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Review: Second order linear ODE.

Definition
Given functions a1, a0, b : R → R, the differential equation in the
unknown function y : R → R given by

y ′′ + a1(t) y ′ + a0(t) y = b(t)

is called a second order linear differential equation.

If b = 0, the
equation is called homogeneous. If the coefficients a1, a2 ∈ R are
constants, the equation is called of constant coefficients.

Theorem (Superposition property)

If the functions y1 and y2 are solutions to the homogeneous linear
equation

y ′′ + a1(t) y ′ + a0(t) y = 0,

then the linear combination c1y1(t) + c2y2(t) is also a solution for
any constants c1, c2 ∈ R.
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Idea: Soving constant coefficients equations.

Remark: Just by trial and error one can find solutions to second
order, constant coefficients, homogeneous, linear differential
equations.

We present the main ideas with an example.

Example

Find solutions to the equation y ′′ + 5y ′ + 6y = 0.

Solution: We look for solutions proportional to exponentials ert , for
an appropriate constant r ∈ R, since the exponential can be
canceled out from the equation.
If y(t) = ert , then y ′(t) = rert , and y ′′(t) = r2ert . Hence

(r2 + 5r + 6)ert = 0 ⇔ r2 + 5r + 6 = 0.

That is, r must be a root of the polynomial p(r) = r2 + 5r + 6.

This polynomial is called the characteristic polynomial of the
differential equation.
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Idea: Soving constant coefficients equations.

Example

Find solutions to the equation y ′′ + 5y ′ + 6y = 0.

Solution: Recall: p(r) = r2 + 5r + 6.

The roots of the characteristic polynomial are

r =
1

2

(
−5±

√
25− 24

)
=

1

2
(−5± 1) ⇒

{
r1 = −2,

r2 = −3.

Therefore, we have found two solutions to the ODE,

y1(t) = e−2t , y2(t) = e−3t .

Their superposition provides infinitely many solutions,

y(t) = c1e
−2t + c2e

−3t , c1, c2 ∈ R. C
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Idea: Soving constant coefficients equations.

Summary: The differential equation y ′′ + 5y ′ + 6y = 0 has
infinitely many solutions,

y(t) = c1e
−2t + c2e

−3t , c1, c2 ∈ R.

Remarks:

I There are two free constants in the solution found above.

I The ODE above is second order, so two integrations must be
done to find the solution. This explain the origin of the two
free constant in the solution.

I An IVP for a second order differential equation will have a
unique solution if the IVP contains two initial conditions.
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The characteristic equation.

Definition
Given a second order linear homogeneous differential equation with
constant coefficients

y ′′ + a1y
′ + a0 = 0, (1)

the characteristic polynomial and the characteristic equation
associated with the differential equation in (1) are, respectively,

p(r) = r2 + a1r + a0, p(r) = 0.

Remark: If r1, r2 are the solutions of the characteristic equation
and c1, c2 are constants, then we will show that the general
solution of Eq. (1) is given by

y(t) = c1e
r1t + c2e

r2t
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The characteristic equation.

Example

Find the solution y of the initial value problem

y ′′ + 5y ′ + 6 = 0, y(0) = 1, y ′(0) = −1.

Solution: A solution of the differential equation above is

y(t) = c1e
−2t + c2e

−3t .

We now find the constants c1 and c2 that satisfy the initial
conditions above:

1 = y(0) = c1 + c2, − 1 = y ′(0) = −2c1 − 3c2.

c1 = 1− c2 ⇒ 1 = 2(1− c2) + 3c2 ⇒ c2 = −1⇒ c1 = 2.

Therefore, the unique solution to the initial value problem is

y(t) = 2e−2t − e−3t . C
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Second order linear ODE (Sect. 2.2).

I Review: Second order linear differential equations.

I Idea: Soving constant coefficients equations.

I The characteristic equation.

I Solution formulas for constant coefficients equations.



Solution formulas for constant coefficients equations.

Theorem (Constant coefficients)

Given real constants a1, a0, consider the homogeneous, linear
differential equation on the unknown y : R → R given by

y ′′ + a1 y ′ + a0 y = 0.

Let r+, r− be the roots of the characteristic polynomial
p(r) = r2 + a1r + a0, and let c0, c1 be arbitrary constants. Then,
the general solution of the differential eqation is given by:

(a) If r+ 6= r−, real or complex, then y(t) = c0 er+t + c1 er−t .

(b) If r+ = r− = r̂ ∈ R, then is y(t) = c0 e r̂ t + c1 te r̂ t .

Furthermore, given real constants t0, y0 and y1, there is a unique
solution to the initial value problem

y ′′ + a1 y ′ + a0 y = 0, y(t0) = y0, y ′(t0) = y1.
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Second order linear homogeneous ODE (Sect. 2.3).

I Review: On solutions of y ′′ + a1 y ′ + a0 y = 0.

I Characteristic polynomial with complex roots.
I Two main sets of fundamental solutions.
I Review of Complex numbers.
I A real-valued fundamental and general solutions.

