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Convolution of two functions.

Definition
The convolution of piecewise continuous functions f, g : R — R is

the function f x g : R — R given by

(Fxg)(t) = /0 f(r)g(t—7)dr.

Remarks:
» f x g is also called the generalized product of f and g.

» The definition of convolution of two functions also holds in
the case that one of the functions is a generalized function,

like Dirac’'s delta.
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Example

Find the convolution of f(t) = e~ ! and g(t) = sin(t).

t
Solution: By definition: (f *x g)(t) = / e Tsin(t — 7)dT.
0
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Convolution of two functions.
Example

Find the convolution of f(t) = e~ ! and g(t) = sin(t).

t
Solution: By definition: (f *x g)(t) = / e Tsin(t — 7)dT.
0

t
Integrate by parts twice: / e Tsin(t—171)dr =
0

t t

- [e_T sin(t — 7')} - /Ot e " sin(t — 1) dT,

[e‘T cos(t — 7')}

0 0

t

’
0

2 /Ot e " sin(t—T1)dT = [e_T cos(t — 7')] ‘: - [e‘T sin(t — T)]
2(f x g)(t) = e~ — cos(t) — 0 +sin(t).

We conclude: (f = g)(t) = %[e*t +sin(t) — cos(t)]. <
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Proof:
(1): Commutativity: f+xg =g f.

The definition of convolution is,
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Properties of convolutions.

Proof:
(1): Commutativity: f+xg =g f.

The definition of convolution is,

()0 = [ f(ete—r)or

Change the integration variable: 7 =t — 7, hence d7 = —dr,

0
(F + g)(t) = / F(t - #)g(F)(~1) d#

(F +g)(t) = / g(7) F(t - 7) d#

We conclude: (f * g)(t) = (g = f)(t).
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Theorem (Laplace Transform)
If f, g have well-defined Laplace Transforms L[f], L[g], then

L[f x g] = L[f] L[g].

Proof: The key step is to interchange two integrals. We start we
the product of the Laplace transforms,

clr) £lg] = | / T et (1) d | / et d).
L[f] Lg] = /0 h e—sfg(%)( /0 T et (1) dt) di,

L[f] L[g] = /Ooo gﬁ)(/oo et (¢) dt> di.

0
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Laplace Transform of a convolution.

Proof: Recall: L[f] £[g] = / h 8(5)( / oSt () dt) d.

Change variables: 7 =1t+t, hence dr = dt;

et cle - [ e®([ e it -ar) di

C[f] Clg] = / h /t T e () (7 — ) dr di. —

A
The key step: Switch the order of integration. |

0 ‘ tau

£[f] £lg] = / h /0 " o5 () f(r — F) didr.
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Proof: Recall: £[f] £[g] = / h / " e~ g (i) F(r — T) di dr.
0 0

Then, is straightforward to check that

Cif] £lg] = / T /O g F(r - ) dF) dr
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Laplace Transform of a convolution.

Proof: Recall: £[f] £[g] = / h / " e~ g (i) F(r — T) di dr.
0 0

Then, is straightforward to check that
ol ctel - | T / g F(r - ) dF) dr
clrclel = [ e e or
L[] Llg] = Llg +f]

We conclude: L[f % g] = L[f] L[g].
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Example
Use convolutions to find the inverse Laplace Transform of
3
F(s) = ———.
(s) s3(s2 —3)

Solution: We express F as a product of two Laplace Transforms,

11 _31(2)<\/§>

Fs) =35 =2 — (=) (=2
(s) 353 (s2—-3) 2.3\s3/\s2-3
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Example
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3
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Laplace Transform of a convolution.

Example
Use convolutions to find the inverse Laplace Transform of
3
F(s) = ———.
(s) s3(s2 —3)

Solution: We express F as a product of two Laplace Transforms,

11 31 (2y/ V3
r=3h s 3 1 (2) ()
. n _ - - _ a
Recalling that L[t"] = pr and L[sinh(at)] = 2_ 32

V3
T2

V3

F(s) E[tz]/l[sinh(\/gt)} = 7/3[1“2 *sin(\/gt)].



Laplace Transform of a convolution.

Example
Use convolutions to find the inverse Laplace Transform of
3
F(s) = ———.
(s) s3(s2 —3)

Solution: We express F as a product of two Laplace Transforms,

\f
sy 2 (3) (373)

and L[sinh(at)] = ﬁ,
V3
2

F(s)=3

Recalling that L[t"] = Sn+1

V3

F(s) = 7£[t2]£[sinh(\/§t)] = L[t *sin(\@t)].

We conclude that f(t f/ 72 sinh [V3(t — 7))] dT.
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Solution: The function f is the convolution of two functions,

f(t) = (g + h)(2),
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f(t) = (g = h)(t), g(t) = cos(2t), h(t) =e 3.
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Laplace Transform of a convolution.

Example
t

Compute L[f(t)] where f(t) = / e 3(t77) cos(27) d.
0

Solution: The function f is the convolution of two functions,
f(t)=(g=h)(t),  g(t)=cos(2t), h(t)=e .
Since L[(g * h)(t)] = L[g(t)] L[h(t)], then,
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t

Compute L[f(t)] where f(t) = / e 3(t77) cos(27) d.
0

Solution: The function f is the convolution of two functions,
f(t)=(g=h)(t),  g(t)=cos(2t), h(t)=e .
Since L[(g * h)(t)] = L[g(t)] L[h(t)], then,

F(s) = ﬁ{/ot e3(=7) cos(27) dr} = ﬁ[e*3t] L [cos(2t)].

