
& A(t)=\left[\begin{array}{ccc}
a_{11}(t) & \cdots & a_{1 n}(t) \\
\vdots & & \vdots \\
a_{n 1}(t) & \cdots & a_{n n}(t)
\end{array}\right], \mathbf{b}(t)=\left[\begin{array}{c}
b_{1}(t) \\
\vdots \\
b_{n}(t)
\end{array}\right], \mathbf{x}(t)=\left[\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right] . \\
& \mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+\mathbf{b}(t)
\end{aligned}
$$

$n \times n$ linear differential systems (5.4).

Definition

An $n \times n$ linear differential system is a the following: Given an $n \times n$ matrix-valued function A, and an n-vector-valued function \mathbf{b}, find an n-vector-valued function x solution of

$$
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+\mathbf{b}(t) .
$$

The system above is called homogeneous iff holds $\mathbf{b}=0$.
Recall:

$$
\begin{aligned}
& A(t)=\left[\begin{array}{ccc}
a_{11}(t) & \cdots & a_{1 n}(t) \\
\vdots & & \vdots \\
a_{n 1}(t) & \cdots & a_{n n}(t)
\end{array}\right], \mathbf{b}(t)=\left[\begin{array}{c}
b_{1}(t) \\
\vdots \\
b_{n}(t)
\end{array}\right], \mathbf{x}(t)=\left[\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right] . \\
& x_{1}^{\prime}=a_{11}(t) x_{1}+\cdots+a_{1 n}(t) x_{n}+b_{1}(t) \\
& \mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+\mathbf{b}(t) \Leftrightarrow \\
& x_{n}^{\prime}=a_{n 1}(t) x_{1}+\cdots+a_{n n}(t) x_{n}+b_{n}(t) .
\end{aligned}
$$

$n \times n$ linear differential systems (5.4).

Example

Find the explicit expression for the linear system $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{b}$ in the case that

$$
A=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right], \quad \mathbf{b}(t)=\left[\begin{array}{c}
e^{t} \\
2 e^{3 t}
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
$$

$n \times n$ linear differential systems (5.4).

Example

Find the explicit expression for the linear system $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{b}$ in the case that

$$
A=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right], \quad \mathbf{b}(t)=\left[\begin{array}{c}
e^{t} \\
2 e^{3 t}
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
$$

Solution: The 2×2 linear system is given by

$$
\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
e^{t} \\
2 e^{3 t}
\end{array}\right] .
$$

$n \times n$ linear differential systems (5.4).

Example

Find the explicit expression for the linear system $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{b}$ in the case that

$$
A=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right], \quad \mathbf{b}(t)=\left[\begin{array}{c}
e^{t} \\
2 e^{3 t}
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
$$

Solution: The 2×2 linear system is given by

$$
\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
e^{t} \\
2 e^{3 t}
\end{array}\right]
$$

That is,

$$
\begin{aligned}
& x_{1}^{\prime}(t)=x_{1}(t)+3 x_{2}(t)+e^{t} \\
& x_{2}^{\prime}(t)=3 x_{1}(t)+x_{2}(t)+2 e^{3 t}
\end{aligned}
$$

$n \times n$ linear differential systems (5.4).

Remark: Derivatives of vector-valued functions are computed component-wise.

$n \times n$ linear differential systems (5.4).

Remark: Derivatives of vector-valued functions are computed component-wise.

$$
\mathbf{x}^{\prime}(t)=\left[\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right]^{\prime}
$$

$n \times n$ linear differential systems (5.4).

Remark: Derivatives of vector-valued functions are computed component-wise.

$$
\mathbf{x}^{\prime}(t)=\left[\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right]^{\prime}=\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
\vdots \\
x_{n}^{\prime}(t)
\end{array}\right]
$$

$n \times n$ linear differential systems (5.4).

Remark: Derivatives of vector-valued functions are computed component-wise.

$$
\mathbf{x}^{\prime}(t)=\left[\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right]^{\prime}=\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
\vdots \\
x_{n}^{\prime}(t)
\end{array}\right]
$$

Example
Compute \mathbf{x}^{\prime} for $\mathbf{x}(t)=\left[\begin{array}{c}e^{2 t} \\ \sin (t) \\ \cos (t)\end{array}\right]$.

$n \times n$ linear differential systems (5.4).

Remark: Derivatives of vector-valued functions are computed component-wise.

$$
\mathbf{x}^{\prime}(t)=\left[\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right]^{\prime}=\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
\vdots \\
x_{n}^{\prime}(t)
\end{array}\right] .
$$

Example
Compute \mathbf{x}^{\prime} for $\mathbf{x}(t)=\left[\begin{array}{c}e^{2 t} \\ \sin (t) \\ \cos (t)\end{array}\right]$.
Solution:

$$
\mathbf{x}^{\prime}(t)\left[\begin{array}{c}
e^{2 t} \\
\sin (t) \\
\cos (t)
\end{array}\right]^{\prime}
$$

$n \times n$ linear differential systems (5.4).

