Review of Linear Algebra (Sect. 5.2, 5.3)

This Class:

n x n systems of linear algebraic equations.

v

The matrix-vector product.

>
» A matrix is a function.

» The inverse of a square matrix.
>

The determinant of a square matrix.

Next Class:

» Eigenvalues, eigenvectors of a matrix.
» Computing eigenvalues and eigenvectors.

» Diagonalizable matrices.



n X n systems of linear algebraic equations.

Definition
An n x n algebraic system of linear equations is the following:
Given constants ajj and b;, where indices /,j=1---,n>1, find

the constants x; solutions of the system

aix + - 4 aipxn = by,

an1X; + -+ annXn = bp.

The system is called homogeneous iff the sources vanish, that is,
bp=---=b,=0.
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n X n systems of linear algebraic equations.

Definition
An n x n algebraic system of linear equations is the following:
Given constants ajj and b;, where indices /,j=1---,n>1, find

the constants x; solutions of the system

aix + - 4 aipxn = by,

an1X; + -+ annXn = bp.

The system is called homogeneous iff the sources vanish, that is,
bp=---=b,=0.
Example
X1+2X2+X3 = 17
2X1 — X2 == 0,
2% 2: 3x3: —3x;+x + 3x; = 24,

—x; + 2x, = 3.
! 2 X2_4X3:_1.
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The matrix-vector product.

Definition
The matrix-vector product is the matrix multiplication of an n x n
matrix A and an n-vector v, resulting in an n-vector Av, that is,

A v — Av
nxn nxl nxl

Example
Find the matrix-vector product Av for

S}

Solution: This is a straightforward computation,

SRR



n X n systems of linear algebraic equations.

Remark: Matrix notation is useful to work with systems of linear
algebraic equations.



n X n systems of linear algebraic equations.

Remark: Matrix notation is useful to work with systems of linear
algebraic equations.

Introduce the coefficient matrix, the source vector, and the

unknown vector, respectively,

air -+ ain b, X
A= ’ b= s X =

dnl ' @ann b, Xn



n X n systems of linear algebraic equations.

Remark: Matrix notation is useful to work with systems of linear
algebraic equations.

Introduce the coefficient matrix, the source vector, and the
unknown vector, respectively,

air -+ ain b, X
A= ’ b= s X =

dnl ' @ann b, Xn

Using this matrix notation and the matrix-vector product, the
linear algebraic system above can be written as

aix + -+ ainxn = by,

an1 X, + -+ + annXn = bp.



n X n systems of linear algebraic equations.

Remark: Matrix notation is useful to work with systems of linear
algebraic equations.

Introduce the coefficient matrix, the source vector, and the
unknown vector, respectively,
air - aun b, X
A= ’ b= s X =
dnl - dnn b Xn

Using this matrix notation and the matrix-vector product, the
linear algebraic system above can be written as

a - X b
aix + -+ ainxn = by, 1 1n ! !

dnl ' ann Xn by,
an1 X, + -+ + annXn = bp.



n X n systems of linear algebraic equations.

Remark: Matrix notation is useful to work with systems of linear
algebraic equations.

Introduce the coefficient matrix, the source vector, and the
unknown vector, respectively,
air - aun b, X
A= ’ b= s X =
dnl - dnn b Xn

Using this matrix notation and the matrix-vector product, the
linear algebraic system above can be written as

a - X b
aix + -+ ainxn = by, 1 1n ! !

dnl - dnn Xn b,
anX + -+ + apnXn = bp. Ax = b.
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n X n systems of linear algebraic equations.

Example

Find the solution to the linear system Ax = b, where
2 -1 0
=155 el
Solution: The linear system is

[ 2 —1] [xl] B [O] - 2x1 — xo = 0,
-1 2| |x| |3 —x1 + 2xp = 3.
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n X n systems of linear algebraic equations.

Example

Find the solution to the linear system Ax = b, where
2 -1 0
=155 el
Solution: The linear system is

2 —1] [x1 0 2x1 —x2 =0,
= &
-1 2 X 3 —x1 + 2xp = 3.
Since xo = 2x7, then —x3 +4x; = 3, that is x; = 1, hence x» = 2.

The solution is: x = B] <
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Remark:

» The matrix-vector product provides a new interpretation for a
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» An n x n matrix A is a function A: R" — R", given by
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A matrix is a function.

Remark:

» The matrix-vector product provides a new interpretation for a
matrix. A matrix is a function.

» An n x n matrix A is a function A: R" — R", given by
v i— Av.
2 -1
-1

2} :R?2 — R?, is a function that

For example, A = [

associates 1 — -1 since
3 5 1 1

2 1y (1] |1
-1 2 3l |5 |
» A matrix is a function, and matrix multiplication is equivalent
to function composition.
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A matrix is a function.

Example
Show that A = [(1) _01] is a rotation in R? by 7/2

counterclockwise.