S

We conclude that F(s) = m
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Example
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Solution: Denote G(s) = L[g(t)] and compute LT of the equation,
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G(s).

Denoting H(s) =
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Solve the IVP
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Solution: Denote G(s) = L[g(t)] and compute LT of the equation,

1
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Laplace Transform of a convolution.
Example
Solve the IVP
y" —5y' +6y =g(t),  y(0)=0, y'(0)=0.

Solution: Denote G(s) = L[g(t)] and compute LT of the equation,

1
(2 —5s+6) °C)

, and h(t) = L71[H(s)], then

(s* =55 +6) LIy(1)] = LIg(t)] = Lly(t)] =

1
Denoting H(S) = m
5§ — 23S

Liy(t)] = H(s)G(s) = y(t) = (h=g)(1).
Function h is simple to compute:

1 a b a(s—3)+b(s—2)

M= 6-3 " 6-2 -3 G263
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Laplace Transform of a convolution.

Example
Solve the IVP

y' =5y +6y=g(t), y(0)=0, y(0)=0.
Solution: Then: 1 = a(s — 3) + b(s — 2). Evaluate at s = 2, 3.

s=2 = a=-1. s=3 = b=1.



Laplace Transform of a convolution.

Example
Solve the IVP

y' =5y +6y=g(t), y(0)=0, y(0)=0.
Solution: Then: 1 = a(s — 3) + b(s — 2). Evaluate at s = 2, 3.

s=2 = a=-1. s=3 = b=1.

1 n 1
(s-2)  (s—3)

Therefore H(s) = —



Laplace Transform of a convolution.

Example
Solve the IVP

y' =5y +6y=g(t), y(0)=0, y(0)=0.
Solution: Then: 1 = a(s — 3) + b(s — 2). Evaluate at s = 2, 3.

s=2 = a=-1. s=3 = b=1.
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Therefore H(s) = —

h(t) = —e?t + 3.



Laplace Transform of a convolution.

Example
Solve the IVP

y' =5y +6y=g(t), y(0)=0, y(0)=0.
Solution: Then: 1 = a(s — 3) + b(s — 2). Evaluate at s = 2, 3.

s=2 = a=-1. s=3 = b=1.

1 1

-2 + -3) Then

Therefore H(s) = —

h(t) = —e?t + 3.

Recalling the formula y(t) = (h* g)(t),



Laplace Transform of a convolution.

Example
Solve the IVP

y' =5y +6y=g(t), y(0)=0, y(0)=0.
Solution: Then: 1 = a(s — 3) + b(s — 2). Evaluate at s = 2, 3.

s=2 = a=-1. s=3 = b=1.

1 1

-2 + -3) Then

Therefore H(s) = —

h(t) = —e?t + 3.

Recalling the formula y(t) = (h* g)(t), we get

y(t) = /Ot(—e% L&) gt —7)dr.



Convolution solutions (Sect. 4.5).

Convolution of two functions.
Properties of convolutions.
Laplace Transform of a convolution.

Impulse response solution.

vV v v v .Y

Solution decomposition theorem.



Impulse response solution.

Definition
The impulse response solution is the solution ys to the IVP

ys +aiys+aoys =06(t), ys(0)=0, y;(0)=0.



Impulse response solution.

Definition
The impulse response solution is the solution ys to the IVP

ys +aiys+aoys =06(t), ys(0)=0, y;(0)=0.

Computing Laplace Transforms,

(5% + a5 + ap) Llys] = 1
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Definition
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Definition
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ys +aiys+aoys =06(t), ys(0)=0, y;(0)=0.

Computing Laplace Transforms,
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Impulse response solution.

Definition
The impulse response solution is the solution ys to the IVP

ys +aiys+aoys =06(t), ys(0)=0, y;(0)=0.

Computing Laplace Transforms,

1
, _ _ - L
(s"tas+ta)llysl=1 = y(t)=L [s2+als+ao]'

Denoting the characteristic polynomial by p(s) = s? + a;s + a,,
1

ys =L [@}



Impulse response solution.

Definition
The impulse response solution is the solution ys to the IVP

)/(g, + a y(g + do Y5 = 6(1:)’ y(5(0) = 05 Yé(o) = 0

Computing Laplace Transforms,

1
, _ _ - L
(s"tas+ta)llysl=1 = y(t)=L [s2+als+ao]'

Denoting the characteristic polynomial by p(s) = s? + a;s + a,,

ys =L {p(ls)}

Summary: The impulse reponse solution is the inverse Laplace
Transform of the reciprocal of the equation characteristic
polynomial.



Impulse response solution.

Recall: The impulse response solution is ys solution of the IVP

v§ +aiys+acys =06(t), ys(0)=0, y;(0)=0.



Impulse response solution.

Recall: The impulse response solution is ys solution of the IVP
Y§ +ays+acys = 0(t), ys(0)=0, y;(0)=0.
Example

Find the solution (impulse response at t = ¢) of the IVP

Vi +2ys +2y. =0(t—c), y.(0)=0, y;(0)=0, ceR.



Impulse response solution.

Recall: The impulse response solution is ys solution of the IVP

vi +aiys+ays =0(t), ys(0)=0, y;50)=0.