I Application: The RLC circuit.



Review: On solutions of y ′′ + a1 y
′ + a0 y = 0.

Theorem (Constant coefficients)

Given real constants a1, a0, consider the homogeneous, linear
differential equation on the unknown y : R → R given by

y ′′ + a1 y ′ + a0 y = 0.

Let r+, r− be the roots of the characteristic polynomial
p(r) = r2 + a1r + a0, and let c0, c1 be arbitrary constants. Then,
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(a) If r+ 6= r−, real or complex, then y(t) = c1e
r+t + c2e

r−t .

(b) If r+ = r− = r̂ ∈ R, then y(t) = c1 e r̂ t + c2 te r̂ t .

Furthermore, given real constants t0, y1 and y2, there is a unique
solution to the initial value problem

y ′′ + a1 y ′ + a0 y = 0, y(t0) = y1, y ′(t0) = y2.



Review: On solutions of y ′′ + a1 y
′ + a0 y = 0.

Example

Find the general solution of the equation y ′′ − y ′ − 6y = 0.

Solution: Since solutions have the form ert , we need to find the
roots of the characteristic polynomial p(r) = r2 − r − 6, that is,

r± =
1

2

(
1±

√
1 + 24

)
=

1

2
(1± 5) ⇒ r+ = 3, r− = −2.

So, r± are real-valued. A fundamental solution set is formed by

y1(t) = e3t , y2(t) = e−2t .

The general solution of the differential equations is an arbitrary
linear combination of the fundamental solutions, that is,

y(t) = c1 e3t + c2 e−2t , c1, c2 ∈ R. C

Remark: Since c1, c2 ∈ R, then y is real-valued.
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Second order linear homogeneous ODE (Sect. 2.3).

I Review: On solutions of y ′′ + a1 y ′ + a0 y = 0.

I Characteristic polynomial with complex roots.
I Two main sets of fundamental solutions.
I Review of Complex numbers.
I A real-valued fundamental and general solutions.

I Application: The RLC circuit.



Two main sets of fundamental solutions.

Example

Find the general solution of the equation y ′′ − 2y ′ + 6y = 0.

Solution: We first find the roots of the characteristic polynomial,

r2−2r +6 = 0 ⇒ r± =
1

2

(
2±
√

4− 24
)

⇒ r± = 1± i
√

5.

A fundamental solution set is

ỹ1(t) = e(1+i
√

5) t , ỹ2(t) = e(1−i
√

5) t .

These are complex-valued functions. The general solution is

y(t) = c̃1 e(1+i
√

5) t + c̃2 e(1−i
√

5) t , c̃1, c̃2 ∈ C. C
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Two main sets of fundamental solutions.

Remark:

I The solutions found above include real-valued and
complex-valued solutions.

I Since the differential equation is real-valued, it is usually
important in applications to obtain the most general
real-valued solution. (See RLC circuit below.)

I In the expression above it is difficult to take apart real-valued
solutions from complex-valued solutions.

I In other words: It is not simple to see what values of c̃1 and c̃2

make the general solution above to be real-valued.

I One way to find the real-valued general solution is to find
real-valued fundamental solutions.
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Second order linear homogeneous ODE (Sect. 2.3).

I Review: On solutions of y ′′ + a1 y ′ + a0 y = 0.

I Characteristic polynomial with complex roots.
I Two main sets of fundamental solutions.
I Review of Complex numbers.
I A real-valued fundamental and general solutions.

I Application: The RLC circuit.



Review of complex numbers.

I Complex numbers have the form z = a + ib, where i2 = −1.

I The complex conjugate of z is the number z = a− ib.

I Re(z) = a, Im(z) = b are the real and imaginary parts of z

I Hence: Re(z) =
z + z

2
and Im(z) =

z − z

2i

I ea+ib =
∞∑

n=0

(a + ib)n

n!
. In particular holds ea+ib = ea e ib.

I Euler’s formula: e ib = cos(b) + i sin(b).

I Hence, a complex number of the form ea+ib can be written as

ea+ib = ea
[
cos(b) + i sin(b)

]
, ea−ib = ea

[
cos(b)− i sin(b)

]
.

I From ea+ib and ea−ib we get the real numbers

1

2

(
ea+ib+ea−ib

)
= ea cos(b),

1

2i

(
ea+ib−ea−ib

)
= ea sin(b).
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Two main sets of fundamental solutions.

Theorem (Complex roots)

If the constants a1, a0 ∈ R satisfy that a2
1 − 4a0 < 0, then the

characteristic polynomial p(r) = r2 + a1r + a0 of the equation

y ′′ + a1 y ′ + a0 y = 0 (2)

has complex roots r+ = α + iβ and r− = α− iβ, where

α = −a1

2
, β =

1

2

√
4a0 − a2

1 .

Furthermore, a fundamental set of solutions to Eq. (2) is

ỹ1(t) = e(α+iβ)t , ỹ2(t) = e(α−iβ)t ,

while another fundamental set of solutions to Eq. (2) is

y1(t) = eαt cos(βt), y2(t) = eαt sin(βt).
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Review of complex numbers.