Solution: Matrix Ais 2 x 2, so A : R2 — R2. Given x = [ 1] € R?,
o =11 [x]  [-x 0 -1 1] o
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A matrix is a function.

Example
Show that A = [(1) _01] is a rotation in R? by 7/2

counterclockwise.

Solution: Matrix Ais 2 x 2, so A : R2 — R2. Given x = [ 1] € R?,
o =11 [x]  [-x 0 -1 1] o
S N e I R R
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Example
Write down the identity matrices b, I3, and /.
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Definition
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Definition
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Definition
An n x n matrix A is called invertible iff there exists a matrix,
denoted as A~1, such
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Example

1

12 2 ) 4173 =2
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The inverse of a square matrix.

Definition
An n x n matrix A is called invertible iff there exists a matrix,
denoted as A~1, such

(ANHA=1,,  AAY) =1,

Example

1

12 2 ) 4173 =2
Show that A = [1 3} has the inverse A" = 1 [_1 2]
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The inverse of a square matrix.

Definition
An n x n matrix A is called invertible iff there exists a matrix,
denoted as A~1, such

(ANHA=1,,  AAY) =1,

Example

1

Show that A = E ?,} has the inverse A~! = = [

-1 2

3 =2
2 .

Solution: We have to compute the product
2 2013 =2 1(4 0
-1y _ < _ 1 -1y _
R R R EH M DR

Check that (A_l)A = I, also holds. <
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The inverse of a square matrix.

Remark: Not every n x n matrix is invertible.

Theorem (2 x 2 case)

The matrix A = i S is invertible iff holds that

A = ad — bc # 0. Furthermore, if A is invertible, then
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The inverse of a square matrix.

Remark: Not every n x n matrix is invertible.

Theorem (2 x 2 case)
The matrix A = i S is invertible iff holds that
A = ad — bc # 0. Furthermore, if A is invertible, then

]
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Verify:
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The inverse of a square matrix.

Remark: Not every n x n matrix is invertible.

Theorem (2 x 2 case)
The matrix A = i S is invertible iff holds that
A = ad — bc # 0. Furthermore, if A is invertible, then

]

A |—c a
Verify:
1y _|a b1 | d —b _ 1 A —ab+ ba|
AlA )_[c d}A[—c a}_ALd—dc A ]_12'



The inverse of a square matrix.

Remark: Not every n x n matrix is invertible.

Theorem (2 x 2 case)
The matrix A = i S is invertible iff holds that
A = ad — bc # 0. Furthermore, if A is invertible, then

]

A |—c a
Verify:
1y _|a b1 | d —b _ 1 A —ab+ ba|
AlA )_[c d}A[—c a}_ALd—dc A ]_12'

It is not difficult to see that: (A_l)A = b, also holds.
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The inverse of a square matrix.

Example
2 2
. -1 _
Find A= for A= [1 3].
Solution:

We use the formula in the previous Theorem.
In this case: A =6 —2 =4, and
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The inverse of a square matrix.

Example
2 2
. -1 _
Find A= for A= [1 3].
Solution:

We use the formula in the previous Theorem.
In this case: A =6 —2 =4, and

1 d —b 1 3 =2
1 1 11
A _A[—c a] - A 4[—1 2]'



The inverse of a square matrix.

Example
2 2
. -1 _
Find A= for A= [1 3}
Solution:

We use the formula in the previous Theorem.
In this case: A =6 —2 =4, and

1 d —b 1 3 =2
1 1 11
A _A[—c a} - A 4[—1 2]'

Remark: The formula for the inverse matrix can be generalized to
n X n matrices having non-zero determinant.
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Definition

The determinant of a 2 x 2 matrix A = [i b] is the number

d
A = ad — bc.
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The determinant of a square matrix.

Definition

The determinant of a 2 x 2 matrix A = [i b] is the number

d
A = ad — bc.

Notation: The determinant can be denoted in different ways:

a b
A =det(A) = |A| = c d
Example
1 2
(a) ‘3 4‘ =4-6=-2.

®



The determinant of a square matrix.

Definition
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The determinant of a square matrix.

Definition

The determinant of a 2 x 2 matrix A = [i b] is the number

d
A = ad — bc.

Notation: The determinant can be denoted in different ways:
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A =det(A) = |A| = c d
Example
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The determinant of a square matrix.

Definition

The determinant of a 2 x 2 matrix A = [i b] is the number

d
A = ad — bc.

Notation: The determinant can be denoted in different ways:

a b
A =det(A) = |A| = c d
Example
(a) =4-6=-2
(b) =8-3=5
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The determinant of a square matrix.

Definition

The determinant of a 2 x 2 matrix A = [i b] is the number

d
A = ad — bc.

Notation: The determinant can be denoted in different ways:

A=der(A)= A= |7 O,
Example
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The determinant of a square matrix.

Definition

The determinant of a 2 x 2 matrix A = [i b] is the number

d
A = ad — bc.

