Convolution solutions (Sect. 4.5).

- Convolution of two functions.
- Properties of convolutions.
- Laplace Transform of a convolution.
- Impulse response solution.
- Solution decomposition theorem.

Convolution solutions (Sect. 4.5).

- Convolution of two functions.
- Properties of convolutions.
- Laplace Transform of a convolution.
- Impulse response solution.
- Solution decomposition theorem.

Convolution of two functions.

Definition

The convolution of piecewise continuous functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ is the function $f * g: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
(f * g)(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
$$

Convolution of two functions.

Definition

The convolution of piecewise continuous functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ is the function $f * g: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
(f * g)(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
$$

Remarks:

- $f * g$ is also called the generalized product of f and g.

Convolution of two functions.

Definition

The convolution of piecewise continuous functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ is the function $f * g: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
(f * g)(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
$$

Remarks:

- $f * g$ is also called the generalized product of f and g.
- The definition of convolution of two functions also holds in the case that one of the functions is a generalized function, like Dirac's delta.

Convolution of two functions.

Example

Find the convolution of $f(t)=e^{-t}$ and $g(t)=\sin (t)$.

Convolution of two functions.

Example

Find the convolution of $f(t)=e^{-t}$ and $g(t)=\sin (t)$.
Solution: By definition: $(f * g)(t)=\int_{0}^{t} e^{-\tau} \sin (t-\tau) d \tau$.

Convolution of two functions.

Example

Find the convolution of $f(t)=e^{-t}$ and $g(t)=\sin (t)$.
Solution: By definition: $(f * g)(t)=\int_{0}^{t} e^{-\tau} \sin (t-\tau) d \tau$.
Integrate by parts twice:

Convolution of two functions.

Example

Find the convolution of $f(t)=e^{-t}$ and $g(t)=\sin (t)$.
Solution: By definition: $(f * g)(t)=\int_{0}^{t} e^{-\tau} \sin (t-\tau) d \tau$.
Integrate by parts twice: $\int_{0}^{t} e^{-\tau} \sin (t-\tau) d \tau=$

$$
\left.\left[e^{-\tau} \cos (t-\tau)\right]\right|_{0} ^{t}-\left.\left[e^{-\tau} \sin (t-\tau)\right]\right|_{0} ^{t}-\int_{0}^{t} e^{-\tau} \sin (t-\tau) d \tau
$$

Convolution of two functions.

Example

Find the convolution of $f(t)=e^{-t}$ and $g(t)=\sin (t)$.
Solution: By definition: $(f * g)(t)=\int_{0}^{t} e^{-\tau} \sin (t-\tau) d \tau$.
Integrate by parts twice: $\int_{0}^{t} e^{-\tau} \sin (t-\tau) d \tau=$

$$
\begin{gathered}
{\left.\left[e^{-\tau} \cos (t-\tau)\right]\right|_{0} ^{t}-\left.\left[e^{-\tau} \sin (t-\tau)\right]\right|_{0} ^{t}-\int_{0}^{t} e^{-\tau} \sin (t-\tau) d \tau} \\
2 \int_{0}^{t} e^{-\tau} \sin (t-\tau) d \tau=\left.\left[e^{-\tau} \cos (t-\tau)\right]\right|_{0} ^{t}-\left.\left[e^{-\tau} \sin (t-\tau)\right]\right|_{0} ^{t}
\end{gathered}
$$

Convolution of two functions.

Example

Find the convolution of $f(t)=e^{-t}$ and $g(t)=\sin (t)$.
Solution: By definition: $(f * g)(t)=\int_{0}^{t} e^{-\tau} \sin (t-\tau) d \tau$.
Integrate by parts twice: $\int_{0}^{t} e^{-\tau} \sin (t-\tau) d \tau=$

$$
\begin{gathered}
{\left.\left[e^{-\tau} \cos (t-\tau)\right]\right|_{0} ^{t}-\left.\left[e^{-\tau} \sin (t-\tau)\right]\right|_{0} ^{t}-\int_{0}^{t} e^{-\tau} \sin (t-\tau) d \tau} \\
2 \int_{0}^{t} e^{-\tau} \sin (t-\tau) d \tau=\left.\left[e^{-\tau} \cos (t-\tau)\right]\right|_{0} ^{t}-\left.\left[e^{-\tau} \sin (t-\tau)\right]\right|_{0} ^{t} \\
2(f * g)(t)=e^{-t}-\cos (t)-0+\sin (t)
\end{gathered}
$$

Convolution of two functions.

Example

Find the convolution of $f(t)=e^{-t}$ and $g(t)=\sin (t)$.
Solution: By definition: $(f * g)(t)=\int_{0}^{t} e^{-\tau} \sin (t-\tau) d \tau$.
Integrate by parts twice: $\int_{0}^{t} e^{-\tau} \sin (t-\tau) d \tau=$

$$
\begin{gathered}
{\left.\left[e^{-\tau} \cos (t-\tau)\right]\right|_{0} ^{t}-\left.\left[e^{-\tau} \sin (t-\tau)\right]\right|_{0} ^{t}-\int_{0}^{t} e^{-\tau} \sin (t-\tau) d \tau} \\
2 \int_{0}^{t} e^{-\tau} \sin (t-\tau) d \tau=\left.\left[e^{-\tau} \cos (t-\tau)\right]\right|_{0} ^{t}-\left.\left[e^{-\tau} \sin (t-\tau)\right]\right|_{0} ^{t} \\
2(f * g)(t)=e^{-t}-\cos (t)-0+\sin (t)
\end{gathered}
$$

We conclude: $(f * g)(t)=\frac{1}{2}\left[e^{-t}+\sin (t)-\cos (t)\right]$.

Convolution solutions (Sect. 4.5).

- Convolution of two functions.
- Properties of convolutions.
- Laplace Transform of a convolution.
- Impulse response solution.
- Solution decomposition theorem.

Properties of convolutions.

Theorem (Properties)
For every piecewise continuous functions f, g, and h, hold:
(i) Commutativity: $f * g=g * f$;
(ii) Associativity: $\quad f *(g * h)=(f * g) * h$;
(iii) Distributivity: $f *(g+h)=f * g+f * h$;
(iv) Neutral element: $f * 0=0$;
(v) Identity element: $f * \delta=f$.

Properties of convolutions.

Theorem (Properties)
For every piecewise continuous functions f, g, and h, hold:
(i) Commutativity: $f * g=g * f$;
(ii) Associativity: $\quad f *(g * h)=(f * g) * h$;
(iii) Distributivity: $f *(g+h)=f * g+f * h$;
(iv) Neutral element: $f * 0=0$;
(v) Identity element: $f * \delta=f$.

Proof:
(v):
$(f * \delta)(t)=\int_{0}^{t} f(\tau) \delta(t-\tau) d \tau$

Properties of convolutions.

Theorem (Properties)
For every piecewise continuous functions f, g, and h, hold:
(i) Commutativity: $f * g=g * f$;
(ii) Associativity: $\quad f *(g * h)=(f * g) * h$;
(iii) Distributivity: $f *(g+h)=f * g+f * h$;
(iv) Neutral element: $f * 0=0$;
(v) Identity element: $f * \delta=f$.

Proof:
(v):
$(f * \delta)(t)=\int_{0}^{t} f(\tau) \delta(t-\tau) d \tau=\int_{0}^{t} f(\tau) \delta(\tau-t) d \tau$

Properties of convolutions.

Theorem (Properties)
For every piecewise continuous functions f, g, and h, hold:
(i) Commutativity: $f * g=g * f$;
(ii) Associativity: $\quad f *(g * h)=(f * g) * h$;
(iii) Distributivity: $f *(g+h)=f * g+f * h$;
(iv) Neutral element: $f * 0=0$;
(v) Identity element: $f * \delta=f$.

Proof:
(v):
$(f * \delta)(t)=\int_{0}^{t} f(\tau) \delta(t-\tau) d \tau=\int_{0}^{t} f(\tau) \delta(\tau-t) d \tau=f(t)$.

Properties of convolutions.

Proof:

(1): Commutativity: $f * g=g * f$.

Properties of convolutions.

Proof:

(1): Commutativity: $f * g=g * f$.

The definition of convolution is,

$$
(f * g)(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
$$

Properties of convolutions.

Proof:

(1): Commutativity: $f * g=g * f$.

The definition of convolution is,

$$
(f * g)(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
$$

Change the integration variable: $\hat{\tau}=t-\tau$,

Properties of convolutions.

Proof:

(1): Commutativity: $f * g=g * f$.

The definition of convolution is,

$$
(f * g)(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
$$

Change the integration variable: $\hat{\tau}=t-\tau$, hence $d \hat{\tau}=-d \tau$,

Properties of convolutions.

Proof:

(1): Commutativity: $f * g=g * f$.

The definition of convolution is,

$$
(f * g)(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
$$

Change the integration variable: $\hat{\tau}=t-\tau$, hence $d \hat{\tau}=-d \tau$,

$$
(f * g)(t)=\int_{t}^{0} f(t-\hat{\tau}) g(\hat{\tau})(-1) d \hat{\tau}
$$

Properties of convolutions.

Proof:

(1): Commutativity: $f * g=g * f$.

The definition of convolution is,

$$
(f * g)(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
$$

Change the integration variable: $\hat{\tau}=t-\tau$, hence $d \hat{\tau}=-d \tau$,

$$
\begin{gathered}
(f * g)(t)=\int_{t}^{0} f(t-\hat{\tau}) g(\hat{\tau})(-1) d \hat{\tau} \\
(f * g)(t)=\int_{0}^{t} g(\hat{\tau}) f(t-\hat{\tau}) d \hat{\tau}
\end{gathered}
$$

Properties of convolutions.

Proof:

(1): Commutativity: $f * g=g * f$.

The definition of convolution is,

$$
(f * g)(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
$$

Change the integration variable: $\hat{\tau}=t-\tau$, hence $d \hat{\tau}=-d \tau$,

$$
\begin{gathered}
(f * g)(t)=\int_{t}^{0} f(t-\hat{\tau}) g(\hat{\tau})(-1) d \hat{\tau} \\
(f * g)(t)=\int_{0}^{t} g(\hat{\tau}) f(t-\hat{\tau}) d \hat{\tau}
\end{gathered}
$$

We conclude: $(f * g)(t)=(g * f)(t)$.

Convolution solutions (Sect. 4.5).

- Convolution of two functions.
- Properties of convolutions.
- Laplace Transform of a convolution.
- Impulse response solution.
- Solution decomposition theorem.

Laplace Transform of a convolution.

Theorem (Laplace Transform)
If f, g have well-defined Laplace Transforms $\mathcal{L}[f], \mathcal{L}[g]$, then

$$
\mathcal{L}[f * g]=\mathcal{L}[f] \mathcal{L}[g] .
$$

Laplace Transform of a convolution.

Theorem (Laplace Transform)
If f, g have well-defined Laplace Transforms $\mathcal{L}[f], \mathcal{L}[g]$, then

$$
\mathcal{L}[f * g]=\mathcal{L}[f] \mathcal{L}[g] .
$$

Proof: The key step is to interchange two integrals.

Laplace Transform of a convolution.

Theorem (Laplace Transform)
If f, g have well-defined Laplace Transforms $\mathcal{L}[f], \mathcal{L}[g]$, then

$$
\mathcal{L}[f * g]=\mathcal{L}[f] \mathcal{L}[g] .
$$

Proof: The key step is to interchange two integrals. We start we the product of the Laplace transforms,

$$
\mathcal{L}[f] \mathcal{L}[g]=\left[\int_{0}^{\infty} e^{-s t} f(t) d t\right]\left[\int_{0}^{\infty} e^{-s \tilde{t}} g(\tilde{t}) d \tilde{t}\right],
$$

Laplace Transform of a convolution.

Theorem (Laplace Transform)
If f, g have well-defined Laplace Transforms $\mathcal{L}[f], \mathcal{L}[g]$, then

$$
\mathcal{L}[f * g]=\mathcal{L}[f] \mathcal{L}[g] .
$$

Proof: The key step is to interchange two integrals. We start we the product of the Laplace transforms,

$$
\begin{gathered}
\mathcal{L}[f] \mathcal{L}[g]=\left[\int_{0}^{\infty} e^{-s t} f(t) d t\right]\left[\int_{0}^{\infty} e^{-s \tilde{t}} g(\tilde{t}) d \tilde{t}\right], \\
\mathcal{L}[f] \mathcal{L}[g]=\int_{0}^{\infty} e^{-s \tilde{t}} g(\tilde{t})\left(\int_{0}^{\infty} e^{-s t} f(t) d t\right) d \tilde{t},
\end{gathered}
$$

Laplace Transform of a convolution.

Theorem (Laplace Transform)
If f, g have well-defined Laplace Transforms $\mathcal{L}[f], \mathcal{L}[g]$, then

$$
\mathcal{L}[f * g]=\mathcal{L}[f] \mathcal{L}[g] .
$$

Proof: The key step is to interchange two integrals. We start we the product of the Laplace transforms,

$$
\begin{gathered}
\mathcal{L}[f] \mathcal{L}[g]=\left[\int_{0}^{\infty} e^{-s t} f(t) d t\right]\left[\int_{0}^{\infty} e^{-s \tilde{s}} g(\tilde{t}) d \tilde{t}\right], \\
\mathcal{L}[f] \mathcal{L}[g]=\int_{0}^{\infty} e^{-s \tilde{t}} g(\tilde{t})\left(\int_{0}^{\infty} e^{-s t} f(t) d t\right) d \tilde{t}, \\
\mathcal{L}[f] \mathcal{L}[g]=\int_{0}^{\infty} g(\tilde{t})\left(\int_{0}^{\infty} e^{-s(t+\tilde{t})} f(t) d t\right) d \tilde{t} .
\end{gathered}
$$

Laplace Transform of a convolution.

Proof: Recall: $\mathcal{L}[f] \mathcal{L}[g]=\int_{0}^{\infty} g(\tilde{t})\left(\int_{0}^{\infty} e^{-s(t+\tilde{t})} f(t) d t\right) d \tilde{t}$.

Laplace Transform of a convolution.

Proof: Recall: $\mathcal{L}[f] \mathcal{L}[g]=\int_{0}^{\infty} g(\tilde{t})\left(\int_{0}^{\infty} e^{-s(t+\tilde{t})} f(t) d t\right) d \tilde{t}$.
Change variables: $\tau=t+\tilde{t}$,

Laplace Transform of a convolution.

Proof: Recall: $\mathcal{L}[f] \mathcal{L}[g]=\int_{0}^{\infty} g(\tilde{t})\left(\int_{0}^{\infty} e^{-s(t+\tilde{t})} f(t) d t\right) d \tilde{t}$.
Change variables: $\tau=t+\tilde{t}$, hence $d \tau=d t$;

Laplace Transform of a convolution.

Proof: Recall: $\mathcal{L}[f] \mathcal{L}[g]=\int_{0}^{\infty} g(\tilde{t})\left(\int_{0}^{\infty} e^{-s(t+\tilde{t})} f(t) d t\right) d \tilde{t}$.
Change variables: $\tau=t+\tilde{t}$, hence $d \tau=d t$;

$$
\mathcal{L}[f] \mathcal{L}[g]=\int_{0}^{\infty} g(\tilde{t})\left(\int_{\tilde{t}}^{\infty} e^{-s \tau} f(\tau-\tilde{t}) d \tau\right) d \tilde{t} .
$$

Laplace Transform of a convolution.

Proof: Recall: $\mathcal{L}[f] \mathcal{L}[g]=\int_{0}^{\infty} g(\tilde{t})\left(\int_{0}^{\infty} e^{-s(t+\tilde{t})} f(t) d t\right) d \tilde{t}$.
Change variables: $\tau=t+\tilde{t}$, hence $d \tau=d t$;

$$
\mathcal{L}[f] \mathcal{L}[g]=\int_{0}^{\infty} g(\tilde{t})\left(\int_{\tilde{t}}^{\infty} e^{-s \tau} f(\tau-\tilde{t}) d \tau\right) d \tilde{t} .
$$

$$
\mathcal{L}[f] \mathcal{L}[g]=\int_{0}^{\infty} \int_{\tilde{t}}^{\infty} e^{-s \tau} g(\tilde{t}) f(\tau-\tilde{t}) d \tau d \tilde{t} .
$$

Laplace Transform of a convolution.

Proof: Recall: $\mathcal{L}[f] \mathcal{L}[g]=\int_{0}^{\infty} g(\tilde{t})\left(\int_{0}^{\infty} e^{-s(t+\tilde{t})} f(t) d t\right) d \tilde{t}$.
Change variables: $\tau=t+\tilde{t}$, hence $d \tau=d t$;

$$
\mathcal{L}[f] \mathcal{L}[g]=\int_{0}^{\infty} g(\tilde{t})\left(\int_{\tilde{t}}^{\infty} e^{-s \tau} f(\tau-\tilde{t}) d \tau\right) d \tilde{t} .
$$

$$
\mathcal{L}[f] \mathcal{L}[g]=\int_{0}^{\infty} \int_{\tilde{t}}^{\infty} e^{-s \tau} g(\tilde{t}) f(\tau-\tilde{t}) d \tau d \tilde{t} .
$$

The key step: Switch the order of integration.

Laplace Transform of a convolution.

Proof: Recall: $\mathcal{L}[f] \mathcal{L}[g]=\int_{0}^{\infty} g(\tilde{t})\left(\int_{0}^{\infty} e^{-s(t+\tilde{t})} f(t) d t\right) d \tilde{t}$.
Change variables: $\tau=t+\tilde{t}$, hence $d \tau=d t$;

$$
\mathcal{L}[f] \mathcal{L}[g]=\int_{0}^{\infty} g(\tilde{t})\left(\int_{\tilde{t}}^{\infty} e^{-s \tau} f(\tau-\tilde{t}) d \tau\right) d \tilde{t} .
$$

$$
\mathcal{L}[f] \mathcal{L}[g]=\int_{0}^{\infty} \int_{\tilde{t}}^{\infty} e^{-s \tau} g(\tilde{t}) f(\tau-\tilde{t}) d \tau d \tilde{t} .
$$

The key step: Switch the order of integration.

Laplace Transform of a convolution.

Proof: Recall: $\mathcal{L}[f] \mathcal{L}[g]=\int_{0}^{\infty} g(\tilde{t})\left(\int_{0}^{\infty} e^{-s(t+\tilde{t})} f(t) d t\right) d \tilde{t}$.
Change variables: $\tau=t+\tilde{t}$, hence $d \tau=d t$;

$$
\mathcal{L}[f] \mathcal{L}[g]=\int_{0}^{\infty} g(\tilde{t})\left(\int_{\tilde{t}}^{\infty} e^{-s \tau} f(\tau-\tilde{t}) d \tau\right) d \tilde{t} .
$$

$$
\mathcal{L}[f] \mathcal{L}[g]=\int_{0}^{\infty} \int_{\tilde{t}}^{\infty} e^{-s \tau} g(\tilde{t}) f(\tau-\tilde{t}) d \tau d \tilde{t} .
$$

The key step: Switch the order of integration.

$$
\mathcal{L}[f] \mathcal{L}[g]=\int_{0}^{\infty} \int_{0}^{\tau} e^{-s \tau} g(\tilde{t}) f(\tau-\tilde{t}) d \tilde{t} d \tau .
$$

Laplace Transform of a convolution.

