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Convolution of two functions.

Definition
The convolution of piecewise continuous functions f , g : R → R is
the function f ∗ g : R → R given by

(f ∗ g)(t) =

∫ t

0

f (τ)g(t − τ) dτ.

Remarks:

I f ∗ g is also called the generalized product of f and g .

I The definition of convolution of two functions also holds in
the case that one of the functions is a generalized function,
like Dirac’s delta.
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Convolution of two functions.

Example

Find the convolution of f (t) = e−t and g(t) = sin(t).

Solution: By definition: (f ∗ g)(t) =

∫ t

0

e−τ sin(t − τ) dτ .

Integrate by parts twice:

∫ t

0

e−τ sin(t − τ) dτ =[
e−τ cos(t − τ)

]∣∣∣t
0

−
[
e−τ sin(t − τ)

]∣∣∣t
0

−
∫ t

0

e−τ sin(t − τ) dτ,

2

∫ t

0

e−τ sin(t − τ) dτ =
[
e−τ cos(t − τ)

]∣∣∣t
0

−
[
e−τ sin(t − τ)

]∣∣∣t
0

,

2(f ∗ g)(t) = e−t − cos(t)− 0 + sin(t).

We conclude: (f ∗ g)(t) =
1

2

[
e−t + sin(t)− cos(t)

]
. C
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Properties of convolutions.

Theorem (Properties)

For every piecewise continuous functions f , g , and h, hold:

(i) Commutativity: f ∗ g = g ∗ f ;

(ii) Associativity: f ∗ (g ∗ h) = (f ∗ g) ∗ h;

(iii) Distributivity: f ∗ (g + h) = f ∗ g + f ∗ h;

(iv) Neutral element: f ∗ 0 = 0;

(v) Identity element: f ∗ δ = f .

Proof:
(v):

(f ∗ δ)(t) =

∫ t

0

f (τ) δ(t − τ) dτ =

∫ t

0

f (τ) δ(τ − t) dτ = f (t).
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Properties of convolutions.

Proof:
(1): Commutativity: f ∗ g = g ∗ f .

The definition of convolution is,

(f ∗ g)(t) =

∫ t

0

f (τ) g(t − τ) dτ.

Change the integration variable: τ̂ = t − τ , hence d τ̂ = −dτ ,

(f ∗ g)(t) =

∫ 0

t
f (t − τ̂) g(τ̂)(−1) d τ̂

(f ∗ g)(t) =

∫ t

0

g(τ̂) f (t − τ̂) d τ̂

We conclude: (f ∗ g)(t) = (g ∗ f )(t).
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Laplace Transform of a convolution.

Theorem (Laplace Transform)

If f , g have well-defined Laplace Transforms L[f ], L[g ], then

L[f ∗ g ] = L[f ]L[g ].

Proof: The key step is to interchange two integrals. We start we
the product of the Laplace transforms,

L[f ]L[g ] =
[∫ ∞

0

e−st f (t) dt
] [∫ ∞

0

e−st̃g(t̃) dt̃
]
,

L[f ]L[g ] =

∫ ∞

0

e−st̃g(t̃)
(∫ ∞

0

e−st f (t) dt
)

dt̃,

L[f ]L[g ] =

∫ ∞

0

g(t̃)
(∫ ∞

0

e−s(t+t̃)f (t) dt
)

dt̃.
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Laplace Transform of a convolution.

Proof: Recall: L[f ]L[g ] =

∫ ∞

0

g(t̃)
(∫ ∞

0

e−s(t+t̃)f (t) dt
)

dt̃.

Change variables: τ = t + t̃, hence dτ = dt;

L[f ]L[g ] =

∫ ∞

0

g(t̃)
(∫ ∞

t̃
e−sτ f (τ − t̃) dτ

)
dt̃.

L[f ]L[g ] =

∫ ∞

0

∫ ∞

t̃
e−sτ g(t̃) f (τ − t̃) dτ dt̃.

The key step: Switch the order of integration.

t = tau

tau

t

0

L[f ]L[g ] =

∫ ∞

0

∫ τ

0
e−sτ g(t̃) f (τ − t̃) dt̃ dτ.
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Laplace Transform of a convolution.

