Modeling with first order equations (Sect. 1.5).

- Radioactive decay.
 - Carbon-14 dating.
- Salt in a water tank.
 - The experimental device.
 - The main equations.
 - Analysis of the mathematical model.
 - Predictions for particular situations.
Radioactive decay

Remarks:

(a) Radioactive substances randomly emit protons, electors, radiation, and they are transformed in another substance.
Radioactive decay

Remarks:
(a) Radioactive substances randomly emit protons,electrons,radiation,and they are transformed in another substance.
(b) It can be seen that the time rate of change of the amount N of a radioactive substances is proportional to the negative amount of radioactive substance.

\[
N'(t) = -aN(t),
\]

$N(0) = N_0$, $a > 0$.

(c) The integrating factor method implies $N(t) = N_0 e^{-at}$.

(d) The half-life is the time τ needed to get $N(\tau) = N_0 / 2$.

\[
N_0 e^{-a\tau} = \frac{N_0}{2} \Rightarrow -a\tau = \ln\left(\frac{1}{2}\right) \Rightarrow \tau = \frac{\ln(2)}{a}.
\]

(e) Using the half-life, we get $N(t) = N_0 2^{-t/\tau}$.
Radioactive decay

Remarks:
(a) Radioactive substances randomly emit protons, electors, radiation, and they are transformed in another substance.
(b) It can be seen that the time rate of change of the amount N of a radioactive substances is proportional to the negative amount of radioactive substance.

$$N'(t) = -a N(t), \quad N(0) = N_0, \quad a > 0.$$
Radioactive decay

Remarks:
(a) Radioactive substances randomly emit protons, electors, radiation, and they are transformed in another substance.

(b) It can be seen that the time rate of change of the amount N of a radioactive substances is proportional to the negative amount of radioactive substance.

$$N'(t) = -a N(t), \quad N(0) = N_0, \quad a > 0.$$

(c) The integrating factor method implies $N(t) = N_0 e^{-at}$.

(d) The half-life is the time τ needed to get $N(\tau) = N_0 / 2$.

$$N_0 e^{-a \tau} = \frac{N_0}{2} \Rightarrow -a \tau = \ln \left(\frac{1}{2} \right) \Rightarrow \tau = \frac{\ln(2)}{a}.$$

(e) Using the half-life, we get $N(t) = N_0 e^{-at}$.

(f)
Radioactive decay

Remarks:
(a) Radioactive substances randomly emit protons, electors, radiation, and they are transformed in another substance.

(b) It can be seen that the time rate of change of the amount N of a radioactive substances is proportional to the negative amount of radioactive substance.

\[N'(t) = -a \, N(t), \quad N(0) = N_0, \quad a > 0. \]

(c) The integrating factor method implies $N(t) = N_0 \, e^{-at}$.

(d) The *half-life* is the time τ needed to get $N(\tau) = N_0/2$.
Radioactive decay

Remarks:
(a) Radioactive substances randomly emit protons, electors, radiation, and they are transformed in another substance.
(b) It can be seen that the time rate of change of the amount N of a radioactive substance is proportional to the negative amount of radioactive substance.

\[N'(t) = -a N(t), \quad N(0) = N_0, \quad a > 0. \]

(c) The integrating factor method implies $N(t) = N_0 e^{-at}$.
(d) The \textit{half-life} is the time τ needed to get $N(\tau) = N_0/2$.

\[N_0 e^{-a\tau} = \frac{N_0}{2} \]
Radioactive decay

Remarks:
(a) Radioactive substances randomly emit protons, electrons, radiation, and they are transformed in another substance.

(b) It can be seen that the time rate of change of the amount N of a radioactive substances is proportional to the negative amount of radioactive substance.

\[
N'(t) = -a \, N(t), \quad N(0) = N_0, \quad a > 0.
\]

(c) The integrating factor method implies $N(t) = N_0 \, e^{-at}$.

(d) The half-life is the time τ needed to get $N(\tau) = N_0/2$.

\[
N_0 \, e^{-a\tau} = \frac{N_0}{2} \quad \Rightarrow \quad -a\tau = \ln\left(\frac{1}{2}\right)
\]
Remarks:

(a) Radioactive substances randomly emit protons, electors, radiation, and they are transformed in another substance.

(b) It can be seen that the time rate of change of the amount N of a radioactive substances is proportional to the negative amount of radioactive substance.

\[N'(t) = -a N(t), \quad N(0) = N_0, \quad a > 0. \]

(c) The integrating factor method implies $N(t) = N_0 e^{-at}$.

(d) The half-life is the time τ needed to get $N(\tau) = N_0/2$.

\[N_0 e^{-a\tau} = \frac{N_0}{2} \quad \Rightarrow \quad -a\tau = \ln\left(\frac{1}{2}\right) \quad \Rightarrow \quad \tau = \frac{\ln(2)}{a}. \]
Remarks:

(a) Radioactive substances randomly emit protons, electors, radiation, and they are transformed in another substance.

(b) It can be seen that the time rate of change of the amount N of a radioactive substances is proportional to the negative amount of radioactive substance.

$$ N'(t) = -aN(t), \quad N(0) = N_0, \quad a > 0. $$

(c) The integrating factor method implies $N(t) = N_0 e^{-at}$.

(d) The \textit{half-life} is the time τ needed to get $N(\tau) = N_0/2$.

$$ N_0 e^{-a\tau} = \frac{N_0}{2} \quad \Rightarrow \quad -a\tau = \ln\left(\frac{1}{2}\right) \quad \Rightarrow \quad \tau = \frac{\ln(2)}{a}. $$

(e) Using the half-life, we get $N(t) = N_0 2^{-t/\tau}$.
Radioactive decay

Example

Remains containing 14% of the original amount of Carbon-14 are found. Knowing that Carbon-14 half-life is $\tau = 5730$ years, date the remains.

Solution:

Set $t = 0$ when the organism dies. Since the amount N of Carbon-14 only decays after the organism dies, $N(t) = N_0 \left(\frac{1}{2}\right)^{-t/\tau}$, $\tau = 5730$ years.

The remains contain 14% of the original amount at the time t, $N(t) = N_0 \frac{14}{100} \Rightarrow \frac{1}{2}^{-t/\tau} = \frac{14}{100} \Rightarrow t = \tau \log_2 \left(\frac{100}{14}\right)$.

The organism died $16,253$ years ago.
Radioactive decay

Example
Remains containing 14% of the original amount of Carbon-14 are found. Knowing that Carbon-14 half-life is $\tau = 5730$ years, date the remains.

Solution: Set $t = 0$ when the organism dies.
Radioactive decay

Example
Remains containing 14% of the original amount of Carbon-14 are found. Knowing that Carbon-14 half-life is $\tau = 5730$ years, date the remains.

Solution: Set $t = 0$ when the organism dies. Since the amount N of Carbon-14 only decays after the organism dies,
Radioactive decay

Example
Remains containing 14% of the original amount of Carbon-14 are found. Knowing that Carbon-14 half-live is $\tau = 5730$ years, date the remains.

Solution: Set $t = 0$ when the organism dies. Since the amount N of Carbon-14 only decays after the organism dies,

$$N(t) = N_0 2^{-t/\tau},$$
Radioactive decay

Example
Remains containing 14% of the original amount of Carbon-14 are found. Knowing that Carbon-14 half-life is $\tau = 5730$ years, date the remains.

