Second order linear ODE (Sect. 2.2).

- Review: Second order linear differential equations.
- Idea: Soving constant coefficients equations.
- The characteristic equation.
- Solution formulas for constant coefficients equations.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

Given functions a_1 , a_0 , $b : \mathbb{R} \to \mathbb{R}$, the differential equation in the unknown function $y : \mathbb{R} \to \mathbb{R}$ given by

 $y'' + a_1(t) y' + a_0(t) y = b(t)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ のへぐ

is called a second order linear differential equation.

Definition

Given functions a_1 , a_0 , $b : \mathbb{R} \to \mathbb{R}$, the differential equation in the unknown function $y : \mathbb{R} \to \mathbb{R}$ given by

 $y'' + a_1(t) y' + a_0(t) y = b(t)$

is called a *second order linear* differential equation. If b = 0, the equation is called *homogeneous*.

Definition

Given functions a_1 , a_0 , $b : \mathbb{R} \to \mathbb{R}$, the differential equation in the unknown function $y : \mathbb{R} \to \mathbb{R}$ given by

 $y'' + a_1(t) y' + a_0(t) y = b(t)$

is called a *second order linear* differential equation. If b = 0, the equation is called *homogeneous*. If the coefficients a_1 , $a_2 \in \mathbb{R}$ are constants, the equation is called of *constant coefficients*.

Definition

Given functions a_1 , a_0 , $b : \mathbb{R} \to \mathbb{R}$, the differential equation in the unknown function $y : \mathbb{R} \to \mathbb{R}$ given by

 $y'' + a_1(t) y' + a_0(t) y = b(t)$

is called a *second order linear* differential equation. If b = 0, the equation is called *homogeneous*. If the coefficients a_1 , $a_2 \in \mathbb{R}$ are constants, the equation is called of *constant coefficients*.

Theorem (Superposition property)

If the functions y_1 and y_2 are solutions to the homogeneous linear equation

$$y'' + a_1(t) y' + a_0(t) y = 0,$$

then the linear combination $c_1y_1(t) + c_2y_2(t)$ is also a solution for any constants $c_1, c_2 \in \mathbb{R}$.

Second order linear ODE (Sect. 2.2).

- Review: Second order linear differential equations.
- ► Idea: Soving constant coefficients equations.
- The characteristic equation.
- Solution formulas for constant coefficients equations.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations.

・ロト・日本・モート モー うへで

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Solution: We look for solutions proportional to exponentials e^{rt} ,

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Solution: We look for solutions proportional to exponentials e^{rt} , for an appropriate constant $r \in \mathbb{R}$,

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Solution: We look for solutions proportional to exponentials e^{rt} , for an appropriate constant $r \in \mathbb{R}$, since the exponential can be canceled out from the equation.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Solution: We look for solutions proportional to exponentials e^{rt} , for an appropriate constant $r \in \mathbb{R}$, since the exponential can be canceled out from the equation.

If
$$y(t) = e^{rt}$$
, then $y'(t) =$

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Solution: We look for solutions proportional to exponentials e^{rt} , for an appropriate constant $r \in \mathbb{R}$, since the exponential can be canceled out from the equation.

If
$$y(t) = e^{rt}$$
, then $y'(t) = re^{rt}$,

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Solution: We look for solutions proportional to exponentials e^{rt} , for an appropriate constant $r \in \mathbb{R}$, since the exponential can be canceled out from the equation.

If $y(t) = e^{rt}$, then $y'(t) = re^{rt}$, and y''(t) =

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Solution: We look for solutions proportional to exponentials e^{rt} , for an appropriate constant $r \in \mathbb{R}$, since the exponential can be canceled out from the equation.

If $y(t) = e^{rt}$, then $y'(t) = re^{rt}$, and $y''(t) = r^2 e^{rt}$.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Solution: We look for solutions proportional to exponentials e^{rt} , for an appropriate constant $r \in \mathbb{R}$, since the exponential can be canceled out from the equation.

If $y(t) = e^{rt}$, then $y'(t) = re^{rt}$, and $y''(t) = r^2 e^{rt}$. Hence

$$(r^2 + 5r + 6)e^{rt} = 0$$

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Solution: We look for solutions proportional to exponentials e^{rt} , for an appropriate constant $r \in \mathbb{R}$, since the exponential can be canceled out from the equation.

If $y(t) = e^{rt}$, then $y'(t) = re^{rt}$, and $y''(t) = r^2 e^{rt}$. Hence

$$(r^2+5r+6)e^{rt}=0 \quad \Leftrightarrow \quad r^2+5r+6=0.$$

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Solution: We look for solutions proportional to exponentials e^{rt} , for an appropriate constant $r \in \mathbb{R}$, since the exponential can be canceled out from the equation.

If $y(t) = e^{rt}$, then $y'(t) = re^{rt}$, and $y''(t) = r^2 e^{rt}$. Hence

$$(r^2+5r+6)e^{rt}=0 \quad \Leftrightarrow \quad r^2+5r+6=0.$$

That is, r must be a root of the polynomial $p(r) = r^2 + 5r + 6$.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Solution: We look for solutions proportional to exponentials e^{rt} , for an appropriate constant $r \in \mathbb{R}$, since the exponential can be canceled out from the equation.

If
$$y(t) = e^{rt}$$
, then $y'(t) = re^{rt}$, and $y''(t) = r^2 e^{rt}$. Hence

$$(r^2+5r+6)e^{rt}=0 \quad \Leftrightarrow \quad r^2+5r+6=0.$$

That is, r must be a root of the polynomial $p(r) = r^2 + 5r + 6$.

This polynomial is called the characteristic polynomial of the differential equation.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Solution: Recall: $p(r) = r^2 + 5r + 6$.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Solution: Recall: $p(r) = r^2 + 5r + 6$.

The roots of the characteristic polynomial are

$$r = \frac{1}{2} \left(-5 \pm \sqrt{25 - 24} \right)$$

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Solution: Recall: $p(r) = r^2 + 5r + 6$.

The roots of the characteristic polynomial are

$$r = \frac{1}{2} \left(-5 \pm \sqrt{25 - 24} \right) = \frac{1}{2} \left(-5 \pm 1 \right)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Solution: Recall: $p(r) = r^2 + 5r + 6$.

The roots of the characteristic polynomial are

$$r = \frac{1}{2} \left(-5 \pm \sqrt{25 - 24} \right) = \frac{1}{2} \left(-5 \pm 1 \right) \quad \Rightarrow \quad \begin{cases} r_1 = -2, \\ r_2 = -3. \end{cases}$$

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Solution: Recall: $p(r) = r^2 + 5r + 6$.

The roots of the characteristic polynomial are

$$r = \frac{1}{2} \left(-5 \pm \sqrt{25 - 24} \right) = \frac{1}{2} \left(-5 \pm 1 \right) \quad \Rightarrow \quad \begin{cases} r_1 = -2, \\ r_2 = -3. \end{cases}$$

Therefore, we have found two solutions to the ODE,

$$y_1(t) = e^{-2t}, \qquad y_2(t) = e^{-3t}.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Solution: Recall: $p(r) = r^2 + 5r + 6$.

The roots of the characteristic polynomial are

$$r = \frac{1}{2} \left(-5 \pm \sqrt{25 - 24} \right) = \frac{1}{2} \left(-5 \pm 1 \right) \quad \Rightarrow \quad \begin{cases} r_1 = -2, \\ r_2 = -3. \end{cases}$$

Therefore, we have found two solutions to the ODE,

$$y_1(t) = e^{-2t}, \qquad y_2(t) = e^{-3t}.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Their superposition provides infinitely many solutions,

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Solution: Recall: $p(r) = r^2 + 5r + 6$.

The roots of the characteristic polynomial are

$$r = \frac{1}{2} \left(-5 \pm \sqrt{25 - 24} \right) = \frac{1}{2} \left(-5 \pm 1 \right) \quad \Rightarrow \quad \begin{cases} r_1 = -2, \\ r_2 = -3. \end{cases}$$

Therefore, we have found two solutions to the ODE,

$$y_1(t) = e^{-2t}, \qquad y_2(t) = e^{-3t}.$$

Their superposition provides infinitely many solutions,

$$y(t)=c_1e^{-2t}+c_2e^{-3t}, \qquad c_1,c_2\in\mathbb{R}.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Summary: The differential equation y'' + 5y' + 6y = 0 has infinitely many solutions,

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}, \qquad c_1, c_2 \in \mathbb{R}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Summary: The differential equation y'' + 5y' + 6y = 0 has infinitely many solutions,

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}, \qquad c_1, c_2 \in \mathbb{R}.$$

Remarks:

There are two free constants in the solution found above.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Summary: The differential equation y'' + 5y' + 6y = 0 has infinitely many solutions,

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}, \qquad c_1, c_2 \in \mathbb{R}.$$

Remarks:

- There are two free constants in the solution found above.
- The ODE above is second order, so two integrations must be done to find the solution. This explain the origin of the two free constant in the solution.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Summary: The differential equation y'' + 5y' + 6y = 0 has infinitely many solutions,

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}, \qquad c_1, c_2 \in \mathbb{R}.$$

Remarks:

- There are two free constants in the solution found above.
- The ODE above is second order, so two integrations must be done to find the solution. This explain the origin of the two free constant in the solution.
- An IVP for a second order differential equation will have a unique solution if the IVP contains two initial conditions.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Second order linear ODE (Sect. 2.2).

- Review: Second order linear differential equations.
- Idea: Soving constant coefficients equations.
- ► The characteristic equation.
- Solution formulas for constant coefficients equations.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

Given a second order linear homogeneous differential equation with constant coefficients

$$y'' + a_1 y' + a_0 = 0, (1)$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

the characteristic polynomial and the characteristic equation associated with the differential equation in (1) are, respectively,

$$p(r) = r^2 + a_1 r + a_0, \qquad p(r) = 0.$$

Definition

Given a second order linear homogeneous differential equation with constant coefficients

$$y'' + a_1 y' + a_0 = 0, (1)$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

the characteristic polynomial and the characteristic equation associated with the differential equation in (1) are, respectively,

$$p(r) = r^2 + a_1 r + a_0, \qquad p(r) = 0.$$

Remark: If r_1 , r_2 are the solutions of the characteristic equation and c_1 , c_2 are constants, then we will show that the general solution of Eq. (1) is given by

$$y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$$

Example

Find the solution y of the initial value problem

$$y'' + 5y' + 6 = 0,$$
 $y(0) = 1,$ $y'(0) = -1.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Find the solution y of the initial value problem

$$y'' + 5y' + 6 = 0,$$
 $y(0) = 1,$ $y'(0) = -1.$

Solution: A solution of the differential equation above is

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Find the solution y of the initial value problem

$$y'' + 5y' + 6 = 0,$$
 $y(0) = 1,$ $y'(0) = -1.$

Solution: A solution of the differential equation above is

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We now find the constants c_1 and c_2 that satisfy the initial conditions above:
Example

Find the solution y of the initial value problem

$$y'' + 5y' + 6 = 0,$$
 $y(0) = 1,$ $y'(0) = -1.$

Solution: A solution of the differential equation above is

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}.$$

We now find the constants c_1 and c_2 that satisfy the initial conditions above:

$$1 = y(0) = c_1 + c_2,$$

Example

Find the solution y of the initial value problem

$$y'' + 5y' + 6 = 0,$$
 $y(0) = 1,$ $y'(0) = -1.$

Solution: A solution of the differential equation above is

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}.$$

We now find the constants c_1 and c_2 that satisfy the initial conditions above:

$$1 = y(0) = c_1 + c_2, \qquad -1 = y'(0) = -2c_1 - 3c_2.$$

Example

Find the solution y of the initial value problem

$$y'' + 5y' + 6 = 0,$$
 $y(0) = 1,$ $y'(0) = -1.$

Solution: A solution of the differential equation above is

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}.$$

We now find the constants c_1 and c_2 that satisfy the initial conditions above:

$$1 = y(0) = c_1 + c_2,$$
 $-1 = y'(0) = -2c_1 - 3c_2.$
 $c_1 = 1 - c_2$

Example

Find the solution y of the initial value problem

$$y'' + 5y' + 6 = 0,$$
 $y(0) = 1,$ $y'(0) = -1.$

Solution: A solution of the differential equation above is

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}.$$

We now find the constants c_1 and c_2 that satisfy the initial conditions above:

$$1 = y(0) = c_1 + c_2, \qquad -1 = y'(0) = -2c_1 - 3c_2.$$

 $c_1 = 1 - c_2 \Rightarrow 1 = 2(1 - c_2) + 3c_2$

Example

Find the solution y of the initial value problem

$$y'' + 5y' + 6 = 0,$$
 $y(0) = 1,$ $y'(0) = -1.$

Solution: A solution of the differential equation above is

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}.$$

We now find the constants c_1 and c_2 that satisfy the initial conditions above:

$$1 = y(0) = c_1 + c_2, \qquad -1 = y'(0) = -2c_1 - 3c_2.$$

 $c_1 = 1 - c_2 \Rightarrow 1 = 2(1 - c_2) + 3c_2 \Rightarrow c_2 = -1$

Example

Find the solution y of the initial value problem

$$y'' + 5y' + 6 = 0,$$
 $y(0) = 1,$ $y'(0) = -1.$

Solution: A solution of the differential equation above is

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}.$$

We now find the constants c_1 and c_2 that satisfy the initial conditions above:

$$1 = y(0) = c_1 + c_2, \qquad -1 = y'(0) = -2c_1 - 3c_2.$$

 $c_1 = 1 - c_2 \Rightarrow 1 = 2(1 - c_2) + 3c_2 \Rightarrow c_2 = -1 \Rightarrow c_1 = 2.$

Example

Find the solution y of the initial value problem

$$y'' + 5y' + 6 = 0,$$
 $y(0) = 1,$ $y'(0) = -1.$

Solution: A solution of the differential equation above is

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}.$$

We now find the constants c_1 and c_2 that satisfy the initial conditions above:

$$egin{aligned} 1 &= y(0) = c_1 + c_2, & -1 = y'(0) = -2c_1 - 3c_2. \ c_1 &= 1 - c_2 \Rightarrow 1 = 2(1 - c_2) + 3c_2 \Rightarrow c_2 = -1 \Rightarrow c_1 = 2. \end{aligned}$$

Therefore, the unique solution to the initial value problem is

$$y(t) = 2e^{-2t} - e^{-3t}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Find the general solution y of the differential equation

$$2y^{\prime\prime}-3y^{\prime}+y=0.$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Example

Find the general solution y of the differential equation

$$2y^{\prime\prime}-3y^{\prime}+y=0.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Solution: We look for every solution of the form $y(t) = e^{rt}$,

Example

Find the general solution y of the differential equation

$$2y^{\prime\prime}-3y^{\prime}+y=0.$$

Solution: We look for every solution of the form $y(t) = e^{rt}$, where r is a solution of the characteristic equation

$$2r^2 - 3r + 1 = 0$$

Example

Find the general solution y of the differential equation

$$2y^{\prime\prime}-3y^{\prime}+y=0.$$

Solution: We look for every solution of the form $y(t) = e^{rt}$, where r is a solution of the characteristic equation

$$2r^2 - 3r + 1 = 0 \Rightarrow r = \frac{1}{4} (3 \pm \sqrt{9 - 8})$$

Example

Find the general solution y of the differential equation

$$2y^{\prime\prime}-3y^{\prime}+y=0.$$

Solution: We look for every solution of the form $y(t) = e^{rt}$, where r is a solution of the characteristic equation

$$2r^2 - 3r + 1 = 0 \Rightarrow r = \frac{1}{4}(3 \pm \sqrt{9-8}) \Rightarrow \begin{cases} r_1 = 1, \\ r_2 = \frac{1}{2}. \end{cases}$$

Example

Find the general solution y of the differential equation

$$2y^{\prime\prime}-3y^{\prime}+y=0.$$

Solution: We look for every solution of the form $y(t) = e^{rt}$, where r is a solution of the characteristic equation

$$2r^2 - 3r + 1 = 0 \Rightarrow r = \frac{1}{4}(3 \pm \sqrt{9-8}) \Rightarrow \begin{cases} r_1 = 1, \\ r_2 = \frac{1}{2}. \end{cases}$$

Therefore, the general solution of the equation above is

$$y(t) = c_1 e^t + c_2 e^{t/2}$$

 \triangleleft

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where c_1 , c_2 are arbitrary constants.

Second order linear ODE (Sect. 2.2).

- Review: Second order linear differential equations.
- Idea: Soving constant coefficients equations.
- The characteristic equation.
- ► Solution formulas for constant coefficients equations.

Theorem (Constant coefficients)

Given real constants a_1 , a_0 , consider the homogeneous, linear differential equation on the unknown $y : \mathbb{R} \to \mathbb{R}$ given by

$$y'' + a_1 y' + a_0 y = 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Constant coefficients)

Given real constants a_1 , a_0 , consider the homogeneous, linear differential equation on the unknown $y : \mathbb{R} \to \mathbb{R}$ given by

$$y'' + a_1 y' + a_0 y = 0.$$

Let r_+ , r_- be the roots of the characteristic polynomial $p(r) = r^2 + a_1 r + a_0$,

Theorem (Constant coefficients)

Given real constants a_1 , a_0 , consider the homogeneous, linear differential equation on the unknown $y : \mathbb{R} \to \mathbb{R}$ given by

 $y'' + a_1 y' + a_0 y = 0.$

Let r_+ , r_- be the roots of the characteristic polynomial $p(r) = r^2 + a_1r + a_0$, and let c_0 , c_1 be arbitrary constants.