Example

Use convolutions to find the inverse Laplace Transform of

F (s) =
3

s3(s2 − 3)
.

Solution: We express F as a product of two Laplace Transforms,

F (s) = 3
1

s3

1

(s2 − 3)
=

3

2

1√
3

( 2

s3

) ( √
3

s2 − 3

)
Recalling that L[tn] =

n!

sn+1
and L[sinh(at)] =

a

s2 − a2
,

F (s) =

√
3

2
L[t2]L

[
sinh(

√
3 t)

]
=

√
3

2
L

[
t2 ∗ sin(

√
3 t)

]
.

We conclude that f (t) =

√
3

2

∫ t

0
τ2 sinh

[√
3(t − τ))

]
dτ . C
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Laplace Transform of a convolution.

Example

Compute L[f (t)] where f (t) =

∫ t

0
e−3(t−τ) cos(2τ) dτ .

Solution: The function f is the convolution of two functions,

f (t) = (g ∗ h)(t), g(t) = cos(2t), h(t) = e−3t .

Since L[(g ∗ h)(t)] = L[g(t)]L[h(t)], then,

F (s) = L
[∫ t

0
e−3(t−τ) cos(2τ) dτ

]
= L

[
e−3t

]
L

[
cos(2t)

]
.

We conclude that F (s) =
s

(s + 3)(s2 + 4)
. C
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Laplace Transform of a convolution.

Example

Solve the IVP

y ′′ − 5y ′ + 6y = g(t), y(0) = 0, y ′(0) = 0.

Solution: Denote G (s) = L[g(t)] and compute LT of the equation,

(s2 − 5s + 6)L[y(t)] = L[g(t)] ⇒ L[y(t)] =
1

(s2 − 5s + 6)
G (s).

Denoting H(s) =
1

s2 − 5s + 6
, and h(t) = L−1

[
H(s)

]
, then

L[y(t)] = H(s) G (s) ⇒ y(t) = (h ∗ g)(t).

Function h is simple to compute:

H(s) =
1

(s − 2)(s − 3)
=

a

(s − 2)
+

b

(s − 3)
=

a(s − 3) + b(s − 2)

(s − 2)(s − 3)
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(s − 2)
+
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(s − 3)
. Then

h(t) = −e2t + e3t .

Recalling the formula y(t) = (h ∗ g)(t), we get

y(t) =

∫ t

0

(
−e2τ + e3τ

)
g(t − τ) dτ. C
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Convolution solutions (Sect. 4.5).

I Convolution of two functions.

I Properties of convolutions.

I Laplace Transform of a convolution.

I Impulse response solution.

I Solution decomposition theorem.



Impulse response solution.

Definition
The impulse response solution is the solution yδ to the IVP

y ′′δ + a1 y ′δ + a0 yδ = δ(t), yδ(0) = 0, y ′δ(0) = 0.

Computing Laplace Transforms,

(s2 + a1s + a0)L[yδ] = 1 ⇒ yδ(t) = L−1
[ 1

s2 + a1s + a0

]
.

Denoting the characteristic polynomial by p(s) = s2 + a1s + a0,

yδ = L−1
[ 1

p(s)

]
.

Summary: The impulse reponse solution is the inverse Laplace
Transform of the reciprocal of the equation characteristic
polynomial.
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Impulse response solution.

Recall: The impulse response solution is yδ solution of the IVP

y ′′δ + a1 y ′δ + a0 yδ = δ(t), yδ(0) = 0, y ′δ(0) = 0.

Example

Find the solution (impulse response at t = c) of the IVP

y ′′δc
+ 2 y ′δc

+ 2 yδc = δ(t − c), yδc (0) = 0, y ′δc
(0) = 0, c ∈ R.

Solution: L[y ′′δc
] + 2L[y ′δc

] + 2L[yδc ] = L[δ(t − c)].

(s2 + 2s + 2)L[yδc ] = e−cs ⇒ L[yδc ] =
e−cs

(s2 + 2s + 2)
.
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Convolution solutions (Sect. 4.5).