Solution: Set $t = 0$ when the organism dies. Since the amount N of Carbon-14 only decays after the organism dies,

$$N(t) = N_0 2^{-t/\tau}, \quad \tau = 5730 \text{ years}.$$
Radioactive decay

Example
Remains containing 14% of the original amount of Carbon-14 are found. Knowing that Carbon-14 half-live is $\tau = 5730$ years, date the remains.

Solution: Set $t = 0$ when the organism dies. Since the amount N of Carbon-14 only decays after the organism dies,

$$N(t) = N_0 2^{-t/\tau}, \quad \tau = 5730 \text{ years}.$$

The remains contain 14% of the original amount at the time t,

...
Radioactive decay

Example
Remains containing 14% of the original amount of Carbon-14 are found. Knowing that Carbon-14 half-live is $\tau = 5730$ years, date the remains.

Solution: Set $t = 0$ when the organism dies. Since the amount N of Carbon-14 only decays after the organism dies,

$$N(t) = N_0 2^{-t/\tau}, \quad \tau = 5730 \text{ years.}$$

The remains contain 14% of the original amount at the time t,

$$\frac{N(t)}{N_0} = \frac{14}{100}$$
Radioactive decay

Example

Remains containing 14% of the original amount of Carbon-14 are found. Knowing that Carbon-14 half-life is $\tau = 5730$ years, date the remains.

Solution: Set $t = 0$ when the organism dies. Since the amount N of Carbon-14 only decays after the organism dies,

$$N(t) = N_0 2^{-t/\tau}, \quad \tau = 5730 \text{ years.}$$

The remains contain 14% of the original amount at the time t,

$$\frac{N(t)}{N_0} = \frac{14}{100} \quad \Rightarrow \quad 2^{-t/\tau} = \frac{14}{100}$$
Radioactive decay

Example
Remains containing 14% of the original amount of Carbon-14 are found. Knowing that Carbon-14 half-life is $\tau = 5730$ years, date the remains.

Solution: Set $t = 0$ when the organism dies. Since the amount N of Carbon-14 only decays after the organism dies,

$$N(t) = N_0 \cdot 2^{-t/\tau}, \quad \tau = 5730 \text{ years}.\]

The remains contain 14% of the original amount at the time t,

$$\frac{N(t)}{N_0} = \frac{14}{100} \implies 2^{-t/\tau} = \frac{14}{100}$$

$$-\frac{t}{\tau} = \log_2(14/100)$$
Radioactive decay

Example
Remains containing 14% of the original amount of Carbon-14 are found. Knowing that Carbon-14 half-live is $\tau = 5730$ years, date the remains.

Solution: Set $t = 0$ when the organism dies. Since the amount N of Carbon-14 only decays after the organism dies,

$$N(t) = N_0 \, 2^{-t/\tau}, \quad \tau = 5730 \text{ years}. $$

The remains contain 14% of the original amount at the time t,

$$\frac{N(t)}{N_0} = \frac{14}{100} \quad \Rightarrow \quad 2^{-t/\tau} = \frac{14}{100}$$

$$-\frac{t}{\tau} = \log_2(14/100) \quad \Rightarrow \quad t = \tau \log_2(100/14).$$
Radioactive decay

Example
Remains containing 14% of the original amount of Carbon-14 are found. Knowing that Carbon-14 half-life is $\tau = 5730$ years, date the remains.

Solution: Set $t = 0$ when the organism dies. Since the amount N of Carbon-14 only decays after the organism dies,

$$N(t) = N_0 2^{-t/\tau}, \quad \tau = 5730 \text{ years}.$$

The remains contain 14% of the original amount at the time t,

$$\frac{N(t)}{N_0} = \frac{14}{100} \quad \Rightarrow \quad 2^{-t/\tau} = \frac{14}{100}$$

$$\frac{-t}{\tau} = \log_2(14/100) \quad \Rightarrow \quad t = \tau \log_2(100/14).$$

The organism died 16,253 years ago.
Modeling with first order equations (Sect. 1.5).

- Radioactive decay.
 - Carbon-14 dating.
- **Salt in a water tank.**
 - The experimental device.
 - The main equations.
 - Analysis of the mathematical model.
 - Predictions for particular situations.
Salt in a water tank.

Problem: Describe the salt concentration in a tank with water if salty water comes in and goes out of the tank.
Salt in a water tank.

Problem: Describe the salt concentration in a tank with water if salty water comes in and goes out of the tank.

Main ideas of the test:

- Since the mass of salt and water is conserved, we construct a mathematical model for the salt concentration in water.
Salt in a water tank.

Problem: Describe the salt concentration in a tank with water if salty water comes in and goes out of the tank.

Main ideas of the test:

- Since the mass of salt and water is conserved, we construct a mathematical model for the salt concentration in water.
- The amount of salt in the tank depends on the salt concentration coming in and going out of the tank.
Salt in a water tank.

Problem: Describe the salt concentration in a tank with water if salty water comes in and goes out of the tank.

Main ideas of the test:

- Since the mass of salt and water is conserved, we construct a mathematical model for the salt concentration in water.
- The amount of salt in the tank depends on the salt concentration coming in and going out of the tank.
- The salt in the tank also depends on the water rates coming in and going out of the tank.
Salt in a water tank.

Problem: Describe the salt concentration in a tank with water if salty water comes in and goes out of the tank.

Main ideas of the test:

- Since the mass of salt and water is conserved, we construct a mathematical model for the salt concentration in water.
- The amount of salt in the tank depends on the salt concentration coming in and going out of the tank.
- The salt in the tank also depends on the water rates coming in and going out of the tank.
- To construct a model means to find the differential equation that takes into account the above properties of the system.
Salt in a water tank.

Problem: Describe the salt concentration in a tank with water if salty water comes in and goes out of the tank.

Main ideas of the test:

- Since the mass of salt and water is conserved, we construct a mathematical model for the salt concentration in water.
- The amount of salt in the tank depends on the salt concentration coming in and going out of the tank.
- The salt in the tank also depends on the water rates coming in and going out of the tank.
- To construct a model means to find the differential equation that takes into account the above properties of the system.
- Finding the solution to the differential equation with a particular initial condition means we can predict the evolution of the salt in the tank if we know the tank initial condition.
Modeling with first order equations (Sect. 1.5).

- Radioactive decay.
 - Carbon-14 dating.
- Main example: Salt in a water tank.
 - The experimental device.
 - The main equations.
 - Analysis of the mathematical model.
 - Predictions for particular situations.
The experimental device.

Diagram showing a tank with water and salt entering through a pipe labeled \(q_i(t) \). The water is instantaneously mixed as it enters the tank.
The experimental device.

Definitions:

- $r_i(t), r_o(t)$: Rates in and out of water entering and leaving the tank at the time t.

Units:

- $\left[r_i(t)\right] = \left[r_o(t)\right] = \text{Volume/Time}$
- $\left[q_i(t)\right] = \left[q_o(t)\right] = \text{Mass/Volume}$
- $\left[V(t)\right] = \text{Volume}$
- $\left[Q(t)\right] = \text{Mass}$.
The experimental device.

Definitions:

- $r_i(t), r_o(t)$: Rates in and out of water entering and leaving the tank at the time t.
- $q_i(t), q_o(t)$: Salt concentration of the water entering and leaving the tank at the time t.
The experimental device.

Definitions:
- \(r_i(t), r_o(t) \): Rates in and out of water entering and leaving the tank at the time \(t \).
- \(q_i(t), q_o(t) \): Salt concentration of the water entering and leaving the tank at the time \(t \).
- \(V(t) \): Water volume in the tank at the time \(t \).
The experimental device.