Example
Find the solution (impulse response at t = ¢) of the IVP

Vi +2ys +2y. =0(t—c), y.(0)=0, y;(0)=0, ceR.

Solution: Ly; ] + 2 L[ys.] + 2 L[ys.] = L[5(t — ¢)].



Impulse response solution.

Recall: The impulse response solution is ys solution of the IVP

vi +aiys+ays =0(t), ys(0)=0, y;50)=0.

Example
Find the solution (impulse response at t = ¢) of the IVP

Vi +2ys +2y. =0(t—c), y.(0)=0, y;(0)=0, ceR.
Solution: Ly; ] + 2 L[ys.] + 2 L[ys.] = L[5(t — ¢)].

(s +25+2) Lys ] = e



Impulse response solution.

Recall: The impulse response solution is ys solution of the IVP

vi +aiys+ays =0(t), ys(0)=0, y;50)=0.

Example
Find the solution (impulse response at t = ¢) of the IVP

Vi +2ys +2y. =0(t—c), y.(0)=0, y;(0)=0, ceR.

Solution: Ly; ] + 2 L[ys.] + 2 L[ys.] = L[5(t — ¢)].

2 __ _—Cs _ €
(s“+2s+2)Llys.]=e = Llys.] = 7(52 255 2)



Impulse response solution.

Example
Find the solution (impulse response at t = ¢) of the IVP

V5. +2y5.+2ys. =0(t—c), y5.(0)=0, y5(0)=0, ceR.

e—CS

Solution: Recall: Llys.] = (2+25+2)



Impulse response solution.

Example
Find the solution (impulse response at t = ¢) of the IVP

Vi +2ys +2y. =0(t—c), y5.(0)=0, y;(0)=0, ceR.

e—CS

(s2+2s+2)

Find the roots of the denominator,

Solution: Recall:  Llys.| =

$?+254+2=0



Impulse response solution.

Example
Find the solution (impulse response at t = ¢) of the IVP

Vi +2ys +2y. =0(t—c), y5.(0)=0, y;(0)=0, ceR.
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Solution: Recall:  Llys.| =
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Impulse response solution.

Example
Find the solution (impulse response at t = ¢) of the IVP

V5. +2y5.+2ys. =0(t—c), y5.(0)=0, y5(0)=0, ceR.

e—CS

(s2+2s+2)
Find the roots of the denominator,

1
$+25+2=0 = se =5 [-24V4-8]

Solution: Recall:  Llys.| =

Complex roots. We complete the square:



Impulse response solution.

Example
Find the solution (impulse response at t = ¢) of the IVP

V5. +2y5.+2ys. =0(t—c), y5.(0)=0, y5(0)=0, ceR.

e—CS

(s2+2s+2)
Find the roots of the denominator,

1
$+25+2=0 = se =5 [-24V4-8]

Solution: Recall:  Llys.| =

Complex roots. We complete the square:

2
2425 42= [52+2(§)s+1] 142



Impulse response solution.

Example
Find the solution (impulse response at t = ¢) of the IVP

Vi +2ys +2y. =0(t—c), y5.(0)=0, y;(0)=0, ceR.

e—CS

(s2+2s+2)
Find the roots of the denominator,

1
$+25+2=0 = se =5 [-24V4-8]

Solution: Recall:  Llys.| =

Complex roots. We complete the square:

>
S42s+2=[2+2(5)s+1] ~142=(s+12+1



Impulse response solution.

Example
Find the solution (impulse response at t = ¢) of the IVP

Vi +2ys +2y. =0(t—c), y5.(0)=0, y;(0)=0, ceR.

e—CS
(s2+2s+2)

Find the roots of the denominator,

1
$+25+2=0 = se =5 [-24V4-8]

Solution: Recall:  Llys.| =

Complex roots. We complete the square:
2
S42s+2=[2+2(5)s+1] ~142=(s+12+1

e—CS

Therefore, L[ys.] = (s+r12+1



Impulse response solution.

Example
Find the solution (impulse response at t = c) of the IVP

Vo +2ys +2ys. =06(t—c), y5.(0)=0, y5(0)=0, ceR.

e*CS

Solution: Recall:  Llys.] = G+r1P+1



Impulse response solution.

Example
Find the solution (impulse response at t = c) of the IVP

Vo +2ys +2ys. =06(t—c), y5.(0)=0, y5(0)=0, ceR.

e*CS

Solution: Recall:  Llys.] = G+r1P+1

Recall: L[sin(t)] = 5211



Impulse response solution.

Example
Find the solution (impulse response at t = c) of the IVP

V5. +2ys. +2ys. =0(t—c), y5.(0)=0, y5(0)=0, ceR.

e*CS

Solution: Recall:  Llys.] = G+r1P+1

Recall: L[sin(t)] = and L[f](s — c¢) = L[ f(t)].

s24+1'



Impulse response solution.

Example
Find the solution (impulse response at t = c) of the IVP

V5. +2ys. +2ys. =0(t—c), y5.(0)=0, y5(0)=0, ceR.

e*CS

Solution: Recall:  Llys.] = G+r1P+1

Recall: L[sin(t)] = and L[f](s — c¢) = L[ f(t)].

1
s24+1'

Grriis Lle " sin(t)]



Impulse response solution.

