Second order linear ODE (Sect. 2.2).

- Review: Second order linear differential equations.
- Idea: Soving constant coefficients equations.
- The characteristic equation.
- Solution formulas for constant coefficients equations.

Review: Second order linear ODE.

Definition

Given functions $a_{1}, a_{0}, b: \mathbb{R} \rightarrow \mathbb{R}$, the differential equation in the unknown function $y: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
y^{\prime \prime}+a_{1}(t) y^{\prime}+a_{0}(t) y=b(t)
$$

is called a second order linear differential equation.

Review: Second order linear ODE.

Definition

Given functions $a_{1}, a_{0}, b: \mathbb{R} \rightarrow \mathbb{R}$, the differential equation in the unknown function $y: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
y^{\prime \prime}+a_{1}(t) y^{\prime}+a_{0}(t) y=b(t)
$$

is called a second order linear differential equation. If $b=0$, the equation is called homogeneous.

Review: Second order linear ODE.

Definition

Given functions $a_{1}, a_{0}, b: \mathbb{R} \rightarrow \mathbb{R}$, the differential equation in the unknown function $y: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
y^{\prime \prime}+a_{1}(t) y^{\prime}+a_{0}(t) y=b(t)
$$

is called a second order linear differential equation. If $b=0$, the equation is called homogeneous. If the coefficients $a_{1}, a_{2} \in \mathbb{R}$ are constants, the equation is called of constant coefficients.

Review: Second order linear ODE.

Definition

Given functions $a_{1}, a_{0}, b: \mathbb{R} \rightarrow \mathbb{R}$, the differential equation in the unknown function $y: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
y^{\prime \prime}+a_{1}(t) y^{\prime}+a_{0}(t) y=b(t)
$$

is called a second order linear differential equation. If $b=0$, the equation is called homogeneous. If the coefficients $a_{1}, a_{2} \in \mathbb{R}$ are constants, the equation is called of constant coefficients.

Theorem (Superposition property)

If the functions y_{1} and y_{2} are solutions to the homogeneous linear equation

$$
y^{\prime \prime}+a_{1}(t) y^{\prime}+a_{0}(t) y=0
$$

then the linear combination $c_{1} y_{1}(t)+c_{2} y_{2}(t)$ is also a solution for any constants $c_{1}, c_{2} \in \mathbb{R}$.

Second order linear ODE (Sect. 2.2).

- Review: Second order linear differential equations.
- Idea: Soving constant coefficients equations.
- The characteristic equation.
- Solution formulas for constant coefficients equations.

Idea: Soving constant coefficients equations.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations.

Idea: Soving constant coefficients equations.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation $y^{\prime \prime}+5 y^{\prime}+6 y=0$.

Idea: Soving constant coefficients equations.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation $y^{\prime \prime}+5 y^{\prime}+6 y=0$.
Solution: We look for solutions proportional to exponentials $e^{r t}$,

Idea: Soving constant coefficients equations.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation $y^{\prime \prime}+5 y^{\prime}+6 y=0$.
Solution: We look for solutions proportional to exponentials $e^{r t}$, for an appropriate constant $r \in \mathbb{R}$,

Idea: Soving constant coefficients equations.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation $y^{\prime \prime}+5 y^{\prime}+6 y=0$.
Solution: We look for solutions proportional to exponentials $e^{r t}$, for an appropriate constant $r \in \mathbb{R}$, since the exponential can be canceled out from the equation.

Idea: Soving constant coefficients equations.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation $y^{\prime \prime}+5 y^{\prime}+6 y=0$.
Solution: We look for solutions proportional to exponentials $e^{r t}$, for an appropriate constant $r \in \mathbb{R}$, since the exponential can be canceled out from the equation.
If $y(t)=e^{r t}$, then $y^{\prime}(t)=$

Idea: Soving constant coefficients equations.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation $y^{\prime \prime}+5 y^{\prime}+6 y=0$.
Solution: We look for solutions proportional to exponentials $e^{r t}$, for an appropriate constant $r \in \mathbb{R}$, since the exponential can be canceled out from the equation.
If $y(t)=e^{r t}$, then $y^{\prime}(t)=r e^{r t}$,

Idea: Soving constant coefficients equations.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation $y^{\prime \prime}+5 y^{\prime}+6 y=0$.
Solution: We look for solutions proportional to exponentials $e^{r t}$, for an appropriate constant $r \in \mathbb{R}$, since the exponential can be canceled out from the equation.
If $y(t)=e^{r t}$, then $y^{\prime}(t)=r e^{r t}$, and $y^{\prime \prime}(t)=$

Idea: Soving constant coefficients equations.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation $y^{\prime \prime}+5 y^{\prime}+6 y=0$.
Solution: We look for solutions proportional to exponentials $e^{r t}$, for an appropriate constant $r \in \mathbb{R}$, since the exponential can be canceled out from the equation.
If $y(t)=e^{r t}$, then $y^{\prime}(t)=r e^{r t}$, and $y^{\prime \prime}(t)=r^{2} e^{r t}$.

Idea: Soving constant coefficients equations.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation $y^{\prime \prime}+5 y^{\prime}+6 y=0$.
Solution: We look for solutions proportional to exponentials $e^{r t}$, for an appropriate constant $r \in \mathbb{R}$, since the exponential can be canceled out from the equation.
If $y(t)=e^{r t}$, then $y^{\prime}(t)=r e^{r t}$, and $y^{\prime \prime}(t)=r^{2} e^{r t}$. Hence

$$
\left(r^{2}+5 r+6\right) e^{r t}=0
$$

Idea: Soving constant coefficients equations.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation $y^{\prime \prime}+5 y^{\prime}+6 y=0$.
Solution: We look for solutions proportional to exponentials $e^{r t}$, for an appropriate constant $r \in \mathbb{R}$, since the exponential can be canceled out from the equation.
If $y(t)=e^{r t}$, then $y^{\prime}(t)=r e^{r t}$, and $y^{\prime \prime}(t)=r^{2} e^{r t}$. Hence

$$
\left(r^{2}+5 r+6\right) e^{r t}=0 \quad \Leftrightarrow \quad r^{2}+5 r+6=0 .
$$

Idea: Soving constant coefficients equations.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation $y^{\prime \prime}+5 y^{\prime}+6 y=0$.
Solution: We look for solutions proportional to exponentials $e^{r t}$, for an appropriate constant $r \in \mathbb{R}$, since the exponential can be canceled out from the equation.
If $y(t)=e^{r t}$, then $y^{\prime}(t)=r e^{r t}$, and $y^{\prime \prime}(t)=r^{2} e^{r t}$. Hence

$$
\left(r^{2}+5 r+6\right) e^{r t}=0 \quad \Leftrightarrow \quad r^{2}+5 r+6=0 .
$$

That is, r must be a root of the polynomial $p(r)=r^{2}+5 r+6$.

Idea: Soving constant coefficients equations.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation $y^{\prime \prime}+5 y^{\prime}+6 y=0$.
Solution: We look for solutions proportional to exponentials $e^{r t}$, for an appropriate constant $r \in \mathbb{R}$, since the exponential can be canceled out from the equation.
If $y(t)=e^{r t}$, then $y^{\prime}(t)=r e^{r t}$, and $y^{\prime \prime}(t)=r^{2} e^{r t}$. Hence

$$
\left(r^{2}+5 r+6\right) e^{r t}=0 \quad \Leftrightarrow \quad r^{2}+5 r+6=0 .
$$

That is, r must be a root of the polynomial $p(r)=r^{2}+5 r+6$.
This polynomial is called the characteristic polynomial of the differential equation.

Idea: Soving constant coefficients equations.

Example

Find solutions to the equation $y^{\prime \prime}+5 y^{\prime}+6 y=0$.
Solution: Recall: $p(r)=r^{2}+5 r+6$.

Idea: Soving constant coefficients equations.

Example

Find solutions to the equation $y^{\prime \prime}+5 y^{\prime}+6 y=0$.
Solution: Recall: $p(r)=r^{2}+5 r+6$.
The roots of the characteristic polynomial are

$$
r=\frac{1}{2}(-5 \pm \sqrt{25-24})
$$

Idea: Soving constant coefficients equations.

Example

Find solutions to the equation $y^{\prime \prime}+5 y^{\prime}+6 y=0$.
Solution: Recall: $p(r)=r^{2}+5 r+6$.
The roots of the characteristic polynomial are

$$
r=\frac{1}{2}(-5 \pm \sqrt{25-24})=\frac{1}{2}(-5 \pm 1)
$$

Idea: Soving constant coefficients equations.

Example

Find solutions to the equation $y^{\prime \prime}+5 y^{\prime}+6 y=0$.
Solution: Recall: $p(r)=r^{2}+5 r+6$.
The roots of the characteristic polynomial are

$$
r=\frac{1}{2}(-5 \pm \sqrt{25-24})=\frac{1}{2}(-5 \pm 1) \quad \Rightarrow \quad\left\{\begin{array}{l}
r_{1}=-2 \\
r_{2}=-3
\end{array}\right.
$$

Idea: Soving constant coefficients equations.

Example

Find solutions to the equation $y^{\prime \prime}+5 y^{\prime}+6 y=0$.
Solution: Recall: $p(r)=r^{2}+5 r+6$.
The roots of the characteristic polynomial are

$$
r=\frac{1}{2}(-5 \pm \sqrt{25-24})=\frac{1}{2}(-5 \pm 1) \Rightarrow\left\{\begin{array}{l}
r_{1}=-2 \\
r_{2}=-3
\end{array}\right.
$$

Therefore, we have found two solutions to the ODE,

$$
y_{1}(t)=e^{-2 t}, \quad y_{2}(t)=e^{-3 t}
$$

Idea: Soving constant coefficients equations.

Example

Find solutions to the equation $y^{\prime \prime}+5 y^{\prime}+6 y=0$.
Solution: Recall: $p(r)=r^{2}+5 r+6$.
The roots of the characteristic polynomial are

$$
r=\frac{1}{2}(-5 \pm \sqrt{25-24})=\frac{1}{2}(-5 \pm 1) \quad \Rightarrow \quad\left\{\begin{array}{l}
r_{1}=-2 \\
r_{2}=-3
\end{array}\right.
$$

Therefore, we have found two solutions to the ODE,

$$
y_{1}(t)=e^{-2 t}, \quad y_{2}(t)=e^{-3 t}
$$

Their superposition provides infinitely many solutions,

Idea: Soving constant coefficients equations.

Example

Find solutions to the equation $y^{\prime \prime}+5 y^{\prime}+6 y=0$.
Solution: Recall: $p(r)=r^{2}+5 r+6$.
The roots of the characteristic polynomial are

$$
r=\frac{1}{2}(-5 \pm \sqrt{25-24})=\frac{1}{2}(-5 \pm 1) \quad \Rightarrow \quad\left\{\begin{array}{l}
r_{1}=-2 \\
r_{2}=-3
\end{array}\right.
$$

Therefore, we have found two solutions to the ODE,

$$
y_{1}(t)=e^{-2 t}, \quad y_{2}(t)=e^{-3 t}
$$

Their superposition provides infinitely many solutions,

$$
y(t)=c_{1} e^{-2 t}+c_{2} e^{-3 t}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

Idea: Soving constant coefficients equations.

Summary: The differential equation $y^{\prime \prime}+5 y^{\prime}+6 y=0$ has infinitely many solutions,

$$
y(t)=c_{1} e^{-2 t}+c_{2} e^{-3 t}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

Idea: Soving constant coefficients equations.

Summary: The differential equation $y^{\prime \prime}+5 y^{\prime}+6 y=0$ has infinitely many solutions,

$$
y(t)=c_{1} e^{-2 t}+c_{2} e^{-3 t}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

Remarks:

- There are two free constants in the solution found above.

Idea: Soving constant coefficients equations.

Summary: The differential equation $y^{\prime \prime}+5 y^{\prime}+6 y=0$ has infinitely many solutions,

$$
y(t)=c_{1} e^{-2 t}+c_{2} e^{-3 t}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

Remarks:

- There are two free constants in the solution found above.
- The ODE above is second order, so two integrations must be done to find the solution. This explain the origin of the two free constant in the solution.

Idea: Soving constant coefficients equations.

Summary: The differential equation $y^{\prime \prime}+5 y^{\prime}+6 y=0$ has infinitely many solutions,

$$
y(t)=c_{1} e^{-2 t}+c_{2} e^{-3 t}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

Remarks:

- There are two free constants in the solution found above.
- The ODE above is second order, so two integrations must be done to find the solution. This explain the origin of the two free constant in the solution.
- An IVP for a second order differential equation will have a unique solution if the IVP contains two initial conditions.

Second order linear ODE (Sect. 2.2).

- Review: Second order linear differential equations.
- Idea: Soving constant coefficients equations.
- The characteristic equation.
- Solution formulas for constant coefficients equations.

The characteristic equation.

Definition

Given a second order linear homogeneous differential equation with constant coefficients

$$
\begin{equation*}
y^{\prime \prime}+a_{1} y^{\prime}+a_{0}=0 \tag{1}
\end{equation*}
$$

the characteristic polynomial and the characteristic equation associated with the differential equation in (1) are, respectively,

$$
p(r)=r^{2}+a_{1} r+a_{0}, \quad p(r)=0 .
$$

The characteristic equation.

Definition

Given a second order linear homogeneous differential equation with constant coefficients

$$
\begin{equation*}
y^{\prime \prime}+a_{1} y^{\prime}+a_{0}=0 \tag{1}
\end{equation*}
$$

the characteristic polynomial and the characteristic equation associated with the differential equation in (1) are, respectively,

$$
p(r)=r^{2}+a_{1} r+a_{0}, \quad p(r)=0 .
$$

Remark: If r_{1}, r_{2} are the solutions of the characteristic equation and c_{1}, c_{2} are constants, then we will show that the general solution of Eq. (1) is given by

$$
y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}
$$

The characteristic equation.

Example

Find the solution y of the initial value problem

$$
y^{\prime \prime}+5 y^{\prime}+6=0, \quad y(0)=1, \quad y^{\prime}(0)=-1
$$

The characteristic equation.

Example

Find the solution y of the initial value problem

$$
y^{\prime \prime}+5 y^{\prime}+6=0, \quad y(0)=1, \quad y^{\prime}(0)=-1
$$

Solution: A solution of the differential equation above is

$$
y(t)=c_{1} e^{-2 t}+c_{2} e^{-3 t} .
$$

The characteristic equation.

Example

Find the solution y of the initial value problem

$$
y^{\prime \prime}+5 y^{\prime}+6=0, \quad y(0)=1, \quad y^{\prime}(0)=-1
$$

Solution: A solution of the differential equation above is

$$
y(t)=c_{1} e^{-2 t}+c_{2} e^{-3 t} .
$$

We now find the constants c_{1} and c_{2} that satisfy the initial conditions above:

The characteristic equation.

Example

Find the solution y of the initial value problem

$$
y^{\prime \prime}+5 y^{\prime}+6=0, \quad y(0)=1, \quad y^{\prime}(0)=-1
$$

Solution: A solution of the differential equation above is

$$
y(t)=c_{1} e^{-2 t}+c_{2} e^{-3 t} .
$$

We now find the constants c_{1} and c_{2} that satisfy the initial conditions above:

$$
1=y(0)=c_{1}+c_{2},
$$

The characteristic equation.

Example

Find the solution y of the initial value problem

$$
y^{\prime \prime}+5 y^{\prime}+6=0, \quad y(0)=1, \quad y^{\prime}(0)=-1
$$

Solution: A solution of the differential equation above is

$$
y(t)=c_{1} e^{-2 t}+c_{2} e^{-3 t} .
$$

We now find the constants c_{1} and c_{2} that satisfy the initial conditions above:

$$
1=y(0)=c_{1}+c_{2}, \quad-1=y^{\prime}(0)=-2 c_{1}-3 c_{2} .
$$

The characteristic equation.

Example

Find the solution y of the initial value problem

$$
y^{\prime \prime}+5 y^{\prime}+6=0, \quad y(0)=1, \quad y^{\prime}(0)=-1
$$

Solution: A solution of the differential equation above is

$$
y(t)=c_{1} e^{-2 t}+c_{2} e^{-3 t} .
$$

We now find the constants c_{1} and c_{2} that satisfy the initial conditions above:

$$
\begin{aligned}
& \quad 1=y(0)=c_{1}+c_{2}, \quad-1=y^{\prime}(0)=-2 c_{1}-3 c_{2} . \\
& c_{1}=1-c_{2}
\end{aligned}
$$

The characteristic equation.

Example

Find the solution y of the initial value problem

$$
y^{\prime \prime}+5 y^{\prime}+6=0, \quad y(0)=1, \quad y^{\prime}(0)=-1
$$

Solution: A solution of the differential equation above is

$$
y(t)=c_{1} e^{-2 t}+c_{2} e^{-3 t}
$$

We now find the constants c_{1} and c_{2} that satisfy the initial conditions above:

$$
\begin{aligned}
& 1=y(0)=c_{1}+c_{2}, \quad-1=y^{\prime}(0)=-2 c_{1}-3 c_{2} . \\
& c_{1}=1-c_{2} \Rightarrow 1=2\left(1-c_{2}\right)+3 c_{2}
\end{aligned}
$$

The characteristic equation.

Example

Find the solution y of the initial value problem

$$
y^{\prime \prime}+5 y^{\prime}+6=0, \quad y(0)=1, \quad y^{\prime}(0)=-1
$$

Solution: A solution of the differential equation above is

$$
y(t)=c_{1} e^{-2 t}+c_{2} e^{-3 t} .
$$

We now find the constants c_{1} and c_{2} that satisfy the initial conditions above:

$$
\begin{aligned}
& 1=y(0)=c_{1}+c_{2}, \quad-1=y^{\prime}(0)=-2 c_{1}-3 c_{2} . \\
& c_{1}=1-c_{2} \Rightarrow 1=2\left(1-c_{2}\right)+3 c_{2} \Rightarrow c_{2}=-1
\end{aligned}
$$

The characteristic equation.

Example

Find the solution y of the initial value problem

$$
y^{\prime \prime}+5 y^{\prime}+6=0, \quad y(0)=1, \quad y^{\prime}(0)=-1
$$

Solution: A solution of the differential equation above is

$$
y(t)=c_{1} e^{-2 t}+c_{2} e^{-3 t} .
$$

We now find the constants c_{1} and c_{2} that satisfy the initial conditions above:

$$
\begin{gathered}
1=y(0)=c_{1}+c_{2}, \quad-1=y^{\prime}(0)=-2 c_{1}-3 c_{2} . \\
c_{1}=1-c_{2} \Rightarrow 1=2\left(1-c_{2}\right)+3 c_{2} \Rightarrow c_{2}=-1 \Rightarrow c_{1}=2 .
\end{gathered}
$$

The characteristic equation.

Example

Find the solution y of the initial value problem

$$
y^{\prime \prime}+5 y^{\prime}+6=0, \quad y(0)=1, \quad y^{\prime}(0)=-1
$$

Solution: A solution of the differential equation above is

$$
y(t)=c_{1} e^{-2 t}+c_{2} e^{-3 t} .
$$

We now find the constants c_{1} and c_{2} that satisfy the initial conditions above:

$$
\begin{gathered}
1=y(0)=c_{1}+c_{2}, \quad-1=y^{\prime}(0)=-2 c_{1}-3 c_{2} . \\
c_{1}=1-c_{2} \Rightarrow 1=2\left(1-c_{2}\right)+3 c_{2} \Rightarrow c_{2}=-1 \Rightarrow c_{1}=2 .
\end{gathered}
$$

Therefore, the unique solution to the initial value problem is

$$
y(t)=2 e^{-2 t}-e^{-3 t}
$$

The characteristic equation.

Example

Find the general solution y of the differential equation

$$
2 y^{\prime \prime}-3 y^{\prime}+y=0 .
$$

The characteristic equation.

Example

Find the general solution y of the differential equation

$$
2 y^{\prime \prime}-3 y^{\prime}+y=0
$$

Solution: We look for every solution of the form $y(t)=e^{r t}$,

The characteristic equation.

Example

Find the general solution y of the differential equation

$$
2 y^{\prime \prime}-3 y^{\prime}+y=0
$$

Solution: We look for every solution of the form $y(t)=e^{r t}$, where r is a solution of the characteristic equation

$$
2 r^{2}-3 r+1=0
$$

The characteristic equation.