Theorem (Constant coefficients)

Given real constants a_1 , a_0 , consider the homogeneous, linear differential equation on the unknown $y : \mathbb{R} \to \mathbb{R}$ given by

 $y'' + a_1 y' + a_0 y = 0.$

Let r_+ , r_- be the roots of the characteristic polynomial $p(r) = r^2 + a_1 r + a_0$, and let c_0 , c_1 be arbitrary constants. Then, the general solution of the differential equation is given by: (a) If $r_+ \neq r_-$, real or complex, then $y(t) = c_0 e^{r_+ t} + c_1 e^{r_- t}$.

Theorem (Constant coefficients)

Given real constants a_1 , a_0 , consider the homogeneous, linear differential equation on the unknown $y : \mathbb{R} \to \mathbb{R}$ given by

 $y'' + a_1 y' + a_0 y = 0.$

Let r_+ , r_- be the roots of the characteristic polynomial $p(r) = r^2 + a_1 r + a_0$, and let c_0 , c_1 be arbitrary constants. Then, the general solution of the differential eqation is given by: (a) If $r_+ \neq r_-$, real or complex, then $y(t) = c_0 e^{r_+ t} + c_1 e^{r_- t}$. (b) If $r_+ = r_- = \hat{r} \in \mathbb{R}$, then is $y(t) = c_0 e^{\hat{r}t} + c_1 t e^{\hat{r}t}$.

Theorem (Constant coefficients)

Given real constants a_1 , a_0 , consider the homogeneous, linear differential equation on the unknown $y : \mathbb{R} \to \mathbb{R}$ given by

 $y'' + a_1 y' + a_0 y = 0.$

Let r_+ , r_- be the roots of the characteristic polynomial $p(r) = r^2 + a_1 r + a_0$, and let c_0 , c_1 be arbitrary constants. Then, the general solution of the differential eqation is given by: (a) If $r_+ \neq r_-$, real or complex, then $y(t) = c_0 e^{r_+ t} + c_1 e^{r_- t}$. (b) If $r_+ = r_- = \hat{r} \in \mathbb{R}$, then is $y(t) = c_0 e^{\hat{r}t} + c_1 t e^{\hat{r}t}$.

Furthermore, given real constants t_0 , y_0 and y_1 , there is a unique solution to the initial value problem

 $y'' + a_1 y' + a_0 y = 0,$ $y(t_0) = y_0,$ $y'(t_0) = y_1.$

Second order linear homogeneous ODE (Sect. 2.3).

- Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.
- Characteristic polynomial with complex roots.
 - Two main sets of fundamental solutions.
 - Review of Complex numbers.
 - A real-valued fundamental and general solutions.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Application: The RLC circuit.

Theorem (Constant coefficients)

Given real constants a_1 , a_0 , consider the homogeneous, linear differential equation on the unknown $y : \mathbb{R} \to \mathbb{R}$ given by

 $y'' + a_1 y' + a_0 y = 0.$

Let r_+ , r_- be the roots of the characteristic polynomial $p(r) = r^2 + a_1 r + a_0$, and let c_0 , c_1 be arbitrary constants. Then, the general solution y of the differential equation is given by (a) If $r_+ \neq r_-$, real or complex, then $y(t) = c_1 e^{r_+ t} + c_2 e^{r_- t}$. (b) If $r_+ = r_- = \hat{r} \in \mathbb{R}$, then $y(t) = c_1 e^{\hat{r}t} + c_2 t e^{\hat{r}t}$.

Furthermore, given real constants t_0 , y_1 and y_2 , there is a unique solution to the initial value problem

$$y'' + a_1 y' + a_0 y = 0,$$
 $y(t_0) = y_1,$ $y'(t_0) = y_2.$

Example

Find the general solution of the equation y'' - y' - 6y = 0.

(ロ)、(型)、(E)、(E)、 E、 の(の)

Example

Find the general solution of the equation y'' - y' - 6y = 0.

Solution: Since solutions have the form e^{rt} , we need to find the roots of the characteristic polynomial $p(r) = r^2 - r - 6$,

Example

Find the general solution of the equation y'' - y' - 6y = 0.

Solution: Since solutions have the form e^{rt} , we need to find the roots of the characteristic polynomial $p(r) = r^2 - r - 6$, that is,

$$r_{\pm} = \frac{1}{2} \left(1 \pm \sqrt{1+24} \right)$$

Example

Find the general solution of the equation y'' - y' - 6y = 0.

Solution: Since solutions have the form e^{rt} , we need to find the roots of the characteristic polynomial $p(r) = r^2 - r - 6$, that is,

$$r_{\pm} = rac{1}{2} \left(1 \pm \sqrt{1+24}
ight) = rac{1}{2} (1 \pm 5)$$

Example

Find the general solution of the equation y'' - y' - 6y = 0.

Solution: Since solutions have the form e^{rt} , we need to find the roots of the characteristic polynomial $p(r) = r^2 - r - 6$, that is,

$$r_{\pm} = rac{1}{2} \left(1 \pm \sqrt{1+24}
ight) = rac{1}{2} (1 \pm 5) \quad \Rightarrow \quad r_{+} = 3, \quad r_{-} = -2.$$

Example

Find the general solution of the equation y'' - y' - 6y = 0.

Solution: Since solutions have the form e^{rt} , we need to find the roots of the characteristic polynomial $p(r) = r^2 - r - 6$, that is,

$$r_{\pm} = rac{1}{2} \left(1 \pm \sqrt{1+24} \right) = rac{1}{2} (1 \pm 5) \quad \Rightarrow \quad r_{+} = 3, \quad r_{-} = -2.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

So, r_{\pm} are real-valued.

Example

Find the general solution of the equation y'' - y' - 6y = 0.

Solution: Since solutions have the form e^{rt} , we need to find the roots of the characteristic polynomial $p(r) = r^2 - r - 6$, that is,

$$r_{\pm} = rac{1}{2} \left(1 \pm \sqrt{1+24} \right) = rac{1}{2} (1 \pm 5) \quad \Rightarrow \quad r_{+} = 3, \quad r_{-} = -2.$$

So, r_{\pm} are real-valued. A fundamental solution set is formed by

$$y_1(t) = e^{3t}, \qquad y_2(t) = e^{-2t}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find the general solution of the equation y'' - y' - 6y = 0.

Solution: Since solutions have the form e^{rt} , we need to find the roots of the characteristic polynomial $p(r) = r^2 - r - 6$, that is,

$$r_{\pm} = rac{1}{2} \left(1 \pm \sqrt{1+24} \right) = rac{1}{2} (1 \pm 5) \quad \Rightarrow \quad r_{+} = 3, \quad r_{-} = -2.$$

So, r_{\pm} are real-valued. A fundamental solution set is formed by

$$y_1(t) = e^{3t}, \qquad y_2(t) = e^{-2t}.$$

The general solution of the differential equations is an arbitrary linear combination of the fundamental solutions,

Example

Find the general solution of the equation y'' - y' - 6y = 0.

Solution: Since solutions have the form e^{rt} , we need to find the roots of the characteristic polynomial $p(r) = r^2 - r - 6$, that is,

$$r_{\pm} = rac{1}{2} \left(1 \pm \sqrt{1+24} \right) = rac{1}{2} (1 \pm 5) \quad \Rightarrow \quad r_{+} = 3, \quad r_{-} = -2.$$

So, r_{\pm} are real-valued. A fundamental solution set is formed by

$$y_1(t) = e^{3t}, \qquad y_2(t) = e^{-2t}.$$

The general solution of the differential equations is an arbitrary linear combination of the fundamental solutions, that is,

$$y(t) = c_1 e^{3t} + c_2 e^{-2t}, \qquad c_1, c_2 \in \mathbb{R}.$$

Example

Find the general solution of the equation y'' - y' - 6y = 0.

Solution: Since solutions have the form e^{rt} , we need to find the roots of the characteristic polynomial $p(r) = r^2 - r - 6$, that is,

$$r_{\pm} = rac{1}{2} \left(1 \pm \sqrt{1+24} \right) = rac{1}{2} (1 \pm 5) \quad \Rightarrow \quad r_{+} = 3, \quad r_{-} = -2.$$

So, r_{\pm} are real-valued. A fundamental solution set is formed by

$$y_1(t) = e^{3t}, \qquad y_2(t) = e^{-2t}.$$

The general solution of the differential equations is an arbitrary linear combination of the fundamental solutions, that is,

$$y(t) = c_1 e^{3t} + c_2 e^{-2t}, \qquad c_1, c_2 \in \mathbb{R}.$$

 \triangleleft

Remark: Since $c_1, c_2 \in \mathbb{R}$, then y is real-valued.

Second order linear homogeneous ODE (Sect. 2.3).

- Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.
- ► Characteristic polynomial with complex roots.
 - ► Two main sets of fundamental solutions.
 - Review of Complex numbers.
 - A real-valued fundamental and general solutions.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Application: The RLC circuit.

Two main sets of fundamental solutions.

Example

Find the general solution of the equation y'' - 2y' + 6y = 0.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Two main sets of fundamental solutions.

Example

Find the general solution of the equation y'' - 2y' + 6y = 0.

Solution: We first find the roots of the characteristic polynomial,

- ロ ト - 4 回 ト - 4 □ - 4

 $r^2 - 2r + 6 = 0$

Two main sets of fundamental solutions.

Example

Find the general solution of the equation y'' - 2y' + 6y = 0.

Solution: We first find the roots of the characteristic polynomial,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

$$r^2 - 2r + 6 = 0 \quad \Rightarrow \quad r_{\pm} = \frac{1}{2} \left(2 \pm \sqrt{4 - 24} \right)$$
Example

Find the general solution of the equation y'' - 2y' + 6y = 0.

Solution: We first find the roots of the characteristic polynomial,

$$r^2-2r+6=0$$
 \Rightarrow $r_{\pm}=rac{1}{2}\left(2\pm\sqrt{4-24}
ight)$ \Rightarrow $r_{\pm}=1\pm i\sqrt{5}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Find the general solution of the equation y'' - 2y' + 6y = 0.

Solution: We first find the roots of the characteristic polynomial,

$$r^2-2r+6=0$$
 \Rightarrow $r_{\pm}=rac{1}{2}\left(2\pm\sqrt{4-24}
ight)$ \Rightarrow $r_{\pm}=1\pm i\sqrt{5}.$

A fundamental solution set is

$$\tilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \qquad \tilde{y}_2(t) = e^{(1-i\sqrt{5})t}.$$

- ロ ト - 4 回 ト - 4 □ - 4

Example

Find the general solution of the equation y'' - 2y' + 6y = 0.

Solution: We first find the roots of the characteristic polynomial,

$$r^2-2r+6=0$$
 \Rightarrow $r_{\pm}=rac{1}{2}\left(2\pm\sqrt{4-24}
ight)$ \Rightarrow $r_{\pm}=1\pm i\sqrt{5}.$

A fundamental solution set is

$$ilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \qquad ilde{y}_2(t) = e^{(1-i\sqrt{5})t}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

These are complex-valued functions.

Example

Find the general solution of the equation y'' - 2y' + 6y = 0.

Solution: We first find the roots of the characteristic polynomial,

$$r^2-2r+6=0$$
 \Rightarrow $r_{\pm}=rac{1}{2}\left(2\pm\sqrt{4-24}
ight)$ \Rightarrow $r_{\pm}=1\pm i\sqrt{5}.$

A fundamental solution set is

$$ilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \qquad ilde{y}_2(t) = e^{(1-i\sqrt{5})t}.$$

These are complex-valued functions. The general solution is

$$y(t) = ilde{c}_1 e^{(1+i\sqrt{5})t} + ilde{c}_2 e^{(1-i\sqrt{5})t}, \qquad ilde{c}_1, ilde{c}_2 \in \mathbb{C}.$$

Remark:

 The solutions found above include real-valued and complex-valued solutions.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Remark:

- The solutions found above include real-valued and complex-valued solutions.
- Since the differential equation is real-valued, it is usually important in applications to obtain the most general real-valued solution. (See RLC circuit below.)

Remark:

- The solutions found above include real-valued and complex-valued solutions.
- Since the differential equation is real-valued, it is usually important in applications to obtain the most general real-valued solution. (See RLC circuit below.)
- In the expression above it is difficult to take apart real-valued solutions from complex-valued solutions.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark:

- The solutions found above include real-valued and complex-valued solutions.
- Since the differential equation is real-valued, it is usually important in applications to obtain the most general real-valued solution. (See RLC circuit below.)
- In the expression above it is difficult to take apart real-valued solutions from complex-valued solutions.
- In other words: It is not simple to see what values of *c*₁ and *c*₂ make the general solution above to be real-valued.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark:

- The solutions found above include real-valued and complex-valued solutions.
- Since the differential equation is real-valued, it is usually important in applications to obtain the most general real-valued solution. (See RLC circuit below.)
- In the expression above it is difficult to take apart real-valued solutions from complex-valued solutions.
- In other words: It is not simple to see what values of c
 ₁ and c
 ₂ make the general solution above to be real-valued.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

One way to find the real-valued general solution is to find real-valued fundamental solutions.

Second order linear homogeneous ODE (Sect. 2.3).

- Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.
- ► Characteristic polynomial with complex roots.
 - Two main sets of fundamental solutions.
 - **•** Review of Complex numbers.
 - A real-valued fundamental and general solutions.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Application: The RLC circuit.

• Complex numbers have the form z = a + ib, where $i^2 = -1$.

• Complex numbers have the form z = a + ib, where $i^2 = -1$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

• The complex conjugate of z is the number $\overline{z} = a - ib$.

- Complex numbers have the form z = a + ib, where $i^2 = -1$.
- The complex conjugate of z is the number $\overline{z} = a ib$.
- $\operatorname{Re}(z) = a$, $\operatorname{Im}(z) = b$ are the real and imaginary parts of z

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ のへぐ

- Complex numbers have the form z = a + ib, where $i^2 = -1$.
- The complex conjugate of z is the number $\overline{z} = a ib$.
- $\operatorname{Re}(z) = a$, $\operatorname{Im}(z) = b$ are the real and imaginary parts of z

• Hence:
$$\operatorname{Re}(z) = \frac{z+z}{2}$$

- Complex numbers have the form z = a + ib, where $i^2 = -1$.
- The complex conjugate of z is the number $\overline{z} = a ib$.
- $\operatorname{Re}(z) = a$, $\operatorname{Im}(z) = b$ are the real and imaginary parts of z

• Hence: $\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$ and $\operatorname{Im}(z) = \frac{z - \overline{z}}{2i}$

- Complex numbers have the form z = a + ib, where $i^2 = -1$.
- The complex conjugate of z is the number $\overline{z} = a ib$.
- $\operatorname{Re}(z) = a$, $\operatorname{Im}(z) = b$ are the real and imaginary parts of z

• Hence: $\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$ and $\operatorname{Im}(z) = \frac{z - \overline{z}}{2i}$ • $e^{a+ib} = \sum_{n=0}^{\infty} \frac{(a+ib)^n}{n!}$.

- Complex numbers have the form z = a + ib, where $i^2 = -1$.
- The complex conjugate of z is the number $\overline{z} = a ib$.
- $\operatorname{Re}(z) = a$, $\operatorname{Im}(z) = b$ are the real and imaginary parts of z
- Hence: $\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$ and $\operatorname{Im}(z) = \frac{z \overline{z}}{2i}$ • $e^{a+ib} = \sum_{n=0}^{\infty} \frac{(a+ib)^n}{n!}$. In particular holds $e^{a+ib} = e^a e^{ib}$.

- Complex numbers have the form z = a + ib, where $i^2 = -1$.
- The complex conjugate of z is the number $\overline{z} = a ib$.
- $\operatorname{Re}(z) = a$, $\operatorname{Im}(z) = b$ are the real and imaginary parts of z
- Hence: $\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$ and $\operatorname{Im}(z) = \frac{z \overline{z}}{2i}$ • $e^{a+ib} = \sum_{n=0}^{\infty} \frac{(a+ib)^n}{n!}$. In particular holds $e^{a+ib} = e^a e^{ib}$.

• Euler's formula: $e^{ib} = \cos(b) + i\sin(b)$.