Remark: Derivatives of vector-valued functions are computed component-wise.

$$
\mathbf{x}^{\prime}(t)=\left[\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right]^{\prime}=\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
\vdots \\
x_{n}^{\prime}(t)
\end{array}\right] .
$$

Example
Compute \mathbf{x}^{\prime} for $\mathbf{x}(t)=\left[\begin{array}{c}e^{2 t} \\ \sin (t) \\ \cos (t)\end{array}\right]$.
Solution:

$$
\mathbf{x}^{\prime}(t)\left[\begin{array}{c}
e^{2 t} \\
\sin (t) \\
\cos (t)
\end{array}\right]^{\prime}=\left[\begin{array}{c}
2 e^{2 t} \\
\cos (t) \\
-\sin (t)
\end{array}\right]
$$

Linear Algebra and differential systems (Sect. 5.4, 5.5, 5.6)

- Eigenvalues, eigenvectors of a matrix (5.5).
- Computing eigenvalues and eigenvectors (5.5).
- Diagonalizable matrices (5.5).
- $n \times n$ linear differential systems (5.4).
- Constant coefficients homogenoues systems (5.6).
- Examples: 2×2 linear systems (5.6).

Constant coefficients homogenoues systems (5.6).

Summary:

- Given an $n \times n$ matrix $A(t)$, n-vector $\mathbf{b}(t)$, find $\mathbf{x}(t)$ solution

$$
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+\mathbf{b}(t)
$$

Constant coefficients homogenoues systems (5.6).

Summary:

- Given an $n \times n$ matrix $A(t)$, n-vector $\mathbf{b}(t)$, find $\mathbf{x}(t)$ solution

$$
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+\mathbf{b}(t)
$$

- The system is homogeneous iff $\mathbf{b}=0$, that is,

$$
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)
$$

Constant coefficients homogenoues systems (5.6).

Summary:

- Given an $n \times n$ matrix $A(t)$, n-vector $\mathbf{b}(t)$, find $\mathbf{x}(t)$ solution

$$
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+\mathbf{b}(t)
$$

- The system is homogeneous iff $\mathbf{b}=0$, that is,

$$
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)
$$

- The system has constant coefficients iff matrix A does not depend on t, that is,

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)+\mathbf{b}(t)
$$

Constant coefficients homogenoues systems (5.6).

Summary:

- Given an $n \times n$ matrix $A(t)$, n-vector $\mathbf{b}(t)$, find $\mathbf{x}(t)$ solution

$$
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+\mathbf{b}(t)
$$

- The system is homogeneous iff $\mathbf{b}=0$, that is,

$$
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)
$$

- The system has constant coefficients iff matrix A does not depend on t, that is,

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)+\mathbf{b}(t)
$$

- We study homogeneous, constant coefficient systems, that is,

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t) .
$$

Constant coefficients homogenoues systems (5.6).

Theorem (Diagonalizable matrix)
If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$ and corresponding eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)
$$

is given by the expression below, where $c_{1}, \cdots, c_{n} \in \mathbb{R}$,

$$
\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+\cdots+c_{n} \mathbf{v}_{n} e^{\lambda_{n} t}
$$

Constant coefficients homogenoues systems (5.6).

 Theorem (Diagonalizable matrix)If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$ and corresponding eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)
$$

is given by the expression below, where $c_{1}, \cdots, c_{n} \in \mathbb{R}$,

$$
\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+\cdots+c_{n} \mathbf{v}_{n} e^{\lambda_{n} t}
$$

Remark:

- The differential system for the variable \mathbf{x} is coupled,

Constant coefficients homogenoues systems (5.6).

 Theorem (Diagonalizable matrix)If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$ and corresponding eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)
$$

is given by the expression below, where $c_{1}, \cdots, c_{n} \in \mathbb{R}$,

$$
\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+\cdots+c_{n} \mathbf{v}_{n} e^{\lambda_{n} t}
$$

Remark:

- The differential system for the variable \mathbf{x} is coupled, that is, A is not diagonal.

Constant coefficients homogenoues systems (5.6).

 Theorem (Diagonalizable matrix)If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$ and corresponding eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)
$$

is given by the expression below, where $c_{1}, \cdots, c_{n} \in \mathbb{R}$,

$$
\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+\cdots+c_{n} \mathbf{v}_{n} e^{\lambda_{n} t}
$$

Remark:

- The differential system for the variable \mathbf{x} is coupled, that is, A is not diagonal.
- We transform the system into a system for a variable y such that the system for \mathbf{y} is decoupled,

Constant coefficients homogenoues systems (5.6).

Theorem (Diagonalizable matrix)
If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$ and corresponding eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)
$$

is given by the expression below, where $c_{1}, \cdots, c_{n} \in \mathbb{R}$,

$$
\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+\cdots+c_{n} \mathbf{v}_{n} e^{\lambda_{n} t}
$$

Remark:

- The differential system for the variable \mathbf{x} is coupled, that is, A is not diagonal.
- We transform the system into a system for a variable y such that the system for \mathbf{y} is decoupled, that is, $\mathbf{y}^{\prime}(t)=D \mathbf{y}(t)$,

Constant coefficients homogenoues systems (5.6).

Theorem (Diagonalizable matrix)
If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$ and corresponding eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)
$$

is given by the expression below, where $c_{1}, \cdots, c_{n} \in \mathbb{R}$,

$$
\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+\cdots+c_{n} \mathbf{v}_{n} e^{\lambda_{n} t}
$$

Remark:

- The differential system for the variable \mathbf{x} is coupled, that is, A is not diagonal.
- We transform the system into a system for a variable y such that the system for \mathbf{y} is decoupled, that is, $\mathbf{y}^{\prime}(t)=D \mathbf{y}(t)$, where D is a diagonal matrix.

