Second order linear ODE (Sect. 2.2).

- Idea: Solving constant coefficients equations.
- The characteristic equation.
- Solution formulas for constant coefficients equations.
Review: Second order linear ODE.

Definition
Given functions \(a_1, a_0, b : \mathbb{R} \rightarrow \mathbb{R} \), the differential equation in the unknown function \(y : \mathbb{R} \rightarrow \mathbb{R} \) given by

\[
y'' + a_1(t) y' + a_0(t) y = b(t)
\]

is called a second order linear differential equation.
Review: Second order linear ODE.

Definition
Given functions $a_1, a_0, b : \mathbb{R} \to \mathbb{R}$, the differential equation in the unknown function $y : \mathbb{R} \to \mathbb{R}$ given by

$$y'' + a_1(t)y' + a_0(t)y = b(t)$$

is called a second order linear differential equation. If $b = 0$, the equation is called homogeneous.
Review: Second order linear ODE.

Definition
Given functions a_1, a_0, $b : \mathbb{R} \rightarrow \mathbb{R}$, the differential equation in the unknown function $y : \mathbb{R} \rightarrow \mathbb{R}$ given by

$$y'' + a_1(t) y' + a_0(t) y = b(t)$$

is called a **second order linear** differential equation. If $b = 0$, the equation is called **homogeneous**. If the coefficients $a_1, a_2 \in \mathbb{R}$ are constants, the equation is called of **constant coefficients**.
Review: Second order linear ODE.

Definition
Given functions \(a_1, a_0, b : \mathbb{R} \to \mathbb{R}\), the differential equation in the unknown function \(y : \mathbb{R} \to \mathbb{R}\) given by

\[
y'' + a_1(t) y' + a_0(t) y = b(t)
\]

is called a second order linear differential equation. If \(b = 0\), the equation is called homogeneous. If the coefficients \(a_1, a_2 \in \mathbb{R}\) are constants, the equation is called of constant coefficients.

Theorem (Superposition property)
If the functions \(y_1\) and \(y_2\) are solutions to the homogeneous linear equation

\[
y'' + a_1(t) y' + a_0(t) y = 0,
\]

then the linear combination \(c_1 y_1(t) + c_2 y_2(t)\) is also a solution for any constants \(c_1, c_2 \in \mathbb{R}\).
Second order linear ODE (Sect. 2.2).

- **Idea:** Soving constant coefficients equations.
- The characteristic equation.
- Solution formulas for constant coefficients equations.
Idea: Solving constant coefficients equations.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations.

Example

Find solutions to the equation
\[y'' + 5y' + 6y = 0. \]

Solution:

We look for solutions proportional to exponentials \(e^{rt} \), for an appropriate constant \(r \in \mathbb{R} \), since the exponential can be canceled out from the equation.

If \(y(t) = e^{rt} \), then \(y'(t) = re^{rt} \), and \(y''(t) = r^2e^{rt} \). Hence
\[
(r^2 + 5r + 6)e^{rt} = 0 \iff r^2 + 5r + 6 = 0.
\]

That is, \(r \) must be a root of the polynomial \(p(r) = r^2 + 5r + 6 \).

This polynomial is called the characteristic polynomial of the differential equation.
Idea: Solving constant coefficients equations.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example
Find solutions to the equation $y'' + 5y' + 6y = 0$.
Idea: Solving constant coefficients equations.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example
Find solutions to the equation \(y'' + 5y' + 6y = 0 \).

Solution: We look for solutions proportional to exponentials \(e^{rt} \),
Idea: Solving constant coefficients equations.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation \(y'' + 5y' + 6y = 0 \).

Solution: We look for solutions proportional to exponentials \(e^{rt} \), for an appropriate constant \(r \in \mathbb{R} \),
Idea: Solving constant coefficients equations.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example
Find solutions to the equation $y'' + 5y' + 6y = 0$.

Solution: We look for solutions proportional to exponentials e^{rt}, for an appropriate constant $r \in \mathbb{R}$, since the exponential can be canceled out from the equation.
Idea: Solving constant coefficients equations.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example
Find solutions to the equation $y'' + 5y' + 6y = 0$.

Solution: We look for solutions proportional to exponentials e^{rt}, for an appropriate constant $r \in \mathbb{R}$, since the exponential can be canceled out from the equation.
If $y(t) = e^{rt}$, then $y'(t) =$
Idea: Solving constant coefficients equations.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example
Find solutions to the equation $y'' + 5y' + 6y = 0$.

Solution: We look for solutions proportional to exponentials e^{rt}, for an appropriate constant $r \in \mathbb{R}$, since the exponential can be canceled out from the equation.
If $y(t) = e^{rt}$, then $y'(t) = re^{rt}$,
Idea: Solving constant coefficients equations.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example
Find solutions to the equation $y'' + 5y' + 6y = 0$.

Solution: We look for solutions proportional to exponentials e^{rt}, for an appropriate constant $r \in \mathbb{R}$, since the exponential can be canceled out from the equation.
If $y(t) = e^{rt}$, then $y'(t) = re^{rt}$, and $y''(t) =$
Idea: Solving constant coefficients equations.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example
Find solutions to the equation $y'' + 5y' + 6y = 0$.

Solution: We look for solutions proportional to exponentials e^{rt}, for an appropriate constant $r \in \mathbb{R}$, since the exponential can be canceled out from the equation. If $y(t) = e^{rt}$, then $y'(t) = re^{rt}$, and $y''(t) = r^2 e^{rt}$.
Idea: Soving constant coefficients equations.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example
Find solutions to the equation $y'' + 5y' + 6y = 0$.

Solution: We look for solutions proportional to exponentials e^{rt}, for an appropriate constant $r \in \mathbb{R}$, since the exponential can be canceled out from the equation.
If $y(t) = e^{rt}$, then $y'(t) = re^{rt}$, and $y''(t) = r^2 e^{rt}$. Hence
\[
(r^2 + 5r + 6)e^{rt} = 0
\]
Idea: Solving constant coefficients equations.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example
Find solutions to the equation $y'' + 5y' + 6y = 0$.

Solution: We look for solutions proportional to exponentials e^{rt}, for an appropriate constant $r \in \mathbb{R}$, since the exponential can be canceled out from the equation. If $y(t) = e^{rt}$, then $y'(t) = re^{rt}$, and $y''(t) = r^2e^{rt}$. Hence

$$(r^2 + 5r + 6)e^{rt} = 0 \iff r^2 + 5r + 6 = 0.$$
Idea: Solving constant coefficients equations.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example
Find solutions to the equation $y'' + 5y' + 6y = 0$.

Solution: We look for solutions proportional to exponentials e^{rt}, for an appropriate constant $r \in \mathbb{R}$, since the exponential can be canceled out from the equation. If $y(t) = e^{rt}$, then $y'(t) = re^{rt}$, and $y''(t) = r^2 e^{rt}$. Hence

$$(r^2 + 5r + 6)e^{rt} = 0 \iff r^2 + 5r + 6 = 0.$$

That is, r must be a root of the polynomial $p(r) = r^2 + 5r + 6$.
Idea: Solving constant coefficients equations.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example
Find solutions to the equation $y'' + 5y' + 6y = 0$.

Solution: We look for solutions proportional to exponentials e^{rt}, for an appropriate constant $r \in \mathbb{R}$, since the exponential can be canceled out from the equation.
If $y(t) = e^{rt}$, then $y'(t) = re^{rt}$, and $y''(t) = r^2e^{rt}$. Hence

$$(r^2 + 5r + 6)e^{rt} = 0 \iff r^2 + 5r + 6 = 0.$$

That is, r must be a root of the polynomial $p(r) = r^2 + 5r + 6$.

This polynomial is called the characteristic polynomial of the differential equation.
Idea: Solving constant coefficients equations.

Example
Find solutions to the equation $y'' + 5y' + 6y = 0$.

Solution: Recall: $p(r) = r^2 + 5r + 6$.

\[r = \frac{-5 \pm \sqrt{25 - 24}}{2} = \frac{-5 \pm 1}{2} \]

\[r_1 = -3, \quad r_2 = -2 \]

Therefore, we have found two solutions to the ODE, $y_1(t) = e^{-2t}$, $y_2(t) = e^{-3t}$.

Their superposition provides infinitely many solutions, $y(t) = c_1 e^{-2t} + c_2 e^{-3t}$, $c_1, c_2 \in \mathbb{R}$.

\[\triangleright \]
Idea: Solving constant coefficients equations.

Example
Find solutions to the equation $y'' + 5y' + 6y = 0$.

Solution: Recall: $p(r) = r^2 + 5r + 6$.

The roots of the characteristic polynomial are

$$r = \frac{1}{2} \left(-5 \pm \sqrt{25 - 24} \right)$$
Idea: Soving constant coefficients equations.

Example
Find solutions to the equation $y'' + 5y' + 6y = 0$.

Solution: Recall: $p(r) = r^2 + 5r + 6$.

The roots of the characteristic polynomial are

$$r = \frac{1}{2} (-5 \pm \sqrt{25 - 24}) = \frac{1}{2} (-5 \pm 1)$$
Idea: Solving constant coefficients equations.

Example
Find solutions to the equation $y'' + 5y' + 6y = 0$.

Solution: Recall: $p(r) = r^2 + 5r + 6$.

The roots of the characteristic polynomial are

$$r = \frac{1}{2} (-5 \pm \sqrt{25 - 24}) = \frac{1}{2} (-5 \pm 1) \quad \Rightarrow \quad \begin{cases} r_1 = -2, \\ r_2 = -3. \end{cases}$$
Idea: Solving constant coefficients equations.

Example
Find solutions to the equation $y'' + 5y' + 6y = 0$.

Solution: Recall: $p(r) = r^2 + 5r + 6$.

The roots of the characteristic polynomial are

$$r = \frac{1}{2} (-5 \pm \sqrt{25 - 24}) = \frac{1}{2} (-5 \pm 1) \Rightarrow \begin{cases} r_1 = -2, \\ r_2 = -3. \end{cases}$$

Therefore, we have found two solutions to the ODE,

$$y_1(t) = e^{-2t}, \quad y_2(t) = e^{-3t}.$$
Idea: Solving constant coefficients equations.

Example
Find solutions to the equation $y'' + 5y' + 6y = 0$.

Solution: Recall: $p(r) = r^2 + 5r + 6$.

The roots of the characteristic polynomial are

$$r = \frac{1}{2} \left(-5 \pm \sqrt{25 - 24} \right) = \frac{1}{2} (-5 \pm 1) \Rightarrow \begin{cases} r_1 = -2, \\ r_2 = -3. \end{cases}$$

Therefore, we have found two solutions to the ODE,

$$y_1(t) = e^{-2t}, \quad y_2(t) = e^{-3t}.$$

Their superposition provides infinitely many solutions,
Idea: Solving constant coefficients equations.

Example
Find solutions to the equation \(y'' + 5y' + 6y = 0 \).

Solution: Recall: \(p(r) = r^2 + 5r + 6 \).

The roots of the characteristic polynomial are
\[
r = \frac{1}{2} \left(-5 \pm \sqrt{25 - 24} \right) = \frac{1}{2} (-5 \pm 1) \quad \Rightarrow \quad \left\{ \begin{array}{l}
 r_1 = -2, \\
 r_2 = -3.
\end{array} \right.
\]

Therefore, we have found two solutions to the ODE,
\[
y_1(t) = e^{-2t}, \quad y_2(t) = e^{-3t}.
\]

Their superposition provides infinitely many solutions,
\[
y(t) = c_1 e^{-2t} + c_2 e^{-3t}, \quad c_1, c_2 \in \mathbb{R}.
\]
Idea: Solving constant coefficients equations.

Summary: The differential equation \(y'' + 5y' + 6y = 0 \) has infinitely many solutions,

\[
y(t) = c_1 e^{-2t} + c_2 e^{-3t}, \quad c_1, c_2 \in \mathbb{R}.
\]
Idea: Solving constant coefficients equations.

Summary: The differential equation $y'' + 5y' + 6y = 0$ has infinitely many solutions,

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}, \quad c_1, c_2 \in \mathbb{R}.$$

Remarks:

▶ There are two free constants in the solution found above.
Idea: Solving constant coefficients equations.

Summary: The differential equation $y'' + 5y' + 6y = 0$ has infinitely many solutions,

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}, \quad c_1, c_2 \in \mathbb{R}.$$

Remarks:

- There are **two free constants** in the solution found above.
- The ODE above is **second order**, so two integrations must be done to find the solution. This explain the origin of the two free constant in the solution.
Idea: Soving constant coefficients equations.

Summary: The differential equation \(y'' + 5y' + 6y = 0 \) has infinitely many solutions,

\[y(t) = c_1 e^{-2t} + c_2 e^{-3t}, \quad c_1, c_2 \in \mathbb{R}. \]

Remarks:

- There are two free constants in the solution found above.
- The ODE above is second order, so two integrations must be done to find the solution. This explain the origin of the two free constant in the solution.
- An IVP for a second order differential equation will have a unique solution if the IVP contains two initial conditions.
Second order linear ODE (Sect. 2.2).

- Idea: Soving constant coefficients equations.
- **The characteristic equation.**
- Solution formulas for constant coefficients equations.
The characteristic equation.

Definition
Given a second order linear homogeneous differential equation with constant coefficients

\[y'' + a_1 y' + a_0 = 0, \tag{1} \]

the *characteristic polynomial* and the *characteristic equation* associated with the differential equation in (1) are, respectively,

\[p(r) = r^2 + a_1 r + a_0, \quad p(r) = 0. \]
The characteristic equation.

Definition
Given a second order linear homogeneous differential equation with constant coefficients

\[y'' + a_1 y' + a_0 = 0, \tag{1} \]

the characteristic polynomial and the characteristic equation associated with the differential equation in (1) are, respectively,

\[p(r) = r^2 + a_1 r + a_0, \quad p(r) = 0.\]

Remark: If \(r_1, r_2 \) are the solutions of the characteristic equation and \(c_1, c_2 \) are constants, then we will show that the general solution of Eq. (1) is given by

\[y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t} \]
Example
Find the solution y of the initial value problem

$$y'' + 5y' + 6 = 0, \quad y(0) = 1, \quad y'(0) = -1.$$
The characteristic equation.

Example
Find the solution y of the initial value problem
\[y'' + 5y' + 6 = 0, \quad y(0) = 1, \quad y'(0) = -1. \]

Solution: A solution of the differential equation above is
\[y(t) = c_1 e^{-2t} + c_2 e^{-3t}. \]
The characteristic equation.

Example
Find the solution y of the initial value problem
\[y'' + 5y' + 6 = 0, \quad y(0) = 1, \quad y'(0) = -1. \]

Solution: A solution of the differential equation above is
\[y(t) = c_1 e^{-2t} + c_2 e^{-3t}. \]

We now find the constants c_1 and c_2 that satisfy the initial conditions above:
The characteristic equation.

Example

Find the solution y of the initial value problem

$$y'' + 5y' + 6 = 0, \quad y(0) = 1, \quad y'(0) = -1.$$

Solution: A solution of the differential equation above is

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}.
\text{We now find the constants } c_1 \text{ and } c_2 \text{ that satisfy the initial conditions above:} $$

$$1 = y(0) = c_1 + c_2,$$
Example
Find the solution \(y \) of the initial value problem
\[
y'' + 5y' + 6 = 0, \quad y(0) = 1, \quad y'(0) = -1.
\]

Solution: A solution of the differential equation above is
\[
y(t) = c_1 e^{-2t} + c_2 e^{-3t}.
\]
We now find the constants \(c_1 \) and \(c_2 \) that satisfy the initial conditions above:
\[
1 = y(0) = c_1 + c_2, \quad -1 = y'(0) = -2c_1 - 3c_2.
\]
The characteristic equation.

Example
Find the solution y of the initial value problem

$$y'' + 5y' + 6 = 0, \quad y(0) = 1, \quad y'(0) = -1.$$

Solution: A solution of the differential equation above is

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}.$$

We now find the constants c_1 and c_2 that satisfy the initial conditions above:

$$1 = y(0) = c_1 + c_2, \quad -1 = y'(0) = -2c_1 - 3c_2.$$

$$c_1 = 1 - c_2$$
Example

Find the solution \(y \) of the initial value problem

\[
y'' + 5y' + 6 = 0, \quad y(0) = 1, \quad y'(0) = -1.
\]

Solution: A solution of the differential equation above is

\[
y(t) = c_1 e^{-2t} + c_2 e^{-3t}.
\]

We now find the constants \(c_1 \) and \(c_2 \) that satisfy the initial conditions above:

\[
1 = y(0) = c_1 + c_2, \quad -1 = y'(0) = -2c_1 - 3c_2.
\]

\[
c_1 = 1 - c_2 \Rightarrow 1 = 2(1 - c_2) + 3c_2
\]
The characteristic equation.

Example
Find the solution y of the initial value problem

$$y'' + 5y' + 6 = 0, \quad y(0) = 1, \quad y'(0) = -1.$$

Solution: A solution of the differential equation above is

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}.$$

We now find the constants c_1 and c_2 that satisfy the initial conditions above:

$$1 = y(0) = c_1 + c_2, \quad -1 = y'(0) = -2c_1 - 3c_2.$$

$$c_1 = 1 - c_2 \Rightarrow 1 = 2(1 - c_2) + 3c_2 \Rightarrow c_2 = -1$$
The characteristic equation.

Example
Find the solution y of the initial value problem

$$y'' + 5y' + 6 = 0, \quad y(0) = 1, \quad y'(0) = -1.$$

Solution: A solution of the differential equation above is

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}.$$

We now find the constants c_1 and c_2 that satisfy the initial conditions above:

$$1 = y(0) = c_1 + c_2, \quad -1 = y'(0) = -2c_1 - 3c_2.$$

$$c_1 = 1 - c_2 \Rightarrow 1 = 2(1 - c_2) + 3c_2 \Rightarrow c_2 = -1 \Rightarrow c_1 = 2.$$
Example
Find the solution \(y \) of the initial value problem
\[
y'' + 5y' + 6 = 0, \quad y(0) = 1, \quad y'(0) = -1.
\]

Solution: A solution of the differential equation above is
\[
y(t) = c_1 e^{-2t} + c_2 e^{-3t}.
\]
We now find the constants \(c_1 \) and \(c_2 \) that satisfy the initial conditions above:
\[
1 = y(0) = c_1 + c_2, \quad -1 = y'(0) = -2c_1 - 3c_2.
\]
\[
c_1 = 1 - c_2 \Rightarrow 1 = 2(1 - c_2) + 3c_2 \Rightarrow c_2 = -1 \Rightarrow c_1 = 2.
\]
Therefore, the unique solution to the initial value problem is
\[
y(t) = 2e^{-2t} - e^{-3t}.
\]
The characteristic equation.

Example

Find the general solution y of the differential equation

$$2y'' - 3y' + y = 0.$$
The characteristic equation.

Example
Find the general solution y of the differential equation

$$2y'' - 3y' + y = 0.$$

Solution: We look for every solution of the form $y(t) = e^{rt}$,
The characteristic equation.

Example
Find the general solution y of the differential equation

$$2y'' - 3y' + y = 0.$$

Solution: We look for every solution of the form $y(t) = e^{rt}$, where r is a solution of the characteristic equation

$$2r^2 - 3r + 1 = 0.$$
The characteristic equation.

Example
Find the general solution y of the differential equation

$$2y'' - 3y' + y = 0.$$

Solution: We look for every solution of the form $y(t) = e^{rt}$, where r is a solution of the characteristic equation

$$2r^2 - 3r + 1 = 0 \Rightarrow r = \frac{1}{4} \left(3 \pm \sqrt{9 - 8}\right)$$
Example
Find the general solution y of the differential equation

$$2y'' - 3y' + y = 0.$$

Solution: We look for every solution of the form $y(t) = e^{rt}$, where r is a solution of the characteristic equation

$$2r^2 - 3r + 1 = 0 \quad \Rightarrow \quad r = \frac{1}{4} (3 \pm \sqrt{9 - 8}) \quad \Rightarrow \quad \begin{cases} r_1 = 1, \\ r_2 = \frac{1}{2}. \end{cases}$$
Example

Find the general solution y of the differential equation

$$2y'' - 3y' + y = 0.$$

Solution: We look for every solution of the form $y(t) = e^{rt}$, where r is a solution of the characteristic equation

$$2r^2 - 3r + 1 = 0 \Rightarrow r = \frac{1}{4}(3 \pm \sqrt{9 - 8}) \Rightarrow \begin{cases} r_1 = 1, \\ r_2 = \frac{1}{2}. \end{cases}$$

Therefore, the general solution of the equation above is

$$y(t) = c_1 e^t + c_2 e^{t/2},$$

where c_1, c_2 are arbitrary constants.
Second order linear ODE (Sect. 2.2).