Definitions:

- $r_i(t), r_o(t)$: Rates in and out of water entering and leaving the tank at the time t.
- $q_i(t), q_o(t)$: Salt concentration of the water entering and leaving the tank at the time t.
- $V(t)$: Water volume in the tank at the time t.
- $Q(t)$: Salt mass in the tank at the time t.
The experimental device.

Definitions:

- $r_i(t)$, $r_o(t)$: Rates in and out of water entering and leaving the tank at the time t.
- $q_i(t)$, $q_o(t)$: Salt concentration of the water entering and leaving the tank at the time t.
- $V(t)$: Water volume in the tank at the time t.
- $Q(t)$: Salt mass in the tank at the time t.

Units:

$$[r_i(t)] = [r_o(t)] = \frac{\text{Volume}}{\text{Time}},$$
The experimental device.

Definitions:

- $r_i(t), \ r_o(t)$: Rates in and out of water entering and leaving the tank at the time t.
- $q_i(t), \ q_o(t)$: Salt concentration of the water entering and leaving the tank at the time t.
- $V(t)$: Water volume in the tank at the time t.
- $Q(t)$: Salt mass in the tank at the time t.

Units:

$$[r_i(t)] = [r_o(t)] = \frac{\text{Volume}}{\text{Time}}, \quad [q_i(t)] = [q_o(t)] = \frac{\text{Mass}}{\text{Volume}}.$$
The experimental device.

Definitions:

- \(r_i(t), \ r_o(t) \): Rates in and out of water entering and leaving the tank at the time \(t \).
- \(q_i(t), \ q_o(t) \): Salt concentration of the water entering and leaving the tank at the time \(t \).
- \(V(t) \): Water volume in the tank at the time \(t \).
- \(Q(t) \): Salt mass in the tank at the time \(t \).

Units:

\[
[r_i(t)] = [r_o(t)] = \frac{\text{Volume}}{\text{Time}}, \quad [q_i(t)] = [q_o(t)] = \frac{\text{Mass}}{\text{Volume}}.
\]

\[
[V(t)] = \text{Volume},
\]
The experimental device.

Definitions:

- \(r_i(t), r_o(t) \): Rates in and out of water entering and leaving the tank at the time \(t \).
- \(q_i(t), q_o(t) \): Salt concentration of the water entering and leaving the tank at the time \(t \).
- \(V(t) \): Water volume in the tank at the time \(t \).
- \(Q(t) \): Salt mass in the tank at the time \(t \).

Units:

\[
[r_i(t)] = [r_o(t)] = \frac{\text{Volume}}{\text{Time}}, \quad [q_i(t)] = [q_o(t)] = \frac{\text{Mass}}{\text{Volume}}.
\]

\[
[V(t)] = \text{Volume}, \quad [Q(t)] = \text{Mass}.
\]
Modeling with first order equations (Sect. 1.5).

- Radioactive decay.
 - Carbon-14 dating.
- **Main example: Salt in a water tank.**
 - The experimental device.
 - **The main equations.**
 - Analysis of the mathematical model.
 - Predictions for particular situations.
The main equations.

Remark: The mass conservation provides the main equations of the mathematical description for salt in water.
The main equations.

Remark: The mass conservation provides the main equations of the mathematical description for salt in water.

Main equations:

\[
\frac{d}{dt} V(t) = r_i(t) - r_o(t), \quad \text{Volume conservation,} \quad (1)
\]
Remark: The mass conservation provides the main equations of the mathematical description for salt in water.

Main equations:

\[
\frac{d}{dt} V(t) = r_i(t) - r_o(t), \quad \text{Volume conservation,} \quad (1)
\]

\[
\frac{d}{dt} Q(t) = r_i(t) q_i(t) - r_o(t) q_o(t), \quad \text{Mass conservation,} \quad (2)
\]

\[
q_o(t) = \frac{Q(t)}{V(t)}, \quad \text{Instantaneously mixed}, \quad (3)
\]

\[r_i, r_o: \text{Constants.} \quad (4)\]
Remark: The mass conservation provides the main equations of the mathematical description for salt in water.

Main equations:

\[
\frac{d}{dt} V(t) = r_i(t) - r_o(t), \quad \text{Volume conservation,} \quad (1)
\]

\[
\frac{d}{dt} Q(t) = r_i(t) q_i(t) - r_o(t) q_o(t), \quad \text{Mass conservation,} \quad (2)
\]

\[
q_o(t) = \frac{Q(t)}{V(t)}, \quad \text{Instantaneously mixed,} \quad (3)
\]
The main equations.

Remark: The mass conservation provides the main equations of the mathematical description for salt in water.

Main equations:

\[
\frac{d}{dt} V(t) = r_i(t) - r_o(t), \quad \text{Volume conservation,} \tag{1}
\]

\[
\frac{d}{dt} Q(t) = r_i(t) q_i(t) - r_o(t) q_o(t), \quad \text{Mass conservation,} \tag{2}
\]

\[
q_o(t) = \frac{Q(t)}{V(t)}, \quad \text{Instantaneously mixed,} \tag{3}
\]

\[
r_i, \ r_o : \ \text{Constants.} \tag{4}
\]
The main equations.

Remarks:

\[
\frac{dV}{dt} = \frac{\text{Volume}}{\text{Time}} = \left[r_i - r_o \right],
\]

\[
\frac{dQ}{dt} = \frac{\text{Mass}}{\text{Time}} = \left[r_i q_i - r_o q_o \right],
\]

\[
\left[r_i q_i - r_o q_o \right] = \frac{\text{Volume}}{\text{Time}} \cdot \frac{\text{Mass}}{\text{Volume}} = \frac{\text{Mass}}{\text{Time}}.
\]
Modeling with first order equations (Sect. 1.5).

- Radioactive decay.
 - Carbon-14 dating.
- Main example: Salt in a water tank.
 - The experimental device.
 - The main equations.
 - Analysis of the mathematical model.
 - Predictions for particular situations.
Analysis of the mathematical model.

Eqs. (4) and (1) imply

\[V(t) = (r_i - r_o) t + V_0, \] \hspace{1cm} (5)

where \(V(0) = V_0 \) is the initial volume of water in the tank.
Analysis of the mathematical model.

Eqs. (4) and (1) imply

$$V(t) = (r_i - r_o) t + V_0,$$

(5)

where $V(0) = V_0$ is the initial volume of water in the tank.

Eqs. (3) and (2) imply

$$\frac{d}{dt} Q(t) = r_i q_i(t) - r_o \frac{Q(t)}{V(t)}.$$

(6)
Analysis of the mathematical model.

Eqs. (4) and (1) imply

\[V(t) = (r_i - r_o) t + V_0, \]

(5)

where \(V(0) = V_0 \) is the initial volume of water in the tank.

Eqs. (3) and (2) imply

\[\frac{d}{dt} Q(t) = r_i q_i(t) - r_o \frac{Q(t)}{V(t)}. \]

(6)

Eqs. (5) and (6) imply

\[\frac{d}{dt} Q(t) = r_i q_i(t) - \frac{r_o}{(r_i - r_o) t + V_0} Q(t). \]

(7)
Analysis of the mathematical model.

Recall: \(\frac{d}{dt} Q(t) = r_i q_i(t) - \frac{r_o}{(r_i - r_o) t + V_0} Q(t). \)
Analysis of the mathematical model.

Recall: \[
\frac{d}{dt} Q(t) = r_i \, q_i(t) - \frac{r_o}{(r_i - r_o) \, t + V_0} \, Q(t).
\]

Notation: \[
a(t) = -\frac{r_o}{(r_i - r_o) \, t + V_0},
\]
Analysis of the mathematical model.