Example

Find the general solution y of the differential equation

$$
2 y^{\prime \prime}-3 y^{\prime}+y=0
$$

Solution: We look for every solution of the form $y(t)=e^{r t}$, where r is a solution of the characteristic equation

$$
2 r^{2}-3 r+1=0 \Rightarrow r=\frac{1}{4}(3 \pm \sqrt{9-8})
$$

The characteristic equation.

Example

Find the general solution y of the differential equation

$$
2 y^{\prime \prime}-3 y^{\prime}+y=0
$$

Solution: We look for every solution of the form $y(t)=e^{r t}$, where r is a solution of the characteristic equation

$$
2 r^{2}-3 r+1=0 \Rightarrow r=\frac{1}{4}(3 \pm \sqrt{9-8}) \Rightarrow\left\{\begin{array}{l}
r_{1}=1 \\
r_{2}=\frac{1}{2}
\end{array}\right.
$$

The characteristic equation.

Example

Find the general solution y of the differential equation

$$
2 y^{\prime \prime}-3 y^{\prime}+y=0
$$

Solution: We look for every solution of the form $y(t)=e^{r t}$, where r is a solution of the characteristic equation

$$
2 r^{2}-3 r+1=0 \Rightarrow r=\frac{1}{4}(3 \pm \sqrt{9-8}) \Rightarrow\left\{\begin{array}{l}
r_{1}=1 \\
r_{2}=\frac{1}{2}
\end{array}\right.
$$

Therefore, the general solution of the equation above is

$$
y(t)=c_{1} e^{t}+c_{2} e^{t / 2}
$$

where c_{1}, c_{2} are arbitrary constants.

Second order linear ODE (Sect. 2.2).

- Review: Second order linear differential equations.
- Idea: Soving constant coefficients equations.
- The characteristic equation.
- Solution formulas for constant coefficients equations.

Solution formulas for constant coefficients equations.

Theorem (Constant coefficients)
Given real constants a_{1}, a_{0}, consider the homogeneous, linear differential equation on the unknown $y: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

Solution formulas for constant coefficients equations.

Theorem (Constant coefficients)
Given real constants a_{1}, a_{0}, consider the homogeneous, linear differential equation on the unknown $y: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

Let r_{+}, r_{-}be the roots of the characteristic polynomial $p(r)=r^{2}+a_{1} r+a_{0}$,

Solution formulas for constant coefficients equations.

Theorem (Constant coefficients)
Given real constants a_{1}, a_{0}, consider the homogeneous, linear differential equation on the unknown $y: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

Let r_{+}, r_{-}be the roots of the characteristic polynomial $p(r)=r^{2}+a_{1} r+a_{0}$, and let c_{0}, c_{1} be arbitrary constants.

Solution formulas for constant coefficients equations.

Theorem (Constant coefficients)
Given real constants a_{1}, a_{0}, consider the homogeneous, linear differential equation on the unknown $y: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

Let r_{+}, r_{-}be the roots of the characteristic polynomial $p(r)=r^{2}+a_{1} r+a_{0}$, and let c_{0}, c_{1} be arbitrary constants. Then, the general solution of the differential eqation is given by:
(a) If $r_{+} \neq r_{-}$, real or complex, then $y(t)=c_{0} e^{r_{+} t}+c_{1} e^{r_{-} t}$.

Solution formulas for constant coefficients equations.

Theorem (Constant coefficients)
Given real constants a_{1}, a_{0}, consider the homogeneous, linear differential equation on the unknown $y: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

Let r_{+}, r_{-}be the roots of the characteristic polynomial $p(r)=r^{2}+a_{1} r+a_{0}$, and let c_{0}, c_{1} be arbitrary constants. Then, the general solution of the differential eqation is given by:
(a) If $r_{+} \neq r_{-}$, real or complex, then $y(t)=c_{0} e^{r_{+} t}+c_{1} e^{r_{-} t}$.
(b) If $r_{+}=r_{-}=\hat{r} \in \mathbb{R}$, then is $y(t)=c_{0} e^{\hat{\gamma} t}+c_{1} t e^{\hat{r} t}$.

Solution formulas for constant coefficients equations.

Theorem (Constant coefficients)

Given real constants a_{1}, a_{0}, consider the homogeneous, linear differential equation on the unknown $y: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

Let r_{+}, r_{-}be the roots of the characteristic polynomial $p(r)=r^{2}+a_{1} r+a_{0}$, and let c_{0}, c_{1} be arbitrary constants. Then, the general solution of the differential eqation is given by:
(a) If $r_{+} \neq r_{-}$, real or complex, then $y(t)=c_{0} e^{r_{+} t}+c_{1} e^{r_{-} t}$.
(b) If $r_{+}=r_{-}=\hat{r} \in \mathbb{R}$, then is $y(t)=c_{0} e^{\hat{r} t}+c_{1} t e^{\hat{\imath} t}$.

Furthermore, given real constants t_{0}, y_{0} and y_{1}, there is a unique solution to the initial value problem

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0, \quad y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{1}
$$

Second order linear homogeneous ODE (Sect. 2.3).

- Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.
- Characteristic polynomial with complex roots.
- Two main sets of fundamental solutions.
- Review of Complex numbers.
- A real-valued fundamental and general solutions.
- Application: The RLC circuit.

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Theorem (Constant coefficients)

Given real constants a_{1}, a_{0}, consider the homogeneous, linear differential equation on the unknown $y: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

Let r_{+}, r_{-}be the roots of the characteristic polynomial $p(r)=r^{2}+a_{1} r+a_{0}$, and let c_{0}, c_{1} be arbitrary constants. Then, the general solution y of the differential equation is given by
(a) If $r_{+} \neq r_{-}$, real or complex, then $y(t)=c_{1} e^{r_{+} t}+c_{2} e^{r_{-} t}$.
(b) If $r_{+}=r_{-}=\hat{r} \in \mathbb{R}$, then $y(t)=c_{1} e^{\hat{\imath} t}+c_{2} t e^{\hat{r} t}$.

Furthermore, given real constants t_{0}, y_{1} and y_{2}, there is a unique solution to the initial value problem

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0, \quad y\left(t_{0}\right)=y_{1}, \quad y^{\prime}\left(t_{0}\right)=y_{2}
$$

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Example
Find the general solution of the equation $y^{\prime \prime}-y^{\prime}-6 y=0$.

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Example

Find the general solution of the equation $y^{\prime \prime}-y^{\prime}-6 y=0$.
Solution: Since solutions have the form $e^{r t}$, we need to find the roots of the characteristic polynomial $p(r)=r^{2}-r-6$,

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Example

Find the general solution of the equation $y^{\prime \prime}-y^{\prime}-6 y=0$.
Solution: Since solutions have the form $e^{r t}$, we need to find the roots of the characteristic polynomial $p(r)=r^{2}-r-6$, that is,

$$
r_{ \pm}=\frac{1}{2}(1 \pm \sqrt{1+24})
$$

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Example

Find the general solution of the equation $y^{\prime \prime}-y^{\prime}-6 y=0$.
Solution: Since solutions have the form $e^{r t}$, we need to find the roots of the characteristic polynomial $p(r)=r^{2}-r-6$, that is,

$$
r_{ \pm}=\frac{1}{2}(1 \pm \sqrt{1+24})=\frac{1}{2}(1 \pm 5)
$$

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Example

Find the general solution of the equation $y^{\prime \prime}-y^{\prime}-6 y=0$.
Solution: Since solutions have the form $e^{r t}$, we need to find the roots of the characteristic polynomial $p(r)=r^{2}-r-6$, that is,

$$
r_{ \pm}=\frac{1}{2}(1 \pm \sqrt{1+24})=\frac{1}{2}(1 \pm 5) \quad \Rightarrow \quad r_{+}=3, \quad r_{-}=-2 .
$$

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Example

Find the general solution of the equation $y^{\prime \prime}-y^{\prime}-6 y=0$.
Solution: Since solutions have the form $e^{r t}$, we need to find the roots of the characteristic polynomial $p(r)=r^{2}-r-6$, that is,

$$
r_{ \pm}=\frac{1}{2}(1 \pm \sqrt{1+24})=\frac{1}{2}(1 \pm 5) \quad \Rightarrow \quad r_{+}=3, \quad r_{-}=-2 .
$$

So, $r_{ \pm}$are real-valued.

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Example

Find the general solution of the equation $y^{\prime \prime}-y^{\prime}-6 y=0$.
Solution: Since solutions have the form $e^{r t}$, we need to find the roots of the characteristic polynomial $p(r)=r^{2}-r-6$, that is,

$$
r_{ \pm}=\frac{1}{2}(1 \pm \sqrt{1+24})=\frac{1}{2}(1 \pm 5) \quad \Rightarrow \quad r_{+}=3, \quad r_{-}=-2 .
$$

So, $r_{ \pm}$are real-valued. A fundamental solution set is formed by

$$
y_{1}(t)=e^{3 t}, \quad y_{2}(t)=e^{-2 t} .
$$

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Example

Find the general solution of the equation $y^{\prime \prime}-y^{\prime}-6 y=0$.
Solution: Since solutions have the form $e^{r t}$, we need to find the roots of the characteristic polynomial $p(r)=r^{2}-r-6$, that is,

$$
r_{ \pm}=\frac{1}{2}(1 \pm \sqrt{1+24})=\frac{1}{2}(1 \pm 5) \quad \Rightarrow \quad r_{+}=3, \quad r_{-}=-2 .
$$

So, $r_{ \pm}$are real-valued. A fundamental solution set is formed by

$$
y_{1}(t)=e^{3 t}, \quad y_{2}(t)=e^{-2 t} .
$$

The general solution of the differential equations is an arbitrary linear combination of the fundamental solutions,

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Example

Find the general solution of the equation $y^{\prime \prime}-y^{\prime}-6 y=0$.
Solution: Since solutions have the form $e^{r t}$, we need to find the roots of the characteristic polynomial $p(r)=r^{2}-r-6$, that is,

$$
r_{ \pm}=\frac{1}{2}(1 \pm \sqrt{1+24})=\frac{1}{2}(1 \pm 5) \quad \Rightarrow \quad r_{+}=3, \quad r_{-}=-2 .
$$

So, $r_{ \pm}$are real-valued. A fundamental solution set is formed by

$$
y_{1}(t)=e^{3 t}, \quad y_{2}(t)=e^{-2 t} .
$$

The general solution of the differential equations is an arbitrary linear combination of the fundamental solutions, that is,

$$
y(t)=c_{1} e^{3 t}+c_{2} e^{-2 t}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Example

Find the general solution of the equation $y^{\prime \prime}-y^{\prime}-6 y=0$.
Solution: Since solutions have the form $e^{r t}$, we need to find the roots of the characteristic polynomial $p(r)=r^{2}-r-6$, that is,

$$
r_{ \pm}=\frac{1}{2}(1 \pm \sqrt{1+24})=\frac{1}{2}(1 \pm 5) \quad \Rightarrow \quad r_{+}=3, \quad r_{-}=-2 .
$$

So, $r_{ \pm}$are real-valued. A fundamental solution set is formed by

$$
y_{1}(t)=e^{3 t}, \quad y_{2}(t)=e^{-2 t} .
$$

The general solution of the differential equations is an arbitrary linear combination of the fundamental solutions, that is,

$$
y(t)=c_{1} e^{3 t}+c_{2} e^{-2 t}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

Remark: Since $c_{1}, c_{2} \in \mathbb{R}$, then y is real-valued.

Second order linear homogeneous ODE (Sect. 2.3).

- Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.
- Characteristic polynomial with complex roots.
- Two main sets of fundamental solutions.
- Review of Complex numbers.
- A real-valued fundamental and general solutions.
- Application: The RLC circuit.

Two main sets of fundamental solutions.

Example

Find the general solution of the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.

Two main sets of fundamental solutions.

Example

Find the general solution of the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.
Solution: We first find the roots of the characteristic polynomial,
$r^{2}-2 r+6=0$

Two main sets of fundamental solutions.

Example

Find the general solution of the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.
Solution: We first find the roots of the characteristic polynomial,
$r^{2}-2 r+6=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}(2 \pm \sqrt{4-24})$

Two main sets of fundamental solutions.

Example

Find the general solution of the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.
Solution: We first find the roots of the characteristic polynomial,
$r^{2}-2 r+6=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}(2 \pm \sqrt{4-24}) \quad \Rightarrow \quad r_{ \pm}=1 \pm i \sqrt{5}$.

Two main sets of fundamental solutions.

Example

Find the general solution of the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.
Solution: We first find the roots of the characteristic polynomial,
$r^{2}-2 r+6=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}(2 \pm \sqrt{4-24}) \quad \Rightarrow \quad r_{ \pm}=1 \pm i \sqrt{5}$.
A fundamental solution set is

$$
\tilde{y}_{1}(t)=e^{(1+i \sqrt{5}) t}, \quad \tilde{y}_{2}(t)=e^{(1-i \sqrt{5}) t}
$$

Two main sets of fundamental solutions.

Example

Find the general solution of the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.
Solution: We first find the roots of the characteristic polynomial,
$r^{2}-2 r+6=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}(2 \pm \sqrt{4-24}) \quad \Rightarrow \quad r_{ \pm}=1 \pm i \sqrt{5}$.
A fundamental solution set is

$$
\tilde{y}_{1}(t)=e^{(1+i \sqrt{5}) t}, \quad \tilde{y}_{2}(t)=e^{(1-i \sqrt{5}) t}
$$

These are complex-valued functions.

Two main sets of fundamental solutions.

Example

Find the general solution of the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.
Solution: We first find the roots of the characteristic polynomial,
$r^{2}-2 r+6=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}(2 \pm \sqrt{4-24}) \quad \Rightarrow \quad r_{ \pm}=1 \pm i \sqrt{5}$.
A fundamental solution set is

$$
\tilde{y}_{1}(t)=e^{(1+i \sqrt{5}) t}, \quad \tilde{y}_{2}(t)=e^{(1-i \sqrt{5}) t}
$$

These are complex-valued functions. The general solution is

$$
y(t)=\tilde{c}_{1} e^{(1+i \sqrt{5}) t}+\tilde{c}_{2} e^{(1-i \sqrt{5}) t}, \quad \tilde{c}_{1}, \tilde{c}_{2} \in \mathbb{C}
$$

Two main sets of fundamental solutions.

Remark:

- The solutions found above include real-valued and complex-valued solutions.

Remark:

- The solutions found above include real-valued and complex-valued solutions.
- Since the differential equation is real-valued, it is usually important in applications to obtain the most general real-valued solution. (See RLC circuit below.)

Two main sets of fundamental solutions.

Remark:

- The solutions found above include real-valued and complex-valued solutions.
- Since the differential equation is real-valued, it is usually important in applications to obtain the most general real-valued solution. (See RLC circuit below.)
- In the expression above it is difficult to take apart real-valued solutions from complex-valued solutions.

Two main sets of fundamental solutions.

Remark:

- The solutions found above include real-valued and complex-valued solutions.
- Since the differential equation is real-valued, it is usually important in applications to obtain the most general real-valued solution. (See RLC circuit below.)
- In the expression above it is difficult to take apart real-valued solutions from complex-valued solutions.
- In other words: It is not simple to see what values of \tilde{c}_{1} and \tilde{c}_{2} make the general solution above to be real-valued.

Two main sets of fundamental solutions.

Remark:

- The solutions found above include real-valued and complex-valued solutions.
- Since the differential equation is real-valued, it is usually important in applications to obtain the most general real-valued solution. (See RLC circuit below.)
- In the expression above it is difficult to take apart real-valued solutions from complex-valued solutions.
- In other words: It is not simple to see what values of \tilde{c}_{1} and \tilde{c}_{2} make the general solution above to be real-valued.
- One way to find the real-valued general solution is to find real-valued fundamental solutions.

Second order linear homogeneous ODE (Sect. 2.3).

- Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.
- Characteristic polynomial with complex roots.
- Two main sets of fundamental solutions.
- Review of Complex numbers.
- A real-valued fundamental and general solutions.
- Application: The RLC circuit.

Review of complex numbers.

- Complex numbers have the form $z=a+i b$, where $i^{2}=-1$.

Review of complex numbers.

- Complex numbers have the form $z=a+i b$, where $i^{2}=-1$.
- The complex conjugate of z is the number $\bar{z}=a-i b$.

Review of complex numbers.

- Complex numbers have the form $z=a+i b$, where $i^{2}=-1$.
- The complex conjugate of z is the number $\bar{z}=a-i b$.
- $\operatorname{Re}(z)=a, \quad \operatorname{Im}(z)=b$ are the real and imaginary parts of z

Review of complex numbers.

- Complex numbers have the form $z=a+i b$, where $i^{2}=-1$.
- The complex conjugate of z is the number $\bar{z}=a-i b$.
- $\operatorname{Re}(z)=a, \quad \operatorname{Im}(z)=b$ are the real and imaginary parts of z
- Hence: $\operatorname{Re}(z)=\frac{z+\bar{z}}{2}$

Review of complex numbers.

- Complex numbers have the form $z=a+i b$, where $i^{2}=-1$.
- The complex conjugate of z is the number $\bar{z}=a-i b$.
- $\operatorname{Re}(z)=a, \quad \operatorname{Im}(z)=b$ are the real and imaginary parts of z
- Hence: $\operatorname{Re}(z)=\frac{z+\bar{z}}{2}$ and $\operatorname{Im}(z)=\frac{z-\bar{z}}{2 i}$

Review of complex numbers.

- Complex numbers have the form $z=a+i b$, where $i^{2}=-1$.
- The complex conjugate of z is the number $\bar{z}=a-i b$.
- $\operatorname{Re}(z)=a, \operatorname{Im}(z)=b$ are the real and imaginary parts of z
- Hence: $\operatorname{Re}(z)=\frac{z+\bar{z}}{2}$ and $\operatorname{Im}(z)=\frac{z-\bar{z}}{2 i}$
- $e^{a+i b}=\sum_{n=0}^{\infty} \frac{(a+i b)^{n}}{n!}$.

Review of complex numbers.

- Complex numbers have the form $z=a+i b$, where $i^{2}=-1$.
- The complex conjugate of z is the number $\bar{z}=a-i b$.
- $\operatorname{Re}(z)=a, \operatorname{Im}(z)=b$ are the real and imaginary parts of z
- Hence: $\operatorname{Re}(z)=\frac{z+\bar{z}}{2}$ and $\operatorname{Im}(z)=\frac{z-\bar{z}}{2 i}$
- $e^{a+i b}=\sum_{n=0}^{\infty} \frac{(a+i b)^{n}}{n!}$. In particular holds $e^{a+i b}=e^{a} e^{i b}$.

Review of complex numbers.

- Complex numbers have the form $z=a+i b$, where $i^{2}=-1$.
- The complex conjugate of z is the number $\bar{z}=a-i b$.
- $\operatorname{Re}(z)=a, \operatorname{Im}(z)=b$ are the real and imaginary parts of z
- Hence: $\operatorname{Re}(z)=\frac{z+\bar{z}}{2}$ and $\operatorname{Im}(z)=\frac{z-\bar{z}}{2 i}$
- $e^{a+i b}=\sum_{n=0}^{\infty} \frac{(a+i b)^{n}}{n!}$. In particular holds $e^{a+i b}=e^{a} e^{i b}$.
- Euler's formula: $e^{i b}=\cos (b)+i \sin (b)$.

Review of complex numbers.

- Complex numbers have the form $z=a+i b$, where $i^{2}=-1$.
- The complex conjugate of z is the number $\bar{z}=a-i b$.
- $\operatorname{Re}(z)=a, \operatorname{Im}(z)=b$ are the real and imaginary parts of z
- Hence: $\operatorname{Re}(z)=\frac{z+\bar{z}}{2}$ and $\operatorname{Im}(z)=\frac{z-\bar{z}}{2 i}$
- $e^{a+i b}=\sum_{n=0}^{\infty} \frac{(a+i b)^{n}}{n!}$. In particular holds $e^{a+i b}=e^{a} e^{i b}$.
- Euler's formula: $e^{i b}=\cos (b)+i \sin (b)$.
- Hence, a complex number of the form $e^{a+i b}$ can be written as

$$
e^{a+i b}=e^{a}[\cos (b)+i \sin (b)],
$$

Review of complex numbers.

- Complex numbers have the form $z=a+i b$, where $i^{2}=-1$.
- The complex conjugate of z is the number $\bar{z}=a-i b$.
- $\operatorname{Re}(z)=a, \operatorname{Im}(z)=b$ are the real and imaginary parts of z
- Hence: $\operatorname{Re}(z)=\frac{z+\bar{z}}{2}$ and $\operatorname{Im}(z)=\frac{z-\bar{z}}{2 i}$
- $e^{a+i b}=\sum_{n=0}^{\infty} \frac{(a+i b)^{n}}{n!}$. In particular holds $e^{a+i b}=e^{a} e^{i b}$.
- Euler's formula: $e^{i b}=\cos (b)+i \sin (b)$.
- Hence, a complex number of the form $e^{a+i b}$ can be written as

$$
e^{a+i b}=e^{a}[\cos (b)+i \sin (b)], \quad e^{a-i b}=e^{a}[\cos (b)-i \sin (b)] .
$$

Review of complex numbers.