Notation: The determinant can be denoted in different ways:

A=der(A)= A= |7 O,
Example
(@) |; 5| =4-6=-2
(b) |3 ;| =8-3=5
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The determinant of a square matrix.

Definition

The determinant of a 2 x 2 matrix A = [i b] is the number

d
A = ad — bc.

Notation: The determinant can be denoted in different ways:

a b
c d

A = det(A) = |A| =

Example
1 o Remark: ’det([i SD‘ is the
(a) =4-6=-2
3 4 area of the parallelogram formed
2 1 by the vectors
(b) =8-3=5.
3 4
] (3]
1 2 o 4 c d|’
(c) 5 4l = 4 —4=0.




The determinant of a square matrix.

Definition
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ail
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as31
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The determinant of a square matrix.

Definition

The determinant of a 3 x 3 matrix A is given by

ail
det(A) = |ao1
as31
a2 a3 ari
= a11 — a1z
a32 a4z asi

Remark: The | det(A)] is the volume of the parallelepiped formed

by the column vectors of A.

a1z
az
as2

a23
a33

a3
anzs
ass
azi
+ ai3
asi

azo
ds2




The determinant of a square matrix.

Example

Find the determinant of A = {

W N =
N = W
I—‘I—ll

—
1



The determinant of a square matrix.

Example
1 3 -1
Find the determinantof A= |2 1 1
32 1

Solution: We use the definition above, that is,
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Find the determinant of A = {
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3 2

11
21

2 1
31

ooy

13 -1
det(A) = |2 1{=1 ‘
3 1

N P W

det(A) = (1—2) — 3(2 - 3) — (4 — 3)
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The determinant of a square matrix.

3 -1
1 1].
2 1

Solution: We use the definition above, that is,

Example

Find the determinant of A = {

W N =

21
3 2

11
21

2 1
31

ooy

13 -1
det(A) = |2 1{=1 ‘
3 1

N P W

det(A)=(1-2)—-3(2—3)—(4—-3)=-1+3—1.

We conclude: det(A) = 1.



Linear Algebra and differential systems (Sect. 5.4, 5.5, 5.6)

Eigenvalues, eigenvectors of a matrix (5.5).
Computing eigenvalues and eigenvectors (5.5).
Diagonalizable matrices (5.5).

n x n linear differential systems (5.4).

Constant coefficients homogenoues systems (5.6).

vV v v v v Yy

Examples: 2 x 2 linear systems (5.6).
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Eigenvalues, eigenvectors of a matrix

Definition
A number X and a non-zero n-vector v are respectively called an
eigenvalue and eigenvector of an n x n matrix A iff the following

equation holds,
Av = Av.

Example

1] and A\, = =2, v, = [_1} are

Verify that the pair A\, =4, v, = [1

eigenvalue and eigenvector pairs of matrix A = [3 ﬂ .
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Eigenvalues, eigenvectors of a matrix

Definition
A number X and a non-zero n-vector v are respectively called an
eigenvalue and eigenvector of an n x n matrix A iff the following

equation holds,
Av = Av.

Example

1] and A\, = =2, v, = [_1} are

Verify that the pair A\, =4, v, = [1

eigenvalue and eigenvector pairs of matrix A = [3 ﬂ .

Solution: Av, = B ﬂ [ﬂ = [ﬂ =4 [ﬂ = A\;V;.
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Remarks:

» If we interpret an n X n matrix A as a function A: R" — R",
then the eigenvector v determines a particular direction on R”
where the action of A is simple: Av is proportional to v.
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Example

Find the eigenvalues and eigenvectors of the matrix A = [(1) é]

Solution:
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Eigenvalues, eigenvectors of a matrix

Example

Find the eigenvalues and eigenvectors of the matrix A = [

Solution:
The function A:R2 - R? is a
reflection along x; = x, axis. v,

X2

Ax

01
10
Av =V,

b ol 2] =L
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The line x; = x, is invariant under A.




Eigenvalues, eigenvectors of a matrix

Example

Find the eigenvalues and eigenvectors of the matrix A = [

Solution: %,
The function A:R2 - R? is a
reflection along x; = x, axis. v,

Ax

01
10
Av =V,

0 1| x| _ |x
1 0| x| [x
The line x; = x, is invariant under A. Hence,

“= 1

|
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Eigenvalues, eigenvectors of a matrix

Example
. : . . 01
Find the eigenvalues and eigenvectors of the matrix A = 1 ol
Solution: Xa Ax B
X=X,
The function A: R?2 — R? is a ;V .
reflection along x; = x, axis. v, s

0 1| x| [x X,
1 0| x| |x .

The line x; = x, is invariant under A. Hence,

N

. . o 1
An eigenvalue eigenvector pairis: A\, =1, v; = { ]




Eigenvalues, eigenvectors of a matrix
Example

Find the eigenvalues and eigenvectors of the matrix A = [(1) é]

Solution: Eigenvalue eigenvector pair:

)\1:1, V1_|:1:|.