Recall: \[
\frac{d}{dt} Q(t) = r_i q_i(t) - \frac{r_o}{(r_i - r_o) t + V_0} Q(t).
\]

Notation: \[a(t) = -\frac{r_o}{(r_i - r_o) t + V_0}, \quad \text{and} \quad b(t) = r_i q_i(t).\]
Analysis of the mathematical model.

Recall: \[
\frac{d}{dt} Q(t) = r_i q_i(t) - \frac{r_o}{(r_i - r_o) t + V_0} \cdot Q(t).
\]

Notation: \[a(t) = -\frac{r_o}{(r_i - r_o) t + V_0}, \quad \text{and} \quad b(t) = r_i q_i(t).\]

The main equation of the description is given by

\[
Q'(t) = a(t) \cdot Q(t) + b(t).
\]
Analysis of the mathematical model.

Recall: \[\frac{d}{dt} Q(t) = r_i q_i(t) - \frac{r_o}{(r_i - r_o) t + V_0} Q(t). \]

Notation: \[a(t) = -\frac{r_o}{(r_i - r_o) t + V_0}, \text{ and } b(t) = r_i q_i(t). \]

The main equation of the description is given by

\[Q'(t) = a(t) Q(t) + b(t). \]

Linear ODE for \(Q \).
Analysis of the mathematical model.

Recall: \[\frac{d}{dt} Q(t) = r_i q_i(t) - \frac{r_o}{(r_i - r_o) t + V_0} Q(t). \]

Notation: \[a(t) = -\frac{r_o}{(r_i - r_o) t + V_0}, \quad \text{and} \quad b(t) = r_i q_i(t). \]

The main equation of the description is given by

\[Q'(t) = a(t) Q(t) + b(t). \]

Linear ODE for \(Q \). Solution: Integrating factor method.
Analysis of the mathematical model.

Recall: \(\frac{d}{dt} Q(t) = r_i q_i(t) - \frac{r_o}{(r_i - r_o) t + V_0} Q(t) \).

Notation: \(a(t) = -\frac{r_o}{(r_i - r_o) t + V_0} \), and \(b(t) = r_i q_i(t) \).

The main equation of the description is given by

\[Q'(t) = a(t) Q(t) + b(t). \]

Linear ODE for \(Q \). Solution: Integrating factor method.

\[Q(t) = e^{A(t)} \left[Q_0 + \int_0^t e^{-A(s)} b(s) \, ds \right] \]
Analysis of the mathematical model.

Recall: \(\frac{d}{dt} Q(t) = r_i q_i(t) - \frac{r_o}{(r_i - r_o) t + V_0} Q(t) \).

Notation: \(a(t) = -\frac{r_o}{(r_i - r_o) t + V_0} \), and \(b(t) = r_i q_i(t) \).

The main equation of the description is given by

\[Q'(t) = a(t) Q(t) + b(t). \]

Linear ODE for \(Q \). Solution: Integrating factor method.

\[Q(t) = e^{A(t)} \left[Q_0 + \int_0^t e^{-A(s)} b(s) \, ds \right] \]

with \(Q(0) = Q_0 \),
Analysis of the mathematical model.

Recall: \(\frac{d}{dt} Q(t) = r_i q_i(t) - \frac{r_o}{(r_i - r_o) t + V_0} Q(t) \).

Notation: \(a(t) = -\frac{r_o}{(r_i - r_o) t + V_0} \), and \(b(t) = r_i q_i(t) \).

The main equation of the description is given by

\[Q'(t) = a(t) Q(t) + b(t). \]

Linear ODE for \(Q \). Solution: Integrating factor method.

\[Q(t) = e^{A(t)} \left[Q_0 + \int_0^t e^{-A(s)} b(s) \, ds \right] \]

with \(Q(0) = Q_0 \), and \(A(t) = \int_0^t a(s) \, ds \).
Modeling with first order equations (Sect. 1.5).

- Radioactive decay.
 - Carbon-14 dating.
- **Main example: Salt in a water tank.**
 - The experimental device.
 - The main equations.
 - Analysis of the mathematical model.
 - Predictions for particular situations.
Predictions for particular situations.

Example

Assume that \(r_i = r_o = r \) and \(q_i \) are constants.
If \(r, q_i, Q_0 \) and \(V_0 \) are given, find \(Q(t) \).
Predictions for particular situations.

Example
Assume that \(r_i = r_o = r \) and \(q_i \) are constants.
If \(r, q_i, Q_0 \) and \(V_0 \) are given, find \(Q(t) \).

Solution: Always holds \(Q'(t) = a(t) Q(t) + b(t) \).
Predictions for particular situations.

Example
Assume that $r_i = r_o = r$ and q_i are constants. If r, q_i, Q_0 and V_0 are given, find $Q(t)$.

Solution: Always holds $Q'(t) = a(t)Q(t) + b(t)$. In this case:

$$a(t) = -\frac{r_o}{(r_i - r_o)t + V_0}$$
Predictions for particular situations.

Example

Assume that $r_i = r_o = r$ and q_i are constants.
If r, q_i, Q_0 and V_0 are given, find $Q(t)$.

Solution: Always holds $Q'(t) = a(t)Q(t) + b(t)$.
In this case:

$$a(t) = -\frac{r_o}{(r_i - r_o) t + V_0} \Rightarrow a(t) = -\frac{r}{V_0} = -a_0,$$
Predictions for particular situations.

Example

Assume that $r_i = r_o = r$ and q_i are constants. If r, q_i, Q_0 and V_0 are given, find $Q(t)$.

Solution: Always holds $Q'(t) = a(t) Q(t) + b(t)$. In this case:

$$a(t) = -\frac{r_o}{(r_i - r_o) t + V_0} \Rightarrow a(t) = -\frac{r}{V_0} = -a_0,$$

$$b(t) = r_i q_i(t)$$
Predictions for particular situations.

Example

Assume that \(r_i = r_o = r \) and \(q_i \) are constants. If \(r, q_i, Q_0 \) and \(V_0 \) are given, find \(Q(t) \).

Solution: Always holds \(Q'(t) = a(t) Q(t) + b(t) \).

In this case:

\[
a(t) = -\frac{r_o}{(r_i - r_o) t + V_0} \quad \Rightarrow \quad a(t) = -\frac{r}{V_0} = -a_0,
\]

\[
b(t) = r_i q_i(t) \quad \Rightarrow \quad b(t) = r q_i = b_0.
\]
Predictions for particular situations.

Example

Assume that \(r_i = r_o = r \) and \(q_i \) are constants. If \(r, q_i, Q_0 \) and \(V_0 \) are given, find \(Q(t) \).

Solution: Always holds \(Q'(t) = a(t) Q(t) + b(t) \).
In this case:

\[
a(t) = -\frac{r_o}{(r_i - r_o) t + V_0} \quad \Rightarrow \quad a(t) = -\frac{r}{V_0} = -a_0,
\]

\[
b(t) = r_i q_i(t) \quad \Rightarrow \quad b(t) = rq_i = b_0.
\]

We need to solve the IVP:
Predictions for particular situations.

Example

Assume that \(r_i = r_o = r \) and \(q_i \) are constants.

If \(r, q_i, Q_0 \) and \(V_0 \) are given, find \(Q(t) \).

Solution: Always holds \(Q'(t) = a(t) Q(t) + b(t) \).

In this case:

\[
a(t) = -\frac{r_o}{(r_i - r_o) t + V_0} \quad \Rightarrow \quad a(t) = -\frac{r}{V_0} = -a_0,
\]

\[
b(t) = r_i q_i(t) \quad \Rightarrow \quad b(t) = r q_i = b_0.
\]

We need to solve the IVP:

\[
Q'(t) = -a_0 Q(t) + b_0, \quad Q(0) = Q_0.
\]
Predictions for particular situations.