I Convolution of two functions.

I Properties of convolutions.

I Laplace Transform of a convolution.

I Impulse response solution.

I Solution decomposition theorem.



Solution decomposition theorem.

Theorem (Solution decomposition)

The solution y to the IVP

y ′′ + a1 y ′ + a0 y = g(t), y(0) = y0, y ′(0) = y1,

can be decomposed as

y(t) = yh(t) + (yδ ∗ g)(t),

where yh is the solution of the homogeneous IVP

y ′′h + a1 y ′h + a0 yh = 0, yh(0) = y0, y ′h(0) = y1,

and yδ is the impulse response solution, that is,

y ′′δ + a1 y ′δ + a0 yδ = δ(t), yδ(0) = 0, y ′δ(0) = 0.
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Example
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Solution: L[y ′′] + 2L[y ′] + 2L[y ] = L[sin(at)], and recall,

L[y ′′] = s2 L[y ]− s (1)− (−1), L[y ′] = s L[y ]− 1.

(s2 + 2s + 2)L[y ]− s + 1− 2 = L[sin(at)].

L[y ] =
(s + 1)

(s2 + 2s + 2)
+

1

(s2 + 2s + 2)
L[sin(at)].
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Systems of linear differential equations (Sect. 5.1).

I n × n systems of linear differential equations.

I Second order equations and first order systems.

I Main concepts from Linear Algebra.



n × n systems of linear differential equations.

Remark: Many physical systems must be described with more
than one differential equation.

Example

Newton’s law of motion for a particle of mass m moving in space.
The unknown and the force are vector-valued functions,

x(t) =

x1(t)
x2(t)
x3(t)

 , F(t) =

F1(t, x)
F2(t, x)
F3(t, x)

 .

The equation of motion are: m
d2x

dt2
= F

(
t, x(t)

)
.

These are three differential equations,

m
d2x1

dt2
= F1

(
t, x(t)

)
, m

d2x2

dt2
= F2

(
t, x(t)

)
, m

d2x3

dt2
= F3

(
t, x(t)

)
.

C
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n × n systems of linear differential equations.

Definition
An n × n system of linear first order differential equations is the
following: Given the functions aij , gi : [a, b] → R, where
i , j = 1, · · · , n, find n functions xj : [a, b] → R solutions of the n
linear differential equations

x ′1 = a11(t) x1 + · · ·+ a1n(t) xn + g1(t)

...

x ′n = an1(t) x1 + · · ·+ ann(t) xn + gn(t).

The system is called homogeneous iff the source functions satisfy
that g1 = · · · = gn = 0.



n × n systems of linear differential equations.

Example

n = 1: Single differential equation: Find x1(t) solution of

x ′1 = a11(t) x1 + g1(t).

Example

n = 2: 2× 2 linear system: Find x1(t) and x2(t) solutions of

x ′1 = a11(t) x1 + a12(t) x2 + g1(t),

x ′2 = a21(t) x1 + a22(t) x2 + g2(t).

Example

n = 2: 2× 2 homogeneous linear system: Find x1(t) and x2(t),

x ′1 = a11(t) x1 + a12(t) x2

x ′2 = a21(t) x1 + a22(t) x2.
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n × n systems of linear differential equations.

Example

Find x1(t), x2(t) solutions of the 2× 2,
constant coefficients, homogeneous system

x ′1 = x1 − x2,

x ′2 = −x1 + x2.

Solution: Add up the equations, and subtract the equations,

(x1 + x2)
′ = 0, (x1 − x2)

′ = 2(x1 − x2).

Introduce the unknowns v = x1 + x2, w = x1 − x2, then

v ′ = 0 ⇒ v = c1,

w ′ = 2w ⇒ w = c2e
2t .

Back to x1 and x2: x1 =
1

2
(v + w), x2 =

1

2
(v − w).

We conclude: x1(t) =
1

2
(c1 + c2e

2t), x2(t) =
1

2
(c1 − c2e

2t).
C
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Systems of linear differential equations (Sect. 5.1).

