Review of Linear Algebra (Sect. 5.2, 5.3)

This Class:

- $n \times n$ systems of linear algebraic equations.
- The matrix-vector product.
- A matrix is a function.
- The inverse of a square matrix.
- The determinant of a square matrix.

Next Class:

- Eigenvalues, eigenvectors of a matrix.
- Computing eigenvalues and eigenvectors.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Diagonalizable matrices.

Definition

An $n \times n$ algebraic system of linear equations is the following: Given constants a_{ij} and b_i , where indices $i, j = 1 \cdots, n \ge 1$, find the constants x_i solutions of the system

> $a_{11}x_1 + \dots + a_{1n}x_n = b_1,$ \vdots $a_{n1}x_1 + \dots + a_{nn}x_n = b_n.$

The system is called homogeneous iff the sources vanish, that is, $b_1 = \cdots = b_n = 0.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition

An $n \times n$ algebraic system of linear equations is the following: Given constants a_{ij} and b_i , where indices $i, j = 1 \cdots, n \ge 1$, find the constants x_i solutions of the system

> $a_{11}x_1 + \dots + a_{1n}x_n = b_1,$ \vdots $a_{n1}x_1 + \dots + a_{nn}x_n = b_n.$

The system is called homogeneous iff the sources vanish, that is, $b_1 = \cdots = b_n = 0$. Example

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

2 × 2: $2x_1 - x_2 = 0,$ - $x_1 + 2x_2 = 3.$

Definition

An $n \times n$ algebraic system of linear equations is the following: Given constants a_{ij} and b_i , where indices $i, j = 1 \cdots, n \ge 1$, find the constants x_i solutions of the system

> $a_{11}x_1 + \dots + a_{1n}x_n = b_1,$ \vdots $a_{n1}x_1 + \dots + a_{nn}x_n = b_n.$

The system is called homogeneous iff the sources vanish, that is, $b_1 = \cdots = b_n = 0.$

Example

$$\begin{array}{c} x_1 + 2x_2 + x_3 = 1, \\ 2 \times 2: & x_1 + 2x_2 = 3, \\ -x_1 + 2x_2 = 3. \end{array} \quad \begin{array}{c} x_1 + 2x_2 + x_3 = 1, \\ 3 \times 3: & -3x_1 + x_2 + 3x_3 = 24, \\ x_2 - 4x_3 = -1. \end{array} \quad \triangleleft$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Review of Linear Algebra (Sect. 5.2, 5.3)

• $n \times n$ systems of linear algebraic equations.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ► The matrix-vector product.
- A matrix is a function.
- The inverse of a square matrix.
- The determinant of a square matrix.

Definition

The *matrix-vector product* is the matrix multiplication of an $n \times n$ matrix A and an *n*-vector \mathbf{v} , resulting in an *n*-vector $A\mathbf{v}$, that is,

 $\begin{array}{cccc} A & \mathbf{v} & \longrightarrow & A\mathbf{v} \\ n \times n & n \times 1 & & n \times 1 \end{array}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Definition

The *matrix-vector product* is the matrix multiplication of an $n \times n$ matrix A and an *n*-vector \mathbf{v} , resulting in an *n*-vector $A\mathbf{v}$, that is,

$$\begin{array}{cccc} A & \mathbf{v} & \longrightarrow & A\mathbf{v} \\ n \times n & n \times 1 & & n \times 1 \end{array}$$

Example

Find the matrix-vector product Av for

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}, \qquad \mathbf{v} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

The *matrix-vector product* is the matrix multiplication of an $n \times n$ matrix A and an *n*-vector \mathbf{v} , resulting in an *n*-vector $A\mathbf{v}$, that is,

$$\begin{array}{cccc} A & \mathbf{v} & \longrightarrow & A\mathbf{v} \\ n \times n & n \times 1 & & n \times 1 \end{array}$$

Example

Find the matrix-vector product $A\mathbf{v}$ for

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}, \qquad \mathbf{v} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Solution: This is a straightforward computation,

$$A\mathbf{v} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

Definition

The *matrix-vector product* is the matrix multiplication of an $n \times n$ matrix A and an *n*-vector \mathbf{v} , resulting in an *n*-vector $A\mathbf{v}$, that is,

$$\begin{array}{cccc} A & \mathbf{v} & \longrightarrow & A\mathbf{v} \\ n \times n & n \times 1 & & n \times 1 \end{array}$$

Example

Find the matrix-vector product $A\mathbf{v}$ for

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}, \qquad \mathbf{v} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Solution: This is a straightforward computation,

$$A\mathbf{v} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 2-3 \\ -1+6 \end{bmatrix}$$

Definition

The *matrix-vector product* is the matrix multiplication of an $n \times n$ matrix A and an *n*-vector \mathbf{v} , resulting in an *n*-vector $A\mathbf{v}$, that is,

$$\begin{array}{cccc} A & \mathbf{v} & \longrightarrow & A\mathbf{v} \\ n \times n & n \times 1 & & n \times 1 \end{array}$$

Example

Find the matrix-vector product $A\mathbf{v}$ for

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}, \qquad \mathbf{v} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}.$$

Solution: This is a straightforward computation,

$$A\mathbf{v} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 2-3 \\ -1+6 \end{bmatrix} \quad \Rightarrow \quad A\mathbf{v} = \begin{bmatrix} -1 \\ 5 \end{bmatrix}. \quad \triangleleft$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Remark: Matrix notation is useful to work with systems of linear algebraic equations.

(ロ)、(型)、(E)、(E)、 E、 の(の)

Remark: Matrix notation is useful to work with systems of linear algebraic equations.

Introduce the coefficient matrix, the source vector, and the unknown vector, respectively,

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}, \qquad \mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Remark: Matrix notation is useful to work with systems of linear algebraic equations.

Introduce the coefficient matrix, the source vector, and the unknown vector, respectively,

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}, \qquad \mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

Using this matrix notation and the matrix-vector product, the linear algebraic system above can be written as

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$a_{11}x_1+\cdots+a_{1n}x_n=b_1,$$

$$a_{n1}x_1+\cdots+a_{nn}x_n=b_n.$$

Remark: Matrix notation is useful to work with systems of linear algebraic equations.

Introduce the coefficient matrix, the source vector, and the unknown vector, respectively,

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}, \qquad \mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

Using this matrix notation and the matrix-vector product, the linear algebraic system above can be written as

$$\begin{array}{c} a_{11}x_1 + \cdots + a_{1n}x_n = b_1, \\ \vdots \\ a_{n1}x_1 + \cdots + a_{nn}x_n = b_n. \end{array} \qquad \left[\begin{array}{c} a_{11} & \cdots & a_{1n} \\ \vdots \\ a_{n1} & \cdots & a_{nn} \end{array} \right] \left[\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right] = \left[\begin{array}{c} b_1 \\ \vdots \\ b_n \end{array} \right]$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Remark: Matrix notation is useful to work with systems of linear algebraic equations.

Introduce the coefficient matrix, the source vector, and the unknown vector, respectively,

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}, \qquad \mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

Using this matrix notation and the matrix-vector product, the linear algebraic system above can be written as

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

Find the solution to the linear system $A\mathbf{x} = \mathbf{b}$, where

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Find the solution to the linear system $A\mathbf{x} = \mathbf{b}$, where

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Solution: The linear system is

$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

Example

Find the solution to the linear system $A\mathbf{x} = \mathbf{b}$, where

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}.$$

Solution: The linear system is

$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix} \quad \Leftrightarrow \quad \begin{aligned} 2x_1 - x_2 &= 0, \\ -x_1 + 2x_2 &= 3. \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Find the solution to the linear system $A\mathbf{x} = \mathbf{b}$, where

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}.$$

Solution: The linear system is

$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix} \quad \Leftrightarrow \quad \begin{aligned} 2x_1 - x_2 &= 0, \\ -x_1 + 2x_2 &= 3. \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Since $x_2 = 2x_1$,

Example

Find the solution to the linear system $A\mathbf{x} = \mathbf{b}$, where

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}.$$

Solution: The linear system is

$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix} \quad \Leftrightarrow \quad \begin{array}{c} 2x_1 - x_2 = 0, \\ -x_1 + 2x_2 = 3. \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Since $x_2 = 2x_1$, then $-x_1 + 4x_1 = 3$,

Example

Find the solution to the linear system $A\mathbf{x} = \mathbf{b}$, where

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}.$$

Solution: The linear system is

$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix} \quad \Leftrightarrow \quad \begin{aligned} 2x_1 - x_2 &= 0, \\ -x_1 + 2x_2 &= 3. \end{aligned}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Since $x_2 = 2x_1$, then $-x_1 + 4x_1 = 3$, that is $x_1 = 1$,

Example

Find the solution to the linear system $A\mathbf{x} = \mathbf{b}$, where

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}.$$

Solution: The linear system is

$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix} \quad \Leftrightarrow \quad \begin{aligned} 2x_1 - x_2 &= 0, \\ -x_1 + 2x_2 &= 3. \end{aligned}$$

Since $x_2 = 2x_1$, then $-x_1 + 4x_1 = 3$, that is $x_1 = 1$, hence $x_2 = 2$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Example

Find the solution to the linear system $A\mathbf{x} = \mathbf{b}$, where

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}.$$

Solution: The linear system is

$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix} \Leftrightarrow \begin{array}{c} 2x_1 - x_2 = 0, \\ -x_1 + 2x_2 = 3. \end{array}$$
Ince $x_2 = 2x_1$, then $-x_1 + 4x_1 = 3$, that is $x_1 = 1$, hence $x_2 = 2$.
The solution is: $\mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Si The solution is: 2

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Review of Linear Algebra (Sect. 5.2, 5.3)

• $n \times n$ systems of linear algebraic equations.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The matrix-vector product.
- A matrix is a function.
- The inverse of a square matrix.
- The determinant of a square matrix.

Remark:

The matrix-vector product provides a new interpretation for a matrix.

(ロ)、(型)、(E)、(E)、 E、 の(の)

Remark:

The matrix-vector product provides a new interpretation for a matrix. A matrix is a function.

(ロ)、(型)、(E)、(E)、 E、 の(の)

Remark:

The matrix-vector product provides a new interpretation for a matrix. A matrix is a function.

• An $n \times n$ matrix A is a function $A : \mathbb{R}^n \to \mathbb{R}^n$,

Remark:

The matrix-vector product provides a new interpretation for a matrix. A matrix is a function.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

▶ An $n \times n$ matrix A is a function $A : \mathbb{R}^n \to \mathbb{R}^n$, given by $\mathbf{v} \mapsto A\mathbf{v}$.

Remark:

The matrix-vector product provides a new interpretation for a matrix. A matrix is a function.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

► An $n \times n$ matrix A is a function $A : \mathbb{R}^n \to \mathbb{R}^n$, given by $\mathbf{v} \mapsto A\mathbf{v}$. For example, $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} : \mathbb{R}^2 \to \mathbb{R}^2$,

Remark:

The matrix-vector product provides a new interpretation for a matrix. A matrix is a function.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

An $n \times n$ matrix A is a function $A : \mathbb{R}^n \to \mathbb{R}^n$, given by $\mathbf{v} \mapsto A\mathbf{v}$. For example, $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} : \mathbb{R}^2 \to \mathbb{R}^2$, is a function

Remark:

- The matrix-vector product provides a new interpretation for a matrix. A matrix is a function.
- An $n \times n$ matrix A is a function $A : \mathbb{R}^n \to \mathbb{R}^n$, given by $\mathbf{v} \mapsto A\mathbf{v}$. For example, $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} : \mathbb{R}^2 \to \mathbb{R}^2$, is a function that associates $\begin{bmatrix} 1 \\ 3 \end{bmatrix} \to \begin{bmatrix} -1 \\ 5 \end{bmatrix}$,

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark:

- The matrix-vector product provides a new interpretation for a matrix. A matrix is a function.
- An $n \times n$ matrix A is a function $A : \mathbb{R}^n \to \mathbb{R}^n$, given by $\mathbf{v} \mapsto A\mathbf{v}$. For example, $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} : \mathbb{R}^2 \to \mathbb{R}^2$, is a function that associates $\begin{bmatrix} 1 \\ 3 \end{bmatrix} \to \begin{bmatrix} -1 \\ 5 \end{bmatrix}$, since, $\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} -1 \\ 5 \end{bmatrix}$.

Remark:

- The matrix-vector product provides a new interpretation for a matrix. A matrix is a function.
- An $n \times n$ matrix A is a function $A : \mathbb{R}^n \to \mathbb{R}^n$, given by $\mathbf{v} \mapsto A\mathbf{v}$. For example, $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} : \mathbb{R}^2 \to \mathbb{R}^2$, is a function that associates $\begin{bmatrix} 1 \\ 3 \end{bmatrix} \to \begin{bmatrix} -1 \\ 5 \end{bmatrix}$, since, $\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} -1 \\ 5 \end{bmatrix}$.
- A matrix is a function, and matrix multiplication is equivalent to function composition.

Example Show that $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ is a rotation in \mathbb{R}^2 by $\pi/2$ counterclockwise.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example Show that $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ is a rotation in \mathbb{R}^2 by $\pi/2$ counterclockwise.

Solution: Matrix A is 2×2 ,

Example Show that $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ is a rotation in \mathbb{R}^2 by $\pi/2$ counterclockwise.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Solution: Matrix A is 2×2 , so $A : \mathbb{R}^2 \to \mathbb{R}^2$.

Example Show that $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ is a rotation in \mathbb{R}^2 by $\pi/2$ counterclockwise.

Solution: Matrix A is 2 × 2, so $A : \mathbb{R}^2 \to \mathbb{R}^2$. Given $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2$,

$$A\mathbf{x} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Example Show that $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ is a rotation in \mathbb{R}^2 by $\pi/2$ counterclockwise.

Solution: Matrix A is 2 × 2, so $A : \mathbb{R}^2 \to \mathbb{R}^2$. Given $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2$,

$$A\mathbf{x} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -x_2 \\ x_1 \end{bmatrix}$$

Example Show that $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ is a rotation in \mathbb{R}^2 by $\pi/2$ counterclockwise.

Solution: Matrix A is 2 × 2, so $A : \mathbb{R}^2 \to \mathbb{R}^2$. Given $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2$,

$$A\mathbf{x} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -x_2 \\ x_1 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Example Show that $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ is a rotation in \mathbb{R}^2 by $\pi/2$ counterclockwise.