Constant coefficients homogenoues systems (5.6).

Theorem (Diagonalizable matrix)
If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$ and corresponding eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)
$$

is given by the expression below, where $c_{1}, \cdots, c_{n} \in \mathbb{R}$,

$$
\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+\cdots+c_{n} \mathbf{v}_{n} e^{\lambda_{n} t}
$$

Remark:

- The differential system for the variable \mathbf{x} is coupled, that is, A is not diagonal.
- We transform the system into a system for a variable y such that the system for \mathbf{y} is decoupled, that is, $\mathbf{y}^{\prime}(t)=D \mathbf{y}(t)$, where D is a diagonal matrix.
- We solve for $\mathbf{y}(t)$ and we transform back to $\mathbf{x}(t)$.

Linear Algebra and differential systems (Sect. 5.4, 5.5, 5.6)

- Eigenvalues, eigenvectors of a matrix (5.5).
- Computing eigenvalues and eigenvectors (5.5).
- Diagonalizable matrices (5.5).
- $n \times n$ linear differential systems (5.4).
- Constant coefficients homogenoues systems (5.6).
- Examples: 2×2 linear systems (5.6).

Examples: 2×2 linear systems (5.6).

Example
Find the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.

Examples: 2×2 linear systems (5.6).

Example
Find the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Find eigenvalues and eigenvectors of A.

Examples: 2×2 linear systems (5.6).

Example
Find the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Find eigenvalues and eigenvectors of A. We found that:

$$
\lambda_{1}=4, \quad \mathbf{v}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Examples: 2×2 linear systems (5.6).

Example
Find the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Find eigenvalues and eigenvectors of A. We found that:

$$
\lambda_{1}=4, \quad \mathbf{v}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \text { and } \quad \lambda_{2}=-2, \quad \mathbf{v}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Examples: 2×2 linear systems (5.6).

Example

Find the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Find eigenvalues and eigenvectors of A. We found that:

$$
\lambda_{1}=4, \quad \mathbf{v}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \text { and } \quad \lambda_{2}=-2, \quad \mathbf{v}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Fundamental solutions are

$$
\mathbf{x}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}
$$

Examples: 2×2 linear systems (5.6).

Example

Find the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Find eigenvalues and eigenvectors of A. We found that:

$$
\lambda_{1}=4, \quad \mathbf{v}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \text { and } \quad \lambda_{2}=-2, \quad \mathbf{v}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Fundamental solutions are

$$
\mathbf{x}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}, \quad \mathbf{x}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}
$$

Examples: 2×2 linear systems (5.6).

Example

Find the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Find eigenvalues and eigenvectors of A. We found that:

$$
\lambda_{1}=4, \quad \mathbf{v}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \text { and } \quad \lambda_{2}=-2, \quad \mathbf{v}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Fundamental solutions are

$$
\mathbf{x}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}, \quad \mathbf{x}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}
$$

The general solution is $\mathbf{x}(t)=c_{1} \mathbf{x}^{(1)}(t)+c_{2} \mathbf{x}^{(2)}(t)$,

Examples: 2×2 linear systems (5.6).

Example

Find the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Find eigenvalues and eigenvectors of A. We found that:

$$
\lambda_{1}=4, \quad \mathbf{v}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \text { and } \quad \lambda_{2}=-2, \quad \mathbf{v}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Fundamental solutions are

$$
\mathbf{x}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}, \quad \mathbf{x}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}
$$

The general solution is $\mathbf{x}(t)=c_{1} \mathbf{x}^{(1)}(t)+c_{2} \mathbf{x}^{(2)}(t)$, that is,

$$
\mathbf{x}(t)=c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}+c_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

Examples: 2×2 linear systems (5.6).

Example
Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.

Examples: 2×2 linear systems (5.6).

Example
Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(1) \prime}$

Examples: 2×2 linear systems (5.6).

Example
Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(1) \prime}$ and then we compare it with $A \mathbf{x}^{(1)}$,

Examples: 2×2 linear systems (5.6).

Example

Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(1) \prime}$ and then we compare it with $A \mathbf{x}^{(1)}$,

$$
\mathbf{x}^{(1) \prime}(t)=\left[\begin{array}{l}
e^{4 t} \\
e^{4 t}
\end{array}\right]^{\prime}
$$

Examples: 2×2 linear systems (5.6).

Example

Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(1) \prime}$ and then we compare it with $A \mathbf{x}^{(1)}$,

$$
\mathbf{x}^{(1) \prime}(t)=\left[\begin{array}{l}
e^{4 t} \\
e^{4 t}
\end{array}\right]^{\prime}=\left[\begin{array}{l}
4 e^{4 t} \\
4 e^{4 t}
\end{array}\right]
$$

Examples: 2×2 linear systems (5.6).

Example

Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(1) \prime}$ and then we compare it with $A \mathbf{x}^{(1)}$,

$$
\mathbf{x}^{(1) \prime}(t)=\left[\begin{array}{l}
e^{4 t} \\
e^{4 t}
\end{array}\right]^{\prime}=\left[\begin{array}{l}
4 e^{4 t} \\
4 e^{4 t}
\end{array}\right]=4\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}
$$

Examples: 2×2 linear systems (5.6).