Idea of the Proof: Recall that the functions

ỹ1(t) = e(α+iβ)t , ỹ2(t) = e(α−iβ)t ,

are solutions to y ′′ + a1 y ′ + a0 y = 0.

Also recall that

ỹ1(t) = eαt
[
cos(βt)+ i sin(βt)

]
, ỹ2(t) = eαt

[
cos(βt)− i sin(βt)

]
.

Then the functions

y1(t) =
1

2

(
ỹ1(t) + ỹ2(t)

)
y2(t) =

1

2i

(
ỹ1(t)− ỹ2(t)

)
are also solutions to the same differential equation. We conclude
that y1 and y2 are real valued and

y1(t) = eαt cos(βt), y2(t) = eαt sin(βt).
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ỹ2(t) = eαt
[
cos(βt)− i sin(βt)

]
.

Then the functions

y1(t) =
1

2

(
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)
y2(t) =

1

2i

(
ỹ1(t)− ỹ2(t)

)
are also solutions to the same differential equation. We conclude
that y1 and y2 are real valued and

y1(t) = eαt cos(βt), y2(t) = eαt sin(βt).



Review of complex numbers.

Idea of the Proof: Recall that the functions
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)
y2(t) =

1

2i

(
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ỹ1(t)− ỹ2(t)
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ỹ1(t)− ỹ2(t)
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A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

y ′′ − 2y ′ + 6y = 0.

Solution: Recall: Complex valued solutions are

ỹ1(t) = e(1+i
√

5) t , ỹ2(t) = e(1−i
√

5) t .

Any linear combination of these functions is solution of the
differential equation. In particular,

y1(t) =
1

2

[
ỹ1(t) + ỹ2(t)

]
, y2(t) =

1

2i

[
ỹ1(t)− ỹ2(t)

]
.

Now, recalling e(1±i
√

5) t = ete±i
√

5 t

y1(t) =
1

2

[
et e i

√
5t +et e−i

√
5t

]
, y2(t) =

1

2i

[
et e i

√
5t−et e−i

√
5t

]
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]
.

Now, recalling e(1±i
√

5) t = ete±i
√

5 t

y1(t) =
1

2

[
et e i

√
5t +et e−i

√
5t

]
, y2(t) =

1

2i

[
et e i

√
5t−et e−i

√
5t

]
,



A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

y ′′ − 2y ′ + 6y = 0.

Solution: y1 =
et

2

[
e i
√

5t + e−i
√

5t
]
, y2 =

et

2i

[
e i
√

5t − e−i
√

5t
]
.

The Euler formula and its complex-conjugate formula

e i
√

5t =
[
cos(

√
5 t) + i sin(

√
5 t)

]
,

e−i
√

5 t =
[
cos(

√
5 t)− i sin(

√
5 t)

]
,

imply the inverse relations

e i
√

5t + e−i
√

5t = 2 cos(
√

5t), e i
√

5t − e−i
√

5t = 2i sin(
√

5t).

So functions y1 and y2 can be written as

y1(t) = et cos(
√

5 t), y2(t) = et sin(
√

5 t).



A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

y ′′ − 2y ′ + 6y = 0.

Solution: y1 =
et

2

[
e i
√

5t + e−i
√

5t
]
, y2 =

et

2i

[
e i
√

5t − e−i
√

5t
]
.

The Euler formula and its complex-conjugate formula

e i
√

5t =
[
cos(

√
5 t) + i sin(

√
5 t)

]
,

e−i
√

5 t =
[
cos(

√
5 t)− i sin(

√
5 t)

]
,

imply the inverse relations

e i
√

5t + e−i
√

5t = 2 cos(
√

5t), e i
√

5t − e−i
√

5t = 2i sin(
√

5t).

So functions y1 and y2 can be written as

y1(t) = et cos(
√

5 t), y2(t) = et sin(
√

5 t).



A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

y ′′ − 2y ′ + 6y = 0.

Solution: y1 =
et

2

[
e i
√

5t + e−i
√

5t
]
, y2 =

et

2i

[
e i
√

5t − e−i
√

5t
]
.

The Euler formula and its complex-conjugate formula

e i
√

5t =
[
cos(

√
5 t) + i sin(

√
5 t)

]
,

e−i
√

5 t =
[
cos(

√
5 t)− i sin(

√
5 t)

]
,

imply the inverse relations

e i
√

5t + e−i
√

5t = 2 cos(
√

5t), e i
√

5t − e−i
√

5t = 2i sin(
√

5t).

So functions y1 and y2 can be written as

y1(t) = et cos(
√

5 t), y2(t) = et sin(
√

5 t).



A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

y ′′ − 2y ′ + 6y = 0.

Solution: y1 =
et

2

[
e i
√

5t + e−i
√

5t
]
, y2 =

et

2i

[
e i
√

5t − e−i
√

5t
]
.