- Complex numbers have the form z = a + ib, where $i^2 = -1$.
- The complex conjugate of z is the number $\overline{z} = a ib$.
- $\operatorname{Re}(z) = a$, $\operatorname{Im}(z) = b$ are the real and imaginary parts of z
- Hence: $\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$ and $\operatorname{Im}(z) = \frac{z \overline{z}}{2i}$ • $e^{a+ib} = \sum_{n=0}^{\infty} \frac{(a+ib)^n}{n!}$. In particular holds $e^{a+ib} = e^a e^{ib}$.
- Euler's formula: $e^{ib} = \cos(b) + i\sin(b)$.
- Hence, a complex number of the form e^{a+ib} can be written as

 $e^{a+ib} = e^a \big[\cos(b) + i\sin(b)\big],$

- Complex numbers have the form z = a + ib, where $i^2 = -1$.
- The complex conjugate of z is the number $\overline{z} = a ib$.
- $\operatorname{Re}(z) = a$, $\operatorname{Im}(z) = b$ are the real and imaginary parts of z
- Hence: $\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$ and $\operatorname{Im}(z) = \frac{z \overline{z}}{2i}$ • $e^{a+ib} = \sum_{n=0}^{\infty} \frac{(a+ib)^n}{n!}$. In particular holds $e^{a+ib} = e^a e^{ib}$.
- Euler's formula: $e^{ib} = \cos(b) + i\sin(b)$.
- Hence, a complex number of the form e^{a+ib} can be written as

$$e^{a+ib}=e^aigl[\cos(b)+i\sin(b)igr],\quad e^{a-ib}=e^aigl[\cos(b)-i\sin(b)igr].$$

- Complex numbers have the form z = a + ib, where $i^2 = -1$.
- The complex conjugate of z is the number $\overline{z} = a ib$.
- ▶ $\operatorname{Re}(z) = a$, $\operatorname{Im}(z) = b$ are the real and imaginary parts of z
- Hence: $\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$ and $\operatorname{Im}(z) = \frac{z \overline{z}}{2i}$ • $e^{a+ib} = \sum_{n=0}^{\infty} \frac{(a+ib)^n}{n!}$. In particular holds $e^{a+ib} = e^a e^{ib}$.
- Euler's formula: $e^{ib} = \cos(b) + i\sin(b)$.
- Hence, a complex number of the form e^{a+ib} can be written as

 $e^{a+ib} = e^{a} [\cos(b) + i\sin(b)], \quad e^{a-ib} = e^{a} [\cos(b) - i\sin(b)].$

• From e^{a+ib} and e^{a-ib} we get the real numbers

- Complex numbers have the form z = a + ib, where $i^2 = -1$.
- The complex conjugate of z is the number $\overline{z} = a ib$.
- $\operatorname{Re}(z) = a$, $\operatorname{Im}(z) = b$ are the real and imaginary parts of z
- Hence: $\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$ and $\operatorname{Im}(z) = \frac{z \overline{z}}{2i}$ • $e^{a+ib} = \sum_{n=0}^{\infty} \frac{(a+ib)^n}{n!}$. In particular holds $e^{a+ib} = e^a e^{ib}$.
- Euler's formula: $e^{ib} = \cos(b) + i\sin(b)$.
- Hence, a complex number of the form e^{a+ib} can be written as

$$e^{a+ib}=e^aigl[\cos(b)+i\sin(b)igr],\quad e^{a-ib}=e^aigl[\cos(b)-i\sin(b)igr].$$

• From e^{a+ib} and e^{a-ib} we get the real numbers

$$\frac{1}{2}\left(e^{a+ib}+e^{a-ib}\right)=e^{a}\cos(b),$$

- Complex numbers have the form z = a + ib, where $i^2 = -1$.
- The complex conjugate of z is the number $\overline{z} = a ib$.
- $\operatorname{Re}(z) = a$, $\operatorname{Im}(z) = b$ are the real and imaginary parts of z
- Hence: $\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$ and $\operatorname{Im}(z) = \frac{z \overline{z}}{2i}$ • $e^{a+ib} = \sum_{n=0}^{\infty} \frac{(a+ib)^n}{n!}$. In particular holds $e^{a+ib} = e^a e^{ib}$.
- Euler's formula: $e^{ib} = \cos(b) + i\sin(b)$.
- Hence, a complex number of the form e^{a+ib} can be written as

$$e^{a+ib}=e^aigl[\cos(b)+i\sin(b)igr],\quad e^{a-ib}=e^aigl[\cos(b)-i\sin(b)igr].$$

• From e^{a+ib} and e^{a-ib} we get the real numbers

$$\frac{1}{2}(e^{a+ib}+e^{a-ib})=e^{a}\cos(b), \quad \frac{1}{2i}(e^{a+ib}-e^{a-ib})=e^{a}\sin(b).$$

Theorem (Complex roots)

If the constants a_1 , $a_0 \in \mathbb{R}$ satisfy that $a_1^2 - 4a_0 < 0$, then the characteristic polynomial $p(r) = r^2 + a_1r + a_0$ of the equation

$$y'' + a_1 y' + a_0 y = 0$$
 (2)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

has complex roots $r_+ = \alpha + i\beta$ and $r_- = \alpha - i\beta$, where

$$\alpha = -\frac{a_1}{2}, \qquad \beta = \frac{1}{2}\sqrt{4a_0 - a_1^2}.$$

Furthermore, a fundamental set of solutions to Eq. (2) is

$$ilde y_1(t) = e^{(lpha+ieta)t}, \qquad ilde y_2(t) = e^{(lpha-ieta)t},$$

Theorem (Complex roots)

If the constants a_1 , $a_0 \in \mathbb{R}$ satisfy that $a_1^2 - 4a_0 < 0$, then the characteristic polynomial $p(r) = r^2 + a_1r + a_0$ of the equation

$$y'' + a_1 y' + a_0 y = 0$$
 (2)

(日) (同) (三) (三) (三) (○) (○)

has complex roots $r_{+} = \alpha + i\beta$ and $r_{-} = \alpha - i\beta$, where

$$\alpha = -\frac{a_1}{2}, \qquad \beta = \frac{1}{2}\sqrt{4a_0 - a_1^2}.$$

Furthermore, a fundamental set of solutions to Eq. (2) is

$$\tilde{y}_1(t) = e^{(\alpha+i\beta)t}, \qquad \tilde{y}_2(t) = e^{(\alpha-i\beta)t},$$

while another fundamental set of solutions to Eq. (2) is

$$y_1(t) = e^{\alpha t} \cos(\beta t), \qquad y_2(t) = e^{\alpha t} \sin(\beta t).$$

Idea of the Proof: Recall that the functions

 $\tilde{y}_1(t) = e^{(\alpha+i\beta)t}, \qquad \tilde{y}_2(t) = e^{(\alpha-i\beta)t},$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

are solutions to $y'' + a_1 y' + a_0 y = 0$.

Idea of the Proof: Recall that the functions

$$\widetilde{y}_1(t)=e^{(lpha+ieta)t},\qquad \widetilde{y}_2(t)=e^{(lpha-ieta)t},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

are solutions to $y'' + a_1 y' + a_0 y = 0$. Also recall that

 $\tilde{y}_1(t) = e^{\alpha t} \big[\cos(\beta t) + i \sin(\beta t) \big],$

Idea of the Proof: Recall that the functions

$$ilde y_1(t)=e^{(lpha+ieta)t},\qquad ilde y_2(t)=e^{(lpha-ieta)t},$$

are solutions to $y'' + a_1 y' + a_0 y = 0$. Also recall that

 $\tilde{y}_1(t) = e^{\alpha t} [\cos(\beta t) + i \sin(\beta t)], \quad \tilde{y}_2(t) = e^{\alpha t} [\cos(\beta t) - i \sin(\beta t)].$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Idea of the Proof: Recall that the functions

$$ilde y_1(t)=e^{(lpha+ieta)t},\qquad ilde y_2(t)=e^{(lpha-ieta)t},$$

are solutions to $y'' + a_1 y' + a_0 y = 0$. Also recall that

 $\tilde{y}_1(t) = e^{\alpha t} [\cos(\beta t) + i \sin(\beta t)], \quad \tilde{y}_2(t) = e^{\alpha t} [\cos(\beta t) - i \sin(\beta t)].$

Then the functions

$$y_1(t)=rac{1}{2}ig(ilde y_1(t)+ ilde y_2(t)ig)$$

Idea of the Proof: Recall that the functions

$$ilde y_1(t)=e^{(lpha+ieta)t},\qquad ilde y_2(t)=e^{(lpha-ieta)t},$$

are solutions to $y'' + a_1 y' + a_0 y = 0$. Also recall that

 $\tilde{y}_1(t) = e^{\alpha t} [\cos(\beta t) + i \sin(\beta t)], \quad \tilde{y}_2(t) = e^{\alpha t} [\cos(\beta t) - i \sin(\beta t)].$

Then the functions

$$y_1(t) = rac{1}{2} ig(ilde y_1(t) + ilde y_2(t) ig) \qquad y_2(t) = rac{1}{2i} ig(ilde y_1(t) - ilde y_2(t) ig)$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Idea of the Proof: Recall that the functions

$$ilde y_1(t)=e^{(lpha+ieta)t},\qquad ilde y_2(t)=e^{(lpha-ieta)t},$$

are solutions to $y'' + a_1 y' + a_0 y = 0$. Also recall that

 $\tilde{y}_1(t) = e^{\alpha t} [\cos(\beta t) + i \sin(\beta t)], \quad \tilde{y}_2(t) = e^{\alpha t} [\cos(\beta t) - i \sin(\beta t)].$

Then the functions

$$y_1(t) = rac{1}{2} ig(ilde y_1(t) + ilde y_2(t) ig) \qquad y_2(t) = rac{1}{2i} ig(ilde y_1(t) - ilde y_2(t) ig)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

are also solutions to the same differential equation.

Idea of the Proof: Recall that the functions

$$ilde y_1(t)=e^{(lpha+ieta)t},\qquad ilde y_2(t)=e^{(lpha-ieta)t},$$

are solutions to $y'' + a_1 y' + a_0 y = 0$. Also recall that

 $\tilde{y}_1(t) = e^{\alpha t} [\cos(\beta t) + i \sin(\beta t)], \quad \tilde{y}_2(t) = e^{\alpha t} [\cos(\beta t) - i \sin(\beta t)].$

Then the functions

$$y_1(t) = rac{1}{2} ig(ilde y_1(t) + ilde y_2(t) ig) \qquad y_2(t) = rac{1}{2i} ig(ilde y_1(t) - ilde y_2(t) ig)$$

are also solutions to the same differential equation. We conclude that y_1 and y_2 are real valued and

Idea of the Proof: Recall that the functions

$$ilde y_1(t)=e^{(lpha+ieta)t},\qquad ilde y_2(t)=e^{(lpha-ieta)t},$$

are solutions to $y'' + a_1 y' + a_0 y = 0$. Also recall that

 $\tilde{y}_1(t) = e^{\alpha t} [\cos(\beta t) + i \sin(\beta t)], \quad \tilde{y}_2(t) = e^{\alpha t} [\cos(\beta t) - i \sin(\beta t)].$

Then the functions

$$y_1(t) = rac{1}{2} ig(ilde y_1(t) + ilde y_2(t) ig) \qquad y_2(t) = rac{1}{2i} ig(ilde y_1(t) - ilde y_2(t) ig)$$

are also solutions to the same differential equation. We conclude that y_1 and y_2 are real valued and

$$y_1(t) = e^{\alpha t} \cos(\beta t),$$

Idea of the Proof: Recall that the functions

$$ilde y_1(t)=e^{(lpha+ieta)t},\qquad ilde y_2(t)=e^{(lpha-ieta)t},$$

are solutions to $y'' + a_1 y' + a_0 y = 0$. Also recall that

 $\tilde{y}_1(t) = e^{\alpha t} [\cos(\beta t) + i \sin(\beta t)], \quad \tilde{y}_2(t) = e^{\alpha t} [\cos(\beta t) - i \sin(\beta t)].$

Then the functions

$$y_1(t) = rac{1}{2} ig(ilde y_1(t) + ilde y_2(t) ig) \qquad y_2(t) = rac{1}{2i} ig(ilde y_1(t) - ilde y_2(t) ig)$$

are also solutions to the same differential equation. We conclude that y_1 and y_2 are real valued and

$$y_1(t) = e^{\alpha t} \cos(\beta t), \qquad y_2(t) = e^{\alpha t} \sin(\beta t).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Second order linear homogeneous ODE (Sect. 2.3).

- Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.
- ► Characteristic polynomial with complex roots.
 - Two main sets of fundamental solutions.
 - Review of Complex numbers.
 - ► A real-valued fundamental and general solutions.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Application: The RLC circuit.

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

$$y^{\prime\prime}-2y^{\prime}+6y=0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ
Example

Find the real-valued general solution of the equation

$$y'' - 2y' + 6y = 0.$$

Solution: Recall: Complex valued solutions are

$$\tilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \qquad \tilde{y}_2(t) = e^{(1-i\sqrt{5})t}.$$

・ロト・日本・モート モー うへぐ

Example

Find the real-valued general solution of the equation

$$y^{\prime\prime}-2y^{\prime}+6y=0.$$

Solution: Recall: Complex valued solutions are

$$\tilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \qquad \tilde{y}_2(t) = e^{(1-i\sqrt{5})t}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Any linear combination of these functions is solution of the differential equation.

Example

Find the real-valued general solution of the equation

$$y^{\prime\prime}-2y^{\prime}+6y=0.$$

Solution: Recall: Complex valued solutions are

$$ilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \qquad ilde{y}_2(t) = e^{(1-i\sqrt{5})t}.$$

Any linear combination of these functions is solution of the differential equation. In particular,

$$y_1(t) = rac{1}{2}ig[ilde{y}_1(t) + ilde{y}_2(t)ig], \quad y_2(t) = rac{1}{2i}ig[ilde{y}_1(t) - ilde{y}_2(t)ig].$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

Find the real-valued general solution of the equation

$$y^{\prime\prime}-2y^{\prime}+6y=0.$$

Solution: Recall: Complex valued solutions are

$$\tilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \qquad \tilde{y}_2(t) = e^{(1-i\sqrt{5})t}.$$

Any linear combination of these functions is solution of the differential equation. In particular,

$$y_1(t) = rac{1}{2}ig[ilde{y}_1(t) + ilde{y}_2(t)ig], \quad y_2(t) = rac{1}{2i}ig[ilde{y}_1(t) - ilde{y}_2(t)ig].$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Now, recalling $e^{(1\pm i\sqrt{5})t} = e^t e^{\pm i\sqrt{5}t}$

Example

Find the real-valued general solution of the equation

$$y^{\prime\prime}-2y^{\prime}+6y=0.$$

Solution: Recall: Complex valued solutions are

$$\tilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \qquad \tilde{y}_2(t) = e^{(1-i\sqrt{5})t}.$$

Any linear combination of these functions is solution of the differential equation. In particular,

$$y_1(t) = rac{1}{2}ig[ilde{y}_1(t) + ilde{y}_2(t)ig], \quad y_2(t) = rac{1}{2i}ig[ilde{y}_1(t) - ilde{y}_2(t)ig].$$

Now, recalling $e^{(1\pm i\sqrt{5})t} = e^t e^{\pm i\sqrt{5}t}$

$$y_1(t) = rac{1}{2} ig[e^t \, e^{i\sqrt{5}t} + e^t \, e^{-i\sqrt{5}t} ig], \quad y_2(t) = rac{1}{2i} ig[e^t \, e^{i\sqrt{5}t} - e^t \, e^{-i\sqrt{5}t} ig],$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Example

Find the real-valued general solution of the equation

$$y'' - 2y' + 6y = 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Solution:
$$y_1 = \frac{e^t}{2} \left[e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} \right], \quad y_2 = \frac{e^t}{2i} \left[e^{i\sqrt{5}t} - e^{-i\sqrt{5}t} \right].$$

Example

Find the real-valued general solution of the equation

$$y^{\prime\prime}-2y^{\prime}+6y=0.$$

Solution: $y_1 = \frac{e^t}{2} \left[e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} \right]$, $y_2 = \frac{e^t}{2i} \left[e^{i\sqrt{5}t} - e^{-i\sqrt{5}t} \right]$. The Euler formula and its complex-conjugate formula

$$e^{i\sqrt{5}t} = \left[\cos(\sqrt{5}t) + i\sin(\sqrt{5}t)\right],$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Find the real-valued general solution of the equation

$$y'' - 2y' + 6y = 0.$$

Solution: $y_1 = \frac{e^t}{2} \left[e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} \right], \quad y_2 = \frac{e^t}{2i} \left[e^{i\sqrt{5}t} - e^{-i\sqrt{5}t} \right].$ The Euler formula and its complex-conjugate formula $e^{i\sqrt{5}t} = \left[\cos(\sqrt{5}t) + i\sin(\sqrt{5}t) \right],$ $e^{-i\sqrt{5}t} = \left[\cos(\sqrt{5}t) - i\sin(\sqrt{5}t) \right],$

Example

Find the real-valued general solution of the equation

$$y'' - 2y' + 6y = 0.$$

Solution: $y_1 = \frac{e^t}{2} \left[e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} \right]$, $y_2 = \frac{e^t}{2i} \left[e^{i\sqrt{5}t} - e^{-i\sqrt{5}t} \right]$. The Euler formula and its complex-conjugate formula

$$e^{i\sqrt{5}t} = \left[\cos(\sqrt{5}t) + i\sin(\sqrt{5}t)\right],$$

$$e^{-i\sqrt{5}t} = \left[\cos(\sqrt{5}t) - i\sin(\sqrt{5}t)\right],$$

imply the inverse relations

$$e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} = 2\cos(\sqrt{5}t),$$

Example

Find the real-valued general solution of the equation

$$y'' - 2y' + 6y = 0.$$

Solution: $y_1 = \frac{e^t}{2} \left[e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} \right], \quad y_2 = \frac{e^t}{2i} \left[e^{i\sqrt{5}t} - e^{-i\sqrt{5}t} \right].$ The Euler formula and its complex-conjugate formula $e^{i\sqrt{5}t} = \left[\cos(\sqrt{5}t) + i\sin(\sqrt{5}t) \right],$

$$e^{-i\sqrt{5}t} = \left[\cos(\sqrt{5}t) - i\sin(\sqrt{5}t)\right],$$

imply the inverse relations

$$e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} = 2\cos(\sqrt{5}t), \quad e^{i\sqrt{5}t} - e^{-i\sqrt{5}t} = 2i\sin(\sqrt{5}t).$$

Example

Find the real-valued general solution of the equation

$$y'' - 2y' + 6y = 0.$$

Solution: $y_1 = \frac{e^t}{2} \left[e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} \right]$, $y_2 = \frac{e^t}{2i} \left[e^{i\sqrt{5}t} - e^{-i\sqrt{5}t} \right]$. The Euler formula and its complex-conjugate formula

$$e^{i\sqrt{5}t} = \left[\cos(\sqrt{5}t) + i\sin(\sqrt{5}t)\right],$$

$$e^{-i\sqrt{5}t} = \left[\cos(\sqrt{5}t) - i\sin(\sqrt{5}t)\right],$$

imply the inverse relations

$$e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} = 2\cos(\sqrt{5}t), \quad e^{i\sqrt{5}t} - e^{-i\sqrt{5}t} = 2i\sin(\sqrt{5}t).$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

So functions y_1 and y_2 can be written as

$$y_1(t) = e^t \cos(\sqrt{5} t),$$

Example

Find the real-valued general solution of the equation

$$y'' - 2y' + 6y = 0.$$

Solution: $y_1 = \frac{e^t}{2} \left[e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} \right]$, $y_2 = \frac{e^t}{2i} \left[e^{i\sqrt{5}t} - e^{-i\sqrt{5}t} \right]$. The Euler formula and its complex-conjugate formula

$$e^{i\sqrt{5}t} = \left[\cos(\sqrt{5}t) + i\sin(\sqrt{5}t)\right],$$
$$e^{-i\sqrt{5}t} = \left[\cos(\sqrt{5}t) - i\sin(\sqrt{5}t)\right],$$

imply the inverse relations

$$e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} = 2\cos(\sqrt{5}t), \quad e^{i\sqrt{5}t} - e^{-i\sqrt{5}t} = 2i\sin(\sqrt{5}t).$$

So functions y_1 and y_2 can be written as

$$y_1(t) = e^t \cos(\sqrt{5} t), \qquad y_2(t) = e^t \sin(\sqrt{5} t).$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Example

Find the real-valued general solution of the equation

$$y^{\prime\prime}-2y^{\prime}+6y=0.$$

- ロ ト - 4 回 ト - 4 □ - 4

Solution: Recall: $y(t) = \tilde{c}_1 e^{(1+i\sqrt{5})t} + \tilde{c}_2 e^{(1-i\sqrt{5})t}$, $\tilde{c}_1, \tilde{c}_2 \in \mathbb{C}$.