Example

Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(1) \prime}$ and then we compare it with $A \mathbf{x}^{(1)}$,

$$
\mathbf{x}^{(1) \prime}(t)=\left[\begin{array}{c}
e^{4 t} \\
e^{4 t}
\end{array}\right]^{\prime}=\left[\begin{array}{l}
4 e^{4 t} \\
4 e^{4 t}
\end{array}\right]=4\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t} \quad \Rightarrow \quad \mathbf{x}^{(1) \prime}=4 \mathbf{x}^{(1)} .
$$

Examples: 2×2 linear systems (5.6).

Example

Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(1) \prime}$ and then we compare it with $A \mathbf{x}^{(1)}$,

$$
\mathbf{x}^{(1) \prime}(t)=\left[\begin{array}{c}
e^{4 t} \\
e^{4 t}
\end{array}\right]^{\prime}=\left[\begin{array}{l}
4 e^{4 t} \\
4 e^{4 t}
\end{array}\right]=4\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t} \quad \Rightarrow \quad \mathbf{x}^{(1) \prime}=4 \mathbf{x}^{(1)} .
$$

$A \mathbf{x}^{(1)}$

Examples: 2×2 linear systems (5.6).

Example

Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(1) \prime}$ and then we compare it with $A \mathbf{x}^{(1)}$,

$$
\begin{aligned}
& \mathbf{x}^{(1) \prime}(t)=\left[\begin{array}{l}
e^{4 t} \\
e^{4 t}
\end{array}\right]^{\prime}=\left[\begin{array}{l}
4 e^{4 t} \\
4 e^{4 t}
\end{array}\right]=4\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t} \quad \Rightarrow \quad \mathbf{x}^{(1) \prime}=4 \mathbf{x}^{(1)} . \\
& A \mathbf{x}^{(1)}=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}
\end{aligned}
$$

Examples: 2×2 linear systems (5.6).

Example

Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(1) \prime}$ and then we compare it with $A \mathbf{x}^{(1)}$,

$$
\begin{aligned}
& \mathbf{x}^{(1) \prime}(t)=\left[\begin{array}{l}
e^{4 t} \\
e^{4 t}
\end{array}\right]^{\prime}=\left[\begin{array}{l}
4 e^{4 t} \\
4 e^{4 t}
\end{array}\right]=4\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t} \quad \Rightarrow \quad \mathbf{x}^{(1) \prime}=4 \mathbf{x}^{(1)} . \\
& A \mathbf{x}^{(1)}=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}=\left[\begin{array}{l}
4 \\
4
\end{array}\right] e^{4 t}
\end{aligned}
$$

Examples: 2×2 linear systems (5.6).

Example

Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(1) \prime}$ and then we compare it with $A \mathbf{x}^{(1)}$,

$$
\begin{aligned}
& \mathbf{x}^{(1) \prime}(t)=\left[\begin{array}{l}
e^{4 t} \\
e^{4 t}
\end{array}\right]^{\prime}=\left[\begin{array}{l}
4 e^{4 t} \\
4 e^{4 t}
\end{array}\right]=4\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t} \Rightarrow \mathbf{x}^{(1) \prime}=4 \mathbf{x}^{(1)} . \\
& A \mathbf{x}^{(1)}=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}=\left[\begin{array}{l}
4 \\
4
\end{array}\right] e^{4 t}=4\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}
\end{aligned}
$$

Examples: 2×2 linear systems (5.6).

Example

Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(1) \prime}$ and then we compare it with $A \mathbf{x}^{(1)}$,

$$
\begin{gathered}
\mathbf{x}^{(1) \prime}(t)=\left[\begin{array}{l}
e^{4 t} \\
e^{4 t}
\end{array}\right]^{\prime}=\left[\begin{array}{l}
4 e^{4 t} \\
4 e^{4 t}
\end{array}\right]=4\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t} \Rightarrow \mathbf{x}^{(1) \prime}=4 \mathbf{x}^{(1)} . \\
A \mathbf{x}^{(1)}=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}=\left[\begin{array}{l}
4 \\
4
\end{array}\right] e^{4 t}=4\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t} \Rightarrow A \mathbf{x}^{(1)}=4 \mathbf{x}^{(1)} .
\end{gathered}
$$

Examples: 2×2 linear systems (5.6).

Example

Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(1) \prime}$ and then we compare it with $A \mathbf{x}^{(1)}$,

$$
\begin{gathered}
\mathbf{x}^{(1) \prime}(t)=\left[\begin{array}{l}
e^{4 t} \\
e^{4 t}
\end{array}\right]^{\prime}=\left[\begin{array}{l}
4 e^{4 t} \\
4 e^{4 t}
\end{array}\right]=4\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t} \Rightarrow \mathbf{x}^{(1) \prime}=4 \mathbf{x}^{(1)} . \\
A \mathbf{x}^{(1)}=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}=\left[\begin{array}{l}
4 \\
4
\end{array}\right] e^{4 t}=4\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t} \Rightarrow A \mathbf{x}^{(1)}=4 \mathbf{x}^{(1)} .
\end{gathered}
$$

We conclude that $\mathbf{x}^{(1) \prime}=A \mathbf{x}^{(1)}$.

Examples: 2×2 linear systems (5.6).

Example
Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.

Examples: 2×2 linear systems (5.6).

Example
Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(2) \text { ' }}$

Examples: 2×2 linear systems (5.6).

Example
Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(2) \prime}$ and then we compare it with $A \mathbf{x}^{(2)}$,

Examples: 2×2 linear systems (5.6).