Proof: Recall: $\quad \mathcal{L}[f] \mathcal{L}[g]=\int_{0}^{\infty} \int_{0}^{\tau} e^{-s \tau} g(\tilde{t}) f(\tau-\tilde{t}) d \tilde{t} d \tau$.

Laplace Transform of a convolution.

Proof: Recall: $\mathcal{L}[f] \mathcal{L}[g]=\int_{0}^{\infty} \int_{0}^{\tau} e^{-s \tau} g(\tilde{t}) f(\tau-\tilde{t}) d \tilde{t} d \tau$.
Then, is straightforward to check that

$$
\mathcal{L}[f] \mathcal{L}[g]=\int_{0}^{\infty} e^{-s \tau}\left(\int_{0}^{\tau} g(\tilde{t}) f(\tau-\tilde{t}) d \tilde{t}\right) d \tau
$$

Laplace Transform of a convolution.

Proof: Recall: $\mathcal{L}[f] \mathcal{L}[g]=\int_{0}^{\infty} \int_{0}^{\tau} e^{-s \tau} g(\tilde{t}) f(\tau-\tilde{t}) d \tilde{t} d \tau$.
Then, is straightforward to check that

$$
\begin{gathered}
\mathcal{L}[f] \mathcal{L}[g]=\int_{0}^{\infty} e^{-s \tau}\left(\int_{0}^{\tau} g(\tilde{t}) f(\tau-\tilde{t}) d \tilde{t}\right) d \tau, \\
\mathcal{L}[f] \mathcal{L}[g]=\int_{0}^{\infty} e^{-s \tau}(g * f)(\tau) d \tau
\end{gathered}
$$

Laplace Transform of a convolution.

Proof: Recall: $\mathcal{L}[f] \mathcal{L}[g]=\int_{0}^{\infty} \int_{0}^{\tau} e^{-s \tau} g(\tilde{t}) f(\tau-\tilde{t}) d \tilde{t} d \tau$.
Then, is straightforward to check that

$$
\begin{gathered}
\mathcal{L}[f] \mathcal{L}[g]=\int_{0}^{\infty} e^{-s \tau}\left(\int_{0}^{\tau} g(\tilde{t}) f(\tau-\tilde{t}) d \tilde{t}\right) d \tau, \\
\mathcal{L}[f] \mathcal{L}[g]=\int_{0}^{\infty} e^{-s \tau}(g * f)(\tau) d \tau \\
\mathcal{L}[f] \mathcal{L}[g]=\mathcal{L}[g * f]
\end{gathered}
$$

Laplace Transform of a convolution.

Proof: Recall: $\mathcal{L}[f] \mathcal{L}[g]=\int_{0}^{\infty} \int_{0}^{\tau} e^{-s \tau} g(\tilde{t}) f(\tau-\tilde{t}) d \tilde{t} d \tau$.
Then, is straightforward to check that

$$
\begin{gathered}
\mathcal{L}[f] \mathcal{L}[g]=\int_{0}^{\infty} e^{-s \tau}\left(\int_{0}^{\tau} g(\tilde{t}) f(\tau-\tilde{t}) d \tilde{t}\right) d \tau, \\
\mathcal{L}[f] \mathcal{L}[g]=\int_{0}^{\infty} e^{-s \tau}(g * f)(\tau) d \tau \\
\mathcal{L}[f] \mathcal{L}[g]=\mathcal{L}[g * f]
\end{gathered}
$$

We conclude: $\mathcal{L}[f * g]=\mathcal{L}[f] \mathcal{L}[g]$.

Laplace Transform of a convolution.

Example
Use convolutions to find the inverse Laplace Transform of

$$
F(s)=\frac{3}{s^{3}\left(s^{2}-3\right)}
$$

Laplace Transform of a convolution.

Example
Use convolutions to find the inverse Laplace Transform of

$$
F(s)=\frac{3}{s^{3}\left(s^{2}-3\right)}
$$

Solution: We express F as a product of two Laplace Transforms,

Laplace Transform of a convolution.

Example
Use convolutions to find the inverse Laplace Transform of

$$
F(s)=\frac{3}{s^{3}\left(s^{2}-3\right)}
$$

Solution: We express F as a product of two Laplace Transforms,

$$
F(s)=3 \frac{1}{s^{3}} \frac{1}{\left(s^{2}-3\right)}
$$

Laplace Transform of a convolution.

Example
Use convolutions to find the inverse Laplace Transform of

$$
F(s)=\frac{3}{s^{3}\left(s^{2}-3\right)}
$$

Solution: We express F as a product of two Laplace Transforms,

$$
F(s)=3 \frac{1}{s^{3}} \frac{1}{\left(s^{2}-3\right)}=\frac{3}{2} \frac{1}{\sqrt{3}}\left(\frac{2}{s^{3}}\right)\left(\frac{\sqrt{3}}{s^{2}-3}\right)
$$

Laplace Transform of a convolution.

Example
Use convolutions to find the inverse Laplace Transform of

$$
F(s)=\frac{3}{s^{3}\left(s^{2}-3\right)} .
$$

Solution: We express F as a product of two Laplace Transforms,

$$
F(s)=3 \frac{1}{s^{3}} \frac{1}{\left(s^{2}-3\right)}=\frac{3}{2} \frac{1}{\sqrt{3}}\left(\frac{2}{s^{3}}\right)\left(\frac{\sqrt{3}}{s^{2}-3}\right)
$$

Recalling that $\mathcal{L}\left[t^{n}\right]=\frac{n!}{s^{n+1}}$

Laplace Transform of a convolution.

Example
Use convolutions to find the inverse Laplace Transform of

$$
F(s)=\frac{3}{s^{3}\left(s^{2}-3\right)}
$$

Solution: We express F as a product of two Laplace Transforms,

$$
F(s)=3 \frac{1}{s^{3}} \frac{1}{\left(s^{2}-3\right)}=\frac{3}{2} \frac{1}{\sqrt{3}}\left(\frac{2}{s^{3}}\right)\left(\frac{\sqrt{3}}{s^{2}-3}\right)
$$

Recalling that $\mathcal{L}\left[t^{n}\right]=\frac{n!}{s^{n+1}}$ and $\mathcal{L}[\sinh (a t)]=\frac{a}{s^{2}-a^{2}}$,

Laplace Transform of a convolution.

Example

Use convolutions to find the inverse Laplace Transform of

$$
F(s)=\frac{3}{s^{3}\left(s^{2}-3\right)}
$$

Solution: We express F as a product of two Laplace Transforms,

$$
F(s)=3 \frac{1}{s^{3}} \frac{1}{\left(s^{2}-3\right)}=\frac{3}{2} \frac{1}{\sqrt{3}}\left(\frac{2}{s^{3}}\right)\left(\frac{\sqrt{3}}{s^{2}-3}\right)
$$

Recalling that $\mathcal{L}\left[t^{n}\right]=\frac{n!}{s^{n+1}}$ and $\mathcal{L}[\sinh (a t)]=\frac{a}{s^{2}-a^{2}}$,

$$
F(s)=\frac{\sqrt{3}}{2} \mathcal{L}\left[t^{2}\right] \mathcal{L}[\sinh (\sqrt{3} t)]
$$

Laplace Transform of a convolution.

Example

Use convolutions to find the inverse Laplace Transform of

$$
F(s)=\frac{3}{s^{3}\left(s^{2}-3\right)}
$$

Solution: We express F as a product of two Laplace Transforms,

$$
F(s)=3 \frac{1}{s^{3}} \frac{1}{\left(s^{2}-3\right)}=\frac{3}{2} \frac{1}{\sqrt{3}}\left(\frac{2}{s^{3}}\right)\left(\frac{\sqrt{3}}{s^{2}-3}\right)
$$

Recalling that $\mathcal{L}\left[t^{n}\right]=\frac{n!}{s^{n+1}}$ and $\mathcal{L}[\sinh (a t)]=\frac{a}{s^{2}-a^{2}}$,

$$
F(s)=\frac{\sqrt{3}}{2} \mathcal{L}\left[t^{2}\right] \mathcal{L}[\sinh (\sqrt{3} t)]=\frac{\sqrt{3}}{2} \mathcal{L}\left[t^{2} * \sin (\sqrt{3} t)\right] .
$$

Laplace Transform of a convolution.

Example
Use convolutions to find the inverse Laplace Transform of

$$
F(s)=\frac{3}{s^{3}\left(s^{2}-3\right)}
$$

Solution: We express F as a product of two Laplace Transforms,

$$
F(s)=3 \frac{1}{s^{3}} \frac{1}{\left(s^{2}-3\right)}=\frac{3}{2} \frac{1}{\sqrt{3}}\left(\frac{2}{s^{3}}\right)\left(\frac{\sqrt{3}}{s^{2}-3}\right)
$$

Recalling that $\mathcal{L}\left[t^{n}\right]=\frac{n!}{s^{n+1}}$ and $\mathcal{L}[\sinh (a t)]=\frac{a}{s^{2}-a^{2}}$,

$$
F(s)=\frac{\sqrt{3}}{2} \mathcal{L}\left[t^{2}\right] \mathcal{L}[\sinh (\sqrt{3} t)]=\frac{\sqrt{3}}{2} \mathcal{L}\left[t^{2} * \sin (\sqrt{3} t)\right]
$$

We conclude that $\left.f(t)=\frac{\sqrt{3}}{2} \int_{0}^{t} \tau^{2} \sinh [\sqrt{3}(t-\tau))\right] d \tau$.

Laplace Transform of a convolution.

Example

Compute $\mathcal{L}[f(t)]$ where $f(t)=\int_{0}^{t} e^{-3(t-\tau)} \cos (2 \tau) d \tau$.

Laplace Transform of a convolution.

Example
Compute $\mathcal{L}[f(t)]$ where $f(t)=\int_{0}^{t} e^{-3(t-\tau)} \cos (2 \tau) d \tau$.
Solution: The function f is the convolution of two functions,

Laplace Transform of a convolution.

Example

Compute $\mathcal{L}[f(t)]$ where $f(t)=\int_{0}^{t} e^{-3(t-\tau)} \cos (2 \tau) d \tau$.
Solution: The function f is the convolution of two functions,

$$
f(t)=(g * h)(t),
$$

Laplace Transform of a convolution.

Example

Compute $\mathcal{L}[f(t)]$ where $f(t)=\int_{0}^{t} e^{-3(t-\tau)} \cos (2 \tau) d \tau$.
Solution: The function f is the convolution of two functions,

$$
f(t)=(g * h)(t), \quad g(t)=\cos (2 t),
$$

Laplace Transform of a convolution.

Example

Compute $\mathcal{L}[f(t)]$ where $f(t)=\int_{0}^{t} e^{-3(t-\tau)} \cos (2 \tau) d \tau$.
Solution: The function f is the convolution of two functions,

$$
f(t)=(g * h)(t), \quad g(t)=\cos (2 t), \quad h(t)=e^{-3 t} .
$$

Laplace Transform of a convolution.

Example

Compute $\mathcal{L}[f(t)]$ where $f(t)=\int_{0}^{t} e^{-3(t-\tau)} \cos (2 \tau) d \tau$.
Solution: The function f is the convolution of two functions,

$$
f(t)=(g * h)(t), \quad g(t)=\cos (2 t), \quad h(t)=e^{-3 t} .
$$

Since $\mathcal{L}[(g * h)(t)]=\mathcal{L}[g(t)] \mathcal{L}[h(t)]$,

Laplace Transform of a convolution.

Example

Compute $\mathcal{L}[f(t)]$ where $f(t)=\int_{0}^{t} e^{-3(t-\tau)} \cos (2 \tau) d \tau$.
Solution: The function f is the convolution of two functions,

$$
f(t)=(g * h)(t), \quad g(t)=\cos (2 t), \quad h(t)=e^{-3 t} .
$$

Since $\mathcal{L}[(g * h)(t)]=\mathcal{L}[g(t)] \mathcal{L}[h(t)]$, then,

$$
F(s)=\mathcal{L}\left[\int_{0}^{t} e^{-3(t-\tau)} \cos (2 \tau) d \tau\right]
$$

Laplace Transform of a convolution.

Example

Compute $\mathcal{L}[f(t)]$ where $f(t)=\int_{0}^{t} e^{-3(t-\tau)} \cos (2 \tau) d \tau$.
Solution: The function f is the convolution of two functions,

$$
f(t)=(g * h)(t), \quad g(t)=\cos (2 t), \quad h(t)=e^{-3 t} .
$$

Since $\mathcal{L}[(g * h)(t)]=\mathcal{L}[g(t)] \mathcal{L}[h(t)]$, then,

$$
F(s)=\mathcal{L}\left[\int_{0}^{t} e^{-3(t-\tau)} \cos (2 \tau) d \tau\right]=\mathcal{L}\left[e^{-3 t}\right] \mathcal{L}[\cos (2 t)] .
$$

Laplace Transform of a convolution.

Example

Compute $\mathcal{L}[f(t)]$ where $f(t)=\int_{0}^{t} e^{-3(t-\tau)} \cos (2 \tau) d \tau$.
Solution: The function f is the convolution of two functions,

$$
f(t)=(g * h)(t), \quad g(t)=\cos (2 t), \quad h(t)=e^{-3 t} .
$$

Since $\mathcal{L}[(g * h)(t)]=\mathcal{L}[g(t)] \mathcal{L}[h(t)]$, then,

$$
F(s)=\mathcal{L}\left[\int_{0}^{t} e^{-3(t-\tau)} \cos (2 \tau) d \tau\right]=\mathcal{L}\left[e^{-3 t}\right] \mathcal{L}[\cos (2 t)] .
$$

We conclude that $F(s)=\frac{s}{(s+3)\left(s^{2}+4\right)}$.

Laplace Transform of a convolution.

Example
Solve the IVP

$$
y^{\prime \prime}-5 y^{\prime}+6 y=g(t), \quad y(0)=0, \quad y^{\prime}(0)=0
$$

Laplace Transform of a convolution.

Example
Solve the IVP

$$
y^{\prime \prime}-5 y^{\prime}+6 y=g(t), \quad y(0)=0, \quad y^{\prime}(0)=0
$$

Solution: Denote $G(s)=\mathcal{L}[g(t)]$

Laplace Transform of a convolution.

Example

Solve the IVP

$$
y^{\prime \prime}-5 y^{\prime}+6 y=g(t), \quad y(0)=0, \quad y^{\prime}(0)=0
$$

Solution: Denote $G(s)=\mathcal{L}[g(t)]$ and compute LT of the equation,

Laplace Transform of a convolution.

Example
Solve the IVP

$$
y^{\prime \prime}-5 y^{\prime}+6 y=g(t), \quad y(0)=0, \quad y^{\prime}(0)=0
$$

Solution: Denote $G(s)=\mathcal{L}[g(t)]$ and compute LT of the equation,
$\left(s^{2}-5 s+6\right) \mathcal{L}[y(t)]=\mathcal{L}[g(t)]$

Laplace Transform of a convolution.

Example

Solve the IVP

$$
y^{\prime \prime}-5 y^{\prime}+6 y=g(t), \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

Solution: Denote $G(s)=\mathcal{L}[g(t)]$ and compute LT of the equation,

$$
\left(s^{2}-5 s+6\right) \mathcal{L}[y(t)]=\mathcal{L}[g(t)] \Rightarrow \mathcal{L}[y(t)]=\frac{1}{\left(s^{2}-5 s+6\right)} G(s) .
$$

Laplace Transform of a convolution.

Example

Solve the IVP

$$
y^{\prime \prime}-5 y^{\prime}+6 y=g(t), \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

Solution: Denote $G(s)=\mathcal{L}[g(t)]$ and compute LT of the equation,
$\left(s^{2}-5 s+6\right) \mathcal{L}[y(t)]=\mathcal{L}[g(t)] \Rightarrow \mathcal{L}[y(t)]=\frac{1}{\left(s^{2}-5 s+6\right)} G(s)$.
Denoting $H(s)=\frac{1}{s^{2}-5 s+6}$,

Laplace Transform of a convolution.

Example

Solve the IVP

$$
y^{\prime \prime}-5 y^{\prime}+6 y=g(t), \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

Solution: Denote $G(s)=\mathcal{L}[g(t)]$ and compute LT of the equation,
$\left(s^{2}-5 s+6\right) \mathcal{L}[y(t)]=\mathcal{L}[g(t)] \Rightarrow \mathcal{L}[y(t)]=\frac{1}{\left(s^{2}-5 s+6\right)} G(s)$.
Denoting $H(s)=\frac{1}{s^{2}-5 s+6}$, and $h(t)=\mathcal{L}^{-1}[H(s)]$,

Laplace Transform of a convolution.

Example

Solve the IVP

$$
y^{\prime \prime}-5 y^{\prime}+6 y=g(t), \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

Solution: Denote $G(s)=\mathcal{L}[g(t)]$ and compute LT of the equation,
$\left(s^{2}-5 s+6\right) \mathcal{L}[y(t)]=\mathcal{L}[g(t)] \Rightarrow \mathcal{L}[y(t)]=\frac{1}{\left(s^{2}-5 s+6\right)} G(s)$.
Denoting $H(s)=\frac{1}{s^{2}-5 s+6}$, and $h(t)=\mathcal{L}^{-1}[H(s)]$, then

$$
\mathcal{L}[y(t)]=H(s) G(s)
$$

Laplace Transform of a convolution.

Example
Solve the IVP

$$
y^{\prime \prime}-5 y^{\prime}+6 y=g(t), \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

Solution: Denote $G(s)=\mathcal{L}[g(t)]$ and compute LT of the equation,
$\left(s^{2}-5 s+6\right) \mathcal{L}[y(t)]=\mathcal{L}[g(t)] \Rightarrow \mathcal{L}[y(t)]=\frac{1}{\left(s^{2}-5 s+6\right)} G(s)$.
Denoting $H(s)=\frac{1}{s^{2}-5 s+6}$, and $h(t)=\mathcal{L}^{-1}[H(s)]$, then

$$
\mathcal{L}[y(t)]=H(s) G(s) \quad \Rightarrow \quad y(t)=(h * g)(t) .
$$

Laplace Transform of a convolution.

Example
Solve the IVP

$$
y^{\prime \prime}-5 y^{\prime}+6 y=g(t), \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

Solution: Denote $G(s)=\mathcal{L}[g(t)]$ and compute LT of the equation,
$\left(s^{2}-5 s+6\right) \mathcal{L}[y(t)]=\mathcal{L}[g(t)] \Rightarrow \mathcal{L}[y(t)]=\frac{1}{\left(s^{2}-5 s+6\right)} G(s)$.
Denoting $H(s)=\frac{1}{s^{2}-5 s+6}$, and $h(t)=\mathcal{L}^{-1}[H(s)]$, then

$$
\mathcal{L}[y(t)]=H(s) G(s) \quad \Rightarrow \quad y(t)=(h * g)(t) .
$$

Function h is simple to compute:

Laplace Transform of a convolution.