The Euler formula and its complex-conjugate formula

e i
√

5t =
[
cos(

√
5 t) + i sin(

√
5 t)

]
,

e−i
√

5 t =
[
cos(

√
5 t)− i sin(

√
5 t)

]
,

imply the inverse relations

e i
√

5t + e−i
√

5t = 2 cos(
√

5t),

e i
√

5t − e−i
√

5t = 2i sin(
√

5t).

So functions y1 and y2 can be written as

y1(t) = et cos(
√

5 t), y2(t) = et sin(
√

5 t).



A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

y ′′ − 2y ′ + 6y = 0.

Solution: y1 =
et

2

[
e i
√

5t + e−i
√

5t
]
, y2 =

et

2i

[
e i
√

5t − e−i
√

5t
]
.

The Euler formula and its complex-conjugate formula

e i
√

5t =
[
cos(

√
5 t) + i sin(

√
5 t)

]
,

e−i
√

5 t =
[
cos(

√
5 t)− i sin(

√
5 t)

]
,

imply the inverse relations

e i
√

5t + e−i
√

5t = 2 cos(
√

5t), e i
√

5t − e−i
√

5t = 2i sin(
√

5t).

So functions y1 and y2 can be written as

y1(t) = et cos(
√

5 t), y2(t) = et sin(
√

5 t).



A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

y ′′ − 2y ′ + 6y = 0.

Solution: y1 =
et

2

[
e i
√

5t + e−i
√

5t
]
, y2 =

et

2i

[
e i
√

5t − e−i
√

5t
]
.

The Euler formula and its complex-conjugate formula

e i
√

5t =
[
cos(

√
5 t) + i sin(

√
5 t)

]
,

e−i
√

5 t =
[
cos(

√
5 t)− i sin(

√
5 t)

]
,

imply the inverse relations

e i
√

5t + e−i
√

5t = 2 cos(
√

5t), e i
√

5t − e−i
√

5t = 2i sin(
√

5t).

So functions y1 and y2 can be written as

y1(t) = et cos(
√

5 t),

y2(t) = et sin(
√

5 t).



A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

y ′′ − 2y ′ + 6y = 0.

Solution: y1 =
et

2

[
e i
√

5t + e−i
√

5t
]
, y2 =

et

2i

[
e i
√

5t − e−i
√

5t
]
.

The Euler formula and its complex-conjugate formula

e i
√

5t =
[
cos(

√
5 t) + i sin(

√
5 t)

]
,

e−i
√

5 t =
[
cos(

√
5 t)− i sin(

√
5 t)

]
,

imply the inverse relations

e i
√

5t + e−i
√

5t = 2 cos(
√

5t), e i
√

5t − e−i
√

5t = 2i sin(
√

5t).

So functions y1 and y2 can be written as

y1(t) = et cos(
√

5 t), y2(t) = et sin(
√

5 t).



A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

y ′′ − 2y ′ + 6y = 0.

Solution: Recall: y(t) = c̃1e
(1+i

√
5) t + c̃2e

(1−i
√

5) t , c̃1, c̃2 ∈ C.

The calculation above says that a real-valued fundamental set is

y1(t) = et cos(
√

5 t), y2(t) = et sin(
√

5 t).

Hence, the complex-valued general solution can also be written as
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A real-valued fundamental and general solutions.

Example

Show that y1(t) = et cos(
√

5 t) and y2(t) = et sin(
√

5 t) are
fundamental solutions to the equation y ′′ − 2y ′ + 6y = 0.

Solution: y1(t) = et cos(
√

5 t), y2(t) = et sin(
√

5 t).

Summary:

I These functions are solutions of the differential equation.

I They are not proportional to each other, Hence li.

I Therefore, y1, y2 form a fundamental set.

I The general solution of the equation is

y(t) =
[
c1 cos(

√
5t) + c2 sin(

√
5t)

]
et .

I y is real-valued for c1, c2 ∈ R.

I y is complex-valued for c1, c2 ∈ C.
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A real-valued fundamental and general solutions.

Example

Find real-valued fundamental solutions to the equation

y ′′ + 2 y ′ + 6 y = 0.

Solution:
The roots of the characteristic polynomial p(r) = r2 + 2r + 6 are

r± =
1

2

[
−2±

√
4− 24

]
=

1

2

[
−2±

√
−20

]
⇒ r± = −1± i

√
5.

These are complex-valued roots, with

α = −1, β =
√

5.

Real-valued fundamental solutions are

y1(t) = e−t cos(
√

5 t), y2(t) = e−t sin(
√

5 t). C
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Differential equations like the one
in this example describe physical
processes related to damped
oscillations. For example
pendulums with friction.



A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of y ′′ + 5 y = 0.

Solution: The characteristic polynomial is p(r) = r2 + 5.

Its roots are r± = ±
√
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5.
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y1(t) = cos(
√

5 t), y2(t) = sin(
√

5 t).

The real-valued general solution is

y(t) = c1 cos(
√

5 t) + c2 sin(
√

5 t), c1, c2 ∈ R. C

Remark: Equations like the one in this example describe
oscillatory physical processes without dissipation, α = 0.
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Second order linear homogeneous ODE (Sect. 2.3).