I n × n systems of linear differential equations.

I Second order equations and first order systems.

I Main concepts from Linear Algebra.



Second order equations and first order systems.
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Second order equations and first order systems.

Example

Express as a first order system the equation

y ′′ + 2y ′ + 2y = sin(at).

Solution: Introduce the new unknowns

x1 = y , x2 = y ′ ⇒ x ′1 = x2.

Then, the differential equation can be written as

x ′2 + 2x2 + 2x1 = sin(at).

We conclude that
x ′1 = x2.

x ′2 = −2x1 − 2x2 + sin(at). C
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Second order equations and first order systems.

Remark: Systems of first order equations can, sometimes, be
transformed into a second order single equation.

Example

Express as a single second order equation
the 2× 2 system and solve it,

x ′1 = −x1 + 3x2,

x ′2 = x1 − x2.

Solution: Compute x1 from the second equation: x1 = x ′2 + x2.
Introduce this expression into the first equation,

(x ′2 + x2)
′ = −(x ′2 + x2) + 3x2,

x ′′2 + x ′2 = −x ′2 − x2 + 3x2,

x ′′2 + 2x ′2 − 2x2 = 0.
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Solution: Recall: x ′′2 + 2x ′2 − 2x2 = 0.

r2+2r−2 = 0 ⇒ r± =
1

2

[
−2±

√
4 + 8

]
⇒ r± = −1±

√
3.

Therefore, x2 = c1 er+ t + c2 er− t . Since x1 = x ′2 + x2,

x1 =
(
c1r+ er+ t + c2r− er− t

)
+

(
c1 er+ t + c2 er− t

)
,

We conclude: x1 = c1(1 + r+) er+ t + c2(1 + r−) er− t . C
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We conclude: x1 = c1(1 + r+) er+ t + c2(1 + r−) er− t . C



Systems of linear differential equations (Sect. 5.1).

I n × n systems of linear differential equations.

I Second order equations and first order systems.

I Main concepts from Linear Algebra.



Main concepts from Linear Algebra.

Remark: Ideas from Linear
Algebra are useful to study
systems of linear differential
equations.

We review:

I Matrices m × n.

I Matrix operations.

I n-vectors, dot product.

I matrix-vector product.

Definition
An m × n matrix, A, is an array of numbers

A =

a11 · · · a1n
...

...
am1 · · · amn

 ,
m rows,

n columns.

where aij ∈ C and i = 1, · · · ,m, and j = 1, · · · , n. An n × n
matrix is called a square matrix.
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Main concepts from Linear Algebra.

Example

(a) 2× 2 matrix: A =

[
1 2
3 4

]
.

(b) 2× 3 matrix: A =

[
1 2 3
4 5 6

]
.

(c) 3× 2 matrix: A =

1 2
3 4
5 6

.

(d) 2× 2 complex-valued matrix: A =

[
1 + i 2− i

3 4i

]
.

(e) The coefficients of a linear system can be grouped in a matrix,

x ′1 = −x1 + 3x2

x ′2 = x1 − x2

}
⇒ A =

[
−1 3
1 −1

]
.
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Main concepts from Linear Algebra.

Remark: An m × 1 matrix is called an m-vector.

Definition

An m-vector, v, is the array of numbers v =

v1
...

vm

, where the

vector components vi ∈ C, with i = 1, · · · ,m.

Example

The unknowns of a 2× 2 linear system can be grouped in a
2-vector, for example,

x ′1 = −x1 + 3x2

x ′2 = x1 − x2

}
⇒ x =

[
x1

x2

]
.
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Main concepts from Linear Algebra.

Remark: We present only examples of matrix operations.

Example

Consider a 2× 3 matrix A =

[
1 2 + i −1 + 2i
3i 2 1

]
.

(a) A-transpose: Interchange rows with columns:

AT =

 1 3i
2 + i 2
−1 + 2i 1

 . Notice that:
(
AT

)T
= A.

(b) A-conjugate: Conjugate every matrix coefficient:

A =

[
1 2− i −1− 2i
−3i 2 1

]
. Notice that:

(
A

)
= A.