Example
Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(2) \prime}$ and then we compare it with $A \mathbf{x}^{(2)}$,

$$
\mathbf{x}^{(2) \prime}=\left[\begin{array}{c}
-e^{-2 t} \\
e^{-2 t}
\end{array}\right]^{\prime}
$$

Examples: 2×2 linear systems (5.6).

Example
Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(2) \prime}$ and then we compare it with $A \mathbf{x}^{(2)}$,

$$
\mathbf{x}^{(2) \prime}=\left[\begin{array}{c}
-e^{-2 t} \\
e^{-2 t}
\end{array}\right]^{\prime}=\left[\begin{array}{c}
2 e^{-2 t} \\
-2 e^{-2 t}
\end{array}\right]
$$

Examples: 2×2 linear systems (5.6).

Example
Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(2) \prime}$ and then we compare it with $A \mathbf{x}^{(2)}$,

$$
\mathbf{x}^{(2) \prime}=\left[\begin{array}{c}
-e^{-2 t} \\
e^{-2 t}
\end{array}\right]^{\prime}=\left[\begin{array}{c}
2 e^{-2 t} \\
-2 e^{-2 t}
\end{array}\right]=-2\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}
$$

Examples: 2×2 linear systems (5.6).

Example
Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(2) \prime}$ and then we compare it with $A \mathbf{x}^{(2)}$,

$$
\mathbf{x}^{(2) \prime}=\left[\begin{array}{c}
-e^{-2 t} \\
e^{-2 t}
\end{array}\right]^{\prime}=\left[\begin{array}{c}
2 e^{-2 t} \\
-2 e^{-2 t}
\end{array}\right]=-2\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t} \Rightarrow \mathbf{x}^{(2) \prime}=-2 \mathbf{x}^{(2)} .
$$

Examples: 2×2 linear systems (5.6).

Example
Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(2) \prime}$ and then we compare it with $A \mathbf{x}^{(2)}$,

$$
\mathbf{x}^{(2) \prime}=\left[\begin{array}{c}
-e^{-2 t} \\
e^{-2 t}
\end{array}\right]^{\prime}=\left[\begin{array}{c}
2 e^{-2 t} \\
-2 e^{-2 t}
\end{array}\right]=-2\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t} \Rightarrow \mathbf{x}^{(2) \prime}=-2 \mathbf{x}^{(2)}
$$

$A \mathbf{x}^{(2)}$

Examples: 2×2 linear systems (5.6).

Example
Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(2) \prime}$ and then we compare it with $A \mathbf{x}^{(2)}$,

$$
\begin{gathered}
\mathbf{x}^{(2) \prime}=\left[\begin{array}{c}
-e^{-2 t} \\
e^{-2 t}
\end{array}\right]^{\prime}=\left[\begin{array}{c}
2 e^{-2 t} \\
-2 e^{-2 t}
\end{array}\right]=-2\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t} \Rightarrow \mathbf{x}^{(2) \prime}=-2 \mathbf{x}^{(2)} \\
A \mathbf{x}^{(2)}=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}
\end{gathered}
$$

Examples: 2×2 linear systems (5.6).

Example
Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.

Solution: We compute $\mathbf{x}^{(2) \prime}$ and then we compare it with $A \mathbf{x}^{(2)}$,

$$
\begin{gathered}
\mathbf{x}^{(2) \prime}=\left[\begin{array}{c}
-e^{-2 t} \\
e^{-2 t}
\end{array}\right]^{\prime}=\left[\begin{array}{c}
2 e^{-2 t} \\
-2 e^{-2 t}
\end{array}\right]=-2\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t} \Rightarrow \mathbf{x}^{(2) \prime}=-2 \mathbf{x}^{(2)} . \\
A \mathbf{x}^{(2)}=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}=\left[\begin{array}{c}
2 \\
-2
\end{array}\right] e^{-2 t}
\end{gathered}
$$

Examples: 2×2 linear systems (5.6).

Example
Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(2) \prime}$ and then we compare it with $A \mathbf{x}^{(2)}$,

$$
\begin{gathered}
\mathbf{x}^{(2) \prime}=\left[\begin{array}{c}
-e^{-2 t} \\
e^{-2 t}
\end{array}\right]^{\prime}=\left[\begin{array}{c}
2 e^{-2 t} \\
-2 e^{-2 t}
\end{array}\right]=-2\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t} \Rightarrow \mathbf{x}^{(2) \prime}=-2 \mathbf{x}^{(2)} . \\
A \mathbf{x}^{(2)}=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}=\left[\begin{array}{c}
2 \\
-2
\end{array}\right] e^{-2 t}=-2\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t},
\end{gathered}
$$

Examples: 2×2 linear systems (5.6).

Example

Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(2) \prime}$ and then we compare it with $\boldsymbol{A} \mathbf{x}^{(2)}$,

$$
\begin{gathered}
\mathbf{x}^{(2) \prime}=\left[\begin{array}{c}
-e^{-2 t} \\
e^{-2 t}
\end{array}\right]^{\prime}=\left[\begin{array}{c}
2 e^{-2 t} \\
-2 e^{-2 t}
\end{array}\right]=-2\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t} \Rightarrow \mathbf{x}^{(2) \prime}=-2 \mathbf{x}^{(2)} . \\
A \mathbf{x}^{(2)}=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}=\left[\begin{array}{c}
2 \\
-2
\end{array}\right] e^{-2 t}=-2\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t},
\end{gathered}
$$

So, $A \mathbf{x}^{(2)}=-2 \mathbf{x}^{(2)}$.