I Review: On solutions of y ′′ + a1 y ′ + a0 y = 0.

I Characteristic polynomial with complex roots.
I Two main sets of fundamental solutions.
I Review of Complex numbers.
I A real-valued fundamental and general solutions.

I Application: The RLC circuit.



Application: The RLC circuit.

Consider an electric circuit with
resistance R, non-zero capacitor
C , and non-zero inductance L, as
in the figure. I (t) : electric current.

R C L

The electric current flowing in such circuit satisfies:

L I ′(t) + R I (t) +
1

C

∫ t

t0

I (s) ds = 0.

Derivate both sides above: L I ′′(t) + R I ′(t) +
1

C
I (t) = 0.

Divide by L: I ′′(t) + 2
( R

2L

)
I ′(t) +

1

LC
I (t) = 0.

Introduce α =
R

2L
and ω =

1√
LC

, then I ′′ + 2α I ′ + ω2 I = 0.
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Application: The RLC circuit.

Example

Find real-valued fundamental solutions to I ′′ + 2α I ′ + ω2 I = 0,
where α = R/(2L), ω2 = 1/(LC ), in the cases (a) (b) below.

Solution: The characteristic polynomial is p(r) = r2 + 2αr + ω2.
The roots are:

r± =
1

2

[
−2α±

√
4α2 − 4ω2

]
⇒ r± = −α±

√
α2 − ω2.

Case (a) R = 0. This implies α = 0, so r± = ±iω. Therefore,

I1(t) = cos(ωt), I2(t) = sin(ωt).

Remark: When the circuit has no resistance, the current oscillates
without dissipation.



Application: The RLC circuit.

Example

Find real-valued fundamental solutions to I ′′ + 2α I ′ + ω2 I = 0,
where α = R/(2L), ω2 = 1/(LC ), in the cases (a) (b) below.

Solution: The characteristic polynomial is p(r) = r2 + 2αr + ω2.

The roots are:

r± =
1

2

[
−2α±

√
4α2 − 4ω2

]
⇒ r± = −α±

√
α2 − ω2.

Case (a) R = 0. This implies α = 0, so r± = ±iω. Therefore,

I1(t) = cos(ωt), I2(t) = sin(ωt).

Remark: When the circuit has no resistance, the current oscillates
without dissipation.



Application: The RLC circuit.

Example

Find real-valued fundamental solutions to I ′′ + 2α I ′ + ω2 I = 0,
where α = R/(2L), ω2 = 1/(LC ), in the cases (a) (b) below.

Solution: The characteristic polynomial is p(r) = r2 + 2αr + ω2.
The roots are:

r± =
1

2

[
−2α±

√
4α2 − 4ω2

]

⇒ r± = −α±
√

α2 − ω2.

Case (a) R = 0. This implies α = 0, so r± = ±iω. Therefore,

I1(t) = cos(ωt), I2(t) = sin(ωt).

Remark: When the circuit has no resistance, the current oscillates
without dissipation.



Application: The RLC circuit.

Example

Find real-valued fundamental solutions to I ′′ + 2α I ′ + ω2 I = 0,
where α = R/(2L), ω2 = 1/(LC ), in the cases (a) (b) below.

Solution: The characteristic polynomial is p(r) = r2 + 2αr + ω2.
The roots are:

r± =
1

2

[
−2α±

√
4α2 − 4ω2

]
⇒ r± = −α±

√
α2 − ω2.

Case (a) R = 0. This implies α = 0, so r± = ±iω. Therefore,

I1(t) = cos(ωt), I2(t) = sin(ωt).

Remark: When the circuit has no resistance, the current oscillates
without dissipation.



Application: The RLC circuit.

Example

Find real-valued fundamental solutions to I ′′ + 2α I ′ + ω2 I = 0,
where α = R/(2L), ω2 = 1/(LC ), in the cases (a) (b) below.

Solution: The characteristic polynomial is p(r) = r2 + 2αr + ω2.
The roots are:

r± =
1

2

[
−2α±

√
4α2 − 4ω2

]
⇒ r± = −α±

√
α2 − ω2.

Case (a) R = 0.

This implies α = 0, so r± = ±iω. Therefore,

I1(t) = cos(ωt), I2(t) = sin(ωt).

Remark: When the circuit has no resistance, the current oscillates
without dissipation.



Application: The RLC circuit.

Example

Find real-valued fundamental solutions to I ′′ + 2α I ′ + ω2 I = 0,
where α = R/(2L), ω2 = 1/(LC ), in the cases (a) (b) below.

Solution: The characteristic polynomial is p(r) = r2 + 2αr + ω2.
The roots are:

r± =
1

2

[
−2α±

√
4α2 − 4ω2

]
⇒ r± = −α±

√
α2 − ω2.

Case (a) R = 0. This implies α = 0,

so r± = ±iω. Therefore,

I1(t) = cos(ωt), I2(t) = sin(ωt).