- Idea: Solving constant coefficients equations.
- The characteristic equation.
- Solution formulas for constant coefficients equations.
Solution formulas for constant coefficients equations.

Theorem (Constant coefficients)

Given real constants a_1, a_0, consider the homogeneous, linear differential equation on the unknown $y : \mathbb{R} \to \mathbb{R}$ given by

$$ y'' + a_1 y' + a_0 y = 0. $$
Solution formulas for constant coefficients equations.

Theorem (Constant coefficients)

Given real constants a_1, a_0, consider the homogeneous, linear differential equation on the unknown $y : \mathbb{R} \to \mathbb{R}$ given by

$$y'' + a_1 y' + a_0 y = 0.$$

Let r_+, r_- be the roots of the characteristic polynomial $p(r) = r^2 + a_1 r + a_0$,

(a) If $r_+ \neq r_-$, real or complex, then $y(t) = c_0 e^{r_+ t} + c_1 e^{r_- t}$.

(b) If $r_+ = r_- = \hat{r} \in \mathbb{R}$, then $y(t) = c_0 e^{\hat{r} t} + c_1 t e^{\hat{r} t}$.

Furthermore, given real constants t_0, y_0 and y_1, there is a unique solution to the initial value problem

$$y'' + a_1 y' + a_0 y = 0, \quad y(t_0) = y_0, \quad y'(t_0) = y_1.$$
Solution formulas for constant coefficients equations.

Theorem (Constant coefficients)

Given real constants a_1, a_0, consider the homogeneous, linear differential equation on the unknown $y : \mathbb{R} \to \mathbb{R}$ given by

$$y'' + a_1 y' + a_0 y = 0.$$

Let r_+, r_- be the roots of the characteristic polynomial $p(r) = r^2 + a_1 r + a_0$, and let c_0, c_1 be arbitrary constants.

(a) If $r_+ \neq r_-$, real or complex, then

$$y(t) = c_0 e^{r_+ t} + c_1 e^{r_- t}.$$

(b) If $r_+ = r_- = \hat{r} \in \mathbb{R}$, then

$$y(t) = c_0 e^{\hat{r} t} + c_1 t e^{\hat{r} t}.$$

Furthermore, given real constants t_0, y_0 and y_1, there is a unique solution to the initial value problem

$$y'' + a_1 y' + a_0 y = 0, \quad y(t_0) = y_0, \quad y'(t_0) = y_1.$$
Theorem (Constant coefficients)

Given real constants \(a_1, a_0 \), consider the homogeneous, linear differential equation on the unknown \(y : \mathbb{R} \to \mathbb{R} \) given by

\[
y'' + a_1 y' + a_0 y = 0.
\]

Let \(r_+, r_- \) be the roots of the characteristic polynomial \(p(r) = r^2 + a_1 r + a_0 \), and let \(c_0, c_1 \) be arbitrary constants. Then, the general solution of the differential equation is given by:

(a) If \(r_+ \neq r_- \), real or complex, then \(y(t) = c_0 e^{r_+ t} + c_1 e^{r_- t} \).
Solution formulas for constant coefficients equations.

Theorem (Constant coefficients)

Given real constants a_1, a_0, consider the homogeneous, linear differential equation on the unknown $y : \mathbb{R} \to \mathbb{R}$ given by

$$y'' + a_1 y' + a_0 y = 0.$$

Let r_+, r_- be the roots of the characteristic polynomial $p(r) = r^2 + a_1 r + a_0$, and let c_0, c_1 be arbitrary constants. Then, the general solution of the differential equation is given by:

(a) If $r_+ \neq r_-$, real or complex, then $y(t) = c_0 e^{r_+ t} + c_1 e^{r_- t}$.

(b) If $r_+ = r_- = \hat{r} \in \mathbb{R}$, then $y(t) = c_0 e^{\hat{r} t} + c_1 t e^{\hat{r} t}$.
Solution formulas for constant coefficients equations.

Theorem (Constant coefficients)

Given real constants a_1, a_0, consider the homogeneous, linear differential equation on the unknown $y : \mathbb{R} \to \mathbb{R}$ given by

$$y'' + a_1 y' + a_0 y = 0.$$

Let r_+, r_- be the roots of the characteristic polynomial $p(r) = r^2 + a_1 r + a_0$, and let c_0, c_1 be arbitrary constants. Then, the general solution of the differential equation is given by:

(a) If $r_+ \neq r_-$, real or complex, then $y(t) = c_0 e^{r_+ t} + c_1 e^{r_- t}$.

(b) If $r_+ = r_- = \hat{r} \in \mathbb{R}$, then is $y(t) = c_0 e^{\hat{r} t} + c_1 te^{\hat{r} t}$.

Furthermore, given real constants t_0, y_0 and y_1, there is a unique solution to the initial value problem

$$y'' + a_1 y' + a_0 y = 0, \quad y(t_0) = y_0, \quad y'(t_0) = y_1.$$
Second order linear homogeneous ODE (Sect. 2.3).

- Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).
- Characteristic polynomial with complex roots.
 - Two main sets of fundamental solutions.
 - Review of Complex numbers.
 - A real-valued fundamental and general solutions.
- Application: The RLC circuit.
Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).

Theorem (Constant coefficients)

Given real constants \(a_1, a_0 \), consider the homogeneous, linear differential equation on the unknown \(y : \mathbb{R} \to \mathbb{R} \) given by
\[
y'' + a_1 y' + a_0 y = 0.
\]

Let \(r_+, r_- \) be the roots of the characteristic polynomial \(p(r) = r^2 + a_1 r + a_0 \), and let \(c_0, c_1 \) be arbitrary constants. Then, the general solution \(y \) of the differential equation is given by

(a) If \(r_+ \neq r_- \), real or complex, then \(y(t) = c_1 e^{r_+ t} + c_2 e^{r_- t}. \)

(b) If \(r_+ = r_- = \hat{r} \in \mathbb{R} \), then \(y(t) = c_1 e^{\hat{r} t} + c_2 t e^{\hat{r} t}. \)

Furthermore, given real constants \(t_0, y_1 \) and \(y_2 \), there is a unique solution to the initial value problem
\[
y'' + a_1 y' + a_0 y = 0, \quad y(t_0) = y_1, \quad y'(t_0) = y_2.
\]
Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.

Example
Find the general solution of the equation $y'' - y' - 6y = 0$.
Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.

Example
Find the general solution of the equation $y'' - y' - 6y = 0$.

Solution: Since solutions have the form e^{rt}, we need to find the roots of the characteristic polynomial $p(r) = r^2 - r - 6$,

$$r = \frac{1 \pm \sqrt{1 + 24}}{2} = \frac{1 \pm 5}{2} \Rightarrow r_1 = 3, \quad r_2 = -2.$$

So, r_1, r_2 are real-valued. A fundamental solution set is formed by $y_1(t) = e^{3t}, y_2(t) = e^{-2t}$. The general solution of the differential equations is an arbitrary linear combination of the fundamental solutions, that is, $y(t) = c_1 e^{3t} + c_2 e^{-2t}, c_1, c_2 \in \mathbb{R}$.

Remark: Since $c_1, c_2 \in \mathbb{R}$, then y is real-valued.
Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).

Example
Find the general solution of the equation \(y'' - y' - 6y = 0 \).

Solution: Since solutions have the form \(e^{rt} \), we need to find the roots of the characteristic polynomial \(p(r) = r^2 - r - 6 \), that is,

\[
r_{\pm} = \frac{1}{2} \left(1 \pm \sqrt{1 + 24} \right)
\]
Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.

Example
Find the general solution of the equation $y'' - y' - 6y = 0$.

Solution: Since solutions have the form e^{rt}, we need to find the roots of the characteristic polynomial $p(r) = r^2 - r - 6$, that is,

$$r_{\pm} = \frac{1}{2} \left(1 \pm \sqrt{1 + 24}\right) = \frac{1}{2}(1 \pm 5)$$
Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).

Example
Find the general solution of the equation \(y'' - y' - 6y = 0 \).

Solution: Since solutions have the form \(e^{rt} \), we need to find the roots of the characteristic polynomial \(p(r) = r^2 - r - 6 \), that is,

\[
r_{\pm} = \frac{1}{2} \left(1 \pm \sqrt{1 + 24} \right) = \frac{1}{2} (1 \pm 5) \quad \Rightarrow \quad r_+ = 3, \quad r_- = -2.
\]
Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).

Example
Find the general solution of the equation \(y'' - y' - 6y = 0 \).

Solution: Since solutions have the form \(e^{rt} \), we need to find the roots of the characteristic polynomial \(p(r) = r^2 - r - 6 \), that is,

\[
r_{\pm} = \frac{1}{2} (1 \pm \sqrt{1 + 24}) = \frac{1}{2} (1 \pm 5) \quad \Rightarrow \quad r_+ = 3, \quad r_- = -2.
\]

So, \(r_{\pm} \) are real-valued.
Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).

Example
Find the general solution of the equation \(y'' - y' - 6y = 0 \).

Solution: Since solutions have the form \(e^{rt} \), we need to find the roots of the characteristic polynomial \(p(r) = r^2 - r - 6 \), that is,

\[
r_{\pm} = \frac{1}{2} \left(1 \pm \sqrt{1 + 24} \right) = \frac{1}{2} (1 \pm 5) \Rightarrow r_+ = 3, \quad r_- = -2.
\]

So, \(r_{\pm} \) are real-valued. A fundamental solution set is formed by

\[
y_1(t) = e^{3t}, \quad y_2(t) = e^{-2t}.
\]
Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).

Example

Find the general solution of the equation \(y'' - y' - 6y = 0 \).

Solution: Since solutions have the form \(e^{rt} \), we need to find the roots of the characteristic polynomial \(p(r) = r^2 - r - 6 \), that is,

\[
r_\pm = \frac{1}{2} \left(1 \pm \sqrt{1 + 24} \right) = \frac{1}{2} (1 \pm 5) \quad \Rightarrow \quad r_+ = 3, \quad r_- = -2.
\]

So, \(r_\pm \) are real-valued. A fundamental solution set is formed by

\[
y_1(t) = e^{3t}, \quad y_2(t) = e^{-2t}.
\]

The general solution of the differential equations is an arbitrary linear combination of the fundamental solutions,
Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).

Example

Find the general solution of the equation \(y'' - y' - 6y = 0 \).

Solution: Since solutions have the form \(e^{rt} \), we need to find the roots of the characteristic polynomial \(p(r) = r^2 - r - 6 \), that is,

\[
 r_\pm = \frac{1}{2} (1 \pm \sqrt{1 + 24}) = \frac{1}{2}(1 \pm 5) \quad \Rightarrow \quad r_+ = 3, \quad r_- = -2.
\]

So, \(r_\pm \) are real-valued. A fundamental solution set is formed by

\[
 y_1(t) = e^{3t}, \quad y_2(t) = e^{-2t}.
\]

The general solution of the differential equations is an arbitrary linear combination of the fundamental solutions, that is,

\[
 y(t) = c_1 e^{3t} + c_2 e^{-2t}, \quad c_1, c_2 \in \mathbb{R}. \quad \triangleq
\]
Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.

Example
Find the general solution of the equation $y'' - y' - 6y = 0$.

Solution: Since solutions have the form e^{rt}, we need to find the roots of the characteristic polynomial $p(r) = r^2 - r - 6$, that is,

$$r_{\pm} = \frac{1}{2} \left(1 \pm \sqrt{1 + 24} \right) = \frac{1}{2} (1 \pm 5) \Rightarrow r_+ = 3, \quad r_- = -2.$$

So, r_{\pm} are real-valued. A fundamental solution set is formed by

$$y_1(t) = e^{3t}, \quad y_2(t) = e^{-2t}.$$

The general solution of the differential equations is an arbitrary linear combination of the fundamental solutions, that is,

$$y(t) = c_1 e^{3t} + c_2 e^{-2t}, \quad c_1, c_2 \in \mathbb{R}.$$

Remark: Since $c_1, c_2 \in \mathbb{R}$, then y is real-valued.
Second order linear homogeneous ODE (Sect. 2.3).

- Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).
- **Characteristic polynomial with complex roots.**
 - Two main sets of fundamental solutions.
 - Review of Complex numbers.
 - A real-valued fundamental and general solutions.
- Application: The RLC circuit.
Two main sets of fundamental solutions.

Example
Find the general solution of the equation \(y'' - 2y' + 6y = 0 \).
Two main sets of fundamental solutions.

Example
Find the general solution of the equation \(y'' - 2y' + 6y = 0 \).

Solution: We first find the roots of the characteristic polynomial,

\[r^2 - 2r + 6 = 0 \]
Two main sets of fundamental solutions.

Example
Find the general solution of the equation $y'' - 2y' + 6y = 0$.

Solution: We first find the roots of the characteristic polynomial, $r^2 - 2r + 6 = 0$ \implies r_{\pm} = \frac{1}{2}(2 \pm \sqrt{4 - 24})$
Two main sets of fundamental solutions.

Example
Find the general solution of the equation \(y'' - 2y' + 6y = 0 \).

Solution: We first find the roots of the characteristic polynomial,

\[
r^2 - 2r + 6 = 0 \quad \Rightarrow \quad r_{\pm} = \frac{1}{2}(2 \pm \sqrt{4 - 24}) \quad \Rightarrow \quad r_{\pm} = 1 \pm i\sqrt{5}.\]
Two main sets of fundamental solutions.

Example
Find the general solution of the equation \(y'' - 2y' + 6y = 0 \).

Solution: We first find the roots of the characteristic polynomial,

\[
r^2 - 2r + 6 = 0 \quad \Rightarrow \quad r_{\pm} = \frac{1}{2} (2 \pm \sqrt{4 - 24}) \quad \Rightarrow \quad r_{\pm} = 1 \pm i\sqrt{5}.
\]

A fundamental solution set is

\[
\tilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \quad \tilde{y}_2(t) = e^{(1-i\sqrt{5})t}.
\]
Two main sets of fundamental solutions.

Example
Find the general solution of the equation $y'' - 2y' + 6y = 0$.

Solution: We first find the roots of the characteristic polynomial,

$$r^2 - 2r + 6 = 0 \Rightarrow r_{\pm} = \frac{1}{2}(2 \pm \sqrt{4 - 24}) \Rightarrow r_{\pm} = 1 \pm i\sqrt{5}.$$

A fundamental solution set is

$$\tilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \quad \tilde{y}_2(t) = e^{(1-i\sqrt{5})t}.$$

These are complex-valued functions.
Two main sets of fundamental solutions.

Example
Find the general solution of the equation \(y'' - 2y' + 6y = 0 \).

Solution: We first find the roots of the characteristic polynomial,

\[r^2 - 2r + 6 = 0 \quad \Rightarrow \quad r_{\pm} = \frac{1}{2} (2 \pm \sqrt{4 - 24}) \quad \Rightarrow \quad r_{\pm} = 1 \pm i\sqrt{5}. \]

A fundamental solution set is

\[\tilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \quad \tilde{y}_2(t) = e^{(1-i\sqrt{5})t}. \]

These are complex-valued functions. The general solution is

\[y(t) = \tilde{c}_1 e^{(1+i\sqrt{5})t} + \tilde{c}_2 e^{(1-i\sqrt{5})t}, \quad \tilde{c}_1, \tilde{c}_2 \in \mathbb{C}. \]
Two main sets of fundamental solutions.

Remark:
- The solutions found above include real-valued and complex-valued solutions.
Two main sets of fundamental solutions.

Remark:

- The solutions found above include real-valued and complex-valued solutions.
- Since the differential equation is real-valued, it is usually important in applications to obtain the most general real-valued solution. (See RLC circuit below.)
Two main sets of fundamental solutions.

Remark:

- The solutions found above include real-valued and complex-valued solutions.
- Since the differential equation is real-valued, it is usually important in applications to obtain the most general real-valued solution. (See RLC circuit below.)
- In the expression above it is difficult to take apart real-valued solutions from complex-valued solutions.
Two main sets of fundamental solutions.

Remark:

- The solutions found above include real-valued and complex-valued solutions.
- Since the differential equation is real-valued, it is usually important in applications to obtain the most general real-valued solution. (See RLC circuit below.)
- In the expression above it is difficult to take apart real-valued solutions from complex-valued solutions.
- In other words: It is not simple to see what values of \tilde{c}_1 and \tilde{c}_2 make the general solution above to be real-valued.
Two main sets of fundamental solutions.

Remark:

- The solutions found above include real-valued and complex-valued solutions.
- Since the differential equation is real-valued, it is usually important in applications to obtain the most general real-valued solution. (See RLC circuit below.)
- In the expression above it is difficult to take apart real-valued solutions from complex-valued solutions.
- In other words: It is not simple to see what values of \tilde{c}_1 and \tilde{c}_2 make the general solution above to be real-valued.
- One way to find the real-valued general solution is to find real-valued fundamental solutions.
Second order linear homogeneous ODE (Sect. 2.3).

- Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.
- **Characteristic polynomial with complex roots.**
 - Two main sets of fundamental solutions.
 - **Review of Complex numbers.**
 - A real-valued fundamental and general solutions.
- Application: The RLC circuit.
Review of complex numbers.

- Complex numbers have the form \(z = a + ib \), where \(i^2 = -1 \).
Review of complex numbers.

- Complex numbers have the form $z = a + ib$, where $i^2 = -1$.
- The complex conjugate of z is the number $\bar{z} = a - ib$.

Review of complex numbers.

- Complex numbers have the form $z = a + ib$, where $i^2 = -1$.
- The complex conjugate of z is the number $\overline{z} = a - ib$.
- $\text{Re}(z) = a$, $\text{Im}(z) = b$ are the real and imaginary parts of z.

Euler's formula:

$$e^{ib} = \cos(b) + i\sin(b).$$

From e^{a+ib} and e^{a-ib} we get the real numbers

$$\frac{1}{2}(e^{a+ib} + e^{a-ib}) = e^a \cos(b),$$

$$\frac{1}{2i}(e^{a+ib} - e^{a-ib}) = e^a \sin(b).$$
Review of complex numbers.

- Complex numbers have the form $z = a + ib$, where $i^2 = -1$.
- The complex conjugate of z is the number $\overline{z} = a - ib$.
- $\text{Re}(z) = a$, $\text{Im}(z) = b$ are the real and imaginary parts of z.
- Hence: $\text{Re}(z) = \frac{z + \overline{z}}{2}$.
Review of complex numbers.

- Complex numbers have the form $z = a + ib$, where $i^2 = -1$.
- The complex conjugate of z is the number $\overline{z} = a - ib$.
- $\text{Re}(z) = a$, $\text{Im}(z) = b$ are the real and imaginary parts of z.
- Hence: $\text{Re}(z) = \frac{z + \overline{z}}{2}$ and $\text{Im}(z) = \frac{z - \overline{z}}{2i}$.

Euler’s formula: $e^{ib} = \cos(b) + i\sin(b)$.

Hence, a complex number of the form $e^{a + ib}$ can be written as $e^{a + ib} = e^{a} \left[\cos(b) + i\sin(b) \right]$, $e^{a - ib} = e^{a} \left[\cos(b) - i\sin(b) \right]$.

From $e^{a + ib}$ and $e^{a - ib}$ we get the real numbers $\frac{1}{2}(e^{a + ib} + e^{a - ib}) = e^{a} \cos(b)$, $\frac{1}{2i}(e^{a + ib} - e^{a - ib}) = e^{a} \sin(b)$.
Review of complex numbers.

- Complex numbers have the form $z = a + ib$, where $i^2 = -1$.
- The complex conjugate of z is the number $\overline{z} = a - ib$.
- $\text{Re}(z) = a$, $\text{Im}(z) = b$ are the real and imaginary parts of z.
- Hence: $\text{Re}(z) = \frac{z + \overline{z}}{2}$ and $\text{Im}(z) = \frac{z - \overline{z}}{2i}$.
- $e^{a+ib} = \sum_{n=0}^{\infty} \frac{(a+ib)^n}{n!}$.
Review of complex numbers.