Example
Find the solution (impulse response at t = c) of the IVP

V5. +2ys. +2ys. =0(t—c), y5.(0)=0, y5(0)=0, ceR.

e*CS

Solution: Recall:  Llys.] = G+r1P+1

Recall: L[sin(t)] = and L[f](s — c¢) = L[ f(t)].

1
s24+1'

(r12+1 Lle " sin(t)] = Llys]=e = L[e " sin(t)].



Impulse response solution.

Example
Find the solution (impulse response at t = c) of the IVP

V5. +2ys. +2ys. =0(t—c), y5.(0)=0, y5(0)=0, ceR.

e*CS

Solution: Recall: Llys.] = (s+12+1

Recall: L[sin(t)] = and L[f](s — c¢) = L[ f(t)].

1
241
(r12+1 Lle " sin(t)] = Llys]=e = L[e " sin(t)].

Since e~ L[f](s) = L[u(t — c) f(t — ¢)],



Impulse response solution.

Example
Find the solution (impulse response at t = c) of the IVP

V5. +2ys. +2ys. =0(t—c), y5.(0)=0, y5(0)=0, ceR.

e*CS

Solution: Recall:  Llys.] = G+r1P+1

Recall: L[sin(t)] = and L[f](s — c¢) = L[ f(t)].

1
241
(r12+1 Lle " sin(t)] = Llys]=e = L[e " sin(t)].
Since & LIf1(s) = £lu(t - ¢) /(¢ — )],

we conclude y;s () = u(t — c)e ) sin(t — ¢). <



Convolution solutions (Sect. 4.5).

Convolution of two functions.
Properties of convolutions.
Laplace Transform of a convolution.

Impulse response solution.

vV v v v .Y

Solution decomposition theorem.



Solution decomposition theorem.

Theorem (Solution decomposition)
The solution y to the IVP

Y't+ay +ay=g(t), y(0)=y, y(0)=y,
can be decomposed as

y(t) = yn(t) + (ys * g)(t),

where yy, is the solution of the homogeneous IVP

Yo +aiyh+aoyh =0, ya(0) =yo yu(0) =y,
and ys is the impulse response solution, that is,

ys +aiys+aoys =6(t), ys(0)=0, ys5(0)=0.



Solution decomposition theorem.

Example
Use the Solution Decomposition Theorem to express the solution of

y"+2y +2y =sin(at), y(0)=1, y'(0)=-1.



Solution decomposition theorem.

Example
Use the Solution Decomposition Theorem to express the solution of

y"+2y +2y =sin(at), y(0)=1, y'(0)=-1.

Solution: L[y"] + 2 L[y’ + 2 L[y] = L[sin(at)],



Solution decomposition theorem.

Example
Use the Solution Decomposition Theorem to express the solution of

y"+2y" +2y =sin(at), y(0)=1, y'(0)=-1
Solution: L[y"] + 2 L[y'] + 2 L]y] = L[sin(at)], and recall,

LIy =" Lly] = s(1) - (-1),



Solution decomposition theorem.

Example
Use the Solution Decomposition Theorem to express the solution of

y"+2y" +2y =sin(at), y(0)=1, y'(0)=-1
Solution: L[y"] + 2 L[y'] + 2 L]y] = L[sin(at)], and recall,

Ly =sLlyl-s(1)—(-1), LI ]1=sLly]-1.



Solution decomposition theorem.

Example
Use the Solution Decomposition Theorem to express the solution of

y"+2y" +2y =sin(at), y(0)=1, y'(0)=-1
Solution: L[y"] + 2 L[y'] + 2 L]y] = L[sin(at)], and recall,

Ly =sLlyl-s(1)—(-1), LI ]1=sLly]-1.

(s> 4+ 25 +2) L[y] — s + 1 —2 = L[sin(at)].



Solution decomposition theorem.

Example
Use the Solution Decomposition Theorem to express the solution of

y"+2y" +2y =sin(at), y(0)=1, y'(0)=-1
Solution: L[y"] + 2 L[y'] + 2 L]y] = L[sin(at)], and recall,

Ly =sLlyl-s(1)—(-1), LI ]1=sLly]-1.

(s> 4+ 25 +2) L[y] — s + 1 —2 = L[sin(at)].

(s+1) 1
(s2+25s+2) (s?°+2s5+2)

Lly] = Llsin(at)].



Solution decomposition theorem.

Example
Use the Solution Decomposition Theorem to express the solution of

y"+2y +2y =sin(at), y(0)=1, y'(0)=-1.

(s+1) 1
(s2+25s4+2) (s2+2s+2)

Solution: Recall: L[y] = L[sin(at)].



Solution decomposition theorem.

Example
Use the Solution Decomposition Theorem to express the solution of

y"+2y +2y =sin(at), y(0)=1, y'(0)=-1.

(s+1) 1
(s2+25s4+2) (s2+2s+2)

Solution: Recall: L[y] = L[sin(at)].

(s+1)

But: LIl = (22542



Solution decomposition theorem.

Example
Use the Solution Decomposition Theorem to express the solution of

y'+2y" +2y =sin(at), y(0)=1, y'(0)=-1

. _ (s +1) 1 .
Solution: Recall: L[y] = (2+25+2) (2251 2) L[sin(at)].
(s+1) (s+1)

But: Llyp] = (s2 4 25+ 2) - (s+1)2+1



Solution decomposition theorem.