Example

Find the real-valued general solution of the equation

$$y^{\prime\prime}-2y^{\prime}+6y=0.$$

Solution: Recall: $y(t) = \tilde{c}_1 e^{(1+i\sqrt{5})t} + \tilde{c}_2 e^{(1-i\sqrt{5})t}$, $\tilde{c}_1, \tilde{c}_2 \in \mathbb{C}$.

The calculation above says that a real-valued fundamental set is

$$y_1(t) = e^t \cos(\sqrt{5} t), \qquad y_2(t) = e^t \sin(\sqrt{5} t).$$

Example

Find the real-valued general solution of the equation

$$y^{\prime\prime}-2y^{\prime}+6y=0.$$

Solution: Recall: $y(t) = \tilde{c}_1 e^{(1+i\sqrt{5})t} + \tilde{c}_2 e^{(1-i\sqrt{5})t}$, $\tilde{c}_1, \tilde{c}_2 \in \mathbb{C}$.

The calculation above says that a real-valued fundamental set is

$$y_1(t) = e^t \cos(\sqrt{5} t), \qquad y_2(t) = e^t \sin(\sqrt{5} t).$$

Hence, the complex-valued general solution can also be written as

$$y(t) = \left[c_1\cos(\sqrt{5} t) + c_2\sin(\sqrt{5} t)\right]e^t, \qquad c_1, c_2 \in \mathbb{C}.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Example

Find the real-valued general solution of the equation

$$y^{\prime\prime}-2y^{\prime}+6y=0.$$

Solution: Recall: $y(t) = \tilde{c}_1 e^{(1+i\sqrt{5})t} + \tilde{c}_2 e^{(1-i\sqrt{5})t}$, $\tilde{c}_1, \tilde{c}_2 \in \mathbb{C}$.

The calculation above says that a real-valued fundamental set is

$$y_1(t) = e^t \cos(\sqrt{5} t), \qquad y_2(t) = e^t \sin(\sqrt{5} t).$$

Hence, the complex-valued general solution can also be written as

$$y(t) = \left[c_1 \cos(\sqrt{5} t) + c_2 \sin(\sqrt{5} t)\right] e^t, \qquad c_1, c_2 \in \mathbb{C}.$$

The real-valued general solution is simple to obtain:

$$y(t) = \left[c_1 \cos(\sqrt{5} t) + c_2 \sin(\sqrt{5} t)\right] e^t, \qquad c_1, c_2 \in \mathbb{R}.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Example

Find the real-valued general solution of the equation

$$y^{\prime\prime}-2y^{\prime}+6y=0.$$

Solution: Recall: $y(t) = \tilde{c}_1 e^{(1+i\sqrt{5})t} + \tilde{c}_2 e^{(1-i\sqrt{5})t}$, $\tilde{c}_1, \tilde{c}_2 \in \mathbb{C}$.

The calculation above says that a real-valued fundamental set is

$$y_1(t) = e^t \cos(\sqrt{5} t), \qquad y_2(t) = e^t \sin(\sqrt{5} t).$$

Hence, the complex-valued general solution can also be written as

$$y(t) = \left[c_1 \cos(\sqrt{5} t) + c_2 \sin(\sqrt{5} t)\right] e^t, \qquad c_1, c_2 \in \mathbb{C}.$$

The real-valued general solution is simple to obtain:

$$y(t) = \left[c_1 \cos(\sqrt{5} t) + c_2 \sin(\sqrt{5} t)\right] e^t, \qquad c_1, c_2 \in \mathbb{R}.$$

We just restricted the coefficients c_1 , c_2 to be real-valued.

Example

Show that $y_1(t) = e^t \cos(\sqrt{5}t)$ and $y_2(t) = e^t \sin(\sqrt{5}t)$ are fundamental solutions to the equation y'' - 2y' + 6y = 0.

Solution: $y_1(t) = e^t \cos(\sqrt{5} t), \ y_2(t) = e^t \sin(\sqrt{5} t).$

Example

Show that $y_1(t) = e^t \cos(\sqrt{5}t)$ and $y_2(t) = e^t \sin(\sqrt{5}t)$ are fundamental solutions to the equation y'' - 2y' + 6y = 0.

Solution: $y_1(t) = e^t \cos(\sqrt{5} t), \ y_2(t) = e^t \sin(\sqrt{5} t).$

Summary:

• These functions are solutions of the differential equation.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Example

Show that $y_1(t) = e^t \cos(\sqrt{5}t)$ and $y_2(t) = e^t \sin(\sqrt{5}t)$ are fundamental solutions to the equation y'' - 2y' + 6y = 0.

Solution: $y_1(t) = e^t \cos(\sqrt{5} t), \ y_2(t) = e^t \sin(\sqrt{5} t).$

Summary:

• These functions are solutions of the differential equation.

They are not proportional to each other, Hence li.

Example

Show that $y_1(t) = e^t \cos(\sqrt{5}t)$ and $y_2(t) = e^t \sin(\sqrt{5}t)$ are fundamental solutions to the equation y'' - 2y' + 6y = 0.

Solution: $y_1(t) = e^t \cos(\sqrt{5} t), \ y_2(t) = e^t \sin(\sqrt{5} t).$

Summary:

• These functions are solutions of the differential equation.

- They are not proportional to each other, Hence li.
- Therefore, y_1 , y_2 form a fundamental set.

Example

Show that $y_1(t) = e^t \cos(\sqrt{5}t)$ and $y_2(t) = e^t \sin(\sqrt{5}t)$ are fundamental solutions to the equation y'' - 2y' + 6y = 0.

Solution: $y_1(t) = e^t \cos(\sqrt{5} t), \ y_2(t) = e^t \sin(\sqrt{5} t).$

Summary:

- These functions are solutions of the differential equation.
- They are not proportional to each other, Hence li.
- Therefore, y_1 , y_2 form a fundamental set.
- The general solution of the equation is

 $y(t) = \left[c_1 \cos(\sqrt{5}t) + c_2 \sin(\sqrt{5}t)\right] e^t.$

Example

Show that $y_1(t) = e^t \cos(\sqrt{5}t)$ and $y_2(t) = e^t \sin(\sqrt{5}t)$ are fundamental solutions to the equation y'' - 2y' + 6y = 0.

Solution: $y_1(t) = e^t \cos(\sqrt{5} t), \ y_2(t) = e^t \sin(\sqrt{5} t).$

Summary:

- These functions are solutions of the differential equation.
- They are not proportional to each other, Hence li.
- Therefore, y_1 , y_2 form a fundamental set.
- The general solution of the equation is

$$y(t) = \left[c_1 \cos(\sqrt{5}t) + c_2 \sin(\sqrt{5}t)\right] e^t.$$

• y is real-valued for
$$c_1$$
, $c_2 \in \mathbb{R}$.

Example

Show that $y_1(t) = e^t \cos(\sqrt{5}t)$ and $y_2(t) = e^t \sin(\sqrt{5}t)$ are fundamental solutions to the equation y'' - 2y' + 6y = 0.

Solution: $y_1(t) = e^t \cos(\sqrt{5} t), \ y_2(t) = e^t \sin(\sqrt{5} t).$

Summary:

- These functions are solutions of the differential equation.
- They are not proportional to each other, Hence li.
- Therefore, y_1 , y_2 form a fundamental set.
- The general solution of the equation is

$$y(t) = \left[c_1 \cos(\sqrt{5}t) + c_2 \sin(\sqrt{5}t)\right] e^t.$$

• *y* is real-valued for
$$c_1$$
, $c_2 \in \mathbb{R}$.

• y is complex-valued for c_1 , $c_2 \in \mathbb{C}$.

Example

Find real-valued fundamental solutions to the equation

$$y'' + 2y' + 6y = 0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Find real-valued fundamental solutions to the equation

$$y'' + 2y' + 6y = 0.$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Solution:

The roots of the characteristic polynomial $p(r) = r^2 + 2r + 6$

Example

Find real-valued fundamental solutions to the equation

$$y'' + 2y' + 6y = 0.$$

Solution:

The roots of the characteristic polynomial $p(r) = r^2 + 2r + 6$ are

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$r_{\pm} = \frac{1}{2} \bigl[-2 \pm \sqrt{4-24} \bigr]$$

Example

Find real-valued fundamental solutions to the equation

$$y'' + 2\,y' + 6\,y = 0.$$

Solution:

The roots of the characteristic polynomial $p(r) = r^2 + 2r + 6$ are

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$r_{\pm} = \frac{1}{2} \left[-2 \pm \sqrt{4 - 24} \right] = \frac{1}{2} \left[-2 \pm \sqrt{-20} \right]$$

Example

Find real-valued fundamental solutions to the equation

$$y'' + 2y' + 6y = 0.$$

Solution:

The roots of the characteristic polynomial $p(r) = r^2 + 2r + 6$ are

$$r_{\pm} = \frac{1}{2} \left[-2 \pm \sqrt{4 - 24} \right] = \frac{1}{2} \left[-2 \pm \sqrt{-20} \right] \implies r_{\pm} = -1 \pm i\sqrt{5}.$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example

Find real-valued fundamental solutions to the equation

$$y'' + 2y' + 6y = 0.$$

Solution:

The roots of the characteristic polynomial $p(r) = r^2 + 2r + 6$ are

$$r_{\pm} = \frac{1}{2} \left[-2 \pm \sqrt{4 - 24} \right] = \frac{1}{2} \left[-2 \pm \sqrt{-20} \right] \implies r_{\pm} = -1 \pm i\sqrt{5}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

These are complex-valued roots,

Example

Find real-valued fundamental solutions to the equation

$$y'' + 2y' + 6y = 0.$$

Solution:

The roots of the characteristic polynomial $p(r) = r^2 + 2r + 6$ are

$$r_{\pm} = \frac{1}{2} \left[-2 \pm \sqrt{4 - 24} \right] = \frac{1}{2} \left[-2 \pm \sqrt{-20} \right] \implies r_{\pm} = -1 \pm i\sqrt{5}.$$

These are complex-valued roots, with

$$\alpha = -1, \qquad \beta = \sqrt{5}.$$

Example

Find real-valued fundamental solutions to the equation

$$y'' + 2y' + 6y = 0.$$

Solution:

The roots of the characteristic polynomial $p(r) = r^2 + 2r + 6$ are

$$r_{\pm} = \frac{1}{2} \left[-2 \pm \sqrt{4 - 24} \right] = \frac{1}{2} \left[-2 \pm \sqrt{-20} \right] \implies r_{\pm} = -1 \pm i\sqrt{5}.$$

These are complex-valued roots, with

$$\alpha = -1, \qquad \beta = \sqrt{5}.$$

Real-valued fundamental solutions are

$$y_1(t) = e^{-t} \cos(\sqrt{5} t), \qquad y_2(t) = e^{-t} \sin(\sqrt{5} t).$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Example

Find real-valued fundamental solutions to the equation

$$y'' + 2y' + 6y = 0.$$

Solution: $y_1(t) = e^{-t} \cos(\sqrt{5}t), \ y_2(t) = e^{-t} \sin(\sqrt{5}t).$

Differential equations like the one in this example describe physical processes related to damped oscillations. For example pendulums with friction.

・ロト・西ト・山田・山田・山下

Example

Find the real-valued general solution of y'' + 5y = 0.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Find the real-valued general solution of y'' + 5y = 0.

Solution: The characteristic polynomial is $p(r) = r^2 + 5$.

・ロト・日本・モート モー うへぐ

Example

Find the real-valued general solution of y'' + 5y = 0.

Solution: The characteristic polynomial is $p(r) = r^2 + 5$.

Its roots are $r_{\pm} = \pm \sqrt{5} i$. This is the case $\alpha = 0$, and $\beta = \sqrt{5}$.
A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of y'' + 5y = 0.

Solution: The characteristic polynomial is $p(r) = r^2 + 5$.

Its roots are $r_{\pm} = \pm \sqrt{5} i$. This is the case $\alpha = 0$, and $\beta = \sqrt{5}$.

Real-valued fundamental solutions are

$$y_1(t) = \cos(\sqrt{5} t), \qquad y_2(t) = \sin(\sqrt{5} t).$$

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of y'' + 5y = 0.

Solution: The characteristic polynomial is $p(r) = r^2 + 5$. Its roots are $r_{\pm} = \pm \sqrt{5} i$. This is the case $\alpha = 0$, and $\beta = \sqrt{5}$.

Real-valued fundamental solutions are

$$y_1(t) = \cos(\sqrt{5} t), \qquad y_2(t) = \sin(\sqrt{5} t).$$

The real-valued general solution is

$$y(t) = c_1 \cos(\sqrt{5} t) + c_2 \sin(\sqrt{5} t), \qquad c_1, c_2 \in \mathbb{R}.$$

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of y'' + 5y = 0.

Solution: The characteristic polynomial is $p(r) = r^2 + 5$.

Its roots are $r_{\pm} = \pm \sqrt{5} i$. This is the case $\alpha = 0$, and $\beta = \sqrt{5}$.

Real-valued fundamental solutions are

$$y_1(t) = \cos(\sqrt{5} t), \qquad y_2(t) = \sin(\sqrt{5} t).$$

The real-valued general solution is

 $y(t) = c_1 \cos(\sqrt{5} t) + c_2 \sin(\sqrt{5} t), \qquad c_1, c_2 \in \mathbb{R}.$

Remark: Equations like the one in this example describe oscillatory physical processes without dissipation, $\alpha = 0$.

Second order linear homogeneous ODE (Sect. 2.3).

- Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.
- Characteristic polynomial with complex roots.
 - Two main sets of fundamental solutions.
 - Review of Complex numbers.
 - A real-valued fundamental and general solutions.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

► Application: The RLC circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

I (t) : electric current.

- 日本 本語 本 本 田 本 本 田 本

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

I (t) : electric current.

- 日本 本語 本 本 田 本 本 田 本

The electric current flowing in such circuit satisfies:

$$L I'(t) + R I(t) + \frac{1}{C} \int_{t_0}^t I(s) ds = 0.$$

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

I (t) : electric current.

The electric current flowing in such circuit satisfies:

$$L I'(t) + R I(t) + \frac{1}{C} \int_{t_0}^t I(s) ds = 0.$$

Derivate both sides above: $LI''(t) + RI'(t) + \frac{1}{C}I(t) = 0.$

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

I (t) : electric current.

The electric current flowing in such circuit satisfies:

$$L I'(t) + R I(t) + \frac{1}{C} \int_{t_0}^t I(s) ds = 0.$$

Derivate both sides above: $LI''(t) + RI'(t) + \frac{1}{C}I(t) = 0.$

Divide by L: $I''(t) + 2\left(\frac{R}{2L}\right)I'(t) + \frac{1}{LC}I(t) = 0.$

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

I (t) : electric current.