- Complex numbers have the form \(z = a + ib \), where \(i^2 = -1 \).
- The complex conjugate of \(z \) is the number \(\bar{z} = a - ib \).
- \(\text{Re}(z) = a \), \(\text{Im}(z) = b \) are the real and imaginary parts of \(z \).
- Hence: \(\text{Re}(z) = \frac{z + \bar{z}}{2} \) and \(\text{Im}(z) = \frac{z - \bar{z}}{2i} \).
- \(e^{a+ib} = \sum_{n=0}^{\infty} \frac{(a + ib)^n}{n!} \). In particular holds \(e^{a+ib} = e^a e^{ib} \).
Review of complex numbers.

- Complex numbers have the form $z = a + ib$, where $i^2 = -1$.
- The complex conjugate of z is the number $\bar{z} = a - ib$.
- $\text{Re}(z) = a$, $\text{Im}(z) = b$ are the real and imaginary parts of z.
- Hence: $\text{Re}(z) = \frac{z + \bar{z}}{2}$ and $\text{Im}(z) = \frac{z - \bar{z}}{2i}$.
- $e^{a+ib} = \sum_{n=0}^{\infty} \frac{(a + ib)^n}{n!}$. In particular holds $e^{a+ib} = e^a e^{ib}$.
- Euler’s formula: $e^{ib} = \cos(b) + i \sin(b)$.
Review of complex numbers.

- Complex numbers have the form $z = a + ib$, where $i^2 = -1$.
- The complex conjugate of z is the number $\bar{z} = a - ib$.
- $\text{Re}(z) = a$, $\text{Im}(z) = b$ are the real and imaginary parts of z
- Hence: $\text{Re}(z) = \frac{z + \bar{z}}{2}$ and $\text{Im}(z) = \frac{z - \bar{z}}{2i}$
- $e^{a+ib} = \sum_{n=0}^{\infty} \frac{(a + ib)^n}{n!}$. In particular holds $e^{a+ib} = e^a e^{ib}$.
- Euler’s formula: $e^{ib} = \cos(b) + i \sin(b)$.
- Hence, a complex number of the form e^{a+ib} can be written as $e^{a+ib} = e^a [\cos(b) + i \sin(b)]$.
Review of complex numbers.

- Complex numbers have the form $z = a + ib$, where $i^2 = -1$.
- The complex conjugate of z is the number $\bar{z} = a - ib$.
- $\text{Re}(z) = a, \; \text{Im}(z) = b$ are the real and imaginary parts of z.
- Hence: $\text{Re}(z) = \frac{z + \bar{z}}{2}$ and $\text{Im}(z) = \frac{z - \bar{z}}{2i}$.
- $e^{a+ib} = \sum_{n=0}^{\infty} \frac{(a + ib)^n}{n!}$. In particular holds $e^{a+ib} = e^a e^{ib}$.
- Euler’s formula: $e^{ib} = \cos(b) + i \sin(b)$.
- Hence, a complex number of the form e^{a+ib} can be written as $e^{a+ib} = e^a [\cos(b) + i \sin(b)], \; e^{a-ib} = e^a [\cos(b) - i \sin(b)]$.
Review of complex numbers.

- Complex numbers have the form $z = a + ib$, where $i^2 = -1$.
- The complex conjugate of z is the number $\overline{z} = a - ib$.
- $\text{Re}(z) = a$, $\text{Im}(z) = b$ are the real and imaginary parts of z.
- Hence: $\text{Re}(z) = \frac{z + \overline{z}}{2}$ and $\text{Im}(z) = \frac{z - \overline{z}}{2i}$.
- $e^{a+ib} = \sum_{n=0}^{\infty} \frac{(a + ib)^n}{n!}$. In particular holds $e^{a+ib} = e^a e^{ib}$.
- Euler’s formula: $e^{ib} = \cos(b) + i \sin(b)$.
- Hence, a complex number of the form e^{a+ib} can be written as $e^{a+ib} = e^a [\cos(b) + i \sin(b)]$, $e^{a-ib} = e^a [\cos(b) - i \sin(b)]$.
- From e^{a+ib} and e^{a-ib} we get the real numbers.
Review of complex numbers.

- Complex numbers have the form $z = a + ib$, where $i^2 = -1$.
- The complex conjugate of z is the number $\bar{z} = a - ib$.
- $\text{Re}(z) = a, \; \text{Im}(z) = b$ are the real and imaginary parts of z.
- Hence: $\text{Re}(z) = \frac{z + \bar{z}}{2}$ and $\text{Im}(z) = \frac{z - \bar{z}}{2i}$.
- $e^{a+ib} = \sum_{n=0}^{\infty} \frac{(a + ib)^n}{n!}$. In particular holds $e^{a+ib} = e^a \ e^{ib}$.
- Euler’s formula: $e^{ib} = \cos(b) + i \sin(b)$.
- Hence, a complex number of the form e^{a+ib} can be written as $e^{a+ib} = e^a \left[\cos(b) + i \sin(b) \right], \quad e^{a-ib} = e^a \left[\cos(b) - i \sin(b) \right]$.
- From e^{a+ib} and e^{a-ib} we get the real numbers $\frac{1}{2} \left(e^{a+ib} + e^{a-ib} \right) = e^a \cos(b)$.
Review of complex numbers.

- Complex numbers have the form $z = a + ib$, where $i^2 = -1$.
- The complex conjugate of z is the number $\bar{z} = a - ib$.
- $\text{Re}(z) = a$, $\text{Im}(z) = b$ are the real and imaginary parts of z.
- Hence: $\text{Re}(z) = \frac{z + \bar{z}}{2}$ and $\text{Im}(z) = \frac{z - \bar{z}}{2i}$.

- $e^{a+ib} = \sum_{n=0}^{\infty} \frac{(a + ib)^n}{n!}$. In particular holds $e^{a+ib} = e^a e^{ib}$.

- Euler’s formula: $e^{ib} = \cos(b) + i \sin(b)$.
- Hence, a complex number of the form e^{a+ib} can be written as $e^{a+ib} = e^a [\cos(b) + i \sin(b)]$, $e^{a-ib} = e^a [\cos(b) - i \sin(b)]$.

- From e^{a+ib} and e^{a-ib} we get the real numbers
 \[
 \frac{1}{2} (e^{a+ib} + e^{a-ib}) = e^a \cos(b), \quad \frac{1}{2i} (e^{a+ib} - e^{a-ib}) = e^a \sin(b).
 \]
Two main sets of fundamental solutions.

Theorem (Complex roots)

If the constants $a_1, a_0 \in \mathbb{R}$ satisfy that $a_1^2 - 4a_0 < 0$, then the characteristic polynomial $p(r) = r^2 + a_1r + a_0$ of the equation

$$y'' + a_1 y' + a_0 y = 0$$

has complex roots $r_+ = \alpha + i\beta$ and $r_- = \alpha - i\beta$, where

$$\alpha = -\frac{a_1}{2}, \quad \beta = \frac{1}{2} \sqrt{4a_0 - a_1^2}.$$

Furthermore, a fundamental set of solutions to Eq. (2) is

$$\tilde{y}_1(t) = e^{(\alpha+i\beta)t}, \quad \tilde{y}_2(t) = e^{(\alpha-i\beta)t},$$
Two main sets of fundamental solutions.

Theorem (Complex roots)

If the constants $a_1, a_0 \in \mathbb{R}$ satisfy that $a_1^2 - 4a_0 < 0$, then the characteristic polynomial $p(r) = r^2 + a_1 r + a_0$ of the equation

$$y'' + a_1 y' + a_0 y = 0 \quad (2)$$

has complex roots $r_+ = \alpha + i\beta$ and $r_- = \alpha - i\beta$, where

$$\alpha = -\frac{a_1}{2}, \quad \beta = \frac{1}{2} \sqrt{4a_0 - a_1^2}.$$

Furthermore, a fundamental set of solutions to Eq. (2) is

$$\tilde{y}_1(t) = e^{(\alpha+i\beta)t}, \quad \tilde{y}_2(t) = e^{(\alpha-i\beta)t},$$

while another fundamental set of solutions to Eq. (2) is

$$y_1(t) = e^{\alpha t} \cos(\beta t), \quad y_2(t) = e^{\alpha t} \sin(\beta t).$$
Review of complex numbers.

Idea of the Proof: Recall that the functions

$$\tilde{y}_1(t) = e^{(\alpha+i\beta)t}, \quad \tilde{y}_2(t) = e^{(\alpha-i\beta)t},$$

are solutions to $y'' + a_1 y' + a_0 y = 0$.
Idea of the Proof: Recall that the functions
\[\tilde{y}_1(t) = e^{(\alpha+i\beta)t}, \quad \tilde{y}_2(t) = e^{(\alpha-i\beta)t}, \]
are solutions to \(y'' + a_1 y' + a_0 y = 0 \). Also recall that
\[\tilde{y}_1(t) = e^{\alpha t} [\cos(\beta t) + i \sin(\beta t)], \]
Review of complex numbers.

Idea of the Proof: Recall that the functions

\[\tilde{y}_1(t) = e^{(\alpha+i\beta)t}, \quad \tilde{y}_2(t) = e^{(\alpha-i\beta)t}, \]

are solutions to \(y'' + a_1 y' + a_0 y = 0 \). Also recall that

\[\tilde{y}_1(t) = e^{\alpha t} [\cos(\beta t) + i \sin(\beta t)], \quad \tilde{y}_2(t) = e^{\alpha t} [\cos(\beta t) - i \sin(\beta t)]. \]
Review of complex numbers.

Idea of the Proof: Recall that the functions

\[\tilde{y}_1(t) = e^{(\alpha+i\beta)t}, \quad \tilde{y}_2(t) = e^{(\alpha-i\beta)t}, \]

are solutions to \(y'' + a_1 y' + a_0 y = 0 \). Also recall that

\[\tilde{y}_1(t) = e^{\alpha t} [\cos(\beta t) + i \sin(\beta t)], \quad \tilde{y}_2(t) = e^{\alpha t} [\cos(\beta t) - i \sin(\beta t)]. \]

Then the functions

\[y_1(t) = \frac{1}{2} (\tilde{y}_1(t) + \tilde{y}_2(t)) \]
Review of complex numbers.

Idea of the Proof: Recall that the functions
\[\tilde{y}_1(t) = e^{(\alpha+i\beta)t}, \quad \tilde{y}_2(t) = e^{(\alpha-i\beta)t}, \]
are solutions to \(y'' + a_1 y' + a_0 y = 0 \). Also recall that
\[\tilde{y}_1(t) = e^{\alpha t} [\cos(\beta t) + i \sin(\beta t)], \quad \tilde{y}_2(t) = e^{\alpha t} [\cos(\beta t) - i \sin(\beta t)]. \]
Then the functions
\[y_1(t) = \frac{1}{2} (\tilde{y}_1(t) + \tilde{y}_2(t)) \quad y_2(t) = \frac{1}{2i} (\tilde{y}_1(t) - \tilde{y}_2(t)) \]
Review of complex numbers.

Idea of the Proof: Recall that the functions

\[\tilde{y}_1(t) = e^{(\alpha + i\beta)t}, \quad \tilde{y}_2(t) = e^{(\alpha - i\beta)t}, \]

are solutions to \(y'' + a_1 y' + a_0 y = 0 \). Also recall that

\[\tilde{y}_1(t) = e^{\alpha t} [\cos(\beta t) + i \sin(\beta t)], \quad \tilde{y}_2(t) = e^{\alpha t} [\cos(\beta t) - i \sin(\beta t)]. \]

Then the functions

\[y_1(t) = \frac{1}{2} (\tilde{y}_1(t) + \tilde{y}_2(t)) \quad y_2(t) = \frac{1}{2i} (\tilde{y}_1(t) - \tilde{y}_2(t)) \]

are also solutions to the same differential equation.
Review of complex numbers.

Idea of the Proof: Recall that the functions

\[\tilde{y}_1(t) = e^{(\alpha+i\beta)t}, \quad \tilde{y}_2(t) = e^{(\alpha-i\beta)t}, \]

are solutions to \(y'' + a_1 y' + a_0 y = 0 \). Also recall that

\[\tilde{y}_1(t) = e^{\alpha t} [\cos(\beta t) + i \sin(\beta t)], \quad \tilde{y}_2(t) = e^{\alpha t} [\cos(\beta t) - i \sin(\beta t)]. \]

Then the functions

\[y_1(t) = \frac{1}{2} (\tilde{y}_1(t) + \tilde{y}_2(t)) \quad y_2(t) = \frac{1}{2i} (\tilde{y}_1(t) - \tilde{y}_2(t)) \]

are also solutions to the same differential equation. We conclude that \(y_1 \) and \(y_2 \) are real valued and
Review of complex numbers.

Idea of the Proof: Recall that the functions

\[\tilde{y}_1(t) = e^{(\alpha+i\beta)t}, \quad \tilde{y}_2(t) = e^{(\alpha-i\beta)t}, \]

are solutions to \(y'' + a_1 y' + a_0 y = 0 \). Also recall that

\[\tilde{y}_1(t) = e^{\alpha t} \left[\cos(\beta t) + i \sin(\beta t) \right], \quad \tilde{y}_2(t) = e^{\alpha t} \left[\cos(\beta t) - i \sin(\beta t) \right]. \]

Then the functions

\[y_1(t) = \frac{1}{2} (\tilde{y}_1(t) + \tilde{y}_2(t)) \quad y_2(t) = \frac{1}{2i} (\tilde{y}_1(t) - \tilde{y}_2(t)) \]

are also solutions to the same differential equation. We conclude that \(y_1 \) and \(y_2 \) are real valued and

\[y_1(t) = e^{\alpha t} \cos(\beta t), \]
Review of complex numbers.

Idea of the Proof: Recall that the functions

\[\tilde{y}_1(t) = e^{(\alpha + i\beta)t}, \quad \tilde{y}_2(t) = e^{(\alpha - i\beta)t}, \]

are solutions to \(y'' + a_1 y' + a_0 y = 0 \). Also recall that

\[\tilde{y}_1(t) = e^{\alpha t} [\cos(\beta t) + i \sin(\beta t)], \quad \tilde{y}_2(t) = e^{\alpha t} [\cos(\beta t) - i \sin(\beta t)]. \]

Then the functions

\[y_1(t) = \frac{1}{2} (\tilde{y}_1(t) + \tilde{y}_2(t)) \quad y_2(t) = \frac{1}{2i} (\tilde{y}_1(t) - \tilde{y}_2(t)) \]

are also solutions to the same differential equation. We conclude that \(y_1 \) and \(y_2 \) are real valued and

\[y_1(t) = e^{\alpha t} \cos(\beta t), \quad y_2(t) = e^{\alpha t} \sin(\beta t). \]
Second order linear homogeneous ODE (Sect. 2.3).

- Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).
- **Characteristic polynomial with complex roots.**
 - Two main sets of fundamental solutions.
 - Review of Complex numbers.
 - **A real-valued fundamental and general solutions.**
- Application: The RLC circuit.
A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

$$y'' - 2y' + 6y = 0.$$
A real-valued fundamental and general solutions.

Example
Find the real-valued general solution of the equation
\[y'' - 2y' + 6y = 0. \]

Solution: Recall: Complex valued solutions are
\[
\tilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \quad \tilde{y}_2(t) = e^{(1-i\sqrt{5})t}.
\]
A real-valued fundamental and general solutions.

Example
Find the real-valued general solution of the equation

\[y'' - 2y' + 6y = 0. \]

Solution: Recall: Complex valued solutions are

\[\tilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \quad \tilde{y}_2(t) = e^{(1-i\sqrt{5})t}. \]

Any linear combination of these functions is solution of the differential equation.
A real-valued fundamental and general solutions.

Example
Find the real-valued general solution of the equation
\[y'' - 2y' + 6y = 0. \]

Solution: Recall: Complex valued solutions are
\[\tilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \quad \tilde{y}_2(t) = e^{(1-i\sqrt{5})t}. \]

Any linear combination of these functions is solution of the differential equation. In particular,
\[y_1(t) = \frac{1}{2} [\tilde{y}_1(t) + \tilde{y}_2(t)], \quad y_2(t) = \frac{1}{2i} [\tilde{y}_1(t) - \tilde{y}_2(t)]. \]
A real-valued fundamental and general solutions.

Example
Find the real-valued general solution of the equation
\[y'' - 2y' + 6y = 0. \]

Solution: Recall: Complex valued solutions are
\[\tilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \quad \tilde{y}_2(t) = e^{(1-i\sqrt{5})t}. \]

Any linear combination of these functions is solution of the differential equation. In particular,
\[y_1(t) = \frac{1}{2} [\tilde{y}_1(t) + \tilde{y}_2(t)], \quad y_2(t) = \frac{1}{2i} [\tilde{y}_1(t) - \tilde{y}_2(t)]. \]

Now, recalling \(e^{(1\pm i\sqrt{5})t} = e^t e^{\pm i\sqrt{5}t} \)
A real-valued fundamental and general solutions.

Example
Find the real-valued general solution of the equation
\[y'' - 2y' + 6y = 0. \]

Solution: Recall: Complex valued solutions are
\[\tilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \quad \tilde{y}_2(t) = e^{(1-i\sqrt{5})t}. \]
Any linear combination of these functions is solution of the differential equation. In particular,
\[y_1(t) = \frac{1}{2} [\tilde{y}_1(t) + \tilde{y}_2(t)], \quad y_2(t) = \frac{1}{2i} [\tilde{y}_1(t) - \tilde{y}_2(t)]. \]
Now, recalling \(e^{(1\pm i\sqrt{5})t} = e^t e^{\pm i\sqrt{5}t} \)
\[y_1(t) = \frac{1}{2} [e^t e^{i\sqrt{5}t} + e^t e^{-i\sqrt{5}t}], \quad y_2(t) = \frac{1}{2i} [e^t e^{i\sqrt{5}t} - e^t e^{-i\sqrt{5}t}], \]
A real-valued fundamental and general solutions.

Example
Find the real-valued general solution of the equation

\[y'' - 2y' + 6y = 0. \]

Solution: \(y_1 = \frac{e^t}{2} [e^{i\sqrt{5}t} + e^{-i\sqrt{5}t}] \), \(y_2 = \frac{e^t}{2i} [e^{i\sqrt{5}t} - e^{-i\sqrt{5}t}] \).
A real-valued fundamental and general solutions.

Example
Find the real-valued general solution of the equation
\[y'' - 2y' + 6y = 0. \]

Solution: \(y_1 = \frac{e^t}{2} \left[e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} \right], \quad y_2 = \frac{e^t}{2i} \left[e^{i\sqrt{5}t} - e^{-i\sqrt{5}t} \right]. \)

The Euler formula and its complex-conjugate formula
\[e^{i\sqrt{5}t} = \left[\cos(\sqrt{5} \, t) + i \sin(\sqrt{5} \, t) \right], \]
A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

\[y'' - 2y' + 6y = 0. \]

Solution: \(y_1 = \frac{e^t}{2} \left[e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} \right], \quad y_2 = \frac{e^t}{2i} \left[e^{i\sqrt{5}t} - e^{-i\sqrt{5}t} \right]. \)

The Euler formula and its complex-conjugate formula

\[e^{i\sqrt{5}t} = \left[\cos(\sqrt{5} \ t) + i \sin(\sqrt{5} \ t) \right], \]

\[e^{-i\sqrt{5}t} = \left[\cos(\sqrt{5} \ t) - i \sin(\sqrt{5} \ t) \right], \]
A real-valued fundamental and general solutions.

Example
Find the real-valued general solution of the equation
\[y'' - 2y' + 6y = 0. \]

Solution: \(y_1 = \frac{e^t}{2} [e^{i\sqrt{5}t} + e^{-i\sqrt{5}t}] \), \(y_2 = \frac{e^t}{2i} [e^{i\sqrt{5}t} - e^{-i\sqrt{5}t}] \).

The Euler formula and its complex-conjugate formula
\[e^{i\sqrt{5}t} = [\cos(\sqrt{5} t) + i \sin(\sqrt{5} t)], \]
\[e^{-i\sqrt{5}t} = [\cos(\sqrt{5} t) - i \sin(\sqrt{5} t)], \]
imply the inverse relations
\[e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} = 2 \cos(\sqrt{5} t), \]
A real-valued fundamental and general solutions.