Example
Use the Solution Decomposition Theorem to express the solution of

y'+2y" +2y =sin(at), y(0)=1, y'(0)=-1

. 1 1 .
Solution: Recall: L[y] = (52(45——;5 3_ ) T 2512 L[sin(at)].
But: L= —CF Y D i)

(s2+2s+2) (s+1)2+1



Solution decomposition theorem.

Example
Use the Solution Decomposition Theorem to express the solution of

y'+2y" +2y =sin(at), y(0)=1, y'(0)=-1

Solution: Recall: L[y] = (52(45——;513— R ;5 np) L[sin(at)].
But: L[y] = (52(j;1i 5= (55:3211 - = Ll cos(t)],

1

and: [,[yg] = m



Solution decomposition theorem.

Example
Use the Solution Decomposition Theorem to express the solution of

y'+2y" +2y =sin(at), y(0)=1, y'(0)=-1

Solution: Recall: L[y] = (52(45——;513— R ;5 np) L[sin(at)].
But: L[y] = (52(j;1i 5= (55:3211 - = Ll cos(t)],
1 1

and: Llys] = (s242s+2) - (s+1)2+1




Solution decomposition theorem.

Example
Use the Solution Decomposition Theorem to express the solution of

y'+2y" +2y =sin(at), y(0)=1, y'(0)=-1

Solution: Recall: L[y] = (52(45— —;Slj_ R ;5 np) L[sin(at)].
But: L[ys] = (52(j;514)r 5= (S$$21)+ - = Lle™* cos(t)]
and: Ly = ot =L rletsin(e)].

(s2+2s4+2) (s+1)2+1



Solution decomposition theorem.

Example
Use the Solution Decomposition Theorem to express the solution of

y'+2y" +2y =sin(at), y(0)=1, y'(0)=-1

. 1 1 .
Solution: Recall: L[y] = (52(45——;5 3_ ) T 2512 L[sin(at)].
But: L[ys] = (52(j;514)r 5= (S$$21)+ - = Lle™* cos(t)]
and: L[ys] = L = ! = L[e" " sin(t)]. So,

(s2+2s4+2) (s+1)2+1

Ly] = L[yn] + Lys] L[g(1)]



Solution decomposition theorem.

Example
Use the Solution Decomposition Theorem to express the solution of

y'+2y" +2y =sin(at), y(0)=1, y'(0)=-1

. 1 1 .
Solution: Recall: L[y] = (52(45——;5 3_ ) T 2512 L[sin(at)].
But: L[ys] = (52(j;514)r 5= (S$$21)+ - = Lle™* cos(t)]
and: L[ys] = L = ! = L[e" " sin(t)]. So,

(s2+2s4+2) (s+1)2+1

LIyl = Llyn] + Lys] Llg(t)] = y(t) = ya(t) + (v5 * g)(1),



Solution decomposition theorem.

Example
Use the Solution Decomposition Theorem to express the solution of

y'+2y" +2y =sin(at), y(0)=1, y'(0)=-1

. 1 1 .
Solution: Recall: L[y] = (52(45——;5 3_ ) T 2512 L[sin(at)].
But: L[ys] = (52(j;514)r 5= (S$$21)+ - = Lle™* cos(t)]
and: L[ys] = L = ! = L[e" " sin(t)]. So,

(s2+2s4+2) (s+1)2+1

LIyl = Llyn] + Lys] Llg(t)] = y(t) = ya(t) + (v5 * g)(1),

So: y(t) = e " cos(t) +/0 e "sin(7) sin[a(t — 7)] dT. <



Solution decomposition theorem.

Proof: Compute: L[y"]+ a L[y'] + a0 L[y] = L[g(t)],



Solution decomposition theorem.

Proof: Compute: L[y"] + a; L[y'] + a, L[y] = L[g(t)], and recall,

['[y”] =s° E[Y] — S — Y,



Solution decomposition theorem.

Proof: Compute: L[y"] + a; L[y'] + a, L[y] = L[g(t)], and recall,

LY =Ll = spo -, LIY]=5sL] - .



Solution decomposition theorem.

Proof: Compute: L[y"] + a; L[y'] + a, L[y] = L[g(t)], and recall,
LY =Ll = spo—n,  LIY]=5sL] -y

(s2 + a5+ ao) L[y] — syo — v — a1y = L[g(t)].



Solution decomposition theorem.

Proof: Compute: L[y"] + a; L[y'] + a, L[y] = L[g(t)], and recall,
LY =Ll = spo—n,  LIY]=5sL] -y

(s2 + a5+ ao) L[y] — syo — v — a1y = L[g(t)].

(s+a)yo+wn 1

£l = (s2+ais+a) (s2+ as+ a)

Llg(t)].




Solution decomposition theorem.

Proof: Compute: L[y"] + a; L[y'] + a, L[y] = L[g(t)], and recall,
LY =Ll = spo—n,  LIY]=5sL] -y

(s2 + a5+ ao) L[y] — syo — v — a1y = L[g(t)].

(s+a)yo+y 1
Lly] = e
[y] (52 + a;s + 30) (52 + a,5 + ao) [g( )]
Recall: L[yy] = (S F 2ot n

(s2+ a;s + a)’



Solution decomposition theorem.

Proof: Compute: L[y"] + a; L[y'] + a, L[y] = L[g(t)], and recall,
LY =Ll = spo—n,  LIY]=5sL] -y

(s2 + a5+ ao) L[y] — syo — v — a1y = L[g(t)].