Example
Assume that $r_i = r_o = r$ and q_i are constants.
If r, q_i, Q_0 and V_0 are given, find $Q(t)$.

Solution: Recall the IVP: $Q'(t) + a_0 Q(t) = b_0$, $Q(0) = Q_0$.
Predictions for particular situations.

Example

Assume that $r_i = r_o = r$ and q_i are constants.

If r, q_i, Q_0 and V_0 are given, find $Q(t)$.

Solution: Recall the IVP: $Q'(t) + a_0 Q(t) = b_0$, $Q(0) = Q_0$.

Integrating factor method:
Predictions for particular situations.

Example
Assume that $r_i = r_o = r$ and q_i are constants.
If r, q_i, Q_0 and V_0 are given, find $Q(t)$.

Solution: Recall the IVP: $Q'(t) + a_0 Q(t) = b_0$, $Q(0) = Q_0$.
Integrating factor method:

$$A(t) = a_0 t,$$
Predictions for particular situations.

Example

Assume that \(r_i = r_o = r \) and \(q_i \) are constants. If \(r, q_i, Q_0 \) and \(V_0 \) are given, find \(Q(t) \).

Solution: Recall the IVP: \(Q'(t) + a_0 Q(t) = b_0, \quad Q(0) = Q_0 \).

Integrating factor method:

\[
A(t) = a_0 t, \quad \mu(t) = e^{a_0 t},
\]
Predictions for particular situations.

Example
Assume that $r_i = r_o = r$ and q_i are constants.
If r, q_i, Q_0 and V_0 are given, find $Q(t)$.

Solution: Recall the IVP: $Q'(t) + a_0 Q(t) = b_0$, $Q(0) = Q_0$.
Integrating factor method:

$$A(t) = a_0 t, \quad \mu(t) = e^{a_0 t}, \quad e^{a_0 t} Q(t) = Q_0 + \int_0^t e^{a_0 s} b_0 \, ds.$$
Predictions for particular situations.

Example

Assume that \(r_i = r_o = r \) and \(q_i \) are constants.
If \(r, q_i, Q_0 \) and \(V_0 \) are given, find \(Q(t) \).

Solution: Recall the IVP: \(Q'(t) + a_0 Q(t) = b_0, \quad Q(0) = Q_0. \)

Integrating factor method:

\[
A(t) = a_0 t, \quad \mu(t) = e^{a_0 t}, \quad e^{a_0 t} Q(t) = Q_0 + \int_0^t e^{a_0 s} b_0 \, ds.
\]

\[
Q(t) = e^{-a_0 t} \left[Q_0 + \frac{b_0}{a_0} (e^{a_0 t} - 1) \right].
\]
Predictions for particular situations.

Example

Assume that \(r_i = r_o = r \) and \(q_i \) are constants.
If \(r, q_i, Q_0 \) and \(V_0 \) are given, find \(Q(t) \).

Solution: Recall the IVP: \(Q'(t) + a_0 Q(t) = b_0, \quad Q(0) = Q_0. \)

Integrating factor method:

\[
A(t) = a_0 t, \quad \mu(t) = e^{a_0 t}, \quad e^{a_0 t} Q(t) = Q_0 + \int_0^t e^{a_0 s} b_0 ds.
\]

\[
Q(t) = e^{-a_0 t} \left[Q_0 + \frac{b_0}{a_0} (e^{a_0 t} - 1) \right] = \left(Q_0 - \frac{b_0}{a_0} \right) e^{-a_0 t} + \frac{b_0}{a_0}.
\]
Predictions for particular situations.

Example
Assume that $r_i = r_o = r$ and q_i are constants. If r, q_i, Q_0 and V_0 are given, find $Q(t)$.

Solution: Recall the IVP: $Q'(t) + a_0 Q(t) = b_0$, $Q(0) = Q_0$.
Integrating factor method:

\[A(t) = a_0 t, \quad \mu(t) = e^{a_0 t}, \quad e^{a_0 t} Q(t) = Q_0 + \int_0^t e^{a_0 s} b_0 \, ds. \]

\[Q(t) = e^{-a_0 t} \left[Q_0 + \frac{b_0}{a_0} (e^{a_0 t} - 1) \right] = \left(Q_0 - \frac{b_0}{a_0} \right) e^{-a_0 t} + \frac{b_0}{a_0}. \]

But \(\frac{b_0}{a_0} = r q_i \frac{V_0}{r} \)}
Predictions for particular situations.

Example
Assume that \(r_i = r_o = r \) and \(q_i \) are constants. If \(r, q_i, Q_0 \) and \(V_0 \) are given, find \(Q(t) \).

Solution: Recall the IVP: \(Q'(t) + a_0 Q(t) = b_0, \quad Q(0) = Q_0 \).

Integrating factor method:

\[
A(t) = a_0 t, \quad \mu(t) = e^{a_0 t}, \quad e^{a_0 t} Q(t) = Q_0 + \int_0^t e^{a_0 s} b_0 \, ds.
\]

\[
Q(t) = e^{-a_0 t} \left[Q_0 + \frac{b_0}{a_0} (e^{a_0 t} - 1) \right]. = \left(Q_0 - \frac{b_0}{a_0} \right) e^{-a_0 t} + \frac{b_0}{a_0}.
\]

But \(\frac{b_0}{a_0} = rq_i \frac{V_0}{r} = q_i V_0 \),
Predictions for particular situations.

Example
Assume that \(r_i = r_o = r \) and \(q_i \) are constants.
If \(r, q_i, Q_0 \) and \(V_0 \) are given, find \(Q(t) \).

Solution: Recall the IVP: \(Q'(t) + a_0 Q(t) = b_0, \quad Q(0) = Q_0. \)

Integrating factor method:

\[
A(t) = a_0 t, \quad \mu(t) = e^{a_0 t}, \quad e^{a_0 t} Q(t) = Q_0 + \int_0^t e^{a_0 s} b_0 \, ds.
\]

\[
Q(t) = e^{-a_0 t} \left[Q_0 + \frac{b_0}{a_0} (e^{a_0 t} - 1) \right]. = \left(Q_0 - \frac{b_0}{a_0} \right) e^{-a_0 t} + \frac{b_0}{a_0}.
\]

But \(\frac{b_0}{a_0} = rq_i \frac{V_0}{r} = q_i V_0, \) and \(a_0 = \frac{r}{V_0}. \)
Predictions for particular situations.

Example

Assume that \(r_i = r_o = r \) and \(q_i \) are constants.
If \(r, q_i, Q_0 \) and \(V_0 \) are given, find \(Q(t) \).

Solution: Recall the IVP: \(Q'(t) + a_0 Q(t) = b_0, \quad Q(0) = Q_0 \).

Integrating factor method:

\[
A(t) = a_0 t, \quad \mu(t) = e^{a_0 t}, \quad e^{a_0 t} Q(t) = Q_0 + \int_0^t e^{a_0 s} b_0 \, ds.
\]

\[
Q(t) = e^{-a_0 t} \left[Q_0 + \frac{b_0}{a_0} (e^{a_0 t} - 1) \right] = \left(Q_0 - \frac{b_0}{a_0} \right) e^{-a_0 t} + \frac{b_0}{a_0}.
\]

But \(\frac{b_0}{a_0} = r q_i \frac{V_0}{r} = q_i V_0 \), and \(a_0 = \frac{r}{V_0} \). We conclude:

\[
Q(t) = \left(Q_0 - q_i V_0 \right) e^{-rt/V_0} + q_i V_0.
\]
Predictions for particular situations.