Solution: Matrix A is 2 × 2, so $A : \mathbb{R}^2 \to \mathbb{R}^2$. Given $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2$,

$$A\mathbf{x} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -x_2 \\ x_1 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix},$$

Example Show that $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ is a rotation in \mathbb{R}^2 by $\pi/2$ counterclockwise.

Solution: Matrix A is 2 × 2, so $A : \mathbb{R}^2 \to \mathbb{R}^2$. Given $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2$,

$$A\mathbf{x} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -x_2 \\ x_1 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix},$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Example Show that $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ is a rotation in \mathbb{R}^2 by $\pi/2$ counterclockwise.

Solution: Matrix A is 2 × 2, so $A : \mathbb{R}^2 \to \mathbb{R}^2$. Given $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2$,

$$A\mathbf{x} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -x_2 \\ x_1 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix},$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix},$

Example Show that $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ is a rotation in \mathbb{R}^2 by $\pi/2$ counterclockwise.

Solution: Matrix A is 2 × 2, so $A : \mathbb{R}^2 \to \mathbb{R}^2$. Given $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2$,

$$A\mathbf{x} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -x_2 \\ x_1 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix},$$

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix},$$
$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Example Show that $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ is a rotation in \mathbb{R}^2 by $\pi/2$ counterclockwise.

Solution: Matrix A is 2 × 2, so $A : \mathbb{R}^2 \to \mathbb{R}^2$. Given $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2$,

$$A\mathbf{x} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -x_2 \\ x_1 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix},$$

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix},$$
$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}.$$

Example Show that $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ is a rotation in \mathbb{R}^2 by $\pi/2$ counterclockwise.

Solution: Matrix A is 2 × 2, so $A : \mathbb{R}^2 \to \mathbb{R}^2$. Given $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2$,

$$A\mathbf{x} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -x_2 \\ x_1 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix},$$

Definition

An $n \times n$ matrix I_n is called the identity matrix iff holds

 $I_n \mathbf{x} = \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Definition

An $n \times n$ matrix I_n is called the identity matrix iff holds

 $I_n \mathbf{x} = \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Write down the identity matrices I_2 , I_3 , and I_n .

Definition

An $n \times n$ matrix I_n is called the identity matrix iff holds

 $I_n \mathbf{x} = \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Write down the identity matrices I_2 , I_3 , and I_n .

Solution:

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Definition

An $n \times n$ matrix I_n is called the identity matrix iff holds

 $I_n \mathbf{x} = \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Write down the identity matrices I_2 , I_3 , and I_n .

Solution:

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

Definition

An $n \times n$ matrix I_n is called the identity matrix iff holds

 $I_n \mathbf{x} = \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$.

Example

Write down the identity matrices I_2 , I_3 , and I_n .

Solution:

$$I_{2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad I_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad I_{n} = \begin{bmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Review of Linear Algebra (Sect. 5.2, 5.3)

• $n \times n$ systems of linear algebraic equations.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- The matrix-vector product.
- A matrix is a function.
- The inverse of a square matrix.
- The determinant of a square matrix.

Definition

An $n \times n$ matrix A is called *invertible* iff there exists a matrix, denoted as A^{-1} , such

$$(A^{-1})A = I_n, \qquad A(A^{-1}) = I_n.$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Definition

An $n \times n$ matrix A is called *invertible* iff there exists a matrix, denoted as A^{-1} , such

$$(A^{-1})A = I_n, \qquad A(A^{-1}) = I_n.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Show that
$$A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$$
 has the inverse $A^{-1} = \frac{1}{4} \begin{bmatrix} 3 & -2 \\ -1 & 2 \end{bmatrix}$.

Definition

An $n \times n$ matrix A is called *invertible* iff there exists a matrix, denoted as A^{-1} , such

$$(A^{-1})A = I_n, \qquad A(A^{-1}) = I_n.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

Show that
$$A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$$
 has the inverse $A^{-1} = \frac{1}{4} \begin{bmatrix} 3 & -2 \\ -1 & 2 \end{bmatrix}$.

Solution: We have to compute the product

 $A(A^{-1})$

Definition

An $n \times n$ matrix A is called *invertible* iff there exists a matrix, denoted as A^{-1} , such

$$(A^{-1})A = I_n, \qquad A(A^{-1}) = I_n.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

Show that
$$A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$$
 has the inverse $A^{-1} = \frac{1}{4} \begin{bmatrix} 3 & -2 \\ -1 & 2 \end{bmatrix}$.

Solution: We have to compute the product

$$A(A^{-1}) = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix} \frac{1}{4} \begin{bmatrix} 3 & -2 \\ -1 & 2 \end{bmatrix}$$

Definition

An $n \times n$ matrix A is called *invertible* iff there exists a matrix, denoted as A^{-1} , such

$$(A^{-1})A = I_n, \qquad A(A^{-1}) = I_n.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

Show that
$$A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$$
 has the inverse $A^{-1} = \frac{1}{4} \begin{bmatrix} 3 & -2 \\ -1 & 2 \end{bmatrix}$.

Solution: We have to compute the product

$$A(A^{-1}) = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix} \frac{1}{4} \begin{bmatrix} 3 & -2 \\ -1 & 2 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}$$

Definition

An $n \times n$ matrix A is called *invertible* iff there exists a matrix, denoted as A^{-1} , such

$$(A^{-1})A = I_n, \qquad A(A^{-1}) = I_n.$$

Example

Show that
$$A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$$
 has the inverse $A^{-1} = \frac{1}{4} \begin{bmatrix} 3 & -2 \\ -1 & 2 \end{bmatrix}$.

Solution: We have to compute the product

$$A(A^{-1}) = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix} \frac{1}{4} \begin{bmatrix} 3 & -2 \\ -1 & 2 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} \quad \Rightarrow \quad A(A^{-1}) = I_2.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

An $n \times n$ matrix A is called *invertible* iff there exists a matrix, denoted as A^{-1} , such

$$(A^{-1})A = I_n, \qquad A(A^{-1}) = I_n.$$

Example

Show that
$$A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$$
 has the inverse $A^{-1} = \frac{1}{4} \begin{bmatrix} 3 & -2 \\ -1 & 2 \end{bmatrix}$.

Solution: We have to compute the product

$$A(A^{-1}) = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix} \frac{1}{4} \begin{bmatrix} 3 & -2 \\ -1 & 2 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} \quad \Rightarrow \quad A(A^{-1}) = I_2.$$

<1

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Check that $(A^{-1})A = I_2$ also holds.

Remark: Not every $n \times n$ matrix is invertible.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ●

Remark: Not every $n \times n$ matrix is invertible.

Theorem $(2 \times 2 \text{ case})$ The matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is invertible iff holds that $\Delta = ad - bc \neq 0$. Furthermore, if A is invertible, then

$$A^{-1} = rac{1}{\Delta} \begin{bmatrix} d & -b \ -c & a \end{bmatrix}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Remark: Not every $n \times n$ matrix is invertible.

Theorem $(2 \times 2 \text{ case})$ The matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is invertible iff holds that $\Delta = ad - bc \neq 0$. Furthermore, if A is invertible, then

$$A^{-1} = rac{1}{\Delta} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Verify:

Remark: Not every $n \times n$ matrix is invertible.

Theorem $(2 \times 2 \text{ case})$ The matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is invertible iff holds that $\Delta = ad - bc \neq 0$. Furthermore, if A is invertible, then

$$A^{-1} = rac{1}{\Delta} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Verify:

 $A(A^{-1})$

Remark: Not every $n \times n$ matrix is invertible.

Theorem $(2 \times 2 \text{ case})$ The matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is invertible iff holds that $\Delta = ad - bc \neq 0$. Furthermore, if A is invertible, then

$$A^{-1} = rac{1}{\Delta} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Verify:

$$A(A^{-1}) = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \frac{1}{\Delta} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Remark: Not every $n \times n$ matrix is invertible.

Theorem $(2 \times 2 \text{ case})$ The matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is invertible iff holds that $\Delta = ad - bc \neq 0$. Furthermore, if A is invertible, then

$$A^{-1} = \frac{1}{\Delta} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Verify:

$$A(A^{-1}) = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \frac{1}{\Delta} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{\Delta} \begin{bmatrix} \Delta & -ab + ba \\ cd - dc & \Delta \end{bmatrix}$$

Remark: Not every $n \times n$ matrix is invertible.

Theorem $(2 \times 2 \text{ case})$ The matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is invertible iff holds that $\Delta = ad - bc \neq 0$. Furthermore, if A is invertible, then

$$A^{-1} = \frac{1}{\Delta} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Verify:

$$A(A^{-1}) = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \frac{1}{\Delta} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{\Delta} \begin{bmatrix} \Delta & -ab + ba \\ cd - dc & \Delta \end{bmatrix} = I_2.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Remark: Not every $n \times n$ matrix is invertible.

Theorem $(2 \times 2 \text{ case})$ The matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is invertible iff holds that $\Delta = ad - bc \neq 0$. Furthermore, if A is invertible, then

$$A^{-1} = \frac{1}{\Delta} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Verify:

$$A(A^{-1}) = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \frac{1}{\Delta} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{\Delta} \begin{bmatrix} \Delta & -ab + ba \\ cd - dc & \Delta \end{bmatrix} = I_2.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

It is not difficult to see that: $(A^{-1})A = I_2$ also holds.

<□ > < @ > < E > < E > E のQ @

Example
Find
$$A^{-1}$$
 for $A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$.

Example
Find
$$A^{-1}$$
 for $A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$.

Solution:

We use the formula in the previous Theorem.

Example
Find
$$A^{-1}$$
 for $A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$.

Solution:

We use the formula in the previous Theorem.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

In this case: $\Delta=6-2=4$,

Example
Find
$$A^{-1}$$
 for $A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$.

Solution:

We use the formula in the previous Theorem. In this case: $\Delta = 6 - 2 = 4$, and

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

$$A^{-1} = rac{1}{\Delta} egin{bmatrix} d & -b \ -c & a \end{bmatrix}$$

Example
Find
$$A^{-1}$$
 for $A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$.

Solution:

We use the formula in the previous Theorem. In this case: $\Delta = 6 - 2 = 4$, and

$$A^{-1} = rac{1}{\Delta} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \Rightarrow A^{-1} = rac{1}{4} \begin{bmatrix} 3 & -2 \\ -1 & 2 \end{bmatrix}.$$

 \triangleleft

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example
Find
$$A^{-1}$$
 for $A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$.

Solution:

We use the formula in the previous Theorem. In this case: $\Delta = 6 - 2 = 4$, and

$$A^{-1} = \frac{1}{\Delta} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \quad \Rightarrow \quad A^{-1} = \frac{1}{4} \begin{bmatrix} 3 & -2 \\ -1 & 2 \end{bmatrix}.$$

Remark: The formula for the inverse matrix can be generalized to $n \times n$ matrices having non-zero determinant.

Review of Linear Algebra (Sect. 5.2, 5.3)

- $n \times n$ systems of linear algebraic equations.
- The matrix-vector product.
- A matrix is a function.
- The inverse of a square matrix.
- The determinant of a square matrix.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

The *determinant* of a 2 × 2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is the number

 $\Delta = ad - bc.$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Definition

The *determinant* of a 2 × 2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is the number $\Delta = ad - bc.$

Notation: The determinant can be denoted in different ways:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

The *determinant* of a 2 × 2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is the number $\Delta = ad - bc.$

Notation: The determinant can be denoted in different ways:

$$\Delta = \det(A) = |A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

The determinant of a 2 × 2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is the number $\Delta = ad - bc.$

Notation: The determinant can be denoted in different ways:

$$\Delta = \det(A) = |A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(a)
$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$$

Definition

The *determinant* of a 2 × 2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is the number $\Delta = ad - bc.$

Notation: The determinant can be denoted in different ways:

$$\Delta = \det(A) = |A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(a)
$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 4 - 6$$

Definition

The *determinant* of a 2 × 2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is the number $\Delta = ad - bc.$

Notation: The determinant can be denoted in different ways:

$$\Delta = \det(A) = |A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(a)
$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 4 - 6 = -2.$$

Definition

The *determinant* of a 2 × 2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is the number $\Delta = ad - bc.$

Notation: The determinant can be denoted in different ways:

$$\Delta = \det(A) = |A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(a)
$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 4 - 6 = -2.$$

(b) $\begin{vmatrix} 2 & 1 \\ 3 & 4 \end{vmatrix}$

Definition

The *determinant* of a 2 × 2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is the number $\Delta = ad - bc.$

Notation: The determinant can be denoted in different ways:

$$\Delta = \det(A) = |A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(a)
$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 4 - 6 = -2$$

(b) $\begin{vmatrix} 2 & 1 \\ 3 & 4 \end{vmatrix} = 8 - 3$

Definition

The *determinant* of a 2 × 2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is the number $\Delta = ad - bc.$

Notation: The determinant can be denoted in different ways:

$$\Delta = \det(A) = |A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(a)
$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 4 - 6 = -2.$$

(b) $\begin{vmatrix} 2 & 1 \\ 3 & 4 \end{vmatrix} = 8 - 3 = 5.$

Definition

The determinant of a 2 × 2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is the number $\Delta = ad - bc.$

Notation: The determinant can be denoted in different ways:

$$\Delta = \det(A) = |A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(a)
$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 4 - 6 = -2.$$

(b) $\begin{vmatrix} 2 & 1 \\ 3 & 4 \end{vmatrix} = 8 - 3 = 5.$
(c) $\begin{vmatrix} 1 & 2 \\ 2 & 4 \end{vmatrix}$

Definition

The determinant of a 2 × 2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is the number $\Delta = ad - bc.$

Notation: The determinant can be denoted in different ways:

$$\Delta = \det(A) = |A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(a)
$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 4 - 6 = -2$$

(b) $\begin{vmatrix} 2 & 1 \\ 3 & 4 \end{vmatrix} = 8 - 3 = 5.$
(c) $\begin{vmatrix} 1 & 2 \\ 2 & 4 \end{vmatrix} = 4 - 4$

Definition

The *determinant* of a 2 × 2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is the number $\Delta = ad - bc.$

Notation: The determinant can be denoted in different ways:

$$\Delta = \det(A) = |A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(a)
$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 4 - 6 = -2.$$

(b) $\begin{vmatrix} 2 & 1 \\ 3 & 4 \end{vmatrix} = 8 - 3 = 5.$
(c) $\begin{vmatrix} 1 & 2 \\ 2 & 4 \end{vmatrix} = 4 - 4 = 0.$

Definition

The determinant of a 2 × 2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is the number $\Delta = ad - bc.$

Notation: The determinant can be denoted in different ways:

$$\Delta = \det(A) = |A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

Example

(a)
$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 4 - 6 = -2.$$

(b) $\begin{vmatrix} 2 & 1 \\ 3 & 4 \end{vmatrix} = 8 - 3 = 5.$
(c) $\begin{vmatrix} 1 & 2 \\ 2 & 4 \end{vmatrix} = 4 - 4 = 0.$

Remark: $\left| \det \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) \right|$ is the area of the parallelogram formed by the vectors

$$\begin{bmatrix} a \\ c \end{bmatrix} \text{ and } \begin{bmatrix} b \\ d \end{bmatrix}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition The *determinant* of a 3×3 matrix A is given by

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$=a_{11}\begin{vmatrix}a_{22}&a_{23}\\a_{32}&a_{33}\end{vmatrix}-a_{12}\begin{vmatrix}a_{21}&a_{23}\\a_{31}&a_{33}\end{vmatrix}+a_{13}\begin{vmatrix}a_{21}&a_{22}\\a_{31}&a_{32}\end{vmatrix}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Definition The *determinant* of a 3×3 matrix A is given by

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
$$= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}.$$

Remark: The $|\det(A)|$ is the volume of the parallelepiped formed by the column vectors of A.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

Find the determinant of $A = \begin{bmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ 3 & 2 & 1 \end{bmatrix}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Find the determinant of
$$A = \begin{bmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ 3 & 2 & 1 \end{bmatrix}$$
.