Example
Solve the IVP

$$
y^{\prime \prime}-5 y^{\prime}+6 y=g(t), \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

Solution: Denote $G(s)=\mathcal{L}[g(t)]$ and compute LT of the equation,
$\left(s^{2}-5 s+6\right) \mathcal{L}[y(t)]=\mathcal{L}[g(t)] \Rightarrow \mathcal{L}[y(t)]=\frac{1}{\left(s^{2}-5 s+6\right)} G(s)$.
Denoting $H(s)=\frac{1}{s^{2}-5 s+6}$, and $h(t)=\mathcal{L}^{-1}[H(s)]$, then

$$
\mathcal{L}[y(t)]=H(s) G(s) \quad \Rightarrow \quad y(t)=(h * g)(t) .
$$

Function h is simple to compute:

$$
H(s)=\frac{1}{(s-2)(s-3)}
$$

Laplace Transform of a convolution.

Example
Solve the IVP

$$
y^{\prime \prime}-5 y^{\prime}+6 y=g(t), \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

Solution: Denote $G(s)=\mathcal{L}[g(t)]$ and compute LT of the equation,
$\left(s^{2}-5 s+6\right) \mathcal{L}[y(t)]=\mathcal{L}[g(t)] \Rightarrow \mathcal{L}[y(t)]=\frac{1}{\left(s^{2}-5 s+6\right)} G(s)$.
Denoting $H(s)=\frac{1}{s^{2}-5 s+6}$, and $h(t)=\mathcal{L}^{-1}[H(s)]$, then

$$
\mathcal{L}[y(t)]=H(s) G(s) \quad \Rightarrow \quad y(t)=(h * g)(t) .
$$

Function h is simple to compute:

$$
H(s)=\frac{1}{(s-2)(s-3)}=\frac{a}{(s-2)}+\frac{b}{(s-3)}
$$

Laplace Transform of a convolution.

Example
Solve the IVP

$$
y^{\prime \prime}-5 y^{\prime}+6 y=g(t), \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

Solution: Denote $G(s)=\mathcal{L}[g(t)]$ and compute LT of the equation,
$\left(s^{2}-5 s+6\right) \mathcal{L}[y(t)]=\mathcal{L}[g(t)] \Rightarrow \mathcal{L}[y(t)]=\frac{1}{\left(s^{2}-5 s+6\right)} G(s)$.
Denoting $H(s)=\frac{1}{s^{2}-5 s+6}$, and $h(t)=\mathcal{L}^{-1}[H(s)]$, then

$$
\mathcal{L}[y(t)]=H(s) G(s) \quad \Rightarrow \quad y(t)=(h * g)(t) .
$$

Function h is simple to compute:

$$
H(s)=\frac{1}{(s-2)(s-3)}=\frac{a}{(s-2)}+\frac{b}{(s-3)}=\frac{a(s-3)+b(s-2)}{(s-2)(s-3)}
$$

Laplace Transform of a convolution.

Example

Solve the IVP

$$
y^{\prime \prime}-5 y^{\prime}+6 y=g(t), \quad y(0)=0, \quad y^{\prime}(0)=0
$$

Solution: Then: $1=a(s-3)+b(s-2)$.

Laplace Transform of a convolution.

Example

Solve the IVP

$$
y^{\prime \prime}-5 y^{\prime}+6 y=g(t), \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

Solution: Then: $1=a(s-3)+b(s-2)$. Evaluate at $s=2$, 3 .

$$
s=2
$$

Laplace Transform of a convolution.

Example

Solve the IVP

$$
y^{\prime \prime}-5 y^{\prime}+6 y=g(t), \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

Solution: Then: $1=a(s-3)+b(s-2)$. Evaluate at $s=2$, 3 .

$$
s=2 \Rightarrow a=-1 .
$$

Laplace Transform of a convolution.

Example

Solve the IVP

$$
y^{\prime \prime}-5 y^{\prime}+6 y=g(t), \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

Solution: Then: $1=a(s-3)+b(s-2)$. Evaluate at $s=2$, 3 .

$$
s=2 \Rightarrow a=-1 . \quad s=3
$$

Laplace Transform of a convolution.

Example

Solve the IVP

$$
y^{\prime \prime}-5 y^{\prime}+6 y=g(t), \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

Solution: Then: $1=a(s-3)+b(s-2)$. Evaluate at $s=2$, 3 .

$$
s=2 \Rightarrow a=-1 . \quad s=3 \Rightarrow b=1 .
$$

Laplace Transform of a convolution.

Example

Solve the IVP

$$
y^{\prime \prime}-5 y^{\prime}+6 y=g(t), \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

Solution: Then: $1=a(s-3)+b(s-2)$. Evaluate at $s=2$, 3 .

$$
s=2 \Rightarrow a=-1 . \quad s=3 \Rightarrow b=1 .
$$

Therefore $H(s)=-\frac{1}{(s-2)}+\frac{1}{(s-3)}$.

Laplace Transform of a convolution.

Example

Solve the IVP

$$
y^{\prime \prime}-5 y^{\prime}+6 y=g(t), \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

Solution: Then: $1=a(s-3)+b(s-2)$. Evaluate at $s=2$, 3 .

$$
s=2 \Rightarrow a=-1 . \quad s=3 \Rightarrow b=1 .
$$

Therefore $H(s)=-\frac{1}{(s-2)}+\frac{1}{(s-3)}$. Then

$$
h(t)=-e^{2 t}+e^{3 t} .
$$

Laplace Transform of a convolution.

Example

Solve the IVP

$$
y^{\prime \prime}-5 y^{\prime}+6 y=g(t), \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

Solution: Then: $1=a(s-3)+b(s-2)$. Evaluate at $s=2$, 3 .

$$
s=2 \Rightarrow a=-1 . \quad s=3 \Rightarrow b=1 .
$$

Therefore $H(s)=-\frac{1}{(s-2)}+\frac{1}{(s-3)}$. Then

$$
h(t)=-e^{2 t}+e^{3 t} .
$$

Recalling the formula $y(t)=(h * g)(t)$,

Laplace Transform of a convolution.

Example

Solve the IVP

$$
y^{\prime \prime}-5 y^{\prime}+6 y=g(t), \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

Solution: Then: $1=a(s-3)+b(s-2)$. Evaluate at $s=2$, 3 .

$$
s=2 \Rightarrow a=-1 . \quad s=3 \Rightarrow b=1 .
$$

Therefore $H(s)=-\frac{1}{(s-2)}+\frac{1}{(s-3)}$. Then

$$
h(t)=-e^{2 t}+e^{3 t} .
$$

Recalling the formula $y(t)=(h * g)(t)$, we get

$$
y(t)=\int_{0}^{t}\left(-e^{2 \tau}+e^{3 \tau}\right) g(t-\tau) d \tau .
$$

Convolution solutions (Sect. 4.5).

- Convolution of two functions.
- Properties of convolutions.
- Laplace Transform of a convolution.
- Impulse response solution.
- Solution decomposition theorem.

Impulse response solution.

Definition

The impulse response solution is the solution y_{δ} to the IVP

$$
y_{\delta}^{\prime \prime}+a_{1} y_{\delta}^{\prime}+a_{0} y_{\delta}=\delta(t), \quad y_{\delta}(0)=0, \quad y_{\delta}^{\prime}(0)=0
$$

Impulse response solution.

Definition

The impulse response solution is the solution y_{δ} to the IVP

$$
y_{\delta}^{\prime \prime}+a_{1} y_{\delta}^{\prime}+a_{0} y_{\delta}=\delta(t), \quad y_{\delta}(0)=0, \quad y_{\delta}^{\prime}(0)=0
$$

Computing Laplace Transforms,

$$
\left(s^{2}+a_{1} s+a_{0}\right) \mathcal{L}\left[y_{\delta}\right]=1
$$

Impulse response solution.

Definition

The impulse response solution is the solution y_{δ} to the IVP

$$
y_{\delta}^{\prime \prime}+a_{1} y_{\delta}^{\prime}+a_{0} y_{\delta}=\delta(t), \quad y_{\delta}(0)=0, \quad y_{\delta}^{\prime}(0)=0
$$

Computing Laplace Transforms,

$$
\left(s^{2}+a_{1} s+a_{0}\right) \mathcal{L}\left[y_{\delta}\right]=1 \quad \Rightarrow \quad y_{\delta}(t)=\mathcal{L}^{-1}\left[\frac{1}{s^{2}+a_{1} s+a_{0}}\right]
$$

Impulse response solution.

Definition

The impulse response solution is the solution y_{δ} to the IVP

$$
y_{\delta}^{\prime \prime}+a_{1} y_{\delta}^{\prime}+a_{0} y_{\delta}=\delta(t), \quad y_{\delta}(0)=0, \quad y_{\delta}^{\prime}(0)=0
$$

Computing Laplace Transforms,

$$
\left(s^{2}+a_{1} s+a_{0}\right) \mathcal{L}\left[y_{\delta}\right]=1 \quad \Rightarrow \quad y_{\delta}(t)=\mathcal{L}^{-1}\left[\frac{1}{s^{2}+a_{1} s+a_{0}}\right]
$$

Denoting the characteristic polynomial by $p(s)=s^{2}+a_{1} s+a_{0}$,

Impulse response solution.

Definition

The impulse response solution is the solution y_{δ} to the IVP

$$
y_{\delta}^{\prime \prime}+a_{1} y_{\delta}^{\prime}+a_{0} y_{\delta}=\delta(t), \quad y_{\delta}(0)=0, \quad y_{\delta}^{\prime}(0)=0
$$

Computing Laplace Transforms,

$$
\left(s^{2}+a_{1} s+a_{0}\right) \mathcal{L}\left[y_{\delta}\right]=1 \quad \Rightarrow \quad y_{\delta}(t)=\mathcal{L}^{-1}\left[\frac{1}{s^{2}+a_{1} s+a_{0}}\right]
$$

Denoting the characteristic polynomial by $p(s)=s^{2}+a_{1} s+a_{0}$,

$$
y_{\delta}=\mathcal{L}^{-1}\left[\frac{1}{p(s)}\right]
$$

Impulse response solution.

Definition

The impulse response solution is the solution y_{δ} to the IVP

$$
y_{\delta}^{\prime \prime}+a_{1} y_{\delta}^{\prime}+a_{0} y_{\delta}=\delta(t), \quad y_{\delta}(0)=0, \quad y_{\delta}^{\prime}(0)=0
$$

Computing Laplace Transforms,

$$
\left(s^{2}+a_{1} s+a_{0}\right) \mathcal{L}\left[y_{\delta}\right]=1 \quad \Rightarrow \quad y_{\delta}(t)=\mathcal{L}^{-1}\left[\frac{1}{s^{2}+a_{1} s+a_{0}}\right]
$$

Denoting the characteristic polynomial by $p(s)=s^{2}+a_{1} s+a_{0}$,

$$
y_{\delta}=\mathcal{L}^{-1}\left[\frac{1}{p(s)}\right]
$$

Summary: The impulse reponse solution is the inverse Laplace Transform of the reciprocal of the equation characteristic polynomial.

Impulse response solution.

Recall: The impulse response solution is y_{δ} solution of the IVP

$$
y_{\delta}^{\prime \prime}+a_{1} y_{\delta}^{\prime}+a_{0} y_{\delta}=\delta(t), \quad y_{\delta}(0)=0, \quad y_{\delta}^{\prime}(0)=0
$$

Impulse response solution.

Recall: The impulse response solution is y_{δ} solution of the IVP

$$
y_{\delta}^{\prime \prime}+a_{1} y_{\delta}^{\prime}+a_{0} y_{\delta}=\delta(t), \quad y_{\delta}(0)=0, \quad y_{\delta}^{\prime}(0)=0
$$

Example
Find the solution (impulse response at $t=c$) of the IVP

$$
y_{\delta_{c}}^{\prime \prime}+2 y_{\delta_{c}}^{\prime}+2 y_{\delta_{c}}=\delta(t-c), \quad y_{\delta_{c}}(0)=0, \quad y_{\delta_{c}}^{\prime}(0)=0, \quad c \in \mathbb{R}
$$

Impulse response solution.

Recall: The impulse response solution is y_{δ} solution of the IVP

$$
y_{\delta}^{\prime \prime}+a_{1} y_{\delta}^{\prime}+a_{0} y_{\delta}=\delta(t), \quad y_{\delta}(0)=0, \quad y_{\delta}^{\prime}(0)=0
$$

Example
Find the solution (impulse response at $t=c$) of the IVP

$$
y_{\delta_{c}}^{\prime \prime}+2 y_{\delta_{c}}^{\prime}+2 y_{\delta_{c}}=\delta(t-c), \quad y_{\delta_{c}}(0)=0, \quad y_{\delta_{c}}^{\prime}(0)=0, \quad c \in \mathbb{R}
$$

Solution: $\mathcal{L}\left[y_{\delta_{c}}^{\prime \prime}\right]+2 \mathcal{L}\left[y_{\delta_{c}}^{\prime}\right]+2 \mathcal{L}\left[y_{\delta_{c}}\right]=\mathcal{L}[\delta(t-c)]$.

Impulse response solution.

Recall: The impulse response solution is y_{δ} solution of the IVP

$$
y_{\delta}^{\prime \prime}+a_{1} y_{\delta}^{\prime}+a_{0} y_{\delta}=\delta(t), \quad y_{\delta}(0)=0, \quad y_{\delta}^{\prime}(0)=0
$$

Example
Find the solution (impulse response at $t=c$) of the IVP

$$
y_{\delta_{c}}^{\prime \prime}+2 y_{\delta_{c}}^{\prime}+2 y_{\delta_{c}}=\delta(t-c), \quad y_{\delta_{c}}(0)=0, \quad y_{\delta_{c}}^{\prime}(0)=0, \quad c \in \mathbb{R}
$$

Solution: $\mathcal{L}\left[y_{\delta_{c}}^{\prime \prime}\right]+2 \mathcal{L}\left[y_{\delta_{c}}^{\prime}\right]+2 \mathcal{L}\left[y_{\delta_{c}}\right]=\mathcal{L}[\delta(t-c)]$.

$$
\left(s^{2}+2 s+2\right) \mathcal{L}\left[y_{\delta_{c}}\right]=e^{-c s}
$$

Impulse response solution.

Recall: The impulse response solution is y_{δ} solution of the IVP

$$
y_{\delta}^{\prime \prime}+a_{1} y_{\delta}^{\prime}+a_{0} y_{\delta}=\delta(t), \quad y_{\delta}(0)=0, \quad y_{\delta}^{\prime}(0)=0
$$

Example
Find the solution (impulse response at $t=c$) of the IVP
$y_{\delta_{c}}^{\prime \prime}+2 y_{\delta_{c}}^{\prime}+2 y_{\delta_{c}}=\delta(t-c), \quad y_{\delta_{c}}(0)=0, \quad y_{\delta_{c}}^{\prime}(0)=0, \quad c \in \mathbb{R}$.

Solution: $\mathcal{L}\left[y_{\delta_{c}}^{\prime \prime}\right]+2 \mathcal{L}\left[y_{\delta_{c}}^{\prime}\right]+2 \mathcal{L}\left[y_{\delta_{c}}\right]=\mathcal{L}[\delta(t-c)]$.

$$
\left(s^{2}+2 s+2\right) \mathcal{L}\left[y_{\delta_{c}}\right]=e^{-c s} \quad \Rightarrow \quad \mathcal{L}\left[y_{\delta_{c}}\right]=\frac{e^{-c s}}{\left(s^{2}+2 s+2\right)}
$$

Impulse response solution.

Example

Find the solution (impulse response at $t=c$) of the IVP
$y_{\delta_{c}}^{\prime \prime}+2 y_{\delta_{c}}^{\prime}+2 y_{\delta_{c}}=\delta(t-c), \quad y_{\delta_{c}}(0)=0, \quad y_{\delta_{c}}^{\prime}(0)=0, \quad c \in \mathbb{R}$.
Solution: Recall: $\mathcal{L}\left[y_{\delta_{c}}\right]=\frac{e^{-c s}}{\left(s^{2}+2 s+2\right)}$.

Impulse response solution.

Example

Find the solution (impulse response at $t=c$) of the IVP
$y_{\delta_{c}}^{\prime \prime}+2 y_{\delta_{c}}^{\prime}+2 y_{\delta_{c}}=\delta(t-c), \quad y_{\delta_{c}}(0)=0, \quad y_{\delta_{c}}^{\prime}(0)=0, \quad c \in \mathbb{R}$.
Solution: Recall: $\mathcal{L}\left[y_{\delta_{c}}\right]=\frac{e^{-c s}}{\left(s^{2}+2 s+2\right)}$.
Find the roots of the denominator,

$$
s^{2}+2 s+2=0
$$

Impulse response solution.

Example

Find the solution (impulse response at $t=c$) of the IVP
$y_{\delta_{c}}^{\prime \prime}+2 y_{\delta_{c}}^{\prime}+2 y_{\delta_{c}}=\delta(t-c), \quad y_{\delta_{c}}(0)=0, \quad y_{\delta_{c}}^{\prime}(0)=0, \quad c \in \mathbb{R}$.
Solution: Recall: $\mathcal{L}\left[y_{\delta_{c}}\right]=\frac{e^{-c s}}{\left(s^{2}+2 s+2\right)}$.
Find the roots of the denominator,

$$
s^{2}+2 s+2=0 \quad \Rightarrow \quad s_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4-8}]
$$

Impulse response solution.

Example

Find the solution (impulse response at $t=c$) of the IVP
$y_{\delta_{c}}^{\prime \prime}+2 y_{\delta_{c}}^{\prime}+2 y_{\delta_{c}}=\delta(t-c), \quad y_{\delta_{c}}(0)=0, \quad y_{\delta_{c}}^{\prime}(0)=0, \quad c \in \mathbb{R}$.
Solution: Recall: $\mathcal{L}\left[y_{\delta_{c}}\right]=\frac{e^{-c s}}{\left(s^{2}+2 s+2\right)}$.
Find the roots of the denominator,

$$
s^{2}+2 s+2=0 \quad \Rightarrow \quad s_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4-8}]
$$

Complex roots.

Impulse response solution.

Example

Find the solution (impulse response at $t=c$) of the IVP
$y_{\delta_{c}}^{\prime \prime}+2 y_{\delta_{c}}^{\prime}+2 y_{\delta_{c}}=\delta(t-c), \quad y_{\delta_{c}}(0)=0, \quad y_{\delta_{c}}^{\prime}(0)=0, \quad c \in \mathbb{R}$.
Solution: Recall: $\mathcal{L}\left[y_{\delta_{c}}\right]=\frac{e^{-c s}}{\left(s^{2}+2 s+2\right)}$.
Find the roots of the denominator,

$$
s^{2}+2 s+2=0 \quad \Rightarrow \quad s_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4-8}]
$$

Complex roots. We complete the square:

Impulse response solution.