Eigenvalues, eigenvectors of a matrix

Example

Find the eigenvalues and eigenvectors of the matrix A = [

X2

Solution: Eigenvalue eigenvector pair:

Ax

01

10

|

X1= X,

)\1:1, V1_|:1:|.




Eigenvalues, eigenvectors of a matrix

Example

10

Find the eigenvalues and eigenvectors of the matrix A = [0 1].

X2

Solution: Eigenvalue eigenvector pair:

Ax
X1= X,

)\1:1, V1_|:1:|.

A second eigenvector eigenvalue pair is:




Eigenvalues, eigenvectors of a matrix

Example

10

Find the eigenvalues and eigenvectors of the matrix A = [0 1].

X2

Solution: Eigenvalue eigenvector pair:

Ax
X1= X,

)\1:17 V1_|:1:|.

A second eigenvector eigenvalue pair is:
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Eigenvalues, eigenvectors of a matrix
Example
Find the eigenvalues and eigenvectors of the matrix A = [(1) é]

Ax

X2

X=X,

Solution: Eigenvalue eigenvector pair:

)\1:17 V1_|:1:|.

A second eigenvector eigenvalue pair is:

=3 =Rl ]




Eigenvalues, eigenvectors of a matrix
Example
Find the eigenvalues and eigenvectors of the matrix A = [(1) é]

Ax

X2

X=X,

Solution: Eigenvalue eigenvector pair:

)\1:17 V1_|:1:|.

A second eigenvector eigenvalue pair is:

w-[3]-0 Y01




Eigenvalues, eigenvectors of a matrix

Example

10

Ax

Find the eigenvalues and eigenvectors of the matrix A = [0 1].

X2

Solution: Eigenvalue eigenvector pair:

)\1:17 V1_|:1:|.

A second eigenvector eigenvalue pair is:

w[-F IR -L - [




Eigenvalues, eigenvectors of a matrix

Example

10

Ax

Find the eigenvalues and eigenvectors of the matrix A = [0 1].

X2

Solution: Eigenvalue eigenvector pair:

)\1:17 V1_|:1:|.

A second eigenvector eigenvalue pair is:

o[- [ - [ e




Eigenvalues, eigenvectors of a matrix

Example

10

Ax

Find the eigenvalues and eigenvectors of the matrix A = [0 1].

X2

Solution: Eigenvalue eigenvector pair:

)\1:17 V1_|:1:|.

A second eigenvector eigenvalue pair is:

o[- [ oo [ -

. : : -1
A second eigenvalue eigenvector pair: A\, = —1, v, = [ ] <

1



Eigenvalues, eigenvectors of a matrix

Remark: Not every n x n matrix has real eigenvalues.



Eigenvalues, eigenvectors of a matrix
Remark: Not every n x n matrix has real eigenvalues.

Example

Fix 8 € (0,7) and define A = [Z?;((g)) _CS;:((g))] '

Show that A has no real eigenvalues.
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Remark: Not every n x n matrix has real eigenvalues.

Example

Fix 6 € (0, 7) and define A — [COS(Q) - Si“(e)] .

sin(f)  cos(0)
Show that A has no real eigenvalues.
Solution: Matrix A: R? — R? is a

rotation by 6 counterclockwise.
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Eigenvalues, eigenvectors of a matrix
Remark: Not every n x n matrix has real eigenvalues.

Example

Fix 8 € (0,7) and define A = [::((99)) _;Is((g))] '

Show that A has no real eigenvalues.

X2 AX

Solution: Matrix A:R?2 — R? is a

rotation by 6 counterclockwise.
There is no direction left invariant by

the function A.

We conclude: Matrix A has no eigenvalues eigenvector pairs. <

Remark:
Matrix A has complex-values eigenvalues and eigenvectors.



Linear Algebra and differential systems (Sect. 5.4, 5.5, 5.6)

Eigenvalues, eigenvectors of a matrix (5.5).
Computing eigenvalues and eigenvectors (5.5).
Diagonalizable matrices (5.5).

n x n linear differential systems (5.4).

Constant coefficients homogenoues systems (5.6).

vV v v v v Yy

Examples: 2 x 2 linear systems (5.6).
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Computing eigenvalues and eigenvectors.

Problem:
Given an n x n matrix A, find, if possible, A and v # 0 solution of

Av = \v.

Remark:
This is more complicated than solving a linear system Av = b,
since in our case we do not know the source vector b = Av.

Solution:
(a) First solve for \.

(b) Having A, then solve for v.



Computing eigenvalues and eigenvectors.

Theorem (Eigenvalues-eigenvectors)

(a) The number X is an eigenvalue of an n x n matrix A iff
det(A—Al)=0.

(b) Given an eigenvalue \ of matrix A, the corresponding
eigenvectors v are the non-zero solutions to the homogeneous

linear system
(A= X)v =0.
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Computing eigenvalues and eigenvectors.

Theorem (Eigenvalues-eigenvectors)

(a) The number X is an eigenvalue of an n x n matrix A iff
det(A—Al)=0.