Example

Assume that \(r_i = r_o = r \) and \(q_i \) are constants.

If \(r, q_i, Q_0 \) and \(V_0 \) are given, find \(Q(t) \).

Solution: Recall: \(Q(t) = (Q_0 - q_i V_0) e^{-rt/V_0} + q_i V_0. \)
Predictions for particular situations.

Example
Assume that $r_i = r_o = r$ and q_i are constants. If r, q_i, Q_0 and V_0 are given, find $Q(t)$.

Solution: Recall:
$$Q(t) = \left(Q_0 - q_i V_0 \right) e^{-rt/V_0} + q_i V_0.$$

Particular cases:

- $\frac{Q_0}{V_0} > q_i$;
- $\frac{Q_0}{V_0} = q_i$, so $Q(t) = Q_0$;
- $\frac{Q_0}{V_0} < q_i$.
Predictions for particular situations.

Example
Assume that $r_i = r_o = r$ and q_i are constants.
If r, q_i, Q_0 and V_0 are given, find $Q(t)$.

Solution: Recall: $Q(t) = (Q_0 - q_i V_0) e^{-rt/V_0} + q_i V_0$.

Particular cases:

- $Q_0 / V_0 > q_i$;
- $Q_0 / V_0 = q_i$, so $Q(t) = Q_0$;
- $Q_0 / V_0 < q_i$.

\[Q(t) = (Q_0 - q_i V_0) e^{-rt/V_0} + q_i V_0. \]
Predictions for particular situations.

Example
Assume that \(r_i = r_o = r \) and \(q_i \) are constants.
If \(r = 2 \) liters/min, \(q_i = 0 \), \(V_0 = 200 \) liters, \(Q_0/V_0 = 1 \) grams/liter,
find \(t_1 \) such that \(q(t_1) = Q(t_1)/V(t_1) \) is 1\% the initial value.
Predictions for particular situations.

Example
Assume that \(r_i = r_o = r \) and \(q_i \) are constants.
If \(r = 2 \) liters/min, \(q_i = 0 \), \(V_0 = 200 \) liters, \(Q_0/V_0 = 1 \) grams/liter, find \(t_1 \) such that \(q(t_1) = Q(t_1)/V(t_1) \) is 1% the initial value.

Solution: This problem is a particular case \(q_i = 0 \) of the previous Example.
Predictions for particular situations.

Example
Assume that $r_i = r_o = r$ and q_i are constants.
If $r = 2$ liters/min, $q_i = 0$, $V_0 = 200$ liters, $Q_0/V_0 = 1$ grams/liter,
find t_1 such that $q(t_1) = Q(t_1)/V(t_1)$ is 1% the initial value.

Solution: This problem is a particular case $q_i = 0$ of the previous Example. Since $Q(t) = (Q_0 - q_i V_0) e^{-rt/V_0} + q_i V_0$,

...
Predictions for particular situations.

Example
Assume that \(r_i = r_o = r \) and \(q_i \) are constants.
If \(r = 2 \) liters/min, \(q_i = 0 \), \(V_0 = 200 \) liters, \(Q_0/V_0 = 1 \) grams/liter,
find \(t_1 \) such that \(q(t_1) = Q(t_1)/V(t_1) \) is 1% the initial value.

Solution: This problem is a particular case \(q_i = 0 \) of the previous Example. Since \(Q(t) = (Q_0 - q_i V_0) e^{-rt/V_0} + q_i V_0 \), we get

\[
Q(t) = Q_0 e^{-rt/V_0}.
\]
Predictions for particular situations.

Example
Assume that \(r_i = r_o = r \) and \(q_i \) are constants.
If \(r = 2 \) liters/min, \(q_i = 0 \), \(V_0 = 200 \) liters, \(Q_0/V_0 = 1 \) grams/liter, find \(t_1 \) such that \(q(t_1) = Q(t_1)/V(t_1) \) is 1% the initial value.

Solution: This problem is a particular case \(q_i = 0 \) of the previous Example. Since \(Q(t) = (Q_0 - q_i V_0) e^{-rt/V_0} + q_i V_0 \), we get

\[
Q(t) = Q_0 e^{-rt/V_0}.
\]

Since \(V(t) = (r_i - r_o) t + V_0 \)
Predictions for particular situations.

Example
Assume that $r_i = r_o = r$ and q_i are constants.
If $r = 2$ liters/min, $q_i = 0$, $V_0 = 200$ liters, $Q_0/V_0 = 1$ grams/liter, find t_1 such that $q(t_1) = Q(t_1)/V(t_1)$ is 1% the initial value.

Solution: This problem is a particular case $q_i = 0$ of the previous Example. Since $Q(t) = (Q_0 - q_i V_0) e^{-rt/V_0} + q_i V_0$, we get

$$Q(t) = Q_0 e^{-rt/V_0}.$$

Since $V(t) = (r_i - r_o) t + V_0$ and $r_i = r_o$.

Predictions for particular situations.

Example

Assume that \(r_i = r_o = r \) and \(q_i \) are constants.
If \(r = 2 \) liters/min, \(q_i = 0 \), \(V_0 = 200 \) liters, \(Q_0/V_0 = 1 \) grams/liter, find \(t_1 \) such that \(q(t_1) = Q(t_1)/V(t_1) \) is 1% the initial value.

Solution: This problem is a particular case \(q_i = 0 \) of the previous Example. Since \(Q(t) = (Q_0 - q_i V_0) e^{-rt/V_0} + q_i V_0 \), we get

\[
Q(t) = Q_0 e^{-rt/V_0}.
\]

Since \(V(t) = (r_i - r_o) t + V_0 \) and \(r_i = r_o \), we obtain \(V(t) = V_0 \).
Predictions for particular situations.

Example
Assume that \(r_i = r_o = r \) and \(q_i \) are constants.
If \(r = 2 \) liters/min, \(q_i = 0 \), \(V_0 = 200 \) liters, \(Q_0/V_0 = 1 \) grams/liter,
find \(t_1 \) such that \(q(t_1) = Q(t_1)/V(t_1) \) is 1% the initial value.

Solution: This problem is a particular case \(q_i = 0 \) of the previous Example. Since \(Q(t) = (Q_0 - q_i V_0) e^{-rt/V_0} + q_i V_0 \), we get

\[
Q(t) = Q_0 e^{-rt/V_0}.
\]

Since \(V(t) = (r_i - r_o) t + V_0 \) and \(r_i = r_o \), we obtain \(V(t) = V_0 \).
So \(q(t) = Q(t)/V(t) \) is given by \(q(t) = \frac{Q_0}{V_0} e^{-rt/V_0} \).
Predictions for particular situations.

Example

Assume that \(r_i = r_o = r \) and \(q_i \) are constants.
If \(r = 2 \) liters/min, \(q_i = 0 \), \(V_0 = 200 \) liters, \(Q_0/V_0 = 1 \) grams/liter, find \(t_1 \) such that \(q(t_1) = Q(t_1)/V(t_1) \) is 1\% the initial value.

Solution: This problem is a particular case \(q_i = 0 \) of the previous Example. Since \(Q(t) = (Q_0 - q_i V_0) e^{-rt/V_0} + q_i V_0 \), we get

\[
Q(t) = Q_0 e^{-rt/V_0}.
\]

Since \(V(t) = (r_i - r_o) t + V_0 \) and \(r_i = r_o \), we obtain \(V(t) = V_0 \).
So \(q(t) = Q(t)/V(t) \) is given by \(q(t) = \frac{Q_0}{V_0} e^{-rt/V_0} \). Therefore,

\[
\frac{1}{100} \frac{Q_0}{V_0} = q(t_1)
\]
Predictions for particular situations.