Examples: 2×2 linear systems (5.6).

Example

Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(2) \prime}$ and then we compare it with $\boldsymbol{A} \mathbf{x}^{(2)}$,

$$
\begin{gathered}
\mathbf{x}^{(2) \prime}=\left[\begin{array}{c}
-e^{-2 t} \\
e^{-2 t}
\end{array}\right]^{\prime}=\left[\begin{array}{c}
2 e^{-2 t} \\
-2 e^{-2 t}
\end{array}\right]=-2\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t} \Rightarrow \mathbf{x}^{(2) \prime}=-2 \mathbf{x}^{(2)} . \\
A \mathbf{x}^{(2)}=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}=\left[\begin{array}{c}
2 \\
-2
\end{array}\right] e^{-2 t}=-2\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t},
\end{gathered}
$$

So, $A \mathbf{x}^{(2)}=-2 \mathbf{x}^{(2)}$. Hence, $\mathbf{x}^{(2) \prime}=A \mathbf{x}^{(2)}$.

Examples: 2×2 linear systems (5.6).

Example
Solve the IVP $\mathbf{x}^{\prime}=A \mathbf{x}$, where $\mathbf{x}(0)=\left[\begin{array}{l}2 \\ 4\end{array}\right]$, and $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.

Examples: 2×2 linear systems (5.6).

Example
Solve the IVP $\mathbf{x}^{\prime}=A \mathbf{x}$, where $\mathbf{x}(0)=\left[\begin{array}{l}2 \\ 4\end{array}\right]$, and $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: The general solution: $\mathbf{x}(t)=c_{1}\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}+c_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$.

Examples: 2×2 linear systems (5.6).

Example
Solve the IVP $\mathbf{x}^{\prime}=A \mathbf{x}$, where $\mathbf{x}(0)=\left[\begin{array}{l}2 \\ 4\end{array}\right]$, and $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: The general solution: $\mathbf{x}(t)=c_{1}\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}+c_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$.
The initial condition is,

$$
\mathbf{x}(0)=\left[\begin{array}{l}
2 \\
4
\end{array}\right]
$$

Examples: 2×2 linear systems (5.6).

Example
Solve the IVP $\mathbf{x}^{\prime}=A \mathbf{x}$, where $\mathbf{x}(0)=\left[\begin{array}{l}2 \\ 4\end{array}\right]$, and $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: The general solution: $\mathbf{x}(t)=c_{1}\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}+c_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$.
The initial condition is,

$$
\mathbf{x}(0)=\left[\begin{array}{l}
2 \\
4
\end{array}\right]=c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] .
$$

Examples: 2×2 linear systems (5.6).

Example
Solve the IVP $\mathbf{x}^{\prime}=A \mathbf{x}$, where $\mathbf{x}(0)=\left[\begin{array}{l}2 \\ 4\end{array}\right]$, and $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: The general solution: $\mathbf{x}(t)=c_{1}\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}+c_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$.
The initial condition is,

$$
\mathbf{x}(0)=\left[\begin{array}{l}
2 \\
4
\end{array}\right]=c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

We need to solve the linear system

$$
\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
4
\end{array}\right]
$$

Examples: 2×2 linear systems (5.6).

Example
Solve the IVP $\mathbf{x}^{\prime}=A \mathbf{x}$, where $\mathbf{x}(0)=\left[\begin{array}{l}2 \\ 4\end{array}\right]$, and $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: The general solution: $\mathbf{x}(t)=c_{1}\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}+c_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$.
The initial condition is,

$$
\mathbf{x}(0)=\left[\begin{array}{l}
2 \\
4
\end{array}\right]=c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

We need to solve the linear system

$$
\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
4
\end{array}\right] \quad \Rightarrow \quad\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
4
\end{array}\right] .
$$

Examples: 2×2 linear systems (5.6).

Example
Solve the IVP $\mathbf{x}^{\prime}=A \mathbf{x}$, where $\mathbf{x}(0)=\left[\begin{array}{l}2 \\ 4\end{array}\right]$, and $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: The general solution: $\mathbf{x}(t)=c_{1}\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}+c_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$.
The initial condition is,

$$
\mathbf{x}(0)=\left[\begin{array}{l}
2 \\
4
\end{array}\right]=c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] .
$$

We need to solve the linear system

$$
\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
4
\end{array}\right] \quad \Rightarrow \quad\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
4
\end{array}\right] .
$$

Therefore, $\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}3 \\ 1\end{array}\right]$,

Examples: 2×2 linear systems (5.6).

Example
Solve the IVP $\mathbf{x}^{\prime}=A \mathbf{x}$, where $\mathbf{x}(0)=\left[\begin{array}{l}2 \\ 4\end{array}\right]$, and $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: The general solution: $\mathbf{x}(t)=c_{1}\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}+c_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$.
The initial condition is,

$$
\mathbf{x}(0)=\left[\begin{array}{l}
2 \\
4
\end{array}\right]=c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] .
$$

We need to solve the linear system

$$
\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
4
\end{array}\right] \Rightarrow\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
4
\end{array}\right] .
$$

Therefore, $\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}3 \\ 1\end{array}\right]$, hence $\mathbf{x}(t)=3\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}+\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t} . \triangleleft$

Constant coefficients homogenoues systems (5.6).

Proof: Since A is diagonalizable, we know that $A=P D P^{-1}$,

Constant coefficients homogenoues systems (5.6).