(b) Given an eigenvalue \ of matrix A, the corresponding
eigenvectors v are the non-zero solutions to the homogeneous
linear system

(A= X)v =0.

Notation:
p(A) = det(A — \I) is called the characteristic polynomial.

If Ais nx n, then p is degree n.

Remark: An eigenvalue is a root of the characteristic polynomial.
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Computing eigenvalues and eigenvectors.

Proof:

Find A such that for a non-zero vector v holds,
Av=Xv < (A-X)v=0.

Recall, v # 0.

This last condition implies that matrix (A — A/) is not invertible.

(Proof: If (A— Al) invertible, then (A — AI)"1(A — Al)v = 0,
thatis, v=20.)

Since (A — Al) is not invertible, then det(A — A/) = 0.

Once X is known, the original eigenvalue-eigenvector equation
Av = \v is equivalent to (A — A/)v = 0.

O
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Solution:
The eigenvalues are the roots of the characteristic polynomial.

1 3 10
asai=3 3 a8
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Computing eigenvalues and eigenvectors.
Example
Find the eigenvalues A and eigenvectors v of A = B ﬂ )

Solution:
The eigenvalues are the roots of the characteristic polynomial.

A—)\I:B ﬂ—)\[(l) (1’] :B ﬂ_B g] :[(QA) (13/\)}

The characteristic polynomial is

p@%z%ﬂA—ADz’u;A)(1EAJ:(A—U2—9

The roots are Ay =4 and \_ = —2.
Compute the eigenvector for A, = 4. Solve (A —4/)v, = 0.

1-4 3
A_4L‘[3 1—4



Computing eigenvalues and eigenvectors.
Example
Find the eigenvalues A and eigenvectors v of A = B ﬂ )

Solution:
The eigenvalues are the roots of the characteristic polynomial.

A—)\I:B ﬂ—)\[(l) (1’] :B ﬂ_B g] :[(QA) (13/\)}

The characteristic polynomial is
_ = |@=N 3 e
p(A\) =det(A—\l) = ’ 3 1-N = (A=1)-9

The roots are Ay =4 and \_ = —2.
Compute the eigenvector for A, = 4. Solve (A —4/)v, = 0.

1-4 3 -3 3
A_4’_[3 1—4}_[3 —3]'
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Example
Find the eigenvalues A and eigenvectors v of A = [; ﬂ .

. -3 3
Solution: Recall: Ay =4, \_=-2, A—4] = 3 _3|

We solve (A — 4/)v; = 0, using Gauss elimination,
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Example

Find the eigenvalues A and eigenvectors v of A = [; ﬂ .

Solution: Recall: A\ =4, \_.=-2, A—4] = [_5 _33}

We solve (A — 4/)v; = 0, using Gauss elimination,
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Computing eigenvalues and eigenvectors.

Example

Find the eigenvalues A and eigenvectors v of A = [; ﬂ .

Solution: Recall: A\ =4, \_.=-2, A—4] = [_5 _33}

We solve (A — 4/)v; = 0, using Gauss elimination,
-3 3 1 -1 1 -1 v =y
— —
3 -3 3 -3 0 0 vt free.
Al solutions to the equation above are then given by

e[ -f)

1
1



Computing eigenvalues and eigenvectors.

Example

Find the eigenvalues A and eigenvectors v of A = [; ﬂ .

Solution: Recall: A\ =4, \_.=-2, A—4] = [_5 _33}

We solve (A — 4/)v; = 0, using Gauss elimination,
-3 3 1 -1 1 -1 v =y
— —
3 -3 3 -3 0 0 vt free.
Al solutions to the equation above are then given by

vih 1 1
e F R R ]

1



Computing eigenvalues and eigenvectors.

Example
Find the eigenvalues A and eigenvectors v of A = [; ﬂ .

. -3 3
Solution: Recall: Ay =4, \_=-2, A—4] = [ 3 _3}

We solve (A — 4/)v; = 0, using Gauss elimination,

-3 3] Lo-1 -1 L [ui=wh
3 -3 3 -3 0 0 vt free.
Al solutions to the equation above are then given by

vih 1 1
e F R R ]

1

The first eigenvalue eigenvector pair is A\ =4, v = 1
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Example

Find the eigenvalues A and eigenvectors v of A = B ﬂ )
1

Solution: Recall: Ay =4, v, = 1
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Example
Find the eigenvalues A and eigenvectors v of A = B ﬂ )
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1

Solution: Recall: Ay =4, vy = } Ao =-2.
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Computing eigenvalues and eigenvectors.

Example
Find the eigenvalues A and eigenvectors v of A = B ﬂ )

1
1

Solve (A+2/)v_ = 0, using Gauss operations on A+ 2/ = E g] .

Solution: Recall: Ay =4, vy = } Ao =-2.



Computing eigenvalues and eigenvectors.