Remark: When the circuit has no resistance, the current oscillates
without dissipation.



Application: The RLC circuit.

Example

Find real-valued fundamental solutions to I ′′ + 2α I ′ + ω2 I = 0,
where α = R/(2L), ω2 = 1/(LC ), in the cases (a) (b) below.

Solution: The characteristic polynomial is p(r) = r2 + 2αr + ω2.
The roots are:

r± =
1

2

[
−2α±

√
4α2 − 4ω2

]
⇒ r± = −α±

√
α2 − ω2.

Case (a) R = 0. This implies α = 0, so r± = ±iω.

Therefore,

I1(t) = cos(ωt), I2(t) = sin(ωt).

Remark: When the circuit has no resistance, the current oscillates
without dissipation.



Application: The RLC circuit.

Example

Find real-valued fundamental solutions to I ′′ + 2α I ′ + ω2 I = 0,
where α = R/(2L), ω2 = 1/(LC ), in the cases (a) (b) below.

Solution: The characteristic polynomial is p(r) = r2 + 2αr + ω2.
The roots are:

r± =
1

2

[
−2α±

√
4α2 − 4ω2

]
⇒ r± = −α±

√
α2 − ω2.

Case (a) R = 0. This implies α = 0, so r± = ±iω. Therefore,

I1(t) = cos(ωt),

I2(t) = sin(ωt).

Remark: When the circuit has no resistance, the current oscillates
without dissipation.



Application: The RLC circuit.

Example

Find real-valued fundamental solutions to I ′′ + 2α I ′ + ω2 I = 0,
where α = R/(2L), ω2 = 1/(LC ), in the cases (a) (b) below.

Solution: The characteristic polynomial is p(r) = r2 + 2αr + ω2.
The roots are:

r± =
1

2

[
−2α±

√
4α2 − 4ω2

]
⇒ r± = −α±

√
α2 − ω2.

Case (a) R = 0. This implies α = 0, so r± = ±iω. Therefore,

I1(t) = cos(ωt), I2(t) = sin(ωt).

Remark: When the circuit has no resistance, the current oscillates
without dissipation.



Application: The RLC circuit.

Example

Find real-valued fundamental solutions to I ′′ + 2α I ′ + ω2 I = 0,
where α = R/(2L), ω2 = 1/(LC ), in the cases (a) (b) below.

Solution: The characteristic polynomial is p(r) = r2 + 2αr + ω2.
The roots are:

r± =
1

2

[
−2α±

√
4α2 − 4ω2

]
⇒ r± = −α±

√
α2 − ω2.

Case (a) R = 0. This implies α = 0, so r± = ±iω. Therefore,

I1(t) = cos(ωt), I2(t) = sin(ωt).

Remark: When the circuit has no resistance, the current oscillates
without dissipation.



Application: The RLC circuit.

Example

Find real-valued fundamental solutions to I ′′ + 2α I ′ + ω2 I = 0,
where α = R/(2L), ω2 = 1/(LC ), in the cases (a) (b) below.

Solution: Recall: r± = −α±
√

α2 − ω2.

Case (b) R <
√

4L/C . This implies

R2 <
4L

C
⇔ R2

4L2
<

1

LC
⇔ α2 < ω2.
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)
, I2(t) = e−αt sin
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)
.

I (t) : electric current.

R C L

I

t

e
− t

1

The resistance R damps
the current oscillations.
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Second order linear homogeneous ODE (Sect. 2.4).

I Review: On solutions of y ′′ + a1 y ′ + a0 y = 0.

I Repeated roots as a limit case.

I Main result for repeated roots.
I Reduction of the order method:

I Constant coefficients equations.
I Variable coefficients equations.



Review: On solutions of y ′′ + a1 y
′ + a0 y = 0.

Summary:
Given constants a1, a0 ∈ R, consider the differential equation
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′ + a0y = 0

with characteristic polynomial having roots
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2
± 1

2
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1 − 4a0.

(1) If a2
1 − 4a0 > 0, then y1(t) = er+t and y2(t) = er-t .

(2) If a2
1 − 4a0 < 0, then introducing α = −a1

2
, β =

1

2

√
4a0 − a2

1 ,

y1(t) = eαt cos(βt), y2(t) = eαt sin(βt).

(3) If a2
1 − 4a0 = 0, then y1(t) = e−

a1
2
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Review: On solutions of y ′′ + a1 y
′ + a0 y = 0.

Question:

Consider the case (3), with a2
1 − 4a0 = 0, that is, a0 =

a2
1

4
.

I Does the equation

y ′′ + a1y
′ +

a2
1

4
y = 0

have two linearly independent solutions?

I Or, is every solution to the equation above proportional to

y1(t) = e−
a1
2

t ?



Review: On solutions of y ′′ + a1 y
′ + a0 y = 0.

Question:

Consider the case (3), with a2
1 − 4a0 = 0, that is, a0 =

a2
1

4
.

I Does the equation

y ′′ + a1y
′ +

a2
1

4
y = 0

have two linearly independent solutions?