Matrix A is real iff A = A. Matrix A is imaginary iff A = −A.



Main concepts from Linear Algebra.

Remark: We present only examples of matrix operations.

Example

Consider a 2× 3 matrix A =

[
1 2 + i −1 + 2i
3i 2 1

]
.

(a) A-transpose: Interchange rows with columns:

AT =

 1 3i
2 + i 2
−1 + 2i 1

 . Notice that:
(
AT

)T
= A.

(b) A-conjugate: Conjugate every matrix coefficient:

A =

[
1 2− i −1− 2i
−3i 2 1

]
. Notice that:

(
A

)
= A.

Matrix A is real iff A = A. Matrix A is imaginary iff A = −A.



Main concepts from Linear Algebra.

Remark: We present only examples of matrix operations.

Example

Consider a 2× 3 matrix A =

[
1 2 + i −1 + 2i
3i 2 1

]
.

(a) A-transpose: Interchange rows with columns:

AT =

 1 3i
2 + i 2
−1 + 2i 1

 . Notice that:
(
AT

)T
= A.

(b) A-conjugate: Conjugate every matrix coefficient:

A =

[
1 2− i −1− 2i
−3i 2 1

]
. Notice that:

(
A

)
= A.

Matrix A is real iff A = A. Matrix A is imaginary iff A = −A.



Main concepts from Linear Algebra.

Remark: We present only examples of matrix operations.

Example

Consider a 2× 3 matrix A =

[
1 2 + i −1 + 2i
3i 2 1

]
.

(a) A-transpose: Interchange rows with columns:

AT =

 1 3i
2 + i 2
−1 + 2i 1

 .

Notice that:
(
AT

)T
= A.

(b) A-conjugate: Conjugate every matrix coefficient:

A =

[
1 2− i −1− 2i
−3i 2 1

]
. Notice that:

(
A

)
= A.

Matrix A is real iff A = A. Matrix A is imaginary iff A = −A.



Main concepts from Linear Algebra.

Remark: We present only examples of matrix operations.

Example

Consider a 2× 3 matrix A =

[
1 2 + i −1 + 2i
3i 2 1

]
.

(a) A-transpose: Interchange rows with columns:

AT =

 1 3i
2 + i 2
−1 + 2i 1

 . Notice that:
(
AT

)T
= A.

(b) A-conjugate: Conjugate every matrix coefficient:

A =

[
1 2− i −1− 2i
−3i 2 1

]
. Notice that:

(
A

)
= A.

Matrix A is real iff A = A. Matrix A is imaginary iff A = −A.



Main concepts from Linear Algebra.

Remark: We present only examples of matrix operations.

Example

Consider a 2× 3 matrix A =

[
1 2 + i −1 + 2i
3i 2 1

]
.

(a) A-transpose: Interchange rows with columns:

AT =

 1 3i
2 + i 2
−1 + 2i 1

 . Notice that:
(
AT

)T
= A.

(b) A-conjugate: Conjugate every matrix coefficient:

A =

[
1 2− i −1− 2i
−3i 2 1

]
. Notice that:

(
A

)
= A.

Matrix A is real iff A = A. Matrix A is imaginary iff A = −A.



Main concepts from Linear Algebra.

Remark: We present only examples of matrix operations.

Example

Consider a 2× 3 matrix A =

[
1 2 + i −1 + 2i
3i 2 1

]
.

(a) A-transpose: Interchange rows with columns:

AT =

 1 3i
2 + i 2
−1 + 2i 1

 . Notice that:
(
AT

)T
= A.

(b) A-conjugate: Conjugate every matrix coefficient:

A =

[
1 2− i −1− 2i
−3i 2 1

]
.

Notice that:
(
A

)
= A.

Matrix A is real iff A = A. Matrix A is imaginary iff A = −A.



Main concepts from Linear Algebra.

Remark: We present only examples of matrix operations.

Example

Consider a 2× 3 matrix A =

[
1 2 + i −1 + 2i
3i 2 1

]
.

(a) A-transpose: Interchange rows with columns:

AT =

 1 3i
2 + i 2
−1 + 2i 1

 . Notice that:
(
AT

)T
= A.