Example
Find the eigenvalues A and eigenvectors v of A = B ﬂ )

1
1

Solve (A+2/)v_ = 0, using Gauss operations on A+ 2/ = E g] .
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Solution: Recall: Ay =4, vy = } Ao =-2.
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Example
Find the eigenvalues A and eigenvectors v of A = B ﬂ )

1
1

Solve (A+2/)v_ = 0, using Gauss operations on A+ 2/ = E g] .
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Computing eigenvalues and eigenvectors.

Example
Find the eigenvalues A and eigenvectors v of A = B ﬂ )

1
1

Solve (A+2/)v_ = 0, using Gauss operations on A+ 2/ = E g] .

FREEE

Solution: Recall: Ay =4, vy = } Ao =-2.



Computing eigenvalues and eigenvectors.

Example
Find the eigenvalues A and eigenvectors v of A = B ﬂ )

1
1

Solve (A+2/)v_ = 0, using Gauss operations on A+ 2/ = E g] .

3 3 _ 11 R 1 1 N Vl_:_V2_7
3 3 3 3 0 0 v, free.

Solution: Recall: Ay =4, vy = } Ao =-2.
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Example
Find the eigenvalues A and eigenvectors v of A = B ﬂ )

1
1

Solve (A+2/)v_ = 0, using Gauss operations on A+ 2/ = E g]

3 3 1 ]. ]. 1 Vl_ - - V2_ )
— — =
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Solve (A+2/)v_ = 0, using Gauss operations on A+ 2/ = E g]

3 3 1 ]. ]. 1 Vl_ - - V2_ )
— — =
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Computing eigenvalues and eigenvectors.
Example
Find the eigenvalues A and eigenvectors v of A = B ﬂ )

1
1

Solve (A+2/)v_ = 0, using Gauss operations on A+ 2/ = E g] .

3 3 1 ]. ]. 1 Vl_ - - V2_ )
— — =
[3 3} [3 3] [0 0] { v, free.

Al solutions to the equation above are then given by
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Solution: Recall: Ay =4, vy = } Ao =-2.



Computing eigenvalues and eigenvectors.

Example

Find the eigenvalues A and eigenvectors v of A = B ﬂ )
Solution: Recall: Ay =4, vy = ﬂ Ao =-2.

Solve (A+2/)v_ = 0, using Gauss operations on A+2/ = E g]

3 3 1 1 1 1 Vl_ - _VQ_)
— — =
[3 3} [3 3] [0 0] { v, free.

Al solutions to the equation above are then given by

<[ - 1



Linear Algebra and differential systems (Sect. 5.4, 5.5, 5.6)

Eigenvalues, eigenvectors of a matrix (5.5).
Computing eigenvalues and eigenvectors (5.5).
Diagonalizable matrices (5.5).

n x n linear differential systems (5.4).

Constant coefficients homogenoues systems (5.6).
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Examples: 2 x 2 linear systems (5.6).
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Diagonalizable matrices.

Definition
dp - 0
An n x n matrix D is called diagonal iff D = | : L
0 - dp
Definition
An n x n matrix A is called diagonalizable iff there exists an
invertible matrix P and a diagonal matrix D such that

A= PDP L.
Remark:

» Systems of linear differential equations are simple to solve in
the case that the coefficient matrix A is diagonalizable.

» In such case, it is simple to decouple the differential equations.

» One solves the decoupled equations, and then transforms back
to the original unknowns.



Diagonalizable matrices.

Theorem (Diagonalizability and eigenvectors)

An n x n matrix A is diagonalizable iff matrix A has a linearly
independent set of n eigenvectors. Furthermore,

A - 0
A=PDP7L P={v, --,v,)], D=|: .. |,
0 - A

where A\j,v;, fori =1,--- , n, are eigenvalue-eigenvector pairs of A.
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Diagonalizable matrices.

Theorem (Diagonalizability and eigenvectors)

An n x n matrix A is diagonalizable iff matrix A has a linearly
independent set of n eigenvectors. Furthermore,

AN - 0
A=PDP7L P={v, --,v,)], D=|: .. |,
0 - A\,
where A\j,v;, fori =1,--- , n, are eigenvalue-eigenvector pairs of A.

Remark: It is not simple to know whether an n x n matrix A has a
linearly independent set of n eigenvectors. One simple case is given
in the following result.

Theorem (n different eigenvalues)

If an n x n matrix A has n different eigenvalues, then A is
diagonalizable.



Diagonalizable matrices.
Example

Show that A = E ﬂ is diagonalizable.
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1
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Diagonalizable matrices.

Example

Show that A = [ 3} is diagonalizable.

1
31
Solution: We known that the eigenvalue eigenvector pairs are

)\1 = 4, V] = |:1:| and /\2 = —2, Vo = |:_11:| .

Introduce P and D as follows,

ok



Diagonalizable matrices.

Example

Show that A = [ 3} is diagonalizable.