Example

Find the solution (impulse response at $t=c$) of the IVP
$y_{\delta_{c}}^{\prime \prime}+2 y_{\delta_{c}}^{\prime}+2 y_{\delta_{c}}=\delta(t-c), \quad y_{\delta_{c}}(0)=0, \quad y_{\delta_{c}}^{\prime}(0)=0, \quad c \in \mathbb{R}$.
Solution: Recall: $\mathcal{L}\left[y_{\delta_{c}}\right]=\frac{e^{-c s}}{\left(s^{2}+2 s+2\right)}$.
Find the roots of the denominator,

$$
s^{2}+2 s+2=0 \quad \Rightarrow \quad s_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4-8}]
$$

Complex roots. We complete the square:

$$
s^{2}+2 s+2=\left[s^{2}+2\left(\frac{2}{2}\right) s+1\right]-1+2
$$

Impulse response solution.

Example

Find the solution (impulse response at $t=c$) of the IVP
$y_{\delta_{c}}^{\prime \prime}+2 y_{\delta_{c}}^{\prime}+2 y_{\delta_{c}}=\delta(t-c), \quad y_{\delta_{c}}(0)=0, \quad y_{\delta_{c}}^{\prime}(0)=0, \quad c \in \mathbb{R}$.
Solution: Recall: $\mathcal{L}\left[y_{\delta_{c}}\right]=\frac{e^{-c s}}{\left(s^{2}+2 s+2\right)}$.
Find the roots of the denominator,

$$
s^{2}+2 s+2=0 \quad \Rightarrow \quad s_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4-8}]
$$

Complex roots. We complete the square:

$$
s^{2}+2 s+2=\left[s^{2}+2\left(\frac{2}{2}\right) s+1\right]-1+2=(s+1)^{2}+1
$$

Impulse response solution.

Example

Find the solution (impulse response at $t=c$) of the IVP
$y_{\delta_{c}}^{\prime \prime}+2 y_{\delta_{c}}^{\prime}+2 y_{\delta_{c}}=\delta(t-c), \quad y_{\delta_{c}}(0)=0, \quad y_{\delta_{c}}^{\prime}(0)=0, \quad c \in \mathbb{R}$.
Solution: Recall: $\mathcal{L}\left[y_{\delta_{c}}\right]=\frac{e^{-c s}}{\left(s^{2}+2 s+2\right)}$.
Find the roots of the denominator,

$$
s^{2}+2 s+2=0 \quad \Rightarrow \quad s_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4-8}]
$$

Complex roots. We complete the square:

$$
s^{2}+2 s+2=\left[s^{2}+2\left(\frac{2}{2}\right) s+1\right]-1+2=(s+1)^{2}+1
$$

Therefore, $\mathcal{L}\left[y_{\delta_{c}}\right]=\frac{e^{-c s}}{(s+1)^{2}+1}$.

Impulse response solution.

Example

Find the solution (impulse response at $t=c$) of the IVP
$y_{\delta_{c}}^{\prime \prime}+2 y_{\delta_{c}}^{\prime}+2 y_{\delta_{c}}=\delta(t-c), \quad y_{\delta_{c}}(0)=0, \quad y_{\delta_{c}}^{\prime}(0)=0, \quad c \in \mathbb{R}$.
Solution: Recall: $\mathcal{L}\left[y_{\delta_{c}}\right]=\frac{e^{-c s}}{(s+1)^{2}+1}$.

Impulse response solution.

Example

Find the solution (impulse response at $t=c$) of the IVP
$y_{\delta_{c}}^{\prime \prime}+2 y_{\delta_{c}}^{\prime}+2 y_{\delta_{c}}=\delta(t-c), \quad y_{\delta_{c}}(0)=0, \quad y_{\delta_{c}}^{\prime}(0)=0, \quad c \in \mathbb{R}$.
Solution: Recall: $\mathcal{L}\left[y_{\delta_{c}}\right]=\frac{e^{-c s}}{(s+1)^{2}+1}$.
Recall: $\quad \mathcal{L}[\sin (t)]=\frac{1}{s^{2}+1}$,

Impulse response solution.

Example

Find the solution (impulse response at $t=c$) of the IVP
$y_{\delta_{c}}^{\prime \prime}+2 y_{\delta_{c}}^{\prime}+2 y_{\delta_{c}}=\delta(t-c), \quad y_{\delta_{c}}(0)=0, \quad y_{\delta_{c}}^{\prime}(0)=0, \quad c \in \mathbb{R}$.
Solution: Recall: $\mathcal{L}\left[y_{\delta_{c}}\right]=\frac{e^{-c s}}{(s+1)^{2}+1}$.
Recall: $\mathcal{L}[\sin (t)]=\frac{1}{s^{2}+1}$, and $\mathcal{L}[f](s-c)=\mathcal{L}\left[e^{c t} f(t)\right]$.

Impulse response solution.

Example

Find the solution (impulse response at $t=c$) of the IVP
$y_{\delta_{c}}^{\prime \prime}+2 y_{\delta_{c}}^{\prime}+2 y_{\delta_{c}}=\delta(t-c), \quad y_{\delta_{c}}(0)=0, \quad y_{\delta_{c}}^{\prime}(0)=0, \quad c \in \mathbb{R}$.
Solution: Recall: $\mathcal{L}\left[y_{\delta_{c}}\right]=\frac{e^{-c s}}{(s+1)^{2}+1}$.
Recall: $\mathcal{L}[\sin (t)]=\frac{1}{s^{2}+1}$, and $\mathcal{L}[f](s-c)=\mathcal{L}\left[e^{c t} f(t)\right]$.

$$
\frac{1}{(s+1)^{2}+1}=\mathcal{L}\left[e^{-t} \sin (t)\right]
$$

Impulse response solution.

Example

Find the solution (impulse response at $t=c$) of the IVP
$y_{\delta_{c}}^{\prime \prime}+2 y_{\delta_{c}}^{\prime}+2 y_{\delta_{c}}=\delta(t-c), \quad y_{\delta_{c}}(0)=0, \quad y_{\delta_{c}}^{\prime}(0)=0, \quad c \in \mathbb{R}$.
Solution: Recall: $\mathcal{L}\left[y_{\delta_{c}}\right]=\frac{e^{-c s}}{(s+1)^{2}+1}$.
Recall: $\mathcal{L}[\sin (t)]=\frac{1}{s^{2}+1}$, and $\mathcal{L}[f](s-c)=\mathcal{L}\left[e^{c t} f(t)\right]$.

$$
\frac{1}{(s+1)^{2}+1}=\mathcal{L}\left[e^{-t} \sin (t)\right] \quad \Rightarrow \quad \mathcal{L}\left[y_{\delta_{c}}\right]=e^{-c s} \mathcal{L}\left[e^{-t} \sin (t)\right]
$$

Impulse response solution.

Example

Find the solution (impulse response at $t=c$) of the IVP
$y_{\delta_{c}}^{\prime \prime}+2 y_{\delta_{c}}^{\prime}+2 y_{\delta_{c}}=\delta(t-c), \quad y_{\delta_{c}}(0)=0, \quad y_{\delta_{c}}^{\prime}(0)=0, \quad c \in \mathbb{R}$.
Solution: Recall: $\mathcal{L}\left[y_{\delta_{c}}\right]=\frac{e^{-c s}}{(s+1)^{2}+1}$.
Recall: $\mathcal{L}[\sin (t)]=\frac{1}{s^{2}+1}$, and $\mathcal{L}[f](s-c)=\mathcal{L}\left[e^{c t} f(t)\right]$.

$$
\frac{1}{(s+1)^{2}+1}=\mathcal{L}\left[e^{-t} \sin (t)\right] \quad \Rightarrow \quad \mathcal{L}\left[y_{\delta_{c}}\right]=e^{-c s} \mathcal{L}\left[e^{-t} \sin (t)\right]
$$

Since $e^{-c s} \mathcal{L}[f](s)=\mathcal{L}[u(t-c) f(t-c)]$,

Impulse response solution.

Example

Find the solution (impulse response at $t=c$) of the IVP
$y_{\delta_{c}}^{\prime \prime}+2 y_{\delta_{c}}^{\prime}+2 y_{\delta_{c}}=\delta(t-c), \quad y_{\delta_{c}}(0)=0, \quad y_{\delta_{c}}^{\prime}(0)=0, \quad c \in \mathbb{R}$.
Solution: Recall: $\quad \mathcal{L}\left[y_{\delta_{c}}\right]=\frac{e^{-c s}}{(s+1)^{2}+1}$.
Recall: $\mathcal{L}[\sin (t)]=\frac{1}{s^{2}+1}$, and $\mathcal{L}[f](s-c)=\mathcal{L}\left[e^{c t} f(t)\right]$.

$$
\frac{1}{(s+1)^{2}+1}=\mathcal{L}\left[e^{-t} \sin (t)\right] \quad \Rightarrow \quad \mathcal{L}\left[y_{\delta_{c}}\right]=e^{-c s} \mathcal{L}\left[e^{-t} \sin (t)\right]
$$

Since $e^{-c s} \mathcal{L}[f](s)=\mathcal{L}[u(t-c) f(t-c)]$,
we conclude $y_{\delta_{c}}(t)=u(t-c) e^{-(t-c)} \sin (t-c)$.

Convolution solutions (Sect. 4.5).

- Convolution of two functions.
- Properties of convolutions.
- Laplace Transform of a convolution.
- Impulse response solution.
- Solution decomposition theorem.

Solution decomposition theorem.

Theorem (Solution decomposition)
The solution y to the IVP

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(t), \quad y(0)=y_{0}, \quad y^{\prime}(0)=y_{1}
$$

can be decomposed as

$$
y(t)=y_{h}(t)+\left(y_{\delta} * g\right)(t)
$$

where y_{h} is the solution of the homogeneous IVP

$$
y_{h}^{\prime \prime}+a_{1} y_{h}^{\prime}+a_{0} y_{h}=0, \quad y_{h}(0)=y_{0}, \quad y_{h}^{\prime}(0)=y_{1},
$$

and y_{δ} is the impulse response solution, that is,

$$
y_{\delta}^{\prime \prime}+a_{1} y_{\delta}^{\prime}+a_{0} y_{\delta}=\delta(t), \quad y_{\delta}(0)=0, \quad y_{\delta}^{\prime}(0)=0
$$

Solution decomposition theorem.

Example

Use the Solution Decomposition Theorem to express the solution of

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\sin (a t), \quad y(0)=1, \quad y^{\prime}(0)=-1 .
$$

Solution decomposition theorem.

Example

Use the Solution Decomposition Theorem to express the solution of

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\sin (a t), \quad y(0)=1, \quad y^{\prime}(0)=-1
$$

Solution: $\mathcal{L}\left[y^{\prime \prime}\right]+2 \mathcal{L}\left[y^{\prime}\right]+2 \mathcal{L}[y]=\mathcal{L}[\sin (a t)]$,

Solution decomposition theorem.

Example

Use the Solution Decomposition Theorem to express the solution of

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\sin (a t), \quad y(0)=1, \quad y^{\prime}(0)=-1
$$

Solution: $\mathcal{L}\left[y^{\prime \prime}\right]+2 \mathcal{L}\left[y^{\prime}\right]+2 \mathcal{L}[y]=\mathcal{L}[\sin (a t)]$, and recall,

$$
\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]-s(1)-(-1)
$$

Solution decomposition theorem.

Example

Use the Solution Decomposition Theorem to express the solution of

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\sin (a t), \quad y(0)=1, \quad y^{\prime}(0)=-1
$$

Solution: $\mathcal{L}\left[y^{\prime \prime}\right]+2 \mathcal{L}\left[y^{\prime}\right]+2 \mathcal{L}[y]=\mathcal{L}[\sin (a t)]$, and recall,

$$
\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]-s(1)-(-1), \quad \mathcal{L}\left[y^{\prime}\right]=s \mathcal{L}[y]-1
$$

Solution decomposition theorem.

Example

Use the Solution Decomposition Theorem to express the solution of

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\sin (a t), \quad y(0)=1, \quad y^{\prime}(0)=-1 .
$$

Solution: $\mathcal{L}\left[y^{\prime \prime}\right]+2 \mathcal{L}\left[y^{\prime}\right]+2 \mathcal{L}[y]=\mathcal{L}[\sin (a t)]$, and recall,

$$
\begin{gathered}
\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]-s(1)-(-1), \quad \mathcal{L}\left[y^{\prime}\right]=s \mathcal{L}[y]-1 . \\
\left(s^{2}+2 s+2\right) \mathcal{L}[y]-s+1-2=\mathcal{L}[\sin (a t)] .
\end{gathered}
$$

Solution decomposition theorem.

Example

Use the Solution Decomposition Theorem to express the solution of

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\sin (a t), \quad y(0)=1, \quad y^{\prime}(0)=-1 .
$$

Solution: $\mathcal{L}\left[y^{\prime \prime}\right]+2 \mathcal{L}\left[y^{\prime}\right]+2 \mathcal{L}[y]=\mathcal{L}[\sin (a t)]$, and recall,

$$
\begin{gathered}
\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]-s(1)-(-1), \quad \mathcal{L}\left[y^{\prime}\right]=s \mathcal{L}[y]-1 . \\
\left(s^{2}+2 s+2\right) \mathcal{L}[y]-s+1-2=\mathcal{L}[\sin (a t)] . \\
\mathcal{L}[y]=\frac{(s+1)}{\left(s^{2}+2 s+2\right)}+\frac{1}{\left(s^{2}+2 s+2\right)} \mathcal{L}[\sin (a t)] .
\end{gathered}
$$

Solution decomposition theorem.

Example

Use the Solution Decomposition Theorem to express the solution of

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\sin (a t), \quad y(0)=1, \quad y^{\prime}(0)=-1
$$

Solution: Recall: $\quad \mathcal{L}[y]=\frac{(s+1)}{\left(s^{2}+2 s+2\right)}+\frac{1}{\left(s^{2}+2 s+2\right)} \mathcal{L}[\sin (a t)]$.

Solution decomposition theorem.

Example

Use the Solution Decomposition Theorem to express the solution of

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\sin (a t), \quad y(0)=1, \quad y^{\prime}(0)=-1
$$

Solution: Recall: $\mathcal{L}[y]=\frac{(s+1)}{\left(s^{2}+2 s+2\right)}+\frac{1}{\left(s^{2}+2 s+2\right)} \mathcal{L}[\sin (a t)]$.
But: $\mathcal{L}\left[y_{h}\right]=\frac{(s+1)}{\left(s^{2}+2 s+2\right)}$

Solution decomposition theorem.

Example

Use the Solution Decomposition Theorem to express the solution of

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\sin (a t), \quad y(0)=1, \quad y^{\prime}(0)=-1
$$

Solution: Recall: $\mathcal{L}[y]=\frac{(s+1)}{\left(s^{2}+2 s+2\right)}+\frac{1}{\left(s^{2}+2 s+2\right)} \mathcal{L}[\sin (a t)]$.
But: $\mathcal{L}\left[y_{h}\right]=\frac{(s+1)}{\left(s^{2}+2 s+2\right)}=\frac{(s+1)}{(s+1)^{2}+1}$

Solution decomposition theorem.

Example

Use the Solution Decomposition Theorem to express the solution of

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\sin (a t), \quad y(0)=1, \quad y^{\prime}(0)=-1
$$

Solution: Recall: $\mathcal{L}[y]=\frac{(s+1)}{\left(s^{2}+2 s+2\right)}+\frac{1}{\left(s^{2}+2 s+2\right)} \mathcal{L}[\sin (a t)]$.
But: $\mathcal{L}\left[y_{h}\right]=\frac{(s+1)}{\left(s^{2}+2 s+2\right)}=\frac{(s+1)}{(s+1)^{2}+1}=\mathcal{L}\left[e^{-t} \cos (t)\right]$,

Solution decomposition theorem.

Example

Use the Solution Decomposition Theorem to express the solution of

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\sin (a t), \quad y(0)=1, \quad y^{\prime}(0)=-1
$$

Solution: Recall: $\mathcal{L}[y]=\frac{(s+1)}{\left(s^{2}+2 s+2\right)}+\frac{1}{\left(s^{2}+2 s+2\right)} \mathcal{L}[\sin (a t)]$.
But: $\mathcal{L}\left[y_{h}\right]=\frac{(s+1)}{\left(s^{2}+2 s+2\right)}=\frac{(s+1)}{(s+1)^{2}+1}=\mathcal{L}\left[e^{-t} \cos (t)\right]$,
and: $\quad \mathcal{L}\left[y_{\delta}\right]=\frac{1}{\left(s^{2}+2 s+2\right)}$

Solution decomposition theorem.

Example

Use the Solution Decomposition Theorem to express the solution of

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\sin (a t), \quad y(0)=1, \quad y^{\prime}(0)=-1
$$

Solution: Recall: $\mathcal{L}[y]=\frac{(s+1)}{\left(s^{2}+2 s+2\right)}+\frac{1}{\left(s^{2}+2 s+2\right)} \mathcal{L}[\sin (a t)]$.
But: $\mathcal{L}\left[y_{h}\right]=\frac{(s+1)}{\left(s^{2}+2 s+2\right)}=\frac{(s+1)}{(s+1)^{2}+1}=\mathcal{L}\left[e^{-t} \cos (t)\right]$,
and: $\mathcal{L}\left[y_{\delta}\right]=\frac{1}{\left(s^{2}+2 s+2\right)}=\frac{1}{(s+1)^{2}+1}$

Solution decomposition theorem.

Example

Use the Solution Decomposition Theorem to express the solution of

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\sin (a t), \quad y(0)=1, \quad y^{\prime}(0)=-1
$$

Solution: Recall: $\mathcal{L}[y]=\frac{(s+1)}{\left(s^{2}+2 s+2\right)}+\frac{1}{\left(s^{2}+2 s+2\right)} \mathcal{L}[\sin (a t)]$.
But: $\mathcal{L}\left[y_{h}\right]=\frac{(s+1)}{\left(s^{2}+2 s+2\right)}=\frac{(s+1)}{(s+1)^{2}+1}=\mathcal{L}\left[e^{-t} \cos (t)\right]$,
and: $\mathcal{L}\left[y_{\delta}\right]=\frac{1}{\left(s^{2}+2 s+2\right)}=\frac{1}{(s+1)^{2}+1}=\mathcal{L}\left[e^{-t} \sin (t)\right]$.

Solution decomposition theorem.

Example

Use the Solution Decomposition Theorem to express the solution of

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\sin (a t), \quad y(0)=1, \quad y^{\prime}(0)=-1
$$

Solution: Recall: $\quad \mathcal{L}[y]=\frac{(s+1)}{\left(s^{2}+2 s+2\right)}+\frac{1}{\left(s^{2}+2 s+2\right)} \mathcal{L}[\sin (a t)]$.
But: $\mathcal{L}\left[y_{h}\right]=\frac{(s+1)}{\left(s^{2}+2 s+2\right)}=\frac{(s+1)}{(s+1)^{2}+1}=\mathcal{L}\left[e^{-t} \cos (t)\right]$,
and: $\quad \mathcal{L}\left[y_{\delta}\right]=\frac{1}{\left(s^{2}+2 s+2\right)}=\frac{1}{(s+1)^{2}+1}=\mathcal{L}\left[e^{-t} \sin (t)\right]$. So,

$$
\mathcal{L}[y]=\mathcal{L}\left[y_{h}\right]+\mathcal{L}\left[y_{\delta}\right] \mathcal{L}[g(t)]
$$

Solution decomposition theorem.