The electric current flowing in such circuit satisfies:

$$L I'(t) + R I(t) + \frac{1}{C} \int_{t_0}^t I(s) ds = 0.$$

Derivate both sides above: $LI''(t) + RI'(t) + \frac{1}{C}I(t) = 0.$

Divide by L: $I''(t) + 2\left(\frac{R}{2L}\right)I'(t) + \frac{1}{LC}I(t) = 0.$

Introduce $\alpha = \frac{R}{2L}$ and $\omega = \frac{1}{\sqrt{LC}}$,

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

I (t) : electric current.

The electric current flowing in such circuit satisfies:

$$L I'(t) + R I(t) + \frac{1}{C} \int_{t_0}^t I(s) ds = 0.$$

Derivate both sides above: $LI''(t) + RI'(t) + \frac{1}{C}I(t) = 0.$

Divide by L:
$$I''(t) + 2\left(\frac{R}{2L}\right)I'(t) + \frac{1}{LC}I(t) = 0.$$

Introduce $\alpha = \frac{R}{2L}$ and $\omega = \frac{1}{\sqrt{LC}}$, then $I'' + 2\alpha I' + \omega^2 I = 0$.

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r) = r^2 + 2\alpha r + \omega^2$.

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r) = r^2 + 2\alpha r + \omega^2$. The roots are:

$$r_{\pm} = \frac{1}{2} \left[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2} \right]$$

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r) = r^2 + 2\alpha r + \omega^2$. The roots are:

$$r_{\pm} = \frac{1}{2} \left[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2} \right] \quad \Rightarrow \quad r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}.$$

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r) = r^2 + 2\alpha r + \omega^2$. The roots are:

$$r_{\pm} = \frac{1}{2} \left[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2} \right] \quad \Rightarrow \quad r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}.$$

Case (a) R = 0.

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r) = r^2 + 2\alpha r + \omega^2$. The roots are:

$$r_{\pm} = \frac{1}{2} \left[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2} \right] \quad \Rightarrow \quad r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}.$$

Case (a) R = 0. This implies $\alpha = 0$,

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r) = r^2 + 2\alpha r + \omega^2$. The roots are:

$$r_{\pm} = \frac{1}{2} \left[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2} \right] \quad \Rightarrow \quad r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}.$$

Case (a) R = 0. This implies $\alpha = 0$, so $r_{\pm} = \pm i\omega$.

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r) = r^2 + 2\alpha r + \omega^2$. The roots are:

$$r_{\pm} = \frac{1}{2} \left[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2} \right] \quad \Rightarrow \quad r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}.$$

Case (a) R=0. This implies lpha=0, so $r_{\pm}=\pm i\omega.$ Therefore, $I_1(t)=\cos(\omega t),$

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r) = r^2 + 2\alpha r + \omega^2$. The roots are:

$$r_{\pm} = \frac{1}{2} \left[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2} \right] \quad \Rightarrow \quad r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}.$$

Case (a) R = 0. This implies $\alpha = 0$, so $r_{\pm} = \pm i\omega$. Therefore,

$$I_1(t) = \cos(\omega t), \qquad I_2(t) = \sin(\omega t).$$

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r) = r^2 + 2\alpha r + \omega^2$. The roots are:

$$r_{\pm} = \frac{1}{2} \left[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2} \right] \quad \Rightarrow \quad r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}.$$

Case (a) R = 0. This implies $\alpha = 0$, so $r_{\pm} = \pm i\omega$. Therefore,

$$I_1(t) = \cos(\omega t), \qquad I_2(t) = \sin(\omega t).$$

Remark: When the circuit has no resistance, the current oscillates without dissipation.

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: Recall: $r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: Recall: $r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Case (b) $R < \sqrt{4L/C}$.

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: Recall: $r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Case (b) $R < \sqrt{4L/C}$. This implies

$$R^2 < \frac{4L}{C}$$

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: Recall: $r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Case (b) $R < \sqrt{4L/C}$. This implies

$$R^2 < \frac{4L}{C} \quad \Leftrightarrow \quad \frac{R^2}{4L^2} < \frac{1}{LC}$$

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: Recall: $r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Case (b) $R < \sqrt{4L/C}$. This implies

$$R^2 < \frac{4L}{C} \quad \Leftrightarrow \quad \frac{R^2}{4L^2} < \frac{1}{LC} \quad \Leftrightarrow \quad \alpha^2 < \omega^2.$$

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: Recall: $r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Case (b) $R < \sqrt{4L/C}$. This implies

$$R^2 < \frac{4L}{C} \quad \Leftrightarrow \quad \frac{R^2}{4L^2} < \frac{1}{LC} \quad \Leftrightarrow \quad \alpha^2 < \omega^2$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Therefore, $r_{\pm} = -\alpha \pm i\sqrt{\omega^2 - \alpha^2}$.

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: Recall: $r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Case (b) $R < \sqrt{4L/C}$. This implies

$$R^2 < \frac{4L}{C} \quad \Leftrightarrow \quad \frac{R^2}{4L^2} < \frac{1}{LC} \quad \Leftrightarrow \quad \alpha^2 < \omega^2.$$

Therefore, $r_{\pm} = -\alpha \pm i\sqrt{\omega^2 - \alpha^2}$. The fundamental solutions are

$$I_1(t) = e^{-\alpha t} \cos(\sqrt{\omega^2 - \alpha^2} t),$$

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: Recall: $r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Case (b) $R < \sqrt{4L/C}$. This implies

$$R^2 < \frac{4L}{C} \quad \Leftrightarrow \quad \frac{R^2}{4L^2} < \frac{1}{LC} \quad \Leftrightarrow \quad \alpha^2 < \omega^2.$$

Therefore, $r_{\pm} = -\alpha \pm i\sqrt{\omega^2 - \alpha^2}$. The fundamental solutions are

$$I_1(t) = e^{-\alpha t} \cos\left(\sqrt{\omega^2 - \alpha^2} t\right), \quad I_2(t) = e^{-\alpha t} \sin\left(\sqrt{\omega^2 - \alpha^2} t\right).$$

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: Recall: $r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Case (b) $R < \sqrt{4L/C}$. This implies

$$R^2 < \frac{4L}{C} \quad \Leftrightarrow \quad \frac{R^2}{4L^2} < \frac{1}{LC} \quad \Leftrightarrow \quad \alpha^2 < \omega^2.$$

Therefore, $r_{\pm} = -\alpha \pm i\sqrt{\omega^2 - \alpha^2}$. The fundamental solutions are

$$I_1(t) = e^{-\alpha t} \cos\left(\sqrt{\omega^2 - \alpha^2} t\right), \quad I_2(t) = e^{-\alpha t} \sin\left(\sqrt{\omega^2 - \alpha^2} t\right).$$

I (t) : electric current.

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: Recall: $r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Case (b) $R < \sqrt{4L/C}$. This implies

$$R^2 < \frac{4L}{C} \quad \Leftrightarrow \quad \frac{R^2}{4L^2} < \frac{1}{LC} \quad \Leftrightarrow \quad \alpha^2 < \omega^2.$$

Therefore, $r_{\pm} = -\alpha \pm i \sqrt{\omega^2 - \alpha^2}$. The fundamental solutions are

$$I_{1}(t) = e^{-\alpha t} \cos\left(\sqrt{\omega^{2} - \alpha^{2}} t\right), \quad I_{2}(t) = e^{-\alpha t} \sin\left(\sqrt{\omega^{2} - \alpha^{2}} t\right).$$

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: Recall: $r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Case (b) $R < \sqrt{4L/C}$. This implies

$$R^2 < \frac{4L}{C} \quad \Leftrightarrow \quad \frac{R^2}{4L^2} < \frac{1}{LC} \quad \Leftrightarrow \quad \alpha^2 < \omega^2.$$

Therefore, $r_{\pm} = -\alpha \pm i\sqrt{\omega^2 - \alpha^2}$. The fundamental solutions are

$$I_1(t) = e^{-\alpha t} \cos(\sqrt{\omega^2 - \alpha^2} t), \quad I_2(t) = e^{-\alpha t} \sin(\sqrt{\omega^2 - \alpha^2} t).$$

The resistance R damps the current oscillations.

Second order linear homogeneous ODE (Sect. 2.4).

• Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.

- Repeated roots as a limit case.
- Main result for repeated roots.
- Reduction of the order method:
 - Constant coefficients equations.
 - Variable coefficients equations.

Summary:

Given constants a_1 , $a_0 \in \mathbb{R}$, consider the differential equation

 $y^{\prime\prime}+a_1y^\prime+a_0y=0$

with characteristic polynomial having roots

$$r_{\pm} = -rac{a_1}{2} \pm rac{1}{2} \sqrt{a_1^2 - 4a_0}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ = のへぐ

Summary:

Given constants a_1 , $a_0 \in \mathbb{R}$, consider the differential equation

 $y^{\prime\prime}+a_1y^\prime+a_0y=0$

with characteristic polynomial having roots

$$r_{\pm} = -rac{a_1}{2} \pm rac{1}{2}\sqrt{a_1^2 - 4a_0}.$$

(1) If $a_1^2 - 4a_0 > 0$,

Summary:

Given constants a_1 , $a_0 \in \mathbb{R}$, consider the differential equation

 $y^{\prime\prime}+a_1y^\prime+a_0y=0$

with characteristic polynomial having roots

$$r_{\pm} = -rac{a_1}{2} \pm rac{1}{2}\sqrt{a_1^2 - 4a_0}.$$

(1) If $a_1^2 - 4a_0 > 0$, then $y_1(t) = e^{r_t t}$ and $y_2(t) = e^{r_t t}$.

Summary:

Given constants a_1 , $a_0 \in \mathbb{R}$, consider the differential equation

 $y^{\prime\prime}+a_1y^\prime+a_0y=0$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ = のへぐ

with characteristic polynomial having roots

$$r_{\pm} = -\frac{a_1}{2} \pm \frac{1}{2} \sqrt{a_1^2 - 4a_0}.$$
(1) If $a_1^2 - 4a_0 > 0$, then $y_1(t) = e^{r_+ t}$ and $y_2(t) = e^{r_- t}.$
(2) If $a_1^2 - 4a_0 < 0$,
Summary:

Given constants a_1 , $a_0 \in \mathbb{R}$, consider the differential equation

 $y^{\prime\prime}+a_1y^\prime+a_0y=0$

with characteristic polynomial having roots

$$r_{\pm} = -rac{a_1}{2} \pm rac{1}{2}\sqrt{a_1^2 - 4a_0}.$$

(1) If $a_1^2 - 4a_0 > 0$, then $y_1(t) = e^{r_+ t}$ and $y_2(t) = e^{r_- t}$. (2) If $a_1^2 - 4a_0 < 0$, then introducing $\alpha = -\frac{a_1}{2}$, $\beta = \frac{1}{2}\sqrt{4a_0 - a_1^2}$,

Summary:

Given constants a_1 , $a_0 \in \mathbb{R}$, consider the differential equation

 $y^{\prime\prime}+a_1y^\prime+a_0y=0$

with characteristic polynomial having roots

$$r_{\pm} = -rac{a_1}{2} \pm rac{1}{2}\sqrt{a_1^2 - 4a_0}.$$

(1) If $a_1^2 - 4a_0 > 0$, then $y_1(t) = e^{r_+ t}$ and $y_2(t) = e^{r_- t}$. (2) If $a_1^2 - 4a_0 < 0$, then introducing $\alpha = -\frac{a_1}{2}$, $\beta = \frac{1}{2}\sqrt{4a_0 - a_1^2}$,

 $y_1(t) = e^{\alpha t} \cos(\beta t), \qquad y_2(t) = e^{\alpha t} \sin(\beta t).$

Summary:

Given constants a_1 , $a_0 \in \mathbb{R}$, consider the differential equation

 $y^{\prime\prime}+a_1y^\prime+a_0y=0$

with characteristic polynomial having roots

$$r_{\pm} = -\frac{a_1}{2} \pm \frac{1}{2}\sqrt{a_1^2 - 4a_0}.$$

(1) If $a_1^2 - 4a_0 > 0$, then $y_1(t) = e^{r_+ t}$ and $y_2(t) = e^{r_- t}$. (2) If $a_1^2 - 4a_0 < 0$, then introducing $\alpha = -\frac{a_1}{2}$, $\beta = \frac{1}{2}\sqrt{4a_0 - a_1^2}$,

 $y_1(t) = e^{\alpha t} \cos(\beta t), \qquad y_2(t) = e^{\alpha t} \sin(\beta t).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(3) If $a_1^2 - 4a_0 = 0$,

Summary:

Given constants a_1 , $a_0 \in \mathbb{R}$, consider the differential equation

 $y^{\prime\prime}+a_1y^\prime+a_0y=0$

with characteristic polynomial having roots

$$r_{\pm} = -\frac{a_1}{2} \pm \frac{1}{2}\sqrt{a_1^2 - 4a_0}.$$

(1) If $a_1^2 - 4a_0 > 0$, then $y_1(t) = e^{r_+ t}$ and $y_2(t) = e^{r_- t}$. (2) If $a_1^2 - 4a_0 < 0$, then introducing $\alpha = -\frac{a_1}{2}$, $\beta = \frac{1}{2}\sqrt{4a_0 - a_1^2}$,

 $y_1(t) = e^{\alpha t} \cos(\beta t), \qquad y_2(t) = e^{\alpha t} \sin(\beta t).$

(3) If $a_1^2 - 4a_0 = 0$, then $y_1(t) = e^{-\frac{a_1}{2}t}$.

Question:

Consider the case (3), with $a_1^2 - 4a_0 = 0$, that is, $a_0 = \frac{a_1^2}{4}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Question:

Consider the case (3), with $a_1^2 - 4a_0 = 0$, that is, $a_0 = \frac{a_1^2}{4}$.

Does the equation

$$y'' + a_1 y' + \frac{a_1^2}{4} y = 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

have two linearly independent solutions?

Question:

Consider the case (3), with $a_1^2 - 4a_0 = 0$, that is, $a_0 = \frac{a_1^2}{4}$.

Does the equation

$$y'' + a_1 y' + \frac{a_1^2}{4} y = 0$$

have two linearly independent solutions?

Or, is every solution to the equation above proportional to

$$y_1(t) = e^{-\frac{a_1}{2}t}$$
 ?

Second order linear homogeneous ODE (Sect. 2.4).

• Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Repeated roots as a limit case.
- Main result for repeated roots.
- Reduction of the order method:
 - Constant coefficients equations.
 - Variable coefficients equations.

Remark:

• Case (3), where $4a_0 - a_1^2 = 0$ can be obtained as the limit $\beta \rightarrow 0$ in case (2).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Remark:

- Case (3), where $4a_0 a_1^2 = 0$ can be obtained as the limit $\beta \to 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as $\beta \rightarrow 0$ for fixed t.

Remark:

- Case (3), where $4a_0 a_1^2 = 0$ can be obtained as the limit $\beta \rightarrow 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as $\beta \rightarrow 0$ for fixed t.

• Since $\cos(\beta t) \rightarrow 1$ as $\beta \rightarrow 0$,

Remark:

- Case (3), where $4a_0 a_1^2 = 0$ can be obtained as the limit $\beta \rightarrow 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as $\beta \rightarrow 0$ for fixed t.

• Since $\cos(\beta t) \rightarrow 1$ as $\beta \rightarrow 0$, we conclude that

 $y_{1\beta}(t) = e^{-\frac{a_1}{2}t}\cos(\beta t)$

Remark:

- Case (3), where $4a_0 a_1^2 = 0$ can be obtained as the limit $\beta \rightarrow 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as $\beta \rightarrow 0$ for fixed t.