I Or, is every solution to the equation above proportional to

y1(t) = e−
a1
2

t ?



Review: On solutions of y ′′ + a1 y
′ + a0 y = 0.

Question:

Consider the case (3), with a2
1 − 4a0 = 0, that is, a0 =

a2
1

4
.

I Does the equation

y ′′ + a1y
′ +

a2
1

4
y = 0

have two linearly independent solutions?

I Or, is every solution to the equation above proportional to

y1(t) = e−
a1
2

t ?



Second order linear homogeneous ODE (Sect. 2.4).

I Review: On solutions of y ′′ + a1 y ′ + a0 y = 0.

I Repeated roots as a limit case.

I Main result for repeated roots.
I Reduction of the order method:

I Constant coefficients equations.
I Variable coefficients equations.



Repeated roots as a limit case.

Remark:

I Case (3), where 4a0 − a2
1 = 0 can be obtained as the limit

β → 0 in case (2).

I Let us study the solutions of the differential equation in the
case (2) as β → 0 for fixed t.

I Since cos(βt)→ 1 as β → 0, we conclude that

y1β(t) = e−
a1
2

t cos(βt)→ e−
a1
2

t = y1(t).

I Since
sin(βt)

βt
→ 1 as β → 0, that is, sin(βt)→ βt,

y2β(t) = e−
a1
2

t sin(βt)→ βt e−
a1
2

t → 0.

I Is y2(t) = t y1(t) solution of the differential equation?
Introducing y2 in the differential equation one obtains: Yes.

I Since y2 is not proportional to y1, the functions y1, y2 are a
fundamental set for the differential equation in case (3).
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Main result for repeated roots.

Theorem
If a1, a0 ∈ R satisfy that a2

1 = 4a0, then the functions

y1(t) = e−
a1
2

t , y2(t) = t e−
a1
2

t ,

are a fundamental solution set for the differential equation

y ′′ + a1y
′ + a0y = 0.

Example

Find the general solution of 9y ′′ + 6y ′ + y = 0.
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Second order linear homogeneous ODE (Sect. 2.4).

I Review: On solutions of y ′′ + a1 y ′ + a0 y = 0.

I Repeated roots as a limit case.

I Main result for repeated roots.
I Reduction of the order method:

I Constant coefficients equations.
I Variable coefficients equations.



Reduction of the order method: Constant coefficients.

Proof case a2
1 − 4a0 = 0:

Recall: The characteristic equation is r2 + a1r + a0 = 0,

and its
solutions are r± = (1/2)

[
−a1 ±

√
a2

1 − 4a0

]
.

The hypothesis a2
1 = 4a0 implies r+ = r- = −a1/2.

So, the solution r+ of the characteristic equation satisfies both

r2
+ + a1r+ + a0 = 0, 2r+ + a1 = 0.

It is clear that y1(t) = er+t is solutions of the differential equation.

A second solution y2 not proportional to y1 can be found as
follows: (D’Alembert ∼ 1750.)

Express: y2(t) = v(t) y1(t), and find the equation that function v
satisfies from the condition y ′′2 + a1y

′
2 + a0y2 = 0.
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Reduction of the order method: Constant coefficients.

Recall: We have obtained that y2(t) = (c1 + c2t) er+t .

If c2 = 0, then y2 = c1e
r+t and y1 = er+t are linearly dependent

functions.

If c2 6= 0, then y2 = (c1 + c2t) er+t and y1 = er+t are linearly
independent functions.

Simplest choice: c1 = 0 and c2 = 1. Then, a fundamental solution
set to the differential equation is

y1(t) = er+t , y2(t) = t er+t

The general solution to the differential equation is

y(t) = c̃1 er+t + c̃2 ter+t .
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Then, a fundamental solution
set to the differential equation is

y1(t) = er+t , y2(t) = t er+t

The general solution to the differential equation is

y(t) = c̃1 er+t + c̃2 ter+t .
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Reduction of the order method: Constant coefficients.

Example

Find the solution to the initial value problem

9y ′′ + 6y ′ + y = 0, y(0) = 1, y ′(0) =
5

3
.

Solution: The solutions of 9r2 + 6r + 1 = 0, are r+ = r- = −1

3
.

The Theorem above says that the general solution is

y(t) = c1e
−t/3 +c2te

−t/3 ⇒ y ′(t) = −c1

3
e−t/3 +c2

(
1− t

3

)
e−t/3.

The initial conditions imply that

1 = y(0) = c1,

5

3
= y ′(0) = −c1

3
+ c2

 ⇒ c1 = 1, c2 = 2.

We conclude that y(t) = (1 + 2t) e−t/3. C
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Second order linear homogeneous ODE (Sect. 2.4).

I Review: On solutions of y ′′ + a1 y ′ + a0 y = 0.

I Repeated roots as a limit case.

I Main result for repeated roots.
I Reduction of the order method:

I Constant coefficients equations.
I Variable coefficients equations.



Reduction of the order method: Variable coefficients.