(s+a)ye t 1 1
Lly] = Lg(t)].
v] (Ztasta)  (Erasta) [g(t)]
Recall: L]y;] = m and L[ys] = 1

(s2+ a;s + a)’ (s2+ a5+ a)’



Solution decomposition theorem.

Proof: Compute: L[y"] + a; L[y'] + a, L[y] = L[g(t)], and recall,
LY =Ll = spo—n,  LIY]=5sL] -y

(s2 + a5+ ao) L[y] — syo — v — a1y = L[g(t)].

(s+a)yo+wn 1

(P+asta) (s°+as+a) Lle(0)).

Lly] =

(s+a)yo+wn 1
=" and L =
(52 + a5 + a) il (s +ais+ a)

Since, Lly] = Llyn] + L[ys] L[g(t)],

Recall: L[yn] =



Solution decomposition theorem.

Proof: Compute: L[y"] + a; L[y'] + a, L[y] = L[g(t)], and recall,
LY =Ll = spo—n,  LIY]=5sL] -y

(s2 + a5+ ao) L[y] — syo — v — a1y = L[g(t)].

(s+a)ye t 1 1
Lly] = Lg(t)].
v] (Ztasta)  (Erasta) [g(t)]
Recall: L]y;] = m and L[ys] = 1

(s2+ a;s + a)’ (s2+ a5+ a)’

Since, Lly] = Llya] + L[ys] L[g(t)], so y(t) = ya(t) + (vs * g)(t).



Solution decomposition theorem.

Proof: Compute: L[y"] + a; L[y'] + a, L[y] = L[g(t)], and recall,
LY =Ll = spo—n,  LIY]=5sL] -y

(s2 + a5+ ao) L[y] — syo — v — a1y = L[g(t)].

(s+a)yo+wn 1

£l = (s2+ais+a) (s2+ as+ a)

Llg(t)].

(s+a)ye +n 1

Recall - d -1
€ca ‘C[yh] (S2+315—|—30), an ﬁ[y(i] (52—|—315+80)

Since, Lly] = Llya] + L[ys] L[g(t)], so y(t) = ya(t) + (vs * g)(t).

Equivalently: y(t) = yn(t) + /Oty(;(r)g(t —7)dT. O



Systems of linear differential equations (Sect. 5.1).

» n x n systems of linear differential equations.
» Second order equations and first order systems.

» Main concepts from Linear Algebra.
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Remark: Many physical systems must be described with more
than one differential equation.
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Example
Newton's law of motion for a particle of mass m moving in space.
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The unknown and the force are vector-valued functions,
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n X n systems of linear differential equations.

Remark: Many physical systems must be described with more
than one differential equation.

Example
Newton's law of motion for a particle of mass m moving in space.
The unknown and the force are vector-valued functions,

Xl(t) Fl(t,x)
x(t) = [x(t)]|, F(t) = | Fa(t,x)
X3(t) F3(1.',X)

d?x
The equation of motion are: m o F(t,x(t)).
These are three differential equations,



n X n systems of linear differential equations.

Definition

An n x n system of linear first order differential equations is the
following: Given the functions aj;, gi : [a, b] — R, where
i,j=1,---,n, find n functions x; : [a, b] — R solutions of the n
linear differential equations

x| = a11(t) x + - + an(t) xn + g1(t)

X = a1 (t) x4+ -+ + apn(t) xn + gn(t).

The system is called homogeneous iff the source functions satisfy
that gy =--- =g, =0.
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Example
n = 1: Single differential equation: Find x(t) solution of

X{ = all(t) X1 +g1(t).
Example

n=2: 2 x 2 linear system: Find x,(t) and x(t) solutions of
x = an(t) x + aa(t) X + gi(t),
X, = ao1(t) xq + a2z (t) X, + &(t).

Example
n = 2: 2 x 2 homogeneous linear system: Find x,(t) and x,(t),
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Find x(t), x(t) solutions of the 2 x 2, X =X, — X,
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Solution: Add up the equations, and subtract the equations,
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n X n systems of linear differential equations.

Example
Find x(t), x(t) solutions of the 2 x 2, X =X, — X,
constant coefficients, homogeneous system X = —x + .

Solution: Add up the equations, and subtract the equations,
(Xl + X2)/ — 07 (Xl - Xz), — 2(X1 - X2).
Introduce the unknowns v = x; + x,, w = x; — X, then

V/ZO = vV = (G,

w =2w = w=ce’l
1 1
Back to x; and x,: X1:§(V—|-W), x2:§ v —w).
1 2t 1 2t
We conclude:  x,(t) = 3 (c + cet), x(t) = 5 (c — qe™")



Systems of linear differential equations (Sect. 5.1).

» n x n systems of linear differential equations.
» Second order equations and first order systems.

» Main concepts from Linear Algebra.



Second order equations and first order systems.

Theorem (Reduction to first order)
Every solution y to the second order linear equation

y'+p(t)y + q(t)y = g(t), (1)

defines a solution x, = y and x, =y’ of the 2 x 2 first order linear
differential system

X! = X, (2)

x; = —q(t) x; — p(t) xo + g(t). (3)

Conversely, every solution x;, x, of the 2 x 2 first order linear
system in Eqs. (2)-(3) defines a solution y = x; of the second order
differential equation in (1).
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Xll — X2.
Then, x, = y" = —q(t)y — p(t)y’ + g(t). That is,

x, = —q(t) x — p(t) x, + g(t).