• Since $\cos(\beta t) \rightarrow 1$ as $\beta \rightarrow 0$, we conclude that

$$y_{1\beta}(t) = e^{-\frac{a_1}{2}t}\cos(\beta t) \to e^{-\frac{a_1}{2}t}$$

Remark:

- Case (3), where $4a_0 a_1^2 = 0$ can be obtained as the limit $\beta \rightarrow 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as $\beta \rightarrow 0$ for fixed t.
- Since $\cos(\beta t) \rightarrow 1$ as $\beta \rightarrow 0$, we conclude that

$$y_{1eta}(t) = e^{-rac{a_1}{2}t}\cos(eta t) o e^{-rac{a_1}{2}t} = y_1(t).$$

Remark:

- Case (3), where $4a_0 a_1^2 = 0$ can be obtained as the limit $\beta \rightarrow 0$ in case (2).
- ► Let us study the solutions of the differential equation in the case (2) as $\beta \rightarrow 0$ for fixed *t*.
- Since $\cos(\beta t) \rightarrow 1$ as $\beta \rightarrow 0$, we conclude that

$$y_{1\beta}(t) = e^{-rac{a_1}{2}t}\cos(eta t) o e^{-rac{a_1}{2}t} = y_1(t).$$

• Since
$$\frac{\sin(\beta t)}{\beta t} \rightarrow 1$$
 as $\beta \rightarrow 0$,

Remark:

- Case (3), where $4a_0 a_1^2 = 0$ can be obtained as the limit $\beta \to 0$ in case (2).
- ► Let us study the solutions of the differential equation in the case (2) as $\beta \rightarrow 0$ for fixed *t*.
- Since $\cos(\beta t) \rightarrow 1$ as $\beta \rightarrow 0$, we conclude that

$$y_{1\beta}(t) = e^{-\frac{a_1}{2}t} \cos(\beta t) \to e^{-\frac{a_1}{2}t} = y_1(t).$$

• Since
$$\frac{\sin(\beta t)}{\beta t} \rightarrow 1$$
 as $\beta \rightarrow 0$, that is, $\sin(\beta t) \rightarrow \beta t$,

Remark:

- Case (3), where $4a_0 a_1^2 = 0$ can be obtained as the limit $\beta \to 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as β → 0 for fixed t.
- Since $\cos(\beta t) \rightarrow 1$ as $\beta \rightarrow 0$, we conclude that

$$y_{1\beta}(t) = e^{-\frac{a_1}{2}t} \cos(\beta t) \rightarrow e^{-\frac{a_1}{2}t} = y_1(t).$$

► Since
$$\frac{\sin(\beta t)}{\beta t} \rightarrow 1$$
 as $\beta \rightarrow 0$, that is, $\sin(\beta t) \rightarrow \beta t$,
 $y_{2\beta}(t) = e^{-\frac{a_1}{2}t} \sin(\beta t)$

Remark:

- Case (3), where $4a_0 a_1^2 = 0$ can be obtained as the limit $\beta \to 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as β → 0 for fixed t.
- Since $\cos(\beta t) \rightarrow 1$ as $\beta \rightarrow 0$, we conclude that

$$y_{1\beta}(t) = e^{-\frac{a_1}{2}t} \cos(\beta t) \rightarrow e^{-\frac{a_1}{2}t} = y_1(t).$$

► Since
$$\frac{\sin(\beta t)}{\beta t} \rightarrow 1$$
 as $\beta \rightarrow 0$, that is, $\sin(\beta t) \rightarrow \beta t$,
 $y_{2\beta}(t) = e^{-\frac{\partial_1}{2}t} \sin(\beta t) \rightarrow \beta t e^{-\frac{\partial_1}{2}t}$

Remark:

- Case (3), where $4a_0 a_1^2 = 0$ can be obtained as the limit $\beta \to 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as β → 0 for fixed t.
- Since $\cos(\beta t) \rightarrow 1$ as $\beta \rightarrow 0$, we conclude that

$$y_{1\beta}(t) = e^{-\frac{a_1}{2}t} \cos(\beta t) \rightarrow e^{-\frac{a_1}{2}t} = y_1(t).$$

► Since
$$\frac{\sin(\beta t)}{\beta t} \rightarrow 1$$
 as $\beta \rightarrow 0$, that is, $\sin(\beta t) \rightarrow \beta t$,
 $y_{2\beta}(t) = e^{-\frac{a_1}{2}t} \sin(\beta t) \rightarrow \beta t e^{-\frac{a_1}{2}t} \rightarrow 0$.

Remark:

- ► Case (3), where $4a_0 a_1^2 = 0$ can be obtained as the limit $\beta \rightarrow 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as β → 0 for fixed t.
- Since $\cos(\beta t) \rightarrow 1$ as $\beta \rightarrow 0$, we conclude that

$$y_{1\beta}(t) = e^{-rac{a_1}{2}t} \cos(\beta t) o e^{-rac{a_1}{2}t} = y_1(t).$$

► Since
$$\frac{\sin(\beta t)}{\beta t} \rightarrow 1$$
 as $\beta \rightarrow 0$, that is, $\sin(\beta t) \rightarrow \beta t$,
 $y_{2\beta}(t) = e^{-\frac{a_1}{2}t} \sin(\beta t) \rightarrow \beta t e^{-\frac{a_1}{2}t} \rightarrow 0$.

▶ Is $y_2(t) = t y_1(t)$ solution of the differential equation?

Remark:

- Case (3), where $4a_0 a_1^2 = 0$ can be obtained as the limit $\beta \to 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as β → 0 for fixed t.
- Since $\cos(\beta t) \rightarrow 1$ as $\beta \rightarrow 0$, we conclude that

$$y_{1\beta}(t) = e^{-\frac{a_1}{2}t} \cos(\beta t) \rightarrow e^{-\frac{a_1}{2}t} = y_1(t).$$

► Since
$$\frac{\sin(\beta t)}{\beta t} \rightarrow 1$$
 as $\beta \rightarrow 0$, that is, $\sin(\beta t) \rightarrow \beta t$,
 $y_{2\beta}(t) = e^{-\frac{a_1}{2}t} \sin(\beta t) \rightarrow \beta t e^{-\frac{a_1}{2}t} \rightarrow 0$.

Is y₂(t) = t y₁(t) solution of the differential equation?
 Introducing y₂ in the differential equation one obtains: Yes.

Remark:

- Case (3), where $4a_0 a_1^2 = 0$ can be obtained as the limit $\beta \to 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as β → 0 for fixed t.
- Since $\cos(\beta t) \rightarrow 1$ as $\beta \rightarrow 0$, we conclude that

$$y_{1\beta}(t) = e^{-rac{a_1}{2}t} \cos(\beta t) o e^{-rac{a_1}{2}t} = y_1(t).$$

► Since
$$\frac{\sin(\beta t)}{\beta t} \rightarrow 1$$
 as $\beta \rightarrow 0$, that is, $\sin(\beta t) \rightarrow \beta t$,
 $y_{2\beta}(t) = e^{-\frac{a_1}{2}t} \sin(\beta t) \rightarrow \beta t e^{-\frac{a_1}{2}t} \rightarrow 0$.

- Is y₂(t) = t y₁(t) solution of the differential equation?
 Introducing y₂ in the differential equation one obtains: Yes.
- Since y₂ is not proportional to y₁, the functions y₁, y₂ are a fundamental set for the differential equation in case (3).

Second order linear homogeneous ODE (Sect. 2.4).

• Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.

- Repeated roots as a limit case.
- ► Main result for repeated roots.
- Reduction of the order method:
 - Constant coefficients equations.
 - Variable coefficients equations.

Theorem If a_1 , $a_0 \in R$ satisfy that $a_1^2 = 4a_0$, then the functions $y_1(t) = e^{-\frac{a_1}{2}t}$, $y_2(t) = t e^{-\frac{a_1}{2}t}$, are a fundamental solution set for the differential equation

 $y^{\prime\prime}+a_1y^{\prime}+a_0y=0.$

Theorem If a_1 , $a_0 \in R$ satisfy that $a_1^2 = 4a_0$, then the functions $y_1(t) = e^{-\frac{a_1}{2}t}$, $y_2(t) = t e^{-\frac{a_1}{2}t}$,

are a fundamental solution set for the differential equation

$$y^{\prime\prime}+a_1y^{\prime}+a_0y=0.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find the general solution of 9y'' + 6y' + y = 0.

Theorem If a_1 , $a_0 \in R$ satisfy that $a_1^2 = 4a_0$, then the functions $y_1(t) = e^{-\frac{a_1}{2}t}$, $y_2(t) = t e^{-\frac{a_1}{2}t}$,

are a fundamental solution set for the differential equation

$$y^{\prime\prime}+a_1y^{\prime}+a_0y=0.$$

Example

Find the general solution of 9y'' + 6y' + y = 0.

Solution: The characteristic equation is $9r^2 + 6r + 1 = 0$,

Theorem If a_1 , $a_0 \in R$ satisfy that $a_1^2 = 4a_0$, then the functions $y_1(t) = e^{-\frac{a_1}{2}t}$, $y_2(t) = t e^{-\frac{a_1}{2}t}$,

are a fundamental solution set for the differential equation

$$y^{\prime\prime}+a_1y^{\prime}+a_0y=0.$$

Example

Find the general solution of 9y'' + 6y' + y = 0.

Solution: The characteristic equation is $9r^2 + 6r + 1 = 0$, so

$$r_{\pm} = \frac{1}{(2)(9)} \left[-6 \pm \sqrt{36 - 36} \right]$$

Theorem If a_1 , $a_0 \in R$ satisfy that $a_1^2 = 4a_0$, then the functions $y_1(t) = e^{-\frac{a_1}{2}t}$, $y_2(t) = t e^{-\frac{a_1}{2}t}$,

are a fundamental solution set for the differential equation

$$y^{\prime\prime}+a_1y^{\prime}+a_0y=0.$$

Example

Find the general solution of 9y'' + 6y' + y = 0.

Solution: The characteristic equation is $9r^2 + 6r + 1 = 0$, so

$$r_{\pm} = \frac{1}{(2)(9)} \left[-6 \pm \sqrt{36 - 36} \right] \quad \Rightarrow \quad r_{\pm} = -\frac{1}{3}.$$

Theorem If a_1 , $a_0 \in R$ satisfy that $a_1^2 = 4a_0$, then the functions $y_1(t) = e^{-\frac{a_1}{2}t}$, $y_2(t) = t e^{-\frac{a_1}{2}t}$,

are a fundamental solution set for the differential equation

$$y^{\prime\prime}+a_1y^{\prime}+a_0y=0.$$

Example

Find the general solution of 9y'' + 6y' + y = 0.

Solution: The characteristic equation is $9r^2 + 6r + 1 = 0$, so

$$r_{\pm} = rac{1}{(2)(9)} \left[-6 \pm \sqrt{36 - 36}
ight] \quad \Rightarrow \quad r_{\pm} = -rac{1}{3}.$$

The Theorem above implies that the general solution is

$$y(t) = c_1 e^{-t/3} + c_2 t e^{-t/3}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Second order linear homogeneous ODE (Sect. 2.4).

- Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.
- Repeated roots as a limit case.
- Main result for repeated roots.
- Reduction of the order method:
 - Constant coefficients equations.

Variable coefficients equations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Proof case $a_1^2 - 4a_0 = 0$: Recall: The characteristic equation is $r^2 + a_1r + a_0 = 0$,

Proof case $a_1^2 - 4a_0 = 0$:

Recall: The characteristic equation is $r^2 + a_1r + a_0 = 0$, and its solutions are $r_{\pm} = (1/2) \left[-a_1 \pm \sqrt{a_1^2 - 4a_0} \right]$.

Proof case $a_1^2 - 4a_0 = 0$: Recall: The characteristic equation is $r^2 + a_1r + a_0 = 0$, and its solutions are $r_{\pm} = (1/2) \left[-a_1 \pm \sqrt{a_1^2 - 4a_0} \right]$. The hypothesis $a_1^2 = 4a_0$ implies $r_{\pm} = r_{\pm} = -a_1/2$.

Proof case $a_1^2 - 4a_0 = 0$: Recall: The characteristic equation is $r^2 + a_1r + a_0 = 0$, and its solutions are $r_{\pm} = (1/2) \left[-a_1 \pm \sqrt{a_1^2 - 4a_0} \right]$. The hypothesis $a_1^2 = 4a_0$ implies $r_{\pm} = r_{\pm} = -a_1/2$. So, the solution r_{\pm} of the characteristic equation satisfies both

$$r_{+}^{2} + a_{1}r_{+} + a_{0} = 0, \qquad 2r_{+} + a_{1} = 0.$$

Proof case $a_1^2 - 4a_0 = 0$: Recall: The characteristic equation is $r^2 + a_1r + a_0 = 0$, and its solutions are $r_{\pm} = (1/2) \left[-a_1 \pm \sqrt{a_1^2 - 4a_0} \right]$. The hypothesis $a_1^2 = 4a_0$ implies $r_{\pm} = r_{\pm} = -a_1/2$.

So, the solution r_{\star} of the characteristic equation satisfies both

$$r_{+}^{2} + a_{1}r_{+} + a_{0} = 0, \qquad 2r_{+} + a_{1} = 0.$$

It is clear that $y_1(t) = e^{r_t t}$ is solutions of the differential equation.

Proof case $a_1^2 - 4a_0 = 0$: Recall: The characteristic equation is $r^2 + a_1r + a_0 = 0$, and its solutions are $r_{\pm} = (1/2)[-a_1 \pm \sqrt{a_1^2 - 4a_0}]$. The hypothesis $a_1^2 = 4a_0$ implies $r_{\pm} = r_{\pm} = -a_1/2$.

So, the solution r_* of the characteristic equation satisfies both

$$r_{+}^{2} + a_{1}r_{+} + a_{0} = 0, \qquad 2r_{+} + a_{1} = 0.$$

It is clear that $y_1(t) = e^{r_t t}$ is solutions of the differential equation.

A second solution y_2 not proportional to y_1 can be found as follows: (D'Alembert ~ 1750.)
Proof case $a_1^2 - 4a_0 = 0$: Recall: The characteristic equation is $r^2 + a_1r + a_0 = 0$, and its solutions are $r_{\pm} = (1/2)[-a_1 \pm \sqrt{a_1^2 - 4a_0}]$. The hypothesis $a_1^2 = 4a_0$ implies $r_{\pm} = r_{\pm} = -a_1/2$.

So, the solution r_{+} of the characteristic equation satisfies both

$$r_{+}^{2} + a_{1}r_{+} + a_{0} = 0, \qquad 2r_{+} + a_{1} = 0.$$

It is clear that $y_1(t) = e^{r_t t}$ is solutions of the differential equation.

A second solution y_2 not proportional to y_1 can be found as follows: (D'Alembert ~ 1750.)

Express: $y_2(t) = v(t) y_1(t)$, and find the equation that function v satisfies from the condition $y_2'' + a_1y_2' + a_0y_2 = 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Recall: $y_2 = vy_1$ and $y_2'' + a_1y_2' + a_0y_2 = 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Recall: $y_2 = vy_1$ and $y_2'' + a_1y_2' + a_0y_2 = 0$. So, $y_2 = ve^{r_t t}$

Recall: $y_2 = vy_1$ and $y_2'' + a_1y_2' + a_0y_2 = 0$. So, $y_2 = ve^{r_+t}$ and $y_2' = v'e^{r_+t} + r_+ve^{r_+t}$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Recall:
$$y_2 = vy_1$$
 and $y_2'' + a_1y_2' + a_0y_2 = 0$. So, $y_2 = ve^{r_+t}$ and
 $y_2' = v'e^{r_+t} + r_+ve^{r_+t}$, $y_2'' = v''e^{r_+t} + 2r_+v'e^{r_+t} + r_+^2ve^{r_+t}$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

Recall:
$$y_2 = vy_1$$
 and $y_2'' + a_1y_2' + a_0y_2 = 0$. So, $y_2 = ve^{r_+t}$ and
 $y_2' = v'e^{r_+t} + r_+ve^{r_+t}$, $y_2'' = v''e^{r_+t} + 2r_+v'e^{r_+t} + r_+^2ve^{r_+t}$.

Introducing this information into the differential equation

$$\left[v''+2r_{*}v'+r_{*}^{2}v\right]e^{r_{*}t}+a_{1}\left[v'+r_{*}v\right]e^{r_{*}t}+a_{0}v\,e^{r_{*}t}=0.$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Recall:
$$y_2 = vy_1$$
 and $y_2'' + a_1y_2' + a_0y_2 = 0$. So, $y_2 = ve^{r_+t}$ and
 $y_2' = v'e^{r_+t} + r_+ve^{r_+t}$, $y_2'' = v''e^{r_+t} + 2r_+v'e^{r_+t} + r_+^2ve^{r_+t}$.

Introducing this information into the differential equation

$$\begin{bmatrix} v'' + 2r_{*}v' + r_{*}^{2}v \end{bmatrix} e^{r_{*}t} + a_{1} \begin{bmatrix} v' + r_{*}v \end{bmatrix} e^{r_{*}t} + a_{0}v e^{r_{*}t} = 0.$$
$$\begin{bmatrix} v'' + 2r_{*}v' + r_{*}^{2}v \end{bmatrix} + a_{1} \begin{bmatrix} v' + r_{*}v \end{bmatrix} + a_{0}v = 0$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Recall:
$$y_2 = vy_1$$
 and $y_2'' + a_1y_2' + a_0y_2 = 0$. So, $y_2 = ve^{r_+t}$ and
 $y_2' = v'e^{r_+t} + r_+ve^{r_+t}$, $y_2'' = v''e^{r_+t} + 2r_+v'e^{r_+t} + r_+^2ve^{r_+t}$.

Introducing this information into the differential equation

$$\begin{bmatrix} v'' + 2r_{*}v' + r_{*}^{2}v \end{bmatrix} e^{r_{*}t} + a_{1} [v' + r_{*}v] e^{r_{*}+t} + a_{0}v e^{r_{*}t} = 0.$$
$$\begin{bmatrix} v'' + 2r_{*}v' + r_{*}^{2}v \end{bmatrix} + a_{1} [v' + r_{*}v] + a_{0}v = 0$$
$$v'' + (2r_{*} + a_{1}) v' + (r_{*}^{2} + a_{1}r_{*} + a_{0}) v = 0$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Recall:
$$y_2 = vy_1$$
 and $y_2'' + a_1y_2' + a_0y_2 = 0$. So, $y_2 = ve^{r_+t}$ and
 $y_2' = v'e^{r_+t} + r_+ve^{r_+t}$, $y_2'' = v''e^{r_+t} + 2r_+v'e^{r_+t} + r_+^2ve^{r_+t}$.

Introducing this information into the differential equation

$$\begin{bmatrix} v'' + 2r_{*}v' + r_{*}^{2}v \end{bmatrix} e^{r_{*}t} + a_{1} \begin{bmatrix} v' + r_{*}v \end{bmatrix} e^{r_{+}t} + a_{0}v e^{r_{*}t} = 0.$$
$$\begin{bmatrix} v'' + 2r_{*}v' + r_{*}^{2}v \end{bmatrix} + a_{1} \begin{bmatrix} v' + r_{*}v \end{bmatrix} + a_{0}v = 0$$
$$v'' + (2r_{*} + a_{1})v' + (r_{*}^{2} + a_{1}r_{*} + a_{0})v = 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Recall that r_{+} satisfies: $r_{+}^{2} + a_{1}r_{+} + a_{0} = 0$

Recall:
$$y_2 = vy_1$$
 and $y_2'' + a_1y_2' + a_0y_2 = 0$. So, $y_2 = ve^{r_+t}$ and
 $y_2' = v'e^{r_+t} + r_+ve^{r_+t}$, $y_2'' = v''e^{r_+t} + 2r_+v'e^{r_+t} + r_+^2ve^{r_+t}$.