- Complex numbers have the form $z=a+i b$, where $i^{2}=-1$.
- The complex conjugate of z is the number $\bar{z}=a-i b$.
- $\operatorname{Re}(z)=a, \operatorname{Im}(z)=b$ are the real and imaginary parts of z
- Hence: $\operatorname{Re}(z)=\frac{z+\bar{z}}{2}$ and $\operatorname{Im}(z)=\frac{z-\bar{z}}{2 i}$
- $e^{a+i b}=\sum_{n=0}^{\infty} \frac{(a+i b)^{n}}{n!}$. In particular holds $e^{a+i b}=e^{a} e^{i b}$.
- Euler's formula: $e^{i b}=\cos (b)+i \sin (b)$.
- Hence, a complex number of the form $e^{a+i b}$ can be written as

$$
e^{a+i b}=e^{a}[\cos (b)+i \sin (b)], \quad e^{a-i b}=e^{a}[\cos (b)-i \sin (b)] .
$$

- From $e^{a+i b}$ and $e^{a-i b}$ we get the real numbers

Review of complex numbers.

- Complex numbers have the form $z=a+i b$, where $i^{2}=-1$.
- The complex conjugate of z is the number $\bar{z}=a-i b$.
- $\operatorname{Re}(z)=a, \operatorname{Im}(z)=b$ are the real and imaginary parts of z
- Hence: $\operatorname{Re}(z)=\frac{z+\bar{z}}{2}$ and $\operatorname{Im}(z)=\frac{z-\bar{z}}{2 i}$
- $e^{a+i b}=\sum_{n=0}^{\infty} \frac{(a+i b)^{n}}{n!}$. In particular holds $e^{a+i b}=e^{a} e^{i b}$.
- Euler's formula: $e^{i b}=\cos (b)+i \sin (b)$.
- Hence, a complex number of the form $e^{a+i b}$ can be written as

$$
e^{a+i b}=e^{a}[\cos (b)+i \sin (b)], \quad e^{a-i b}=e^{a}[\cos (b)-i \sin (b)] .
$$

- From $e^{a+i b}$ and $e^{a-i b}$ we get the real numbers

$$
\frac{1}{2}\left(e^{a+i b}+e^{a-i b}\right)=e^{a} \cos (b)
$$

Review of complex numbers.

- Complex numbers have the form $z=a+i b$, where $i^{2}=-1$.
- The complex conjugate of z is the number $\bar{z}=a-i b$.
- $\operatorname{Re}(z)=a, \operatorname{Im}(z)=b$ are the real and imaginary parts of z
- Hence: $\operatorname{Re}(z)=\frac{z+\bar{z}}{2}$ and $\operatorname{Im}(z)=\frac{z-\bar{z}}{2 i}$
- $e^{a+i b}=\sum_{n=0}^{\infty} \frac{(a+i b)^{n}}{n!}$. In particular holds $e^{a+i b}=e^{a} e^{i b}$.
- Euler's formula: $e^{i b}=\cos (b)+i \sin (b)$.
- Hence, a complex number of the form $e^{a+i b}$ can be written as

$$
e^{a+i b}=e^{a}[\cos (b)+i \sin (b)], \quad e^{a-i b}=e^{a}[\cos (b)-i \sin (b)] .
$$

- From $e^{a+i b}$ and $e^{a-i b}$ we get the real numbers

$$
\frac{1}{2}\left(e^{a+i b}+e^{a-i b}\right)=e^{a} \cos (b), \quad \frac{1}{2 i}\left(e^{a+i b}-e^{a-i b}\right)=e^{a} \sin (b)
$$

Two main sets of fundamental solutions.

Theorem (Complex roots)
If the constants $a_{1}, a_{0} \in \mathbb{R}$ satisfy that $a_{1}^{2}-4 a_{0}<0$, then the characteristic polynomial $p(r)=r^{2}+a_{1} r+a_{0}$ of the equation

$$
\begin{equation*}
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0 \tag{2}
\end{equation*}
$$

has complex roots $r_{+}=\alpha+i \beta$ and $r_{-}=\alpha-i \beta$, where

$$
\alpha=-\frac{a_{1}}{2}, \quad \beta=\frac{1}{2} \sqrt{4 a_{0}-a_{1}^{2}} .
$$

Furthermore, a fundamental set of solutions to Eq. (2) is

$$
\tilde{y}_{1}(t)=e^{(\alpha+i \beta) t}, \quad \tilde{y}_{2}(t)=e^{(\alpha-i \beta) t},
$$

Two main sets of fundamental solutions.

Theorem (Complex roots)
If the constants $a_{1}, a_{0} \in \mathbb{R}$ satisfy that $a_{1}^{2}-4 a_{0}<0$, then the characteristic polynomial $p(r)=r^{2}+a_{1} r+a_{0}$ of the equation

$$
\begin{equation*}
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0 \tag{2}
\end{equation*}
$$

has complex roots $r_{+}=\alpha+i \beta$ and $r_{-}=\alpha-i \beta$, where

$$
\alpha=-\frac{a_{1}}{2}, \quad \beta=\frac{1}{2} \sqrt{4 a_{0}-a_{1}^{2}} .
$$

Furthermore, a fundamental set of solutions to Eq. (2) is

$$
\tilde{y}_{1}(t)=e^{(\alpha+i \beta) t}, \quad \tilde{y}_{2}(t)=e^{(\alpha-i \beta) t}
$$

while another fundamental set of solutions to Eq. (2) is

$$
y_{1}(t)=e^{\alpha t} \cos (\beta t), \quad y_{2}(t)=e^{\alpha t} \sin (\beta t)
$$

Review of complex numbers.

Idea of the Proof: Recall that the functions

$$
\tilde{y}_{1}(t)=e^{(\alpha+i \beta) t}, \quad \tilde{y}_{2}(t)=e^{(\alpha-i \beta) t}
$$

are solutions to $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Review of complex numbers.

Idea of the Proof: Recall that the functions

$$
\tilde{y}_{1}(t)=e^{(\alpha+i \beta) t}, \quad \tilde{y}_{2}(t)=e^{(\alpha-i \beta) t}
$$

are solutions to $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$. Also recall that

$$
\tilde{y}_{1}(t)=e^{\alpha t}[\cos (\beta t)+i \sin (\beta t)]
$$

Review of complex numbers.

Idea of the Proof: Recall that the functions

$$
\tilde{y}_{1}(t)=e^{(\alpha+i \beta) t}, \quad \tilde{y}_{2}(t)=e^{(\alpha-i \beta) t}
$$

are solutions to $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$. Also recall that

$$
\tilde{y}_{1}(t)=e^{\alpha t}[\cos (\beta t)+i \sin (\beta t)], \quad \tilde{y}_{2}(t)=e^{\alpha t}[\cos (\beta t)-i \sin (\beta t)] .
$$

Review of complex numbers.

Idea of the Proof: Recall that the functions

$$
\tilde{y}_{1}(t)=e^{(\alpha+i \beta) t}, \quad \tilde{y}_{2}(t)=e^{(\alpha-i \beta) t}
$$

are solutions to $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$. Also recall that

$$
\tilde{y}_{1}(t)=e^{\alpha t}[\cos (\beta t)+i \sin (\beta t)], \quad \tilde{y}_{2}(t)=e^{\alpha t}[\cos (\beta t)-i \sin (\beta t)] .
$$

Then the functions

$$
y_{1}(t)=\frac{1}{2}\left(\tilde{y}_{1}(t)+\tilde{y}_{2}(t)\right)
$$

Review of complex numbers.

Idea of the Proof: Recall that the functions

$$
\tilde{y}_{1}(t)=e^{(\alpha+i \beta) t}, \quad \tilde{y}_{2}(t)=e^{(\alpha-i \beta) t}
$$

are solutions to $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$. Also recall that

$$
\tilde{y}_{1}(t)=e^{\alpha t}[\cos (\beta t)+i \sin (\beta t)], \quad \tilde{y}_{2}(t)=e^{\alpha t}[\cos (\beta t)-i \sin (\beta t)] .
$$

Then the functions

$$
y_{1}(t)=\frac{1}{2}\left(\tilde{y}_{1}(t)+\tilde{y}_{2}(t)\right) \quad y_{2}(t)=\frac{1}{2 i}\left(\tilde{y}_{1}(t)-\tilde{y}_{2}(t)\right)
$$

Review of complex numbers.

Idea of the Proof: Recall that the functions

$$
\tilde{y}_{1}(t)=e^{(\alpha+i \beta) t}, \quad \tilde{y}_{2}(t)=e^{(\alpha-i \beta) t}
$$

are solutions to $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$. Also recall that

$$
\tilde{y}_{1}(t)=e^{\alpha t}[\cos (\beta t)+i \sin (\beta t)], \quad \tilde{y}_{2}(t)=e^{\alpha t}[\cos (\beta t)-i \sin (\beta t)] .
$$

Then the functions

$$
y_{1}(t)=\frac{1}{2}\left(\tilde{y}_{1}(t)+\tilde{y}_{2}(t)\right) \quad y_{2}(t)=\frac{1}{2 i}\left(\tilde{y}_{1}(t)-\tilde{y}_{2}(t)\right)
$$

are also solutions to the same differential equation.

Review of complex numbers.

Idea of the Proof: Recall that the functions

$$
\tilde{y}_{1}(t)=e^{(\alpha+i \beta) t}, \quad \tilde{y}_{2}(t)=e^{(\alpha-i \beta) t}
$$

are solutions to $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$. Also recall that

$$
\tilde{y}_{1}(t)=e^{\alpha t}[\cos (\beta t)+i \sin (\beta t)], \quad \tilde{y}_{2}(t)=e^{\alpha t}[\cos (\beta t)-i \sin (\beta t)] .
$$

Then the functions

$$
y_{1}(t)=\frac{1}{2}\left(\tilde{y}_{1}(t)+\tilde{y}_{2}(t)\right) \quad y_{2}(t)=\frac{1}{2 i}\left(\tilde{y}_{1}(t)-\tilde{y}_{2}(t)\right)
$$

are also solutions to the same differential equation. We conclude that y_{1} and y_{2} are real valued and

Review of complex numbers.

Idea of the Proof: Recall that the functions

$$
\tilde{y}_{1}(t)=e^{(\alpha+i \beta) t}, \quad \tilde{y}_{2}(t)=e^{(\alpha-i \beta) t}
$$

are solutions to $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$. Also recall that

$$
\tilde{y}_{1}(t)=e^{\alpha t}[\cos (\beta t)+i \sin (\beta t)], \quad \tilde{y}_{2}(t)=e^{\alpha t}[\cos (\beta t)-i \sin (\beta t)] .
$$

Then the functions

$$
y_{1}(t)=\frac{1}{2}\left(\tilde{y}_{1}(t)+\tilde{y}_{2}(t)\right) \quad y_{2}(t)=\frac{1}{2 i}\left(\tilde{y}_{1}(t)-\tilde{y}_{2}(t)\right)
$$

are also solutions to the same differential equation. We conclude that y_{1} and y_{2} are real valued and

$$
y_{1}(t)=e^{\alpha t} \cos (\beta t)
$$

Review of complex numbers.

Idea of the Proof: Recall that the functions

$$
\tilde{y}_{1}(t)=e^{(\alpha+i \beta) t}, \quad \tilde{y}_{2}(t)=e^{(\alpha-i \beta) t}
$$

are solutions to $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$. Also recall that

$$
\tilde{y}_{1}(t)=e^{\alpha t}[\cos (\beta t)+i \sin (\beta t)], \quad \tilde{y}_{2}(t)=e^{\alpha t}[\cos (\beta t)-i \sin (\beta t)] .
$$

Then the functions

$$
y_{1}(t)=\frac{1}{2}\left(\tilde{y}_{1}(t)+\tilde{y}_{2}(t)\right) \quad y_{2}(t)=\frac{1}{2 i}\left(\tilde{y}_{1}(t)-\tilde{y}_{2}(t)\right)
$$

are also solutions to the same differential equation. We conclude that y_{1} and y_{2} are real valued and

$$
y_{1}(t)=e^{\alpha t} \cos (\beta t), \quad y_{2}(t)=e^{\alpha t} \sin (\beta t)
$$

Second order linear homogeneous ODE (Sect. 2.3).

- Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.
- Characteristic polynomial with complex roots.
- Two main sets of fundamental solutions.
- Review of Complex numbers.
- A real-valued fundamental and general solutions.
- Application: The RLC circuit.

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

$$
y^{\prime \prime}-2 y^{\prime}+6 y=0
$$

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

$$
y^{\prime \prime}-2 y^{\prime}+6 y=0
$$

Solution: Recall: Complex valued solutions are

$$
\tilde{y}_{1}(t)=e^{(1+i \sqrt{5}) t}, \quad \tilde{y}_{2}(t)=e^{(1-i \sqrt{5}) t}
$$

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

$$
y^{\prime \prime}-2 y^{\prime}+6 y=0
$$

Solution: Recall: Complex valued solutions are

$$
\tilde{y}_{1}(t)=e^{(1+i \sqrt{5}) t}, \quad \tilde{y}_{2}(t)=e^{(1-i \sqrt{5}) t}
$$

Any linear combination of these functions is solution of the differential equation.

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

$$
y^{\prime \prime}-2 y^{\prime}+6 y=0
$$

Solution: Recall: Complex valued solutions are

$$
\tilde{y}_{1}(t)=e^{(1+i \sqrt{5}) t}, \quad \tilde{y}_{2}(t)=e^{(1-i \sqrt{5}) t}
$$

Any linear combination of these functions is solution of the differential equation. In particular,

$$
y_{1}(t)=\frac{1}{2}\left[\tilde{y}_{1}(t)+\tilde{y}_{2}(t)\right], \quad y_{2}(t)=\frac{1}{2 i}\left[\tilde{y}_{1}(t)-\tilde{y}_{2}(t)\right] .
$$

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

$$
y^{\prime \prime}-2 y^{\prime}+6 y=0
$$

Solution: Recall: Complex valued solutions are

$$
\tilde{y}_{1}(t)=e^{(1+i \sqrt{5}) t}, \quad \tilde{y}_{2}(t)=e^{(1-i \sqrt{5}) t}
$$

Any linear combination of these functions is solution of the differential equation. In particular,

$$
y_{1}(t)=\frac{1}{2}\left[\tilde{y}_{1}(t)+\tilde{y}_{2}(t)\right], \quad y_{2}(t)=\frac{1}{2 i}\left[\tilde{y}_{1}(t)-\tilde{y}_{2}(t)\right] .
$$

Now, recalling $e^{(1 \pm i \sqrt{5}) t}=e^{t} e^{ \pm i \sqrt{5} t}$

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

$$
y^{\prime \prime}-2 y^{\prime}+6 y=0
$$

Solution: Recall: Complex valued solutions are

$$
\tilde{y}_{1}(t)=e^{(1+i \sqrt{5}) t}, \quad \tilde{y}_{2}(t)=e^{(1-i \sqrt{5}) t}
$$

Any linear combination of these functions is solution of the differential equation. In particular,

$$
y_{1}(t)=\frac{1}{2}\left[\tilde{y}_{1}(t)+\tilde{y}_{2}(t)\right], \quad y_{2}(t)=\frac{1}{2 i}\left[\tilde{y}_{1}(t)-\tilde{y}_{2}(t)\right] .
$$

Now, recalling $e^{(1 \pm i \sqrt{5}) t}=e^{t} e^{ \pm i \sqrt{5} t}$
$y_{1}(t)=\frac{1}{2}\left[e^{t} e^{i \sqrt{5} t}+e^{t} e^{-i \sqrt{5} t}\right], \quad y_{2}(t)=\frac{1}{2 i}\left[e^{t} e^{i \sqrt{5} t}-e^{t} e^{-i \sqrt{5} t}\right]$,

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

$$
\begin{aligned}
y^{\prime \prime}-2 y^{\prime}+6 y & =0 . \\
\text { Solution: } y_{1}=\frac{e^{t}}{2}\left[e^{i \sqrt{5} t}+e^{-i \sqrt{5} t}\right], \quad y_{2} & =\frac{e^{t}}{2 i}\left[e^{i \sqrt{5} t}-e^{-i \sqrt{5} t}\right]
\end{aligned}
$$

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

$$
y^{\prime \prime}-2 y^{\prime}+6 y=0
$$

Solution: $y_{1}=\frac{e^{t}}{2}\left[e^{i \sqrt{5} t}+e^{-i \sqrt{5} t}\right], \quad y_{2}=\frac{e^{t}}{2 i}\left[e^{i \sqrt{5} t}-e^{-i \sqrt{5} t}\right]$.
The Euler formula and its complex-conjugate formula

$$
e^{i \sqrt{5} t}=[\cos (\sqrt{5} t)+i \sin (\sqrt{5} t)]
$$

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

$$
y^{\prime \prime}-2 y^{\prime}+6 y=0
$$

Solution: $y_{1}=\frac{e^{t}}{2}\left[e^{i \sqrt{5} t}+e^{-i \sqrt{5} t}\right], \quad y_{2}=\frac{e^{t}}{2 i}\left[e^{i \sqrt{5} t}-e^{-i \sqrt{5} t}\right]$.
The Euler formula and its complex-conjugate formula

$$
\begin{aligned}
e^{i \sqrt{5} t} & =[\cos (\sqrt{5} t)+i \sin (\sqrt{5} t)] \\
e^{-i \sqrt{5} t} & =[\cos (\sqrt{5} t)-i \sin (\sqrt{5} t)]
\end{aligned}
$$

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

$$
y^{\prime \prime}-2 y^{\prime}+6 y=0
$$

Solution: $y_{1}=\frac{e^{t}}{2}\left[e^{i \sqrt{5} t}+e^{-i \sqrt{5} t}\right], \quad y_{2}=\frac{e^{t}}{2 i}\left[e^{i \sqrt{5} t}-e^{-i \sqrt{5} t}\right]$.
The Euler formula and its complex-conjugate formula

$$
\begin{gathered}
e^{i \sqrt{5} t}=[\cos (\sqrt{5} t)+i \sin (\sqrt{5} t)] \\
e^{-i \sqrt{5} t}=[\cos (\sqrt{5} t)-i \sin (\sqrt{5} t)]
\end{gathered}
$$

imply the inverse relations

$$
e^{i \sqrt{5} t}+e^{-i \sqrt{5} t}=2 \cos (\sqrt{5} t)
$$

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

$$
y^{\prime \prime}-2 y^{\prime}+6 y=0
$$

Solution: $y_{1}=\frac{e^{t}}{2}\left[e^{i \sqrt{5} t}+e^{-i \sqrt{5} t}\right], \quad y_{2}=\frac{e^{t}}{2 i}\left[e^{i \sqrt{5} t}-e^{-i \sqrt{5} t}\right]$.
The Euler formula and its complex-conjugate formula

$$
\begin{gathered}
e^{i \sqrt{5} t}=[\cos (\sqrt{5} t)+i \sin (\sqrt{5} t)] \\
e^{-i \sqrt{5} t}=[\cos (\sqrt{5} t)-i \sin (\sqrt{5} t)]
\end{gathered}
$$

imply the inverse relations

$$
e^{i \sqrt{5} t}+e^{-i \sqrt{5} t}=2 \cos (\sqrt{5} t), \quad e^{i \sqrt{5} t}-e^{-i \sqrt{5} t}=2 i \sin (\sqrt{5} t)
$$

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

$$
y^{\prime \prime}-2 y^{\prime}+6 y=0
$$

Solution: $y_{1}=\frac{e^{t}}{2}\left[e^{i \sqrt{5} t}+e^{-i \sqrt{5} t}\right], \quad y_{2}=\frac{e^{t}}{2 i}\left[e^{i \sqrt{5} t}-e^{-i \sqrt{5} t}\right]$.
The Euler formula and its complex-conjugate formula

$$
\begin{gathered}
e^{i \sqrt{5} t}=[\cos (\sqrt{5} t)+i \sin (\sqrt{5} t)] \\
e^{-i \sqrt{5} t}=[\cos (\sqrt{5} t)-i \sin (\sqrt{5} t)]
\end{gathered}
$$

imply the inverse relations

$$
e^{i \sqrt{5} t}+e^{-i \sqrt{5} t}=2 \cos (\sqrt{5} t), \quad e^{i \sqrt{5} t}-e^{-i \sqrt{5} t}=2 i \sin (\sqrt{5} t)
$$

So functions y_{1} and y_{2} can be written as

$$
y_{1}(t)=e^{t} \cos (\sqrt{5} t)
$$

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

$$
y^{\prime \prime}-2 y^{\prime}+6 y=0
$$

Solution: $y_{1}=\frac{e^{t}}{2}\left[e^{i \sqrt{5} t}+e^{-i \sqrt{5} t}\right], \quad y_{2}=\frac{e^{t}}{2 i}\left[e^{i \sqrt{5} t}-e^{-i \sqrt{5} t}\right]$.
The Euler formula and its complex-conjugate formula

$$
\begin{gathered}
e^{i \sqrt{5} t}=[\cos (\sqrt{5} t)+i \sin (\sqrt{5} t)] \\
e^{-i \sqrt{5} t}=[\cos (\sqrt{5} t)-i \sin (\sqrt{5} t)]
\end{gathered}
$$

imply the inverse relations

$$
e^{i \sqrt{5} t}+e^{-i \sqrt{5} t}=2 \cos (\sqrt{5} t), \quad e^{i \sqrt{5} t}-e^{-i \sqrt{5} t}=2 i \sin (\sqrt{5} t)
$$

So functions y_{1} and y_{2} can be written as

$$
y_{1}(t)=e^{t} \cos (\sqrt{5} t), \quad y_{2}(t)=e^{t} \sin (\sqrt{5} t)
$$

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

$$
y^{\prime \prime}-2 y^{\prime}+6 y=0
$$

Solution: Recall: $y(t)=\tilde{c}_{1} e^{(1+i \sqrt{5}) t}+\tilde{c}_{2} e^{(1-i \sqrt{5}) t}, \tilde{c}_{1}, \tilde{c}_{2} \in \mathbb{C}$.