Example

Use the Solution Decomposition Theorem to express the solution of

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\sin (a t), \quad y(0)=1, \quad y^{\prime}(0)=-1
$$

Solution: Recall: $\quad \mathcal{L}[y]=\frac{(s+1)}{\left(s^{2}+2 s+2\right)}+\frac{1}{\left(s^{2}+2 s+2\right)} \mathcal{L}[\sin (a t)]$.
But: $\mathcal{L}\left[y_{h}\right]=\frac{(s+1)}{\left(s^{2}+2 s+2\right)}=\frac{(s+1)}{(s+1)^{2}+1}=\mathcal{L}\left[e^{-t} \cos (t)\right]$,
and: $\quad \mathcal{L}\left[y_{\delta}\right]=\frac{1}{\left(s^{2}+2 s+2\right)}=\frac{1}{(s+1)^{2}+1}=\mathcal{L}\left[e^{-t} \sin (t)\right]$. So,

$$
\mathcal{L}[y]=\mathcal{L}\left[y_{h}\right]+\mathcal{L}\left[y_{\delta}\right] \mathcal{L}[g(t)] \quad \Rightarrow \quad y(t)=y_{h}(t)+\left(y_{\delta} * g\right)(t)
$$

Solution decomposition theorem.

Example
Use the Solution Decomposition Theorem to express the solution of

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\sin (a t), \quad y(0)=1, \quad y^{\prime}(0)=-1
$$

Solution: Recall: $\mathcal{L}[y]=\frac{(s+1)}{\left(s^{2}+2 s+2\right)}+\frac{1}{\left(s^{2}+2 s+2\right)} \mathcal{L}[\sin (a t)]$.
But: $\mathcal{L}\left[y_{h}\right]=\frac{(s+1)}{\left(s^{2}+2 s+2\right)}=\frac{(s+1)}{(s+1)^{2}+1}=\mathcal{L}\left[e^{-t} \cos (t)\right]$,
and: $\quad \mathcal{L}\left[y_{\delta}\right]=\frac{1}{\left(s^{2}+2 s+2\right)}=\frac{1}{(s+1)^{2}+1}=\mathcal{L}\left[e^{-t} \sin (t)\right]$. So,

$$
\mathcal{L}[y]=\mathcal{L}\left[y_{h}\right]+\mathcal{L}\left[y_{\delta}\right] \mathcal{L}[g(t)] \quad \Rightarrow \quad y(t)=y_{h}(t)+\left(y_{\delta} * g\right)(t)
$$

So: $y(t)=e^{-t} \cos (t)+\int_{0}^{t} e^{-\tau} \sin (\tau) \sin [a(t-\tau)] d \tau$.

Solution decomposition theorem.

Proof: Compute: $\mathcal{L}\left[y^{\prime \prime}\right]+a_{1} \mathcal{L}\left[y^{\prime}\right]+a_{0} \mathcal{L}[y]=\mathcal{L}[g(t)]$,

Solution decomposition theorem.

Proof: Compute: $\mathcal{L}\left[y^{\prime \prime}\right]+a_{1} \mathcal{L}\left[y^{\prime}\right]+a_{0} \mathcal{L}[y]=\mathcal{L}[g(t)]$, and recall,

$$
\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]-s y_{0}-y_{1},
$$

Solution decomposition theorem.

Proof: Compute: $\mathcal{L}\left[y^{\prime \prime}\right]+a_{1} \mathcal{L}\left[y^{\prime}\right]+a_{0} \mathcal{L}[y]=\mathcal{L}[g(t)]$, and recall,

$$
\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]-s y_{0}-y_{1}, \quad \mathcal{L}\left[y^{\prime}\right]=s \mathcal{L}[y]-y_{0} .
$$

Solution decomposition theorem.

Proof: Compute: $\mathcal{L}\left[y^{\prime \prime}\right]+a_{1} \mathcal{L}\left[y^{\prime}\right]+a_{0} \mathcal{L}[y]=\mathcal{L}[g(t)]$, and recall,

$$
\begin{gathered}
\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]-s y_{0}-y_{1}, \quad \mathcal{L}\left[y^{\prime}\right]=s \mathcal{L}[y]-y_{0} . \\
\left(s^{2}+a_{1} s+a_{0}\right) \mathcal{L}[y]-s y_{0}-y_{1}-a_{1} y_{0}=\mathcal{L}[g(t)] .
\end{gathered}
$$

Solution decomposition theorem.

Proof: Compute: $\mathcal{L}\left[y^{\prime \prime}\right]+a_{1} \mathcal{L}\left[y^{\prime}\right]+a_{0} \mathcal{L}[y]=\mathcal{L}[g(t)]$, and recall,

$$
\begin{gathered}
\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]-s y_{0}-y_{1}, \quad \mathcal{L}\left[y^{\prime}\right]=s \mathcal{L}[y]-y_{0} . \\
\left(s^{2}+a_{1} s+a_{0}\right) \mathcal{L}[y]-s y_{0}-y_{1}-a_{1} y_{0}=\mathcal{L}[g(t)] . \\
\mathcal{L}[y]=\frac{\left(s+a_{1}\right) y_{0}+y_{1}}{\left(s^{2}+a_{1} s+a_{0}\right)}+\frac{1}{\left(s^{2}+a_{1} s+a_{0}\right)} \mathcal{L}[g(t)] .
\end{gathered}
$$

Solution decomposition theorem.

Proof: Compute: $\mathcal{L}\left[y^{\prime \prime}\right]+a_{1} \mathcal{L}\left[y^{\prime}\right]+a_{0} \mathcal{L}[y]=\mathcal{L}[g(t)]$, and recall,

$$
\begin{gathered}
\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]-s y_{0}-y_{1}, \quad \mathcal{L}\left[y^{\prime}\right]=s \mathcal{L}[y]-y_{0} . \\
\left(s^{2}+a_{1} s+a_{0}\right) \mathcal{L}[y]-s y_{0}-y_{1}-a_{1} y_{0}=\mathcal{L}[g(t)] . \\
\mathcal{L}[y]=\frac{\left(s+a_{1}\right) y_{0}+y_{1}}{\left(s^{2}+a_{1} s+a_{0}\right)}+\frac{1}{\left(s^{2}+a_{1} s+a_{0}\right)} \mathcal{L}[g(t)] .
\end{gathered}
$$

Recall: $\mathcal{L}\left[y_{h}\right]=\frac{\left(s+a_{1}\right) y_{0}+y_{1}}{\left(s^{2}+a_{1} s+a_{0}\right)}$,

Solution decomposition theorem.

Proof: Compute: $\mathcal{L}\left[y^{\prime \prime}\right]+a_{1} \mathcal{L}\left[y^{\prime}\right]+a_{0} \mathcal{L}[y]=\mathcal{L}[g(t)]$, and recall,

$$
\begin{gathered}
\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]-s y_{0}-y_{1}, \quad \mathcal{L}\left[y^{\prime}\right]=s \mathcal{L}[y]-y_{0} . \\
\left(s^{2}+a_{1} s+a_{0}\right) \mathcal{L}[y]-s y_{0}-y_{1}-a_{1} y_{0}=\mathcal{L}[g(t)] . \\
\mathcal{L}[y]=\frac{\left(s+a_{1}\right) y_{0}+y_{1}}{\left(s^{2}+a_{1} s+a_{0}\right)}+\frac{1}{\left(s^{2}+a_{1} s+a_{0}\right)} \mathcal{L}[g(t)] .
\end{gathered}
$$

Recall: $\mathcal{L}\left[y_{h}\right]=\frac{\left(s+a_{1}\right) y_{0}+y_{1}}{\left(s^{2}+a_{1} s+a_{0}\right)}$, and $\mathcal{L}\left[y_{\delta}\right]=\frac{1}{\left(s^{2}+a_{1} s+a_{0}\right)}$.

Solution decomposition theorem.

Proof: Compute: $\mathcal{L}\left[y^{\prime \prime}\right]+a_{1} \mathcal{L}\left[y^{\prime}\right]+a_{0} \mathcal{L}[y]=\mathcal{L}[g(t)]$, and recall,

$$
\begin{gathered}
\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]-s y_{0}-y_{1}, \quad \mathcal{L}\left[y^{\prime}\right]=s \mathcal{L}[y]-y_{0} . \\
\left(s^{2}+a_{1} s+a_{0}\right) \mathcal{L}[y]-s y_{0}-y_{1}-a_{1} y_{0}=\mathcal{L}[g(t)] . \\
\mathcal{L}[y]=\frac{\left(s+a_{1}\right) y_{0}+y_{1}}{\left(s^{2}+a_{1} s+a_{0}\right)}+\frac{1}{\left(s^{2}+a_{1} s+a_{0}\right)} \mathcal{L}[g(t)] .
\end{gathered}
$$

Recall: $\mathcal{L}\left[y_{h}\right]=\frac{\left(s+a_{1}\right) y_{0}+y_{1}}{\left(s^{2}+a_{1} s+a_{0}\right)}$, and $\quad \mathcal{L}\left[y_{\delta}\right]=\frac{1}{\left(s^{2}+a_{1} s+a_{0}\right)}$.
Since, $\mathcal{L}[y]=\mathcal{L}\left[y_{h}\right]+\mathcal{L}\left[y_{\delta}\right] \mathcal{L}[g(t)]$,

Solution decomposition theorem.

Proof: Compute: $\mathcal{L}\left[y^{\prime \prime}\right]+a_{1} \mathcal{L}\left[y^{\prime}\right]+a_{0} \mathcal{L}[y]=\mathcal{L}[g(t)]$, and recall,

$$
\begin{gathered}
\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]-s y_{0}-y_{1}, \quad \mathcal{L}\left[y^{\prime}\right]=s \mathcal{L}[y]-y_{0} . \\
\left(s^{2}+a_{1} s+a_{0}\right) \mathcal{L}[y]-s y_{0}-y_{1}-a_{1} y_{0}=\mathcal{L}[g(t)] . \\
\mathcal{L}[y]=\frac{\left(s+a_{1}\right) y_{0}+y_{1}}{\left(s^{2}+a_{1} s+a_{0}\right)}+\frac{1}{\left(s^{2}+a_{1} s+a_{0}\right)} \mathcal{L}[g(t)] .
\end{gathered}
$$

Recall: $\mathcal{L}\left[y_{h}\right]=\frac{\left(s+a_{1}\right) y_{0}+y_{1}}{\left(s^{2}+a_{1} s+a_{0}\right)}$, and $\mathcal{L}\left[y_{\delta}\right]=\frac{1}{\left(s^{2}+a_{1} s+a_{0}\right)}$.
Since, $\quad \mathcal{L}[y]=\mathcal{L}\left[y_{h}\right]+\mathcal{L}\left[y_{\delta}\right] \mathcal{L}[g(t)]$, so $y(t)=y_{h}(t)+\left(y_{\delta} * g\right)(t)$.

Solution decomposition theorem.

Proof: Compute: $\mathcal{L}\left[y^{\prime \prime}\right]+a_{1} \mathcal{L}\left[y^{\prime}\right]+a_{0} \mathcal{L}[y]=\mathcal{L}[g(t)]$, and recall,

$$
\begin{gathered}
\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]-s y_{0}-y_{1}, \quad \mathcal{L}\left[y^{\prime}\right]=s \mathcal{L}[y]-y_{0} . \\
\left(s^{2}+a_{1} s+a_{0}\right) \mathcal{L}[y]-s y_{0}-y_{1}-a_{1} y_{0}=\mathcal{L}[g(t)] . \\
\mathcal{L}[y]=\frac{\left(s+a_{1}\right) y_{0}+y_{1}}{\left(s^{2}+a_{1} s+a_{0}\right)}+\frac{1}{\left(s^{2}+a_{1} s+a_{0}\right)} \mathcal{L}[g(t)] .
\end{gathered}
$$

Recall: $\mathcal{L}\left[y_{h}\right]=\frac{\left(s+a_{1}\right) y_{0}+y_{1}}{\left(s^{2}+a_{1} s+a_{0}\right)}$, and $\quad \mathcal{L}\left[y_{\delta}\right]=\frac{1}{\left(s^{2}+a_{1} s+a_{0}\right)}$.
Since, $\quad \mathcal{L}[y]=\mathcal{L}\left[y_{h}\right]+\mathcal{L}\left[y_{\delta}\right] \mathcal{L}[g(t)]$, so $y(t)=y_{h}(t)+\left(y_{\delta} * g\right)(t)$.
Equivalently: $\quad y(t)=y_{h}(t)+\int_{0}^{t} y_{\delta}(\tau) g(t-\tau) d \tau$.

Systems of linear differential equations (Sect. 5.1).

- $n \times n$ systems of linear differential equations.
- Second order equations and first order systems.
- Main concepts from Linear Algebra.
$n \times n$ systems of linear differential equations.
Remark: Many physical systems must be described with more than one differential equation.

$n \times n$ systems of linear differential equations.

Remark: Many physical systems must be described with more than one differential equation.

Example

Newton's law of motion for a particle of mass m moving in space.

$n \times n$ systems of linear differential equations.

Remark: Many physical systems must be described with more than one differential equation.

Example

Newton's law of motion for a particle of mass m moving in space. The unknown and the force are vector-valued functions,

$n \times n$ systems of linear differential equations.

Remark: Many physical systems must be described with more than one differential equation.

Example

Newton's law of motion for a particle of mass m moving in space. The unknown and the force are vector-valued functions,

$$
\mathbf{x}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right],
$$

$n \times n$ systems of linear differential equations.

Remark: Many physical systems must be described with more than one differential equation.

Example

Newton's law of motion for a particle of mass m moving in space. The unknown and the force are vector-valued functions,

$$
\mathbf{x}(t)=\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right], \quad \mathbf{F}(t)=\left[\begin{array}{l}
F_{1}(t, \mathbf{x}) \\
F_{2}(t, \mathbf{x}) \\
F_{3}(t, \mathbf{x})
\end{array}\right] .
$$

$n \times n$ systems of linear differential equations.

Remark: Many physical systems must be described with more than one differential equation.

Example

Newton's law of motion for a particle of mass m moving in space. The unknown and the force are vector-valued functions,

$$
\mathbf{x}(t)=\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right], \quad \mathbf{F}(t)=\left[\begin{array}{l}
F_{1}(t, \mathbf{x}) \\
F_{2}(t, \mathbf{x}) \\
F_{3}(t, \mathbf{x})
\end{array}\right] .
$$

The equation of motion are: $m \frac{d^{2} \mathbf{x}}{d t^{2}}=\mathbf{F}(t, \mathbf{x}(t))$.

$n \times n$ systems of linear differential equations.

Remark: Many physical systems must be described with more than one differential equation.

Example

Newton's law of motion for a particle of mass m moving in space. The unknown and the force are vector-valued functions,

$$
\mathbf{x}(t)=\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right], \quad \mathbf{F}(t)=\left[\begin{array}{l}
F_{1}(t, \mathbf{x}) \\
F_{2}(t, \mathbf{x}) \\
F_{3}(t, \mathbf{x})
\end{array}\right] .
$$

The equation of motion are: $m \frac{d^{2} \mathbf{x}}{d t^{2}}=\mathbf{F}(t, \mathbf{x}(t))$.
These are three differential equations,

$$
m \frac{d^{2} x_{1}}{d t^{2}}=F_{1}(t, \mathbf{x}(t)), \quad m \frac{d^{2} x_{2}}{d t^{2}}=F_{2}(t, \mathbf{x}(t)), \quad m \frac{d^{2} x_{3}}{d t^{2}}=F_{3}(t, \mathbf{x}(t))
$$

$n \times n$ systems of linear differential equations.

Definition

An $n \times n$ system of linear first order differential equations is the following: Given the functions $a_{i j}, g_{i}:[a, b] \rightarrow \mathbb{R}$, where $i, j=1, \cdots, n$, find n functions $x_{j}:[a, b] \rightarrow \mathbb{R}$ solutions of the n linear differential equations

$$
\begin{aligned}
x_{1}^{\prime} & =a_{11}(t) x_{1}+\cdots+a_{1 n}(t) x_{n}+g_{1}(t) \\
& \vdots \\
x_{n}^{\prime} & =a_{n 1}(t) x_{1}+\cdots+a_{n n}(t) x_{n}+g_{n}(t) .
\end{aligned}
$$

The system is called homogeneous iff the source functions satisfy that $g_{1}=\cdots=g_{n}=0$.
$n \times n$ systems of linear differential equations.

Example

$n=1$: Single differential equation: Find $x_{1}(t)$ solution of

$$
x_{1}^{\prime}=a_{11}(t) x_{1}+g_{1}(t)
$$

$n \times n$ systems of linear differential equations.

Example

$n=1$: Single differential equation: Find $x_{1}(t)$ solution of

$$
x_{1}^{\prime}=a_{11}(t) x_{1}+g_{1}(t)
$$

Example
$n=2: 2 \times 2$ linear system: Find $x_{1}(t)$ and $x_{2}(t)$ solutions of

$$
\begin{aligned}
& x_{1}^{\prime}=a_{11}(t) x_{1}+a_{12}(t) x_{2}+g_{1}(t), \\
& x_{2}^{\prime}=a_{21}(t) x_{1}+a_{22}(t) x_{2}+g_{2}(t) .
\end{aligned}
$$

$n \times n$ systems of linear differential equations.

Example

$n=1$: Single differential equation: Find $x_{1}(t)$ solution of

$$
x_{1}^{\prime}=a_{11}(t) x_{1}+g_{1}(t)
$$

Example
$n=2: 2 \times 2$ linear system: Find $x_{1}(t)$ and $x_{2}(t)$ solutions of

$$
\begin{aligned}
& x_{1}^{\prime}=a_{11}(t) x_{1}+a_{12}(t) x_{2}+g_{1}(t), \\
& x_{2}^{\prime}=a_{21}(t) x_{1}+a_{22}(t) x_{2}+g_{2}(t) .
\end{aligned}
$$

Example
$n=2: 2 \times 2$ homogeneous linear system: Find $x_{1}(t)$ and $x_{2}(t)$,

$$
\begin{aligned}
& x_{1}^{\prime}=a_{11}(t) x_{1}+a_{12}(t) x_{2} \\
& x_{2}^{\prime}=a_{21}(t) x_{1}+a_{22}(t) x_{2} .
\end{aligned}
$$

$n \times n$ systems of linear differential equations.

Example

Find $x_{1}(t), x_{2}(t)$ solutions of the 2×2, constant coefficients, homogeneous system

$$
\begin{aligned}
x_{1}^{\prime} & =x_{1}-x_{2} \\
x_{2}^{\prime} & =-x_{1}+x_{2} .
\end{aligned}
$$

$n \times n$ systems of linear differential equations.