Example
Find the real-valued general solution of the equation

\[y'' - 2y' + 6y = 0. \]

Solution: \(y_1 = \frac{e^t}{2} \left[e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} \right], \; y_2 = \frac{e^t}{2i} \left[e^{i\sqrt{5}t} - e^{-i\sqrt{5}t} \right]. \)

The Euler formula and its complex-conjugate formula

\[e^{i\sqrt{5}t} = \left[\cos(\sqrt{5} t) + i \sin(\sqrt{5} t) \right], \]

\[e^{-i\sqrt{5}t} = \left[\cos(\sqrt{5} t) - i \sin(\sqrt{5} t) \right], \]

imply the inverse relations

\[e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} = 2 \cos(\sqrt{5} t), \quad e^{i\sqrt{5}t} - e^{-i\sqrt{5}t} = 2i \sin(\sqrt{5} t). \]
A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

\[y'' - 2y' + 6y = 0. \]

Solution: \(y_1 = \frac{e^t}{2} \left[e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} \right], \quad y_2 = \frac{e^t}{2i} \left[e^{i\sqrt{5}t} - e^{-i\sqrt{5}t} \right]. \)

The Euler formula and its complex-conjugate formula

\[e^{i\sqrt{5}t} = \left[\cos(\sqrt{5}t) + i \sin(\sqrt{5}t) \right], \]
\[e^{-i\sqrt{5}t} = \left[\cos(\sqrt{5}t) - i \sin(\sqrt{5}t) \right], \]

imply the inverse relations

\[e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} = 2 \cos(\sqrt{5}t), \quad e^{i\sqrt{5}t} - e^{-i\sqrt{5}t} = 2i \sin(\sqrt{5}t). \]

So functions \(y_1 \) and \(y_2 \) can be written as

\[y_1(t) = e^t \cos(\sqrt{5}t), \]
A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

\[y'' - 2y' + 6y = 0. \]

Solution: \(y_1 = \frac{e^t}{2} \left(e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} \right), \quad y_2 = \frac{e^t}{2i} \left(e^{i\sqrt{5}t} - e^{-i\sqrt{5}t} \right). \)

The Euler formula and its complex-conjugate formula

\[e^{i\sqrt{5}t} = \left[\cos(\sqrt{5} t) + i \sin(\sqrt{5} t) \right], \]

\[e^{-i\sqrt{5}t} = \left[\cos(\sqrt{5} t) - i \sin(\sqrt{5} t) \right], \]

imply the inverse relations

\[e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} = 2 \cos(\sqrt{5} t), \quad e^{i\sqrt{5}t} - e^{-i\sqrt{5}t} = 2i \sin(\sqrt{5} t). \]

So functions \(y_1 \) and \(y_2 \) can be written as

\[y_1(t) = e^t \cos(\sqrt{5} t), \quad y_2(t) = e^t \sin(\sqrt{5} t). \]
Example
Find the real-valued general solution of the equation
\[y'' - 2y' + 6y = 0. \]

Solution: Recall: \(y(t) = \tilde{c}_1 e^{(1+i\sqrt{5})t} + \tilde{c}_2 e^{(1-i\sqrt{5})t}, \tilde{c}_1, \tilde{c}_2 \in \mathbb{C}. \)
Example
Find the real-valued general solution of the equation
\[y'' - 2y' + 6y = 0. \]

Solution: Recall: \(y(t) = \tilde{c}_1 e^{(1+i\sqrt{5})t} + \tilde{c}_2 e^{(1-i\sqrt{5})t}, \tilde{c}_1, \tilde{c}_2 \in \mathbb{C}. \)

The calculation above says that a real-valued fundamental set is
\[y_1(t) = e^t \cos(\sqrt{5} t), \quad y_2(t) = e^t \sin(\sqrt{5} t). \]
A real-valued fundamental and general solutions.

Example
Find the real-valued general solution of the equation
\[y'' - 2y' + 6y = 0. \]

Solution: Recall: \(y(t) = \tilde{c}_1 e^{(1+i\sqrt{5})t} + \tilde{c}_2 e^{(1-i\sqrt{5})t}, \tilde{c}_1, \tilde{c}_2 \in \mathbb{C}. \)

The calculation above says that a real-valued fundamental set is
\[y_1(t) = e^t \cos(\sqrt{5} t), \quad y_2(t) = e^t \sin(\sqrt{5} t). \]

Hence, the complex-valued general solution can also be written as
\[y(t) = \left[c_1 \cos(\sqrt{5} t) + c_2 \sin(\sqrt{5} t) \right] e^t, \quad c_1, c_2 \in \mathbb{C}. \]
A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

\[y'' - 2y' + 6y = 0. \]

Solution: Recall: \(y(t) = \tilde{c}_1 e^{(1+i\sqrt{5})t} + \tilde{c}_2 e^{(1-i\sqrt{5})t}, \tilde{c}_1, \tilde{c}_2 \in \mathbb{C} \).

The calculation above says that a real-valued fundamental set is

\[y_1(t) = e^t \cos(\sqrt{5} t), \quad y_2(t) = e^t \sin(\sqrt{5} t). \]

Hence, the complex-valued general solution can also be written as

\[y(t) = [c_1 \cos(\sqrt{5} t) + c_2 \sin(\sqrt{5} t)] e^t, \quad c_1, c_2 \in \mathbb{C}. \]

The real-valued general solution is simple to obtain:

\[y(t) = [c_1 \cos(\sqrt{5} t) + c_2 \sin(\sqrt{5} t)] e^t, \quad c_1, c_2 \in \mathbb{R}. \]
Example

Find the real-valued general solution of the equation

\[y'' - 2y' + 6y = 0. \]

Solution: Recall: \(y(t) = \tilde{c}_1 e^{(1+i\sqrt{5})t} + \tilde{c}_2 e^{(1-i\sqrt{5})t}, \) \(\tilde{c}_1, \tilde{c}_2 \in \mathbb{C}. \)

The calculation above says that a real-valued fundamental set is

\[y_1(t) = e^t \cos(\sqrt{5} t), \quad y_2(t) = e^t \sin(\sqrt{5} t). \]

Hence, the complex-valued general solution can also be written as

\[y(t) = \left[c_1 \cos(\sqrt{5} t) + c_2 \sin(\sqrt{5} t) \right] e^t, \quad c_1, c_2 \in \mathbb{C}. \]

The real-valued general solution is simple to obtain:

\[y(t) = \left[c_1 \cos(\sqrt{5} t) + c_2 \sin(\sqrt{5} t) \right] e^t, \quad c_1, c_2 \in \mathbb{R}. \]

We just restricted the coefficients \(c_1, c_2 \) to be real-valued.
A real-valued fundamental and general solutions.

Example
Show that $y_1(t) = e^t \cos(\sqrt{5} t)$ and $y_2(t) = e^t \sin(\sqrt{5} t)$ are fundamental solutions to the equation $y'' - 2y' + 6y = 0$.

Solution: $y_1(t) = e^t \cos(\sqrt{5} t), \; y_2(t) = e^t \sin(\sqrt{5} t)$.

Summary:
▶ These functions are solutions of the differential equation.
▶ They are not proportional to each other, hence they form a fundamental set.
▶ The general solution of the equation is $y(t) = [c_1 \cos(\sqrt{5} t) + c_2 \sin(\sqrt{5} t)] e^t$.
▶ y is real-valued for $c_1, c_2 \in \mathbb{R}$.
▶ y is complex-valued for $c_1, c_2 \in \mathbb{C}$.
A real-valued fundamental and general solutions.

Example
Show that \(y_1(t) = e^t \cos(\sqrt{5} t) \) and \(y_2(t) = e^t \sin(\sqrt{5} t) \) are fundamental solutions to the equation \(y'' - 2y' + 6y = 0 \).

Solution: \(y_1(t) = e^t \cos(\sqrt{5} t), \quad y_2(t) = e^t \sin(\sqrt{5} t) \).

Summary:
- These functions are solutions of the differential equation.
A real-valued fundamental and general solutions.

Example
Show that $y_1(t) = e^t \cos(\sqrt{5} t)$ and $y_2(t) = e^t \sin(\sqrt{5} t)$ are fundamental solutions to the equation $y'' - 2y' + 6y = 0$.

Solution: $y_1(t) = e^t \cos(\sqrt{5} t), \ y_2(t) = e^t \sin(\sqrt{5} t)$.

Summary:
- These functions are solutions of the differential equation.
- They are not proportional to each other, Hence li.
A real-valued fundamental and general solutions.

Example
Show that $y_1(t) = e^t \cos(\sqrt{5} t)$ and $y_2(t) = e^t \sin(\sqrt{5} t)$ are fundamental solutions to the equation $y'' - 2y' + 6y = 0$.

Solution: $y_1(t) = e^t \cos(\sqrt{5} t), \ y_2(t) = e^t \sin(\sqrt{5} t)$.

Summary:
- These functions are solutions of the differential equation.
- They are not proportional to each other, Hence li.
- Therefore, $y_1, \ y_2$ form a fundamental set.
A real-valued fundamental and general solutions.

Example
Show that \(y_1(t) = e^t \cos(\sqrt{5} \, t) \) and \(y_2(t) = e^t \sin(\sqrt{5} \, t) \) are fundamental solutions to the equation \(y'' - 2y' + 6y = 0 \).

Solution: \(y_1(t) = e^t \cos(\sqrt{5} \, t), \quad y_2(t) = e^t \sin(\sqrt{5} \, t) \).

Summary:
- These functions are solutions of the differential equation.
- They are not proportional to each other, Hence li.
- Therefore, \(y_1, y_2 \) form a fundamental set.
- The general solution of the equation is

\[y(t) = [c_1 \cos(\sqrt{5}t) + c_2 \sin(\sqrt{5}t)] \, e^t. \]
A real-valued fundamental and general solutions.

Example
Show that $y_1(t) = e^t \cos(\sqrt{5} t)$ and $y_2(t) = e^t \sin(\sqrt{5} t)$ are fundamental solutions to the equation $y'' - 2y' + 6y = 0$.

Solution: $y_1(t) = e^t \cos(\sqrt{5} t), \ y_2(t) = e^t \sin(\sqrt{5} t)$.

Summary:
- These functions are solutions of the differential equation.
- They are not proportional to each other, Hence li.
- Therefore, y_1, y_2 form a fundamental set.
- The general solution of the equation is
 \[
y(t) = [c_1 \cos(\sqrt{5}t) + c_2 \sin(\sqrt{5}t)] \ e^t.
 \]
- y is real-valued for $c_1, c_2 \in \mathbb{R}$.

Example
Show that \(y_1(t) = e^t \cos(\sqrt{5} t) \) and \(y_2(t) = e^t \sin(\sqrt{5} t) \) are fundamental solutions to the equation \(y'' - 2y' + 6y = 0 \).

Solution: \(y_1(t) = e^t \cos(\sqrt{5} t) \), \(y_2(t) = e^t \sin(\sqrt{5} t) \).

Summary:
- These functions are solutions of the differential equation.
- They are not proportional to each other, Hence li.
- Therefore, \(y_1 \), \(y_2 \) form a fundamental set.
- The general solution of the equation is

\[
y(t) = [c_1 \cos(\sqrt{5}t) + c_2 \sin(\sqrt{5}t)] e^t.
\]

- \(y \) is real-valued for \(c_1, c_2 \in \mathbb{R} \).
- \(y \) is complex-valued for \(c_1, c_2 \in \mathbb{C} \).
A real-valued fundamental and general solutions.

Example
Find real-valued fundamental solutions to the equation

\[y'' + 2y' + 6y = 0. \]
A real-valued fundamental and general solutions.

Example
Find real-valued fundamental solutions to the equation

\[y'' + 2y' + 6y = 0. \]

Solution:
The roots of the characteristic polynomial \(p(r) = r^2 + 2r + 6 \)
Example
Find real-valued fundamental solutions to the equation

\[y'' + 2y' + 6y = 0. \]

Solution:
The roots of the characteristic polynomial \(p(r) = r^2 + 2r + 6 \) are

\[r_{\pm} = \frac{1}{2} \left[-2 \pm \sqrt{4 - 24} \right] \]
A real-valued fundamental and general solutions.

Example
Find real-valued fundamental solutions to the equation

\[y'' + 2y' + 6y = 0. \]

Solution:
The roots of the characteristic polynomial \(p(r) = r^2 + 2r + 6 \) are

\[r_{\pm} = \frac{1}{2} [-2 \pm \sqrt{4 - 24}] = \frac{1}{2} [-2 \pm \sqrt{-20}] \]
A real-valued fundamental and general solutions.

Example
Find real-valued fundamental solutions to the equation
\[y'' + 2y' + 6y = 0. \]

Solution:
The roots of the characteristic polynomial \(p(r) = r^2 + 2r + 6 \) are
\[r_{\pm} = \frac{1}{2} \left[-2 \pm \sqrt{4 - 24} \right] = \frac{1}{2} \left[-2 \pm \sqrt{-20} \right] \Rightarrow r_{\pm} = -1 \pm i\sqrt{5}. \]
A real-valued fundamental and general solutions.

Example

Find real-valued fundamental solutions to the equation

\[y'' + 2y' + 6y = 0. \]

Solution:

The roots of the characteristic polynomial \(p(r) = r^2 + 2r + 6 \) are

\[r_{\pm} = \frac{1}{2} \left[-2 \pm \sqrt{4 - 24} \right] = \frac{1}{2} \left[-2 \pm \sqrt{-20} \right] \Rightarrow r_{\pm} = -1 \pm i\sqrt{5}. \]

These are complex-valued roots,
A real-valued fundamental and general solutions.

Example
Find real-valued fundamental solutions to the equation
\[y'' + 2y' + 6y = 0. \]

Solution:
The roots of the characteristic polynomial \(p(r) = r^2 + 2r + 6 \) are
\[r_{\pm} = \frac{1}{2} \left[-2 \pm \sqrt{4 - 24} \right] = \frac{1}{2} \left[-2 \pm \sqrt{-20} \right] \Rightarrow r_{\pm} = -1 \pm i\sqrt{5}. \]

These are complex-valued roots, with
\[\alpha = -1, \quad \beta = \sqrt{5}. \]
Example

Find real-valued fundamental solutions to the equation

$$y'' + 2y' + 6y = 0.$$

Solution:
The roots of the characteristic polynomial $p(r) = r^2 + 2r + 6$ are

$$r_{\pm} = \frac{1}{2}[-2 \pm \sqrt{4 - 24}] = \frac{1}{2}[-2 \pm \sqrt{-20}] \Rightarrow r_{\pm} = -1 \pm i\sqrt{5}. $$

These are complex-valued roots, with

$$\alpha = -1, \quad \beta = \sqrt{5}. $$

Real-valued fundamental solutions are

$$y_1(t) = e^{-t} \cos(\sqrt{5} t), \quad y_2(t) = e^{-t} \sin(\sqrt{5} t).$$

\triangle
Example
Find real-valued fundamental solutions to the equation
\[y'' + 2y' + 6y = 0. \]
Solution: \(y_1(t) = e^{-t} \cos(\sqrt{5} \, t), \ y_2(t) = e^{-t} \sin(\sqrt{5} \, t). \)

Differential equations like the one in this example describe physical processes related to damped oscillations. For example, pendulums with friction.
A real-valued fundamental and general solutions.

Example
Find the real-valued general solution of \(y'' + 5y = 0 \).

The characteristic polynomial is \(p(r) = r^2 + 5 \). Its roots are \(r = \pm \sqrt{5}i \). This is the case \(\alpha = 0 \), and \(\beta = \sqrt{5} \). Real-valued fundamental solutions are \(y_1(t) = \cos(\sqrt{5}t) \), \(y_2(t) = \sin(\sqrt{5}t) \). The real-valued general solution is \(y(t) = c_1 \cos(\sqrt{5}t) + c_2 \sin(\sqrt{5}t) \), \(c_1, c_2 \in \mathbb{R} \).

Remark: Equations like the one in this example describe oscillatory physical processes without dissipation, \(\alpha = 0 \).
A real-valued fundamental and general solutions.

Example
Find the real-valued general solution of \(y'' + 5y = 0 \).

Solution: The characteristic polynomial is \(p(r) = r^2 + 5 \).
A real-valued fundamental and general solutions.

Example
Find the real-valued general solution of \(y'' + 5y = 0 \).

Solution: The characteristic polynomial is \(p(r) = r^2 + 5 \).
Its roots are \(r_{\pm} = \pm \sqrt{5} i \). This is the case \(\alpha = 0 \), and \(\beta = \sqrt{5} \).
Example
Find the real-valued general solution of \(y'' + 5y = 0 \).

Solution: The characteristic polynomial is \(p(r) = r^2 + 5 \).
Its roots are \(r_{\pm} = \pm\sqrt{5} i \). This is the case \(\alpha = 0 \), and \(\beta = \sqrt{5} \).
Real-valued fundamental solutions are

\[
y_1(t) = \cos(\sqrt{5} t), \quad y_2(t) = \sin(\sqrt{5} t).
\]
A real-valued fundamental and general solutions.

Example
Find the real-valued general solution of $y'' + 5y = 0$.

Solution: The characteristic polynomial is $p(r) = r^2 + 5$.
Its roots are $r_{\pm} = \pm \sqrt{5} i$. This is the case $\alpha = 0$, and $\beta = \sqrt{5}$.
Real-valued fundamental solutions are

$$y_1(t) = \cos(\sqrt{5} t), \quad y_2(t) = \sin(\sqrt{5} t).$$

The real-valued general solution is

$$y(t) = c_1 \cos(\sqrt{5} t) + c_2 \sin(\sqrt{5} t), \quad c_1, c_2 \in \mathbb{R}.$$
Example
Find the real-valued general solution of $y'' + 5y = 0$.

Solution: The characteristic polynomial is $p(r) = r^2 + 5$.

Its roots are $r_{\pm} = \pm \sqrt{5} i$. This is the case $\alpha = 0$, and $\beta = \sqrt{5}$.

Real-valued fundamental solutions are
\[y_1(t) = \cos(\sqrt{5} t), \quad y_2(t) = \sin(\sqrt{5} t). \]

The real-valued general solution is
\[y(t) = c_1 \cos(\sqrt{5} t) + c_2 \sin(\sqrt{5} t), \quad c_1, c_2 \in \mathbb{R}. \]

Remark: Equations like the one in this example describe oscillatory physical processes without dissipation, $\alpha = 0$.
Second order linear homogeneous ODE (Sect. 2.3).

- Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.
- Characteristic polynomial with complex roots.
 - Two main sets of fundamental solutions.
 - Review of Complex numbers.
 - A real-valued fundamental and general solutions.

- **Application:** The RLC circuit.
Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.
Application: The RLC circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

The electric current flowing in such circuit satisfies:

$$LL'(t) + RL(t) + \frac{1}{C} \int_{t_0}^{t} I(s) \, ds = 0.$$
Application: The RLC circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

The electric current flowing in such circuit satisfies:

$$L I'(t) + R I(t) + \frac{1}{C} \int_{t_0}^{t} I(s) \, ds = 0.$$

Derivate both sides above:
$$L I''(t) + R I'(t) + \frac{1}{C} I(t) = 0.$$
Application: The RLC circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

The electric current flowing in such circuit satisfies:

\[L I'(t) + R I(t) + \frac{1}{C} \int_{t_0}^{t} I(s) \, ds = 0. \]

Derivate both sides above:

\[L I''(t) + R I'(t) + \frac{1}{C} I(t) = 0. \]

Divide by L:

\[I''(t) + 2 \left(\frac{R}{2L} \right) I'(t) + \frac{1}{LC} I(t) = 0. \]
Application: The RLC circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

The electric current flowing in such circuit satisfies:

$$L I'(t) + R I(t) + \frac{1}{C} \int_{t_0}^{t} I(s) \, ds = 0.$$

Derivate both sides above:

$$L I''(t) + R I'(t) + \frac{1}{C} I(t) = 0.$$

Divide by L:

$$I''(t) + 2 \left(\frac{R}{2L} \right) I'(t) + \frac{1}{LC} I(t) = 0.$$

Introduce $\alpha = \frac{R}{2L}$ and $\omega = \frac{1}{\sqrt{LC}}$.
Application: The RLC circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

The electric current flowing in such circuit satisfies:

$$L I'(t) + R I(t) + \frac{1}{C} \int_{t_0}^{t} I(s) \, ds = 0.$$

Derivate both sides above: $L I''(t) + R I'(t) + \frac{1}{C} I(t) = 0$.

Divide by L: $I''(t) + 2 \left(\frac{R}{2L} \right) I'(t) + \frac{1}{LC} I(t) = 0$.