(b) A-conjugate: Conjugate every matrix coefficient:

A =

[
1 2− i −1− 2i
−3i 2 1

]
. Notice that:

(
A

)
= A.

Matrix A is real iff A = A. Matrix A is imaginary iff A = −A.



Main concepts from Linear Algebra.

Remark: We present only examples of matrix operations.

Example

Consider a 2× 3 matrix A =

[
1 2 + i −1 + 2i
3i 2 1

]
.

(a) A-transpose: Interchange rows with columns:

AT =

 1 3i
2 + i 2
−1 + 2i 1

 . Notice that:
(
AT

)T
= A.

(b) A-conjugate: Conjugate every matrix coefficient:

A =

[
1 2− i −1− 2i
−3i 2 1

]
. Notice that:

(
A

)
= A.

Matrix A is real iff A = A.

Matrix A is imaginary iff A = −A.



Main concepts from Linear Algebra.

Remark: We present only examples of matrix operations.

Example

Consider a 2× 3 matrix A =

[
1 2 + i −1 + 2i
3i 2 1

]
.

(a) A-transpose: Interchange rows with columns:

AT =

 1 3i
2 + i 2
−1 + 2i 1

 . Notice that:
(
AT

)T
= A.

(b) A-conjugate: Conjugate every matrix coefficient:

A =

[
1 2− i −1− 2i
−3i 2 1

]
. Notice that:

(
A

)
= A.

Matrix A is real iff A = A. Matrix A is imaginary iff A = −A.



Main concepts from Linear Algebra.

Example

Consider a 2× 3 matrix A =

[
1 2 + i −1 + 2i
3i 2 1

]
.

(a) A-adjoint: Conjugate and transpose:

A∗ =

 1 −3i
2− i 2
−1− 2i 1

 . Notice that:
(
A∗

)∗
= A.

(b) Addition of two m × n matrices is performed component-wise:[
1 2
3 4

]
+

[
2 3
5 1

]
=

[
(1 + 2) (2 + 3)
(3 + 5) (4 + 1)

]
=

[
3 5
8 5

]
.

The addition

[
1 2
3 4

]
+

[
1 2 3
4 5 6

]
is not defined.
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Main concepts from Linear Algebra.

Example

(a) Matrix multiplication.

The matrix sizes is important:

A
m × n

times B
n × `

defines AB
m × `

Example: A is 2× 2, B is 2× 3, so AB is 2× 3:

AB =

[
4 3
2 1

] [
1 2 3
4 5 6

]
=

[
16 23 30
6 9 12

]
.

Notice B is 2× 3, A is 2× 2, so BA is not defined.

BA =

[
1 2 3
4 5 6

] [
4 3
2 1

]
not defined.
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Main concepts from Linear Algebra.

Remark: The matrix product is not commutative, that is, in
general holds AB 6= BA.

Example

Find AB and BA for A =

[
2 −1
−1 2

]
and B =

[
3 0
2 −1

]
.

Solution:

AB =

[
2 −1
−1 2

] [
3 0
2 −1

]
=

[
(6− 2) (0 + 1)

(−3 + 4) (0− 2)

]
=

[
4 1
1 −2

]
.

BA =

[
3 0
2 −1

] [
2 −1
−1 2

]
=

[
(6 + 0) (−3 + 0)
(4 + 1) (−2− 2)

]
=

[
6 −3
5 −4

]
.

So AB 6= BA. C
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Main concepts from Linear Algebra.

Remark: There exist matrices A 6= 0 and B 6= 0 with AB = 0.

Example

Find AB for A =

[
1 −1
−1 1

]
and B =

[
1 −1
1 −1

]
.

Solution:

AB =

[
1 −1
−1 1

] [
1 −1
1 −1

]
=

[
(1− 1) (−1 + 1)

(−1 + 1) (1− 1)

]
=

[
0 0
0 0

]
.

C

Recall: If a, b ∈ R and ab = 0, then either a = 0 or b = 0.

We have just shown that this statement is not true for matrices.
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