Example

Find $x_{1}(t), x_{2}(t)$ solutions of the 2×2, constant coefficients, homogeneous system

$$
\begin{aligned}
x_{1}^{\prime} & =x_{1}-x_{2} \\
x_{2}^{\prime} & =-x_{1}+x_{2} .
\end{aligned}
$$

Solution: Add up the equations, and subtract the equations,
$n \times n$ systems of linear differential equations.

Example

Find $x_{1}(t), x_{2}(t)$ solutions of the 2×2, constant coefficients, homogeneous system

$$
\begin{aligned}
x_{1}^{\prime} & =x_{1}-x_{2} \\
x_{2}^{\prime} & =-x_{1}+x_{2} .
\end{aligned}
$$

Solution: Add up the equations, and subtract the equations,

$$
\left(x_{1}+x_{2}\right)^{\prime}=0
$$

$n \times n$ systems of linear differential equations.
Example
Find $x_{1}(t), x_{2}(t)$ solutions of the 2×2, constant coefficients, homogeneous system

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}-x_{2} \\
& x_{2}^{\prime}=-x_{1}+x_{2} .
\end{aligned}
$$

Solution: Add up the equations, and subtract the equations,

$$
\left(x_{1}+x_{2}\right)^{\prime}=0, \quad\left(x_{1}-x_{2}\right)^{\prime}=2\left(x_{1}-x_{2}\right) .
$$

$n \times n$ systems of linear differential equations.

Example

Find $x_{1}(t), x_{2}(t)$ solutions of the 2×2, constant coefficients, homogeneous system

$$
\begin{aligned}
x_{1}^{\prime} & =x_{1}-x_{2} \\
x_{2}^{\prime} & =-x_{1}+x_{2} .
\end{aligned}
$$

Solution: Add up the equations, and subtract the equations,

$$
\left(x_{1}+x_{2}\right)^{\prime}=0, \quad\left(x_{1}-x_{2}\right)^{\prime}=2\left(x_{1}-x_{2}\right)
$$

Introduce the unknowns $v=x_{1}+x_{2}$,
$n \times n$ systems of linear differential equations.

Example

Find $x_{1}(t), x_{2}(t)$ solutions of the 2×2, constant coefficients, homogeneous system

$$
\begin{aligned}
x_{1}^{\prime} & =x_{1}-x_{2} \\
x_{2}^{\prime} & =-x_{1}+x_{2} .
\end{aligned}
$$

Solution: Add up the equations, and subtract the equations,

$$
\left(x_{1}+x_{2}\right)^{\prime}=0, \quad\left(x_{1}-x_{2}\right)^{\prime}=2\left(x_{1}-x_{2}\right)
$$

Introduce the unknowns $v=x_{1}+x_{2}, w=x_{1}-x_{2}$,

$n \times n$ systems of linear differential equations.

Example

Find $x_{1}(t), x_{2}(t)$ solutions of the 2×2, constant coefficients, homogeneous system

$$
\begin{aligned}
x_{1}^{\prime} & =x_{1}-x_{2} \\
x_{2}^{\prime} & =-x_{1}+x_{2} .
\end{aligned}
$$

Solution: Add up the equations, and subtract the equations,

$$
\left(x_{1}+x_{2}\right)^{\prime}=0, \quad\left(x_{1}-x_{2}\right)^{\prime}=2\left(x_{1}-x_{2}\right) .
$$

Introduce the unknowns $v=x_{1}+x_{2}, w=x_{1}-x_{2}$, then

$$
v^{\prime}=0
$$

$n \times n$ systems of linear differential equations.

Example

Find $x_{1}(t), x_{2}(t)$ solutions of the 2×2, constant coefficients, homogeneous system

$$
\begin{aligned}
x_{1}^{\prime} & =x_{1}-x_{2} \\
x_{2}^{\prime} & =-x_{1}+x_{2} .
\end{aligned}
$$

Solution: Add up the equations, and subtract the equations,

$$
\left(x_{1}+x_{2}\right)^{\prime}=0, \quad\left(x_{1}-x_{2}\right)^{\prime}=2\left(x_{1}-x_{2}\right)
$$

Introduce the unknowns $v=x_{1}+x_{2}, w=x_{1}-x_{2}$, then

$$
v^{\prime}=0 \Rightarrow v=c_{1}
$$

$n \times n$ systems of linear differential equations.

Example

Find $x_{1}(t), x_{2}(t)$ solutions of the 2×2, constant coefficients, homogeneous system

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}-x_{2}, \\
& x_{2}^{\prime}=-x_{1}+x_{2} .
\end{aligned}
$$

Solution: Add up the equations, and subtract the equations,

$$
\left(x_{1}+x_{2}\right)^{\prime}=0, \quad\left(x_{1}-x_{2}\right)^{\prime}=2\left(x_{1}-x_{2}\right) .
$$

Introduce the unknowns $v=x_{1}+x_{2}, w=x_{1}-x_{2}$, then

$$
\begin{aligned}
& \quad v^{\prime}=0 \quad \Rightarrow \quad v=c_{1}, \\
& w^{\prime}=2 w
\end{aligned}
$$

$n \times n$ systems of linear differential equations.

Example

Find $x_{1}(t), x_{2}(t)$ solutions of the 2×2, constant coefficients, homogeneous system

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}-x_{2}, \\
& x_{2}^{\prime}=-x_{1}+x_{2} .
\end{aligned}
$$

Solution: Add up the equations, and subtract the equations,

$$
\left(x_{1}+x_{2}\right)^{\prime}=0, \quad\left(x_{1}-x_{2}\right)^{\prime}=2\left(x_{1}-x_{2}\right) .
$$

Introduce the unknowns $v=x_{1}+x_{2}, w=x_{1}-x_{2}$, then

$$
\begin{array}{cc}
v^{\prime}=0 \quad \Rightarrow \quad v=c_{1} \\
w^{\prime}=2 w \quad \Rightarrow \quad w=c_{2} e^{2 t}
\end{array}
$$

$n \times n$ systems of linear differential equations.

Example

Find $x_{1}(t), x_{2}(t)$ solutions of the 2×2, constant coefficients, homogeneous system

$$
\begin{aligned}
x_{1}^{\prime} & =x_{1}-x_{2} \\
x_{2}^{\prime} & =-x_{1}+x_{2} .
\end{aligned}
$$

Solution: Add up the equations, and subtract the equations,

$$
\left(x_{1}+x_{2}\right)^{\prime}=0, \quad\left(x_{1}-x_{2}\right)^{\prime}=2\left(x_{1}-x_{2}\right) .
$$

Introduce the unknowns $v=x_{1}+x_{2}, w=x_{1}-x_{2}$, then

$$
\begin{array}{cc}
v^{\prime}=0 \quad & \Rightarrow \quad v=c_{1} \\
w^{\prime}=2 w & \Rightarrow \quad w=c_{2} e^{2 t}
\end{array}
$$

Back to x_{1} and x_{2} :

$n \times n$ systems of linear differential equations.

Example

Find $x_{1}(t), x_{2}(t)$ solutions of the 2×2, constant coefficients, homogeneous system

$$
\begin{aligned}
x_{1}^{\prime} & =x_{1}-x_{2} \\
x_{2}^{\prime} & =-x_{1}+x_{2} .
\end{aligned}
$$

Solution: Add up the equations, and subtract the equations,

$$
\left(x_{1}+x_{2}\right)^{\prime}=0, \quad\left(x_{1}-x_{2}\right)^{\prime}=2\left(x_{1}-x_{2}\right) .
$$

Introduce the unknowns $v=x_{1}+x_{2}, w=x_{1}-x_{2}$, then

$$
\begin{array}{cc}
v^{\prime}=0 \quad & \Rightarrow \quad v=c_{1} \\
w^{\prime}=2 w & \Rightarrow \quad w=c_{2} e^{2 t}
\end{array}
$$

Back to x_{1} and $x_{2}: \quad x_{1}=\frac{1}{2}(v+w)$,

$n \times n$ systems of linear differential equations.

Example

Find $x_{1}(t), x_{2}(t)$ solutions of the 2×2, constant coefficients, homogeneous system

$$
\begin{aligned}
x_{1}^{\prime} & =x_{1}-x_{2} \\
x_{2}^{\prime} & =-x_{1}+x_{2} .
\end{aligned}
$$

Solution: Add up the equations, and subtract the equations,

$$
\left(x_{1}+x_{2}\right)^{\prime}=0, \quad\left(x_{1}-x_{2}\right)^{\prime}=2\left(x_{1}-x_{2}\right) .
$$

Introduce the unknowns $v=x_{1}+x_{2}, w=x_{1}-x_{2}$, then

$$
\begin{array}{cc}
v^{\prime}=0 \quad & \Rightarrow \quad v=c_{1} \\
w^{\prime}=2 w & \Rightarrow \quad w=c_{2} e^{2 t}
\end{array}
$$

Back to x_{1} and $x_{2}: \quad x_{1}=\frac{1}{2}(v+w), \quad x_{2}=\frac{1}{2}(v-w)$.

$n \times n$ systems of linear differential equations.

Example

Find $x_{1}(t), x_{2}(t)$ solutions of the 2×2, constant coefficients, homogeneous system

$$
\begin{aligned}
x_{1}^{\prime} & =x_{1}-x_{2} \\
x_{2}^{\prime} & =-x_{1}+x_{2} .
\end{aligned}
$$

Solution: Add up the equations, and subtract the equations,

$$
\left(x_{1}+x_{2}\right)^{\prime}=0, \quad\left(x_{1}-x_{2}\right)^{\prime}=2\left(x_{1}-x_{2}\right) .
$$

Introduce the unknowns $v=x_{1}+x_{2}, w=x_{1}-x_{2}$, then

$$
\begin{array}{cc}
v^{\prime}=0 \quad \Rightarrow \quad v=c_{1} \\
w^{\prime}=2 w \quad \Rightarrow \quad w=c_{2} e^{2 t}
\end{array}
$$

Back to x_{1} and $x_{2}: \quad x_{1}=\frac{1}{2}(v+w), \quad x_{2}=\frac{1}{2}(v-w)$.
We conclude: $\quad x_{1}(t)=\frac{1}{2}\left(c_{1}+c_{2} e^{2 t}\right), \quad x_{2}(t)=\frac{1}{2}\left(c_{1}-c_{2} e^{2 t}\right)$.

Systems of linear differential equations (Sect. 5.1).

- $n \times n$ systems of linear differential equations.
- Second order equations and first order systems.
- Main concepts from Linear Algebra.

Second order equations and first order systems.

Theorem (Reduction to first order)
Every solution y to the second order linear equation

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t), \tag{1}
\end{equation*}
$$

defines a solution $x_{1}=y$ and $x_{2}=y^{\prime}$ of the 2×2 first order linear differential system

$$
\begin{align*}
& x_{1}^{\prime}=x_{2}, \tag{2}\\
& x_{2}^{\prime}=-q(t) x_{1}-p(t) x_{2}+g(t) \tag{3}
\end{align*}
$$

Conversely, every solution x_{1}, x_{2} of the 2×2 first order linear system in Eqs. (2)-(3) defines a solution $y=x_{1}$ of the second order differential equation in (1).

Second order equations and first order systems.
Proof:
(\Rightarrow) Given y solution of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$,

Second order equations and first order systems.
Proof:
(\Rightarrow) Given y solution of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$, introduce $x_{1}=y$ and $x_{2}=y^{\prime}$,

Second order equations and first order systems.
Proof:
(\Rightarrow) Given y solution of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$, introduce $x_{1}=y$ and $x_{2}=y^{\prime}$, hence $x_{1}^{\prime}=y^{\prime}=x_{2}$,

Second order equations and first order systems.

Proof:
(\Rightarrow) Given y solution of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$, introduce $x_{1}=y$ and $x_{2}=y^{\prime}$, hence $x_{1}^{\prime}=y^{\prime}=x_{2}$, that is,

$$
x_{1}^{\prime}=x_{2} .
$$

Second order equations and first order systems.

Proof:

(\Rightarrow) Given y solution of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$, introduce $x_{1}=y$ and $x_{2}=y^{\prime}$, hence $x_{1}^{\prime}=y^{\prime}=x_{2}$, that is,

$$
x_{1}^{\prime}=x_{2} .
$$

Then, $x_{2}^{\prime}=y^{\prime \prime}$

Second order equations and first order systems.

Proof:

(\Rightarrow) Given y solution of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$, introduce $x_{1}=y$ and $x_{2}=y^{\prime}$, hence $x_{1}^{\prime}=y^{\prime}=x_{2}$, that is,

$$
x_{1}^{\prime}=x_{2} .
$$

Then, $x_{2}^{\prime}=y^{\prime \prime}=-q(t) y-p(t) y^{\prime}+g(t)$.

Second order equations and first order systems.

Proof:

(\Rightarrow) Given y solution of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$, introduce $x_{1}=y$ and $x_{2}=y^{\prime}$, hence $x_{1}^{\prime}=y^{\prime}=x_{2}$, that is,

$$
x_{1}^{\prime}=x_{2} .
$$

Then, $x_{2}^{\prime}=y^{\prime \prime}=-q(t) y-p(t) y^{\prime}+g(t)$. That is,

$$
x_{2}^{\prime}=-q(t) x_{1}-p(t) x_{2}+g(t)
$$

Second order equations and first order systems.

Proof:

(\Rightarrow) Given y solution of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$, introduce $x_{1}=y$ and $x_{2}=y^{\prime}$, hence $x_{1}^{\prime}=y^{\prime}=x_{2}$, that is,

$$
x_{1}^{\prime}=x_{2} .
$$

Then, $x_{2}^{\prime}=y^{\prime \prime}=-q(t) y-p(t) y^{\prime}+g(t)$. That is,

$$
x_{2}^{\prime}=-q(t) x_{1}-p(t) x_{2}+g(t)
$$

(\Leftarrow) Introduce $x_{2}=x_{1}^{\prime}$ into $x_{2}^{\prime}=-q(t) x_{1}-p(t) x_{2}+g(t)$.

Second order equations and first order systems.

Proof:

(\Rightarrow) Given y solution of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$, introduce $x_{1}=y$ and $x_{2}=y^{\prime}$, hence $x_{1}^{\prime}=y^{\prime}=x_{2}$, that is,

$$
x_{1}^{\prime}=x_{2} .
$$

Then, $x_{2}^{\prime}=y^{\prime \prime}=-q(t) y-p(t) y^{\prime}+g(t)$. That is,

$$
x_{2}^{\prime}=-q(t) x_{1}-p(t) x_{2}+g(t)
$$

(\Leftarrow) Introduce $x_{2}=x_{1}^{\prime}$ into $x_{2}^{\prime}=-q(t) x_{1}-p(t) x_{2}+g(t)$.

$$
x_{1}^{\prime \prime}=-q(t) x_{1}-p(t) x_{1}^{\prime}+g(t)
$$

Second order equations and first order systems.

Proof:

(\Rightarrow) Given y solution of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$, introduce $x_{1}=y$ and $x_{2}=y^{\prime}$, hence $x_{1}^{\prime}=y^{\prime}=x_{2}$, that is,

$$
x_{1}^{\prime}=x_{2} .
$$

Then, $x_{2}^{\prime}=y^{\prime \prime}=-q(t) y-p(t) y^{\prime}+g(t)$. That is,

$$
x_{2}^{\prime}=-q(t) x_{1}-p(t) x_{2}+g(t)
$$

(\Leftarrow) Introduce $x_{2}=x_{1}^{\prime}$ into $x_{2}^{\prime}=-q(t) x_{1}-p(t) x_{2}+g(t)$.

$$
x_{1}^{\prime \prime}=-q(t) x_{1}-p(t) x_{1}^{\prime}+g(t)
$$

that is

$$
x_{1}^{\prime \prime}+p(t) x_{1}^{\prime}+q(t) x_{1}=g(t)
$$

Second order equations and first order systems.

Example

Express as a first order system the equation

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\sin (a t)
$$

Second order equations and first order systems.

Example

Express as a first order system the equation

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\sin (a t)
$$

Solution: Introduce the new unknowns

$$
x_{1}=y, \quad x_{2}=y^{\prime}
$$

Second order equations and first order systems.

Example

Express as a first order system the equation

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\sin (a t)
$$

Solution: Introduce the new unknowns

$$
x_{1}=y, \quad x_{2}=y^{\prime} \quad \Rightarrow \quad x_{1}^{\prime}=x_{2} .
$$

Second order equations and first order systems.

Example

Express as a first order system the equation

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\sin (a t)
$$

Solution: Introduce the new unknowns

$$
x_{1}=y, \quad x_{2}=y^{\prime} \quad \Rightarrow \quad x_{1}^{\prime}=x_{2} .
$$

Then, the differential equation can be written as

$$
x_{2}^{\prime}+2 x_{2}+2 x_{1}=\sin (a t) .
$$

Second order equations and first order systems.

Example

Express as a first order system the equation

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\sin (a t)
$$

Solution: Introduce the new unknowns

$$
x_{1}=y, \quad x_{2}=y^{\prime} \quad \Rightarrow \quad x_{1}^{\prime}=x_{2} .
$$

Then, the differential equation can be written as

$$
x_{2}^{\prime}+2 x_{2}+2 x_{1}=\sin (a t)
$$

We conclude that

$$
\begin{gather*}
x_{1}^{\prime}=x_{2} . \\
x_{2}^{\prime}=-2 x_{1}-2 x_{2}+\sin (a t)
\end{gather*}
$$

Second order equations and first order systems.

Remark: Systems of first order equations can, sometimes, be transformed into a second order single equation.

Second order equations and first order systems.

Remark: Systems of first order equations can, sometimes, be transformed into a second order single equation.

Example
Express as a single second order equation the 2×2 system and solve it,

$$
\begin{aligned}
x_{1}^{\prime} & =-x_{1}+3 x_{2}, \\
x_{2}^{\prime} & =x_{1}-x_{2} .
\end{aligned}
$$

Second order equations and first order systems.

Remark: Systems of first order equations can, sometimes, be transformed into a second order single equation.

Example
Express as a single second order equation the 2×2 system and solve it,

$$
\begin{aligned}
x_{1}^{\prime} & =-x_{1}+3 x_{2}, \\
x_{2}^{\prime} & =x_{1}-x_{2} .
\end{aligned}
$$

Solution: Compute x_{1} from the second equation:

Second order equations and first order systems.

Remark: Systems of first order equations can, sometimes, be transformed into a second order single equation.

Example
Express as a single second order equation the 2×2 system and solve it,

$$
\begin{aligned}
x_{1}^{\prime} & =-x_{1}+3 x_{2}, \\
x_{2}^{\prime} & =x_{1}-x_{2} .
\end{aligned}
$$

Solution: Compute x_{1} from the second equation: $x_{1}=x_{2}^{\prime}+x_{2}$.

Second order equations and first order systems.

Remark: Systems of first order equations can, sometimes, be transformed into a second order single equation.