Second order equations and first order systems.

Proof:
(=) Given y solution of y" + p(t)y' + q(t)y = g(t),
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introduce x, = y and x, = y/, hence x|/ =y’ = x, that is,
x| = x,.
Then, x, = y" = —q(t)y — p(t)y’ + g(t). That is,
x, = —q(t)x — p(t) x + g(t).

(<) Introduce x, = x] into x, = —q(t) x, — p(t) x + g(t).
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Second order equations and first order systems.

Proof:
(=) Given y solution of y" + p(t)y' + q(t)y = g(t),

introduce x, = y and x, = y/, hence x|/ =y’ = x, that is,

!/
Xl — X2.

Then, x, = y" = —q(t)y — p(t)y’ + g(t). That is,
% = —q(t) x — p(t) x2 + g(t).

(<) Introduce x, = x{ into x; = —q(t) x, — p(t) x + g(t).
x = —q(t)x — p(t)x + g(t),

that is
X"+ p(t) x] + q(t) x = g(t).
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Second order equations and first order systems.

Example

Express as a first order system the equation
y" +2y' + 2y = sin(at).
Solution: Introduce the new unknowns
x=y, %=y = x =x.

Then, the differential equation can be written as

X, + 2x, + 2x, = sin(at).



Second order equations and first order systems.

Example
Express as a first order system the equation

y" +2y' + 2y = sin(at).

Solution: Introduce the new unknowns

' '
X=Y, X=Yy = X=X

Then, the differential equation can be written as
X, + 2x, + 2x, = sin(at).

We conclude that

/_
X; = Xo.

X, = —2x; — 2x, + sin(at).
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Remark: Systems of first order equations can, sometimes, be
transformed into a second order single equation.

Example
Express as a single second order equation X, = —x + 3%,
the 2 x 2 system and solve it, X=X — X,

Solution: Compute x; from the second equation: x; = x} + X,.
Introduce this expression into the first equation,

(X2/ + X2)/ = _(le + %) + 3%,



Second order equations and first order systems.

Remark: Systems of first order equations can, sometimes, be
transformed into a second order single equation.

Example
Express as a single second order equation X, = —x + 3%,
the 2 x 2 system and solve it, X=X — X,

Solution: Compute x; from the second equation: x; = x} + X,.
Introduce this expression into the first equation,

(X2/ + X2)/ = _(le + %) + 3%,

7 / /
X, +X ==X, — X + 3%,



Second order equations and first order systems.

Remark: Systems of first order equations can, sometimes, be
transformed into a second order single equation.

Example
Express as a single second order equation X, = —x + 3%,
the 2 x 2 system and solve it, X=X — X,

Solution: Compute x; from the second equation: x; = x} + X,.
Introduce this expression into the first equation,

(6 +x) = =06 +x) + 3%,
X+ X = —x — x + 3%,

x) +2x, — 2%, = 0.
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r?42r—2 =0
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Example
Express as a single second order equation x| = —x; + 3%,
the 2 x 2 system and solve it, X=X — %.

Solution: Recall: x!' + 2x] — 2x, = 0.

1
rP42r—2=0 = rp= 5 [—2:|:\/4 + 8] = ry=—-1+V3.

Therefore, x, =c, e+t +c e~ L.
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Example
Express as a single second order equation x| = —x; + 3%,
the 2 x 2 system and solve it, X=X — %.

Solution: Recall: x!' + 2x] — 2x, = 0.

1
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) 1 2 1 5 >



Second order equations and first order systems.

Example
Express as a single second order equation x| = —x; + 3%,
the 2 x 2 system and solve it, X=X — %.

Solution: Recall: x!' + 2x] — 2x, = 0.

1
rP42r—2=0 = rp= 5 [—2:|:\/4 + 8] = ry=—-1+V3.

Therefore, x, = c, et + et Since x; = X! + x,
) 1 2 1 5 >

X = (clrJr et 4 cr e t) + (c;l ettt 4 e~ t),



Second order equations and first order systems.

Example
Express as a single second order equation x| = —x; + 3%,
the 2 x 2 system and solve it, X=X — %.

Solution: Recall: x!' + 2x] — 2x, = 0.

1
rP42r—2=0 = rp= 5 [—2:|:\/4 + 8] = ry=—-1+V3.

Therefore, x, = ¢, e+ ¢, e~ ". Since x;, = x, + x,,
X, = (clrJr et 4 cr e t) + (c;l ety ge- t),

We conclude: x; = ¢(1+ri)e™t+o(l+r)e 1 <
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Main concepts from Linear Algebra.

Remark: Ideas from Linear We review:
Algebra are useful to study » Matrices m x n.
systems of linear differential > Matrix operations
equations.
» n-vectors, dot product.
» matrix-vector product.
Definition

An m x n matrix, A, is an array of numbers

a1 -+ din
m rows,
A=
n columns.
dml *°°  dmn
where aj € Cand i=1,--- ,mand j=1,--- ,n. Annxn

matrix is called a square matrix.
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Example
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(b) 2 x 3 matrix: A= 4 5 6]'
[1 2
(c) 3x2matrixc A= |3 4].
5 6

(d) 2 x 2 complex-valued matrix: A= F +i2- ’]_

3 4
(e) The coefficients of a linear system can be grouped in a matrix,

/

X1 = —x1 + 3x2 -1 3
;L } = A:[1 _J.
Xo = X1 — X2
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Example
1 247 =142

Consider a 2 x 3 matrix A = 3 5 1

(a) A-transpose: Interchange rows with columns:

1 3
AT=| 24i 2|. Notice that: (AT)" = A
~142i 1

(b) A-conjugate: Conjugate every matrix coefficient:

1 2—7 —-1-2i arcy

A= Y 5 1 Notice that: (A) = A.