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

$$
y^{\prime \prime}-2 y^{\prime}+6 y=0
$$

Solution: Recall: $y(t)=\tilde{c}_{1} e^{(1+i \sqrt{5}) t}+\tilde{c}_{2} e^{(1-i \sqrt{5}) t}, \tilde{c}_{1}, \tilde{c}_{2} \in \mathbb{C}$.
The calculation above says that a real-valued fundamental set is

$$
y_{1}(t)=e^{t} \cos (\sqrt{5} t), \quad y_{2}(t)=e^{t} \sin (\sqrt{5} t)
$$

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

$$
y^{\prime \prime}-2 y^{\prime}+6 y=0 .
$$

Solution: Recall: $y(t)=\tilde{c}_{1} e^{(1+i \sqrt{5}) t}+\tilde{c}_{2} e^{(1-i \sqrt{5}) t}, \tilde{c}_{1}, \tilde{c}_{2} \in \mathbb{C}$.
The calculation above says that a real-valued fundamental set is

$$
y_{1}(t)=e^{t} \cos (\sqrt{5} t), \quad y_{2}(t)=e^{t} \sin (\sqrt{5} t) .
$$

Hence, the complex-valued general solution can also be written as

$$
y(t)=\left[c_{1} \cos (\sqrt{5} t)+c_{2} \sin (\sqrt{5} t)\right] e^{t}, \quad c_{1}, c_{2} \in \mathbb{C} .
$$

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

$$
y^{\prime \prime}-2 y^{\prime}+6 y=0
$$

Solution: Recall: $y(t)=\tilde{c}_{1} e^{(1+i \sqrt{5}) t}+\tilde{c}_{2} e^{(1-i \sqrt{5}) t}, \tilde{c}_{1}, \tilde{c}_{2} \in \mathbb{C}$.
The calculation above says that a real-valued fundamental set is

$$
y_{1}(t)=e^{t} \cos (\sqrt{5} t), \quad y_{2}(t)=e^{t} \sin (\sqrt{5} t)
$$

Hence, the complex-valued general solution can also be written as

$$
y(t)=\left[c_{1} \cos (\sqrt{5} t)+c_{2} \sin (\sqrt{5} t)\right] e^{t}, \quad c_{1}, c_{2} \in \mathbb{C}
$$

The real-valued general solution is simple to obtain:

$$
y(t)=\left[c_{1} \cos (\sqrt{5} t)+c_{2} \sin (\sqrt{5} t)\right] e^{t}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

$$
y^{\prime \prime}-2 y^{\prime}+6 y=0
$$

Solution: Recall: $y(t)=\tilde{c}_{1} e^{(1+i \sqrt{5}) t}+\tilde{c}_{2} e^{(1-i \sqrt{5}) t}, \tilde{c}_{1}, \tilde{c}_{2} \in \mathbb{C}$.
The calculation above says that a real-valued fundamental set is

$$
y_{1}(t)=e^{t} \cos (\sqrt{5} t), \quad y_{2}(t)=e^{t} \sin (\sqrt{5} t)
$$

Hence, the complex-valued general solution can also be written as

$$
y(t)=\left[c_{1} \cos (\sqrt{5} t)+c_{2} \sin (\sqrt{5} t)\right] e^{t}, \quad c_{1}, c_{2} \in \mathbb{C}
$$

The real-valued general solution is simple to obtain:

$$
y(t)=\left[c_{1} \cos (\sqrt{5} t)+c_{2} \sin (\sqrt{5} t)\right] e^{t}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

We just restricted the coefficients c_{1}, c_{2} to be real-valued.

A real-valued fundamental and general solutions.

Example

Show that $y_{1}(t)=e^{t} \cos (\sqrt{5} t)$ and $y_{2}(t)=e^{t} \sin (\sqrt{5} t)$ are fundamental solutions to the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.

Solution: $y_{1}(t)=e^{t} \cos (\sqrt{5} t), \quad y_{2}(t)=e^{t} \sin (\sqrt{5} t)$.

A real-valued fundamental and general solutions.

Example

Show that $y_{1}(t)=e^{t} \cos (\sqrt{5} t)$ and $y_{2}(t)=e^{t} \sin (\sqrt{5} t)$ are fundamental solutions to the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.

Solution: $y_{1}(t)=e^{t} \cos (\sqrt{5} t), \quad y_{2}(t)=e^{t} \sin (\sqrt{5} t)$.
Summary:

- These functions are solutions of the differential equation.

A real-valued fundamental and general solutions.

Example

Show that $y_{1}(t)=e^{t} \cos (\sqrt{5} t)$ and $y_{2}(t)=e^{t} \sin (\sqrt{5} t)$ are fundamental solutions to the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.

Solution: $y_{1}(t)=e^{t} \cos (\sqrt{5} t), \quad y_{2}(t)=e^{t} \sin (\sqrt{5} t)$.
Summary:

- These functions are solutions of the differential equation.
- They are not proportional to each other, Hence li.

A real-valued fundamental and general solutions.

Example

Show that $y_{1}(t)=e^{t} \cos (\sqrt{5} t)$ and $y_{2}(t)=e^{t} \sin (\sqrt{5} t)$ are fundamental solutions to the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.

Solution: $y_{1}(t)=e^{t} \cos (\sqrt{5} t), \quad y_{2}(t)=e^{t} \sin (\sqrt{5} t)$.
Summary:

- These functions are solutions of the differential equation.
- They are not proportional to each other, Hence li.
- Therefore, y_{1}, y_{2} form a fundamental set.

A real-valued fundamental and general solutions.

Example

Show that $y_{1}(t)=e^{t} \cos (\sqrt{5} t)$ and $y_{2}(t)=e^{t} \sin (\sqrt{5} t)$ are fundamental solutions to the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.

Solution: $y_{1}(t)=e^{t} \cos (\sqrt{5} t), \quad y_{2}(t)=e^{t} \sin (\sqrt{5} t)$.
Summary:

- These functions are solutions of the differential equation.
- They are not proportional to each other, Hence li.
- Therefore, y_{1}, y_{2} form a fundamental set.
- The general solution of the equation is

$$
y(t)=\left[c_{1} \cos (\sqrt{5} t)+c_{2} \sin (\sqrt{5} t)\right] e^{t}
$$

A real-valued fundamental and general solutions.

Example

Show that $y_{1}(t)=e^{t} \cos (\sqrt{5} t)$ and $y_{2}(t)=e^{t} \sin (\sqrt{5} t)$ are fundamental solutions to the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.

Solution: $y_{1}(t)=e^{t} \cos (\sqrt{5} t), \quad y_{2}(t)=e^{t} \sin (\sqrt{5} t)$.
Summary:

- These functions are solutions of the differential equation.
- They are not proportional to each other, Hence li.
- Therefore, y_{1}, y_{2} form a fundamental set.
- The general solution of the equation is

$$
y(t)=\left[c_{1} \cos (\sqrt{5} t)+c_{2} \sin (\sqrt{5} t)\right] e^{t}
$$

- y is real-valued for $c_{1}, c_{2} \in \mathbb{R}$.

A real-valued fundamental and general solutions.

Example

Show that $y_{1}(t)=e^{t} \cos (\sqrt{5} t)$ and $y_{2}(t)=e^{t} \sin (\sqrt{5} t)$ are fundamental solutions to the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.

Solution: $y_{1}(t)=e^{t} \cos (\sqrt{5} t), \quad y_{2}(t)=e^{t} \sin (\sqrt{5} t)$.
Summary:

- These functions are solutions of the differential equation.
- They are not proportional to each other, Hence li.
- Therefore, y_{1}, y_{2} form a fundamental set.
- The general solution of the equation is

$$
y(t)=\left[c_{1} \cos (\sqrt{5} t)+c_{2} \sin (\sqrt{5} t)\right] e^{t}
$$

- y is real-valued for $c_{1}, c_{2} \in \mathbb{R}$.
- y is complex-valued for $c_{1}, c_{2} \in \mathbb{C}$.

A real-valued fundamental and general solutions.

Example

Find real-valued fundamental solutions to the equation

$$
y^{\prime \prime}+2 y^{\prime}+6 y=0
$$

A real-valued fundamental and general solutions.

Example

Find real-valued fundamental solutions to the equation

$$
y^{\prime \prime}+2 y^{\prime}+6 y=0
$$

Solution:
The roots of the characteristic polynomial $p(r)=r^{2}+2 r+6$

A real-valued fundamental and general solutions.

Example

Find real-valued fundamental solutions to the equation

$$
y^{\prime \prime}+2 y^{\prime}+6 y=0
$$

Solution:
The roots of the characteristic polynomial $p(r)=r^{2}+2 r+6$ are

$$
r_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4-24}]
$$

A real-valued fundamental and general solutions.

Example

Find real-valued fundamental solutions to the equation

$$
y^{\prime \prime}+2 y^{\prime}+6 y=0
$$

Solution:
The roots of the characteristic polynomial $p(r)=r^{2}+2 r+6$ are

$$
r_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4-24}]=\frac{1}{2}[-2 \pm \sqrt{-20}]
$$

A real-valued fundamental and general solutions.

Example

Find real-valued fundamental solutions to the equation

$$
y^{\prime \prime}+2 y^{\prime}+6 y=0
$$

Solution:
The roots of the characteristic polynomial $p(r)=r^{2}+2 r+6$ are

$$
r_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4-24}]=\frac{1}{2}[-2 \pm \sqrt{-20}] \Rightarrow r_{ \pm}=-1 \pm i \sqrt{5} .
$$

A real-valued fundamental and general solutions.

Example

Find real-valued fundamental solutions to the equation

$$
y^{\prime \prime}+2 y^{\prime}+6 y=0
$$

Solution:
The roots of the characteristic polynomial $p(r)=r^{2}+2 r+6$ are

$$
r_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4-24}]=\frac{1}{2}[-2 \pm \sqrt{-20}] \Rightarrow r_{ \pm}=-1 \pm i \sqrt{5} .
$$

These are complex-valued roots,

A real-valued fundamental and general solutions.

Example

Find real-valued fundamental solutions to the equation

$$
y^{\prime \prime}+2 y^{\prime}+6 y=0
$$

Solution:
The roots of the characteristic polynomial $p(r)=r^{2}+2 r+6$ are

$$
r_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4-24}]=\frac{1}{2}[-2 \pm \sqrt{-20}] \Rightarrow r_{ \pm}=-1 \pm i \sqrt{5} .
$$

These are complex-valued roots, with

$$
\alpha=-1, \quad \beta=\sqrt{5}
$$

A real-valued fundamental and general solutions.

Example

Find real-valued fundamental solutions to the equation

$$
y^{\prime \prime}+2 y^{\prime}+6 y=0
$$

Solution:
The roots of the characteristic polynomial $p(r)=r^{2}+2 r+6$ are

$$
r_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4-24}]=\frac{1}{2}[-2 \pm \sqrt{-20}] \Rightarrow r_{ \pm}=-1 \pm i \sqrt{5} .
$$

These are complex-valued roots, with

$$
\alpha=-1, \quad \beta=\sqrt{5}
$$

Real-valued fundamental solutions are

$$
y_{1}(t)=e^{-t} \cos (\sqrt{5} t), \quad y_{2}(t)=e^{-t} \sin (\sqrt{5} t)
$$

A real-valued fundamental and general solutions.

Example

Find real-valued fundamental solutions to the equation

$$
y^{\prime \prime}+2 y^{\prime}+6 y=0
$$

Solution: $y_{1}(t)=e^{-t} \cos (\sqrt{5} t), \quad y_{2}(t)=e^{-t} \sin (\sqrt{5} t)$.

Differential equations like the one in this example describe physical processes related to damped oscillations. For example pendulums with friction.

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of $y^{\prime \prime}+5 y=0$.

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of $y^{\prime \prime}+5 y=0$.
Solution: The characteristic polynomial is $p(r)=r^{2}+5$.

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of $y^{\prime \prime}+5 y=0$.
Solution: The characteristic polynomial is $p(r)=r^{2}+5$.
Its roots are $r_{ \pm}= \pm \sqrt{5} i$. This is the case $\alpha=0$, and $\beta=\sqrt{5}$.

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of $y^{\prime \prime}+5 y=0$.
Solution: The characteristic polynomial is $p(r)=r^{2}+5$. Its roots are $r_{ \pm}= \pm \sqrt{5} i$. This is the case $\alpha=0$, and $\beta=\sqrt{5}$.

Real-valued fundamental solutions are

$$
y_{1}(t)=\cos (\sqrt{5} t), \quad y_{2}(t)=\sin (\sqrt{5} t)
$$

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of $y^{\prime \prime}+5 y=0$.
Solution: The characteristic polynomial is $p(r)=r^{2}+5$. Its roots are $r_{ \pm}= \pm \sqrt{5} i$. This is the case $\alpha=0$, and $\beta=\sqrt{5}$.

Real-valued fundamental solutions are

$$
y_{1}(t)=\cos (\sqrt{5} t), \quad y_{2}(t)=\sin (\sqrt{5} t)
$$

The real-valued general solution is

$$
y(t)=c_{1} \cos (\sqrt{5} t)+c_{2} \sin (\sqrt{5} t), \quad c_{1}, c_{2} \in \mathbb{R}
$$

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of $y^{\prime \prime}+5 y=0$.
Solution: The characteristic polynomial is $p(r)=r^{2}+5$. Its roots are $r_{ \pm}= \pm \sqrt{5} i$. This is the case $\alpha=0$, and $\beta=\sqrt{5}$.

Real-valued fundamental solutions are

$$
y_{1}(t)=\cos (\sqrt{5} t), \quad y_{2}(t)=\sin (\sqrt{5} t)
$$

The real-valued general solution is

$$
y(t)=c_{1} \cos (\sqrt{5} t)+c_{2} \sin (\sqrt{5} t), \quad c_{1}, c_{2} \in \mathbb{R}
$$

Remark: Equations like the one in this example describe oscillatory physical processes without dissipation, $\alpha=0$.

Second order linear homogeneous ODE (Sect. 2.3).

- Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.
- Characteristic polynomial with complex roots.
- Two main sets of fundamental solutions.
- Review of Complex numbers.
- A real-valued fundamental and general solutions.
- Application: The RLC circuit.

Application: The RLC circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

Application: The RLC circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

The electric current flowing in such circuit satisfies:

$$
L I^{\prime}(t)+R I(t)+\frac{1}{C} \int_{t_{0}}^{t} I(s) d s=0
$$

Application: The RLC circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

The electric current flowing in such circuit satisfies:

$$
L I^{\prime}(t)+R I(t)+\frac{1}{C} \int_{t_{0}}^{t} I(s) d s=0
$$

Derivate both sides above: $L I^{\prime \prime}(t)+R I^{\prime}(t)+\frac{1}{C} I(t)=0$.

Application: The RLC circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

The electric current flowing in such circuit satisfies:

$$
L I^{\prime}(t)+R I(t)+\frac{1}{C} \int_{t_{0}}^{t} I(s) d s=0
$$

Derivate both sides above: $L I^{\prime \prime}(t)+R I^{\prime}(t)+\frac{1}{C} I(t)=0$.
Divide by $L: I^{\prime \prime}(t)+2\left(\frac{R}{2 L}\right) I^{\prime}(t)+\frac{1}{L C} I(t)=0$.

Application: The RLC circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

The electric current flowing in such circuit satisfies:

$$
L I^{\prime}(t)+R I(t)+\frac{1}{C} \int_{t_{0}}^{t} I(s) d s=0
$$

Derivate both sides above: $L I^{\prime \prime}(t)+R I^{\prime}(t)+\frac{1}{C} I(t)=0$.
Divide by $L: I^{\prime \prime}(t)+2\left(\frac{R}{2 L}\right) I^{\prime}(t)+\frac{1}{L C} I(t)=0$.
Introduce $\alpha=\frac{R}{2 L}$ and $\omega=\frac{1}{\sqrt{L C}}$,

Application: The RLC circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

The electric current flowing in such circuit satisfies:

$$
L I^{\prime}(t)+R I(t)+\frac{1}{C} \int_{t_{0}}^{t} I(s) d s=0
$$

Derivate both sides above: $L I^{\prime \prime}(t)+R I^{\prime}(t)+\frac{1}{C} I(t)=0$.
Divide by $L: I^{\prime \prime}(t)+2\left(\frac{R}{2 L}\right) I^{\prime}(t)+\frac{1}{L C} I(t)=0$.
Introduce $\alpha=\frac{R}{2 L}$ and $\omega=\frac{1}{\sqrt{L C}}$, then $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$.

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r)=r^{2}+2 \alpha r+\omega^{2}$.

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r)=r^{2}+2 \alpha r+\omega^{2}$. The roots are:

$$
r_{ \pm}=\frac{1}{2}\left[-2 \alpha \pm \sqrt{4 \alpha^{2}-4 \omega^{2}}\right]
$$

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r)=r^{2}+2 \alpha r+\omega^{2}$. The roots are:

$$
r_{ \pm}=\frac{1}{2}\left[-2 \alpha \pm \sqrt{4 \alpha^{2}-4 \omega^{2}}\right] \quad \Rightarrow \quad r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}
$$

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r)=r^{2}+2 \alpha r+\omega^{2}$. The roots are:

$$
r_{ \pm}=\frac{1}{2}\left[-2 \alpha \pm \sqrt{4 \alpha^{2}-4 \omega^{2}}\right] \quad \Rightarrow \quad r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}
$$

Case (a) $R=0$.

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r)=r^{2}+2 \alpha r+\omega^{2}$. The roots are:

$$
r_{ \pm}=\frac{1}{2}\left[-2 \alpha \pm \sqrt{4 \alpha^{2}-4 \omega^{2}}\right] \quad \Rightarrow \quad r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}
$$

Case (a) $R=0$. This implies $\alpha=0$,

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r)=r^{2}+2 \alpha r+\omega^{2}$. The roots are:

$$
r_{ \pm}=\frac{1}{2}\left[-2 \alpha \pm \sqrt{4 \alpha^{2}-4 \omega^{2}}\right] \quad \Rightarrow \quad r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}
$$

Case (a) $R=0$. This implies $\alpha=0$, so $r_{ \pm}= \pm i \omega$.