Introduce $\alpha = \frac{R}{2L}$ and $\omega = \frac{1}{\sqrt{LC}}$, then $I'' + 2\alpha I' + \omega^2 I = 0$.
Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to \(I'' + 2\alpha I' + \omega^2 I = 0 \), where \(\alpha = R/(2L) \), \(\omega^2 = 1/(LC) \), in the cases (a) (b) below.

Solution: The characteristic polynomial is \(p(r) = r^2 + 2\alpha r + \omega^2 \).
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to $l'' + 2\alpha l' + \omega^2 l = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r) = r^2 + 2\alpha r + \omega^2$. The roots are:

$$r_{\pm} = \frac{1}{2} \left[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2} \right]$$

Remark: When the circuit has no resistance, the current oscillates without dissipation.
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = \frac{R}{2L}$, $\omega^2 = \frac{1}{LC}$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r) = r^2 + 2\alpha r + \omega^2$. The roots are:

$$r_\pm = \frac{1}{2} \left[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2} \right] \Rightarrow r_\pm = -\alpha \pm \sqrt{\alpha^2 - \omega^2}.$$
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to \(l'' + 2\alpha l' + \omega^2 l = 0 \), where \(\alpha = R/(2L) \), \(\omega^2 = 1/(LC) \), in the cases (a) (b) below.

Solution: The characteristic polynomial is \(p(r) = r^2 + 2\alpha r + \omega^2 \). The roots are:
\[
r_\pm = \frac{1}{2} \left[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2} \right] \quad \Rightarrow \quad r_\pm = -\alpha \pm \sqrt{\alpha^2 - \omega^2}.
\]

Case (a) \(R = 0 \).
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r) = r^2 + 2\alpha r + \omega^2$. The roots are:

$$r_\pm = \frac{1}{2} \left[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2} \right] \Rightarrow r_\pm = -\alpha \pm \sqrt{\alpha^2 - \omega^2}.$$

Case (a) $R = 0$. This implies $\alpha = 0$,
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to \(I'' + 2\alpha I' + \omega^2 I = 0 \), where \(\alpha = \frac{R}{2L}, \ \omega^2 = \frac{1}{LC} \), in the cases (a) (b) below.

Solution: The characteristic polynomial is \(p(r) = r^2 + 2\alpha r + \omega^2 \). The roots are:

\[
r_\pm = \frac{1}{2} [-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2}] \Rightarrow r_\pm = -\alpha \pm \sqrt{\alpha^2 - \omega^2}.
\]

Case (a) \(R = 0 \). This implies \(\alpha = 0 \), so \(r_\pm = \pm i\omega \).
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to \(l'' + 2\alpha l' + \omega^2 l = 0 \), where \(\alpha = R/(2L), \omega^2 = 1/(LC) \), in the cases (a) (b) below.

Solution: The characteristic polynomial is \(p(r) = r^2 + 2\alpha r + \omega^2 \). The roots are:

\[
\begin{align*}
 r_\pm &= \frac{1}{2} \left[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2} \right] \\
 &= -\alpha \pm \sqrt{\alpha^2 - \omega^2}.
\end{align*}
\]

Case (a) \(R = 0 \). This implies \(\alpha = 0 \), so \(r_\pm = \pm i\omega \). Therefore,

\[
l_1(t) = \cos(\omega t),
\]
Application: The RLC circuit.

Example

Find real-valued fundamental solutions to \(I'' + 2\alpha I' + \omega^2 I = 0 \), where \(\alpha = \frac{R}{(2L)} \), \(\omega^2 = \frac{1}{(LC)} \), in the cases (a) (b) below.

Solution: The characteristic polynomial is \(p(r) = r^2 + 2\alpha r + \omega^2 \). The roots are:

\[
 r_{\pm} = \frac{1}{2} \left[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2} \right] \quad \Rightarrow \quad r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}.
\]

Case (a) \(R = 0 \). This implies \(\alpha = 0 \), so \(r_{\pm} = \pm i\omega \). Therefore,

\[
 I_1(t) = \cos(\omega t), \quad I_2(t) = \sin(\omega t).
\]
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to \(l'' + 2\alpha l' + \omega^2 l = 0 \), where \(\alpha = \frac{R}{2L} \), \(\omega^2 = \frac{1}{LC} \), in the cases (a) (b) below.

Solution: The characteristic polynomial is \(p(r) = r^2 + 2\alpha r + \omega^2 \). The roots are:

\[
r_{\pm} = \frac{1}{2} \left[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2} \right] \quad \Rightarrow \quad r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}.
\]

Case (a) \(R = 0 \). This implies \(\alpha = 0 \), so \(r_{\pm} = \pm i\omega \). Therefore,

\[
l_1(t) = \cos(\omega t), \quad l_2(t) = \sin(\omega t).
\]

Remark: When the circuit has no resistance, the current oscillates without dissipation.
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: Recall: $r_\pm = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: Recall: $r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Case (b) $R < \sqrt{4L/C}$.
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: Recall: $r_\pm = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Case (b) $R < \sqrt{4L/C}$. This implies

$$R^2 < \frac{4L}{C}$$
Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: Recall: $r_\pm = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Case (b) $R < \sqrt{4L/C}$. This implies

$$R^2 < \frac{4L}{C} \quad \Leftrightarrow \quad \frac{R^2}{4L^2} < \frac{1}{LC}$$
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to \(l'' + 2\alpha l' + \omega^2 l = 0 \), where \(\alpha = R/(2L) \), \(\omega^2 = 1/(LC) \), in the cases (a) (b) below.

Solution: Recall: \(r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2} \).

Case (b) \(R < \sqrt{4L/C} \). This implies
\[
R^2 < \frac{4L}{C} \iff \frac{R^2}{4L^2} < \frac{1}{LC} \iff \alpha^2 < \omega^2.
\]
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to \(l'' + 2\alpha l' + \omega^2 l = 0 \), where \(\alpha = R/(2L) \), \(\omega^2 = 1/(LC) \), in the cases (a) (b) below.

Solution: Recall: \(r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2} \).

Case (b) \(R < \sqrt{4L/C} \). This implies

\[
R^2 < \frac{4L}{C} \iff \frac{R^2}{4L^2} < \frac{1}{LC} \iff \alpha^2 < \omega^2.
\]

Therefore, \(r_{\pm} = -\alpha \pm i\sqrt{\omega^2 - \alpha^2} \).
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: Recall: $r_\pm = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Case (b) $R < \sqrt{4L/C}$. This implies

$$R^2 < \frac{4L}{C} \iff \frac{R^2}{4L^2} < \frac{1}{LC} \iff \alpha^2 < \omega^2.$$

Therefore, $r_\pm = -\alpha \pm i\sqrt{\omega^2 - \alpha^2}$. The fundamental solutions are

$$I_1(t) = e^{-\alpha t} \cos(\sqrt{\omega^2 - \alpha^2} t),$$
Application: The RLC circuit.

Example

Find real-valued fundamental solutions to \(I'' + 2\alpha I' + \omega^2 I = 0 \), where \(\alpha = R/(2L) \), \(\omega^2 = 1/(LC) \), in the cases (a) (b) below.

Solution: Recall: \(r_\pm = -\alpha \pm \sqrt{\alpha^2 - \omega^2} \).

Case (b) \(R < \sqrt{4L/C} \). This implies

\[
R^2 < \frac{4L}{C} \quad \Leftrightarrow \quad \frac{R^2}{4L^2} < \frac{1}{LC} \quad \Leftrightarrow \quad \alpha^2 < \omega^2.
\]

Therefore, \(r_\pm = -\alpha \pm i\sqrt{\omega^2 - \alpha^2} \). The fundamental solutions are

\[
l_1(t) = e^{-\alpha t} \cos(\sqrt{\omega^2 - \alpha^2} t), \quad l_2(t) = e^{-\alpha t} \sin(\sqrt{\omega^2 - \alpha^2} t).
\]
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: Recall: $r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Case (b) $R < \sqrt{4L/C}$. This implies

$$R^2 < \frac{4L}{C} \iff \frac{R^2}{4L^2} < \frac{1}{LC} \iff \alpha^2 < \omega^2.$$

Therefore, $r_{\pm} = -\alpha \pm i\sqrt{\omega^2 - \alpha^2}$. The fundamental solutions are

$$I_1(t) = e^{-\alpha t} \cos(\sqrt{\omega^2 - \alpha^2} t), \quad I_2(t) = e^{-\alpha t} \sin(\sqrt{\omega^2 - \alpha^2} t).$$
Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: Recall: $r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Case (b) $R < \sqrt{4L/C}$. This implies

$$R^2 < \frac{4L}{C} \iff \frac{R^2}{4L^2} < \frac{1}{LC} \iff \alpha^2 < \omega^2.$$

Therefore, $r_{\pm} = -\alpha \pm i\sqrt{\omega^2 - \alpha^2}$. The fundamental solutions are

$$I_1(t) = e^{-\alpha t} \cos(\sqrt{\omega^2 - \alpha^2} t), \quad I_2(t) = e^{-\alpha t} \sin(\sqrt{\omega^2 - \alpha^2} t).$$
Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: Recall: $r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Case (b) $R < \sqrt{4L/C}$. This implies

$$R^2 < \frac{4L}{C} \iff \frac{R^2}{4L^2} < \frac{1}{LC} \iff \alpha^2 < \omega^2.$$

Therefore, $r_{\pm} = -\alpha \pm i\sqrt{\omega^2 - \alpha^2}$. The fundamental solutions are

$$I_1(t) = e^{-\alpha t} \cos(\sqrt{\omega^2 - \alpha^2} t), \quad I_2(t) = e^{-\alpha t} \sin(\sqrt{\omega^2 - \alpha^2} t).$$

The resistance R damps the current oscillations.
Second order linear homogeneous ODE (Sect. 2.4).

- Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).
- Repeated roots as a limit case.
- Main result for repeated roots.
- Reduction of the order method:
 - Constant coefficients equations.
 - Variable coefficients equations.
Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.

Summary:
Given constants $a_1, a_0 \in \mathbb{R}$, consider the differential equation

$$y'' + a_1 y' + a_0 y = 0$$

with characteristic polynomial having roots

$$r_{\pm} = -\frac{a_1}{2} \pm \frac{1}{2} \sqrt{a_1^2 - 4a_0}.$$
Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.

Summary:
Given constants $a_1, a_0 \in \mathbb{R}$, consider the differential equation

$$y'' + a_1 y' + a_0 y = 0$$

with characteristic polynomial having roots

$$r_{\pm} = -\frac{a_1}{2} \pm \frac{1}{2} \sqrt{a_1^2 - 4a_0}.$$

(1) If $a_1^2 - 4a_0 > 0$,

(2) If $a_1^2 - 4a_0 < 0$, introducing

$$\alpha = -\frac{a_1}{2}, \quad \beta = \frac{1}{2} \sqrt{4a_0 - a_1^2},$$

$$y_1(t) = e^{\alpha t} \cos(\beta t), \quad y_2(t) = e^{\alpha t} \sin(\beta t).$$

(3) If $a_1^2 - 4a_0 = 0$, then

$$y_1(t) = e^{-\frac{a_1}{2} t}.$$
Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).

Summary:
Given constants \(a_1, a_0 \in \mathbb{R} \), consider the differential equation

\[
y'' + a_1 y' + a_0 y = 0
\]

with characteristic polynomial having roots

\[
r_\pm = -\frac{a_1}{2} \pm \frac{1}{2} \sqrt{a_1^2 - 4a_0}.
\]

(1) If \(a_1^2 - 4a_0 > 0 \), then \(y_1(t) = e^{r_+ t} \) and \(y_2(t) = e^{r_- t} \).
Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).

Summary:
Given constants \(a_1, a_0 \in \mathbb{R} \), consider the differential equation
\[
y'' + a_1 y' + a_0 y = 0
\]
with characteristic polynomial having roots
\[
r_{\pm} = -\frac{a_1}{2} \pm \frac{1}{2} \sqrt{a_1^2 - 4a_0}.
\]

(1) If \(a_1^2 - 4a_0 > 0 \), then \(y_1(t) = e^{r_+ t} \) and \(y_2(t) = e^{r_- t} \).

(2) If \(a_1^2 - 4a_0 < 0 \),
Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.

Summary:
Given constants $a_1, a_0 \in \mathbb{R}$, consider the differential equation

$$y'' + a_1 y' + a_0 y = 0$$

with characteristic polynomial having roots

$$r_{\pm} = -\frac{a_1}{2} \pm \frac{1}{2} \sqrt{a_1^2 - 4a_0}.$$

1. If $a_1^2 - 4a_0 > 0$, then $y_1(t) = e^{r_+ t}$ and $y_2(t) = e^{r_- t}$.

2. If $a_1^2 - 4a_0 < 0$, then introducing $\alpha = -\frac{a_1}{2}, \beta = \frac{1}{2} \sqrt{4a_0 - a_1^2}$,
Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).

Summary:
Given constants \(a_1, a_0 \in \mathbb{R} \), consider the differential equation
\[
y'' + a_1 y' + a_0 y = 0
\]
with characteristic polynomial having roots
\[
r_{\pm} = -\frac{a_1}{2} \pm \frac{1}{2} \sqrt{a_1^2 - 4a_0}.
\]

(1) If \(a_1^2 - 4a_0 > 0 \), then \(y_1(t) = e^{r_+ t} \) and \(y_2(t) = e^{r_- t} \).

(2) If \(a_1^2 - 4a_0 < 0 \), then introducing \(\alpha = -\frac{a_1}{2} \), \(\beta = \frac{1}{2} \sqrt{4a_0 - a_1^2} \),
\[
y_1(t) = e^{\alpha t} \cos(\beta t), \quad y_2(t) = e^{\alpha t} \sin(\beta t).
\]
Review: On solutions of \(y'' + a_1 y' + a_0 y = 0. \)

Summary:
Given constants \(a_1, a_0 \in \mathbb{R} \), consider the differential equation
\[
y'' + a_1 y' + a_0 y = 0
\]
with characteristic polynomial having roots
\[
r_{\pm} = -\frac{a_1}{2} \pm \frac{1}{2} \sqrt{a_1^2 - 4a_0}.
\]

(1) If \(a_1^2 - 4a_0 > 0 \), then \(y_1(t) = e^{r_+ t} \) and \(y_2(t) = e^{r_- t} \).

(2) If \(a_1^2 - 4a_0 < 0 \), then introducing \(\alpha = -\frac{a_1}{2}, \beta = \frac{1}{2} \sqrt{4a_0 - a_1^2} \),
\[
y_1(t) = e^{\alpha t} \cos(\beta t), \quad y_2(t) = e^{\alpha t} \sin(\beta t).
\]

(3) If \(a_1^2 - 4a_0 = 0 \),
Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).

Summary:
Given constants \(a_1, a_0 \in \mathbb{R} \), consider the differential equation

\[
y'' + a_1 y' + a_0 y = 0
\]

with characteristic polynomial having roots

\[
r_{\pm} = -\frac{a_1}{2} \pm \frac{1}{2} \sqrt{a_1^2 - 4a_0}.
\]

(1) If \(a_1^2 - 4a_0 > 0 \), then \(y_1(t) = e^{r_+ t} \) and \(y_2(t) = e^{r_- t} \).

(2) If \(a_1^2 - 4a_0 < 0 \), then introducing \(\alpha = -\frac{a_1}{2} \), \(\beta = \frac{1}{2} \sqrt{4a_0 - a_1^2} \),

\[
y_1(t) = e^{\alpha t} \cos(\beta t), \quad y_2(t) = e^{\alpha t} \sin(\beta t).
\]

(3) If \(a_1^2 - 4a_0 = 0 \), then \(y_1(t) = e^{-\frac{a_1}{2} t} \).
Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).

Question:
Consider the case (3), with \(a_1^2 - 4a_0 = 0 \), that is, \(a_0 = \frac{a_1^2}{4} \).
Question:

Consider the case (3), with $a_1^2 - 4a_0 = 0$, that is, $a_0 = \frac{a_1^2}{4}$.

Does the equation

$$y'' + a_1 y' + \frac{a_1^2}{4} y = 0$$

have two linearly independent solutions?
Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).

Question:
Consider the case (3), with \(a_1^2 - 4a_0 = 0 \), that is, \(a_0 = \frac{a_1^2}{4} \).

- Does the equation
 \[
y'' + a_1 y' + \frac{a_1^2}{4} y = 0
 \]
 have two linearly independent solutions?

- Or, is every solution to the equation above proportional to
 \[
y_1(t) = e^{-\frac{a_1}{2} t}
 \]
Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.

Repeated roots as a limit case.

Main result for repeated roots.

Reduction of the order method:

- Constant coefficients equations.
- Variable coefficients equations.
Repeated roots as a limit case.

Remark:

- Case (3), where $4a_0 - a_1^2 = 0$ can be obtained as the limit $\beta \to 0$ in case (2).
Repeated roots as a limit case.

Remark:

- Case (3), where \(4a_0 - a_1^2 = 0 \) can be obtained as the limit \(\beta \to 0 \) in case (2).
- Let us study the solutions of the differential equation in the case (2) as \(\beta \to 0 \) for fixed \(t \).
Repeated roots as a limit case.

Remark:

- Case (3), where \(4a_0 - a_1^2 = 0\) can be obtained as the limit \(\beta \to 0\) in case (2).
- Let us study the solutions of the differential equation in the case (2) as \(\beta \to 0\) for fixed \(t\).
- Since \(\cos(\beta t) \to 1\) as \(\beta \to 0\),
Repeated roots as a limit case.

Remark:

- Case (3), where $4a_0 - a_1^2 = 0$ can be obtained as the limit $\beta \to 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as $\beta \to 0$ for fixed t.
- Since $\cos(\beta t) \to 1$ as $\beta \to 0$, we conclude that
 $$y_{1\beta}(t) = e^{-\frac{a_1}{2}t} \cos(\beta t)$$
Repeated roots as a limit case.

Remark:
- Case (3), where \(4a_0 - a_1^2 = 0\) can be obtained as the limit \(\beta \to 0\) in case (2).
- Let us study the solutions of the differential equation in the case (2) as \(\beta \to 0\) for fixed \(t\).
- Since \(\cos(\beta t) \to 1\) as \(\beta \to 0\), we conclude that

 \[y_{1\beta}(t) = e^{-\frac{a_1}{2} t} \cos(\beta t) \to e^{-\frac{a_1}{2} t}\]
Repeated roots as a limit case.

Remark:

- Case (3), where $4a_0 - a_1^2 = 0$ can be obtained as the limit $\beta \to 0$ in case (2).

- Let us study the solutions of the differential equation in the case (2) as $\beta \to 0$ for fixed t.

- Since $\cos(\beta t) \to 1$ as $\beta \to 0$, we conclude that

$$y_{1\beta}(t) = e^{-\frac{a_1}{2} t} \cos(\beta t) \to e^{-\frac{a_1}{2} t} = y_1(t).$$
Repeated roots as a limit case.

Remark:

- Case (3), where $4a_0 - a_1^2 = 0$ can be obtained as the limit $\beta \to 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as $\beta \to 0$ for fixed t.
- Since $\cos(\beta t) \to 1$ as $\beta \to 0$, we conclude that
 \[
y_{1\beta}(t) = e^{-\frac{a_1}{2}t} \cos(\beta t) \to e^{-\frac{a_1}{2}t} = y_{1}(t).
 \]
- Since $\frac{\sin(\beta t)}{\beta t} \to 1$ as $\beta \to 0$,

 Since $\frac{\sin(\beta t)}{\beta t} \to 1$ as $\beta \to 0$,
Repeated roots as a limit case.

Remark:

- Case (3), where $4a_0 - a_1^2 = 0$ can be obtained as the limit $\beta \to 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as $\beta \to 0$ for fixed t.
- Since $\cos(\beta t) \to 1$ as $\beta \to 0$, we conclude that
 \[y_{1\beta}(t) = e^{-\frac{a_1}{2} t} \cos(\beta t) \to e^{-\frac{a_1}{2} t} = y_1(t). \]
- Since $\frac{\sin(\beta t)}{\beta t} \to 1$ as $\beta \to 0$, that is, $\sin(\beta t) \to \beta t$,
Repeated roots as a limit case.