Solution: We use the definition above, that is,

$$\det(A) = \begin{vmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ 3 & 2 & 1 \end{vmatrix} = 1 \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} - 3 \begin{vmatrix} 2 & 1 \\ 3 & 1 \end{vmatrix} + (-1) \begin{vmatrix} 2 & 1 \\ 3 & 2 \end{vmatrix},$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Example

Find the determinant of
$$A = \begin{bmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ 3 & 2 & 1 \end{bmatrix}$$
.

Solution: We use the definition above, that is,

$$\det(A) = \begin{vmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ 3 & 2 & 1 \end{vmatrix} = 1 \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} - 3 \begin{vmatrix} 2 & 1 \\ 3 & 1 \end{vmatrix} + (-1) \begin{vmatrix} 2 & 1 \\ 3 & 2 \end{vmatrix},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\det(A) = (1-2) - 3(2-3) - (4-3)$

Example

Find the determinant of
$$A = \begin{bmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ 3 & 2 & 1 \end{bmatrix}$$
.

Solution: We use the definition above, that is,

$$\det(A) = \begin{vmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ 3 & 2 & 1 \end{vmatrix} = 1 \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} - 3 \begin{vmatrix} 2 & 1 \\ 3 & 1 \end{vmatrix} + (-1) \begin{vmatrix} 2 & 1 \\ 3 & 2 \end{vmatrix},$$

$$\det(A) = (1-2) - 3(2-3) - (4-3) = -1 + 3 - 1.$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Example

Find the determinant of
$$A = \begin{bmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ 3 & 2 & 1 \end{bmatrix}$$
.

Solution: We use the definition above, that is,

$$\det(A) = \begin{vmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ 3 & 2 & 1 \end{vmatrix} = 1 \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} - 3 \begin{vmatrix} 2 & 1 \\ 3 & 1 \end{vmatrix} + (-1) \begin{vmatrix} 2 & 1 \\ 3 & 2 \end{vmatrix},$$

$$\det(A) = (1-2) - 3(2-3) - (4-3) = -1 + 3 - 1.$$

<1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

We conclude: det(A) = 1.

Linear Algebra and differential systems (Sect. 5.4, 5.5, 5.6)

- Eigenvalues, eigenvectors of a matrix (5.5).
- Computing eigenvalues and eigenvectors (5.5).
- Diagonalizable matrices (5.5).
- $n \times n$ linear differential systems (5.4).
- Constant coefficients homogenoues systems (5.6).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

► Examples: 2 × 2 linear systems (5.6).

Definition

A number λ and a non-zero *n*-vector **v** are respectively called an *eigenvalue* and *eigenvector* of an $n \times n$ matrix A iff the following equation holds,

 $A\mathbf{v} = \lambda \mathbf{v}$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

A number λ and a non-zero *n*-vector **v** are respectively called an *eigenvalue* and *eigenvector* of an $n \times n$ matrix A iff the following equation holds,

$$A\mathbf{v}\,=\lambda\mathbf{v}$$
 .

Example

Verify that the pair
$$\lambda_1 = 4$$
, $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\lambda_2 = -2$, $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ are eigenvalue and eigenvector pairs of matrix $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

A number λ and a non-zero *n*-vector **v** are respectively called an *eigenvalue* and *eigenvector* of an $n \times n$ matrix A iff the following equation holds,

$$A\mathbf{v} = \lambda \mathbf{v}$$
 .

Example

Verify that the pair
$$\lambda_1 = 4$$
, $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\lambda_2 = -2$, $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ are eigenvalue and eigenvector pairs of matrix $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: $A\mathbf{v}_1$

Definition

A number λ and a non-zero *n*-vector **v** are respectively called an *eigenvalue* and *eigenvector* of an $n \times n$ matrix A iff the following equation holds,

$$A\mathbf{v}\,=\lambda\mathbf{v}$$
 .

Example

Verify that the pair
$$\lambda_1 = 4$$
, $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\lambda_2 = -2$, $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ are eigenvalue and eigenvector pairs of matrix $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution:
$$A\mathbf{v}_1 = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Definition

A number λ and a non-zero *n*-vector **v** are respectively called an *eigenvalue* and *eigenvector* of an $n \times n$ matrix A iff the following equation holds,

$$A\mathbf{v}\,=\lambda\mathbf{v}$$
 .

Example

Verify that the pair
$$\lambda_1 = 4$$
, $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\lambda_2 = -2$, $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ are eigenvalue and eigenvector pairs of matrix $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution:
$$A\mathbf{v}_1 = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$$

Definition

A number λ and a non-zero *n*-vector **v** are respectively called an *eigenvalue* and *eigenvector* of an $n \times n$ matrix A iff the following equation holds,

$$A\mathbf{v}\,=\lambda\mathbf{v}$$
 .

Example

Verify that the pair
$$\lambda_1 = 4$$
, $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\lambda_2 = -2$, $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ are eigenvalue and eigenvector pairs of matrix $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution:
$$A\mathbf{v}_1 = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Definition

A number λ and a non-zero *n*-vector **v** are respectively called an *eigenvalue* and *eigenvector* of an $n \times n$ matrix A iff the following equation holds,

$$A\mathbf{v}\,=\lambda\mathbf{v}$$
 .

Example

Verify that the pair
$$\lambda_1 = 4$$
, $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\lambda_2 = -2$, $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ are eigenvalue and eigenvector pairs of matrix $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution:
$$A\mathbf{v}_1 = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \lambda_1 \mathbf{v}_1.$$

Definition

A number λ and a non-zero *n*-vector **v** are respectively called an *eigenvalue* and *eigenvector* of an $n \times n$ matrix A iff the following equation holds,

$$A\mathbf{v}\,=\lambda\mathbf{v}$$
 .

Example

Verify that the pair
$$\lambda_1 = 4$$
, $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\lambda_2 = -2$, $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ are eigenvalue and eigenvector pairs of matrix $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution:
$$A\mathbf{v}_1 = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \lambda_1 \mathbf{v}_1.$$

 $A\mathbf{v}_2$

Definition

A number λ and a non-zero *n*-vector **v** are respectively called an *eigenvalue* and *eigenvector* of an $n \times n$ matrix A iff the following equation holds,

$$A\mathbf{v}\,=\lambda\mathbf{v}$$
 .

Example

Verify that the pair
$$\lambda_1 = 4$$
, $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\lambda_2 = -2$, $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ are eigenvalue and eigenvector pairs of matrix $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution:
$$A\mathbf{v}_1 = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \lambda_1 \mathbf{v}_1.$$

 $A\mathbf{v}_2 = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

Definition

A number λ and a non-zero *n*-vector **v** are respectively called an *eigenvalue* and *eigenvector* of an $n \times n$ matrix A iff the following equation holds,

$$A\mathbf{v}\,=\lambda\mathbf{v}$$
 .

Example

Verify that the pair
$$\lambda_1 = 4$$
, $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\lambda_2 = -2$, $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ are eigenvalue and eigenvector pairs of matrix $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution:
$$A\mathbf{v}_1 = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \lambda_1 \mathbf{v}_1.$$

 $A\mathbf{v}_2 = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$

Definition

A number λ and a non-zero *n*-vector **v** are respectively called an *eigenvalue* and *eigenvector* of an $n \times n$ matrix A iff the following equation holds,

$$A\mathbf{v}\,=\lambda\mathbf{v}$$
 .

Example

Verify that the pair
$$\lambda_1 = 4$$
, $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\lambda_2 = -2$, $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ are eigenvalue and eigenvector pairs of matrix $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution:
$$A\mathbf{v}_1 = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \lambda_1 \mathbf{v}_1.$$

$$A\mathbf{v}_2 = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \end{bmatrix} = -2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Definition

A number λ and a non-zero *n*-vector **v** are respectively called an *eigenvalue* and *eigenvector* of an $n \times n$ matrix A iff the following equation holds,

$$A\mathbf{v}\,=\lambda\mathbf{v}$$
 .

Example

Verify that the pair
$$\lambda_1 = 4$$
, $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\lambda_2 = -2$, $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ are eigenvalue and eigenvector pairs of matrix $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution:
$$A\mathbf{v}_1 = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \lambda_1 \mathbf{v}_1.$$

 $A\mathbf{v}_2 = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \end{bmatrix} = -2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \lambda_2 \mathbf{v}_2.$

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ の Q @ >

Remarks:

If we interpret an n×n matrix A as a function A : ℝⁿ → ℝⁿ, then the eigenvector v determines a particular direction on ℝⁿ where the action of A is simple:

Remarks:

If we interpret an n×n matrix A as a function A : ℝⁿ → ℝⁿ, then the eigenvector v determines a particular *direction* on ℝⁿ where the action of A is *simple*: Av is proportional to v.

Remarks:

If we interpret an n×n matrix A as a function A : ℝⁿ → ℝⁿ, then the eigenvector v determines a particular *direction* on ℝⁿ where the action of A is *simple*: Av is proportional to v.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Matrices usually change the direction of the vector,

Remarks:

If we interpret an n×n matrix A as a function A : ℝⁿ → ℝⁿ, then the eigenvector v determines a particular *direction* on ℝⁿ where the action of A is *simple*: Av is proportional to v.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Matrices usually change the direction of the vector, like

$$\begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Remarks:

- If we interpret an n×n matrix A as a function A : ℝⁿ → ℝⁿ, then the eigenvector v determines a particular *direction* on ℝⁿ where the action of A is *simple*: Av is proportional to v.
- Matrices usually change the direction of the vector, like

$$\begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 7 \\ 5 \end{bmatrix}.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Remarks:

- If we interpret an n×n matrix A as a function A : ℝⁿ → ℝⁿ, then the eigenvector v determines a particular *direction* on ℝⁿ where the action of A is *simple*: Av is proportional to v.
- Matrices usually change the direction of the vector, like

$$\begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 7 \\ 5 \end{bmatrix}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This is not the case for eigenvectors,

Remarks:

- If we interpret an n×n matrix A as a function A : ℝⁿ → ℝⁿ, then the eigenvector v determines a particular *direction* on ℝⁿ where the action of A is *simple*: Av is proportional to v.
- Matrices usually change the direction of the vector, like

$$\begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 7 \\ 5 \end{bmatrix}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This is not the case for eigenvectors, like

$$\begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Remarks:

- If we interpret an n×n matrix A as a function A : ℝⁿ → ℝⁿ, then the eigenvector v determines a particular *direction* on ℝⁿ where the action of A is *simple*: Av is proportional to v.
- Matrices usually change the direction of the vector, like

$$\begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 7 \\ 5 \end{bmatrix}$$

This is not the case for eigenvectors, like

$$\begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

(ロ)、(型)、(E)、(E)、 E、 のQの

Example

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Solution:

The function $A : \mathbb{R}^2 \to \mathbb{R}^2$ is a reflection along $x_1 = x_2$ axis.

Example

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Solution:

The function $A : \mathbb{R}^2 \to \mathbb{R}^2$ is a reflection along $x_1 = x_2$ axis.

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Example

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Solution:

The function $A : \mathbb{R}^2 \to \mathbb{R}^2$ is a reflection along $x_1 = x_2$ axis.

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_1 \end{bmatrix}$$

Example

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Solution:

The function $A : \mathbb{R}^2 \to \mathbb{R}^2$ is a reflection along $x_1 = x_2$ axis.

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_1 \end{bmatrix}$$

Example

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Solution:

The function $A : \mathbb{R}^2 \to \mathbb{R}^2$ is a reflection along $x_1 = x_2$ axis.

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_1 \end{bmatrix}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

Example

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Solution:

The function $A : \mathbb{R}^2 \to \mathbb{R}^2$ is a reflection along $x_1 = x_2$ axis.

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_1 \end{bmatrix}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Example

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Solution:

The function $A : \mathbb{R}^2 \to \mathbb{R}^2$ is a reflection along $x_1 = x_2$ axis.

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_1 \end{bmatrix}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

$$\boldsymbol{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Example

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Solution:

The function $A : \mathbb{R}^2 \to \mathbb{R}^2$ is a reflection along $x_1 = x_2$ axis.

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_1 \end{bmatrix}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

$$\boldsymbol{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Example

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Solution:

The function $A : \mathbb{R}^2 \to \mathbb{R}^2$ is a reflection along $x_1 = x_2$ axis.

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_1 \end{bmatrix}$$

$$\mathbf{v}_1 = egin{bmatrix} 1 \ 1 \end{bmatrix} \quad \Rightarrow \quad egin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix} egin{bmatrix} 1 \ 1 \end{bmatrix} = egin{bmatrix} 1 \ 1 \end{bmatrix} \quad \Rightarrow \quad \lambda_1 = 1.$$

Example

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Solution:

The function $A : \mathbb{R}^2 \to \mathbb{R}^2$ is a reflection along $x_1 = x_2$ axis.