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r)=r^{2}+2 \alpha r+\omega^{2}$. The roots are:

$$
r_{ \pm}=\frac{1}{2}\left[-2 \alpha \pm \sqrt{4 \alpha^{2}-4 \omega^{2}}\right] \quad \Rightarrow \quad r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}
$$

Case (a) $R=0$. This implies $\alpha=0$, so $r_{ \pm}= \pm i \omega$. Therefore,

$$
I_{1}(t)=\cos (\omega t)
$$

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r)=r^{2}+2 \alpha r+\omega^{2}$. The roots are:

$$
r_{ \pm}=\frac{1}{2}\left[-2 \alpha \pm \sqrt{4 \alpha^{2}-4 \omega^{2}}\right] \quad \Rightarrow \quad r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}
$$

Case (a) $R=0$. This implies $\alpha=0$, so $r_{ \pm}= \pm i \omega$. Therefore,

$$
I_{1}(t)=\cos (\omega t), \quad I_{2}(t)=\sin (\omega t)
$$

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r)=r^{2}+2 \alpha r+\omega^{2}$. The roots are:

$$
r_{ \pm}=\frac{1}{2}\left[-2 \alpha \pm \sqrt{4 \alpha^{2}-4 \omega^{2}}\right] \quad \Rightarrow \quad r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}
$$

Case (a) $R=0$. This implies $\alpha=0$, so $r_{ \pm}= \pm i \omega$. Therefore,

$$
I_{1}(t)=\cos (\omega t), \quad I_{2}(t)=\sin (\omega t)
$$

Remark: When the circuit has no resistance, the current oscillates without dissipation.

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: Recall: $r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}$.

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: Recall: $r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}$.
Case (b) $R<\sqrt{4 L / C}$.

Application: The RLC circuit.

Example
Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: Recall: $r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}$.
Case (b) $R<\sqrt{4 L / C}$. This implies

$$
R^{2}<\frac{4 L}{C}
$$

Application: The RLC circuit.

Example
Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: Recall: $r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}$.
Case (b) $R<\sqrt{4 L / C}$. This implies

$$
R^{2}<\frac{4 L}{C} \quad \Leftrightarrow \quad \frac{R^{2}}{4 L^{2}}<\frac{1}{L C}
$$

Application: The RLC circuit.

Example
Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: Recall: $r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}$.
Case (b) $R<\sqrt{4 L / C}$. This implies

$$
R^{2}<\frac{4 L}{C} \quad \Leftrightarrow \quad \frac{R^{2}}{4 L^{2}}<\frac{1}{L C} \quad \Leftrightarrow \quad \alpha^{2}<\omega^{2} .
$$

Application: The RLC circuit.

Example
Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: Recall: $r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}$.
Case (b) $R<\sqrt{4 L / C}$. This implies

$$
R^{2}<\frac{4 L}{C} \quad \Leftrightarrow \quad \frac{R^{2}}{4 L^{2}}<\frac{1}{L C} \quad \Leftrightarrow \quad \alpha^{2}<\omega^{2} .
$$

Therefore, $r_{ \pm}=-\alpha \pm i \sqrt{\omega^{2}-\alpha^{2}}$.

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: Recall: $r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}$.
Case (b) $R<\sqrt{4 L / C}$. This implies

$$
R^{2}<\frac{4 L}{C} \quad \Leftrightarrow \quad \frac{R^{2}}{4 L^{2}}<\frac{1}{L C} \quad \Leftrightarrow \quad \alpha^{2}<\omega^{2} .
$$

Therefore, $r_{ \pm}=-\alpha \pm i \sqrt{\omega^{2}-\alpha^{2}}$. The fundamental solutions are

$$
I_{1}(t)=e^{-\alpha t} \cos \left(\sqrt{\omega^{2}-\alpha^{2}} t\right)
$$

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: Recall: $r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}$.
Case (b) $R<\sqrt{4 L / C}$. This implies

$$
R^{2}<\frac{4 L}{C} \Leftrightarrow \frac{R^{2}}{4 L^{2}}<\frac{1}{L C} \quad \Leftrightarrow \quad \alpha^{2}<\omega^{2} .
$$

Therefore, $r_{ \pm}=-\alpha \pm i \sqrt{\omega^{2}-\alpha^{2}}$. The fundamental solutions are

$$
I_{1}(t)=e^{-\alpha t} \cos \left(\sqrt{\omega^{2}-\alpha^{2}} t\right), \quad I_{2}(t)=e^{-\alpha t} \sin \left(\sqrt{\omega^{2}-\alpha^{2}} t\right)
$$

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: Recall: $r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}$.
Case (b) $R<\sqrt{4 L / C}$. This implies

$$
R^{2}<\frac{4 L}{C} \Leftrightarrow \frac{R^{2}}{4 L^{2}}<\frac{1}{L C} \quad \Leftrightarrow \quad \alpha^{2}<\omega^{2} .
$$

Therefore, $r_{ \pm}=-\alpha \pm i \sqrt{\omega^{2}-\alpha^{2}}$. The fundamental solutions are

$$
I_{1}(t)=e^{-\alpha t} \cos \left(\sqrt{\omega^{2}-\alpha^{2}} t\right), \quad I_{2}(t)=e^{-\alpha t} \sin \left(\sqrt{\omega^{2}-\alpha^{2}} t\right)
$$

$\mathrm{I}(\mathrm{t})$: electric current.

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: Recall: $r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}$.
Case (b) $R<\sqrt{4 L / C}$. This implies

$$
R^{2}<\frac{4 L}{C} \Leftrightarrow \frac{R^{2}}{4 L^{2}}<\frac{1}{L C} \quad \Leftrightarrow \quad \alpha^{2}<\omega^{2} .
$$

Therefore, $r_{ \pm}=-\alpha \pm i \sqrt{\omega^{2}-\alpha^{2}}$. The fundamental solutions are

$$
I_{1}(t)=e^{-\alpha t} \cos \left(\sqrt{\omega^{2}-\alpha^{2}} t\right), \quad I_{2}(t)=e^{-\alpha t} \sin \left(\sqrt{\omega^{2}-\alpha^{2}} t\right)
$$

I (t$)$: electric current.

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: Recall: $r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}$.
Case (b) $R<\sqrt{4 L / C}$. This implies

$$
R^{2}<\frac{4 L}{C} \Leftrightarrow \frac{R^{2}}{4 L^{2}}<\frac{1}{L C} \quad \Leftrightarrow \quad \alpha^{2}<\omega^{2} .
$$

Therefore, $r_{ \pm}=-\alpha \pm i \sqrt{\omega^{2}-\alpha^{2}}$. The fundamental solutions are

$$
I_{1}(t)=e^{-\alpha t} \cos \left(\sqrt{\omega^{2}-\alpha^{2}} t\right), \quad I_{2}(t)=e^{-\alpha t} \sin \left(\sqrt{\omega^{2}-\alpha^{2}} t\right)
$$

The resistance R damps the current oscillations.

Second order linear homogeneous ODE (Sect. 2.4).

- Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.
- Repeated roots as a limit case.
- Main result for repeated roots.
- Reduction of the order method:
- Constant coefficients equations.
- Variable coefficients equations.

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Summary:
Given constants $a_{1}, a_{0} \in \mathbb{R}$, consider the differential equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

with characteristic polynomial having roots

$$
r_{ \pm}=-\frac{a_{1}}{2} \pm \frac{1}{2} \sqrt{a_{1}^{2}-4 a_{0}}
$$

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Summary:
Given constants $a_{1}, a_{0} \in \mathbb{R}$, consider the differential equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

with characteristic polynomial having roots

$$
r_{ \pm}=-\frac{a_{1}}{2} \pm \frac{1}{2} \sqrt{a_{1}^{2}-4 a_{0}} .
$$

(1) If $a_{1}^{2}-4 a_{0}>0$,

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Summary:
Given constants $a_{1}, a_{0} \in \mathbb{R}$, consider the differential equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

with characteristic polynomial having roots

$$
r_{ \pm}=-\frac{a_{1}}{2} \pm \frac{1}{2} \sqrt{a_{1}^{2}-4 a_{0}} .
$$

(1) If $a_{1}^{2}-4 a_{0}>0$, then $y_{1}(t)=e^{r_{+} t}$ and $y_{2}(t)=e^{r-t}$.

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Summary:
Given constants $a_{1}, a_{0} \in \mathbb{R}$, consider the differential equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

with characteristic polynomial having roots

$$
r_{ \pm}=-\frac{a_{1}}{2} \pm \frac{1}{2} \sqrt{a_{1}^{2}-4 a_{0}} .
$$

(1) If $a_{1}^{2}-4 a_{0}>0$, then $y_{1}(t)=e^{r_{+} t}$ and $y_{2}(t)=e^{r-t}$.
(2) If $a_{1}^{2}-4 a_{0}<0$,

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Summary:
Given constants $a_{1}, a_{0} \in \mathbb{R}$, consider the differential equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

with characteristic polynomial having roots

$$
r_{ \pm}=-\frac{a_{1}}{2} \pm \frac{1}{2} \sqrt{a_{1}^{2}-4 a_{0}} .
$$

(1) If $a_{1}^{2}-4 a_{0}>0$, then $y_{1}(t)=e^{r+t}$ and $y_{2}(t)=e^{r-t}$.
(2) If $a_{1}^{2}-4 a_{0}<0$, then introducing $\alpha=-\frac{a_{1}}{2}, \beta=\frac{1}{2} \sqrt{4 a_{0}-a_{1}^{2}}$,

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Summary:
Given constants $a_{1}, a_{0} \in \mathbb{R}$, consider the differential equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

with characteristic polynomial having roots

$$
r_{ \pm}=-\frac{a_{1}}{2} \pm \frac{1}{2} \sqrt{a_{1}^{2}-4 a_{0}} .
$$

(1) If $a_{1}^{2}-4 a_{0}>0$, then $y_{1}(t)=e^{r+t}$ and $y_{2}(t)=e^{r-t}$.
(2) If $a_{1}^{2}-4 a_{0}<0$, then introducing $\alpha=-\frac{a_{1}}{2}, \beta=\frac{1}{2} \sqrt{4 a_{0}-a_{1}^{2}}$,

$$
y_{1}(t)=e^{\alpha t} \cos (\beta t), \quad y_{2}(t)=e^{\alpha t} \sin (\beta t) .
$$

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Summary:
Given constants $a_{1}, a_{0} \in \mathbb{R}$, consider the differential equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

with characteristic polynomial having roots

$$
r_{ \pm}=-\frac{a_{1}}{2} \pm \frac{1}{2} \sqrt{a_{1}^{2}-4 a_{0}} .
$$

(1) If $a_{1}^{2}-4 a_{0}>0$, then $y_{1}(t)=e^{r+t}$ and $y_{2}(t)=e^{r-t}$.
(2) If $a_{1}^{2}-4 a_{0}<0$, then introducing $\alpha=-\frac{a_{1}}{2}, \beta=\frac{1}{2} \sqrt{4 a_{0}-a_{1}^{2}}$,

$$
y_{1}(t)=e^{\alpha t} \cos (\beta t), \quad y_{2}(t)=e^{\alpha t} \sin (\beta t) .
$$

(3) If $a_{1}^{2}-4 a_{0}=0$,

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Summary:
Given constants $a_{1}, a_{0} \in \mathbb{R}$, consider the differential equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

with characteristic polynomial having roots

$$
r_{ \pm}=-\frac{a_{1}}{2} \pm \frac{1}{2} \sqrt{a_{1}^{2}-4 a_{0}} .
$$

(1) If $a_{1}^{2}-4 a_{0}>0$, then $y_{1}(t)=e^{r+t}$ and $y_{2}(t)=e^{r-t}$.
(2) If $a_{1}^{2}-4 a_{0}<0$, then introducing $\alpha=-\frac{a_{1}}{2}, \beta=\frac{1}{2} \sqrt{4 a_{0}-a_{1}^{2}}$,

$$
y_{1}(t)=e^{\alpha t} \cos (\beta t), \quad y_{2}(t)=e^{\alpha t} \sin (\beta t) .
$$

(3) If $a_{1}^{2}-4 a_{0}=0$, then $y_{1}(t)=e^{-\frac{a_{1}}{2} t}$.

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Question:
Consider the case (3), with $a_{1}^{2}-4 a_{0}=0$, that is, $a_{0}=\frac{a_{1}^{2}}{4}$.

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Question:
Consider the case (3), with $a_{1}^{2}-4 a_{0}=0$, that is, $a_{0}=\frac{a_{1}^{2}}{4}$.

- Does the equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+\frac{a_{1}^{2}}{4} y=0
$$

have two linearly independent solutions?

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Question:
Consider the case (3), with $a_{1}^{2}-4 a_{0}=0$, that is, $a_{0}=\frac{a_{1}^{2}}{4}$.

- Does the equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+\frac{a_{1}^{2}}{4} y=0
$$

have two linearly independent solutions?

- Or, is every solution to the equation above proportional to

$$
y_{1}(t)=e^{-\frac{\partial_{1}}{2} t} \quad ?
$$

Second order linear homogeneous ODE (Sect. 2.4).

- Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.
- Repeated roots as a limit case.
- Main result for repeated roots.
- Reduction of the order method:
- Constant coefficients equations.
- Variable coefficients equations.

Repeated roots as a limit case.

Remark:

- Case (3), where $4 a_{0}-a_{1}^{2}=0$ can be obtained as the limit $\beta \rightarrow 0$ in case (2).

Repeated roots as a limit case.

Remark:

- Case (3), where $4 a_{0}-a_{1}^{2}=0$ can be obtained as the limit $\beta \rightarrow 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as $\beta \rightarrow 0$ for fixed t.

Repeated roots as a limit case.

Remark:

- Case (3), where $4 a_{0}-a_{1}^{2}=0$ can be obtained as the limit $\beta \rightarrow 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as $\beta \rightarrow 0$ for fixed t.
- Since $\cos (\beta t) \rightarrow 1$ as $\beta \rightarrow 0$,

Repeated roots as a limit case.

Remark:

- Case (3), where $4 a_{0}-a_{1}^{2}=0$ can be obtained as the limit $\beta \rightarrow 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as $\beta \rightarrow 0$ for fixed t.
- Since $\cos (\beta t) \rightarrow 1$ as $\beta \rightarrow 0$, we conclude that

$$
y_{1 \beta}(t)=e^{-\frac{a_{1}}{2} t} \cos (\beta t)
$$

Repeated roots as a limit case.

Remark:

- Case (3), where $4 a_{0}-a_{1}^{2}=0$ can be obtained as the limit $\beta \rightarrow 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as $\beta \rightarrow 0$ for fixed t.
- Since $\cos (\beta t) \rightarrow 1$ as $\beta \rightarrow 0$, we conclude that

$$
y_{1 \beta}(t)=e^{-\frac{\partial_{1}}{2} t} \cos (\beta t) \rightarrow e^{-\frac{a_{1}}{2} t}
$$

Repeated roots as a limit case.

Remark:

- Case (3), where $4 a_{0}-a_{1}^{2}=0$ can be obtained as the limit $\beta \rightarrow 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as $\beta \rightarrow 0$ for fixed t.
- Since $\cos (\beta t) \rightarrow 1$ as $\beta \rightarrow 0$, we conclude that

$$
y_{1 \beta}(t)=e^{-\frac{a_{1}}{2} t} \cos (\beta t) \rightarrow e^{-\frac{a_{1}}{2} t}=y_{1}(t) .
$$

Repeated roots as a limit case.

Remark:

- Case (3), where $4 a_{0}-a_{1}^{2}=0$ can be obtained as the limit $\beta \rightarrow 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as $\beta \rightarrow 0$ for fixed t.
- Since $\cos (\beta t) \rightarrow 1$ as $\beta \rightarrow 0$, we conclude that

$$
y_{1 \beta}(t)=e^{-\frac{a_{1}}{2} t} \cos (\beta t) \rightarrow e^{-\frac{a_{1}}{2} t}=y_{1}(t) .
$$

- Since $\frac{\sin (\beta t)}{\beta t} \rightarrow 1$ as $\beta \rightarrow 0$,

Repeated roots as a limit case.

Remark:

- Case (3), where $4 a_{0}-a_{1}^{2}=0$ can be obtained as the limit $\beta \rightarrow 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as $\beta \rightarrow 0$ for fixed t.
- Since $\cos (\beta t) \rightarrow 1$ as $\beta \rightarrow 0$, we conclude that

$$
y_{1 \beta}(t)=e^{-\frac{a_{1}}{2} t} \cos (\beta t) \rightarrow e^{-\frac{a_{1}}{2} t}=y_{1}(t) .
$$

- Since $\frac{\sin (\beta t)}{\beta t} \rightarrow 1$ as $\beta \rightarrow 0$, that is, $\sin (\beta t) \rightarrow \beta t$,

Repeated roots as a limit case.

Remark:

- Case (3), where $4 a_{0}-a_{1}^{2}=0$ can be obtained as the limit $\beta \rightarrow 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as $\beta \rightarrow 0$ for fixed t.
- Since $\cos (\beta t) \rightarrow 1$ as $\beta \rightarrow 0$, we conclude that

$$
y_{1 \beta}(t)=e^{-\frac{a_{1}}{2} t} \cos (\beta t) \rightarrow e^{-\frac{a_{1}}{2} t}=y_{1}(t) .
$$

- Since $\frac{\sin (\beta t)}{\beta t} \rightarrow 1$ as $\beta \rightarrow 0$, that is, $\sin (\beta t) \rightarrow \beta t$,

$$
y_{2 \beta}(t)=e^{-\frac{\alpha_{1}}{2} t} \sin (\beta t)
$$

Repeated roots as a limit case.

Remark:

- Case (3), where $4 a_{0}-a_{1}^{2}=0$ can be obtained as the limit $\beta \rightarrow 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as $\beta \rightarrow 0$ for fixed t.
- Since $\cos (\beta t) \rightarrow 1$ as $\beta \rightarrow 0$, we conclude that

$$
y_{1 \beta}(t)=e^{-\frac{a_{1}}{2} t} \cos (\beta t) \rightarrow e^{-\frac{a_{1}}{2} t}=y_{1}(t) .
$$

- Since $\frac{\sin (\beta t)}{\beta t} \rightarrow 1$ as $\beta \rightarrow 0$, that is, $\sin (\beta t) \rightarrow \beta t$,

$$
y_{2 \beta}(t)=e^{-\frac{p_{1}}{2} t} \sin (\beta t) \rightarrow \beta t e^{-\frac{\partial_{1}}{2} t}
$$

Repeated roots as a limit case.

Remark:

- Case (3), where $4 a_{0}-a_{1}^{2}=0$ can be obtained as the limit $\beta \rightarrow 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as $\beta \rightarrow 0$ for fixed t.
- Since $\cos (\beta t) \rightarrow 1$ as $\beta \rightarrow 0$, we conclude that

$$
y_{1 \beta}(t)=e^{-\frac{a_{1}}{2} t} \cos (\beta t) \rightarrow e^{-\frac{a_{1}}{2} t}=y_{1}(t) .
$$

- Since $\frac{\sin (\beta t)}{\beta t} \rightarrow 1$ as $\beta \rightarrow 0$, that is, $\sin (\beta t) \rightarrow \beta t$,

$$
y_{2 \beta}(t)=e^{-\frac{a_{1}}{2} t} \sin (\beta t) \rightarrow \beta t e^{-\frac{a_{1}}{2} t} \rightarrow 0
$$

Repeated roots as a limit case.

Remark:

- Case (3), where $4 a_{0}-a_{1}^{2}=0$ can be obtained as the limit $\beta \rightarrow 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as $\beta \rightarrow 0$ for fixed t.
- Since $\cos (\beta t) \rightarrow 1$ as $\beta \rightarrow 0$, we conclude that

$$
y_{1 \beta}(t)=e^{-\frac{a_{1}}{2} t} \cos (\beta t) \rightarrow e^{-\frac{a_{1}}{2} t}=y_{1}(t)
$$

- Since $\frac{\sin (\beta t)}{\beta t} \rightarrow 1$ as $\beta \rightarrow 0$, that is, $\sin (\beta t) \rightarrow \beta t$,

$$
y_{2 \beta}(t)=e^{-\frac{a_{1}}{2} t} \sin (\beta t) \rightarrow \beta t e^{-\frac{a_{1}}{2} t} \rightarrow 0
$$

- Is $y_{2}(t)=t y_{1}(t)$ solution of the differential equation?

Repeated roots as a limit case.

Remark:

- Case (3), where $4 a_{0}-a_{1}^{2}=0$ can be obtained as the limit $\beta \rightarrow 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as $\beta \rightarrow 0$ for fixed t.
- Since $\cos (\beta t) \rightarrow 1$ as $\beta \rightarrow 0$, we conclude that

$$
y_{1 \beta}(t)=e^{-\frac{a_{1}}{2} t} \cos (\beta t) \rightarrow e^{-\frac{a_{1}}{2} t}=y_{1}(t) .
$$

- Since $\frac{\sin (\beta t)}{\beta t} \rightarrow 1$ as $\beta \rightarrow 0$, that is, $\sin (\beta t) \rightarrow \beta t$,

$$
y_{2 \beta}(t)=e^{-\frac{a_{1}}{2} t} \sin (\beta t) \rightarrow \beta t e^{-\frac{a_{1}}{2} t} \rightarrow 0
$$

- Is $y_{2}(t)=t y_{1}(t)$ solution of the differential equation? Introducing y_{2} in the differential equation one obtains: Yes.