Introducing this information into the differential equation

$$\begin{bmatrix} v'' + 2r_{*}v' + r_{*}^{2}v \end{bmatrix} e^{r_{*}t} + a_{1} [v' + r_{*}v] e^{r_{*}t} + a_{0}v e^{r_{*}t} = 0.$$
$$\begin{bmatrix} v'' + 2r_{*}v' + r_{*}^{2}v \end{bmatrix} + a_{1} [v' + r_{*}v] + a_{0}v = 0$$
$$v'' + (2r_{*} + a_{1})v' + (r_{*}^{2} + a_{1}r_{*} + a_{0})v = 0$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Recall that r_{+} satisfies: $r_{+}^{2} + a_{1}r_{+} + a_{0} = 0$ and $2r_{+} + a_{1} = 0$.

Recall:
$$y_2 = vy_1$$
 and $y_2'' + a_1y_2' + a_0y_2 = 0$. So, $y_2 = ve^{r_+t}$ and
 $y_2' = v'e^{r_+t} + r_+ve^{r_+t}$, $y_2'' = v''e^{r_+t} + 2r_+v'e^{r_+t} + r_+^2ve^{r_+t}$.

Introducing this information into the differential equation

$$\begin{bmatrix} v'' + 2r_{*}v' + r_{*}^{2}v \end{bmatrix} e^{r_{*}t} + a_{1} \begin{bmatrix} v' + r_{*}v \end{bmatrix} e^{r_{*}t} + a_{0}v e^{r_{*}t} = 0.$$
$$\begin{bmatrix} v'' + 2r_{*}v' + r_{*}^{2}v \end{bmatrix} + a_{1} \begin{bmatrix} v' + r_{*}v \end{bmatrix} + a_{0}v = 0$$
$$v'' + (2r_{*} + a_{1})v' + (r_{*}^{2} + a_{1}r_{*} + a_{0})v = 0$$

Recall that r_* satisfies: $r_*^2 + a_1r_* + a_0 = 0$ and $2r_* + a_1 = 0$. v'' = 0

Recall:
$$y_2 = vy_1$$
 and $y_2'' + a_1y_2' + a_0y_2 = 0$. So, $y_2 = ve^{r_+t}$ and
 $y_2' = v'e^{r_+t} + r_+ve^{r_+t}$, $y_2'' = v''e^{r_+t} + 2r_+v'e^{r_+t} + r_+^2ve^{r_+t}$.

Introducing this information into the differential equation

$$\begin{bmatrix} v'' + 2r_{*}v' + r_{*}^{2}v \end{bmatrix} e^{r_{*}t} + a_{1} \begin{bmatrix} v' + r_{*}v \end{bmatrix} e^{r_{+}t} + a_{0}v e^{r_{*}t} = 0.$$
$$\begin{bmatrix} v'' + 2r_{*}v' + r_{*}^{2}v \end{bmatrix} + a_{1} \begin{bmatrix} v' + r_{*}v \end{bmatrix} + a_{0}v = 0$$
$$v'' + (2r_{*} + a_{1})v' + (r_{*}^{2} + a_{1}r_{*} + a_{0})v = 0$$

Recall that r_{+} satisfies: $r_{+}^{2} + a_{1}r_{+} + a_{0} = 0$ and $2r_{+} + a_{1} = 0$. $v'' = 0 \implies v = (c_{1} + c_{2}t)$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Recall:
$$y_2 = vy_1$$
 and $y_2'' + a_1y_2' + a_0y_2 = 0$. So, $y_2 = ve^{r_+t}$ and
 $y_2' = v'e^{r_+t} + r_+ve^{r_+t}$, $y_2'' = v''e^{r_+t} + 2r_+v'e^{r_+t} + r_+^2ve^{r_+t}$.

Introducing this information into the differential equation

$$\begin{bmatrix} v'' + 2r_{*}v' + r_{*}^{2}v \end{bmatrix} e^{r_{*}t} + a_{1} [v' + r_{*}v] e^{r_{*}t} + a_{0}v e^{r_{*}t} = 0.$$
$$\begin{bmatrix} v'' + 2r_{*}v' + r_{*}^{2}v \end{bmatrix} + a_{1} [v' + r_{*}v] + a_{0}v = 0$$
$$v'' + (2r_{*} + a_{1})v' + (r_{*}^{2} + a_{1}r_{*} + a_{0})v = 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Recall that r_{+} satisfies: $r_{+}^{2} + a_{1}r_{+} + a_{0} = 0$ and $2r_{+} + a_{1} = 0$. $v'' = 0 \implies v = (c_{1} + c_{2}t) \implies y_{2} = (c_{1} + c_{2}t) e^{r_{+}t}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Recall: We have obtained that $y_2(t) = (c_1 + c_2 t) e^{r_t t}$.

Recall: We have obtained that $y_2(t) = (c_1 + c_2 t) e^{r_t t}$.

If $c_2 = 0$, then $y_2 = c_1 e^{r_+ t}$ and $y_1 = e^{r_+ t}$ are linearly dependent functions.

・ロト・日本・モート モー うへぐ

Recall: We have obtained that $y_2(t) = (c_1 + c_2 t) e^{r_1 t}$.

If $c_2 = 0$, then $y_2 = c_1 e^{r_+ t}$ and $y_1 = e^{r_+ t}$ are linearly dependent functions.

If $c_2 \neq 0$, then $y_2 = (c_1 + c_2 t) e^{r_+ t}$ and $y_1 = e^{r_+ t}$ are linearly independent functions.

Recall: We have obtained that $y_2(t) = (c_1 + c_2 t) e^{r_1 t}$.

If $c_2 = 0$, then $y_2 = c_1 e^{r_+ t}$ and $y_1 = e^{r_+ t}$ are linearly dependent functions.

If $c_2 \neq 0$, then $y_2 = (c_1 + c_2 t) e^{r_+ t}$ and $y_1 = e^{r_+ t}$ are linearly independent functions.

Simplest choice: $c_1 = 0$ and $c_2 = 1$.

Recall: We have obtained that $y_2(t) = (c_1 + c_2 t) e^{r_1 t}$.

If $c_2 = 0$, then $y_2 = c_1 e^{r_+ t}$ and $y_1 = e^{r_+ t}$ are linearly dependent functions.

If $c_2 \neq 0$, then $y_2 = (c_1 + c_2 t) e^{r_+ t}$ and $y_1 = e^{r_+ t}$ are linearly independent functions.

Simplest choice: $c_1 = 0$ and $c_2 = 1$. Then, a fundamental solution set to the differential equation is

$$y_1(t) = e^{r_+ t}, \qquad y_2(t) = t e^{r_+ t}$$

Recall: We have obtained that $y_2(t) = (c_1 + c_2 t) e^{r_1 t}$.

If $c_2 = 0$, then $y_2 = c_1 e^{r_t t}$ and $y_1 = e^{r_t t}$ are linearly dependent functions.

If $c_2 \neq 0$, then $y_2 = (c_1 + c_2 t) e^{r_+ t}$ and $y_1 = e^{r_+ t}$ are linearly independent functions.

Simplest choice: $c_1 = 0$ and $c_2 = 1$. Then, a fundamental solution set to the differential equation is

$$y_1(t) = e^{r_t t}, \qquad y_2(t) = t e^{r_t t}$$

The general solution to the differential equation is

$$y(t) = \tilde{c}_1 e^{r_+ t} + \tilde{c}_2 t e^{r_+ t}.$$

Example

Find the solution to the initial value problem

$$9y'' + 6y' + y = 0,$$
 $y(0) = 1,$ $y'(0) = \frac{5}{3}.$

-

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Find the solution to the initial value problem

$$9y'' + 6y' + y = 0,$$
 $y(0) = 1,$ $y'(0) = \frac{5}{3}.$
Solution: The solutions of $9r^2 + 6r + 1 = 0$, are $r_{+} = r_{-} = -\frac{1}{3}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Find the solution to the initial value problem

$$9y'' + 6y' + y = 0,$$
 $y(0) = 1,$ $y'(0) = \frac{5}{3}.$
Solution: The solutions of $9r^2 + 6r + 1 = 0$, are $r_* = r_- = -\frac{1}{3}.$

(ロ)、(型)、(E)、(E)、 E、 の(の)

The Theorem above says that the general solution is

$$y(t) = c_1 e^{-t/3} + c_2 t e^{-t/3}$$

Example

Find the solution to the initial value problem

$$9y'' + 6y' + y = 0,$$
 $y(0) = 1,$ $y'(0) = \frac{5}{3}.$
Solution: The solutions of $9r^2 + 6r + 1 = 0$, are $r_* = r_- = -\frac{1}{3}.$

The Theorem above says that the general solution is

$$y(t) = c_1 e^{-t/3} + c_2 t e^{-t/3} \Rightarrow y'(t) = -\frac{c_1}{3} e^{-t/3} + c_2 \left(1 - \frac{t}{3}\right) e^{-t/3}$$

Example

Find the solution to the initial value problem

$$9y'' + 6y' + y = 0,$$
 $y(0) = 1,$ $y'(0) = \frac{5}{3}.$
Solution: The solutions of $9r^2 + 6r + 1 = 0$, are $r_* = r_- = -\frac{1}{3}.$

The Theorem above says that the general solution is

$$y(t) = c_1 e^{-t/3} + c_2 t e^{-t/3} \Rightarrow y'(t) = -\frac{c_1}{3} e^{-t/3} + c_2 \left(1 - \frac{t}{3}\right) e^{-t/3}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$1 = y(0)$$

Example

Find the solution to the initial value problem

$$9y'' + 6y' + y = 0,$$
 $y(0) = 1,$ $y'(0) = \frac{5}{3}.$
Solution: The solutions of $9r^2 + 6r + 1 = 0$, are $r_* = r_- = -\frac{1}{3}.$

The Theorem above says that the general solution is

$$y(t) = c_1 e^{-t/3} + c_2 t e^{-t/3} \Rightarrow y'(t) = -\frac{c_1}{3} e^{-t/3} + c_2 \left(1 - \frac{t}{3}\right) e^{-t/3}.$$

$$1=y(0)=c_1,$$

Example

Find the solution to the initial value problem

$$9y'' + 6y' + y = 0,$$
 $y(0) = 1,$ $y'(0) = \frac{5}{3}.$
Solution: The solutions of $9r^2 + 6r + 1 = 0$, are $r_* = r_- = -\frac{1}{3}.$

The Theorem above says that the general solution is

$$y(t) = c_1 e^{-t/3} + c_2 t e^{-t/3} \Rightarrow y'(t) = -\frac{c_1}{3} e^{-t/3} + c_2 \left(1 - \frac{t}{3}\right) e^{-t/3}$$

$$1 = y(0) = c_1,$$

 $\frac{5}{3} = y'(0)$

Example

Find the solution to the initial value problem

$$9y'' + 6y' + y = 0,$$
 $y(0) = 1,$ $y'(0) = \frac{5}{3}.$
Solution: The solutions of $9r^2 + 6r + 1 = 0$, are $r_* = r_- = -\frac{1}{3}.$

The Theorem above says that the general solution is

$$y(t) = c_1 e^{-t/3} + c_2 t e^{-t/3} \Rightarrow y'(t) = -\frac{c_1}{3} e^{-t/3} + c_2 \left(1 - \frac{t}{3}\right) e^{-t/3}$$

$$1 = y(0) = c_1,$$

$$\frac{5}{3} = y'(0) = -\frac{c_1}{3} + c_2$$

Example

Find the solution to the initial value problem

$$9y'' + 6y' + y = 0, \qquad y(0) = 1, \qquad y'(0) = \frac{5}{3}.$$

Solution: The solutions of $9r^2 + 6r + 1 = 0$, are $r_* = r_- = -\frac{1}{3}$.

The Theorem above says that the general solution is

$$y(t) = c_1 e^{-t/3} + c_2 t e^{-t/3} \Rightarrow y'(t) = -\frac{c_1}{3} e^{-t/3} + c_2 \left(1 - \frac{t}{3}\right) e^{-t/3}$$

The initial conditions imply that

$$1 = y(0) = c_1,
\frac{5}{3} = y'(0) = -\frac{c_1}{3} + c_2$$
 $\Rightarrow c_1 = 1, c_2 = 2.$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

Example

Find the solution to the initial value problem

$$9y'' + 6y' + y = 0, \qquad y(0) = 1, \qquad y'(0) = \frac{5}{3}.$$

Solution: The solutions of $9r^2 + 6r + 1 = 0$, are $r_* = r_- = -\frac{1}{3}$.

The Theorem above says that the general solution is

$$y(t) = c_1 e^{-t/3} + c_2 t e^{-t/3} \Rightarrow y'(t) = -\frac{c_1}{3} e^{-t/3} + c_2 \left(1 - \frac{t}{3}\right) e^{-t/3}$$

The initial conditions imply that

$$1 = y(0) = c_1, \frac{5}{3} = y'(0) = -\frac{c_1}{3} + c_2$$
 $\Rightarrow c_1 = 1, c_2 = 2.$

<1

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We conclude that $y(t) = (1+2t) e^{-t/3}$.

Second order linear homogeneous ODE (Sect. 2.4).

- Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.
- Repeated roots as a limit case.
- Main result for repeated roots.
- Reduction of the order method:
 - Constant coefficients equations.
 - ► Variable coefficients equations.

Remark: The same idea used to prove the constant coefficients Theorem above can be used in variable coefficients equations.

Remark: The same idea used to prove the constant coefficients Theorem above can be used in variable coefficients equations.

Theorem

Given continuous functions p, $q:(t_1,t_2) \to \mathbb{R}$, let $y_1:(t_1,t_2) \to \mathbb{R}$ be a solution of

y'' + p(t) y' + q(t) y = 0,

If the function $v : (t_1, t_2) \rightarrow \mathbb{R}$ is solution of

$$y_{I}(t) v'' + [2y'(t) + p(t)y_{I}(t)] v' = 0.$$
(3)

then the functions y_1 and $y_2 = v y_1$ are fundamental solutions to the differential equation above.

Remark: The same idea used to prove the constant coefficients Theorem above can be used in variable coefficients equations.

Theorem

Given continuous functions p, $q:(t_1,t_2) \to \mathbb{R}$, let $y_1:(t_1,t_2) \to \mathbb{R}$ be a solution of

y'' + p(t)y' + q(t)y = 0,

If the function $v : (t_1, t_2) \rightarrow \mathbb{R}$ is solution of

$$y_{I}(t) v'' + [2y'(t) + p(t)y_{I}(t)] v' = 0.$$
(3)

then the functions y_1 and $y_2 = v y_1$ are fundamental solutions to the differential equation above.

Remark: The reason for the name Reduction of order method is that the function v does not appear in Eq. (3). This is a first order equation in v'.

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

knowing that $y_1(t) = t$ is a solution.

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

knowing that $y_1(t) = t$ is a solution.

Solution: Express $y_2(t) = v(t) y_1(t)$.

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

knowing that $y_1(t) = t$ is a solution.

Solution: Express $y_2(t) = v(t) y_1(t)$. The equation for v comes from $t^2 y_2'' + 2ty_2' - 2y_2 = 0$.
Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

knowing that $y_1(t) = t$ is a solution.

Solution: Express $y_2(t) = v(t) y_1(t)$. The equation for v comes from $t^2 y_2'' + 2ty_2' - 2y_2 = 0$. We need to compute

$$y_2 = v t$$
,

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

knowing that $y_1(t) = t$ is a solution.

Solution: Express $y_2(t) = v(t) y_1(t)$. The equation for v comes from $t^2 y_2'' + 2ty_2' - 2y_2 = 0$. We need to compute

$$y_2 = v t, \qquad y'_2 = t v' + v,$$

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

knowing that $y_1(t) = t$ is a solution.

Solution: Express $y_2(t) = v(t) y_1(t)$. The equation for v comes from $t^2 y_2'' + 2ty_2' - 2y_2 = 0$. We need to compute

$$y_2 = v t,$$
 $y'_2 = t v' + v,$ $y''_2 = t v'' + 2v'.$

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

knowing that $y_1(t) = t$ is a solution.

Solution: Express $y_2(t) = v(t) y_1(t)$. The equation for v comes from $t^2 y_2'' + 2ty_2' - 2y_2 = 0$. We need to compute

$$y_2 = v t, \qquad y'_2 = t v' + v, \qquad y''_2 = t v'' + 2v'.$$

So, the equation for v is given by

$$t^{2}(t v'' + 2v') + 2t(t v' + v) - 2t v = 0$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

knowing that $y_1(t) = t$ is a solution.

Solution: Express $y_2(t) = v(t) y_1(t)$. The equation for v comes from $t^2 y_2'' + 2ty_2' - 2y_2 = 0$. We need to compute

$$y_2 = v t, \qquad y'_2 = t v' + v, \qquad y''_2 = t v'' + 2v'.$$

So, the equation for v is given by

$$t^{2}(t v'' + 2v') + 2t(t v' + v) - 2t v = 0$$

$$t^{3} v'' + (2t^{2} + 2t^{2}) v' + (2t - 2t) v = 0$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

knowing that $y_1(t) = t$ is a solution.