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_1 \end{bmatrix}$$

The line $x_1 = x_2$ is invariant under A. Hence,

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \Rightarrow \quad \lambda_1 = 1.$$

An eigenvalue eigenvector pair is: $\lambda_1 = 1$, $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Example

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Solution: Eigenvalue eigenvector pair:

$$\lambda_1 = 1, \quad \mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Solution: Eigenvalue eigenvector pair:

 $\lambda_1 = 1, \quad \mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$

イロト イポト イヨト イヨト

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Solution: Eigenvalue eigenvector pair:

 $\lambda_1 = 1, \quad \mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$

A second eigenvector eigenvalue pair is:

イロト 不得 ト イヨト イヨト

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Solution: Eigenvalue eigenvector pair:

$$\lambda_1 = 1, \quad \mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

・ロト ・ 一下・ ・ ヨト ・ ヨト

$$\mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Solution: Eigenvalue eigenvector pair:

 $\lambda_1 = 1, \quad \mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$

イロト 不得 ト イヨト イヨト

$$\mathbf{v}_2 = \begin{bmatrix} -1\\1\end{bmatrix} \Rightarrow \begin{bmatrix} 0 & 1\\1 & 0\end{bmatrix} \begin{bmatrix} -1\\1\end{bmatrix}$$

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Solution: Eigenvalue eigenvector pair:

 $\lambda_1 = 1, \quad \mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$

イロト 不得 ト イヨト イヨト

$$\mathbf{v}_2 = \begin{bmatrix} -1\\1 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 & 1\\1 & 0 \end{bmatrix} \begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 1\\-1 \end{bmatrix}$$

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Solution: Eigenvalue eigenvector pair:

 $\lambda_1 = 1, \quad \mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$

・ロト ・ 一下・ ・ ヨト ・ ヨト

$$\mathbf{v}_2 = \begin{bmatrix} -1\\1 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 & 1\\1 & 0 \end{bmatrix} \begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 1\\-1 \end{bmatrix} = (-1) \begin{bmatrix} -1\\1 \end{bmatrix}$$

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Solution: Eigenvalue eigenvector pair:

 $\lambda_1 = 1, \quad \mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$

イロト 不得 ト イヨト イヨト

$$\mathbf{v}_2 = egin{bmatrix} -1 \ 1 \end{bmatrix} \Rightarrow egin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix} egin{bmatrix} -1 \ 1 \end{bmatrix} = egin{bmatrix} 1 \ -1 \end{bmatrix} = (-1) egin{bmatrix} -1 \ 1 \end{bmatrix} \Rightarrow \lambda_2 = -1.$$

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Solution: Eigenvalue eigenvector pair:

$$\lambda_1 = 1, \quad \mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

▶ ▲ 同 ▶ ▲ ヨ ▶ ▲ ヨ ▶

$$\mathbf{v}_2 = \begin{bmatrix} -1\\1 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 & 1\\1 & 0 \end{bmatrix} \begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 1\\-1 \end{bmatrix} = (-1) \begin{bmatrix} -1\\1 \end{bmatrix} \Rightarrow \lambda_2 = -1.$$

A second eigenvalue eigenvector pair: $\lambda_2 = -1$, $\mathbf{v}_2 = \begin{bmatrix} -1\\1 \end{bmatrix}$.

Remark: Not every $n \times n$ matrix has real eigenvalues.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Remark: Not every $n \times n$ matrix has real eigenvalues.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Fix
$$\theta \in (0, \pi)$$
 and define $A = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$.

Show that A has no real eigenvalues.

Remark: Not every $n \times n$ matrix has real eigenvalues.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

Fix
$$\theta \in (0, \pi)$$
 and define $A = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$.
Show that A has no real eigenvalues.

Solution: Matrix $A : \mathbb{R}^2 \to \mathbb{R}^2$ is a rotation by θ counterclockwise.

Remark: Not every $n \times n$ matrix has real eigenvalues.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

Fix
$$\theta \in (0, \pi)$$
 and define $A = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$.
Show that A has no real eigenvalues.

Solution: Matrix $A : \mathbb{R}^2 \to \mathbb{R}^2$ is a

rotation by θ counterclockwise. There is no direction left invariant by the function A.

Remark: Not every $n \times n$ matrix has real eigenvalues.

Example

Fix
$$\theta \in (0, \pi)$$
 and define $A = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$.

Show that A has no real eigenvalues.

Solution: Matrix $A : \mathbb{R}^2 \to \mathbb{R}^2$ is a

rotation by θ counterclockwise. There is no direction left invariant by the function A.

Remark: Not every $n \times n$ matrix has real eigenvalues.

Example

Fix
$$\theta \in (0, \pi)$$
 and define $A = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$.

Show that A has no real eigenvalues.

Solution: Matrix $A : \mathbb{R}^2 \to \mathbb{R}^2$ is a

rotation by θ counterclockwise. There is no direction left invariant by the function A.

We conclude: Matrix A has no eigenvalues eigenvector pairs. \lhd

Remark: Not every $n \times n$ matrix has real eigenvalues.

Example

Fix
$$\theta \in (0, \pi)$$
 and define $A = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$.

Show that A has no real eigenvalues.

Solution: Matrix
$$A : \mathbb{R}^2 \to \mathbb{R}^2$$
 is a

rotation by θ counterclockwise. There is no direction left invariant by the function *A*.

We conclude: Matrix A has no eigenvalues eigenvector pairs. \lhd

Remark:

Matrix A has complex-values eigenvalues and eigenvectors.

Linear Algebra and differential systems (Sect. 5.4, 5.5, 5.6)

- Eigenvalues, eigenvectors of a matrix (5.5).
- ► Computing eigenvalues and eigenvectors (5.5).
- Diagonalizable matrices (5.5).
- $n \times n$ linear differential systems (5.4).
- Constant coefficients homogenoues systems (5.6).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

► Examples: 2 × 2 linear systems (5.6).

Computing eigenvalues and eigenvectors.

Problem:

Given an $n \times n$ matrix A, find, if possible, λ and $\mathbf{v} \neq \mathbf{0}$ solution of

 $A\mathbf{v} = \lambda \mathbf{v}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Computing eigenvalues and eigenvectors.

Problem:

Given an $n \times n$ matrix A, find, if possible, λ and $\mathbf{v} \neq \mathbf{0}$ solution of

 $A\mathbf{v} = \lambda \mathbf{v}.$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Remark:

This is more complicated than solving a linear system $A\mathbf{v} = \mathbf{b}$,

Problem:

Given an $n \times n$ matrix A, find, if possible, λ and $\mathbf{v} \neq \mathbf{0}$ solution of

 $A\mathbf{v} = \lambda \mathbf{v}.$

Remark:

This is more complicated than solving a linear system $A\mathbf{v} = \mathbf{b}$, since in our case we do not know the source vector $\mathbf{b} = \lambda \mathbf{v}$.

Problem:

Given an $n \times n$ matrix A, find, if possible, λ and $\mathbf{v} \neq \mathbf{0}$ solution of

 $A\mathbf{v} = \lambda \mathbf{v}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark:

This is more complicated than solving a linear system $A\mathbf{v} = \mathbf{b}$, since in our case we do not know the source vector $\mathbf{b} = \lambda \mathbf{v}$.

Solution:

(a) First solve for λ .

Problem:

Given an $n \times n$ matrix A, find, if possible, λ and $\mathbf{v} \neq \mathbf{0}$ solution of

 $A\mathbf{v} = \lambda \mathbf{v}.$

Remark:

This is more complicated than solving a linear system $A\mathbf{v} = \mathbf{b}$, since in our case we do not know the source vector $\mathbf{b} = \lambda \mathbf{v}$.

Solution:

- (a) First solve for λ .
- (b) Having λ , then solve for **v**.

Theorem (Eigenvalues-eigenvectors)

(a) The number λ is an eigenvalue of an $n \times n$ matrix A iff

 $\det(A - \lambda I) = 0.$

 (b) Given an eigenvalue λ of matrix A, the corresponding eigenvectors v are the non-zero solutions to the homogeneous linear system

 $(A - \lambda I)\mathbf{v} = \mathbf{0}.$

Theorem (Eigenvalues-eigenvectors)

(a) The number λ is an eigenvalue of an $n \times n$ matrix A iff

 $\det(A - \lambda I) = 0.$

 (b) Given an eigenvalue λ of matrix A, the corresponding eigenvectors v are the non-zero solutions to the homogeneous linear system

 $(A - \lambda I)\mathbf{v} = \mathbf{0}.$

Notation:

 $p(\lambda) = \det(A - \lambda I)$ is called the *characteristic polynomial*.

Theorem (Eigenvalues-eigenvectors)

(a) The number λ is an eigenvalue of an $n \times n$ matrix A iff

 $\det(A - \lambda I) = 0.$

 (b) Given an eigenvalue λ of matrix A, the corresponding eigenvectors v are the non-zero solutions to the homogeneous linear system

 $(A - \lambda I)\mathbf{v} = \mathbf{0}.$

Notation:

 $p(\lambda) = \det(A - \lambda I)$ is called the *characteristic polynomial*. If A is $n \times n$, then p is degree n.

Theorem (Eigenvalues-eigenvectors)

(a) The number λ is an eigenvalue of an $n \times n$ matrix A iff

 $\det(A - \lambda I) = 0.$

 (b) Given an eigenvalue λ of matrix A, the corresponding eigenvectors v are the non-zero solutions to the homogeneous linear system

 $(A - \lambda I)\mathbf{v} = \mathbf{0}.$

Notation:

 $p(\lambda) = \det(A - \lambda I)$ is called the *characteristic polynomial*. If A is $n \times n$, then p is degree n.

Remark: An eigenvalue is a root of the characteristic polynomial.

- ロ ト - 4 回 ト - 4 □ - 4

Proof:

Find λ such that for a non-zero vector ${\bf v}$ holds,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

 $A\mathbf{v}=\lambda\mathbf{v}$

Proof:

Find λ such that for a non-zero vector ${\bf v}$ holds,

$$A\mathbf{v} = \lambda \mathbf{v} \quad \Leftrightarrow \quad (A - \lambda I)\mathbf{v} = \mathbf{0}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Proof:

Find λ such that for a non-zero vector ${\bf v}$ holds,

$$A\mathbf{v} = \lambda \mathbf{v} \quad \Leftrightarrow \quad (A - \lambda I)\mathbf{v} = \mathbf{0}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Recall, $\mathbf{v} \neq \mathbf{0}$.

Proof:

Find λ such that for a non-zero vector ${\bf v}$ holds,

$$A\mathbf{v} = \lambda \mathbf{v} \quad \Leftrightarrow \quad (A - \lambda I)\mathbf{v} = \mathbf{0}.$$

Recall, $\mathbf{v} \neq \mathbf{0}$.

This last condition implies that matrix $(A - \lambda I)$ is not invertible.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof:

Find λ such that for a non-zero vector ${\bf v}$ holds,

$$A\mathbf{v} = \lambda \mathbf{v} \quad \Leftrightarrow \quad (A - \lambda I)\mathbf{v} = \mathbf{0}.$$

Recall, $\mathbf{v} \neq \mathbf{0}$.

This last condition implies that matrix $(A - \lambda I)$ is not invertible. (Proof: If $(A - \lambda I)$ invertible,

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proof:

Find λ such that for a non-zero vector ${\bf v}$ holds,

$$A\mathbf{v} = \lambda \mathbf{v} \quad \Leftrightarrow \quad (A - \lambda I)\mathbf{v} = \mathbf{0}.$$

Recall, $\mathbf{v} \neq \mathbf{0}$.

This last condition implies that matrix $(A - \lambda I)$ is not invertible. (Proof: If $(A - \lambda I)$ invertible, then $(A - \lambda I)^{-1}(A - \lambda I)\mathbf{v} = \mathbf{0}$,

Proof:

Find λ such that for a non-zero vector ${\bf v}$ holds,

$$A\mathbf{v} = \lambda \mathbf{v} \quad \Leftrightarrow \quad (A - \lambda I)\mathbf{v} = \mathbf{0}.$$

Recall, $\mathbf{v} \neq \mathbf{0}$.

This last condition implies that matrix $(A - \lambda I)$ is not invertible.

(Proof: If $(A - \lambda I)$ invertible, then $(A - \lambda I)^{-1}(A - \lambda I)\mathbf{v} = \mathbf{0}$, that is, $\mathbf{v} = \mathbf{0}$.)

Proof:

Find λ such that for a non-zero vector ${\bf v}$ holds,

$$A\mathbf{v} = \lambda \mathbf{v} \quad \Leftrightarrow \quad (A - \lambda I)\mathbf{v} = \mathbf{0}.$$

Recall, $\mathbf{v} \neq \mathbf{0}$.

This last condition implies that matrix $(A - \lambda I)$ is not invertible.

(Proof: If $(A - \lambda I)$ invertible, then $(A - \lambda I)^{-1}(A - \lambda I)\mathbf{v} = \mathbf{0}$, that is, $\mathbf{v} = \mathbf{0}$.)

Since $(A - \lambda I)$ is not invertible, then $det(A - \lambda I) = 0$.

Proof:

Find λ such that for a non-zero vector ${\bf v}$ holds,

$$A\mathbf{v} = \lambda \mathbf{v} \quad \Leftrightarrow \quad (A - \lambda I)\mathbf{v} = \mathbf{0}.$$

Recall, $\mathbf{v} \neq \mathbf{0}$.

This last condition implies that matrix $(A - \lambda I)$ is not invertible.

(Proof: If $(A - \lambda I)$ invertible, then $(A - \lambda I)^{-1}(A - \lambda I)\mathbf{v} = \mathbf{0}$, that is, $\mathbf{v} = \mathbf{0}$.)

Since $(A - \lambda I)$ is not invertible, then $det(A - \lambda I) = 0$.

Once λ is known, the original eigenvalue-eigenvector equation $A\mathbf{v} = \lambda \mathbf{v}$ is equivalent to $(A - \lambda I)\mathbf{v} = \mathbf{0}$.

Find the eigenvalues λ and eigenvectors **v** of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

(ロ)、(型)、(E)、(E)、 E、 のQの

Example

Find the eigenvalues λ and eigenvectors **v** of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution:

The eigenvalues are the roots of the characteristic polynomial.

Example

Find the eigenvalues λ and eigenvectors **v** of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution:

The eigenvalues are the roots of the characteristic polynomial.