Matrix A is real iff A= A. Matrix A is imaginary iff A = —A.
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Consider a 2 x 3 matrix A = 3 5 1
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Example
1 247 —1+42i

Consider a 2 x 3 matrix A = 3 5 1

(a) A-adjoint: Conjugate and transpose:

1 -3
A= 22— 2 |. Notice that: (A*)* = A.
—1-2J 1

(b) Addition of two m x n matrices is performed component-wise:
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Main concepts from Linear Algebra.

Example
1 247 —1+42i

Consider a 2 x 3 matrix A = 3 5 1

(a) A-adjoint: Conjugate and transpose:

1 —3i
A= 22— 2 |. Notice that: (A*)* = A.
—1-2J 1

(b) Addition of two m x n matrices is performed component-wise:
1 2 n 2 3] [(1+2) (2+3)] [3 5
3 4 5 1|  [(3+5) (4+1)] |8 5]

" 1 2 1 2 3. )
The addition [3 4] + [4 5 6} is not defined.
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Main concepts from Linear Algebra.

Example

) . 1 3 5
Consider a 2 x 3 matrix A = [2 4 6]'

(a) Multiplication of a matrix by a number is performed
component-wise:

135 [26 10 8 12
2A_2{2 4 6] _[4 8 12}’ [16 20}
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Example

) . 1 3 5
Consider a 2 x 3 matrix A = [2 4 6]'

(a) Multiplication of a matrix by a number is performed
component-wise:
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Consider a 2 x 3 matrix A = [2 4 6]'

(a) Multiplication of a matrix by a number is performed
component-wise:

1 35 2 6 10 8 12 2 3
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) . 1 3 5
Consider a 2 x 3 matrix A = [2 4 6]'
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Main concepts from Linear Algebra.

Example

Consider a 2 x 3 matrix A = [

1 35
2 4 6|

(a) Multiplication of a matrix by a number is performed
component-wise:

1 35 2 6 10 8 12 2 3
2A_2{2 4 6] _[4 8 12}’ [16 20} _4[4 5}

Also:

| —
N =
&~ W
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Main concepts from Linear Algebra.

Example

(a) Matrix multiplication. The matrix sizes is important:

A times B defines AB
mxn nx4¢ mx ¢

Example: Ais2x 2, Bis2x3,s0 ABis 2 x 3:

4 3111 2 3 16 23 30
ey il e=le 5 0

Notice Bis 2 x 3, Ais 2 x 2, so BA is not defined.

WS

45 6l |2 1] not defined.
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Main concepts from Linear Algebra.

Remark: The matrix product is not commutative, that is, in
general holds AB # BA.

Example

) 2 -1 3 0
Find AB and BA for A = [_1 5 } and B = [2 _1].
Solution:

AB =

330k o162 8

I
1
IS
=

ea= |5 |




Main concepts from Linear Algebra.

Remark: The matrix product is not commutative, that is, in
general holds AB # BA.

Example
) 2 -1 3 0
Find AB and BA for A = [_1 5 } and B = [2 _1].

Solution:

AB =

wef Y[
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Remark: The matrix product is not commutative, that is, in
general holds AB # BA.

Example

) 2 -1 3 0

Find AB and BA for A = [_1 2} and B = [2 _1].

Solution:

AB_'2 -11[3 0] [(®6-2) (0+1)] _
-1 2] 2 1] T |(-3+4) (0-2)] |1

BA =




Main concepts from Linear Algebra.

Remark: The matrix product is not commutative, that is, in
general holds AB # BA.

Example

) 2 -1 3 0

Find AB and BA for A = [_1 2} and B = [2 _1].

Solution:

AB_'2 -11[3 0] [(®6-2) (0+1)] _
-1 2] 2 1] T |(-3+4) (0-2)] |1

BA— 3 0] [2 -1] [(6+0) (-3+0)] [6
o 2 —1] [-1 2] o _(4+1) (—2—2)_ o 5

So AB # BA.
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Remark: There exist matrices A # 0 and B # 0 with AB = 0.

Example

. 1 -1 1 -1
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Solution:
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Main concepts from Linear Algebra.

Remark: There exist matrices A # 0 and B # 0 with AB = 0.
Example
Find AB for A = [_11 _11] and B = E :ﬂ
Solution:
AB — [1 —1] [1 —1} _ [(1—1) (—1+1)] _ [0 o].
-1 1] ]1 -1 (-1+1) (1-1) 00
<

Recall: If a,b € R and ab = 0, then either a=0or b = 0.



Main concepts from Linear Algebra.

Remark: There exist matrices A # 0 and B # 0 with AB = 0.

Example

. 1 -1 1 -1
Find AB for A = [_1 1 ] and B = [1 _1].
Solution:

o[t 3L - B Y

<
Recall: If a,b € R and ab = 0, then either a=0or b = 0.

We have just shown that this statement is not true for matrices.