Remark:

- Case (3), where $4a_0 - a_1^2 = 0$ can be obtained as the limit $\beta \to 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as $\beta \to 0$ for fixed t.
- Since $\cos(\beta t) \to 1$ as $\beta \to 0$, we conclude that
 \[y_{1\beta}(t) = e^{-\frac{a_1}{2} t} \cos(\beta t) \to e^{-\frac{a_1}{2} t} = y_1(t). \]
- Since $\frac{\sin(\beta t)}{\beta t} \to 1$ as $\beta \to 0$, that is, $\sin(\beta t) \to \beta t$,
 \[y_{2\beta}(t) = e^{-\frac{a_1}{2} t} \sin(\beta t). \]
Repeated roots as a limit case.

Remark:

► Case (3), where \(4a_0 - a_1^2 = 0\) can be obtained as the limit \(\beta \to 0\) in case (2).

► Let us study the solutions of the differential equation in the case (2) as \(\beta \to 0\) for fixed \(t\).

► Since \(\cos(\beta t) \to 1\) as \(\beta \to 0\), we conclude that

\[
y_{1\beta}(t) = e^{-\frac{a_1}{2} t} \cos(\beta t) \to e^{-\frac{a_1}{2} t} = y_1(t).
\]

► Since \(\frac{\sin(\beta t)}{\beta t} \to 1\) as \(\beta \to 0\), that is, \(\sin(\beta t) \to \beta t\),

\[
y_{2\beta}(t) = e^{-\frac{a_1}{2} t} \sin(\beta t) \to \beta t e^{-\frac{a_1}{2} t}
\]
Repeated roots as a limit case.

Remark:

- Case (3), where \(4a_0 - a_1^2 = 0 \) can be obtained as the limit \(\beta \to 0 \) in case (2).
- Let us study the solutions of the differential equation in the case (2) as \(\beta \to 0 \) for fixed \(t \).
- Since \(\cos(\beta t) \to 1 \) as \(\beta \to 0 \), we conclude that
 \[
y_{1\beta}(t) = e^{-\frac{a_1}{2}t} \cos(\beta t) \to e^{-\frac{a_1}{2}t} = y_1(t).
\]
- Since \(\frac{\sin(\beta t)}{\beta t} \to 1 \) as \(\beta \to 0 \), that is, \(\sin(\beta t) \to \beta t \),
 \[
y_{2\beta}(t) = e^{-\frac{a_1}{2}t} \sin(\beta t) \to \beta t e^{-\frac{a_1}{2}t} \to 0.
\]
Repeated roots as a limit case.

Remark:

- Case (3), where $4a_0 - a_1^2 = 0$ can be obtained as the limit $\beta \to 0$ in case (2).

- Let us study the solutions of the differential equation in the case (2) as $\beta \to 0$ for fixed t.

- Since $\cos(\beta t) \to 1$ as $\beta \to 0$, we conclude that

 $$y_{1\beta}(t) = e^{-\frac{a_1}{2} t} \cos(\beta t) \to e^{-\frac{a_1}{2} t} = y_1(t).$$

- Since $\frac{\sin(\beta t)}{\beta t} \to 1$ as $\beta \to 0$, that is, $\sin(\beta t) \to \beta t$,

 $$y_{2\beta}(t) = e^{-\frac{a_1}{2} t} \sin(\beta t) \to \beta t e^{-\frac{a_1}{2} t} \to 0.$$

- Is $y_2(t) = t y_1(t)$ solution of the differential equation?
Repeated roots as a limit case.

Remark:

- Case (3), where \(4a_0 - a_1^2 = 0\) can be obtained as the limit \(\beta \to 0\) in case (2).
- Let us study the solutions of the differential equation in the case (2) as \(\beta \to 0\) for fixed \(t\).
- Since \(\cos(\beta t) \to 1\) as \(\beta \to 0\), we conclude that
 \[
y_{1\beta}(t) = e^{-\frac{a_1}{2}t} \cos(\beta t) \to e^{-\frac{a_1}{2}t} = y_1(t).
 \]
- Since \(\frac{\sin(\beta t)}{\beta t} \to 1\) as \(\beta \to 0\), that is, \(\sin(\beta t) \to \beta t\),
 \[
y_{2\beta}(t) = e^{-\frac{a_1}{2}t} \sin(\beta t) \to \beta t e^{-\frac{a_1}{2}t} \to 0.
 \]
- Is \(y_2(t) = ty_1(t)\) solution of the differential equation? Introducing \(y_2\) in the differential equation one obtains: Yes.
Repeated roots as a limit case.

Remark:

- Case (3), where \(4a_0 - a_1^2 = 0\) can be obtained as the limit \(\beta \to 0\) in case (2).
- Let us study the solutions of the differential equation in the case (2) as \(\beta \to 0\) for fixed \(t\).
- Since \(\cos(\beta t) \to 1\) as \(\beta \to 0\), we conclude that
 \[
y_{1\beta}(t) = e^{-\frac{a_1}{2} t} \cos(\beta t) \to e^{-\frac{a_1}{2} t} = y_1(t).
 \]
- Since \(\frac{\sin(\beta t)}{\beta t}\) \(\to 1\) as \(\beta \to 0\), that is, \(\sin(\beta t) \to \beta t\),
 \[
y_{2\beta}(t) = e^{-\frac{a_1}{2} t} \sin(\beta t) \to \beta t e^{-\frac{a_1}{2} t} \to 0.
 \]
- Is \(y_2(t) = t \, y_1(t)\) solution of the differential equation? Introducing \(y_2\) in the differential equation one obtains: Yes.
- Since \(y_2\) is not proportional to \(y_1\), the functions \(y_1, y_2\) are a fundamental set for the differential equation in case (3).
Second order linear homogeneous ODE (Sect. 2.4).

- Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).
- Repeated roots as a limit case.
- **Main result for repeated roots.**
- Reduction of the order method:
 - Constant coefficients equations.
 - Variable coefficients equations.
Main result for repeated roots.

Theorem

If \(a_1, a_0 \in \mathbb{R} \) satisfy that \(a_1^2 = 4a_0 \), then the functions

\[
y_1(t) = e^{-\frac{a_1}{2} t}, \quad y_2(t) = t e^{-\frac{a_1}{2} t},
\]

are a fundamental solution set for the differential equation

\[
y'' + a_1y' + a_0y = 0.
\]
Main result for repeated roots.

Theorem

If $a_1, a_0 \in R$ satisfy that $a_1^2 = 4a_0$, then the functions

$$y_1(t) = e^{-\frac{a_1}{2}t}, \quad y_2(t) = t e^{-\frac{a_1}{2}t},$$

are a fundamental solution set for the differential equation

$$y'' + a_1y' + a_0y = 0.$$

Example

Find the general solution of $9y'' + 6y' + y = 0$.

Solution:

The characteristic equation is $9r^2 + 6r + 1 = 0$, so

$$r \pm = \frac{-6 \pm \sqrt{36 - 36}}{2} \Rightarrow r \pm = \frac{-1}{3}.$$

The Theorem above implies that the general solution is

$$y(t) = c_1 e^{-t/3} + c_2 t e^{-t/3}.$$

\triangleright
Main result for repeated roots.

Theorem

If \(a_1, a_0 \in R \) satisfy that \(a_1^2 = 4a_0 \), then the functions

\[
y_1(t) = e^{-\frac{a_1}{2} t}, \quad y_2(t) = t \ e^{-\frac{a_1}{2} t},
\]

are a fundamental solution set for the differential equation

\[
y'' + a_1y' + a_0y = 0.
\]

Example

Find the general solution of \(9y'' + 6y' + y = 0 \).

Solution: The characteristic equation is \(9r^2 + 6r + 1 = 0 \),
Main result for repeated roots.

Theorem

If \(a_1, a_0 \in \mathbb{R}\) satisfy that \(a_1^2 = 4a_0\), then the functions

\[
y_1(t) = e^{-\frac{a_1}{2} t}, \quad y_2(t) = t e^{-\frac{a_1}{2} t},
\]

are a fundamental solution set for the differential equation

\[
y'' + a_1 y' + a_0 y = 0.
\]

Example

Find the general solution of \(9y'' + 6y' + y = 0\).

Solution: The characteristic equation is \(9r^2 + 6r + 1 = 0\), so

\[
r_{\pm} = \frac{1}{(2)(9)} \left[-6 \pm \sqrt{36 - 36}\right]
\]
Main result for repeated roots.

Theorem
If \(a_1, a_0 \in \mathbb{R} \) satisfy that \(a_1^2 = 4a_0 \), then the functions
\[
y_1(t) = e^{-\frac{a_1}{2} t}, \quad y_2(t) = t e^{-\frac{a_1}{2} t},
\]
are a fundamental solution set for the differential equation
\[
y'' + a_1y' + a_0y = 0.
\]

Example
Find the general solution of \(9y'' + 6y' + y = 0 \).

Solution: The characteristic equation is \(9r^2 + 6r + 1 = 0 \), so
\[
r_{\pm} = \frac{1}{(2)(9)} \left[-6 \pm \sqrt{36 - 36} \right] \quad \Rightarrow \quad r_{\pm} = -\frac{1}{3}.
\]
Main result for repeated roots.

Theorem
If \(a_1, a_0 \in \mathbb{R} \) satisfy that \(a_1^2 = 4a_0 \), then the functions
\[
y_1(t) = e^{-\frac{a_1}{2} t}, \quad y_2(t) = t e^{-\frac{a_1}{2} t},
\]
are a fundamental solution set for the differential equation
\[
y'' + a_1 y' + a_0 y = 0.
\]

Example
Find the general solution of \(9y'' + 6y' + y = 0 \).

Solution: The characteristic equation is \(9r^2 + 6r + 1 = 0 \), so
\[
r_{\pm} = \frac{1}{(2)(9)} \left[-6 \pm \sqrt{36 - 36} \right] \quad \Rightarrow \quad r_{\pm} = -\frac{1}{3}.
\]
The Theorem above implies that the general solution is
\[
y(t) = c_1 e^{-t/3} + c_2 te^{-t/3}.
\]
Second order linear homogeneous ODE (Sect. 2.4).

- Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.
- Repeated roots as a limit case.
- Main result for repeated roots.
- **Reduction of the order method:**
 - Constant coefficients equations.
 - Variable coefficients equations.
Reduction of the order method: Constant coefficients.

Proof case $a_1^2 - 4a_0 = 0$:
Recall: The characteristic equation is $r^2 + a_1 r + a_0 = 0$,
Reduction of the order method: Constant coefficients.

Proof case $a_1^2 - 4a_0 = 0$:
Recall: The characteristic equation is $r^2 + a_1 r + a_0 = 0$, and its solutions are $r_{\pm} = (1/2) \left[-a_1 \pm \sqrt{a_1^2 - 4a_0} \right]$.

A second solution $y_2(t)$ not proportional to $y_1(t)$ can be found as follows: (D'Alembert ∼ 1750.)
Express: $y_2(t) = v(t)y_1(t)$, and find the equation that function v satisfies from the condition $y_2'' + a_1 y_2' + a_0 y_2 = 0$.

Reduction of the order method: Constant coefficients.

Proof case $a_1^2 - 4a_0 = 0$:
Recall: The characteristic equation is $r^2 + a_1 r + a_0 = 0$, and its solutions are $r_{\pm} = (1/2)[-a_1 \pm \sqrt{a_1^2 - 4a_0}]$.

The hypothesis $a_1^2 = 4a_0$ implies $r_+ = r_- = -a_1/2$.
Reduction of the order method: Constant coefficients.

Proof case \(a_1^2 - 4a_0 = 0 \):
Recall: The characteristic equation is \(r^2 + a_1 r + a_0 = 0 \), and its solutions are \(r_\pm = (1/2)\left[-a_1 \pm \sqrt{a_1^2 - 4a_0}\right] \).

The hypothesis \(a_1^2 = 4a_0 \) implies \(r_+ = r_- = -a_1/2 \).

So, the solution \(r_+ \) of the characteristic equation satisfies both

\[
 r_+^2 + a_1 r_+ + a_0 = 0, \quad 2r_+ + a_1 = 0.
\]
Reduction of the order method: Constant coefficients.

Proof case $a_1^2 - 4a_0 = 0$:

Recall: The characteristic equation is $r^2 + a_1r + a_0 = 0$, and its solutions are $r_{\pm} = (1/2)\left[-a_1 \pm \sqrt{a_1^2 - 4a_0}\right]$.

The hypothesis $a_1^2 = 4a_0$ implies $r_+ = r_- = -a_1/2$.

So, the solution r_+ of the characteristic equation satisfies both

$$r_+^2 + a_1 r_+ + a_0 = 0, \quad 2r_+ + a_1 = 0.$$

It is clear that $y_1(t) = e^{r_+ t}$ is solutions of the differential equation.
Reduction of the order method: Constant coefficients.

Proof case $a_1^2 - 4a_0 = 0$:
Recall: The characteristic equation is $r^2 + a_1r + a_0 = 0$, and its solutions are $r_\pm = (1/2)[-a_1 \pm \sqrt{a_1^2 - 4a_0}]$.

The hypothesis $a_1^2 = 4a_0$ implies $r_+ = r_- = -a_1/2$.

So, the solution r_+ of the characteristic equation satisfies both

$$r_+^2 + a_1 r_+ + a_0 = 0, \quad 2r_+ + a_1 = 0.$$

It is clear that $y_1(t) = e^{r_+ t}$ is solutions of the differential equation.

A second solution y_2 not proportional to y_1 can be found as follows: (D’Alembert \sim 1750.)
Reduction of the order method: Constant coefficients.

Proof case $a_1^2 - 4a_0 = 0$:
Recall: The characteristic equation is $r^2 + a_1 r + a_0 = 0$, and its solutions are $r_{\pm} = (1/2)[-a_1 \pm \sqrt{a_1^2 - 4a_0}]$.

The hypothesis $a_1^2 = 4a_0$ implies $r_+ = r_- = -a_1/2$.

So, the solution r_+ of the characteristic equation satisfies both

$$r_+^2 + a_1 r_+ + a_0 = 0, \quad 2r_+ + a_1 = 0.$$

It is clear that $y_1(t) = e^{r_+ t}$ is solutions of the differential equation.

A second solution y_2 not proportional to y_1 can be found as follows: (D’Alembert ~ 1750.)

Express: $y_2(t) = \nu(t) y_1(t)$, and find the equation that function ν satisfies from the condition $y_2'' + a_1 y_2' + a_0 y_2 = 0$.
Reduction of the order method: Constant coefficients.

Recall: \(y_2 = vy_1 \) and \(y_2'' + a_1 y_2' + a_0 y_2 = 0 \).
Reduction of the order method: Constant coefficients.

Recall: \(y_2 = vy_1 \) and \(y''_2 + a_1y'_2 + a_0y_2 = 0 \). So, \(y_2 = ve^{r_1t} \)
Reduction of the order method: Constant coefficients.

Recall: \(y_2 = vy_1 \) and \(y_2'' + a_1y_2' + a_0y_2 = 0 \). So, \(y_2 = ve^{r_+t} \) and

\[
y_2' = v'e^{r_+t} + r_+ve^{r_+t},
\]

Recall that \(r_+ \) satisfies:

\[
r_+^2 + a_1r_+ + a_0 = 0 \quad \text{and} \quad 2r_+ + a_1 = 0.
\]

\[
y_2'' = 0 \quad \Rightarrow \quad y_2 = \left(c_1 + c_2t \right)e^{r_+t}.
\]
Reduction of the order method: Constant coefficients.

Recall: \(y_2 = vy_1 \) and \(y_2'' + a_1y_2' + a_0y_2 = 0 \). So, \(y_2 = ve^{r_+ t} \) and

\[
y_2' = v' e^{r_+ t} + r_+ ve^{r_+ t}, \quad y_2'' = v'' e^{r_+ t} + 2r_+ v' e^{r_+ t} + r_+^2 ve^{r_+ t}.
\]
Reduction of the order method: Constant coefficients.

Recall: $y_2 = vy_1$ and $y''_2 + a_1 y'_2 + a_0 y_2 = 0$. So, $y_2 = ve^{r_+ t}$ and

$$y'_2 = v' e^{r_+ t} + r_+ v e^{r_+ t}, \quad y''_2 = v'' e^{r_+ t} + 2r_+ v' e^{r_+ t} + r_+^2 v e^{r_+ t}.$$

Introducing this information into the differential equation

$$[v'' + 2r_+ v' + r_+^2 v] e^{r_+ t} + a_1 [v' + r_+ v] e^{r_+ t} + a_0 v e^{r_+ t} = 0.$$
Reduction of the order method: Constant coefficients.

Recall: \(y_2 = v y_1 \) and \(y_2'' + a_1 y_2' + a_0 y_2 = 0 \). So, \(y_2 = ve^{r_+ t} \) and

\[
y_2' = v'e^{r_+ t} + r_+ ve^{r_+ t}, \quad y_2'' = v'' e^{r_+ t} + 2r_+ v' e^{r_+ t} + r_+^2 ve^{r_+ t}.
\]

Introducing this information into the differential equation

\[
\left[v'' + 2r_+ v' + r_+^2 v \right] e^{r_+ t} + a_1 \left[v' + r_+ v \right] e^{r_+ t} + a_0 v e^{r_+ t} = 0.
\]

\[
\left[v'' + 2r_+ v' + r_+^2 v \right] + a_1 \left[v' + r_+ v \right] + a_0 v = 0
\]
Reduction of the order method: Constant coefficients.

Recall: \(y_2 = v y_1 \) and \(y_2'' + a_1 y_2' + a_0 y_2 = 0 \). So, \(y_2 = v e^{r_+ t} \) and

\[
y_2' = v' e^{r_+ t} + r_+ v e^{r_+ t}, \quad y_2'' = v'' e^{r_+ t} + 2r_+ v' e^{r_+ t} + r_+^2 v e^{r_+ t}.
\]

Introducing this information into the differential equation

\[
\left[v'' + 2r_+ v' + r_+^2 v \right] e^{r_+ t} + a_1 \left[v' + r_+ v \right] e^{r_+ t} + a_0 v e^{r_+ t} = 0.
\]

\[
\left[v'' + 2r_+ v' + r_+^2 v \right] + a_1 \left[v' + r_+ v \right] + a_0 v = 0
\]

\[
v'' + (2r_+ + a_1) v' + \left(r_+^2 + a_1 r_+ + a_0 \right) v = 0
\]
Reduction of the order method: Constant coefficients.

Recall: $y_2 = vy_1$ and $y''_2 + a_1y'_2 + a_0y_2 = 0$. So, $y_2 = ve^{r_+t}$ and

$$y'_2 = v'e^{r_+t} + r_+ve^{r_+t}, \quad y''_2 = v''e^{r_+t} + 2r_+v'e^{r_+t} + r_+^2ve^{r_+t}.$$

Introducing this information into the differential equation

$$[v'' + 2r_+v' + r_+^2v]e^{r_+t} + a_1[v' + r_+v]e^{r_+t} + a_0ve^{r_+t} = 0.$$

$$[v'' + 2r_+v' + r_+^2v] + a_1[v' + r_+v] + a_0v = 0$$

$$v'' + (2r_+ + a_1)v' + (r_+^2 + a_1r_+ + a_0)v = 0$$

Recall that r_+ satisfies: $r_+^2 + a_1r_+ + a_0 = 0$
Reduction of the order method: Constant coefficients.

Recall: \(y_2 = vy_1 \) and \(y_2'' + a_1 y_2' + a_0 y_2 = 0 \). So, \(y_2 = ve^{r_+ t} \) and

\[
y_2' = v' e^{r_+ t} + r_+ ve^{r_+ t}, \quad y_2'' = v'' e^{r_+ t} + 2r_+ v' e^{r_+ t} + r_+^2 ve^{r_+ t}.
\]

Introducing this information into the differential equation

\[
\left[v'' + 2r_+ v' + r_+^2 v \right] e^{r_+ t} + a_1 \left[v' + r_+ v \right] e^{r_+ t} + a_0 v e^{r_+ t} = 0.
\]

\[
\left[v'' + 2r_+ v' + r_+^2 v \right] + a_1 \left[v' + r_+ v \right] + a_0 v = 0
\]

\[
v'' + (2r_+ + a_1) v' + (r_+^2 + a_1 r_+ + a_0) v = 0
\]

Recall that \(r_+ \) satisfies: \(r_+^2 + a_1 r_+ + a_0 = 0 \) and \(2r_+ + a_1 = 0 \).
Reduction of the order method: Constant coefficients.