Repeated roots as a limit case.

Remark:

- Case (3), where $4 a_{0}-a_{1}^{2}=0$ can be obtained as the limit $\beta \rightarrow 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as $\beta \rightarrow 0$ for fixed t.
- Since $\cos (\beta t) \rightarrow 1$ as $\beta \rightarrow 0$, we conclude that

$$
y_{1 \beta}(t)=e^{-\frac{a_{1}}{2} t} \cos (\beta t) \rightarrow e^{-\frac{a_{1}}{2} t}=y_{1}(t)
$$

- Since $\frac{\sin (\beta t)}{\beta t} \rightarrow 1$ as $\beta \rightarrow 0$, that is, $\sin (\beta t) \rightarrow \beta t$,

$$
y_{2 \beta}(t)=e^{-\frac{a_{1}}{2} t} \sin (\beta t) \rightarrow \beta t e^{-\frac{a_{1}}{2} t} \rightarrow 0
$$

- Is $y_{2}(t)=t y_{1}(t)$ solution of the differential equation? Introducing y_{2} in the differential equation one obtains: Yes.
- Since y_{2} is not proportional to y_{1}, the functions y_{1}, y_{2} are a fundamental set for the differential equation in case (3).

Second order linear homogeneous ODE (Sect. 2.4).

- Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.
- Repeated roots as a limit case.
- Main result for repeated roots.
- Reduction of the order method:
- Constant coefficients equations.
- Variable coefficients equations.

Main result for repeated roots.

Theorem
If $a_{1}, a_{0} \in R$ satisfy that $a_{1}^{2}=4 a_{0}$, then the functions

$$
y_{1}(t)=e^{-\frac{\partial_{1}}{2} t}, \quad y_{2}(t)=t e^{-\frac{\partial_{1}}{2} t}
$$

are a fundamental solution set for the differential equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

Main result for repeated roots.

Theorem
If $a_{1}, a_{0} \in R$ satisfy that $a_{1}^{2}=4 a_{0}$, then the functions

$$
y_{1}(t)=e^{-\frac{\partial_{1}}{2} t}, \quad y_{2}(t)=t e^{-\frac{\partial_{1}}{2} t}
$$

are a fundamental solution set for the differential equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

Example
Find the general solution of $9 y^{\prime \prime}+6 y^{\prime}+y=0$.

Main result for repeated roots.

Theorem
If $a_{1}, a_{0} \in R$ satisfy that $a_{1}^{2}=4 a_{0}$, then the functions

$$
y_{1}(t)=e^{-\frac{a_{1}}{2} t}, \quad y_{2}(t)=t e^{-\frac{a_{1}}{2} t}
$$

are a fundamental solution set for the differential equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

Example
Find the general solution of $9 y^{\prime \prime}+6 y^{\prime}+y=0$.
Solution: The characteristic equation is $9 r^{2}+6 r+1=0$,

Main result for repeated roots.

Theorem
If $a_{1}, a_{0} \in R$ satisfy that $a_{1}^{2}=4 a_{0}$, then the functions

$$
y_{1}(t)=e^{-\frac{a_{1}}{2} t}, \quad y_{2}(t)=t e^{-\frac{a_{1}}{2} t}
$$

are a fundamental solution set for the differential equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

Example
Find the general solution of $9 y^{\prime \prime}+6 y^{\prime}+y=0$.
Solution: The characteristic equation is $9 r^{2}+6 r+1=0$, so

$$
r_{ \pm}=\frac{1}{(2)(9)}[-6 \pm \sqrt{36-36}]
$$

Main result for repeated roots.

Theorem
If $a_{1}, a_{0} \in R$ satisfy that $a_{1}^{2}=4 a_{0}$, then the functions

$$
y_{1}(t)=e^{-\frac{a_{1}}{2} t}, \quad y_{2}(t)=t e^{-\frac{a_{1}}{2} t}
$$

are a fundamental solution set for the differential equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

Example
Find the general solution of $9 y^{\prime \prime}+6 y^{\prime}+y=0$.
Solution: The characteristic equation is $9 r^{2}+6 r+1=0$, so

$$
r_{ \pm}=\frac{1}{(2)(9)}[-6 \pm \sqrt{36-36}] \Rightarrow r_{ \pm}=-\frac{1}{3}
$$

Main result for repeated roots.

Theorem
If $a_{1}, a_{0} \in R$ satisfy that $a_{1}^{2}=4 a_{0}$, then the functions

$$
y_{1}(t)=e^{-\frac{a_{1}}{2} t}, \quad y_{2}(t)=t e^{-\frac{a_{1}}{2} t}
$$

are a fundamental solution set for the differential equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

Example
Find the general solution of $9 y^{\prime \prime}+6 y^{\prime}+y=0$.
Solution: The characteristic equation is $9 r^{2}+6 r+1=0$, so

$$
r_{ \pm}=\frac{1}{(2)(9)}[-6 \pm \sqrt{36-36}] \Rightarrow r_{ \pm}=-\frac{1}{3}
$$

The Theorem above implies that the general solution is

$$
y(t)=c_{1} e^{-t / 3}+c_{2} t e^{-t / 3} .
$$

Second order linear homogeneous ODE (Sect. 2.4).

- Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.
- Repeated roots as a limit case.
- Main result for repeated roots.
- Reduction of the order method:
- Constant coefficients equations.
- Variable coefficients equations.

Reduction of the order method: Constant coefficients.

Proof case $a_{1}^{2}-4 a_{0}=0$:
Recall: The characteristic equation is $r^{2}+a_{1} r+a_{0}=0$,

Reduction of the order method: Constant coefficients.

Proof case $a_{1}^{2}-4 a_{0}=0$:
Recall: The characteristic equation is $r^{2}+a_{1} r+a_{0}=0$, and its solutions are $r_{ \pm}=(1 / 2)\left[-a_{1} \pm \sqrt{a_{1}^{2}-4 a_{0}}\right]$.

Reduction of the order method: Constant coefficients.

Proof case $a_{1}^{2}-4 a_{0}=0$:
Recall: The characteristic equation is $r^{2}+a_{1} r+a_{0}=0$, and its solutions are $r_{ \pm}=(1 / 2)\left[-a_{1} \pm \sqrt{a_{1}^{2}-4 a_{0}}\right]$.
The hypothesis $a_{1}^{2}=4 a_{0}$ implies $r_{+}=r_{-}=-a_{1} / 2$.

Reduction of the order method: Constant coefficients.

Proof case $a_{1}^{2}-4 a_{0}=0$:
Recall: The characteristic equation is $r^{2}+a_{1} r+a_{0}=0$, and its solutions are $r_{ \pm}=(1 / 2)\left[-a_{1} \pm \sqrt{a_{1}^{2}-4 a_{0}}\right]$.
The hypothesis $a_{1}^{2}=4 a_{0}$ implies $r_{+}=r_{-}=-a_{1} / 2$.
So, the solution r_{+}of the characteristic equation satisfies both

$$
r_{+}^{2}+a_{1} r_{+}+a_{0}=0, \quad 2 r_{+}+a_{1}=0
$$

Reduction of the order method: Constant coefficients.

Proof case $a_{1}^{2}-4 a_{0}=0$:
Recall: The characteristic equation is $r^{2}+a_{1} r+a_{0}=0$, and its solutions are $r_{ \pm}=(1 / 2)\left[-a_{1} \pm \sqrt{a_{1}^{2}-4 a_{0}}\right]$.
The hypothesis $a_{1}^{2}=4 a_{0}$ implies $r_{+}=r_{-}=-a_{1} / 2$.
So, the solution r_{+}of the characteristic equation satisfies both

$$
r_{+}^{2}+a_{1} r_{+}+a_{0}=0, \quad 2 r_{+}+a_{1}=0
$$

It is clear that $y_{1}(t)=e^{r+t}$ is solutions of the differential equation.

Reduction of the order method: Constant coefficients.

Proof case $a_{1}^{2}-4 a_{0}=0$:
Recall: The characteristic equation is $r^{2}+a_{1} r+a_{0}=0$, and its solutions are $r_{ \pm}=(1 / 2)\left[-a_{1} \pm \sqrt{a_{1}^{2}-4 a_{0}}\right]$.
The hypothesis $a_{1}^{2}=4 a_{0}$ implies $r_{+}=r_{-}=-a_{1} / 2$.
So, the solution r_{+}of the characteristic equation satisfies both

$$
r_{+}^{2}+a_{1} r_{+}+a_{0}=0, \quad 2 r_{+}+a_{1}=0
$$

It is clear that $y_{1}(t)=e^{r+t}$ is solutions of the differential equation.
A second solution y_{2} not proportional to y_{1} can be found as follows: (D'Alembert ~1750.)

Reduction of the order method: Constant coefficients.

Proof case $a_{1}^{2}-4 a_{0}=0$:
Recall: The characteristic equation is $r^{2}+a_{1} r+a_{0}=0$, and its solutions are $r_{ \pm}=(1 / 2)\left[-a_{1} \pm \sqrt{a_{1}^{2}-4 a_{0}}\right]$.
The hypothesis $a_{1}^{2}=4 a_{0}$ implies $r_{+}=r_{-}=-a_{1} / 2$.
So, the solution r_{+}of the characteristic equation satisfies both

$$
r_{+}^{2}+a_{1} r_{+}+a_{0}=0, \quad 2 r_{+}+a_{1}=0
$$

It is clear that $y_{1}(t)=e^{r+t}$ is solutions of the differential equation.
A second solution y_{2} not proportional to y_{1} can be found as follows: (D'Alembert ~1750.)

Express: $y_{2}(t)=v(t) y_{1}(t)$, and find the equation that function v satisfies from the condition $y_{2}^{\prime \prime}+a_{1} y_{2}^{\prime}+a_{0} y_{2}=0$.

Reduction of the order method: Constant coefficients.

Recall: $y_{2}=v y_{1}$ and $y_{2}^{\prime \prime}+a_{1} y_{2}^{\prime}+a_{0} y_{2}=0$.

Reduction of the order method: Constant coefficients.

Recall: $y_{2}=v y_{1}$ and $y_{2}^{\prime \prime}+a_{1} y_{2}^{\prime}+a_{0} y_{2}=0$. So, $y_{2}=v e^{r_{+} t}$

Reduction of the order method: Constant coefficients.

Recall: $y_{2}=v y_{1}$ and $y_{2}^{\prime \prime}+a_{1} y_{2}^{\prime}+a_{0} y_{2}=0$. So, $y_{2}=v e^{r_{+} t}$ and

$$
y_{2}^{\prime}=v^{\prime} e^{r_{+} t}+r_{+} v e^{r_{+} t}
$$

Reduction of the order method: Constant coefficients.

Recall: $y_{2}=v y_{1}$ and $y_{2}^{\prime \prime}+a_{1} y_{2}^{\prime}+a_{0} y_{2}=0$. So, $y_{2}=v e^{r_{+} t}$ and

$$
y_{2}^{\prime}=v^{\prime} e^{r_{+} t}+r_{+} v e^{r_{+} t}, \quad y_{2}^{\prime \prime}=v^{\prime \prime} e^{r_{+} t}+2 r_{+} v^{\prime} e^{r_{+} t}+r_{+}^{2} v e^{r_{+} t} .
$$

Reduction of the order method: Constant coefficients.

Recall: $y_{2}=v y_{1}$ and $y_{2}^{\prime \prime}+a_{1} y_{2}^{\prime}+a_{0} y_{2}=0$. So, $y_{2}=v e^{r_{+} t}$ and

$$
y_{2}^{\prime}=v^{\prime} e^{r_{+} t}+r_{+} v e^{r_{+} t}, \quad y_{2}^{\prime \prime}=v^{\prime \prime} e^{r_{+} t}+2 r_{+} v^{\prime} e^{r_{+} t}+r_{+}^{2} v e^{r_{+} t} .
$$

Introducing this information into the differential equation

$$
\left[v^{\prime \prime}+2 r_{+} v^{\prime}+r_{+}^{2} v\right] e^{r_{+} t}+a_{1}\left[v^{\prime}+r_{+} v\right] e^{r_{+} t}+a_{0} v e^{r_{+} t}=0
$$

Reduction of the order method: Constant coefficients.

Recall: $y_{2}=v y_{1}$ and $y_{2}^{\prime \prime}+a_{1} y_{2}^{\prime}+a_{0} y_{2}=0$. So, $y_{2}=v e^{r_{+} t}$ and

$$
y_{2}^{\prime}=v^{\prime} e^{r_{+} t}+r_{+} v e^{r_{+} t}, \quad y_{2}^{\prime \prime}=v^{\prime \prime} e^{r_{+} t}+2 r_{+} v^{\prime} e^{r_{+} t}+r_{+}^{2} v e^{r_{+} t} .
$$

Introducing this information into the differential equation

$$
\begin{gathered}
{\left[v^{\prime \prime}+2 r_{+} v^{\prime}+r_{+}^{2} v\right] e^{r_{+} t}+a_{1}\left[v^{\prime}+r_{+} v\right] e^{r_{+} t}+a_{0} v e^{r_{+} t}=0} \\
{\left[v^{\prime \prime}+2 r_{+} v^{\prime}+r_{+}^{2} v\right]+a_{1}\left[v^{\prime}+r_{+} v\right]+a_{0} v=0}
\end{gathered}
$$

Reduction of the order method: Constant coefficients.

Recall: $y_{2}=v y_{1}$ and $y_{2}^{\prime \prime}+a_{1} y_{2}^{\prime}+a_{0} y_{2}=0$. So, $y_{2}=v e^{r_{+} t}$ and

$$
y_{2}^{\prime}=v^{\prime} e^{r_{+} t}+r_{+} v e^{r_{+} t}, \quad y_{2}^{\prime \prime}=v^{\prime \prime} e^{r_{+} t}+2 r_{+} v^{\prime} e^{r_{+} t}+r_{+}^{2} v e^{r_{+} t} .
$$

Introducing this information into the differential equation

$$
\begin{gathered}
{\left[v^{\prime \prime}+2 r_{+} v^{\prime}+r_{+}^{2} v\right] e^{r_{+} t}+a_{1}\left[v^{\prime}+r_{+} v\right] e^{r_{+} t}+a_{0} v e^{r_{+} t}=0} \\
{\left[v^{\prime \prime}+2 r_{+} v^{\prime}+r_{+}^{2} v\right]+a_{1}\left[v^{\prime}+r_{+} v\right]+a_{0} v=0} \\
v^{\prime \prime}+\left(2 r_{+}+a_{1}\right) v^{\prime}+\left(r_{+}^{2}+a_{1} r_{+}+a_{0}\right) v=0
\end{gathered}
$$

Reduction of the order method: Constant coefficients.

Recall: $y_{2}=v y_{1}$ and $y_{2}^{\prime \prime}+a_{1} y_{2}^{\prime}+a_{0} y_{2}=0$. So, $y_{2}=v e^{r_{+} t}$ and

$$
y_{2}^{\prime}=v^{\prime} e^{r_{+} t}+r_{+} v e^{r_{+} t}, \quad y_{2}^{\prime \prime}=v^{\prime \prime} e^{r_{+} t}+2 r_{+} v^{\prime} e^{r_{+} t}+r_{+}^{2} v e^{r_{+} t}
$$

Introducing this information into the differential equation

$$
\begin{gathered}
{\left[v^{\prime \prime}+2 r_{+} v^{\prime}+r_{+}^{2} v\right] e^{r_{+} t}+a_{1}\left[v^{\prime}+r_{+} v\right] e^{r_{+} t}+a_{0} v e^{r_{+} t}=0} \\
{\left[v^{\prime \prime}+2 r_{+} v^{\prime}+r_{+}^{2} v\right]+a_{1}\left[v^{\prime}+r_{+} v\right]+a_{0} v=0} \\
v^{\prime \prime}+\left(2 r_{+}+a_{1}\right) v^{\prime}+\left(r_{+}^{2}+a_{1} r_{+}+a_{0}\right) v=0
\end{gathered}
$$

Recall that r_{+}satisfies: $r_{+}^{2}+a_{1} r_{+}+a_{0}=0$

Reduction of the order method: Constant coefficients.

Recall: $y_{2}=v y_{1}$ and $y_{2}^{\prime \prime}+a_{1} y_{2}^{\prime}+a_{0} y_{2}=0$. So, $y_{2}=v e^{r_{+} t}$ and

$$
y_{2}^{\prime}=v^{\prime} e^{r_{+} t}+r_{+} v e^{r_{+} t}, \quad y_{2}^{\prime \prime}=v^{\prime \prime} e^{r_{+} t}+2 r_{+} v^{\prime} e^{r_{+} t}+r_{+}^{2} v e^{r_{+} t}
$$

Introducing this information into the differential equation

$$
\begin{gathered}
{\left[v^{\prime \prime}+2 r_{+} v^{\prime}+r_{+}^{2} v\right] e^{r_{+} t}+a_{1}\left[v^{\prime}+r_{+} v\right] e^{r_{+} t}+a_{0} v e^{r_{+} t}=0} \\
{\left[v^{\prime \prime}+2 r_{+} v^{\prime}+r_{+}^{2} v\right]+a_{1}\left[v^{\prime}+r_{+} v\right]+a_{0} v=0} \\
v^{\prime \prime}+\left(2 r_{+}+a_{1}\right) v^{\prime}+\left(r_{+}^{2}+a_{1} r_{+}+a_{0}\right) v=0
\end{gathered}
$$

Recall that r_{+}satisfies: $r_{+}^{2}+a_{1} r_{+}+a_{0}=0$ and $2 r_{+}+a_{1}=0$.

Reduction of the order method: Constant coefficients.

Recall: $y_{2}=v y_{1}$ and $y_{2}^{\prime \prime}+a_{1} y_{2}^{\prime}+a_{0} y_{2}=0$. So, $y_{2}=v e^{r_{+} t}$ and

$$
y_{2}^{\prime}=v^{\prime} e^{r_{+} t}+r_{+} v e^{r_{+} t}, \quad y_{2}^{\prime \prime}=v^{\prime \prime} e^{r_{+} t}+2 r_{+} v^{\prime} e^{r_{+} t}+r_{+}^{2} v e^{r_{+} t} .
$$

Introducing this information into the differential equation

$$
\begin{gathered}
{\left[v^{\prime \prime}+2 r_{+} v^{\prime}+r_{+}^{2} v\right] e^{r_{+} t}+a_{1}\left[v^{\prime}+r_{+} v\right] e^{r_{+} t}+a_{0} v e^{r_{+} t}=0} \\
{\left[v^{\prime \prime}+2 r_{+} v^{\prime}+r_{+}^{2} v\right]+a_{1}\left[v^{\prime}+r_{+} v\right]+a_{0} v=0} \\
v^{\prime \prime}+\left(2 r_{+}+a_{1}\right) v^{\prime}+\left(r_{+}^{2}+a_{1} r_{+}+a_{0}\right) v=0
\end{gathered}
$$

Recall that r_{+}satisfies: $r_{+}^{2}+a_{1} r_{+}+a_{0}=0$ and $2 r_{+}+a_{1}=0$.

$$
v^{\prime \prime}=0
$$

Reduction of the order method: Constant coefficients.

Recall: $y_{2}=v y_{1}$ and $y_{2}^{\prime \prime}+a_{1} y_{2}^{\prime}+a_{0} y_{2}=0$. So, $y_{2}=v e^{r_{+} t}$ and

$$
y_{2}^{\prime}=v^{\prime} e^{r_{+} t}+r_{+} v e^{r_{+} t}, \quad y_{2}^{\prime \prime}=v^{\prime \prime} e^{r_{+} t}+2 r_{+} v^{\prime} e^{r_{+} t}+r_{+}^{2} v e^{r_{+} t} .
$$

Introducing this information into the differential equation

$$
\begin{gathered}
{\left[v^{\prime \prime}+2 r_{+} v^{\prime}+r_{+}^{2} v\right] e^{r_{+} t}+a_{1}\left[v^{\prime}+r_{+} v\right] e^{r_{+} t}+a_{0} v e^{r_{+} t}=0} \\
{\left[v^{\prime \prime}+2 r_{+} v^{\prime}+r_{+}^{2} v\right]+a_{1}\left[v^{\prime}+r_{+} v\right]+a_{0} v=0} \\
v^{\prime \prime}+\left(2 r_{+}+a_{1}\right) v^{\prime}+\left(r_{+}^{2}+a_{1} r_{+}+a_{0}\right) v=0
\end{gathered}
$$

Recall that r_{+}satisfies: $r_{+}^{2}+a_{1} r_{+}+a_{0}=0$ and $2 r_{+}+a_{1}=0$.

$$
v^{\prime \prime}=0 \Rightarrow v=\left(c_{1}+c_{2} t\right)
$$

Reduction of the order method: Constant coefficients.