Solution: Express $y_2(t) = v(t) y_1(t)$. The equation for v comes from $t^2 y_2'' + 2ty_2' - 2y_2 = 0$. We need to compute

$$y_2 = v t, \qquad y'_2 = t v' + v, \qquad y''_2 = t v'' + 2v'.$$

So, the equation for v is given by

$$t^{2}(t v'' + 2v') + 2t(t v' + v) - 2t v = 0$$

$$t^{3} v'' + (2t^{2} + 2t^{2}) v' + (2t - 2t) v = 0$$

$$t^{3} v'' + (4t^{2}) v' = 0$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

knowing that $y_1(t) = t$ is a solution.

Solution: Express $y_2(t) = v(t) y_1(t)$. The equation for v comes from $t^2 y_2'' + 2ty_2' - 2y_2 = 0$. We need to compute

$$y_2 = v t, \qquad y'_2 = t v' + v, \qquad y''_2 = t v'' + 2v'.$$

So, the equation for v is given by

$$t^{2}(tv'' + 2v') + 2t(tv' + v) - 2tv = 0$$

$$t^{3}v'' + (2t^{2} + 2t^{2})v' + (2t - 2t)v = 0$$

$$t^{3}v'' + (4t^{2})v' = 0 \implies v'' + \frac{4}{t}v' = 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

knowing that $y_1(t) = t$ is a solution.

Solution: Recall: $v'' + \frac{4}{t}v' = 0$.

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

knowing that $y_1(t) = t$ is a solution.

Solution: Recall: $v'' + \frac{4}{t}v' = 0$.

This is a first order equation for w = v',

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

knowing that $y_1(t) = t$ is a solution.

Solution: Recall: $v'' + \frac{4}{t}v' = 0$.

This is a first order equation for w = v', given by $w' + \frac{4}{t}w = 0$,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

knowing that $y_1(t) = t$ is a solution.

Solution: Recall: $v'' + \frac{4}{t}v' = 0$.

This is a first order equation for w = v', given by $w' + \frac{4}{t}w = 0$, so

$$\frac{w'}{w} = -\frac{4}{t}$$

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

knowing that $y_1(t) = t$ is a solution.

Solution: Recall: $v'' + \frac{4}{t}v' = 0$.

This is a first order equation for w = v', given by $w' + \frac{4}{r}w = 0$, so

$$\frac{w'}{w} = -\frac{4}{t} \Rightarrow \ln(w) = -4\ln(t) + c_0$$

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

knowing that $y_1(t) = t$ is a solution.

Solution: Recall: $v'' + \frac{4}{t}v' = 0$.

This is a first order equation for w = v', given by $w' + \frac{4}{t}w = 0$, so

$$rac{w'}{w}=-rac{4}{t}\ \Rightarrow\ \ln(w)=-4\ln(t)+c_{\scriptscriptstyle 0}\ \Rightarrow\ w(t)=c_{\scriptscriptstyle 1}t^{-4},\ c_{\scriptscriptstyle 1}\in\mathbb{R}.$$

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

knowing that $y_1(t) = t$ is a solution.

Solution: Recall: $v'' + \frac{4}{t}v' = 0$. This is a first order equation for w = v', given by $w' + \frac{4}{t}w = 0$, so $\frac{w'}{w} = -\frac{4}{t} \Rightarrow \ln(w) = -4\ln(t) + c_0 \Rightarrow w(t) = c_1t^{-4}, c_1 \in \mathbb{R}.$

Integrating w we obtain v,

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

knowing that $y_1(t) = t$ is a solution.

Solution: Recall: $v'' + \frac{4}{t}v' = 0.$

This is a first order equation for w = v', given by $w' + \frac{4}{t}w = 0$, so

$$rac{w'}{w}=-rac{4}{t}\ \Rightarrow\ \ln(w)=-4\ln(t)+c_{\scriptscriptstyle 0}\ \Rightarrow\ w(t)=c_{\scriptscriptstyle 1}t^{-4},\ c_{\scriptscriptstyle 1}\in\mathbb{R}.$$

Integrating w we obtain v, that is, $v = c_2 t^{-3} + c_3$, with $c_2, c_3 \in \mathbb{R}$.

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

knowing that $y_1(t) = t$ is a solution.

Solution: Recall: $v'' + \frac{4}{t}v' = 0$.

This is a first order equation for w = v', given by $w' + \frac{4}{t}w = 0$, so

$$rac{w'}{w}=-rac{4}{t}\ \Rightarrow\ \ln(w)=-4\ln(t)+c_{\scriptscriptstyle 0}\ \Rightarrow\ w(t)=c_{\scriptscriptstyle 1}t^{-4},\ c_{\scriptscriptstyle 1}\in\mathbb{R}.$$

Integrating w we obtain v, that is, $v = c_2 t^{-3} + c_3$, with $c_2, c_3 \in \mathbb{R}$. Recalling that $y_2 = t v$

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

knowing that $y_1(t) = t$ is a solution.

Solution: Recall: $v'' + \frac{4}{t}v' = 0$.

This is a first order equation for w = v', given by $w' + \frac{4}{t}w = 0$, so

$$rac{w'}{w}=-rac{4}{t}\ \Rightarrow\ \ln(w)=-4\ln(t)+c_{\scriptscriptstyle 0}\ \Rightarrow\ w(t)=c_{\scriptscriptstyle 1}t^{-4},\ c_{\scriptscriptstyle 1}\in\mathbb{R}.$$

Integrating w we obtain v, that is, $v = c_2 t^{-3} + c_3$, with $c_2, c_3 \in \mathbb{R}$. Recalling that $y_2 = t v$ we then conclude that $y_2 = c_2 t^{-2} + c_3 t$.

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

knowing that $y_1(t) = t$ is a solution.

Solution: Recall: $v'' + \frac{4}{t}v' = 0$.

This is a first order equation for w = v', given by $w' + \frac{4}{t}w = 0$, so

$$rac{w'}{w}=-rac{4}{t}\ \Rightarrow\ \ln(w)=-4\ln(t)+c_{\scriptscriptstyle 0}\ \Rightarrow\ w(t)=c_{\scriptscriptstyle 1}t^{-4},\ c_{\scriptscriptstyle 1}\in\mathbb{R}.$$

Integrating w we obtain v, that is, $v = c_2 t^{-3} + c_3$, with $c_2, c_3 \in \mathbb{R}$. Recalling that $y_2 = t v$ we then conclude that $y_2 = c_2 t^{-2} + c_3 t$. Choosing $c_2 = 1$ and $c_3 = 0$ we obtain the fundamental solutions $y_1(t) = t$ and $y_2(t) = \frac{1}{t^2}$.

Proof of the Theorem: The choice of $y_2 = vy_1$ implies

$$y'_2 = v' y_1 + v y'_1, \qquad y''_2 = v'' y_1 + 2v' y'_1 + v y''_1.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Proof of the Theorem: The choice of $y_2 = vy_1$ implies

$$y'_2 = v' y_1 + v y'_1, \qquad y''_2 = v'' y_1 + 2v' y'_1 + v y''_1.$$

This information introduced into the differential equation says that

$$(v'' y_1 + 2v' y_1' + v y_1'') + p(v' y_1 + v y_1') + qv y_1 = 0$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Proof of the Theorem: The choice of $y_2 = vy_1$ implies

$$y'_2 = v' y_1 + v y'_1, \qquad y''_2 = v'' y_1 + 2v' y'_1 + v y''_1.$$

This information introduced into the differential equation says that

$$(v'' y_1 + 2v' y_1' + v y_1'') + p (v' y_1 + v y_1') + qv y_1 = 0$$

 $y_1 v'' + (2y_1' + p y_1) v' + (y_1'' + p y_1' + q y_1) v = 0.$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Proof of the Theorem: The choice of $y_2 = vy_1$ implies

$$y'_2 = v' y_1 + v y'_1, \qquad y''_2 = v'' y_1 + 2v' y'_1 + v y''_1.$$

This information introduced into the differential equation says that

$$(v'' y_1 + 2v' y_1' + v y_1'') + p (v' y_1 + v y_1') + qv y_1 = 0$$
$$y_1 v'' + (2y_1' + p y_1) v' + (y_1'' + p y_1' + q y_1) v = 0.$$
he function y_1 is solution of $y_1'' + p y_1' + q y_1 = 0.$

Т

Proof of the Theorem: The choice of $y_2 = vy_1$ implies

$$y'_2 = v' y_1 + v y'_1, \qquad y''_2 = v'' y_1 + 2v' y'_1 + v y''_1.$$

This information introduced into the differential equation says that

$$(v'' y_1 + 2v' y'_1 + v y''_1) + p (v' y_1 + v y'_1) + qv y_1 = 0$$
$$y_1 v'' + (2y'_1 + p y_1) v' + (y''_1 + p y'_1 + q y_1) v = 0.$$
The function y_1 is solution of $y''_1 + p y'_1 + q y_1 = 0$.
Then, the equation for v is given by Eq. (3), that is,

Т

 $v_1 v'' + (2v'_1 + p y_1) v' = 0.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Proof: Recall $y_1 v'' + (2y'_1 + p y_1) v' = 0$.

Proof: Recall $y_1 v'' + (2y'_1 + p y_1) v' = 0$. We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Proof: Recall $y_1 v'' + (2y'_1 + p y_1) v' = 0$. We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.

 $W_{y_1y_2}$

Proof: Recall $y_1 v'' + (2y'_1 + p y_1) v' = 0$. We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

$$W_{y_1y_2} = egin{bmatrix} y_1 & vy_1 \ y_1' & (v'y_1 + vy_1') \end{bmatrix}$$

Proof: Recall $y_1 v'' + (2y'_1 + p y_1) v' = 0$. We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.

$$W_{y_1y_2} = egin{bmatrix} y_1 & vy_1 \ y_1' & (v'y_1 + vy_1') \end{bmatrix} = y_1(v'y_1 + vy_1') - vy_1y_1'.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Proof: Recall $y_1 v'' + (2y'_1 + p y_1) v' = 0$. We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.

$$W_{y_1y_2} = \begin{vmatrix} y_1 & vy_1 \\ y'_1 & (v'y_1 + vy'_1) \end{vmatrix} = y_1(v'y_1 + vy'_1) - vy_1y'_1.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We obtain $W_{y_1y_2} = v'y_1^2$.

Proof: Recall $y_1 v'' + (2y'_1 + p y_1) v' = 0$. We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.

$$W_{y_1y_2} = \begin{vmatrix} y_1 & vy_1 \\ y_1' & (v'y_1 + vy_1') \end{vmatrix} = y_1(v'y_1 + vy_1') - vy_1y_1'.$$

We obtain $W_{y_1y_2} = v'y_1^2$. We need to find v'.

Proof: Recall $y_1 v'' + (2y'_1 + p y_1) v' = 0$. We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.

$$W_{y_1y_2} = \begin{vmatrix} y_1 & vy_1 \\ y'_1 & (v'y_1 + vy'_1) \end{vmatrix} = y_1(v'y_1 + vy'_1) - vy_1y'_1.$$

We obtain $W_{y_1y_2} = v'y_1^2$. We need to find v'. Denote w = v',

Proof: Recall $y_1 v'' + (2y'_1 + p y_1) v' = 0$. We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.

$$W_{y_1y_2} = egin{bmatrix} y_1 & vy_1 \ y_1' & (v'y_1 + vy_1') \end{bmatrix} = y_1(v'y_1 + vy_1') - vy_1y_1'.$$

We obtain $W_{y_1y_2} = v'y_1^2$. We need to find v'. Denote w = v', so

$$y_1 w' + (2y_1' + p y_1) w = 0$$

Proof: Recall $y_1 v'' + (2y'_1 + p y_1) v' = 0$. We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.

$$W_{y_1y_2} = egin{bmatrix} y_1 & vy_1 \ y_1' & (v'y_1 + vy_1') \end{bmatrix} = y_1(v'y_1 + vy_1') - vy_1y_1'.$$

We obtain $W_{y_1y_2} = v'y_1^2$. We need to find v'. Denote w = v', so

$$y_1 w' + (2y_1' + p y_1) w = 0 \quad \Rightarrow \quad \frac{w'}{w} = -2\frac{y_1'}{y_1} - p.$$

Proof: Recall $y_1 v'' + (2y'_1 + p y_1) v' = 0$. We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.

$$W_{y_1y_2} = egin{bmatrix} y_1 & vy_1 \ y_1' & (v'y_1 + vy_1') \end{bmatrix} = y_1(v'y_1 + vy_1') - vy_1y_1'.$$

We obtain $W_{y_1y_2} = v'y_1^2$. We need to find v'. Denote w = v', so

$$y_1 w' + (2y'_1 + p y_1) w = 0 \quad \Rightarrow \quad \frac{w'}{w} = -2\frac{y'_1}{y_1} - p.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let P be a primitive of p, that is, P'(t) = p(t),

Proof: Recall $y_1 v'' + (2y'_1 + p y_1) v' = 0$. We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.

$$W_{y_1y_2} = egin{bmatrix} y_1 & vy_1 \ y_1' & (v'y_1 + vy_1') \end{bmatrix} = y_1(v'y_1 + vy_1') - vy_1y_1'.$$

We obtain $W_{y_1y_2} = v'y_1^2$. We need to find v'. Denote w = v', so

$$y_1 w' + (2y'_1 + p y_1) w = 0 \quad \Rightarrow \quad \frac{w'}{w} = -2\frac{y'_1}{y_1} - p.$$

Let P be a primitive of p, that is, P'(t) = p(t), then

$$\ln(w) = -2\ln(y_1) - P$$

Proof: Recall $y_1 v'' + (2y'_1 + p y_1) v' = 0$. We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.

$$W_{y_1y_2} = egin{bmatrix} y_1 & vy_1 \ y_1' & (v'y_1 + vy_1') \end{bmatrix} = y_1(v'y_1 + vy_1') - vy_1y_1'.$$

We obtain $W_{y_1y_2} = v'y_1^2$. We need to find v'. Denote w = v', so

$$y_1 w' + (2y_1' + p y_1) w = 0 \quad \Rightarrow \quad \frac{w'}{w} = -2\frac{y_1'}{y_1} - p.$$

Let P be a primitive of p, that is, P'(t) = p(t), then

 $\ln(w) = -2\ln(y_1) - P \Rightarrow w = e^{[\ln(y_1^{-2}) - P]}$
Reduction of the order method: Variable coefficients.

Proof: Recall $y_1 v'' + (2y'_1 + p y_1) v' = 0$. We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.

$$W_{y_1y_2} = egin{bmatrix} y_1 & vy_1 \ y_1' & (v'y_1 + vy_1') \end{bmatrix} = y_1(v'y_1 + vy_1') - vy_1y_1'.$$

We obtain $W_{y_1y_2} = v'y_1^2$. We need to find v'. Denote w = v', so

$$y_1 w' + (2y_1' + p y_1) w = 0 \quad \Rightarrow \quad \frac{w'}{w} = -2\frac{y_1'}{y_1} - p.$$

Let P be a primitive of p, that is, P'(t) = p(t), then

$$\ln(w) = -2\ln(y_1) - P \implies w = e^{[\ln(y_1^{-2}) - P]} \implies w = y_1^{-2} e^{-P}.$$

Reduction of the order method: Variable coefficients.

Proof: Recall $y_1 v'' + (2y'_1 + p y_1) v' = 0$. We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.

$$W_{y_1y_2} = egin{bmatrix} y_1 & vy_1 \ y_1' & (v'y_1 + vy_1') \end{bmatrix} = y_1(v'y_1 + vy_1') - vy_1y_1'.$$

We obtain $W_{y_1y_2} = v'y_1^2$. We need to find v'. Denote w = v', so

$$y_1 w' + (2y_1' + p y_1) w = 0 \quad \Rightarrow \quad \frac{w'}{w} = -2\frac{y_1'}{y_1} - p.$$

Let P be a primitive of p, that is, P'(t) = p(t), then

$$\ln(w) = -2\ln(y_1) - P \Rightarrow w = e^{[\ln(y_1^{-2}) - P]} \Rightarrow w = y_1^{-2} e^{-P}.$$

We obtain $v'y_1^2 = e^{-P}$, hence $W_{y_1y_2} = e^{-P}$, which is non-zero.

Reduction of the order method: Variable coefficients.

Proof: Recall $y_1 v'' + (2y'_1 + p y_1) v' = 0$. We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.

$$W_{y_1y_2} = egin{bmatrix} y_1 & vy_1 \ y_1' & (v'y_1 + vy_1') \end{bmatrix} = y_1(v'y_1 + vy_1') - vy_1y_1'.$$

We obtain $W_{y_1y_2} = v'y_1^2$. We need to find v'. Denote w = v', so

$$y_1 w' + (2y_1' + p y_1) w = 0 \quad \Rightarrow \quad \frac{w'}{w} = -2\frac{y_1'}{y_1} - p.$$

Let P be a primitive of p, that is, P'(t) = p(t), then

$$\ln(w) = -2\ln(y_1) - P \implies w = e^{[\ln(y_1^{-2}) - P]} \implies w = y_1^{-2} e^{-P}.$$

We obtain $v'y_1^2 = e^{-P}$, hence $W_{y_1y_2} = e^{-P}$, which is non-zero. We conclude that y_1 and $y_2 = vy_1$ are linearly independent.