Recall: \(y_2 = v y_1 \) and \(y''_2 + a_1 y'_2 + a_0 y_2 = 0 \). So, \(y_2 = v e^{r_+ t} \) and

\[
y'_2 = v' e^{r_+ t} + r_+ v e^{r_+ t}, \quad y''_2 = v'' e^{r_+ t} + 2 r_+ v' e^{r_+ t} + r_+^2 v e^{r_+ t}.
\]

Introducing this information into the differential equation

\[
[v'' + 2 r_+ v' + r_+^2 v] e^{r_+ t} + a_1 [v' + r_+ v] e^{r_+ t} + a_0 v e^{r_+ t} = 0.
\]

\[
[v'' + 2 r_+ v' + r_+^2 v] + a_1 [v' + r_+ v] + a_0 v = 0
\]

\[
v'' + (2 r_+ + a_1) v' + (r_+^2 + a_1 r_+ + a_0) v = 0
\]

Recall that \(r_+ \) satisfies: \(r_+^2 + a_1 r_+ + a_0 = 0 \) and \(2 r_+ + a_1 = 0 \).

\(v'' = 0 \)
Reduction of the order method: Constant coefficients.

Recall: \(y_2 = vy_1 \) and \(y_2'' + a_1 y_2' + a_0 y_2 = 0 \). So, \(y_2 = ve^{r_+ t} \) and

\[
y_2' = v' e^{r_+ t} + r_+ ve^{r_+ t}, \quad y_2'' = v'' e^{r_+ t} + 2r_+ v' e^{r_+ t} + r_+^2 ve^{r_+ t}.
\]

Introducing this information into the differential equation

\[
\left[v'' + 2r_+ v' + r_+^2 v \right] e^{r_+ t} + a_1 \left[v' + r_+ v \right] e^{r_+ t} + a_0 v e^{r_+ t} = 0.
\]

\[
\left[v'' + 2r_+ v' + r_+^2 v \right] + a_1 \left[v' + r_+ v \right] + a_0 v = 0
\]

\[
v'' + (2r_+ + a_1) v' + (r_+^2 + a_1 r_+ + a_0) v = 0
\]

Recall that \(r_+ \) satisfies: \(r_+^2 + a_1 r_+ + a_0 = 0 \) and \(2r_+ + a_1 = 0 \).

\[
v'' = 0 \quad \Rightarrow \quad v = (c_1 + c_2 t)
\]
Reduction of the order method: Constant coefficients.

Recall: \(y_2 = vy_1 \) and \(y_2'' + a_1 y_2' + a_0 y_2 = 0 \). So, \(y_2 = ve^{r_+ t} \) and

\[
y_2' = v'e^{r_+ t} + r_+ ve^{r_+ t}, \quad y_2'' = v''e^{r_+ t} + 2r_+ v'e^{r_+ t} + r_+^2 ve^{r_+ t}.
\]

Introducing this information into the differential equation

\[
\left[v'' + 2r_+ v' + r_+^2 v \right] e^{r_+ t} + a_1 \left[v' + r_+ v \right] e^{r_+ t} + a_0 v e^{r_+ t} = 0.
\]

\[
\left[v'' + 2r_+ v' + r_+^2 v \right] + a_1 \left[v' + r_+ v \right] + a_0 v = 0
\]

\[
v'' + (2r_+ + a_1) v' + (r_+^2 + a_1 r_+ + a_0) v = 0
\]

Recall that \(r_+ \) satisfies: \(r_+^2 + a_1 r_+ + a_0 = 0 \) and \(2r_+ + a_1 = 0 \).

\[
v'' = 0 \quad \Rightarrow \quad v = (c_1 + c_2 t) \quad \Rightarrow \quad y_2 = (c_1 + c_2 t) e^{r_+ t}.
\]
Reduction of the order method: Constant coefficients.

Recall: We have obtained that \(y_2(t) = (c_1 + c_2 t) e^{rt} \).
Reduction of the order method: Constant coefficients.

Recall: We have obtained that $y_2(t) = (c_1 + c_2 t) e^{r_t}$.

If $c_2 = 0$, then $y_2 = c_1 e^{r_t}$ and $y_1 = e^{r_t}$ are linearly dependent functions.
Reduction of the order method: Constant coefficients.

Recall: We have obtained that $y_2(t) = (c_1 + c_2 t) e^{r_+ t}$.

If $c_2 = 0$, then $y_2 = c_1 e^{r_+ t}$ and $y_1 = e^{r_+ t}$ are linearly dependent functions.

If $c_2 \neq 0$, then $y_2 = (c_1 + c_2 t) e^{r_+ t}$ and $y_1 = e^{r_+ t}$ are linearly independent functions.
Reduction of the order method: Constant coefficients.

Recall: We have obtained that $y_2(t) = (c_1 + c_2 t) e^{r+t}$.

If $c_2 = 0$, then $y_2 = c_1 e^{r+t}$ and $y_1 = e^{r+t}$ are linearly dependent functions.

If $c_2 \neq 0$, then $y_2 = (c_1 + c_2 t) e^{r+t}$ and $y_1 = e^{r+t}$ are linearly independent functions.

Simplest choice: $c_1 = 0$ and $c_2 = 1$.
Reduction of the order method: Constant coefficients.

Recall: We have obtained that \(y_2(t) = (c_1 + c_2 t) e^{r+t} \).

If \(c_2 = 0 \), then \(y_2 = c_1 e^{r+t} \) and \(y_1 = e^{r+t} \) are linearly dependent functions.

If \(c_2 \neq 0 \), then \(y_2 = (c_1 + c_2 t) e^{r+t} \) and \(y_1 = e^{r+t} \) are linearly independent functions.

Simplest choice: \(c_1 = 0 \) and \(c_2 = 1 \). Then, a fundamental solution set to the differential equation is

\[
\begin{align*}
y_1(t) &= e^{r+t}, \\
y_2(t) &= t e^{r+t}
\end{align*}
\]
Reduction of the order method: Constant coefficients.

Recall: We have obtained that $y_2(t) = (c_1 + c_2 t) e^{r_1 t}$.

If $c_2 = 0$, then $y_2 = c_1 e^{r_1 t}$ and $y_1 = e^{r_1 t}$ are linearly dependent functions.

If $c_2 \neq 0$, then $y_2 = (c_1 + c_2 t) e^{r_1 t}$ and $y_1 = e^{r_1 t}$ are linearly independent functions.

Simplest choice: $c_1 = 0$ and $c_2 = 1$. Then, a fundamental solution set to the differential equation is

$$y_1(t) = e^{r_1 t}, \quad y_2(t) = t e^{r_1 t}$$

The general solution to the differential equation is

$$y(t) = \tilde{c}_1 e^{r_1 t} + \tilde{c}_2 t e^{r_1 t}.$$
Reduction of the order method: Constant coefficients.

Example
Find the solution to the initial value problem

\[9y'' + 6y' + y = 0, \quad y(0) = 1, \quad y'(0) = \frac{5}{3}. \]
Reduction of the order method: Constant coefficients.

Example
Find the solution to the initial value problem

\[9y'' + 6y' + y = 0, \quad y(0) = 1, \quad y'(0) = \frac{5}{3}. \]

Solution: The solutions of \(9r^2 + 6r + 1 = 0 \), are \(r_+ = r_- = -\frac{1}{3} \).
Reduction of the order method: Constant coefficients.

Example
Find the solution to the initial value problem

\[9y'' + 6y' + y = 0, \quad y(0) = 1, \quad y'(0) = \frac{5}{3}. \]

Solution: The solutions of \(9r^2 + 6r + 1 = 0 \), are \(r_+ = r_- = -\frac{1}{3} \).

The Theorem above says that the general solution is

\[y(t) = c_1 e^{-t/3} + c_2 te^{-t/3} \]
Reduction of the order method: Constant coefficients.

Example
Find the solution to the initial value problem

\[9y'' + 6y' + y = 0, \quad y(0) = 1, \quad y'(0) = \frac{5}{3}. \]

Solution: The solutions of \(9r^2 + 6r + 1 = 0 \), are \(r_+ = r_- = -\frac{1}{3} \).

The Theorem above says that the general solution is

\[
y(t) = c_1 e^{-t/3} + c_2 te^{-t/3} \quad \Rightarrow \quad y'(t) = -\frac{c_1}{3} e^{-t/3} + c_2 \left(1 - \frac{t}{3}\right) e^{-t/3}.
\]
Example

Find the solution to the initial value problem

\[9y'' + 6y' + y = 0, \quad y(0) = 1, \quad y'(0) = \frac{5}{3}. \]

Solution: The solutions of \(9r^2 + 6r + 1 = 0 \), are \(r_+ = r_- = -\frac{1}{3} \).

The Theorem above says that the general solution is

\[y(t) = c_1 e^{-t/3} + c_2 te^{-t/3} \Rightarrow y'(t) = -\frac{c_1}{3} e^{-t/3} + c_2 \left(1 - \frac{t}{3} \right) e^{-t/3}. \]

The initial conditions imply that

\[1 = y(0) \]
Reduction of the order method: Constant coefficients.

Example
Find the solution to the initial value problem

\[9y'' + 6y' + y = 0, \quad y(0) = 1, \quad y'(0) = \frac{5}{3}.\]

Solution: The solutions of \(9r^2 + 6r + 1 = 0\), are \(r_+ = r_- = -\frac{1}{3}\).

The Theorem above says that the general solution is

\[y(t) = c_1e^{-t/3} + c_2te^{-t/3} \quad \Rightarrow \quad y'(t) = -\frac{c_1}{3}e^{-t/3} + c_2\left(1 - \frac{t}{3}\right)e^{-t/3}.\]

The initial conditions imply that

\[1 = y(0) = c_1,\]
Reduction of the order method: Constant coefficients.

Example
Find the solution to the initial value problem

\[9y'' + 6y' + y = 0, \quad y(0) = 1, \quad y'(0) = \frac{5}{3}. \]

Solution: The solutions of \(9r^2 + 6r + 1 = 0 \), are \(r_+ = r_- = -\frac{1}{3} \).

The Theorem above says that the general solution is

\[y(t) = c_1 e^{-t/3} + c_2 t e^{-t/3} \quad \Rightarrow \quad y'(t) = -\frac{c_1}{3} e^{-t/3} + c_2 \left(1 - \frac{t}{3}\right) e^{-t/3}. \]

The initial conditions imply that

\[1 = y(0) = c_1, \]
\[\frac{5}{3} = y'(0) \]
Reduction of the order method: Constant coefficients.

Example

Find the solution to the initial value problem

\[9y'' + 6y' + y = 0, \quad y(0) = 1, \quad y'(0) = \frac{5}{3}. \]

Solution: The solutions of \(9r^2 + 6r + 1 = 0 \), are \(r_+ = r_- = -\frac{1}{3} \).

The Theorem above says that the general solution is

\[y(t) = c_1 e^{-t/3} + c_2 te^{-t/3} \Rightarrow y'(t) = -\frac{c_1}{3} e^{-t/3} + c_2 \left(1 - \frac{t}{3}\right) e^{-t/3}. \]

The initial conditions imply that

\[
1 = y(0) = c_1, \\
\frac{5}{3} = y'(0) = -\frac{c_1}{3} + c_2
\]
Reduction of the order method: Constant coefficients.

Example

Find the solution to the initial value problem

\[9y'' + 6y' + y = 0, \quad y(0) = 1, \quad y'(0) = \frac{5}{3}. \]

Solution: The solutions of \(9r^2 + 6r + 1 = 0 \), are \(r_+ = r_- = -\frac{1}{3} \).

The Theorem above says that the general solution is

\[y(t) = c_1 e^{-t/3} + c_2 t e^{-t/3} \quad \Rightarrow \quad y'(t) = -\frac{c_1}{3} e^{-t/3} + c_2 \left(1 - \frac{t}{3}\right) e^{-t/3}. \]

The initial conditions imply that

\[
\begin{align*}
1 &= y(0) = c_1, \\
\frac{5}{3} &= y'(0) = -\frac{c_1}{3} + c_2
\end{align*}
\]

\[\Rightarrow \quad c_1 = 1, \quad c_2 = 2. \]
Reduction of the order method: Constant coefficients.

Example
Find the solution to the initial value problem

\[9y'' + 6y' + y = 0, \quad y(0) = 1, \quad y'(0) = \frac{5}{3}. \]

Solution: The solutions of \(9r^2 + 6r + 1 = 0 \), are \(r_+ = r_- = -\frac{1}{3} \).

The Theorem above says that the general solution is

\[y(t) = c_1 e^{-t/3} + c_2 t e^{-t/3} \quad \Rightarrow \quad y'(t) = -\frac{c_1}{3} e^{-t/3} + c_2 \left(1 - \frac{t}{3}\right) e^{-t/3}. \]

The initial conditions imply that

\[
\begin{aligned}
1 &= y(0) = c_1, \\
\frac{5}{3} &= y'(0) = -\frac{c_1}{3} + c_2
\end{aligned}
\quad \Rightarrow \quad c_1 = 1, \quad c_2 = 2.
\]

We conclude that \(y(t) = (1 + 2t) e^{-t/3} \). \(\triangleright \)
Second order linear homogeneous ODE (Sect. 2.4).

- Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).
- Repeated roots as a limit case.
- Main result for repeated roots.
- **Reduction of the order method:**
 - Constant coefficients equations.
 - **Variable coefficients equations.**
Reduction of the order method: Variable coefficients.

Remark: The same idea used to prove the constant coefficients Theorem above can be used in variable coefficients equations.
Reduction of the order method: Variable coefficients.

Remark: The same idea used to prove the constant coefficients Theorem above can be used in variable coefficients equations.

Theorem

Given continuous functions $p, q : (t_1, t_2) \rightarrow \mathbb{R}$, *let* $y_1 : (t_1, t_2) \rightarrow \mathbb{R}$ *be a solution of*

$$y'' + p(t) y' + q(t) y = 0,$$

If the function $v : (t_1, t_2) \rightarrow \mathbb{R}$ *is solution of*

$$y_1(t) v'' + [2y'(t) + p(t)y_1(t)] v' = 0. \quad (3)$$

then the functions y_1 *and* $y_2 = v y_1$ *are fundamental solutions to the differential equation above.*
Reduction of the order method: Variable coefficients.

Remark: The same idea used to prove the constant coefficients Theorem above can be used in variable coefficients equations.

Theorem

Given continuous functions $p, q : (t_1, t_2) \to \mathbb{R}$, let $y_1 : (t_1, t_2) \to \mathbb{R}$ be a solution of

$$y'' + p(t) y' + q(t) y = 0,$$

If the function $v : (t_1, t_2) \to \mathbb{R}$ is solution of

$$y_1(t) v'' + [2y'(t) + p(t)y_1(t)] v' = 0. \quad (3)$$

then the functions y_1 and $y_2 = v y_1$ are fundamental solutions to the differential equation above.

Remark: The reason for the name Reduction of order method is that the function v does not appear in Eq. (3). This is a first order equation in v'.
Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

\[t^2 y'' + 2ty' - 2y = 0, \]

knowing that \(y_1(t) = t \) is a solution.
Reduction of the order method: Variable coefficients.

Example
Find a fundamental set of solutions to

\[t^2 y'' + 2ty' - 2y = 0, \]

knowing that \(y_1(t) = t \) is a solution.

Solution: Express \(y_2(t) = v(t) y_1(t) \).
Example
Find a fundamental set of solutions to

\[t^2 y'' + 2ty' - 2y = 0, \]

knowing that \(y_1(t) = t \) is a solution.

Solution: Express \(y_2(t) = \nu(t)y_1(t) \). The equation for \(\nu \) comes from \(t^2y_2'' + 2ty_2' - 2y_2 = 0. \)
Example
Find a fundamental set of solutions to
\[t^2 y'' + 2ty' - 2y = 0, \]
knowing that \(y_1(t) = t \) is a solution.

Solution: Express \(y_2(t) = v(t) y_1(t) \). The equation for \(v \) comes from \(t^2 y_2'' + 2ty_2' - 2y_2 = 0 \). We need to compute
\[y_2 = v \cdot t, \]
Example
Find a fundamental set of solutions to
\[t^2 y'' + 2ty' - 2y = 0, \]
knowing that \(y_1(t) = t \) is a solution.

Solution: Express \(y_2(t) = \nu(t) y_1(t) \). The equation for \(\nu \) comes from \(t^2 y_2'' + 2ty_2' - 2y_2 = 0 \). We need to compute
\[y_2 = \nu t, \quad y_2' = t \nu' + \nu, \]
Example
Find a fundamental set of solutions to
\[t^2 y'' + 2ty' - 2y = 0, \]
knowing that \(y_1(t) = t \) is a solution.

Solution: Express \(y_2(t) = v(t)y_1(t) \). The equation for \(v \) comes from \(t^2 y_2'' + 2ty_2' - 2y_2 = 0 \). We need to compute
\[
\begin{align*}
y_2 &= v \cdot t, \\
y_2' &= t \cdot v' + v, \\
y_2'' &= t \cdot v'' + 2v'.
\end{align*}
\]
Example
Find a fundamental set of solutions to
\[t^2 y'' + 2ty' - 2y = 0, \]
knowing that \(y_1(t) = t \) is a solution.

Solution: Express \(y_2(t) = v(t) y_1(t) \). The equation for \(v \) comes from \(t^2 y''_2 + 2ty'_2 - 2y_2 = 0 \). We need to compute
\[
\begin{align*}
y_2 &= v t, \\
y'_2 &= t v' + v, \\
y''_2 &= t v'' + 2v'.
\end{align*}
\]
So, the equation for \(v \) is given by
\[
t^2 \left(t v'' + 2v'\right) + 2t \left(t v' + v\right) - 2t v = 0
\]
Reduction of the order method: Variable coefficients.

Example
Find a fundamental set of solutions to
\[t^2 y'' + 2ty' - 2y = 0, \]
knowing that \(y_1(t) = t \) is a solution.

Solution: Express \(y_2(t) = v(t) y_1(t) \). The equation for \(v \) comes from \(t^2 y_2'' + 2ty_2' - 2y_2 = 0 \). We need to compute
\[
\begin{align*}
 y_2 &= vt, & y_2' &= tv' + v, & y_2'' &= tv'' + 2v'. \\
\end{align*}
\]
So, the equation for \(v \) is given by
\[
\begin{align*}
 t^2 (tv'' + 2v') + 2t (tv' + v) - 2tv &= 0 \\
 t^3 v'' + (2t^2 + 2t^2) v' + (2t - 2t) v &= 0
\end{align*}
\]
Example
Find a fundamental set of solutions to
\[t^2 y'' + 2ty' - 2y = 0, \]
knowing that \(y_1(t) = t \) is a solution.

Solution: Express \(y_2(t) = v(t) y_1(t) \). The equation for \(v \) comes from \(t^2 y_2'' + 2ty_2' - 2y_2 = 0 \). We need to compute
\[
\begin{align*}
y_2 &= v t, \\
y_2' &= t v' + v, \\
y_2'' &= t v'' + 2v'.
\end{align*}
\]
So, the equation for \(v \) is given by
\[
\begin{align*}
t^2 (t v'' + 2v') + 2t (t v' + v) - 2t v &= 0 \\
t^3 v'' + (2t^2 + 2t^2) v' + (2t - 2t) v &= 0 \\
t^3 v'' + (4t^2) v' &= 0
\end{align*}
\]
Reduction of the order method: Variable coefficients.

Example
Find a fundamental set of solutions to
\[t^2 y'' + 2ty' - 2y = 0, \]
knowing that \(y_1(t) = t \) is a solution.

Solution: Express \(y_2(t) = v(t) y_1(t) \). The equation for \(v \) comes from \(t^2 y_2'' + 2ty_2' - 2y_2 = 0 \). We need to compute
\[
\begin{align*}
y_2 &= v t, \\
y_2' &= t v' + v, \\
y_2'' &= t v'' + 2v'.
\end{align*}
\]
So, the equation for \(v \) is given by
\[
\begin{align*}
t^2(t v'' + 2v') + 2t(t v' + v) - 2t v &= 0 \\
t^3 v'' + (2t^2 + 2t^2) v' + (2t - 2t) v &= 0 \\
t^3 v'' + (4t^2) v' &= 0 \\
&\Rightarrow v'' + \frac{4}{t} v' = 0.
\end{align*}
\]
Reduction of the order method: Variable coefficients.