 $A - \lambda I$

Example

Find the eigenvalues λ and eigenvectors **v** of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution:

The eigenvalues are the roots of the characteristic polynomial.

$$A - \lambda I = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Example

Find the eigenvalues λ and eigenvectors **v** of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution:

The eigenvalues are the roots of the characteristic polynomial.

$$A - \lambda I = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}$$

Example

Find the eigenvalues λ and eigenvectors **v** of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution:

The eigenvalues are the roots of the characteristic polynomial.

$$A - \lambda I = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} (1 - \lambda) & 3 \\ 3 & (1 - \lambda) \end{bmatrix}$$

Example

Find the eigenvalues λ and eigenvectors **v** of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution:

The eigenvalues are the roots of the characteristic polynomial.

$$A - \lambda I = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} (1 - \lambda) & 3 \\ 3 & (1 - \lambda) \end{bmatrix}$$

The characteristic polynomial is

 $p(\lambda) = \det(A - \lambda I)$

Find the eigenvalues λ and eigenvectors **v** of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution:

The eigenvalues are the roots of the characteristic polynomial.

$$A - \lambda I = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} (1 - \lambda) & 3 \\ 3 & (1 - \lambda) \end{bmatrix}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The characteristic polynomial is

$$p(\lambda) = \det(A - \lambda I) = egin{pmatrix} (1 - \lambda) & 3 \ 3 & (1 - \lambda) \end{pmatrix}$$

Find the eigenvalues λ and eigenvectors **v** of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution:

The eigenvalues are the roots of the characteristic polynomial.

$$A - \lambda I = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} (1 - \lambda) & 3 \\ 3 & (1 - \lambda) \end{bmatrix}$$

The characteristic polynomial is

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} (1 - \lambda) & 3 \\ 3 & (1 - \lambda) \end{vmatrix} = (\lambda - 1)^2 - 9$$

Find the eigenvalues λ and eigenvectors **v** of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution:

The eigenvalues are the roots of the characteristic polynomial.

$$A - \lambda I = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} (1 - \lambda) & 3 \\ 3 & (1 - \lambda) \end{bmatrix}$$

The characteristic polynomial is

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} (1 - \lambda) & 3 \\ 3 & (1 - \lambda) \end{vmatrix} = (\lambda - 1)^2 - 9$$

The roots are $\lambda_+ = 4$ and $\lambda_- = -2$.

Find the eigenvalues λ and eigenvectors **v** of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution:

The eigenvalues are the roots of the characteristic polynomial.

$$A - \lambda I = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} (1 - \lambda) & 3 \\ 3 & (1 - \lambda) \end{bmatrix}$$

The characteristic polynomial is

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} (1 - \lambda) & 3 \\ 3 & (1 - \lambda) \end{vmatrix} = (\lambda - 1)^2 - 9$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The roots are $\lambda_+ = 4$ and $\lambda_- = -2$. Compute the eigenvector for $\lambda_+ = 4$.

Find the eigenvalues λ and eigenvectors **v** of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution:

The eigenvalues are the roots of the characteristic polynomial.

$$A - \lambda I = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} (1 - \lambda) & 3 \\ 3 & (1 - \lambda) \end{bmatrix}$$

The characteristic polynomial is

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} (1 - \lambda) & 3 \\ 3 & (1 - \lambda) \end{vmatrix} = (\lambda - 1)^2 - 9$$

The roots are $\lambda_+ = 4$ and $\lambda_- = -2$. Compute the eigenvector for $\lambda_+ = 4$. Solve $(A - 4I)\mathbf{v}_+ = \mathbf{0}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Find the eigenvalues λ and eigenvectors **v** of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution:

The eigenvalues are the roots of the characteristic polynomial.

$$A - \lambda I = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} (1 - \lambda) & 3 \\ 3 & (1 - \lambda) \end{bmatrix}$$

The characteristic polynomial is

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} (1 - \lambda) & 3 \\ 3 & (1 - \lambda) \end{vmatrix} = (\lambda - 1)^2 - 9$$

The roots are $\lambda_+ = 4$ and $\lambda_- = -2$. Compute the eigenvector for $\lambda_+ = 4$. Solve $(A - 4I)\mathbf{v}_+ = \mathbf{0}$.

$$A-4I = \begin{bmatrix} 1-4 & 3\\ 3 & 1-4 \end{bmatrix}$$

Find the eigenvalues λ and eigenvectors **v** of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution:

The eigenvalues are the roots of the characteristic polynomial.

$$A - \lambda I = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} (1 - \lambda) & 3 \\ 3 & (1 - \lambda) \end{bmatrix}$$

The characteristic polynomial is

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} (1 - \lambda) & 3 \\ 3 & (1 - \lambda) \end{vmatrix} = (\lambda - 1)^2 - 9$$

The roots are $\lambda_+ = 4$ and $\lambda_- = -2$. Compute the eigenvector for $\lambda_+ = 4$. Solve $(A - 4I)\mathbf{v}_+ = \mathbf{0}$.

$$A - 4I = \begin{bmatrix} 1 - 4 & 3 \\ 3 & 1 - 4 \end{bmatrix} = \begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix}$$

◆ロト ◆母 ト ◆ 臣 ト ◆ 臣 ト ○ 臣 - の へ ()

Example

Find the eigenvalues λ and eigenvectors **v** of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Recall: $\lambda_+ = 4$, $\lambda_- = -2$, $A - 4I = \begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix}$.

Example

Find the eigenvalues λ and eigenvectors **v** of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Recall: $\lambda_+ = 4$, $\lambda_- = -2$, $A - 4I = \begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix}$. We solve $(A - 4I)\mathbf{v}_+ = \mathbf{0}$,

Example

Find the eigenvalues λ and eigenvectors **v** of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Recall: $\lambda_+ = 4$, $\lambda_- = -2$, $A - 4I = \begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find the eigenvalues λ and eigenvectors **v** of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Recall: $\lambda_+ = 4$, $\lambda_- = -2$, $A - 4I = \begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix}$$

Example

Find the eigenvalues λ and eigenvectors **v** of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Recall: $\lambda_+ = 4$, $\lambda_- = -2$, $A - 4I = \begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 \\ 3 & -3 \end{bmatrix}$$

Example

Find the eigenvalues λ and eigenvectors **v** of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Recall: $\lambda_+ = 4$, $\lambda_- = -2$, $A - 4I = \begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 \\ 3 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$$

Example

Find the eigenvalues λ and eigenvectors **v** of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Recall: $\lambda_+ = 4$, $\lambda_- = -2$, $A - 4I = \begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix}$.

We solve $(A - 4I)\mathbf{v}_+ = \mathbf{0}$, using Gauss elimination,

$$\begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 \\ 3 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} v_1^+ = v_2^+, \\ v_2^+ \text{ free.} \end{cases}$$

Example

Find the eigenvalues λ and eigenvectors **v** of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Recall: $\lambda_+ = 4$, $\lambda_- = -2$, $A - 4I = \begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix}$.

We solve $(A - 4I)\mathbf{v}_+ = \mathbf{0}$, using Gauss elimination,

$$\begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 \\ 3 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} v_1^+ = v_2^+, \\ v_2^+ \text{ free.} \end{cases}$$

Al solutions to the equation above are then given by

$$\mathbf{v}_{+} = \begin{bmatrix} v_2^+ \\ v_2^+ \end{bmatrix}$$

Example

Find the eigenvalues λ and eigenvectors **v** of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Recall: $\lambda_+ = 4$, $\lambda_- = -2$, $A - 4I = \begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix}$.

We solve $(A - 4I)\mathbf{v}_+ = \mathbf{0}$, using Gauss elimination,

$$\begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 \\ 3 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} v_1^+ = v_2^+, \\ v_2^+ \text{ free.} \end{cases}$$

Al solutions to the equation above are then given by

$$\mathbf{v}_{+} = egin{bmatrix} v_{2}^{+} \ v_{2}^{+} \end{bmatrix} = egin{bmatrix} 1 \ 1 \end{bmatrix} v_{2}^{+}$$

Example

Find the eigenvalues λ and eigenvectors **v** of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Recall: $\lambda_+ = 4$, $\lambda_- = -2$, $A - 4I = \begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix}$.

We solve $(A - 4I)\mathbf{v}_+ = \mathbf{0}$, using Gauss elimination,

$$\begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 \\ 3 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} v_1^+ = v_2^+, \\ v_2^+ \text{ free.} \end{cases}$$

Al solutions to the equation above are then given by

$$\mathbf{v}_{+} = \begin{bmatrix} v_{2}^{+} \\ v_{2}^{+} \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} v_{2}^{+} \quad \Rightarrow \quad \mathbf{v}_{+} = \begin{bmatrix} 1 \\ 1 \end{bmatrix},$$

Example

Find the eigenvalues λ and eigenvectors **v** of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Recall: $\lambda_+ = 4$, $\lambda_- = -2$, $A - 4I = \begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix}$.

We solve $(A - 4I)\mathbf{v}_+ = \mathbf{0}$, using Gauss elimination,

$$\begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 \\ 3 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} v_1^+ = v_2^+, \\ v_2^+ \text{ free.} \end{cases}$$

Al solutions to the equation above are then given by

$$\mathbf{v}_{+} = \begin{bmatrix} v_{2}^{+} \\ v_{2}^{+} \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} v_{2}^{+} \quad \Rightarrow \quad \mathbf{v}_{+} = \begin{bmatrix} 1 \\ 1 \end{bmatrix},$$

The first eigenvalue eigenvector pair is $\lambda_{+} = 4$, $\mathbf{v}_{+} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Example

Find the eigenvalues λ and eigenvectors **v** of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Recall: $\lambda_+ = 4$, $\mathbf{v}_+ = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\lambda_- = -2$.

Example

Find the eigenvalues λ and eigenvectors **v** of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Solution: Recall: $\lambda_+ = 4$, $\mathbf{v}_+ = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\lambda_- = -2$.

Solve $(A + 2I)\mathbf{v}_{-} = \mathbf{0}$,

Example

Find the eigenvalues λ and eigenvectors **v** of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Recall: $\lambda_+ = 4$, $\mathbf{v}_+ = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\lambda_- = -2$.

Solve $(A+2I)\mathbf{v}_{-} = \mathbf{0}$, using Gauss operations on $A+2I = \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix}$.

Example

Find the eigenvalues λ and eigenvectors **v** of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Recall: $\lambda_+ = 4$, $\mathbf{v}_+ = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\lambda_- = -2$.

Solve $(A+2I)\mathbf{v}_{-} = \mathbf{0}$, using Gauss operations on $A+2I = \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix}$.

Example

Find the eigenvalues λ and eigenvectors **v** of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Recall: $\lambda_+ = 4$, $\mathbf{v}_+ = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\lambda_- = -2$.

Solve $(A+2I)\mathbf{v}_{-} = \mathbf{0}$, using Gauss operations on $A+2I = \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix}$.

$$\begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix}$$

Example

Find the eigenvalues λ and eigenvectors **v** of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Recall: $\lambda_+ = 4$, $\mathbf{v}_+ = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\lambda_- = -2$.

Solve $(A+2I)\mathbf{v}_{-} = \mathbf{0}$, using Gauss operations on $A+2I = \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix}$.

$$\begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

Example

Find the eigenvalues λ and eigenvectors **v** of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Recall: $\lambda_{+} = 4$, $\mathbf{v}_{+} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\lambda_{-} = -2$. Solve $(A+2I)\mathbf{v}_{-} = \mathbf{0}$, using Gauss operations on $A+2I = \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix}$.

$$\begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} v_1^- = -v_2^-, \\ v_2^- \text{ free.} \end{cases}$$

Example

Find the eigenvalues λ and eigenvectors **v** of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Recall: $\lambda_+ = 4$, $\mathbf{v}_+ = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\lambda_- = -2$.

Solve $(A+2I)\mathbf{v}_{-} = \mathbf{0}$, using Gauss operations on $A+2I = \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix}$.

$$\begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} v_1^- = -v_2^-, \\ v_2^- \text{ free.} \end{cases}$$

Al solutions to the equation above are then given by

$$\mathbf{v}_{-} = \begin{bmatrix} -v_{2}^{-} \\ v_{2}^{-} \end{bmatrix}$$

Example

Find the eigenvalues λ and eigenvectors **v** of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Recall: $\lambda_+ = 4$, $\mathbf{v}_+ = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\lambda_- = -2$.

Solve $(A+2I)\mathbf{v}_{-} = \mathbf{0}$, using Gauss operations on $A+2I = \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix}$.

$$\begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} v_1^- = -v_2^-, \\ v_2^- \text{ free.} \end{cases}$$

Al solutions to the equation above are then given by

$$\mathbf{v}_{-} = \begin{bmatrix} -v_2^{-} \\ v_2^{-} \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} v_2^{-}$$

Example

Find the eigenvalues λ and eigenvectors **v** of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Recall: $\lambda_{+} = 4$, $\mathbf{v}_{+} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\lambda_{-} = -2$. Solve $(A+2I)\mathbf{v}_{-} = \mathbf{0}$, using Gauss operations on $A+2I = \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix}$.

$$\begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} v_1^- = -v_2^-, \\ v_2^- \text{ free.} \end{cases}$$

Al solutions to the equation above are then given by

$$\mathbf{v}_{-} = \begin{bmatrix} -v_{2}^{-} \\ v_{2}^{-} \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} v_{2}^{-} \quad \Rightarrow \quad \mathbf{v}_{-} = \begin{bmatrix} -1 \\ 1 \end{bmatrix},$$

Example

Find the eigenvalues λ and eigenvectors **v** of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Recall: $\lambda_{+} = 4$, $\mathbf{v}_{+} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\lambda_{-} = -2$. Solve $(A+2I)\mathbf{v}_{-} = \mathbf{0}$, using Gauss operations on $A+2I = \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix}$.

$$\begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \Rightarrow \begin{cases} v_1^- = -v_2^-, v_2^- \\ v_2^- & \text{free.} \end{cases}$$

Al solutions to the equation above are then given by

$$\mathbf{v}_{-} = \begin{bmatrix} -v_{2}^{-} \\ v_{2}^{-} \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} v_{2}^{-} \quad \Rightarrow \quad \mathbf{v}_{-} = \begin{bmatrix} -1 \\ 1 \end{bmatrix},$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

The second eigenvalue eigenvector pair: $\lambda_{-} = -2$, $\mathbf{v}_{-} = \begin{vmatrix} -1 \\ 1 \end{vmatrix}$.