Proof: Since A is diagonalizable, we know that $A=P D P^{-1}$, with

$$
P=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right], \quad D=\operatorname{diag}\left[\lambda_{1}, \cdots, \lambda_{n}\right] .
$$

Constant coefficients homogenoues systems (5.6).

Proof: Since A is diagonalizable, we know that $A=P D P^{-1}$, with

$$
P=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right], \quad D=\operatorname{diag}\left[\lambda_{1}, \cdots, \lambda_{n}\right] .
$$

Equivalently, $P^{-1} A P=D$.

Constant coefficients homogenoues systems (5.6).

Proof: Since A is diagonalizable, we know that $A=P D P^{-1}$, with

$$
P=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right], \quad D=\operatorname{diag}\left[\lambda_{1}, \cdots, \lambda_{n}\right] .
$$

Equivalently, $P^{-1} A P=D$. Multiply $\mathbf{x}^{\prime}=A \mathbf{x}$ by P^{-1} on the left

$$
P^{-1} \mathbf{x}^{\prime}(t)=P^{-1} A \mathbf{x}(t)
$$

Constant coefficients homogenoues systems (5.6).

Proof: Since A is diagonalizable, we know that $A=P D P^{-1}$, with

$$
P=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right], \quad D=\operatorname{diag}\left[\lambda_{1}, \cdots, \lambda_{n}\right] .
$$

Equivalently, $P^{-1} A P=D$. Multiply $\mathbf{x}^{\prime}=A \mathbf{x}$ by P^{-1} on the left

$$
P^{-1} \mathbf{x}^{\prime}(t)=P^{-1} A \mathbf{x}(t) \quad \Leftrightarrow \quad\left(P^{-1} \mathbf{x}\right)^{\prime}=\left(P^{-1} A P\right)\left(P^{-1} \mathbf{x}\right) .
$$

Constant coefficients homogenoues systems (5.6).

Proof: Since A is diagonalizable, we know that $A=P D P^{-1}$, with

$$
P=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right], \quad D=\operatorname{diag}\left[\lambda_{1}, \cdots, \lambda_{n}\right] .
$$

Equivalently, $P^{-1} A P=D$. Multiply $\mathbf{x}^{\prime}=A \mathbf{x}$ by P^{-1} on the left

$$
P^{-1} \mathbf{x}^{\prime}(t)=P^{-1} A \mathbf{x}(t) \quad \Leftrightarrow \quad\left(P^{-1} \mathbf{x}\right)^{\prime}=\left(P^{-1} A P\right)\left(P^{-1} \mathbf{x}\right) .
$$

Introduce the new unknown $\mathbf{y}(t)=P^{-1} \mathbf{x}(t)$,

Constant coefficients homogenoues systems (5.6).

Proof: Since A is diagonalizable, we know that $A=P D P^{-1}$, with

$$
P=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right], \quad D=\operatorname{diag}\left[\lambda_{1}, \cdots, \lambda_{n}\right] .
$$

Equivalently, $P^{-1} A P=D$. Multiply $\mathbf{x}^{\prime}=A \mathbf{x}$ by P^{-1} on the left

$$
P^{-1} \mathbf{x}^{\prime}(t)=P^{-1} A \mathbf{x}(t) \quad \Leftrightarrow \quad\left(P^{-1} \mathbf{x}\right)^{\prime}=\left(P^{-1} A P\right)\left(P^{-1} \mathbf{x}\right) .
$$

Introduce the new unknown $\mathbf{y}(t)=P^{-1} \mathbf{x}(t)$, then

$$
\mathbf{y}^{\prime}(t)=D \mathbf{y}(t)
$$

Constant coefficients homogenoues systems (5.6).

Proof: Since A is diagonalizable, we know that $A=P D P^{-1}$, with

$$
P=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right], \quad D=\operatorname{diag}\left[\lambda_{1}, \cdots, \lambda_{n}\right] .
$$

Equivalently, $P^{-1} A P=D$. Multiply $\mathbf{x}^{\prime}=A \mathbf{x}$ by P^{-1} on the left

$$
P^{-1} \mathbf{x}^{\prime}(t)=P^{-1} A \mathbf{x}(t) \quad \Leftrightarrow \quad\left(P^{-1} \mathbf{x}\right)^{\prime}=\left(P^{-1} A P\right)\left(P^{-1} \mathbf{x}\right)
$$

Introduce the new unknown $\mathbf{y}(t)=P^{-1} \mathbf{x}(t)$, then

$$
\mathbf{y}^{\prime}(t)=D \mathbf{y}(t) \Leftrightarrow\left\{\begin{array}{c}
y_{1}^{\prime}(t)=\lambda_{1} y_{1}(t) \\
\vdots \\
y_{n}^{\prime}(t)=\lambda_{n} y_{n}(t)
\end{array}\right.
$$

Constant coefficients homogenoues systems (5.6).