Example
Express as a single second order equation the 2×2 system and solve it,

$$
\begin{aligned}
x_{1}^{\prime} & =-x_{1}+3 x_{2}, \\
x_{2}^{\prime} & =x_{1}-x_{2} .
\end{aligned}
$$

Solution: Compute x_{1} from the second equation: $x_{1}=x_{2}^{\prime}+x_{2}$. Introduce this expression into the first equation,

Second order equations and first order systems.

Remark: Systems of first order equations can, sometimes, be transformed into a second order single equation.

Example
Express as a single second order equation the 2×2 system and solve it,

$$
\begin{aligned}
x_{1}^{\prime} & =-x_{1}+3 x_{2}, \\
x_{2}^{\prime} & =x_{1}-x_{2} .
\end{aligned}
$$

Solution: Compute x_{1} from the second equation: $x_{1}=x_{2}^{\prime}+x_{2}$. Introduce this expression into the first equation,

$$
\left(x_{2}^{\prime}+x_{2}\right)^{\prime}=-\left(x_{2}^{\prime}+x_{2}\right)+3 x_{2},
$$

Second order equations and first order systems.

Remark: Systems of first order equations can, sometimes, be transformed into a second order single equation.

Example
Express as a single second order equation the 2×2 system and solve it,

$$
\begin{aligned}
& x_{1}^{\prime}=-x_{1}+3 x_{2}, \\
& x_{2}^{\prime}=x_{1}-x_{2} .
\end{aligned}
$$

Solution: Compute x_{1} from the second equation: $x_{1}=x_{2}^{\prime}+x_{2}$. Introduce this expression into the first equation,

$$
\begin{aligned}
\left(x_{2}^{\prime}+x_{2}\right)^{\prime} & =-\left(x_{2}^{\prime}+x_{2}\right)+3 x_{2} \\
x_{2}^{\prime \prime}+x_{2}^{\prime} & =-x_{2}^{\prime}-x_{2}+3 x_{2}
\end{aligned}
$$

Second order equations and first order systems.

Remark: Systems of first order equations can, sometimes, be transformed into a second order single equation.

Example
Express as a single second order equation the 2×2 system and solve it,

$$
\begin{aligned}
& x_{1}^{\prime}=-x_{1}+3 x_{2}, \\
& x_{2}^{\prime}=x_{1}-x_{2} .
\end{aligned}
$$

Solution: Compute x_{1} from the second equation: $x_{1}=x_{2}^{\prime}+x_{2}$. Introduce this expression into the first equation,

$$
\begin{gathered}
\left(x_{2}^{\prime}+x_{2}\right)^{\prime}=-\left(x_{2}^{\prime}+x_{2}\right)+3 x_{2} \\
x_{2}^{\prime \prime}+x_{2}^{\prime}=-x_{2}^{\prime}-x_{2}+3 x_{2} \\
x_{2}^{\prime \prime}+2 x_{2}^{\prime}-2 x_{2}=0 .
\end{gathered}
$$

Second order equations and first order systems.

Example

Express as a single second order equation the 2×2 system and solve it,

$$
\begin{aligned}
& x_{1}^{\prime}=-x_{1}+3 x_{2}, \\
& x_{2}^{\prime}=x_{1}-x_{2} .
\end{aligned}
$$

Solution: Recall: $x_{2}^{\prime \prime}+2 x_{2}^{\prime}-2 x_{2}=0$.

Second order equations and first order systems.

Example

Express as a single second order equation the 2×2 system and solve it,

$$
\begin{aligned}
x_{1}^{\prime} & =-x_{1}+3 x_{2}, \\
x_{2}^{\prime} & =x_{1}-x_{2} .
\end{aligned}
$$

Solution: Recall: $x_{2}^{\prime \prime}+2 x_{2}^{\prime}-2 x_{2}=0$.
$r^{2}+2 r-2=0$

Second order equations and first order systems.

Example

Express as a single second order equation the 2×2 system and solve it,

$$
\begin{aligned}
& x_{1}^{\prime}=-x_{1}+3 x_{2}, \\
& x_{2}^{\prime}=x_{1}-x_{2} .
\end{aligned}
$$

Solution: Recall: $x_{2}^{\prime \prime}+2 x_{2}^{\prime}-2 x_{2}=0$.
$r^{2}+2 r-2=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4+8}]$

Second order equations and first order systems.

Example

Express as a single second order equation the 2×2 system and solve it,

$$
\begin{aligned}
& x_{1}^{\prime}=-x_{1}+3 x_{2}, \\
& x_{2}^{\prime}=x_{1}-x_{2} .
\end{aligned}
$$

Solution: Recall: $x_{2}^{\prime \prime}+2 x_{2}^{\prime}-2 x_{2}=0$.
$r^{2}+2 r-2=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4+8}] \quad \Rightarrow \quad r_{ \pm}=-1 \pm \sqrt{3}$.

Second order equations and first order systems.

Example

Express as a single second order equation the 2×2 system and solve it,

$$
\begin{aligned}
& x_{1}^{\prime}=-x_{1}+3 x_{2}, \\
& x_{2}^{\prime}=x_{1}-x_{2} .
\end{aligned}
$$

Solution: Recall: $x_{2}^{\prime \prime}+2 x_{2}^{\prime}-2 x_{2}=0$.
$r^{2}+2 r-2=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4+8}] \quad \Rightarrow \quad r_{ \pm}=-1 \pm \sqrt{3}$.

Therefore, $x_{2}=c_{1} e^{r+t}+c_{2} e^{r-t}$.

Second order equations and first order systems.

Example

Express as a single second order equation the 2×2 system and solve it,

$$
\begin{aligned}
& x_{1}^{\prime}=-x_{1}+3 x_{2}, \\
& x_{2}^{\prime}=x_{1}-x_{2} .
\end{aligned}
$$

Solution: Recall: $x_{2}^{\prime \prime}+2 x_{2}^{\prime}-2 x_{2}=0$.
$r^{2}+2 r-2=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4+8}] \quad \Rightarrow \quad r_{ \pm}=-1 \pm \sqrt{3}$.

Therefore, $x_{2}=c_{1} e^{r+t}+c_{2} e^{r-t}$. Since $x_{1}=x_{2}^{\prime}+x_{2}$,

Second order equations and first order systems.

Example

Express as a single second order equation the 2×2 system and solve it,

$$
\begin{aligned}
& x_{1}^{\prime}=-x_{1}+3 x_{2}, \\
& x_{2}^{\prime}=x_{1}-x_{2} .
\end{aligned}
$$

Solution: Recall: $x_{2}^{\prime \prime}+2 x_{2}^{\prime}-2 x_{2}=0$.
$r^{2}+2 r-2=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4+8}] \quad \Rightarrow \quad r_{ \pm}=-1 \pm \sqrt{3}$.

Therefore, $x_{2}=c_{1} e^{r+t}+c_{2} e^{r-t}$. Since $x_{1}=x_{2}^{\prime}+x_{2}$,

$$
x_{1}=\left(c_{1} r_{+} e^{r_{+} t}+c_{2} r_{-} e^{r_{-} t}\right)+\left(c_{1} e^{r_{+} t}+c_{2} e^{r_{-} t}\right),
$$

Second order equations and first order systems.

Example

Express as a single second order equation the 2×2 system and solve it,

$$
\begin{aligned}
& x_{1}^{\prime}=-x_{1}+3 x_{2}, \\
& x_{2}^{\prime}=x_{1}-x_{2} .
\end{aligned}
$$

Solution: Recall: $x_{2}^{\prime \prime}+2 x_{2}^{\prime}-2 x_{2}=0$.
$r^{2}+2 r-2=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4+8}] \quad \Rightarrow \quad r_{ \pm}=-1 \pm \sqrt{3}$.

Therefore, $x_{2}=c_{1} e^{r+t}+c_{2} e^{r-t}$. Since $x_{1}=x_{2}^{\prime}+x_{2}$,

$$
x_{1}=\left(c_{1} r_{+} e^{r_{+} t}+c_{2} r_{-} e^{r_{-} t}\right)+\left(c_{1} e^{r_{+} t}+c_{2} e^{r_{-} t}\right),
$$

We conclude: $x_{1}=c_{1}\left(1+r_{+}\right) e^{r_{+} t}+c_{2}\left(1+r_{-}\right) e^{r_{-} t}$.

Systems of linear differential equations (Sect. 5.1).

- $n \times n$ systems of linear differential equations.
- Second order equations and first order systems.
- Main concepts from Linear Algebra.

Main concepts from Linear Algebra.

Remark: Ideas from Linear
Algebra are useful to study systems of linear differential equations.

Main concepts from Linear Algebra.

Remark: Ideas from Linear
Algebra are useful to study systems of linear differential equations.

We review:

- Matrices $m \times n$.
- Matrix operations.
- n-vectors, dot product.
- matrix-vector product.

Main concepts from Linear Algebra.

Remark: Ideas from Linear Algebra are useful to study systems of linear differential equations.

We review:

- Matrices $m \times n$.
- Matrix operations.
- n-vectors, dot product.
- matrix-vector product.

Definition

An $m \times n$ matrix, A, is an array of numbers

$$
A=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right], \quad \begin{gathered}
m \text { rows } \\
n \text { columns } .
\end{gathered}
$$

where $a_{i j} \in \mathbb{C}$ and $i=1, \cdots, m$, and $j=1, \cdots, n$. An $n \times n$ matrix is called a square matrix.

Main concepts from Linear Algebra.
Example
(a) 2×2 matrix: $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.

Main concepts from Linear Algebra.
Example
(a) 2×2 matrix: $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.
(b) 2×3 matrix: $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$.

Main concepts from Linear Algebra.
Example
(a) 2×2 matrix: $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.
(b) 2×3 matrix: $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$.
(c) 3×2 matrix: $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]$.

Main concepts from Linear Algebra.
Example
(a) 2×2 matrix: $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.
(b) 2×3 matrix: $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$.
(c) 3×2 matrix: $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]$.
(d) 2×2 complex-valued matrix: $A=\left[\begin{array}{cc}1+i & 2-i \\ 3 & 4 i\end{array}\right]$.

Main concepts from Linear Algebra.

Example

(a) 2×2 matrix: $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.
(b) 2×3 matrix: $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$.
(c) 3×2 matrix: $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]$.
(d) 2×2 complex-valued matrix: $A=\left[\begin{array}{cc}1+i & 2-i \\ 3 & 4 i\end{array}\right]$.
(e) The coefficients of a linear system can be grouped in a matrix,

$$
\begin{aligned}
& x_{1}^{\prime}=-x_{1}+3 x_{2} \\
& x_{2}^{\prime}=x_{1}-x_{2}
\end{aligned}
$$

Main concepts from Linear Algebra.

Example

(a) 2×2 matrix: $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.
(b) 2×3 matrix: $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$.
(c) 3×2 matrix: $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]$.
(d) 2×2 complex-valued matrix: $A=\left[\begin{array}{cc}1+i & 2-i \\ 3 & 4 i\end{array}\right]$.
(e) The coefficients of a linear system can be grouped in a matrix,

$$
\left.\begin{array}{l}
x_{1}^{\prime}=-x_{1}+3 x_{2} \\
x_{2}^{\prime}=x_{1}-x_{2}
\end{array}\right\} \quad \Rightarrow \quad A=\left[\begin{array}{rr}
-1 & 3 \\
1 & -1
\end{array}\right] .
$$

Main concepts from Linear Algebra.

Remark: An $m \times 1$ matrix is called an m-vector.

Main concepts from Linear Algebra.

Remark: An $m \times 1$ matrix is called an m-vector.
Definition
An m-vector, \mathbf{v}, is the array of numbers $\mathbf{v}=\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{m}\end{array}\right]$, where the
vector components $v_{i} \in \mathbb{C}$, with $i=1, \cdots, m$.

Main concepts from Linear Algebra.

Remark: An $m \times 1$ matrix is called an m-vector.
Definition
An m-vector, \mathbf{v}, is the array of numbers $\mathbf{v}=\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{m}\end{array}\right]$, where the
vector components $v_{i} \in \mathbb{C}$, with $i=1, \cdots, m$.
Example
The unknowns of a 2×2 linear system can be grouped in a 2-vector,

Main concepts from Linear Algebra.

Remark: An $m \times 1$ matrix is called an m-vector.
Definition
An m-vector, \mathbf{v}, is the array of numbers $\mathbf{v}=\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{m}\end{array}\right]$, where the
vector components $v_{i} \in \mathbb{C}$, with $i=1, \cdots, m$.

Example

The unknowns of a 2×2 linear system can be grouped in a 2 -vector, for example,

$$
\begin{aligned}
x_{1}^{\prime} & =-x_{1}+3 x_{2} \\
x_{2}^{\prime} & =x_{1}-x_{2}
\end{aligned}
$$

Main concepts from Linear Algebra.

Remark: An $m \times 1$ matrix is called an m-vector.
Definition
An m-vector, \mathbf{v}, is the array of numbers $\mathbf{v}=\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{m}\end{array}\right]$, where the
vector components $v_{i} \in \mathbb{C}$, with $i=1, \cdots, m$.

Example

The unknowns of a 2×2 linear system can be grouped in a 2-vector, for example,

$$
\left.\begin{array}{l}
x_{1}^{\prime}=-x_{1}+3 x_{2} \\
x_{2}^{\prime}=x_{1}-x_{2}
\end{array}\right\} \quad \Rightarrow \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
$$

Main concepts from Linear Algebra.

Remark: We present only examples of matrix operations.

Main concepts from Linear Algebra.

Remark: We present only examples of matrix operations.
Example
Consider a 2×3 matrix $A=\left[\begin{array}{ccc}1 & 2+i & -1+2 i \\ 3 i & 2 & 1\end{array}\right]$.

Main concepts from Linear Algebra.

Remark: We present only examples of matrix operations.
Example
Consider a 2×3 matrix $A=\left[\begin{array}{ccc}1 & 2+i & -1+2 i \\ 3 i & 2 & 1\end{array}\right]$.
(a) A-transpose: Interchange rows with columns:

Main concepts from Linear Algebra.

Remark: We present only examples of matrix operations.
Example
Consider a 2×3 matrix $A=\left[\begin{array}{ccc}1 & 2+i & -1+2 i \\ 3 i & 2 & 1\end{array}\right]$.
(a) A-transpose: Interchange rows with columns:

$$
A^{T}=\left[\begin{array}{cc}
1 & 3 i \\
2+i & 2 \\
-1+2 i & 1
\end{array}\right]
$$

Main concepts from Linear Algebra.

Remark: We present only examples of matrix operations.
Example
Consider a 2×3 matrix $A=\left[\begin{array}{ccc}1 & 2+i & -1+2 i \\ 3 i & 2 & 1\end{array}\right]$.
(a) A-transpose: Interchange rows with columns:

$$
A^{T}=\left[\begin{array}{cc}
1 & 3 i \\
2+i & 2 \\
-1+2 i & 1
\end{array}\right] . \quad \text { Notice that: }\left(A^{T}\right)^{T}=A
$$

Main concepts from Linear Algebra.

Remark: We present only examples of matrix operations.
Example
Consider a 2×3 matrix $A=\left[\begin{array}{ccc}1 & 2+i & -1+2 i \\ 3 i & 2 & 1\end{array}\right]$.
(a) A-transpose: Interchange rows with columns:

$$
A^{T}=\left[\begin{array}{cc}
1 & 3 i \\
2+i & 2 \\
-1+2 i & 1
\end{array}\right] . \quad \text { Notice that: }\left(A^{T}\right)^{T}=A
$$

(b) A-conjugate: Conjugate every matrix coefficient:

Main concepts from Linear Algebra.

Remark: We present only examples of matrix operations.
Example
Consider a 2×3 matrix $A=\left[\begin{array}{ccc}1 & 2+i & -1+2 i \\ 3 i & 2 & 1\end{array}\right]$.
(a) A-transpose: Interchange rows with columns:

$$
A^{T}=\left[\begin{array}{cc}
1 & 3 i \\
2+i & 2 \\
-1+2 i & 1
\end{array}\right] . \quad \text { Notice that: }\left(A^{T}\right)^{T}=A
$$

(b) A-conjugate: Conjugate every matrix coefficient:

$$
\bar{A}=\left[\begin{array}{ccc}
1 & 2-i & -1-2 i \\
-3 i & 2 & 1
\end{array}\right]
$$

Main concepts from Linear Algebra.

Remark: We present only examples of matrix operations.
Example
Consider a 2×3 matrix $A=\left[\begin{array}{ccc}1 & 2+i & -1+2 i \\ 3 i & 2 & 1\end{array}\right]$.
(a) A-transpose: Interchange rows with columns:

$$
A^{T}=\left[\begin{array}{cc}
1 & 3 i \\
2+i & 2 \\
-1+2 i & 1
\end{array}\right] . \quad \text { Notice that: }\left(A^{T}\right)^{T}=A
$$

(b) A-conjugate: Conjugate every matrix coefficient:

$$
\bar{A}=\left[\begin{array}{ccc}
1 & 2-i & -1-2 i \\
-3 i & 2 & 1
\end{array}\right] . \quad \text { Notice that: } \overline{(\bar{A})}=A
$$

Main concepts from Linear Algebra.

Remark: We present only examples of matrix operations.
Example
Consider a 2×3 matrix $A=\left[\begin{array}{ccc}1 & 2+i & -1+2 i \\ 3 i & 2 & 1\end{array}\right]$.
(a) A-transpose: Interchange rows with columns:

$$
A^{T}=\left[\begin{array}{cc}
1 & 3 i \\
2+i & 2 \\
-1+2 i & 1
\end{array}\right] . \quad \text { Notice that: }\left(A^{T}\right)^{T}=A
$$

(b) A-conjugate: Conjugate every matrix coefficient:

$$
\bar{A}=\left[\begin{array}{ccc}
1 & 2-i & -1-2 i \\
-3 i & 2 & 1
\end{array}\right] . \quad \text { Notice that: } \overline{(\bar{A})}=A
$$

Matrix A is real iff $\bar{A}=A$.

Main concepts from Linear Algebra.

Remark: We present only examples of matrix operations.
Example
Consider a 2×3 matrix $A=\left[\begin{array}{ccc}1 & 2+i & -1+2 i \\ 3 i & 2 & 1\end{array}\right]$.
(a) A-transpose: Interchange rows with columns:

$$
A^{T}=\left[\begin{array}{cc}
1 & 3 i \\
2+i & 2 \\
-1+2 i & 1
\end{array}\right] . \quad \text { Notice that: }\left(A^{T}\right)^{T}=A
$$

(b) A-conjugate: Conjugate every matrix coefficient:

$$
\bar{A}=\left[\begin{array}{ccc}
1 & 2-i & -1-2 i \\
-3 i & 2 & 1
\end{array}\right] . \quad \text { Notice that: } \overline{(\bar{A})}=A
$$

Matrix A is real iff $\bar{A}=A$. Matrix A is imaginary iff $\bar{A}=-A$.

Main concepts from Linear Algebra.