Linear Algebra and differential systems (Sect. 5.4, 5.5, 5.6)

- Eigenvalues, eigenvectors of a matrix (5.5).
- Computing eigenvalues and eigenvectors (5.5).
- Diagonalizable matrices (5.5).
- $n \times n$ linear differential systems (5.4).
- Constant coefficients homogenoues systems (5.6).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

► Examples: 2 × 2 linear systems (5.6).

Definition

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

An $n \times n$ matrix D is called *diagonal* iff D =

$$\begin{bmatrix} d_{11} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & d_{nn} \end{bmatrix}.$$

Definition

An $n \times n$ matrix A is called *diagonalizable* iff there exists an invertible matrix P and a diagonal matrix D such that

 $A = PDP^{-1}.$

Definition

An $n \times n$ matrix D is called *diagonal* iff $D = \begin{bmatrix} d_{11} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & d_{nn} \end{bmatrix}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition

An $n \times n$ matrix A is called *diagonalizable* iff there exists an invertible matrix P and a diagonal matrix D such that

 $A = PDP^{-1}$.

Remark:

Systems of linear differential equations are simple to solve in the case that the coefficient matrix A is diagonalizable.

Definition

Definition An $n \times n$ matrix D is called *diagonal* iff $D = \begin{bmatrix} d_{11} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & d_{nn} \end{bmatrix}$.

Definition

An $n \times n$ matrix A is called *diagonalizable* iff there exists an invertible matrix P and a diagonal matrix D such that

 $A = PDP^{-1}$.

Remark:

- Systems of linear differential equations are simple to solve in the case that the coefficient matrix A is diagonalizable.
- In such case, it is simple to *decouple* the differential equations.

Definition

Definition

An $n \times n$ matrix A is called *diagonalizable* iff there exists an invertible matrix P and a diagonal matrix D such that

 $A = PDP^{-1}$.

Remark:

- Systems of linear differential equations are simple to solve in the case that the coefficient matrix A is diagonalizable.
- In such case, it is simple to *decouple* the differential equations.
- One solves the decoupled equations, and then transforms back to the original unknowns.

Theorem (Diagonalizability and eigenvectors)

An $n \times n$ matrix A is diagonalizable iff matrix A has a linearly independent set of n eigenvectors. Furthermore,

$$A = PDP^{-1}, \quad P = [\mathbf{v}_1, \cdots, \mathbf{v}_n], \quad D = \begin{bmatrix} \lambda_1 & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & \lambda_n \end{bmatrix},$$

where λ_i , \mathbf{v}_i , for $i = 1, \dots, n$, are eigenvalue-eigenvector pairs of A.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

Theorem (Diagonalizability and eigenvectors)

An $n \times n$ matrix A is diagonalizable iff matrix A has a linearly independent set of n eigenvectors. Furthermore,

$$A = PDP^{-1}, \quad P = [\mathbf{v}_1, \cdots, \mathbf{v}_n], \quad D = \begin{bmatrix} \lambda_1 & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & \lambda_n \end{bmatrix},$$

where λ_i , \mathbf{v}_i , for $i = 1, \dots, n$, are eigenvalue-eigenvector pairs of A.

Remark: It is not simple to know whether an $n \times n$ matrix A has a linearly independent set of n eigenvectors.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (Diagonalizability and eigenvectors)

An $n \times n$ matrix A is diagonalizable iff matrix A has a linearly independent set of n eigenvectors. Furthermore,

$$A = PDP^{-1}, \quad P = [\mathbf{v}_1, \cdots, \mathbf{v}_n], \quad D = \begin{bmatrix} \lambda_1 & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & \lambda_n \end{bmatrix},$$

where λ_i , \mathbf{v}_i , for $i = 1, \dots, n$, are eigenvalue-eigenvector pairs of A.

Remark: It is not simple to know whether an $n \times n$ matrix A has a linearly independent set of n eigenvectors. One simple case is given in the following result.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (Diagonalizability and eigenvectors)

An $n \times n$ matrix A is diagonalizable iff matrix A has a linearly independent set of n eigenvectors. Furthermore,

$$A = PDP^{-1}, \quad P = [\mathbf{v}_1, \cdots, \mathbf{v}_n], \quad D = \begin{bmatrix} \lambda_1 & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & \lambda_n \end{bmatrix},$$

where λ_i , \mathbf{v}_i , for $i = 1, \dots, n$, are eigenvalue-eigenvector pairs of A.

Remark: It is not simple to know whether an $n \times n$ matrix A has a linearly independent set of n eigenvectors. One simple case is given in the following result.

Theorem (*n* different eigenvalues) If an $n \times n$ matrix A has n different eigenvalues, then A is diagonalizable.

Example Show that $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$ is diagonalizable.

(ロ)、(型)、(E)、(E)、 E、 の(の)

Example

Show that $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$ is diagonalizable.

Solution: We known that the eigenvalue eigenvector pairs are

$$\lambda_1 = 4, \quad \mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \text{and} \quad \lambda_2 = -2, \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Example

Show that $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$ is diagonalizable.

Solution: We known that the eigenvalue eigenvector pairs are

$$\lambda_1 = 4, \quad \mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \text{and} \quad \lambda_2 = -2, \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduce P and D as follows,

Example

Show that $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$ is diagonalizable.

Solution: We known that the eigenvalue eigenvector pairs are

$$\lambda_1 = 4, \quad \mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \text{and} \quad \lambda_2 = -2, \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduce P and D as follows,

$$P = egin{bmatrix} 1 & -1 \ 1 & 1 \end{bmatrix}$$

Example

Show that $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$ is diagonalizable.

Solution: We known that the eigenvalue eigenvector pairs are

$$\lambda_1 = 4, \quad \mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \text{and} \quad \lambda_2 = -2, \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduce P and D as follows,

$$P = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \quad \Rightarrow \quad P^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix},$$

Example

Show that $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$ is diagonalizable.

Solution: We known that the eigenvalue eigenvector pairs are

$$\lambda_1 = 4, \quad \mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \text{and} \quad \lambda_2 = -2, \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

Introduce P and D as follows,

$$P = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \quad \Rightarrow \quad P^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 4 & 0 \\ 0 & -2 \end{bmatrix}$$

.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Show that $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$ is diagonalizable.

Solution: We known that the eigenvalue eigenvector pairs are

$$\lambda_1 = 4, \quad \mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \text{and} \quad \lambda_2 = -2, \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Introduce P and D as follows,

$$P = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \quad \Rightarrow \quad P^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 4 & 0 \\ 0 & -2 \end{bmatrix}.$$

- ロ ト - 4 回 ト - 4 □ - 4

Then

$$PDP^{-1}$$

Example

Show that $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$ is diagonalizable.

Solution: We known that the eigenvalue eigenvector pairs are

$$\lambda_1 = 4, \quad \mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \text{and} \quad \lambda_2 = -2, \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

Introduce P and D as follows,

$$P = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \quad \Rightarrow \quad P^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 4 & 0 \\ 0 & -2 \end{bmatrix}.$$

Then

$$PDP^{-1} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & -2 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example Show that $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$ is diagonalizable.

Solution: Recall:

$$PDP^{-1} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & -2 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}.$$

・ロト・(部・・モー・モー・)への

Example Show that $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$ is diagonalizable.

Solution: Recall:

$$PDP^{-1} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & -2 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}.$$
$$PDP^{-1} = \begin{bmatrix} 4 & 2 \\ 4 & -2 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Example Show that $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$ is diagonalizable.

Solution: Recall:

$$PDP^{-1} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & -2 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}.$$
$$PDP^{-1} = \begin{bmatrix} 4 & 2 \\ 4 & -2 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Example Show that $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$ is diagonalizable.

Solution: Recall:

$$PDP^{-1} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & -2 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}.$$
$$PDP^{-1} = \begin{bmatrix} 4 & 2 \\ 4 & -2 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

We conclude,

$$PDP^{-1} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Example Show that $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$ is diagonalizable.

Solution: Recall:

$$PDP^{-1} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & -2 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}.$$
$$PDP^{-1} = \begin{bmatrix} 4 & 2 \\ 4 & -2 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

We conclude,

$$PDP^{-1} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} = A,$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Example Show that $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$ is diagonalizable.

Solution: Recall:

$$PDP^{-1} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & -2 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}.$$
$$PDP^{-1} = \begin{bmatrix} 4 & 2 \\ 4 & -2 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

We conclude,

$$PDP^{-1} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} = A,$$

 \triangleleft

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

that is, A is diagonalizable.

Linear Algebra and differential systems (Sect. 5.4, 5.5, 5.6)

- Eigenvalues, eigenvectors of a matrix (5.5).
- Computing eigenvalues and eigenvectors (5.5).
- Diagonalizable matrices (5.5).
- $n \times n$ linear differential systems (5.4).
- Constant coefficients homogenoues systems (5.6).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Examples: 2×2 linear systems (5.6).

Definition

An $n \times n$ linear differential system is a the following: Given an $n \times n$ matrix-valued function A, and an n-vector-valued function \mathbf{b} , find an n-vector-valued function \mathbf{x} solution of

 $\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{b}(t).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The system above is called *homogeneous* iff holds $\mathbf{b} = 0$.

Definition

An $n \times n$ linear differential system is a the following: Given an $n \times n$ matrix-valued function A, and an n-vector-valued function \mathbf{b} , find an n-vector-valued function \mathbf{x} solution of

 $\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{b}(t).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The system above is called *homogeneous* iff holds $\mathbf{b} = 0$.

Recall:

$$A(t) = \begin{bmatrix} a_{11}(t) & \cdots & a_{1n}(t) \\ \vdots & & \vdots \\ a_{n1}(t) & \cdots & a_{nn}(t) \end{bmatrix},$$

Definition

An $n \times n$ linear differential system is a the following: Given an $n \times n$ matrix-valued function A, and an n-vector-valued function \mathbf{b} , find an n-vector-valued function \mathbf{x} solution of

 $\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{b}(t).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The system above is called *homogeneous* iff holds $\mathbf{b} = 0$.

Recall:

$$A(t) = \begin{bmatrix} a_{11}(t) & \cdots & a_{1n}(t) \\ \vdots & & \vdots \\ a_{n1}(t) & \cdots & a_{nn}(t) \end{bmatrix}, \ \mathbf{b}(t) = \begin{bmatrix} b_1(t) \\ \vdots \\ b_n(t) \end{bmatrix},$$

Definition

An $n \times n$ linear differential system is a the following: Given an $n \times n$ matrix-valued function A, and an n-vector-valued function \mathbf{b} , find an n-vector-valued function \mathbf{x} solution of

 $\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{b}(t).$

The system above is called *homogeneous* iff holds $\mathbf{b} = 0$.

Recall:

$$A(t) = \begin{bmatrix} a_{11}(t) & \cdots & a_{1n}(t) \\ \vdots & & \vdots \\ a_{n1}(t) & \cdots & a_{nn}(t) \end{bmatrix}, \ \mathbf{b}(t) = \begin{bmatrix} b_1(t) \\ \vdots \\ b_n(t) \end{bmatrix}, \ \mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition

An $n \times n$ linear differential system is a the following: Given an $n \times n$ matrix-valued function A, and an n-vector-valued function \mathbf{b} , find an n-vector-valued function \mathbf{x} solution of

 $\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{b}(t).$

The system above is called *homogeneous* iff holds $\mathbf{b} = 0$.

Recall:

$$A(t) = \begin{bmatrix} a_{11}(t) & \cdots & a_{1n}(t) \\ \vdots & & \vdots \\ a_{n1}(t) & \cdots & a_{nn}(t) \end{bmatrix}, \ \mathbf{b}(t) = \begin{bmatrix} b_1(t) \\ \vdots \\ b_n(t) \end{bmatrix}, \ \mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}.$$

 $\mathbf{x}'(t) = A(t)\,\mathbf{x}(t) + \mathbf{b}(t)$

Definition

An $n \times n$ linear differential system is a the following: Given an $n \times n$ matrix-valued function A, and an n-vector-valued function \mathbf{b} , find an n-vector-valued function \mathbf{x} solution of

 $\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{b}(t).$

The system above is called *homogeneous* iff holds $\mathbf{b} = 0$.

Recall:

$$A(t) = \begin{bmatrix} a_{11}(t) & \cdots & a_{1n}(t) \\ \vdots & & \vdots \\ a_{n1}(t) & \cdots & a_{nn}(t) \end{bmatrix}, \ \mathbf{b}(t) = \begin{bmatrix} b_1(t) \\ \vdots \\ b_n(t) \end{bmatrix}, \ \mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}.$$

$$x'_1 = a_{11}(t) x_1 + \cdots + a_{1n}(t) x_n + b_1(t)$$

 $\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{b}(t) \Leftrightarrow$

$$x'_n = a_{n1}(t) x_1 + \cdots + a_{nn}(t) x_n + b_n(t).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find the explicit expression for the linear system $\mathbf{x}' = A\mathbf{x} + \mathbf{b}$ in the case that

$$A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}, \qquad \mathbf{b}(t) = \begin{bmatrix} e^t \\ 2e^{3t} \end{bmatrix}, \qquad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Find the explicit expression for the linear system $\mathbf{x}' = A\mathbf{x} + \mathbf{b}$ in the case that

$$A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}, \qquad \mathbf{b}(t) = \begin{bmatrix} e^t \\ 2e^{3t} \end{bmatrix}, \qquad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

Solution: The 2×2 linear system is given by

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} e^t \\ 2e^{3t} \end{bmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Find the explicit expression for the linear system $\mathbf{x}' = A\mathbf{x} + \mathbf{b}$ in the case that

$$A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}, \qquad \mathbf{b}(t) = \begin{bmatrix} e^t \\ 2e^{3t} \end{bmatrix}, \qquad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Solution: The 2×2 linear system is given by

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} e^t \\ 2e^{3t} \end{bmatrix}.$$

That is,

$$egin{aligned} x_1'(t) &= x_1(t) + 3x_2(t) + e^t, \ x_2'(t) &= 3x_1(t) + x_2(t) + 2e^{3t}. \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Remark: Derivatives of vector-valued functions are computed component-wise.