1
31
Solution: We known that the eigenvalue eigenvector pairs are

)\1 = 4, V] = |:1:| and /\2 = —2, Vo = |:_11:| .

Introduce P and D as follows,

1 o-1 L1101
P_[1 1} - P _2[—1 1]’



Diagonalizable matrices.

Example

Show that A = [ 3} is diagonalizable.

1
31
Solution: We known that the eigenvalue eigenvector pairs are

)\1 = 4, V] = |:1:| and /\2 = —2, Vo = |:_11:| .

Introduce P and D as follows,

1 -1 L1101 4 0
P‘L 1} - P _2[—1 1]’ D_[o —2}'



Diagonalizable matrices.

Example

Show that A = [ 3} is diagonalizable.

1
31
Solution: We known that the eigenvalue eigenvector pairs are

)\1 = 4, V] = |:1:| and /\2 = —2, Vo = |:_11:| .

Introduce P and D as follows,
1 -1 111 |4 0
P‘L 1} - P _zLily D‘k 4}

Then
PDP™!



Diagonalizable matrices.

Example

Show that A = B ﬂ is diagonalizable.

Solution: We known that the eigenvalue eigenvector pairs are

)\1 = 4, V] = |:1:| and /\2 = —2, Vo = |:_1:| .

Introduce P and D as follows,

1 -1 L1101 4 0
P‘L 1} - P _2[—1 1]’ D_[o —2}'

Then )
|1 -1 4 0111 1
pori= 1 0 S5 101



Diagonalizable matrices.

Example

Show that A = B ﬂ is diagonalizable.

Solution: Recall:

1 1|0 -2
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Diagonalizable matrices.

Example

Show that A = B ﬂ is diagonalizable.

Solution: Recall:

1 1|0 -2

kN

o=l 5]

4[4 2
PDP _[4 5

1
2



Diagonalizable matrices.

Example

Show that A = B ﬂ is diagonalizable.

Solution: Recall:
1|1 -1 (4 O 1 1 1
PDP™ = [1 1110 =22 (-1 1|°
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Diagonalizable matrices.

Example

Show that A = B ﬂ is diagonalizable.

Solution: Recall:
1|1 -1 (4 O 1 1 1
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Diagonalizable matrices.

Example

Show that A = B ﬂ is diagonalizable.

Solution: Recall:
1|1 -1 (4 O 1 1 1
PDP™ = [1 1110 =22 (-1 1|°

popr= [t 2212 =R 4]

We conclude,



Diagonalizable matrices.

Example

Show that A = B ﬂ is diagonalizable.

Solution: Recall:
1|1 -1 (4 O 1 1 1
PDP™ = [1 1110 =22 (-1 1|°
1|4 2 1 1 1 (2 1 1
PDP™ = [4 -2 2 |=1 1| |2 =1| |-1

We conclude,
PDP~! = [1 3] = A,

that is, A is diagonalizable.



Linear Algebra and differential systems (Sect. 5.4, 5.5, 5.6)

Eigenvalues, eigenvectors of a matrix (5.5).
Computing eigenvalues and eigenvectors (5.5).
Diagonalizable matrices (5.5).

n x n linear differential systems (5.4).

Constant coefficients homogenoues systems (5.6).
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Examples: 2 x 2 linear systems (5.6).



n x n linear differential systems (5.4).

Definition
An n x n linear differential system is a the following: Given an
n x n matrix-valued function A, and an n-vector-valued function b,
find an n-vector-valued function x solution of
x'(t) = A(t) x(t) + b(¢).
The system above is called homogeneous iff holds b = 0.
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An n x n linear differential system is a the following: Given an

n X n matrix-valued function A, and an n-vector-valued function b,
find an n-vector-valued function x solution of
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n x n linear differential systems (5.4).

Definition
An n x n linear differential system is a the following: Given an
n x n matrix-valued function A, and an n-vector-valued function b,

find an n-vector-valued function x solution of
x'(t) = A(t) x(t) + b(t).
The system above is called homogeneous iff holds b = 0.

Recall:

an(t) - aml) b(t) xo()

X\ = ap(t) X1 + -+ + apn(t) xo + ba(t).



n x n linear differential systems (5.4).

Example

Find the explicit expression for the linear system x’ = Ax + b in the
case that
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Find the explicit expression for the linear system x’ = Ax + b in the
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Solution: The 2 x 2 linear system is given by
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n x n linear differential systems (5.4).

Example

Find the explicit expression for the linear system x’ = Ax + b in the
case that

R G |

Solution: The 2 x 2 linear system is given by
x| |1 3] [x n et
x| 13 1] | % 2e3t|”

/

X (t) = x(t) + 3x(t) + €,
X(t) = 3x(t) + x(t) + 2.

That is,



n x n linear differential systems (5.4).

Remark: Derivatives of vector-valued functions are computed
component-wise.
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Xl(l')
X(t)=|
Xn(t)
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Remark: Derivatives of vector-valued functions are computed
component-wise.
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Compute x’ for x(t) = |sin(t) |.
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n x n linear differential systems (5.4).