Remark: The same idea used to prove the constant coefficients
Theorem above can be used in variable coefficients equations.

Theorem
Given continuous functions p, q : (t1, t2)→ R, let y1 : (t1, t2)→ R
be a solution of

y ′′ + p(t) y ′ + q(t) y = 0,

If the function v : (t1, t2)→ R is solution of

y1(t) v ′′ +
[
2y ′(t) + p(t)y1(t)

]
v ′ = 0. (3)

then the functions y1 and y2 = v y1 are fundamental solutions to
the differential equation above.

Remark: The reason for the name Reduction of order method is
that the function v does not appear in Eq. (3). This is a first order
equation in v ′.
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Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

t2y ′′ + 2ty ′ − 2y = 0,

knowing that y1(t) = t is a solution.

Solution: Express y2(t) = v(t) y1(t). The equation for v comes
from t2y ′′2 + 2ty ′2 − 2y2 = 0. We need to compute

y2 = v t, y ′2 = t v ′ + v , y ′′2 = t v ′′ + 2v ′.

So, the equation for v is given by

t2
(
t v ′′ + 2v ′

)
+ 2t

(
t v ′ + v

)
− 2t v = 0

t3 v ′′ + (2t2 + 2t2) v ′ + (2t − 2t) v = 0

t3 v ′′ + (4t2) v ′ = 0 ⇒ v ′′ +
4

t
v ′ = 0.
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Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

t2y ′′ + 2ty ′ − 2y = 0,

knowing that y1(t) = t is a solution.

Solution: Recall: v ′′ +
4

t
v ′ = 0.

This is a first order equation for w = v ′, given by w ′+
4

t
w = 0, so

w ′

w
= −4

t
⇒ ln(w) = −4 ln(t) + c0 ⇒ w(t) = c1t

−4, c1 ∈ R.

Integrating w we obtain v , that is, v = c2t
−3 + c3, with c2, c3 ∈ R.

Recalling that y2 = t v we then conclude that y2 = c2t
−2 + c3t.

Choosing c2 = 1 and c3 = 0 we obtain the fundamental solutions

y1(t) = t and y2(t) =
1

t2
. C
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Reduction of the order method: Variable coefficients.

Proof of the Theorem: The choice of y2 = vy1 implies

y ′2 = v ′ y1 + v y ′1, y ′′2 = v ′′ y1 + 2v ′ y ′1 + v y ′′1 .

This information introduced into the differential equation says that

(v ′′ y1 + 2v ′ y ′1 + v y ′′1 ) + p (v ′ y1 + v y ′1) + qv y1 = 0

y1 v ′′ + (2y ′1 + p y1) v ′ + (y ′′1 + p y ′1 + q y1) v = 0.

The function y1 is solution of y ′′1 + p y ′1 + q y1 = 0.

Then, the equation for v is given by Eq. (3), that is,

y1 v ′′ + (2y ′1 + p y1) v ′ = 0.
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Reduction of the order method: Variable coefficients.

Proof: Recall y1 v ′′ + (2y ′1 + p y1) v ′ = 0.

We now need to show
that y1 and y2 = vy1 are linearly independent.

Wy1y2 =

∣∣∣∣y1 vy1

y ′1 (v ′y1 + vy ′1)

∣∣∣∣ = y1(v
′y1 + vy ′1)− vy1y

′
1.

We obtain Wy1y2 = v ′y2
1 . We need to find v ′. Denote w = v ′, so

y1 w ′ + (2y ′1 + p y1) w = 0 ⇒ w ′

w
= −2

y ′1
y1

− p.

Let P be a primitive of p, that is, P ′(t) = p(t), then

ln(w) = −2 ln(y1)− P ⇒ w = e [ln(y−2
1 )−P] ⇒ w = y−2

1 e−P .

We obtain v ′y2
1 = e−P , hence Wy1y2 = e−P , which is non-zero.

We conclude that y1 and y2 = vy1 are linearly independent.
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We conclude that y1 and y2 = vy1 are linearly independent.



Reduction of the order method: Variable coefficients.

Proof: Recall y1 v ′′ + (2y ′1 + p y1) v ′ = 0. We now need to show
that y1 and y2 = vy1 are linearly independent.

Wy1y2 =

∣∣∣∣y1 vy1

y ′1 (v ′y1 + vy ′1)

∣∣∣∣ = y1(v
′y1 + vy ′1)− vy1y

′
1.

We obtain Wy1y2 = v ′y2
1 . We need to find v ′. Denote w = v ′, so

y1 w ′ + (2y ′1 + p y1) w = 0 ⇒ w ′

w
= −2

y ′1
y1

− p.

Let P be a primitive of p, that is, P ′(t) = p(t), then

ln(w) = −2 ln(y1)− P ⇒ w = e [ln(y−2
1 )−P] ⇒ w = y−2

1 e−P .

We obtain v ′y2
1 = e−P , hence Wy1y2 = e−P , which is non-zero.

We conclude that y1 and y2 = vy1 are linearly independent.