Remark: Derivatives of vector-valued functions are computed component-wise.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

$$\mathbf{x}'(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}'$$

Remark: Derivatives of vector-valued functions are computed component-wise.

$$\mathbf{x}'(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}' = \begin{bmatrix} x_1'(t) \\ \vdots \\ x_n'(t) \end{bmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Remark: Derivatives of vector-valued functions are computed component-wise.

$$\mathbf{x}'(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}' = \begin{bmatrix} x_1'(t) \\ \vdots \\ x_n'(t) \end{bmatrix}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Example

Compute
$$\mathbf{x}'$$
 for $\mathbf{x}(t) = \begin{bmatrix} e^{2t} \\ \sin(t) \\ \cos(t) \end{bmatrix}$.

Remark: Derivatives of vector-valued functions are computed component-wise.

$$\mathbf{x}'(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}' = \begin{bmatrix} x_1'(t) \\ \vdots \\ x_n'(t) \end{bmatrix}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Example

Compute **x**' for **x**(t) =
$$\begin{bmatrix} e^{2t} \\ \sin(t) \\ \cos(t) \end{bmatrix}$$
.
Solution:
 $\mathbf{x}'(t) \begin{bmatrix} e^{2t} \\ \sin(t) \\ \cos(t) \end{bmatrix}'$

Remark: Derivatives of vector-valued functions are computed component-wise.

$$\mathbf{x}'(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}' = \begin{bmatrix} x_1'(t) \\ \vdots \\ x_n'(t) \end{bmatrix}$$

▲□> <圖> < ≧> < ≧> < ≧</p>

Example

Compute **x**' for **x**(t) =
$$\begin{bmatrix} e^{2t} \\ \sin(t) \\ \cos(t) \end{bmatrix}$$
.
Solution:
 $\mathbf{x}'(t) \begin{bmatrix} e^{2t} \\ \sin(t) \\ \cos(t) \end{bmatrix}' = \begin{bmatrix} 2e^{2t} \\ \cos(t) \\ -\sin(t) \end{bmatrix}$.

Linear Algebra and differential systems (Sect. 5.4, 5.5, 5.6)

- Eigenvalues, eigenvectors of a matrix (5.5).
- Computing eigenvalues and eigenvectors (5.5).
- Diagonalizable matrices (5.5).
- $n \times n$ linear differential systems (5.4).
- ► Constant coefficients homogenoues systems (5.6).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

► Examples: 2 × 2 linear systems (5.6).

Summary:

• Given an $n \times n$ matrix A(t), *n*-vector $\mathbf{b}(t)$, find $\mathbf{x}(t)$ solution

 $\mathbf{x}'(t) = A(t)\,\mathbf{x}(t) + \mathbf{b}(t).$

Summary:

• Given an $n \times n$ matrix A(t), *n*-vector $\mathbf{b}(t)$, find $\mathbf{x}(t)$ solution

 $\mathbf{x}'(t) = A(t)\,\mathbf{x}(t) + \mathbf{b}(t).$

▶ The system is *homogeneous* iff **b** = 0, that is,

 $\mathbf{x}'(t) = A(t)\,\mathbf{x}(t).$

Summary:

• Given an $n \times n$ matrix A(t), *n*-vector $\mathbf{b}(t)$, find $\mathbf{x}(t)$ solution

 $\mathbf{x}'(t) = A(t)\,\mathbf{x}(t) + \mathbf{b}(t).$

The system is *homogeneous* iff **b** = 0, that is,

 $\mathbf{x}'(t) = A(t)\,\mathbf{x}(t).$

The system has constant coefficients iff matrix A does not depend on t, that is,

 $\mathbf{x}'(t) = A\mathbf{x}(t) + \mathbf{b}(t).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Summary:

• Given an $n \times n$ matrix A(t), *n*-vector $\mathbf{b}(t)$, find $\mathbf{x}(t)$ solution

 $\mathbf{x}'(t) = A(t)\,\mathbf{x}(t) + \mathbf{b}(t).$

▶ The system is *homogeneous* iff **b** = 0, that is,

 $\mathbf{x}'(t) = A(t)\,\mathbf{x}(t).$

The system has constant coefficients iff matrix A does not depend on t, that is,

$$\mathbf{x}'(t) = A\mathbf{x}(t) + \mathbf{b}(t).$$

We study homogeneous, constant coefficient systems, that is,

 $\mathbf{x}'(t) = A\mathbf{x}(t).$

If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\{\mathbf{v}_1, \cdots, \mathbf{v}_n\}$ and corresponding eigenvalues $\{\lambda_1, \cdots, \lambda_n\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

 $\mathbf{x}'(t) = A\mathbf{x}(t)$

is given by the expression below, where $c_1, \cdots, c_n \in \mathbb{R}$,

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\{\mathbf{v}_1, \cdots, \mathbf{v}_n\}$ and corresponding eigenvalues $\{\lambda_1, \cdots, \lambda_n\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

 $\mathbf{x}'(t) = A\mathbf{x}(t)$

is given by the expression below, where $c_1, \cdots, c_n \in \mathbb{R}$,

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark:

▶ The differential system for the variable **x** is coupled,

If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\{\mathbf{v}_1, \cdots, \mathbf{v}_n\}$ and corresponding eigenvalues $\{\lambda_1, \cdots, \lambda_n\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

 $\mathbf{x}'(t) = A\mathbf{x}(t)$

is given by the expression below, where $c_1, \cdots, c_n \in \mathbb{R}$,

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}.$$

Remark:

The differential system for the variable x is coupled, that is, A is not diagonal.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ and corresponding eigenvalues $\{\lambda_1, \dots, \lambda_n\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

 $\mathbf{x}'(t) = A\mathbf{x}(t)$

is given by the expression below, where $c_1, \cdots, c_n \in \mathbb{R}$,

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}.$$

Remark:

- The differential system for the variable x is coupled, that is, A is not diagonal.
- We transform the system into a system for a variable y such that the system for y is decoupled,

If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ and corresponding eigenvalues $\{\lambda_1, \dots, \lambda_n\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

 $\mathbf{x}'(t) = A\mathbf{x}(t)$

is given by the expression below, where $c_1, \cdots, c_n \in \mathbb{R}$,

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}.$$

Remark:

- The differential system for the variable x is coupled, that is, A is not diagonal.
- We transform the system into a system for a variable y such that the system for y is decoupled, that is, y'(t) = D y(t),

If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ and corresponding eigenvalues $\{\lambda_1, \dots, \lambda_n\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

 $\mathbf{x}'(t) = A\mathbf{x}(t)$

is given by the expression below, where $c_1, \cdots, c_n \in \mathbb{R}$,

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}.$$

Remark:

- The differential system for the variable x is coupled, that is, A is not diagonal.
- We transform the system into a system for a variable **y** such that the system for **y** is decoupled, that is, $\mathbf{y}'(t) = D \mathbf{y}(t)$, where D is a diagonal matrix.

If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ and corresponding eigenvalues $\{\lambda_1, \dots, \lambda_n\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

 $\mathbf{x}'(t) = A\mathbf{x}(t)$

is given by the expression below, where $c_1, \cdots, c_n \in \mathbb{R}$,

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}.$$

Remark:

- The differential system for the variable x is coupled, that is, A is not diagonal.
- We transform the system into a system for a variable **y** such that the system for **y** is decoupled, that is, $\mathbf{y}'(t) = D \mathbf{y}(t)$, where D is a diagonal matrix.

• We solve for $\mathbf{y}(t)$ and we transform back to $\mathbf{x}(t)$.

Linear Algebra and differential systems (Sect. 5.4, 5.5, 5.6)

- Eigenvalues, eigenvectors of a matrix (5.5).
- Computing eigenvalues and eigenvectors (5.5).
- Diagonalizable matrices (5.5).
- $n \times n$ linear differential systems (5.4).
- Constant coefficients homogenoues systems (5.6).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Examples: 2 × 2 linear systems (5.6).

Examples: 2×2 linear systems (5.6).

Example

Find the general solution to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Examples: 2×2 linear systems (5.6).

Example

Find the general solution to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Solution: Find eigenvalues and eigenvectors of A.

Examples: 2×2 linear systems (5.6).

Example

Find the general solution to
$$\mathbf{x}' = A\mathbf{x}$$
, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Find eigenvalues and eigenvectors of A. We found that:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

$$\lambda_1 = 4, \quad \mathbf{v}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix},$$

Example

Find the general solution to
$$\mathbf{x}' = A\mathbf{x}$$
, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Find eigenvalues and eigenvectors of A. We found that:

$$\lambda_1 = 4, \quad \mathbf{v}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \text{and} \quad \lambda_2 = -2, \quad \mathbf{v}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Find the general solution to
$$\mathbf{x}' = A\mathbf{x}$$
, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Find eigenvalues and eigenvectors of A. We found that:

$$\lambda_1 = 4, \quad \mathbf{v}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \text{and} \quad \lambda_2 = -2, \quad \mathbf{v}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Fundamental solutions are

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t},$$

Example

Find the general solution to
$$\mathbf{x}' = A\mathbf{x}$$
, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Find eigenvalues and eigenvectors of A. We found that:

$$\lambda_1 = 4, \quad \mathbf{v}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \text{and} \quad \lambda_2 = -2, \quad \mathbf{v}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

Fundamental solutions are

$$\mathbf{x}^{(1)} = egin{bmatrix} 1 \ 1 \end{bmatrix} e^{4t}, \quad \mathbf{x}^{(2)} = egin{bmatrix} -1 \ 1 \end{bmatrix} e^{-2t}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Find the general solution to
$$\mathbf{x}' = A\mathbf{x}$$
, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Find eigenvalues and eigenvectors of A. We found that:

$$\lambda_1 = 4, \quad \mathbf{v}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \text{and} \quad \lambda_2 = -2, \quad \mathbf{v}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Fundamental solutions are

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}, \quad \mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The general solution is $\mathbf{x}(t) = c_1 \mathbf{x}^{(1)}(t) + c_2 \mathbf{x}^{(2)}(t)$,

Example

Find the general solution to
$$\mathbf{x}' = A\mathbf{x}$$
, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Find eigenvalues and eigenvectors of A. We found that:

$$\lambda_1 = 4, \quad \mathbf{v}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \text{and} \quad \lambda_2 = -2, \quad \mathbf{v}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Fundamental solutions are

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}, \quad \mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}.$$

The general solution is $\mathbf{x}(t) = c_1 \mathbf{x}^{(1)}(t) + c_2 \mathbf{x}^{(2)}(t)$, that is,

$$\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}, \qquad c_1, c_2 \in \mathbb{R}.$$

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(1)}$

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(1)'}$ and then we compare it with $A\mathbf{x}^{(1)}$,

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(1)'}$ and then we compare it with $A\mathbf{x}^{(1)}$,

$$\mathbf{x}^{(1)\prime}(t)=egin{bmatrix} e^{4t}\ e^{4t} \end{bmatrix}'$$

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(1)'}$ and then we compare it with $A\mathbf{x}^{(1)}$,

$$\mathsf{x}^{(1)\prime}(t) = egin{bmatrix} e^{4t} \ e^{4t} \end{bmatrix}' = egin{bmatrix} 4e^{4t} \ 4e^{4t} \end{bmatrix}$$

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(1)'}$ and then we compare it with $A\mathbf{x}^{(1)}$,

$$\mathsf{x}^{(1)\prime}(t) = egin{bmatrix} e^{4t} \ e^{4t} \end{bmatrix}' = egin{bmatrix} 4e^{4t} \ 4e^{4t} \end{bmatrix} = 4 egin{bmatrix} 1 \ 1 \end{bmatrix} e^{4t}$$

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(1)'}$ and then we compare it with $A\mathbf{x}^{(1)}$,

$$\mathbf{x}^{(1)\prime}(t) = \begin{bmatrix} e^{4t} \\ e^{4t} \end{bmatrix}' = \begin{bmatrix} 4e^{4t} \\ 4e^{4t} \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} \quad \Rightarrow \quad \mathbf{x}^{(1)\prime} = 4\mathbf{x}^{(1)\prime}$$

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(1)'}$ and then we compare it with $A\mathbf{x}^{(1)}$,

$$\mathbf{x}^{(1)\prime}(t) = \begin{bmatrix} e^{4t} \\ e^{4t} \end{bmatrix}' = \begin{bmatrix} 4e^{4t} \\ 4e^{4t} \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} \quad \Rightarrow \quad \mathbf{x}^{(1)\prime} = 4\mathbf{x}^{(1)}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $A\mathbf{x}^{(1)}$

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(1)'}$ and then we compare it with $A\mathbf{x}^{(1)}$,

$$\mathbf{x}^{(1)'}(t) = \begin{bmatrix} e^{4t} \\ e^{4t} \end{bmatrix}' = \begin{bmatrix} 4e^{4t} \\ 4e^{4t} \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} \quad \Rightarrow \quad \mathbf{x}^{(1)'} = 4\mathbf{x}^{(1)'}$$
$$A\mathbf{x}^{(1)} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$$

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(1)'}$ and then we compare it with $A\mathbf{x}^{(1)}$,

$$\mathbf{x}^{(1)\prime}(t) = \begin{bmatrix} e^{4t} \\ e^{4t} \end{bmatrix}' = \begin{bmatrix} 4e^{4t} \\ 4e^{4t} \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} \quad \Rightarrow \quad \mathbf{x}^{(1)\prime} = 4\mathbf{x}^{(1)\prime} = 4\mathbf{x}^$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(1)'}$ and then we compare it with $A\mathbf{x}^{(1)}$,

$$\mathbf{x}^{(1)\prime}(t) = \begin{bmatrix} e^{4t} \\ e^{4t} \end{bmatrix}' = \begin{bmatrix} 4e^{4t} \\ 4e^{4t} \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} \quad \Rightarrow \quad \mathbf{x}^{(1)\prime} = 4\mathbf{x}^{(1)}.$$

$$A\mathbf{x}^{(1)} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} e^{4t} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$$

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(1)'}$ and then we compare it with $A\mathbf{x}^{(1)}$,

$$\mathbf{x}^{(1)\prime}(t) = \begin{bmatrix} e^{4t} \\ e^{4t} \end{bmatrix}' = \begin{bmatrix} 4e^{4t} \\ 4e^{4t} \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} \implies \mathbf{x}^{(1)\prime} = 4\mathbf{x}^{(1)\prime}$$
$$A\mathbf{x}^{(1)} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} e^{4t} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} \implies A\mathbf{x}^{(1)} = 4\mathbf{x}^{(1)\prime}$$

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(1)'}$ and then we compare it with $A\mathbf{x}^{(1)}$,

$$\mathbf{x}^{(1)\prime}(t) = \begin{bmatrix} e^{4t} \\ e^{4t} \end{bmatrix}' = \begin{bmatrix} 4e^{4t} \\ 4e^{4t} \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} \quad \Rightarrow \quad \mathbf{x}^{(1)\prime} = 4\mathbf{x}^{(1)}.$$

$$A\mathbf{x}^{(1)} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} e^{4t} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} \Rightarrow A\mathbf{x}^{(1)} = 4\mathbf{x}^{(1)}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We conclude that $\mathbf{x}^{(1)\prime} = A\mathbf{x}^{(1)}$.