Remark: Derivatives of vector-valued functions are computed
component-wise.

Example

Compute x’ for x(t) = | sin(t)

Solution: o2t 7!
x'(t) | sin(t)




n x n linear differential systems (5.4).

Remark: Derivatives of vector-valued functions are computed

component-wise.

X' (t) =

Example

Compute x’ for x(t) =

Solution:

x'(t)

x1(t)]’

x1(t)

2621”
{ cos(t) } .
—sin(t)



Linear Algebra and differential systems (Sect. 5.4, 5.5, 5.6)

Eigenvalues, eigenvectors of a matrix (5.5).
Computing eigenvalues and eigenvectors (5.5).
Diagonalizable matrices (5.5).

n x n linear differential systems (5.4).

Constant coefficients homogenoues systems (5.6).

vV v v v v Yy

Examples: 2 x 2 linear systems (5.6).
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Constant coefficients homogenoues systems (5.6).

Summary:

» Given an n X n matrix A(t), n-vector b(t), find x(t) solution
X' (t) = A(t) x(t) + b(t).
» The system is homogeneous iff b = 0, that is,
X' (t) = A(t) x(t).
» The system has constant coefficients iff matrix A does not
depend on t, that is,
x'(t) = Ax(t) + b(t).
» We study homogeneous, constant coefficient systems, that is,

X'(t) = Ax(t).



Constant coefficients homogenoues systems (5.6).
Theorem (Diagonalizable matrix)
If n X n matrix A is diagonalizable, with a linearly independent
eigenvectors set {v1,--- ,v,} and corresponding eigenvalues
{A1,--,An}, then the general solution x to the homogeneous,
constant coefficients, linear system

X'(t) = Ax(t)

is given by the expression below, where ¢, , ¢, € R,

x(t) = vy Mt 4 -+ cuv, eME
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If n X n matrix A is diagonalizable, with a linearly independent
eigenvectors set {v1,--- ,v,} and corresponding eigenvalues
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Constant coefficients homogenoues systems (5.6).
Theorem (Diagonalizable matrix)
If n X n matrix A is diagonalizable, with a linearly independent
eigenvectors set {v1,--- ,v,} and corresponding eigenvalues
{A1,--,An}, then the general solution x to the homogeneous,
constant coefficients, linear system

X'(t) = Ax(t)

is given by the expression below, where ¢, , ¢, € R,

x(t) = vy Mt 4 -+ cuv, eME

Remark:
» The differential system for the variable x is coupled, that is, A
is not diagonal.

» We transform the system into a system for a variable y such
that the system for y is decoupled, that is, y'(t) = Dy(t),
where D is a diagonal matrix.

» We solve for y(t) and we transform back to x(t).
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Examples: 2 x 2 linear systems (5.6).

Example

Find the general solution to x’ = Ax, with A = B ﬂ
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Example
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Solution: Find eigenvalues and eigenvectors of A. We found that:

A =4, v = [ﬂ , and A\, = =2, vd = [_1] .

Fundamental solutions are

1 -1
(1) 4t (2) —2t
X\ = L] e, x= [ 1} e .

The general solution is x(t) = ¢; X (t) + 2 x(2(¢t), that is,
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Example

Verify that x() = [1

1 e* and x(@ = [_1
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. 1 3
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Solution: We compute x(? and then we compare it with Ax(®),
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So, Ax®® = —2x(®)  Hence, x(2/ = Ax(2). N
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Example

Solve the IVP x’ = Ax, where x(0) = [ﬂ and A= B ﬂ

Solution: The general solution: x(t) = ¢ E] e* + ¢ [_11} e 2t

The initial condition is,
2 1 -1

We need to solve the linear system
1 -1 |a| _ |2 al 11 1]]2
1 1| || |4 o 2|-1 1] |4]°

Therefore, || = 3 , hence x(t) =3 L e*t + e <
G 1 1
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Proof: Since A is diagonalizable, we know that A= PDP~!, with
P:[vl,---,vn], D:diag[A1,~-,)\n].
Equivalently, P"YAP = D. Multiply X’ = Ax by P~! on the left
PIX(t) =P lAx(t) & (P'x) = (PAP) (P 'x).
Introduce the new unknown y(t) = P~1x(t), then

yi(t) = A y(t), [ et
y(t)=Dy(t) & : = y(t) =
Ya(t) = Anya(t), Ccp et
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Constant coefficients homogenoues systems (5.6).

c e)\lt
Proof: Recall: y(t) = P~ 1x(t), and y(t) = :
¢, et
Transform back to x(t), that is,
a1 eMt
x(t) = Py(t) = [v1,- - ,vn] :
L
We conclude: x(t) = civy eMt + - + c,v, et O
Remark:
4 AV,’ = )\,'V,'.

» The eigenvalues and eigenvectors of A are crucial to solve the
differential linear system x'(t) = Ax(t).