Recall: $y_{2}=v y_{1}$ and $y_{2}^{\prime \prime}+a_{1} y_{2}^{\prime}+a_{0} y_{2}=0$. So, $y_{2}=v e^{r_{+} t}$ and

$$
y_{2}^{\prime}=v^{\prime} e^{r_{+} t}+r_{+} v e^{r_{+} t}, \quad y_{2}^{\prime \prime}=v^{\prime \prime} e^{r_{+} t}+2 r_{+} v^{\prime} e^{r_{+} t}+r_{+}^{2} v e^{r_{+} t} .
$$

Introducing this information into the differential equation

$$
\begin{gathered}
{\left[v^{\prime \prime}+2 r_{+} v^{\prime}+r_{+}^{2} v\right] e^{r_{+} t}+a_{1}\left[v^{\prime}+r_{+} v\right] e^{r_{+} t}+a_{0} v e^{r_{+} t}=0} \\
{\left[v^{\prime \prime}+2 r_{+} v^{\prime}+r_{+}^{2} v\right]+a_{1}\left[v^{\prime}+r_{+} v\right]+a_{0} v=0} \\
v^{\prime \prime}+\left(2 r_{+}+a_{1}\right) v^{\prime}+\left(r_{+}^{2}+a_{1} r_{+}+a_{0}\right) v=0
\end{gathered}
$$

Recall that r_{+}satisfies: $r_{+}^{2}+a_{1} r_{+}+a_{0}=0$ and $2 r_{+}+a_{1}=0$.

$$
v^{\prime \prime}=0 \Rightarrow v=\left(c_{1}+c_{2} t\right) \Rightarrow y_{2}=\left(c_{1}+c_{2} t\right) e^{r_{+} t}
$$

Reduction of the order method: Constant coefficients.

Recall: We have obtained that $y_{2}(t)=\left(c_{1}+c_{2} t\right) e^{r_{+} t}$.

Reduction of the order method: Constant coefficients.

Recall: We have obtained that $y_{2}(t)=\left(c_{1}+c_{2} t\right) e^{r_{+} t}$.
If $c_{2}=0$, then $y_{2}=c_{1} e^{r+t}$ and $y_{1}=e^{r+t}$ are linearly dependent functions.

Reduction of the order method: Constant coefficients.

Recall: We have obtained that $y_{2}(t)=\left(c_{1}+c_{2} t\right) e^{r+t}$.
If $c_{2}=0$, then $y_{2}=c_{1} e^{r+t}$ and $y_{1}=e^{r+t}$ are linearly dependent functions.
If $c_{2} \neq 0$, then $y_{2}=\left(c_{1}+c_{2} t\right) e^{r_{+} t}$ and $y_{1}=e^{r_{+} t}$ are linearly independent functions.

Reduction of the order method: Constant coefficients.

Recall: We have obtained that $y_{2}(t)=\left(c_{1}+c_{2} t\right) e^{r+t}$.
If $c_{2}=0$, then $y_{2}=c_{1} e^{r+t}$ and $y_{1}=e^{r+t}$ are linearly dependent functions.
If $c_{2} \neq 0$, then $y_{2}=\left(c_{1}+c_{2} t\right) e^{r_{+} t}$ and $y_{1}=e^{r_{+} t}$ are linearly independent functions.

Simplest choice: $c_{1}=0$ and $c_{2}=1$.

Reduction of the order method: Constant coefficients.

Recall: We have obtained that $y_{2}(t)=\left(c_{1}+c_{2} t\right) e^{r+t}$.
If $c_{2}=0$, then $y_{2}=c_{1} e^{r+t}$ and $y_{1}=e^{r+t}$ are linearly dependent functions.

If $c_{2} \neq 0$, then $y_{2}=\left(c_{1}+c_{2} t\right) e^{r_{+} t}$ and $y_{1}=e^{r_{+} t}$ are linearly independent functions.

Simplest choice: $c_{1}=0$ and $c_{2}=1$. Then, a fundamental solution set to the differential equation is

$$
y_{1}(t)=e^{r_{+} t}, \quad y_{2}(t)=t e^{r_{+} t}
$$

Reduction of the order method: Constant coefficients.

Recall: We have obtained that $y_{2}(t)=\left(c_{1}+c_{2} t\right) e^{r+t}$.
If $c_{2}=0$, then $y_{2}=c_{1} e^{r+t}$ and $y_{1}=e^{r+t}$ are linearly dependent functions.

If $c_{2} \neq 0$, then $y_{2}=\left(c_{1}+c_{2} t\right) e^{r_{+} t}$ and $y_{1}=e^{r_{+} t}$ are linearly independent functions.

Simplest choice: $c_{1}=0$ and $c_{2}=1$. Then, a fundamental solution set to the differential equation is

$$
y_{1}(t)=e^{r_{+} t}, \quad y_{2}(t)=t e^{r_{+} t}
$$

The general solution to the differential equation is

$$
y(t)=\tilde{c}_{1} e^{r_{+} t}+\tilde{c}_{2} t e^{r_{+} t} .
$$

Reduction of the order method: Constant coefficients.

Example

Find the solution to the initial value problem

$$
9 y^{\prime \prime}+6 y^{\prime}+y=0, \quad y(0)=1, \quad y^{\prime}(0)=\frac{5}{3}
$$

Reduction of the order method: Constant coefficients.

Example

Find the solution to the initial value problem

$$
9 y^{\prime \prime}+6 y^{\prime}+y=0, \quad y(0)=1, \quad y^{\prime}(0)=\frac{5}{3}
$$

Solution: The solutions of $9 r^{2}+6 r+1=0$, are $r_{+}=r_{-}=-\frac{1}{3}$.

Reduction of the order method: Constant coefficients.

Example

Find the solution to the initial value problem

$$
9 y^{\prime \prime}+6 y^{\prime}+y=0, \quad y(0)=1, \quad y^{\prime}(0)=\frac{5}{3}
$$

Solution: The solutions of $9 r^{2}+6 r+1=0$, are $r_{+}=r_{-}=-\frac{1}{3}$.
The Theorem above says that the general solution is

$$
y(t)=c_{1} e^{-t / 3}+c_{2} t e^{-t / 3}
$$

Reduction of the order method: Constant coefficients.

Example

Find the solution to the initial value problem

$$
9 y^{\prime \prime}+6 y^{\prime}+y=0, \quad y(0)=1, \quad y^{\prime}(0)=\frac{5}{3}
$$

Solution: The solutions of $9 r^{2}+6 r+1=0$, are $r_{+}=r_{-}=-\frac{1}{3}$.
The Theorem above says that the general solution is

$$
y(t)=c_{1} e^{-t / 3}+c_{2} t e^{-t / 3} \Rightarrow y^{\prime}(t)=-\frac{c_{1}}{3} e^{-t / 3}+c_{2}\left(1-\frac{t}{3}\right) e^{-t / 3}
$$

Reduction of the order method: Constant coefficients.

Example

Find the solution to the initial value problem

$$
9 y^{\prime \prime}+6 y^{\prime}+y=0, \quad y(0)=1, \quad y^{\prime}(0)=\frac{5}{3}
$$

Solution: The solutions of $9 r^{2}+6 r+1=0$, are $r_{+}=r_{-}=-\frac{1}{3}$.
The Theorem above says that the general solution is
$y(t)=c_{1} e^{-t / 3}+c_{2} t e^{-t / 3} \Rightarrow y^{\prime}(t)=-\frac{c_{1}}{3} e^{-t / 3}+c_{2}\left(1-\frac{t}{3}\right) e^{-t / 3}$.
The initial conditions imply that

$$
1=y(0)
$$

Reduction of the order method: Constant coefficients.

Example

Find the solution to the initial value problem

$$
9 y^{\prime \prime}+6 y^{\prime}+y=0, \quad y(0)=1, \quad y^{\prime}(0)=\frac{5}{3}
$$

Solution: The solutions of $9 r^{2}+6 r+1=0$, are $r_{+}=r_{-}=-\frac{1}{3}$.
The Theorem above says that the general solution is
$y(t)=c_{1} e^{-t / 3}+c_{2} t e^{-t / 3} \Rightarrow y^{\prime}(t)=-\frac{c_{1}}{3} e^{-t / 3}+c_{2}\left(1-\frac{t}{3}\right) e^{-t / 3}$.
The initial conditions imply that

$$
1=y(0)=c_{1}
$$

Reduction of the order method: Constant coefficients.

Example

Find the solution to the initial value problem

$$
9 y^{\prime \prime}+6 y^{\prime}+y=0, \quad y(0)=1, \quad y^{\prime}(0)=\frac{5}{3}
$$

Solution: The solutions of $9 r^{2}+6 r+1=0$, are $r_{+}=r_{-}=-\frac{1}{3}$.
The Theorem above says that the general solution is
$y(t)=c_{1} e^{-t / 3}+c_{2} t e^{-t / 3} \Rightarrow y^{\prime}(t)=-\frac{c_{1}}{3} e^{-t / 3}+c_{2}\left(1-\frac{t}{3}\right) e^{-t / 3}$.
The initial conditions imply that

$$
\begin{aligned}
& 1=y(0)=c_{1}, \\
& \frac{5}{3}=y^{\prime}(0)
\end{aligned}
$$

Reduction of the order method: Constant coefficients.

Example

Find the solution to the initial value problem

$$
9 y^{\prime \prime}+6 y^{\prime}+y=0, \quad y(0)=1, \quad y^{\prime}(0)=\frac{5}{3}
$$

Solution: The solutions of $9 r^{2}+6 r+1=0$, are $r_{+}=r_{-}=-\frac{1}{3}$.
The Theorem above says that the general solution is
$y(t)=c_{1} e^{-t / 3}+c_{2} t e^{-t / 3} \Rightarrow y^{\prime}(t)=-\frac{c_{1}}{3} e^{-t / 3}+c_{2}\left(1-\frac{t}{3}\right) e^{-t / 3}$.
The initial conditions imply that

$$
\begin{aligned}
& 1=y(0)=c_{1}, \\
& \frac{5}{3}=y^{\prime}(0)=-\frac{c_{1}}{3}+c_{2}
\end{aligned}
$$

Reduction of the order method: Constant coefficients.

Example

Find the solution to the initial value problem

$$
9 y^{\prime \prime}+6 y^{\prime}+y=0, \quad y(0)=1, \quad y^{\prime}(0)=\frac{5}{3}
$$

Solution: The solutions of $9 r^{2}+6 r+1=0$, are $r_{+}=r_{-}=-\frac{1}{3}$.
The Theorem above says that the general solution is
$y(t)=c_{1} e^{-t / 3}+c_{2} t e^{-t / 3} \Rightarrow y^{\prime}(t)=-\frac{c_{1}}{3} e^{-t / 3}+c_{2}\left(1-\frac{t}{3}\right) e^{-t / 3}$.
The initial conditions imply that

$$
\left.\begin{array}{l}
1=y(0)=c_{1} \\
\frac{5}{3}=y^{\prime}(0)=-\frac{c_{1}}{3}+c_{2}
\end{array}\right\} \quad \Rightarrow \quad c_{1}=1, \quad c_{2}=2
$$

Reduction of the order method: Constant coefficients.

Example

Find the solution to the initial value problem

$$
9 y^{\prime \prime}+6 y^{\prime}+y=0, \quad y(0)=1, \quad y^{\prime}(0)=\frac{5}{3}
$$

Solution: The solutions of $9 r^{2}+6 r+1=0$, are $r_{+}=r_{-}=-\frac{1}{3}$.
The Theorem above says that the general solution is
$y(t)=c_{1} e^{-t / 3}+c_{2} t e^{-t / 3} \Rightarrow y^{\prime}(t)=-\frac{c_{1}}{3} e^{-t / 3}+c_{2}\left(1-\frac{t}{3}\right) e^{-t / 3}$.
The initial conditions imply that

$$
\left.\begin{array}{l}
1=y(0)=c_{1} \\
\frac{5}{3}=y^{\prime}(0)=-\frac{c_{1}}{3}+c_{2}
\end{array}\right\} \quad \Rightarrow \quad c_{1}=1, \quad c_{2}=2
$$

We conclude that $y(t)=(1+2 t) e^{-t / 3}$.

Second order linear homogeneous ODE (Sect. 2.4).

- Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.
- Repeated roots as a limit case.
- Main result for repeated roots.
- Reduction of the order method:
- Constant coefficients equations.
- Variable coefficients equations.

Reduction of the order method: Variable coefficients.

Remark: The same idea used to prove the constant coefficients Theorem above can be used in variable coefficients equations.

Reduction of the order method: Variable coefficients.

Remark: The same idea used to prove the constant coefficients Theorem above can be used in variable coefficients equations.

Theorem
Given continuous functions $p, q:\left(t_{1}, t_{2}\right) \rightarrow \mathbb{R}$, let $y_{1}:\left(t_{1}, t_{2}\right) \rightarrow \mathbb{R}$ be a solution of

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

If the function $v:\left(t_{1}, t_{2}\right) \rightarrow \mathbb{R}$ is solution of

$$
\begin{equation*}
y_{1}(t) v^{\prime \prime}+\left[2 y^{\prime}(t)+p(t) y_{1}(t)\right] v^{\prime}=0 \tag{3}
\end{equation*}
$$

then the functions y_{1} and $y_{2}=v y_{1}$ are fundamental solutions to the differential equation above.

Reduction of the order method: Variable coefficients.

Remark: The same idea used to prove the constant coefficients Theorem above can be used in variable coefficients equations.

Theorem
Given continuous functions $p, q:\left(t_{1}, t_{2}\right) \rightarrow \mathbb{R}$, let $y_{1}:\left(t_{1}, t_{2}\right) \rightarrow \mathbb{R}$ be a solution of

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

If the function $v:\left(t_{1}, t_{2}\right) \rightarrow \mathbb{R}$ is solution of

$$
\begin{equation*}
y_{1}(t) v^{\prime \prime}+\left[2 y^{\prime}(t)+p(t) y_{1}(t)\right] v^{\prime}=0 \tag{3}
\end{equation*}
$$

then the functions y_{1} and $y_{2}=v y_{1}$ are fundamental solutions to the differential equation above.

Remark: The reason for the name Reduction of order method is that the function v does not appear in Eq. (3). This is a first order equation in v^{\prime}.

Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.

Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Express $y_{2}(t)=v(t) y_{1}(t)$.

Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Express $y_{2}(t)=v(t) y_{1}(t)$. The equation for v comes from $t^{2} y_{2}^{\prime \prime}+2 t y_{2}^{\prime}-2 y_{2}=0$.

Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Express $y_{2}(t)=v(t) y_{1}(t)$. The equation for v comes from $t^{2} y_{2}^{\prime \prime}+2 t y_{2}^{\prime}-2 y_{2}=0$. We need to compute

$$
y_{2}=v t,
$$

Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Express $y_{2}(t)=v(t) y_{1}(t)$. The equation for v comes from $t^{2} y_{2}^{\prime \prime}+2 t y_{2}^{\prime}-2 y_{2}=0$. We need to compute

$$
y_{2}=v t, \quad y_{2}^{\prime}=t v^{\prime}+v,
$$

Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Express $y_{2}(t)=v(t) y_{1}(t)$. The equation for v comes from $t^{2} y_{2}^{\prime \prime}+2 t y_{2}^{\prime}-2 y_{2}=0$. We need to compute

$$
y_{2}=v t, \quad y_{2}^{\prime}=t v^{\prime}+v, \quad y_{2}^{\prime \prime}=t v^{\prime \prime}+2 v^{\prime} .
$$

Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Express $y_{2}(t)=v(t) y_{1}(t)$. The equation for v comes from $t^{2} y_{2}^{\prime \prime}+2 t y_{2}^{\prime}-2 y_{2}=0$. We need to compute

$$
y_{2}=v t, \quad y_{2}^{\prime}=t v^{\prime}+v, \quad y_{2}^{\prime \prime}=t v^{\prime \prime}+2 v^{\prime} .
$$

So, the equation for v is given by

$$
t^{2}\left(t v^{\prime \prime}+2 v^{\prime}\right)+2 t\left(t v^{\prime}+v\right)-2 t v=0
$$

Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Express $y_{2}(t)=v(t) y_{1}(t)$. The equation for v comes from $t^{2} y_{2}^{\prime \prime}+2 t y_{2}^{\prime}-2 y_{2}=0$. We need to compute

$$
y_{2}=v t, \quad y_{2}^{\prime}=t v^{\prime}+v, \quad y_{2}^{\prime \prime}=t v^{\prime \prime}+2 v^{\prime} .
$$

So, the equation for v is given by

$$
\begin{aligned}
& t^{2}\left(t v^{\prime \prime}+2 v^{\prime}\right)+2 t\left(t v^{\prime}+v\right)-2 t v=0 \\
& t^{3} v^{\prime \prime}+\left(2 t^{2}+2 t^{2}\right) v^{\prime}+(2 t-2 t) v=0
\end{aligned}
$$

Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Express $y_{2}(t)=v(t) y_{1}(t)$. The equation for v comes from $t^{2} y_{2}^{\prime \prime}+2 t y_{2}^{\prime}-2 y_{2}=0$. We need to compute

$$
y_{2}=v t, \quad y_{2}^{\prime}=t v^{\prime}+v, \quad y_{2}^{\prime \prime}=t v^{\prime \prime}+2 v^{\prime} .
$$

So, the equation for v is given by

$$
\begin{aligned}
& t^{2}\left(t v^{\prime \prime}+2 v^{\prime}\right)+2 t\left(t v^{\prime}+v\right)-2 t v=0 \\
& t^{3} v^{\prime \prime}+\left(2 t^{2}+2 t^{2}\right) v^{\prime}+(2 t-2 t) v=0 \\
& t^{3} v^{\prime \prime}+\left(4 t^{2}\right) v^{\prime}=0
\end{aligned}
$$

Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Express $y_{2}(t)=v(t) y_{1}(t)$. The equation for v comes from $t^{2} y_{2}^{\prime \prime}+2 t y_{2}^{\prime}-2 y_{2}=0$. We need to compute

$$
y_{2}=v t, \quad y_{2}^{\prime}=t v^{\prime}+v, \quad y_{2}^{\prime \prime}=t v^{\prime \prime}+2 v^{\prime}
$$

So, the equation for v is given by

$$
\begin{aligned}
& t^{2}\left(t v^{\prime \prime}+2 v^{\prime}\right)+2 t\left(t v^{\prime}+v\right)-2 t v=0 \\
& t^{3} v^{\prime \prime}+\left(2 t^{2}+2 t^{2}\right) v^{\prime}+(2 t-2 t) v=0 \\
& t^{3} v^{\prime \prime}+\left(4 t^{2}\right) v^{\prime}=0 \quad \Rightarrow \quad v^{\prime \prime}+\frac{4}{t} v^{\prime}=0
\end{aligned}
$$

Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Recall: $v^{\prime \prime}+\frac{4}{t} v^{\prime}=0$.

Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Recall: $v^{\prime \prime}+\frac{4}{t} v^{\prime}=0$.
This is a first order equation for $w=v^{\prime}$,

Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Recall: $v^{\prime \prime}+\frac{4}{t} v^{\prime}=0$.
This is a first order equation for $w=v^{\prime}$, given by $w^{\prime}+\frac{4}{t} w=0$,

Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Recall: $v^{\prime \prime}+\frac{4}{t} v^{\prime}=0$.
This is a first order equation for $w=v^{\prime}$, given by $w^{\prime}+\frac{4}{t} w=0$, so

$$
\frac{w^{\prime}}{w}=-\frac{4}{t}
$$

Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Recall: $v^{\prime \prime}+\frac{4}{t} v^{\prime}=0$.
This is a first order equation for $w=v^{\prime}$, given by $w^{\prime}+\frac{4}{t} w=0$, so

$$
\frac{w^{\prime}}{w}=-\frac{4}{t} \Rightarrow \ln (w)=-4 \ln (t)+c_{0}
$$

Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Recall: $v^{\prime \prime}+\frac{4}{t} v^{\prime}=0$.
This is a first order equation for $w=v^{\prime}$, given by $w^{\prime}+\frac{4}{t} w=0$, so

$$
\frac{w^{\prime}}{w}=-\frac{4}{t} \Rightarrow \ln (w)=-4 \ln (t)+c_{0} \Rightarrow w(t)=c_{1} t^{-4}, c_{1} \in \mathbb{R}
$$

Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Recall: $v^{\prime \prime}+\frac{4}{t} v^{\prime}=0$.
This is a first order equation for $w=v^{\prime}$, given by $w^{\prime}+\frac{4}{t} w=0$, so

$$
\frac{w^{\prime}}{w}=-\frac{4}{t} \Rightarrow \ln (w)=-4 \ln (t)+c_{0} \Rightarrow w(t)=c_{1} t^{-4}, c_{1} \in \mathbb{R} .
$$

Integrating w we obtain v,

Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Recall: $v^{\prime \prime}+\frac{4}{t} v^{\prime}=0$.
This is a first order equation for $w=v^{\prime}$, given by $w^{\prime}+\frac{4}{t} w=0$, so

$$
\frac{w^{\prime}}{w}=-\frac{4}{t} \Rightarrow \ln (w)=-4 \ln (t)+c_{0} \Rightarrow w(t)=c_{1} t^{-4}, c_{1} \in \mathbb{R}
$$

Integrating w we obtain v, that is, $v=c_{2} t^{-3}+c_{3}$, with $c_{2}, c_{3} \in \mathbb{R}$.

Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Recall: $v^{\prime \prime}+\frac{4}{t} v^{\prime}=0$.
This is a first order equation for $w=v^{\prime}$, given by $w^{\prime}+\frac{4}{t} w=0$, so

$$
\frac{w^{\prime}}{w}=-\frac{4}{t} \Rightarrow \ln (w)=-4 \ln (t)+c_{0} \Rightarrow w(t)=c_{1} t^{-4}, c_{1} \in \mathbb{R}
$$

Integrating w we obtain v, that is, $v=c_{2} t^{-3}+c_{3}$, with $c_{2}, c_{3} \in \mathbb{R}$. Recalling that $y_{2}=t v$

Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Recall: $v^{\prime \prime}+\frac{4}{t} v^{\prime}=0$.
This is a first order equation for $w=v^{\prime}$, given by $w^{\prime}+\frac{4}{t} w=0$, so

$$
\frac{w^{\prime}}{w}=-\frac{4}{t} \Rightarrow \ln (w)=-4 \ln (t)+c_{0} \Rightarrow w(t)=c_{1} t^{-4}, c_{1} \in \mathbb{R}
$$

Integrating w we obtain v, that is, $v=c_{2} t^{-3}+c_{3}$, with $c_{2}, c_{3} \in \mathbb{R}$. Recalling that $y_{2}=t v$ we then conclude that $y_{2}=c_{2} t^{-2}+c_{3} t$.

Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Recall: $v^{\prime \prime}+\frac{4}{t} v^{\prime}=0$.
This is a first order equation for $w=v^{\prime}$, given by $w^{\prime}+\frac{4}{t} w=0$, so

$$
\frac{w^{\prime}}{w}=-\frac{4}{t} \Rightarrow \ln (w)=-4 \ln (t)+c_{0} \Rightarrow w(t)=c_{1} t^{-4}, c_{1} \in \mathbb{R}
$$

Integrating w we obtain v, that is, $v=c_{2} t^{-3}+c_{3}$, with $c_{2}, c_{3} \in \mathbb{R}$.
Recalling that $y_{2}=t v$ we then conclude that $y_{2}=c_{2} t^{-2}+c_{3} t$.
Choosing $c_{2}=1$ and $c_{3}=0$ we obtain the fundamental solutions
$y_{1}(t)=t$ and $y_{2}(t)=\frac{1}{t^{2}}$.

Reduction of the order method: Variable coefficients.

Proof of the Theorem: The choice of $y_{2}=v y_{1}$ implies

$$
y_{2}^{\prime}=v^{\prime} y_{1}+v y_{1}^{\prime}, \quad y_{2}^{\prime \prime}=v^{\prime \prime} y_{1}+2 v^{\prime} y_{1}^{\prime}+v y_{1}^{\prime \prime} .
$$

Reduction of the order method: Variable coefficients.

Proof of the Theorem: The choice of $y_{2}=v y_{1}$ implies

$$
y_{2}^{\prime}=v^{\prime} y_{1}+v y_{1}^{\prime}, \quad y_{2}^{\prime \prime}=v^{\prime \prime} y_{1}+2 v^{\prime} y_{1}^{\prime}+v y_{1}^{\prime \prime}
$$

This information introduced into the differential equation says that

$$
\left(v^{\prime \prime} y_{1}+2 v^{\prime} y_{1}^{\prime}+v y_{1}^{\prime \prime}\right)+p\left(v^{\prime} y_{1}+v y_{1}^{\prime}\right)+q v y_{1}=0
$$

Reduction of the order method: Variable coefficients.

Proof of the Theorem: The choice of $y_{2}=v y_{1}$ implies

$$
y_{2}^{\prime}=v^{\prime} y_{1}+v y_{1}^{\prime}, \quad y_{2}^{\prime \prime}=v^{\prime \prime} y_{1}+2 v^{\prime} y_{1}^{\prime}+v y_{1}^{\prime \prime}
$$

This information introduced into the differential equation says that

$$
\begin{gathered}
\left(v^{\prime \prime} y_{1}+2 v^{\prime} y_{1}^{\prime}+v y_{1}^{\prime \prime}\right)+p\left(v^{\prime} y_{1}+v y_{1}^{\prime}\right)+q v y_{1}=0 \\
y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) v^{\prime}+\left(y_{1}^{\prime \prime}+p y_{1}^{\prime}+q y_{1}\right) v=0 .
\end{gathered}
$$

Reduction of the order method: Variable coefficients.

Proof of the Theorem: The choice of $y_{2}=v y_{1}$ implies

$$
y_{2}^{\prime}=v^{\prime} y_{1}+v y_{1}^{\prime}, \quad y_{2}^{\prime \prime}=v^{\prime \prime} y_{1}+2 v^{\prime} y_{1}^{\prime}+v y_{1}^{\prime \prime} .
$$

This information introduced into the differential equation says that

$$
\begin{gathered}
\left(v^{\prime \prime} y_{1}+2 v^{\prime} y_{1}^{\prime}+v y_{1}^{\prime \prime}\right)+p\left(v^{\prime} y_{1}+v y_{1}^{\prime}\right)+q v y_{1}=0 \\
y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) v^{\prime}+\left(y_{1}^{\prime \prime}+p y_{1}^{\prime}+q y_{1}\right) v=0 .
\end{gathered}
$$

The function y_{1} is solution of $y_{1}^{\prime \prime}+p y_{1}^{\prime}+q y_{1}=0$.

Reduction of the order method: Variable coefficients.

Proof of the Theorem: The choice of $y_{2}=v y_{1}$ implies

$$
y_{2}^{\prime}=v^{\prime} y_{1}+v y_{1}^{\prime}, \quad y_{2}^{\prime \prime}=v^{\prime \prime} y_{1}+2 v^{\prime} y_{1}^{\prime}+v y_{1}^{\prime \prime}
$$

This information introduced into the differential equation says that

$$
\begin{gathered}
\left(v^{\prime \prime} y_{1}+2 v^{\prime} y_{1}^{\prime}+v y_{1}^{\prime \prime}\right)+p\left(v^{\prime} y_{1}+v y_{1}^{\prime}\right)+q v y_{1}=0 \\
y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) v^{\prime}+\left(y_{1}^{\prime \prime}+p y_{1}^{\prime}+q y_{1}\right) v=0 .
\end{gathered}
$$

The function y_{1} is solution of $y_{1}^{\prime \prime}+p y_{1}^{\prime}+q y_{1}=0$.
Then, the equation for v is given by Eq. (3), that is,

$$
y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) v^{\prime}=0
$$

Reduction of the order method: Variable coefficients.
Proof: Recall $y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) v^{\prime}=0$.

Reduction of the order method: Variable coefficients.

Proof: Recall $y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) v^{\prime}=0$. We now need to show that y_{1} and $y_{2}=v y_{1}$ are linearly independent.

Reduction of the order method: Variable coefficients.

Proof: Recall $y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) v^{\prime}=0$. We now need to show that y_{1} and $y_{2}=v y_{1}$ are linearly independent.
$W_{y_{1} y_{2}}$

Reduction of the order method: Variable coefficients.

Proof: Recall $y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) v^{\prime}=0$. We now need to show that y_{1} and $y_{2}=v y_{1}$ are linearly independent.

$$
W_{y_{1} y_{2}}=\left|\begin{array}{cc}
y_{1} & v y_{1} \\
y_{1}^{\prime} & \left(v^{\prime} y_{1}+v y_{1}^{\prime}\right)
\end{array}\right|
$$

Reduction of the order method: Variable coefficients.

Proof: Recall $y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) v^{\prime}=0$. We now need to show that y_{1} and $y_{2}=v y_{1}$ are linearly independent.

$$
W_{y_{1} y_{2}}=\left|\begin{array}{cc}
y_{1} & v y_{1} \\
y_{1}^{\prime} & \left(v^{\prime} y_{1}+v y_{1}^{\prime}\right)
\end{array}\right|=y_{1}\left(v^{\prime} y_{1}+v y_{1}^{\prime}\right)-v y_{1} y_{1}^{\prime}
$$

Reduction of the order method: Variable coefficients.

Proof: Recall $y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) v^{\prime}=0$. We now need to show that y_{1} and $y_{2}=v y_{1}$ are linearly independent.

$$
W_{y_{1} y_{2}}=\left|\begin{array}{cc}
y_{1} & v y_{1} \\
y_{1}^{\prime} & \left(v^{\prime} y_{1}+v y_{1}^{\prime}\right)
\end{array}\right|=y_{1}\left(v^{\prime} y_{1}+v y_{1}^{\prime}\right)-v y_{1} y_{1}^{\prime}
$$

We obtain $W_{y_{1} y_{2}}=v^{\prime} y_{1}^{2}$.

Reduction of the order method: Variable coefficients.

Proof: Recall $y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) v^{\prime}=0$. We now need to show that y_{1} and $y_{2}=v y_{1}$ are linearly independent.

$$
W_{y_{1} y_{2}}=\left|\begin{array}{cc}
y_{1} & v y_{1} \\
y_{1}^{\prime} & \left(v^{\prime} y_{1}+v y_{1}^{\prime}\right)
\end{array}\right|=y_{1}\left(v^{\prime} y_{1}+v y_{1}^{\prime}\right)-v y_{1} y_{1}^{\prime}
$$

We obtain $W_{y_{1} y_{2}}=v^{\prime} y_{1}^{2}$. We need to find v^{\prime}.

Reduction of the order method: Variable coefficients.

Proof: Recall $y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) v^{\prime}=0$. We now need to show that y_{1} and $y_{2}=v y_{1}$ are linearly independent.

$$
W_{y_{1} y_{2}}=\left|\begin{array}{cc}
y_{1} & v y_{1} \\
y_{1}^{\prime} & \left(v^{\prime} y_{1}+v y_{1}^{\prime}\right)
\end{array}\right|=y_{1}\left(v^{\prime} y_{1}+v y_{1}^{\prime}\right)-v y_{1} y_{1}^{\prime} .
$$

We obtain $W_{y_{1} y_{2}}=v^{\prime} y_{1}^{2}$. We need to find v^{\prime}. Denote $w=v^{\prime}$,

Reduction of the order method: Variable coefficients.

Proof: Recall $y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) v^{\prime}=0$. We now need to show that y_{1} and $y_{2}=v y_{1}$ are linearly independent.

$$
W_{y_{1} y_{2}}=\left|\begin{array}{cc}
y_{1} & v y_{1} \\
y_{1}^{\prime} & \left(v^{\prime} y_{1}+v y_{1}^{\prime}\right)
\end{array}\right|=y_{1}\left(v^{\prime} y_{1}+v y_{1}^{\prime}\right)-v y_{1} y_{1}^{\prime} .
$$

We obtain $W_{y_{1} y_{2}}=v^{\prime} y_{1}^{2}$. We need to find v^{\prime}. Denote $w=v^{\prime}$, so

$$
y_{1} w^{\prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) w=0
$$

Reduction of the order method: Variable coefficients.

Proof: Recall $y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) v^{\prime}=0$. We now need to show that y_{1} and $y_{2}=v y_{1}$ are linearly independent.

$$
W_{y_{1} y_{2}}=\left|\begin{array}{cc}
y_{1} & v y_{1} \\
y_{1}^{\prime} & \left(v^{\prime} y_{1}+v y_{1}^{\prime}\right)
\end{array}\right|=y_{1}\left(v^{\prime} y_{1}+v y_{1}^{\prime}\right)-v y_{1} y_{1}^{\prime} .
$$

We obtain $W_{y_{1} y_{2}}=v^{\prime} y_{1}^{2}$. We need to find v^{\prime}. Denote $w=v^{\prime}$, so

$$
y_{1} w^{\prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) w=0 \quad \Rightarrow \quad \frac{w^{\prime}}{w}=-2 \frac{y_{1}^{\prime}}{y_{1}}-p .
$$

Reduction of the order method: Variable coefficients.

Proof: Recall $y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) v^{\prime}=0$. We now need to show that y_{1} and $y_{2}=v y_{1}$ are linearly independent.

$$
W_{y_{1} y_{2}}=\left|\begin{array}{cc}
y_{1} & v y_{1} \\
y_{1}^{\prime} & \left(v^{\prime} y_{1}+v y_{1}^{\prime}\right)
\end{array}\right|=y_{1}\left(v^{\prime} y_{1}+v y_{1}^{\prime}\right)-v y_{1} y_{1}^{\prime} .
$$

We obtain $W_{y_{1} y_{2}}=v^{\prime} y_{1}^{2}$. We need to find v^{\prime}. Denote $w=v^{\prime}$, so

$$
y_{1} w^{\prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) w=0 \quad \Rightarrow \quad \frac{w^{\prime}}{w}=-2 \frac{y_{1}^{\prime}}{y_{1}}-p .
$$

Let P be a primitive of p, that is, $P^{\prime}(t)=p(t)$,

Reduction of the order method: Variable coefficients.

Proof: Recall $y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) v^{\prime}=0$. We now need to show that y_{1} and $y_{2}=v y_{1}$ are linearly independent.

$$
W_{y_{1} y_{2}}=\left|\begin{array}{cc}
y_{1} & v y_{1} \\
y_{1}^{\prime} & \left(v^{\prime} y_{1}+v y_{1}^{\prime}\right)
\end{array}\right|=y_{1}\left(v^{\prime} y_{1}+v y_{1}^{\prime}\right)-v y_{1} y_{1}^{\prime} .
$$

We obtain $W_{y_{1} y_{2}}=v^{\prime} y_{1}^{2}$. We need to find v^{\prime}. Denote $w=v^{\prime}$, so

$$
y_{1} w^{\prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) w=0 \quad \Rightarrow \quad \frac{w^{\prime}}{w}=-2 \frac{y_{1}^{\prime}}{y_{1}}-p .
$$

Let P be a primitive of p, that is, $P^{\prime}(t)=p(t)$, then

$$
\ln (w)=-2 \ln \left(y_{1}\right)-P
$$

Reduction of the order method: Variable coefficients.

Proof: Recall $y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) v^{\prime}=0$. We now need to show that y_{1} and $y_{2}=v y_{1}$ are linearly independent.

$$
W_{y_{1} y_{2}}=\left|\begin{array}{cc}
y_{1} & v y_{1} \\
y_{1}^{\prime} & \left(v^{\prime} y_{1}+v y_{1}^{\prime}\right)
\end{array}\right|=y_{1}\left(v^{\prime} y_{1}+v y_{1}^{\prime}\right)-v y_{1} y_{1}^{\prime} .
$$

We obtain $W_{y_{1} y_{2}}=v^{\prime} y_{1}^{2}$. We need to find v^{\prime}. Denote $w=v^{\prime}$, so

$$
y_{1} w^{\prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) w=0 \quad \Rightarrow \quad \frac{w^{\prime}}{w}=-2 \frac{y_{1}^{\prime}}{y_{1}}-p .
$$

Let P be a primitive of p, that is, $P^{\prime}(t)=p(t)$, then

$$
\ln (w)=-2 \ln \left(y_{1}\right)-P \Rightarrow w=e^{\left.\ln \left(y_{1}^{-2}\right)-P\right]}
$$

Reduction of the order method: Variable coefficients.

Proof: Recall $y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) v^{\prime}=0$. We now need to show that y_{1} and $y_{2}=v y_{1}$ are linearly independent.

$$
W_{y_{1} y_{2}}=\left|\begin{array}{cc}
y_{1} & v y_{1} \\
y_{1}^{\prime} & \left(v^{\prime} y_{1}+v y_{1}^{\prime}\right)
\end{array}\right|=y_{1}\left(v^{\prime} y_{1}+v y_{1}^{\prime}\right)-v y_{1} y_{1}^{\prime} .
$$

We obtain $W_{y_{1} y_{2}}=v^{\prime} y_{1}^{2}$. We need to find v^{\prime}. Denote $w=v^{\prime}$, so

$$
y_{1} w^{\prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) w=0 \quad \Rightarrow \quad \frac{w^{\prime}}{w}=-2 \frac{y_{1}^{\prime}}{y_{1}}-p .
$$

Let P be a primitive of p, that is, $P^{\prime}(t)=p(t)$, then

$$
\ln (w)=-2 \ln \left(y_{1}\right)-P \Rightarrow w=e^{\left[\ln \left(y_{1}^{-2}\right)-P\right]} \Rightarrow w=y_{1}^{-2} e^{-P} .
$$

Reduction of the order method: Variable coefficients.

Proof: Recall $y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) v^{\prime}=0$. We now need to show that y_{1} and $y_{2}=v y_{1}$ are linearly independent.

$$
W_{y_{1} y_{2}}=\left|\begin{array}{cc}
y_{1} & v y_{1} \\
y_{1}^{\prime} & \left(v^{\prime} y_{1}+v y_{1}^{\prime}\right)
\end{array}\right|=y_{1}\left(v^{\prime} y_{1}+v y_{1}^{\prime}\right)-v y_{1} y_{1}^{\prime} .
$$

We obtain $W_{y_{1} y_{2}}=v^{\prime} y_{1}^{2}$. We need to find v^{\prime}. Denote $w=v^{\prime}$, so

$$
y_{1} w^{\prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) w=0 \quad \Rightarrow \quad \frac{w^{\prime}}{w}=-2 \frac{y_{1}^{\prime}}{y_{1}}-p .
$$

Let P be a primitive of p, that is, $P^{\prime}(t)=p(t)$, then

$$
\ln (w)=-2 \ln \left(y_{1}\right)-P \Rightarrow w=e^{\left[\ln \left(y_{1}^{-2}\right)-P\right]} \Rightarrow w=y_{1}^{-2} e^{-P} .
$$

We obtain $v^{\prime} y_{1}^{2}=e^{-P}$, hence $W_{y_{1} y_{2}}=e^{-P}$, which is non-zero.

Reduction of the order method: Variable coefficients.

Proof: Recall $y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) v^{\prime}=0$. We now need to show that y_{1} and $y_{2}=v y_{1}$ are linearly independent.

$$
W_{y_{1} y_{2}}=\left|\begin{array}{cc}
y_{1} & v y_{1} \\
y_{1}^{\prime} & \left(v^{\prime} y_{1}+v y_{1}^{\prime}\right)
\end{array}\right|=y_{1}\left(v^{\prime} y_{1}+v y_{1}^{\prime}\right)-v y_{1} y_{1}^{\prime} .
$$

We obtain $W_{y_{1} y_{2}}=v^{\prime} y_{1}^{2}$. We need to find v^{\prime}. Denote $w=v^{\prime}$, so

$$
y_{1} w^{\prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) w=0 \quad \Rightarrow \quad \frac{w^{\prime}}{w}=-2 \frac{y_{1}^{\prime}}{y_{1}}-p .
$$

Let P be a primitive of p, that is, $P^{\prime}(t)=p(t)$, then

$$
\ln (w)=-2 \ln \left(y_{1}\right)-P \Rightarrow w=e^{\left[\ln \left(y_{1}^{-2}\right)-P\right]} \Rightarrow w=y_{1}^{-2} e^{-P} .
$$

We obtain $v^{\prime} y_{1}^{2}=e^{-P}$, hence $W_{y_{1} y_{2}}=e^{-P}$, which is non-zero. We conclude that y_{1} and $y_{2}=v y_{1}$ are linearly independent.