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(2)\prime}$

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(2)}$ and then we compare it with $A\mathbf{x}^{(2)}$,

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(2)}$ and then we compare it with $A\mathbf{x}^{(2)}$,

$$\mathbf{x}^{(2)\prime} = \begin{bmatrix} -e^{-2t} \\ e^{-2t} \end{bmatrix}'$$

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(2)}$ and then we compare it with $A\mathbf{x}^{(2)}$,

$$\mathbf{x}^{(2)\prime} = \begin{bmatrix} -e^{-2t} \\ e^{-2t} \end{bmatrix}' = \begin{bmatrix} 2e^{-2t} \\ -2e^{-2t} \end{bmatrix}$$

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(2)}$ and then we compare it with $A\mathbf{x}^{(2)}$,

$$\mathbf{x}^{(2)\prime} = \begin{bmatrix} -e^{-2t} \\ e^{-2t} \end{bmatrix}' = \begin{bmatrix} 2e^{-2t} \\ -2e^{-2t} \end{bmatrix} = -2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$$

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(2)}$ and then we compare it with $A\mathbf{x}^{(2)}$,

$$\mathbf{x}^{(2)\prime} = \begin{bmatrix} -e^{-2t} \\ e^{-2t} \end{bmatrix}' = \begin{bmatrix} 2e^{-2t} \\ -2e^{-2t} \end{bmatrix} = -2\begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t} \Rightarrow \mathbf{x}^{(2)\prime} = -2\mathbf{x}^{(2)}.$$

Example

Verify that
$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$$
, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(2)}$ and then we compare it with $A\mathbf{x}^{(2)}$,

$$\mathbf{x}^{(2)\prime} = \begin{bmatrix} -e^{-2t} \\ e^{-2t} \end{bmatrix}' = \begin{bmatrix} 2e^{-2t} \\ -2e^{-2t} \end{bmatrix} = -2\begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t} \Rightarrow \mathbf{x}^{(2)\prime} = -2\mathbf{x}^{(2)}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

 $Ax^{(2)}$

Example [1]

Verify that
$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$$
, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(2)'}$ and then we compare it with $A\mathbf{x}^{(2)}$,

$$\mathbf{x}^{(2)\prime} = \begin{bmatrix} -e^{-2t} \\ e^{-2t} \end{bmatrix}' = \begin{bmatrix} 2e^{-2t} \\ -2e^{-2t} \end{bmatrix} = -2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t} \Rightarrow \mathbf{x}^{(2)\prime} = -2\mathbf{x}^{(2)}.$$
$$A\mathbf{x}^{(2)} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(2)}$ and then we compare it with $A\mathbf{x}^{(2)}$,

$$\mathbf{x}^{(2)\prime} = \begin{bmatrix} -e^{-2t} \\ e^{-2t} \end{bmatrix}' = \begin{bmatrix} 2e^{-2t} \\ -2e^{-2t} \end{bmatrix} = -2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t} \Rightarrow \mathbf{x}^{(2)\prime} = -2\mathbf{x}^{(2)}.$$

$$A\mathbf{x}^{(2)} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t} = \begin{bmatrix} 2 \\ -2 \end{bmatrix} e^{-2t}$$

Example

Verify that
$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$$
, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(2)'}$ and then we compare it with $A\mathbf{x}^{(2)}$,

$$\mathbf{x}^{(2)\prime} = \begin{bmatrix} -e^{-2t} \\ e^{-2t} \end{bmatrix}' = \begin{bmatrix} 2e^{-2t} \\ -2e^{-2t} \end{bmatrix} = -2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t} \Rightarrow \mathbf{x}^{(2)\prime} = -2\mathbf{x}^{(2)}.$$

$$A\mathbf{x}^{(2)} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t} = \begin{bmatrix} 2 \\ -2 \end{bmatrix} e^{-2t} = -2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t},$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(2)}$ and then we compare it with $A\mathbf{x}^{(2)}$,

$$\mathbf{x}^{(2)\prime} = \begin{bmatrix} -e^{-2t} \\ e^{-2t} \end{bmatrix}' = \begin{bmatrix} 2e^{-2t} \\ -2e^{-2t} \end{bmatrix} = -2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t} \Rightarrow \mathbf{x}^{(2)\prime} = -2\mathbf{x}^{(2)}.$$

$$A\mathbf{x}^{(2)} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t} = \begin{bmatrix} 2 \\ -2 \end{bmatrix} e^{-2t} = -2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t},$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

So, $A\mathbf{x}^{(2)} = -2\mathbf{x}^{(2)}$.

Example

Verify that
$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$$
, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(2)'}$ and then we compare it with $A\mathbf{x}^{(2)}$,

$$\mathbf{x}^{(2)\prime} = \begin{bmatrix} -e^{-2t} \\ e^{-2t} \end{bmatrix}' = \begin{bmatrix} 2e^{-2t} \\ -2e^{-2t} \end{bmatrix} = -2\begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t} \Rightarrow \mathbf{x}^{(2)\prime} = -2\mathbf{x}^{(2)}.$$

$$A\mathbf{x}^{(2)} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t} = \begin{bmatrix} 2 \\ -2 \end{bmatrix} e^{-2t} = -2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t},$$

 \triangleleft

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

So, $A\mathbf{x}^{(2)} = -2\mathbf{x}^{(2)}$. Hence, $\mathbf{x}^{(2)'} = A\mathbf{x}^{(2)}$.

Example

Solve the IVP $\mathbf{x}' = A\mathbf{x}$, where $\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, and $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

Example

Solve the IVP $\mathbf{x}' = A\mathbf{x}$, where $\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, and $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: The general solution: $\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

Example

Solve the IVP $\mathbf{x}' = A\mathbf{x}$, where $\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, and $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$. Solution: The general solution: $\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

The initial condition is,

$$\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

Example

Solve the IVP $\mathbf{x}' = A\mathbf{x}$, where $\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, and $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: The general solution: $\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$. The initial condition is,

$$\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

Example

Solve the IVP $\mathbf{x}' = A\mathbf{x}$, where $\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, and $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: The general solution: $\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$. The initial condition is,

$$\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

We need to solve the linear system

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

Examples: 2×2 linear systems (5.6).

Example

Solve the IVP $\mathbf{x}' = A\mathbf{x}$, where $\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, and $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: The general solution: $\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$. The initial condition is,

$$\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

We need to solve the linear system

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix}.$$

Examples: 2×2 linear systems (5.6).

Example

Solve the IVP $\mathbf{x}' = A\mathbf{x}$, where $\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, and $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: The general solution: $\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$. The initial condition is,

$$\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

We need to solve the linear system

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix}.$$

Therefore, $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$,

Examples: 2×2 linear systems (5.6).

Example

Solve the IVP $\mathbf{x}' = A\mathbf{x}$, where $\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, and $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: The general solution: $\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$. The initial condition is,

$$\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

We need to solve the linear system

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix} \implies \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix}.$$

Therefore, $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, hence $\mathbf{x}(t) = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}. \triangleleft$

Proof: Since A is diagonalizable, we know that $A = PDP^{-1}$,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Proof: Since A is diagonalizable, we know that $A = PDP^{-1}$, with

$$P = [\mathbf{v}_1, \cdots, \mathbf{v}_n], \qquad D = \operatorname{diag}[\lambda_1, \cdots, \lambda_n].$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Proof: Since A is diagonalizable, we know that $A = PDP^{-1}$, with

$$P = [\mathbf{v}_1, \cdots, \mathbf{v}_n], \qquad D = \operatorname{diag}[\lambda_1, \cdots, \lambda_n].$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Equivalently, $P^{-1}AP = D$.

Proof: Since A is diagonalizable, we know that $A = PDP^{-1}$, with

$$P = [\mathbf{v}_1, \cdots, \mathbf{v}_n], \qquad D = \operatorname{diag}[\lambda_1, \cdots, \lambda_n].$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Equivalently, $P^{-1}AP = D$. Multiply $\mathbf{x}' = A\mathbf{x}$ by P^{-1} on the left

 $P^{-1}\mathbf{x}'(t) = P^{-1}A\mathbf{x}(t)$

Proof: Since A is diagonalizable, we know that $A = PDP^{-1}$, with

$$P = [\mathbf{v}_1, \cdots, \mathbf{v}_n], \qquad D = \operatorname{diag}[\lambda_1, \cdots, \lambda_n].$$

Equivalently, $P^{-1}AP = D$. Multiply $\mathbf{x}' = A\mathbf{x}$ by P^{-1} on the left

$$P^{-1}\mathbf{x}'(t) = P^{-1}A\mathbf{x}(t) \quad \Leftrightarrow \quad (P^{-1}\mathbf{x})' = (P^{-1}AP)(P^{-1}\mathbf{x}).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Proof: Since A is diagonalizable, we know that $A = PDP^{-1}$, with

$$P = [\mathbf{v}_1, \cdots, \mathbf{v}_n], \qquad D = \operatorname{diag}[\lambda_1, \cdots, \lambda_n].$$

Equivalently, $P^{-1}AP = D$. Multiply $\mathbf{x}' = A\mathbf{x}$ by P^{-1} on the left

$$P^{-1}\mathbf{x}'(t) = P^{-1}A\mathbf{x}(t) \quad \Leftrightarrow \quad \left(P^{-1}\mathbf{x}\right)' = \left(P^{-1}AP\right)\left(P^{-1}\mathbf{x}\right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduce the new unknown $\mathbf{y}(t) = P^{-1}\mathbf{x}(t)$,

Proof: Since A is diagonalizable, we know that $A = PDP^{-1}$, with

$$P = [\mathbf{v}_1, \cdots, \mathbf{v}_n], \qquad D = \operatorname{diag}[\lambda_1, \cdots, \lambda_n].$$

Equivalently, $P^{-1}AP = D$. Multiply $\mathbf{x}' = A\mathbf{x}$ by P^{-1} on the left

$$P^{-1}\mathbf{x}'(t) = P^{-1}A\mathbf{x}(t) \quad \Leftrightarrow \quad \left(P^{-1}\mathbf{x}\right)' = \left(P^{-1}AP\right)\left(P^{-1}\mathbf{x}\right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduce the new unknown $\mathbf{y}(t) = P^{-1}\mathbf{x}(t)$, then

$$\mathbf{y}'(t) = D\,\mathbf{y}(t)$$

Proof: Since A is diagonalizable, we know that $A = PDP^{-1}$, with

$$P = [\mathbf{v}_1, \cdots, \mathbf{v}_n], \qquad D = \operatorname{diag}[\lambda_1, \cdots, \lambda_n].$$

Equivalently, $P^{-1}AP = D$. Multiply $\mathbf{x}' = A\mathbf{x}$ by P^{-1} on the left

$$P^{-1}\mathbf{x}'(t) = P^{-1}A\mathbf{x}(t) \quad \Leftrightarrow \quad (P^{-1}\mathbf{x})' = (P^{-1}AP)(P^{-1}\mathbf{x}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduce the new unknown $\mathbf{y}(t) = P^{-1}\mathbf{x}(t)$, then

$$\mathbf{y}'(t) = D \, \mathbf{y}(t) \iff \begin{cases} y_1'(t) = \lambda_1 \, y_1(t), \\ \vdots \\ y_n'(t) = \lambda_n \, y_n(t), \end{cases}$$

Proof: Since A is diagonalizable, we know that $A = PDP^{-1}$, with

$$P = [\mathbf{v}_1, \cdots, \mathbf{v}_n], \qquad D = \operatorname{diag}[\lambda_1, \cdots, \lambda_n].$$

Equivalently, $P^{-1}AP = D$. Multiply $\mathbf{x}' = A\mathbf{x}$ by P^{-1} on the left

$$P^{-1}\mathbf{x}'(t) = P^{-1}A\mathbf{x}(t) \quad \Leftrightarrow \quad (P^{-1}\mathbf{x})' = (P^{-1}AP)(P^{-1}\mathbf{x}).$$

Introduce the new unknown $\mathbf{y}(t) = P^{-1}\mathbf{x}(t)$, then

$$\mathbf{y}'(t) = D \mathbf{y}(t) \iff \begin{cases} y_1'(t) = \lambda_1 y_1(t), \\ \vdots & \Rightarrow \mathbf{y}(t) = \begin{cases} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{cases}, \\ y_n'(t) = \lambda_n y_n(t), \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Transform back to $\mathbf{x}(t)$,

Transform back to $\mathbf{x}(t)$, that is,

 $\mathbf{x}(t) = P \, \mathbf{y}(t)$

Transform back to $\mathbf{x}(t)$, that is,

$$\mathbf{x}(t) = P \mathbf{y}(t) = \begin{bmatrix} \mathbf{v}_1, \cdots, \mathbf{v}_n \end{bmatrix} \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix}$$

Transform back to $\mathbf{x}(t)$, that is,

$$\mathbf{x}(t) = P \mathbf{y}(t) = \begin{bmatrix} \mathbf{v}_1, \cdots, \mathbf{v}_n \end{bmatrix} \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix}$$

We conclude: $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}$.

Transform back to $\mathbf{x}(t)$, that is,

$$\mathbf{x}(t) = P \mathbf{y}(t) = \begin{bmatrix} \mathbf{v}_1, \cdots, \mathbf{v}_n \end{bmatrix} \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix}$$

We conclude: $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}$. Remark:

$$\blacktriangleright A \mathbf{v}_i = \lambda_i \mathbf{v}_i.$$

Transform back to $\mathbf{x}(t)$, that is,

$$\mathbf{x}(t) = P \mathbf{y}(t) = \begin{bmatrix} \mathbf{v}_1, \cdots, \mathbf{v}_n \end{bmatrix} \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix}$$

We conclude: $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}$.

Remark:

 $\blacktriangleright A \mathbf{v}_i = \lambda_i \mathbf{v}_i.$

The eigenvalues and eigenvectors of A are crucial to solve the differential linear system x'(t) = A x(t).