Example
Find a fundamental set of solutions to

\[t^2 y'' + 2ty' - 2y = 0, \]

knowing that \(y_1(t) = t \) is a solution.

Solution: Recall: \(v'' + \frac{4}{t}v' = 0. \)
Reduction of the order method: Variable coefficients.

Example
Find a fundamental set of solutions to
\[t^2 y'' + 2ty' - 2y = 0, \]
knowing that \(y_1(t) = t \) is a solution.

Solution: Recall: \(v'' + \frac{4}{t}v' = 0. \)
This is a first order equation for \(w = v' \),
Reduction of the order method: Variable coefficients.

Example
Find a fundamental set of solutions to
\[t^2 y'' + 2ty' - 2y = 0, \]
knowing that \(y_1(t) = t \) is a solution.

Solution: Recall: \(v'' + \frac{4}{t}v' = 0 \).

This is a first order equation for \(w = v' \), given by \(w' + \frac{4}{t}w = 0 \),
Reduction of the order method: Variable coefficients.

Example
Find a fundamental set of solutions to

\[t^2 y'' + 2ty' - 2y = 0, \]

knowing that \(y_1(t) = t \) is a solution.

Solution: Recall: \(v'' + \frac{4}{t}v' = 0. \)

This is a first order equation for \(w = v' \), given by \(w' + \frac{4}{t}w = 0 \), so

\[
\frac{w'}{w} = -\frac{4}{t}
\]
Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

\[t^2 y'' + 2ty' - 2y = 0, \]

knowing that \(y_1(t) = t \) is a solution.

Solution: Recall: \(v'' + \frac{4}{t}v' = 0. \)

This is a first order equation for \(w = v' \), given by \(w' + \frac{4}{t}w = 0 \), so

\[
\frac{w'}{w} = -\frac{4}{t} \Rightarrow \ln(w) = -4 \ln(t) + c_0
\]
Reduction of the order method: Variable coefficients.

Example
Find a fundamental set of solutions to
\[t^2 y'' + 2ty' - 2y = 0, \]
knowing that \(y_1(t) = t \) is a solution.

Solution: Recall: \(v'' + \frac{4}{t}v' = 0 \).

This is a first order equation for \(w = v' \), given by \(w' + \frac{4}{t}w = 0 \), so
\[
\frac{w'}{w} = -\frac{4}{t} \quad \Rightarrow \quad \ln(w) = -4\ln(t) + c_0 \quad \Rightarrow \quad w(t) = c_1 t^{-4}, \quad c_1 \in \mathbb{R}.
\]
Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

\[t^2 y'' + 2ty' - 2y = 0, \]

knowing that \(y_1(t) = t \) is a solution.

Solution: Recall: \(v'' + \frac{4}{t}v' = 0. \)

This is a first order equation for \(w = v' \), given by \(w' + \frac{4}{t}w = 0 \), so

\[
\frac{w'}{w} = -\frac{4}{t} \implies \ln(w) = -4\ln(t) + c_0 \implies w(t) = c_1 t^{-4}, \quad c_1 \in \mathbb{R}.
\]

Integrating \(w \) we obtain \(v \),

\[
\int w(t) \, dt = \int c_1 t^{-4} \, dt = c_2 \int t^{-4} \, dt = c_2 \left(-\frac{t^{-3}}{3} \right) + c_3,
\]

where \(c_2 \) and \(c_3 \) are constants.
Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

\[t^2 y'' + 2ty' - 2y = 0, \]

knowing that \(y_1(t) = t \) is a solution.

Solution: Recall: \(v'' + \frac{4}{t}v' = 0 \).

This is a first order equation for \(w = v' \), given by \(w' + \frac{4}{t}w = 0 \), so

\[\frac{w'}{w} = -\frac{4}{t} \implies \ln(w) = -4\ln(t) + c_0 \implies w(t) = c_1 t^{-4}, \ c_1 \in \mathbb{R}. \]

Integrating \(w \) we obtain \(v \), that is, \(v = c_2 t^{-3} + c_3 \), with \(c_2, c_3 \in \mathbb{R} \).
Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to
\[t^2 y'' + 2ty' - 2y = 0, \]
knowing that \(y_1(t) = t \) is a solution.

Solution: Recall: \(v'' + \frac{4}{t} v' = 0 \).

This is a first order equation for \(w = v' \), given by \(w' + \frac{4}{t} w = 0 \), so
\[
\frac{w'}{w} = -\frac{4}{t} \quad \Rightarrow \quad \ln(w) = -4 \ln(t) + c_0 \quad \Rightarrow \quad w(t) = c_1 t^{-4}, \quad c_1 \in \mathbb{R}.
\]

Integrating \(w \) we obtain \(v \), that is, \(v = c_2 t^{-3} + c_3 \), with \(c_2, c_3 \in \mathbb{R} \).

Recalling that \(y_2 = t \cdot v \).
Reduction of the order method: Variable coefficients.

Example
Find a fundamental set of solutions to
\[t^2 y'' + 2ty' - 2y = 0, \]
knowing that \(y_1(t) = t \) is a solution.

Solution: Recall: \(v'' + \frac{4}{t}v' = 0. \)

This is a first order equation for \(w = v' \), given by \(w' + \frac{4}{t}w = 0 \), so
\[
\frac{w'}{w} = -\frac{4}{t} \quad \Rightarrow \quad \ln(w) = -4\ln(t) + c_0 \quad \Rightarrow \quad w(t) = c_1 t^{-4}, \quad c_1 \in \mathbb{R}.
\]

Integrating \(w \) we obtain \(v \), that is, \(v = c_2 t^{-3} + c_3 \), with \(c_2, c_3 \in \mathbb{R} \).

Recalling that \(y_2 = t \cdot v \) we then conclude that \(y_2 = c_2 t^{-2} + c_3 t \).
Reduction of the order method: Variable coefficients.

Example
Find a fundamental set of solutions to
\[t^2 y'' + 2ty' - 2y = 0, \]
knowing that \(y_1(t) = t \) is a solution.

Solution: Recall:\n\[v'' + \frac{4}{t}v' = 0. \]
This is a first order equation for \(w = v' \), given by \(w' + \frac{4}{t}w = 0 \), so
\[\frac{w'}{w} = -\frac{4}{t} \quad \Rightarrow \quad \ln(w) = -4\ln(t) + c_0 \quad \Rightarrow \quad w(t) = c_1 t^{-4}, \quad c_1 \in \mathbb{R}. \]
Integrating \(w \) we obtain \(v \), that is, \(v = c_2 t^{-3} + c_3 \), with \(c_2, c_3 \in \mathbb{R} \). Recalling that \(y_2 = t \ v \) we then conclude that \(y_2 = c_2 t^{-2} + c_3 t \).
Choosing \(c_2 = 1 \) and \(c_3 = 0 \) we obtain the fundamental solutions \(y_1(t) = t \) and \(y_2(t) = \frac{1}{t^2} \). \(\triangleq \)
Reduction of the order method: Variable coefficients.

Proof of the Theorem: The choice of $y_2 = vy_1$ implies

$$y_2' = v' y_1 + v y_1', \quad y_2'' = v'' y_1 + 2v' y_1' + v y_1''.$$
Reduction of the order method: Variable coefficients.

Proof of the Theorem: The choice of \(y_2 = vy_1 \) implies

\[
y'_2 = v' y_1 + v y'_1,
\]

\[
y''_2 = v'' y_1 + 2v' y'_1 + v y''_1.
\]

This information introduced into the differential equation says that

\[
(v'' y_1 + 2v' y'_1 + v y''_1) + p (v' y_1 + v y'_1) + qv y_1 = 0
\]
Reduction of the order method: Variable coefficients.

Proof of the Theorem: The choice of \(y_2 = vy_1 \) implies

\[
y'_2 = v' y_1 + v y_1', \quad y''_2 = v'' y_1 + 2v' y_1' + v y_1''.
\]

This information introduced into the differential equation says that

\[
(v'' y_1 + 2v' y_1' + v y_1'') + p (v' y_1 + v y_1') + q v y_1 = 0
\]

\[
y_1 v'' + (2y_1' + p y_1) v' + (y_1'' + p y_1' + q y_1) v = 0.
\]
Reduction of the order method: Variable coefficients.

Proof of the Theorem: The choice of $y_2 = vy_1$ implies

$$y'_2 = v' y_1 + v y'_1, \quad y''_2 = v'' y_1 + 2v' y'_1 + v y''_1.$$

This information introduced into the differential equation says that

$$(v'' y_1 + 2v' y'_1 + v y''_1) + p (v' y_1 + v y'_1) + qv y_1 = 0$$

$$y_1 v'' + (2y'_1 + p y_1) v' + (y''_1 + p y'_1 + q y_1) v = 0.$$

The function y_1 is solution of $y''_1 + p y'_1 + q y_1 = 0$.

Reduction of the order method: Variable coefficients.

Proof of the Theorem: The choice of $y_2 = vy_1$ implies

$$y_2' = v' y_1 + v y_1', \quad y_2'' = v'' y_1 + 2v' y_1' + v y_1''.$$

This information introduced into the differential equation says that

$$(v'' y_1 + 2v' y_1' + v y_1'') + p (v' y_1 + v y_1') + qv y_1 = 0$$

$$y_1 v'' + (2y_1' + p y_1) v' + (y_1'' + p y_1' + q y_1) v = 0.$$

The function y_1 is solution of $y_1'' + p y_1' + q y_1 = 0$. Then, the equation for v is given by Eq. (3), that is,

$$y_1 v'' + (2y_1' + p y_1) v' = 0.$$
Reduction of the order method: Variable coefficients.

Proof: Recall $y_1 v'' + (2y'_1 + p y_1) v' = 0$.

We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.

We obtain $Wy_1 y_2 = v' y_2$.

We need to find v'.

Denote $w = v'$, so $y_1 w'' + (2y'_1 + p y_1) w' = 0 \Rightarrow w''w = -2y'_1 y_1 - p$.

Let P be a primitive of p, that is, $P'(t) = p(t)$, then $\ln(|w|) = -2 \ln(y_1) - P \Rightarrow w = y_1 e^{-2 \ln(y_1) - P} \Rightarrow w = y_1 e^{-P}$.

We obtain $v' y_2 = e^{-P}$, hence $Wy_1 y_2 = e^{-P}$, which is non-zero.

We conclude that y_1 and $y_2 = vy_1$ are linearly independent.
Reduction of the order method: Variable coefficients.

Proof: Recall $y_1 v'' + (2y_1' + p y_1) v' = 0$. We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.
Reduction of the order method: Variable coefficients.

Proof: Recall \(y_1 v'' + (2y_1' + p y_1) v' = 0 \). We now need to show that \(y_1 \) and \(y_2 = vy_1 \) are linearly independent.

\[
W_{y_1y_2}
\]
Reduction of the order method: Variable coefficients.

Proof: Recall $y_1 v'' + (2y'_1 + p y_1) v' = 0$. We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.

$$\begin{vmatrix} y_1 & vy_1 \\ y'_1 & (v' y_1 + vy'_1) \end{vmatrix}$$
Reduction of the order method: Variable coefficients.

Proof: Recall $y_1 \, v'' + (2y_1' + p \, y_1) \, v' = 0$. We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.

$$W_{y_1y_2} = \begin{vmatrix} y_1 & vy_1 \\ y_1' & (v' \, y_1 + vy_1') \end{vmatrix} = y_1(v' \, y_1 + vy_1') - vy_1y_1'.$$
Reduction of the order method: Variable coefficients.

Proof: Recall $y_1 v'' + (2y'_1 + p y_1) v' = 0$. We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.

$$W_{y_1y_2} = \begin{vmatrix} y_1 & vy_1 \\ y'_1 & (v'y_1 + vy'_1) \end{vmatrix} = y_1(v'y_1 + vy'_1) - vy_1y'_1.$$

We obtain $W_{y_1y_2} = v'y_1^2$.

We conclude that y_1 and $y_2 = vy_1$ are linearly independent.
Reduction of the order method: Variable coefficients.

Proof: Recall $y_1 \, v'' + (2y_1' + p \, y_1) \, v' = 0$. We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.

$$W_{y_1y_2} = \begin{vmatrix} y_1 & vy_1 \\ y_1' & (v'y_1 + vy_1') \end{vmatrix} = y_1(v'y_1 + vy_1') - vy_1y_1'.$$

We obtain $W_{y_1y_2} = v'y_1$. We need to find v'.
Reduction of the order method: Variable coefficients.

Proof: Recall \(y_1 \, v'' + (2y_1' + p \, y_1) \, v' = 0 \). We now need to show that \(y_1 \) and \(y_2 = vy_1 \) are linearly independent.

\[
W_{y_1y_2} = \begin{vmatrix} y_1 & vy_1 \\ y_1' & (v'y_1 + vy_1') \end{vmatrix} = y_1(v'y_1 + vy_1') - vy_1y_1'.
\]

We obtain \(W_{y_1y_2} = v'y_1^2 \). We need to find \(v' \). Denote \(w = v' \),
Reduction of the order method: Variable coefficients.

Proof: Recall $y_1 \, v'' + (2y'_1 + p \, y_1) \, v' = 0$. We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.

$$W_{y_1y_2} = \begin{vmatrix} y_1 & vy_1 \\ y'_1 & (v'y_1 + vy'_1) \end{vmatrix} = y_1(v'y_1 + vy'_1) - vy_1y'_1.$$

We obtain $W_{y_1y_2} = v'y_1^2$. We need to find v'. Denote $w = v'$, so

$$y_1 \, w' + (2y'_1 + p \, y_1) \, w = 0$$
Reduction of the order method: Variable coefficients.

Proof: Recall \(y_1 \, v'' + (2y_1' + p \, y_1) \, v' = 0 \). We now need to show that \(y_1 \) and \(y_2 = vy_1 \) are linearly independent.

\[
W_{y_1y_2} = \begin{vmatrix} y_1 & vy_1 \\ y_1' & (v' \, y_1 + vy_1') \end{vmatrix} = y_1(v' \, y_1 + vy_1') - vy_1y_1'.
\]

We obtain \(W_{y_1y_2} = v' \, y_1^2 \). We need to find \(v' \). Denote \(w = v' \), so

\[
y_1 \, w' + (2y_1' + p \, y_1) \, w = 0 \quad \Rightarrow \quad \frac{w'}{w} = -2 \frac{y_1'}{y_1} - p.
\]
Reduction of the order method: Variable coefficients.

Proof: Recall \(y_1 v'' + (2y_1' + p y_1) v' = 0 \). We now need to show that \(y_1 \) and \(y_2 = vy_1 \) are linearly independent.

\[
W_{y_1y_2} = \begin{vmatrix} y_1 & vy_1 \\ y_1' & (v'y_1 + vy_1') \end{vmatrix} = y_1(v'y_1 + vy_1') - vy_1y_1'.
\]

We obtain \(W_{y_1y_2} = v'y_1^2 \). We need to find \(v' \). Denote \(w = v' \), so

\[
y_1 w' + (2y_1' + p y_1) w = 0 \quad \Rightarrow \quad \frac{w'}{w} = -2\frac{y_1'}{y_1} - p.
\]

Let \(P \) be a primitive of \(p \), that is, \(P'(t) = p(t) \),
Reduction of the order method: Variable coefficients.

Proof: Recall \(y_1 \, v'' + (2y_1' + p \, y_1) \, v' = 0 \). We now need to show that \(y_1 \) and \(y_2 = vy_1 \) are linearly independent.

\[
W_{y_1y_2} = \begin{vmatrix}
 y_1 & vy_1 \\
 y_1' & (v'y_1 + vy_1')
\end{vmatrix} = y_1(v'y_1 + vy_1') - vy_1y_1'.
\]

We obtain \(W_{y_1y_2} = v'y_1^2 \). We need to find \(v' \). Denote \(w = v' \), so

\[
y_1 \, w' + (2y_1' + p \, y_1) \, w = 0 \quad \Rightarrow \quad \frac{w'}{w} = -2 \frac{y_1'}{y_1} - p.
\]

Let \(P \) be a primitive of \(p \), that is, \(P'(t) = p(t) \), then

\[
\ln(w) = -2 \ln(y_1) - P
\]
Reduction of the order method: Variable coefficients.

Proof: Recall \(y_1 v'' + (2y_1' + p y_1) v' = 0 \). We now need to show that \(y_1 \) and \(y_2 = vy_1 \) are linearly independent.

\[
W_{y_1y_2} = \begin{vmatrix} y_1 & vy_1 \\ y_1' & (v'y_1 + vy_1') \end{vmatrix} = y_1(v'y_1 + vy_1') - vy_1y_1'.
\]

We obtain \(W_{y_1y_2} = v'y_1^2 \). We need to find \(v' \). Denote \(w = v' \), so

\[
y_1 w' + (2y_1' + p y_1) w = 0 \quad \Rightarrow \quad \frac{w'}{w} = -2 \frac{y_1'}{y_1} - p.
\]

Let \(P \) be a primitive of \(p \), that is, \(P'(t) = p(t) \), then

\[
\ln(w) = -2 \ln(y_1) - P \quad \Rightarrow \quad w = e^{\ln(y_1^{-2})-P}.
\]
Reduction of the order method: Variable coefficients.

Proof: Recall $y_1 v'' + (2y_1' + p y_1) v' = 0$. We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.

$$W_{y_1 y_2} = \begin{vmatrix} y_1 & vy_1 \\ y_1' & (v' y_1 + vy_1') \end{vmatrix} = y_1(v'y_1 + vy_1') - vy_1 y_1'.$$

We obtain $W_{y_1 y_2} = v'y_1^2$. We need to find v'. Denote $w = v'$, so

$$y_1 w' + (2y_1' + p y_1) w = 0 \quad \Rightarrow \quad \frac{w'}{w} = -2 \frac{y_1'}{y_1} - p.$$

Let P be a primitive of p, that is, $P'(t) = p(t)$, then

$$\ln(w) = -2 \ln(y_1) - P \quad \Rightarrow \quad w = e^{[\ln(y_1^{-2})-P]} \quad \Rightarrow \quad w = y_1^{-2} e^{-P}.$$
Reduction of the order method: Variable coefficients.

Proof: Recall \(y_1 v'' + (2y_1' + p y_1) v' = 0 \). We now need to show that \(y_1 \) and \(y_2 = vy_1 \) are linearly independent.

\[
W_{y_1y_2} = \begin{vmatrix} y_1 & vy_1 \\ y_1' & (v'y_1 + vy_1') \end{vmatrix} = y_1(v'y_1 + vy_1') - vy_1y_1'.
\]

We obtain \(W_{y_1y_2} = v'y_1^2 \). We need to find \(v' \). Denote \(w = v' \), so

\[
y_1 w' + (2y_1' + p y_1) w = 0 \quad \Rightarrow \quad \frac{w'}{w} = -2 \frac{y_1'}{y_1} - p.
\]

Let \(P \) be a primitive of \(p \), that is, \(P'(t) = p(t) \), then

\[
\ln(w) = -2 \ln(y_1) - P \quad \Rightarrow \quad w = e^{[\ln(y_1^{-2}) - P]} \quad \Rightarrow \quad w = y_1^{-2} e^{-P}.
\]

We obtain \(v'y_1^2 = e^{-P} \), hence \(W_{y_1y_2} = e^{-P} \), which is non-zero.
Reduction of the order method: Variable coefficients.

Proof: Recall $y_1 \, v'' + (2y'_1 + p \, y_1) \, v' = 0$. We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.

$$W_{y_1y_2} = \begin{vmatrix} y_1 & vy_1 \\ y'_1 & (v' y_1 + vy'_1) \end{vmatrix} = y_1(v' y_1 + vy'_1) - vy_1 y'_1.$$

We obtain $W_{y_1y_2} = v'y_1^2$. We need to find v'. Denote $w = v'$, so

$$y_1 \, w' + (2y'_1 + p \, y_1) \, w = 0 \quad \Rightarrow \quad \frac{w'}{w} = -2 \frac{y'_1}{y_1} - p.$$

Let P be a primitive of p, that is, $P'(t) = p(t)$, then

$$\ln(w) = -2 \ln(y_1) - P \quad \Rightarrow \quad w = e^{[\ln(y_1^{-2})-P]} \quad \Rightarrow \quad w = y_1^{-2} \, e^{-P}.$$

We obtain $v'y_1^2 = e^{-P}$, hence $W_{y_1y_2} = e^{-P}$, which is non-zero. We conclude that y_1 and $y_2 = vy_1$ are linearly independent. \qed