Proof: Since A is diagonalizable, we know that $A=P D P^{-1}$, with

$$
P=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right], \quad D=\operatorname{diag}\left[\lambda_{1}, \cdots, \lambda_{n}\right] .
$$

Equivalently, $P^{-1} A P=D$. Multiply $\mathbf{x}^{\prime}=A \mathbf{x}$ by P^{-1} on the left

$$
P^{-1} \mathbf{x}^{\prime}(t)=P^{-1} A \mathbf{x}(t) \quad \Leftrightarrow \quad\left(P^{-1} \mathbf{x}\right)^{\prime}=\left(P^{-1} A P\right)\left(P^{-1} \mathbf{x}\right) .
$$

Introduce the new unknown $\mathbf{y}(t)=P^{-1} \mathbf{x}(t)$, then

$$
\mathbf{y}^{\prime}(t)=D \mathbf{y}(t) \Leftrightarrow\left\{\begin{array}{c}
y_{1}^{\prime}(t)=\lambda_{1} y_{1}(t), \\
\vdots \\
y_{n}^{\prime}(t)=\lambda_{n} y_{n}(t),
\end{array} \Rightarrow \mathbf{y}(t)=\left[\begin{array}{c}
c_{1} e^{\lambda_{1} t} \\
\vdots \\
c_{n} e^{\lambda_{n} t}
\end{array}\right] .\right.
$$

Constant coefficients homogenoues systems (5.6).
Proof: Recall: $\mathbf{y}(t)=P^{-1} \mathbf{x}(t)$, and $\mathbf{y}(t)=\left[\begin{array}{c}c_{1} e^{\lambda_{1} t} \\ \vdots \\ c_{n} e^{\lambda_{n} t}\end{array}\right]$.

Constant coefficients homogenoues systems (5.6).
Proof: Recall: $\mathbf{y}(t)=P^{-1} \mathbf{x}(t)$, and $\mathbf{y}(t)=\left[\begin{array}{c}c_{1} e^{\lambda_{1} t} \\ \vdots \\ c_{n} e^{\lambda_{n} t}\end{array}\right]$.
Transform back to $\mathbf{x}(t)$,

Constant coefficients homogenoues systems (5.6).
Proof: Recall: $\mathbf{y}(t)=P^{-1} \mathbf{x}(t)$, and $\mathbf{y}(t)=\left[\begin{array}{c}c_{1} e^{\lambda_{1} t} \\ \vdots \\ c_{n} e^{\lambda_{n} t}\end{array}\right]$.
Transform back to $\mathbf{x}(t)$, that is,

$$
\mathbf{x}(t)=P \mathbf{y}(t)
$$

Constant coefficients homogenoues systems (5.6).
Proof: Recall: $\mathbf{y}(t)=P^{-1} \mathbf{x}(t)$, and $\mathbf{y}(t)=\left[\begin{array}{c}c_{1} e^{\lambda_{1} t} \\ \vdots \\ c_{n} e^{\lambda_{n} t}\end{array}\right]$.
Transform back to $\mathbf{x}(t)$, that is,

$$
\mathbf{x}(t)=P \mathbf{y}(t)=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right]\left[\begin{array}{c}
c_{1} e^{\lambda_{1} t} \\
\vdots \\
c_{n} e^{\lambda_{n} t}
\end{array}\right]
$$

Constant coefficients homogenoues systems (5.6).
Proof: Recall: $\mathbf{y}(t)=P^{-1} \mathbf{x}(t)$, and $\mathbf{y}(t)=\left[\begin{array}{c}c_{1} e^{\lambda_{1} t} \\ \vdots \\ c_{n} \mathrm{e}^{\lambda_{n} t}\end{array}\right]$.
Transform back to $\mathbf{x}(t)$, that is,

$$
\mathbf{x}(t)=P \mathbf{y}(t)=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right]\left[\begin{array}{c}
c_{1} e^{\lambda_{1} t} \\
\vdots \\
c_{n} e^{\lambda_{n} t}
\end{array}\right]
$$

We conclude: $\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+\cdots+c_{n} \mathbf{v}_{n} e^{\lambda_{n} t}$.

Constant coefficients homogenoues systems (5.6).

Proof: Recall: $\mathbf{y}(t)=P^{-1} \mathbf{x}(t)$, and $\mathbf{y}(t)=\left[\begin{array}{c}c_{1} e^{\lambda_{1} t} \\ \vdots \\ c_{n} e^{\lambda_{n} t}\end{array}\right]$.
Transform back to $\mathbf{x}(t)$, that is,

$$
\mathbf{x}(t)=P \mathbf{y}(t)=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right]\left[\begin{array}{c}
c_{1} e^{\lambda_{1} t} \\
\vdots \\
c_{n} e^{\lambda_{n} t}
\end{array}\right]
$$

We conclude: $\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+\cdots+c_{n} \mathbf{v}_{n} e^{\lambda_{n} t}$.
Remark:

- $A \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}$.

Constant coefficients homogenoues systems (5.6).

Proof: Recall: $\mathbf{y}(t)=P^{-1} \mathbf{x}(t)$, and $\mathbf{y}(t)=\left[\begin{array}{c}c_{1} e^{\lambda_{1} t} \\ \vdots \\ c_{n} e^{\lambda_{n} t}\end{array}\right]$.
Transform back to $\mathbf{x}(t)$, that is,

$$
\mathbf{x}(t)=P \mathbf{y}(t)=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right]\left[\begin{array}{c}
c_{1} e^{\lambda_{1} t} \\
\vdots \\
c_{n} e^{\lambda_{n} t}
\end{array}\right]
$$

We conclude: $\quad \mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+\cdots+c_{n} \mathbf{v}_{n} e^{\lambda_{n} t}$.
Remark:

- $A \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}$.
- The eigenvalues and eigenvectors of A are crucial to solve the differential linear system $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$.