Example

Assume that \(r_i = r_o = r \) and \(q_i \) are constants.
If \(r = 2 \) liters/min, \(q_i = 0 \), \(V_0 = 200 \) liters, \(Q_0/V_0 = 1 \) grams/liter, find \(t_1 \) such that \(q(t_1) = Q(t_1)/V(t_1) \) is 1% the initial value.

Solution: This problem is a particular case \(q_i = 0 \) of the previous Example. Since \(Q(t) = (Q_0 - q_i V_0) e^{-rt/V_0} + q_i V_0 \), we get

\[
Q(t) = Q_0 e^{-rt/V_0}.
\]

Since \(V(t) = (r_i - r_o) t + V_0 \) and \(r_i = r_o \), we obtain \(V(t) = V_0 \).
So \(q(t) = Q(t)/V(t) \) is given by \(q(t) = \frac{Q_0}{V_0} e^{-rt/V_0} \). Therefore,

\[
\frac{1}{100} \frac{Q_0}{V_0} = q(t_1) = \frac{Q_0}{V_0} e^{-rt_1/V_0}.
\]
Predictions for particular situations.

Example

Assume that \(r_i = r_o = r \) and \(q_i \) are constants.

If \(r = 2 \) liters/min, \(q_i = 0 \), \(V_0 = 200 \) liters, \(Q_0/V_0 = 1 \) grams/liter, find \(t_1 \) such that \(q(t_1) = Q(t_1)/V(t_1) \) is 1% the initial value.

Solution: This problem is a particular case \(q_i = 0 \) of the previous Example. Since \(Q(t) = (Q_0 - q_i V_0) e^{-rt/V_0} + q_i V_0 \), we get

\[
Q(t) = Q_0 e^{-rt/V_0}.
\]

Since \(V(t) = (r_i - r_o) t + V_0 \) and \(r_i = r_o \), we obtain \(V(t) = V_0 \).

So \(q(t) = Q(t)/V(t) \) is given by \(q(t) = Q_0 V_0 e^{-rt/V_0} \). Therefore,

\[
\frac{1}{100} \frac{Q_0}{V_0} = q(t_1) = \frac{Q_0}{V_0} e^{-rt_1/V_0} \quad \Rightarrow \quad e^{-rt_1/V_0} = \frac{1}{100}.
\]
Predictions for particular situations.

Example
Assume that \(r_i = r_o = r \) and \(q_i \) are constants.
If \(r = 2 \) liters/min, \(q_i = 0 \), \(V_0 = 200 \) liters, \(Q_0/V_0 = 1 \) grams/liter, find \(t_1 \) such that \(q(t_1) = Q(t_1)/V(t_1) \) is 1% the initial value.

Solution: Recall: \(e^{-rt_1}/V_0 = \frac{1}{100} \).
Predictions for particular situations.

Example

Assume that $r_i = r_o = r$ and q_i are constants. If $r = 2$ liters/min, $q_i = 0$, $V_0 = 200$ liters, $Q_0/V_0 = 1$ grams/liter, find t_1 such that $q(t_1) = Q(t_1)/V(t_1)$ is 1% the initial value.

Solution: Recall: $e^{-rt_1}/V_0 = \frac{1}{100}$. Then,

$$-\frac{r}{V_0} t_1 = \ln\left(\frac{1}{100}\right)$$
Predictions for particular situations.

Example
Assume that $r_i = r_o = r$ and q_i are constants.
If $r = 2$ liters/min, $q_i = 0$, $V_0 = 200$ liters, $Q_0/V_0 = 1$ grams/liter, find t_1 such that $q(t_1) = Q(t_1)/V(t_1)$ is 1% the initial value.

Solution: Recall: $e^{-rt_1/V_0} = \frac{1}{100}$. Then,

$$-\frac{r}{V_0} t_1 = \ln\left(\frac{1}{100}\right) = -\ln(100)$$
Predictions for particular situations.

Example

Assume that $r_i = r_o = r$ and q_i are constants.
If $r = 2$ liters/min, $q_i = 0$, $V_0 = 200$ liters, $Q_0/V_0 = 1$ grams/liter,
find t_1 such that $q(t_1) = Q(t_1)/V(t_1)$ is 1% the initial value.

Solution: Recall: $e^{-rt_1}/V_0 = \frac{1}{100}$. Then,

$$-\frac{r}{V_0} t_1 = \ln\left(\frac{1}{100}\right) = -\ln(100) \quad \Rightarrow \quad \frac{r}{V_0} t_1 = \ln(100).$$
Predictions for particular situations.

Example
Assume that \(r_i = r_o = r \) and \(q_i \) are constants.
If \(r = 2 \text{ liters/min}, q_i = 0, V_0 = 200 \text{ liters}, Q_0/V_0 = 1 \text{ grams/liter} \), find \(t_1 \) such that \(q(t_1) = Q(t_1)/V(t_1) \) is 1\% the initial value.

Solution: Recall: \(e^{-rt_1/V_0} = \frac{1}{100} \). Then,

\[
- \frac{r}{V_0} t_1 = \ln \left(\frac{1}{100} \right) = - \ln(100) \quad \Rightarrow \quad \frac{r}{V_0} t_1 = \ln(100).
\]

We conclude that \(t_1 = \frac{V_0}{r} \ln(100) \).
Predictions for particular situations.

Example

Assume that $r_i = r_o = r$ and q_i are constants. If $r = 2$ liters/min, $q_i = 0$, $V_0 = 200$ liters, $Q_0/V_0 = 1$ grams/liter, find t_1 such that $q(t_1) = Q(t_1)/V(t_1)$ is 1% the initial value.

Solution: Recall: $e^{-rt_1/V_0} = \frac{1}{100}$. Then,

$$-\frac{r}{V_0} t_1 = \ln\left(\frac{1}{100}\right) = -\ln(100) \quad \Rightarrow \quad \frac{r}{V_0} t_1 = \ln(100).$$

We conclude that $t_1 = \frac{V_0}{r} \ln(100)$.

In this case: $t_1 = 100 \ln(100)$. \(\triangleleft\)
Example

Assume that \(r_i = r_o = r \) are constants. If \(r = 5 \times 10^6 \) gal/year, \(q_i(t) = 2 + \sin(2t) \) grams/gal, \(V_0 = 10^6 \) gal, \(Q_0 = 0 \), find \(Q(t) \).
Predictions for particular situations.

Example
Assume that \(r_i = r_o = r \) are constants. If \(r = 5 \times 10^6 \) gal/year, \(q_i(t) = 2 + \sin(2t) \) grams/gal, \(V_0 = 10^6 \) gal, \(Q_0 = 0 \), find \(Q(t) \).

Solution: Recall: \(Q'(t) = a(t) Q(t) + b(t) \).
Predictions for particular situations.

Example

Assume that \(r_i = r_o = r \) are constants. If \(r = 5 \times 10^6 \) gal/year, \(q_i(t) = 2 + \sin(2t) \) grams/gal, \(V_0 = 10^6 \) gal, \(Q_0 = 0 \), find \(Q(t) \).

Solution: Recall: \(Q'(t) = a(t) Q(t) + b(t) \). In this case:

\[
a(t) = -\frac{r_o}{(r_i - r_o) t + V_0}
\]
Predictions for particular situations.