Example
Consider a 2×3 matrix $A=\left[\begin{array}{ccc}1 & 2+i & -1+2 i \\ 3 i & 2 & 1\end{array}\right]$.

Main concepts from Linear Algebra.

Example
Consider a 2×3 matrix $A=\left[\begin{array}{ccc}1 & 2+i & -1+2 i \\ 3 i & 2 & 1\end{array}\right]$.
(a) A-adjoint: Conjugate and transpose:

Main concepts from Linear Algebra.

Example
Consider a 2×3 matrix $A=\left[\begin{array}{ccc}1 & 2+i & -1+2 i \\ 3 i & 2 & 1\end{array}\right]$.
(a) A-adjoint: Conjugate and transpose:

$$
A^{*}=\left[\begin{array}{cc}
1 & -3 i \\
2-i & 2 \\
-1-2 i & 1
\end{array}\right] .
$$

Main concepts from Linear Algebra.

Example
Consider a 2×3 matrix $A=\left[\begin{array}{ccc}1 & 2+i & -1+2 i \\ 3 i & 2 & 1\end{array}\right]$.
(a) A-adjoint: Conjugate and transpose:

$$
A^{*}=\left[\begin{array}{cc}
1 & -3 i \\
2-i & 2 \\
-1-2 i & 1
\end{array}\right] . \quad \text { Notice that: }\left(A^{*}\right)^{*}=A
$$

Main concepts from Linear Algebra.

Example
Consider a 2×3 matrix $A=\left[\begin{array}{ccc}1 & 2+i & -1+2 i \\ 3 i & 2 & 1\end{array}\right]$.
(a) A-adjoint: Conjugate and transpose:

$$
A^{*}=\left[\begin{array}{cc}
1 & -3 i \\
2-i & 2 \\
-1-2 i & 1
\end{array}\right] . \quad \text { Notice that: }\left(A^{*}\right)^{*}=A
$$

(b) Addition of two $m \times n$ matrices is performed component-wise:

Main concepts from Linear Algebra.

Example
Consider a 2×3 matrix $A=\left[\begin{array}{ccc}1 & 2+i & -1+2 i \\ 3 i & 2 & 1\end{array}\right]$.
(a) A-adjoint: Conjugate and transpose:

$$
A^{*}=\left[\begin{array}{cc}
1 & -3 i \\
2-i & 2 \\
-1-2 i & 1
\end{array}\right] . \quad \text { Notice that: }\left(A^{*}\right)^{*}=A
$$

(b) Addition of two $m \times n$ matrices is performed component-wise:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]+\left[\begin{array}{ll}
2 & 3 \\
5 & 1
\end{array}\right]
$$

Main concepts from Linear Algebra.

Example
Consider a 2×3 matrix $A=\left[\begin{array}{ccc}1 & 2+i & -1+2 i \\ 3 i & 2 & 1\end{array}\right]$.
(a) A-adjoint: Conjugate and transpose:

$$
A^{*}=\left[\begin{array}{cc}
1 & -3 i \\
2-i & 2 \\
-1-2 i & 1
\end{array}\right] . \quad \text { Notice that: }\left(A^{*}\right)^{*}=A
$$

(b) Addition of two $m \times n$ matrices is performed component-wise:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]+\left[\begin{array}{ll}
2 & 3 \\
5 & 1
\end{array}\right]=\left[\begin{array}{ll}
(1+2) & (2+3) \\
(3+5) & (4+1)
\end{array}\right]
$$

Main concepts from Linear Algebra.

Example
Consider a 2×3 matrix $A=\left[\begin{array}{ccc}1 & 2+i & -1+2 i \\ 3 i & 2 & 1\end{array}\right]$.
(a) A-adjoint: Conjugate and transpose:

$$
A^{*}=\left[\begin{array}{cc}
1 & -3 i \\
2-i & 2 \\
-1-2 i & 1
\end{array}\right] . \quad \text { Notice that: }\left(A^{*}\right)^{*}=A
$$

(b) Addition of two $m \times n$ matrices is performed component-wise:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]+\left[\begin{array}{ll}
2 & 3 \\
5 & 1
\end{array}\right]=\left[\begin{array}{ll}
(1+2) & (2+3) \\
(3+5) & (4+1)
\end{array}\right]=\left[\begin{array}{ll}
3 & 5 \\
8 & 5
\end{array}\right] .
$$

Main concepts from Linear Algebra.

Example

Consider a 2×3 matrix $A=\left[\begin{array}{ccc}1 & 2+i & -1+2 i \\ 3 i & 2 & 1\end{array}\right]$.
(a) A-adjoint: Conjugate and transpose:

$$
A^{*}=\left[\begin{array}{cc}
1 & -3 i \\
2-i & 2 \\
-1-2 i & 1
\end{array}\right] . \quad \text { Notice that: }\left(A^{*}\right)^{*}=A
$$

(b) Addition of two $m \times n$ matrices is performed component-wise:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]+\left[\begin{array}{ll}
2 & 3 \\
5 & 1
\end{array}\right]=\left[\begin{array}{ll}
(1+2) & (2+3) \\
(3+5) & (4+1)
\end{array}\right]=\left[\begin{array}{ll}
3 & 5 \\
8 & 5
\end{array}\right] .
$$

The addition $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]+\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$ is not defined.

Main concepts from Linear Algebra.

Example
Consider a 2×3 matrix $A=\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 4 & 6\end{array}\right]$.

Main concepts from Linear Algebra.

Example
Consider a 2×3 matrix $A=\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 4 & 6\end{array}\right]$.
(a) Multiplication of a matrix by a number is performed component-wise:

Main concepts from Linear Algebra.

Example
Consider a 2×3 matrix $A=\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 4 & 6\end{array}\right]$.
(a) Multiplication of a matrix by a number is performed component-wise:

$$
2 A=2\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right]
$$

Main concepts from Linear Algebra.

Example
Consider a 2×3 matrix $A=\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 4 & 6\end{array}\right]$.
(a) Multiplication of a matrix by a number is performed component-wise:

$$
2 A=2\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right]=\left[\begin{array}{lll}
2 & 6 & 10 \\
4 & 8 & 12
\end{array}\right]
$$

Main concepts from Linear Algebra.

Example
Consider a 2×3 matrix $A=\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 4 & 6\end{array}\right]$.
(a) Multiplication of a matrix by a number is performed component-wise:

$$
2 A=2\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right]=\left[\begin{array}{lll}
2 & 6 & 10 \\
4 & 8 & 12
\end{array}\right], \quad\left[\begin{array}{cc}
8 & 12 \\
16 & 20
\end{array}\right]
$$

Main concepts from Linear Algebra.

Example
Consider a 2×3 matrix $A=\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 4 & 6\end{array}\right]$.
(a) Multiplication of a matrix by a number is performed component-wise:

$$
2 A=2\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right]=\left[\begin{array}{lll}
2 & 6 & 10 \\
4 & 8 & 12
\end{array}\right], \quad\left[\begin{array}{cc}
8 & 12 \\
16 & 20
\end{array}\right]=4\left[\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right] .
$$

Main concepts from Linear Algebra.

Example
Consider a 2×3 matrix $A=\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 4 & 6\end{array}\right]$.
(a) Multiplication of a matrix by a number is performed component-wise:

$$
2 A=2\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right]=\left[\begin{array}{lll}
2 & 6 & 10 \\
4 & 8 & 12
\end{array}\right], \quad\left[\begin{array}{cc}
8 & 12 \\
16 & 20
\end{array}\right]=4\left[\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right] .
$$

Also:

$$
\frac{A}{3}
$$

Main concepts from Linear Algebra.

Example
Consider a 2×3 matrix $A=\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 4 & 6\end{array}\right]$.
(a) Multiplication of a matrix by a number is performed component-wise:

$$
2 A=2\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right]=\left[\begin{array}{lll}
2 & 6 & 10 \\
4 & 8 & 12
\end{array}\right], \quad\left[\begin{array}{cc}
8 & 12 \\
16 & 20
\end{array}\right]=4\left[\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right] .
$$

Also:

$$
\frac{A}{3}=\frac{1}{3}\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right]
$$

Main concepts from Linear Algebra.

Example
Consider a 2×3 matrix $A=\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 4 & 6\end{array}\right]$.
(a) Multiplication of a matrix by a number is performed component-wise:

$$
2 A=2\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right]=\left[\begin{array}{lll}
2 & 6 & 10 \\
4 & 8 & 12
\end{array}\right], \quad\left[\begin{array}{cc}
8 & 12 \\
16 & 20
\end{array}\right]=4\left[\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right] .
$$

Also:

$$
\frac{A}{3}=\frac{1}{3}\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right]=\left[\begin{array}{lll}
\frac{1}{3} & 1 & \frac{5}{3} \\
\frac{2}{3} & \frac{4}{3} & 2
\end{array}\right]
$$

Main concepts from Linear Algebra.

Example

(a) Matrix multiplication.

Main concepts from Linear Algebra.

Example

(a) Matrix multiplication. The matrix sizes is important:

Main concepts from Linear Algebra.

Example

(a) Matrix multiplication. The matrix sizes is important:

$$
\begin{array}{ccc}
A \\
m \times n & \text { times } & B \\
n \times \ell & & \text { defines }
\end{array} \begin{gathered}
A B \\
m \times \ell
\end{gathered}
$$

Main concepts from Linear Algebra.

Example

(a) Matrix multiplication. The matrix sizes is important:

$\underset{m \times n}{A} \quad$ times $\underset{n \times \ell}{B} \quad$ defines | $A B$ |
| :---: |
| $m \times \ell$ |

Example: A is $2 \times 2, B$ is 2×3, so $A B$ is 2×3 :

Main concepts from Linear Algebra.

Example

(a) Matrix multiplication. The matrix sizes is important:

$\underset{m \times n}{A} \quad$ times $\underset{n \times \ell}{B} \quad$ defines | $A B$ |
| :---: |
| $m \times \ell$ |

Example: A is $2 \times 2, B$ is 2×3, so $A B$ is 2×3 :

$$
A B=\left[\begin{array}{ll}
4 & 3 \\
2 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]=\left[\begin{array}{ccc}
16 & 23 & 30 \\
6 & 9 & 12
\end{array}\right] .
$$

Main concepts from Linear Algebra.

Example

(a) Matrix multiplication. The matrix sizes is important:

$\underset{m \times n}{A} \quad$ times $\underset{n \times \ell}{B} \quad$ defines | $A B$ |
| :---: |
| $m \times \ell$ |

Example: A is $2 \times 2, B$ is 2×3, so $A B$ is 2×3 :

$$
A B=\left[\begin{array}{ll}
4 & 3 \\
2 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]=\left[\begin{array}{ccc}
16 & 23 & 30 \\
6 & 9 & 12
\end{array}\right] .
$$

Notice B is $2 \times 3, A$ is 2×2, so $B A$ is not defined.

Main concepts from Linear Algebra.

Example
(a) Matrix multiplication. The matrix sizes is important:

$$
\begin{array}{ccc}
A \\
m \times n & \text { times } & B \\
n \times \ell
\end{array} \begin{gathered}
\text { defines }
\end{gathered} \begin{gathered}
A B \\
m \times \ell
\end{gathered}
$$

Example: A is $2 \times 2, B$ is 2×3, so $A B$ is 2×3 :

$$
A B=\left[\begin{array}{ll}
4 & 3 \\
2 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]=\left[\begin{array}{ccc}
16 & 23 & 30 \\
6 & 9 & 12
\end{array}\right] .
$$

Notice B is $2 \times 3, A$ is 2×2, so $B A$ is not defined.

$$
B A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{ll}
4 & 3 \\
2 & 1
\end{array}\right] \quad \text { not defined. }
$$

Main concepts from Linear Algebra.

Remark: The matrix product is not commutative, that is, in general holds $A B \neq B A$.

Main concepts from Linear Algebra.

Remark: The matrix product is not commutative, that is, in general holds $A B \neq B A$.

Example
Find $A B$ and $B A$ for $A=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$ and $B=\left[\begin{array}{cc}3 & 0 \\ 2 & -1\end{array}\right]$.

Main concepts from Linear Algebra.

Remark: The matrix product is not commutative, that is, in general holds $A B \neq B A$.

Example
Find $A B$ and $B A$ for $A=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$ and $B=\left[\begin{array}{cc}3 & 0 \\ 2 & -1\end{array}\right]$.
Solution:

$$
A B=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{cc}
3 & 0 \\
2 & -1
\end{array}\right]
$$

Main concepts from Linear Algebra.

Remark: The matrix product is not commutative, that is, in general holds $A B \neq B A$.

Example
Find $A B$ and $B A$ for $A=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$ and $B=\left[\begin{array}{cc}3 & 0 \\ 2 & -1\end{array}\right]$.
Solution:

$$
A B=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{cc}
3 & 0 \\
2 & -1
\end{array}\right]=\left[\begin{array}{cc}
(6-2) & (0+1) \\
(-3+4) & (0-2)
\end{array}\right]
$$

Main concepts from Linear Algebra.

Remark: The matrix product is not commutative, that is, in general holds $A B \neq B A$.

Example
Find $A B$ and $B A$ for $A=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$ and $B=\left[\begin{array}{cc}3 & 0 \\ 2 & -1\end{array}\right]$.
Solution:

$$
A B=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{cc}
3 & 0 \\
2 & -1
\end{array}\right]=\left[\begin{array}{cc}
(6-2) & (0+1) \\
(-3+4) & (0-2)
\end{array}\right]=\left[\begin{array}{cc}
4 & 1 \\
1 & -2
\end{array}\right]
$$

Main concepts from Linear Algebra.

Remark: The matrix product is not commutative, that is, in general holds $A B \neq B A$.

Example
Find $A B$ and $B A$ for $A=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$ and $B=\left[\begin{array}{cc}3 & 0 \\ 2 & -1\end{array}\right]$.
Solution:

$$
\begin{aligned}
& A B=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{cc}
3 & 0 \\
2 & -1
\end{array}\right]=\left[\begin{array}{cc}
(6-2) & (0+1) \\
(-3+4) & (0-2)
\end{array}\right]=\left[\begin{array}{cc}
4 & 1 \\
1 & -2
\end{array}\right] . \\
& B A=\left[\begin{array}{cc}
3 & 0 \\
2 & -1
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]
\end{aligned}
$$

Main concepts from Linear Algebra.

Remark: The matrix product is not commutative, that is, in general holds $A B \neq B A$.

Example
Find $A B$ and $B A$ for $A=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$ and $B=\left[\begin{array}{cc}3 & 0 \\ 2 & -1\end{array}\right]$.
Solution:

$$
\begin{aligned}
& A B=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{cc}
3 & 0 \\
2 & -1
\end{array}\right]=\left[\begin{array}{cc}
(6-2) & (0+1) \\
(-3+4) & (0-2)
\end{array}\right]=\left[\begin{array}{cc}
4 & 1 \\
1 & -2
\end{array}\right] . \\
& B A=\left[\begin{array}{cc}
3 & 0 \\
2 & -1
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{ll}
(6+0) & (-3+0) \\
(4+1) & (-2-2)
\end{array}\right]
\end{aligned}
$$

Main concepts from Linear Algebra.

Remark: The matrix product is not commutative, that is, in general holds $A B \neq B A$.

Example
Find $A B$ and $B A$ for $A=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$ and $B=\left[\begin{array}{cc}3 & 0 \\ 2 & -1\end{array}\right]$.
Solution:

$$
\begin{aligned}
& A B=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{cc}
3 & 0 \\
2 & -1
\end{array}\right]=\left[\begin{array}{cc}
(6-2) & (0+1) \\
(-3+4) & (0-2)
\end{array}\right]=\left[\begin{array}{cc}
4 & 1 \\
1 & -2
\end{array}\right] . \\
& B A=\left[\begin{array}{cc}
3 & 0 \\
2 & -1
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{ll}
(6+0) & (-3+0) \\
(4+1) & (-2-2)
\end{array}\right]=\left[\begin{array}{ll}
6 & -3 \\
5 & -4
\end{array}\right] .
\end{aligned}
$$

Main concepts from Linear Algebra.

Remark: The matrix product is not commutative, that is, in general holds $A B \neq B A$.

Example
Find $A B$ and $B A$ for $A=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$ and $B=\left[\begin{array}{cc}3 & 0 \\ 2 & -1\end{array}\right]$.
Solution:

$$
\begin{aligned}
& A B=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{cc}
3 & 0 \\
2 & -1
\end{array}\right]=\left[\begin{array}{cc}
(6-2) & (0+1) \\
(-3+4) & (0-2)
\end{array}\right]=\left[\begin{array}{cc}
4 & 1 \\
1 & -2
\end{array}\right] . \\
& B A=\left[\begin{array}{cc}
3 & 0 \\
2 & -1
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{ll}
(6+0) & (-3+0) \\
(4+1) & (-2-2)
\end{array}\right]=\left[\begin{array}{ll}
6 & -3 \\
5 & -4
\end{array}\right] .
\end{aligned}
$$

So $A B \neq B A$.

Main concepts from Linear Algebra.

Remark: There exist matrices $A \neq 0$ and $B \neq 0$ with $A B=0$.

Main concepts from Linear Algebra.

Remark: There exist matrices $A \neq 0$ and $B \neq 0$ with $A B=0$.
Example
Find $A B$ for $A=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & -1 \\ 1 & -1\end{array}\right]$.

Main concepts from Linear Algebra.

Remark: There exist matrices $A \neq 0$ and $B \neq 0$ with $A B=0$.
Example
Find $A B$ for $A=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right]$.
Solution:

$$
A B=\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]
$$

Main concepts from Linear Algebra.

Remark: There exist matrices $A \neq 0$ and $B \neq 0$ with $A B=0$.
Example
Find $A B$ for $A=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right]$.
Solution:

$$
A B=\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{cc}
(1-1) & (-1+1) \\
(-1+1) & (1-1)
\end{array}\right]
$$

Main concepts from Linear Algebra.

Remark: There exist matrices $A \neq 0$ and $B \neq 0$ with $A B=0$.
Example
Find $A B$ for $A=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right]$.
Solution:

$$
A B=\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{cc}
(1-1) & (-1+1) \\
(-1+1) & (1-1)
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

Main concepts from Linear Algebra.

Remark: There exist matrices $A \neq 0$ and $B \neq 0$ with $A B=0$.
Example
Find $A B$ for $A=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & -1 \\ 1 & -1\end{array}\right]$.
Solution:

$$
A B=\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{cc}
(1-1) & (-1+1) \\
(-1+1) & (1-1)
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

Recall: If $a, b \in \mathbb{R}$ and $a b=0$, then either $a=0$ or $b=0$.

Main concepts from Linear Algebra.

Remark: There exist matrices $A \neq 0$ and $B \neq 0$ with $A B=0$.
Example
Find $A B$ for $A=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & -1 \\ 1 & -1\end{array}\right]$.
Solution:

$$
A B=\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{cc}
(1-1) & (-1+1) \\
(-1+1) & (1-1)
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

Recall: If $a, b \in \mathbb{R}$ and $a b=0$, then either $a=0$ or $b=0$.
We have just shown that this statement is not true for matrices.