Example
Assume that $r_i = r_o = r$ are constants. If $r = 5 \times 10^6$ gal/year, $q_i(t) = 2 + \sin(2t)$ grams/gal, $V_0 = 10^6$ gal, $Q_0 = 0$, find $Q(t)$.

Solution: Recall: $Q'(t) = a(t) Q(t) + b(t)$. In this case:

$$a(t) = -\frac{r_o}{(r_i - r_o) t + V_0} \quad \Rightarrow \quad a(t) = -\frac{r}{V_0} = -a_0,$$
Predictions for particular situations.

Example
Assume that \(r_i = r_o = r \) are constants. If \(r = 5 \times 10^6 \text{ gal/year}, \)
\(q_i(t) = 2 + \sin(2t) \text{ grams/gal}, \) \(V_0 = 10^6 \text{ gal}, \) \(Q_0 = 0, \) find \(Q(t). \)

Solution: Recall: \(Q'(t) = a(t) Q(t) + b(t). \) In this case:

\[
a(t) = -\frac{r_o}{(r_i - r_o) t + V_0} \quad \Rightarrow \quad a(t) = -\frac{r}{V_0} = -a_0,
\]

\[
b(t) = r_i q_i(t)
\]
Predictions for particular situations.

Example

Assume that \(r_i = r_o = r \) are constants. If \(r = 5 \times 10^6 \) gal/year, \(q_i(t) = 2 + \sin(2t) \) grams/gal, \(V_0 = 10^6 \) gal, \(Q_0 = 0 \), find \(Q(t) \).

Solution: Recall: \(Q'(t) = a(t) Q(t) + b(t) \). In this case:

\[
a(t) = -\frac{r_o}{(r_i - r_o) t + V_0} \quad \Rightarrow \quad a(t) = -\frac{r}{V_0} = -a_0,
\]

\[
b(t) = r_i q_i(t) \quad \Rightarrow \quad b(t) = r [2 + \sin(2t)].
\]
Predictions for particular situations.

Example

Assume that \(r_i = r_o = r \) are constants. If \(r = 5 \times 10^6 \) gal/year, \(q_i(t) = 2 + \sin(2t) \) grams/gal, \(V_0 = 10^6 \) gal, \(Q_0 = 0 \), find \(Q(t) \).

Solution: Recall: \(Q'(t) = a(t) Q(t) + b(t) \). In this case:

\[
a(t) = -\frac{r_o}{(r_i - r_o) t + V_0} \quad \Rightarrow \quad a(t) = -\frac{r}{V_0} = -a_0,
\]

\[
b(t) = r_i q_i(t) \quad \Rightarrow \quad b(t) = r \left[2 + \sin(2t) \right].
\]

We need to solve the IVP: \(Q'(t) = -a_0 Q(t) + b(t) \), \(Q(0) = 0 \).
Predictions for particular situations.

Example
Assume that $r_i = r_o = r$ are constants. If $r = 5 \times 10^6$ gal/year, $q_i(t) = 2 + \sin(2t)$ grams/gal, $V_0 = 10^6$ gal, $Q_0 = 0$, find $Q(t)$.

Solution: Recall: $Q'(t) = a(t) Q(t) + b(t)$. In this case:

$$a(t) = -\frac{r_o}{(r_i - r_o) t + V_0} \quad \Rightarrow \quad a(t) = -\frac{r}{V_0} = -a_0,$$

$$b(t) = r_i q_i(t) \quad \Rightarrow \quad b(t) = r \left[2 + \sin(2t)\right].$$

We need to solve the IVP: $Q'(t) = -a_0 Q(t) + b(t)$, $Q(0) = 0$.

$$e^{a_0 t} Q(t) = \int_0^t e^{a_0 s} b(s) \, ds.$$
Predictions for particular situations.

Example

Assume that \(r_i = r_o = r \) are constants. If \(r = 5 \times 10^6 \) gal/year, \(q_i(t) = 2 + \sin(2t) \) grams/gal, \(V_0 = 10^6 \) gal, \(Q_0 = 0 \), find \(Q(t) \).

Solution: Recall: \(Q'(t) = a(t) Q(t) + b(t) \). In this case:

\[
a(t) = -\frac{r_o}{(r_i - r_o) t + V_0} \quad \Rightarrow \quad a(t) = -\frac{r}{V_0} = -a_0,
\]

\[
b(t) = r_i q_i(t) \quad \Rightarrow \quad b(t) = r [2 + \sin(2t)].
\]

We need to solve the IVP: \(Q'(t) = -a_0 Q(t) + b(t), \; Q(0) = 0 \).

\[
e^{a_0 t} Q(t) = \int_0^t e^{a_0 s} b(s) \, ds.
\]

We conclude: \(Q(t) = re^{-rt/V_0} \int_0^t e^{rs/V_0} [2 + \sin(2s)] \, ds. \)
Exact equations (Sect. 1.4).

- Exact differential equations.
- The Poincaré Lemma.
- Implicit solutions and the potential function.
- Generalization: The integrating factor method.
Exact differential equations.

Definition
Given an open rectangle \(R = (t_1, t_2) \times (u_1, u_2) \subset \mathbb{R}^2 \) and continuously differentiable functions \(M, N : R \rightarrow \mathbb{R} \),
Exact differential equations.

Definition
Given an open rectangle $R = (t_1, t_2) \times (u_1, u_2) \subset \mathbb{R}^2$ and continuously differentiable functions $M, N : R \rightarrow \mathbb{R}$, denoted as $(t, u) \mapsto M(t, u)$ and $(t, u) \mapsto N(t, u)$,
Exact differential equations.

Definition
Given an open rectangle $R = (t_1, t_2) \times (u_1, u_2) \subset \mathbb{R}^2$ and continuously differentiable functions $M, N : R \to \mathbb{R}$, denoted as $(t, u) \mapsto M(t, u)$ and $(t, u) \mapsto N(t, u)$, the differential equation in the unknown function $y : (t_1, t_2) \to \mathbb{R}$ given by

$$N(t, y(t)) y'(t) + M(t, y(t)) = 0$$

is called exact iff for every point $(t, u) \in R$ holds

$$\partial_t N(t, u) = \partial_u M(t, u)$$
Exact differential equations.

Definition
Given an open rectangle \(R = (t_1, t_2) \times (u_1, u_2) \subset \mathbb{R}^2 \) and continuously differentiable functions \(M, N : R \to \mathbb{R} \), denoted as \((t, u) \mapsto M(t, u) \) and \((t, u) \mapsto N(t, u) \), the differential equation in the unknown function \(y : (t_1, t_2) \to \mathbb{R} \) given by

\[
N(t, y(t)) y'(t) + M(t, y(t)) = 0
\]

is called exact iff for every point \((t, u) \in R\) holds

\[
\partial_t N(t, u) = \partial_u M(t, u)
\]

Recall: we use the notation: \(\partial_t N = \frac{\partial N}{\partial t} \), and \(\partial_u M = \frac{\partial M}{\partial u} \).
Exact differential equations.

Example
Show whether the differential equation below is exact,

\[2ty(t)y'(t) + 2t + y^2(t) = 0. \]
Exact differential equations.

Example
Show whether the differential equation below is exact,

$$2ty(t)y'(t) + 2t + y^2(t) = 0.$$

Solution: We first identify the functions N and M,

$$N(t,u) = 2tu,
M(t,u) = 2t + u^2.$$

The equation is exact iff

$$\frac{\partial}{\partial t}N(t,u) = \frac{\partial}{\partial u}M(t,u).$$

We conclude:

$$\frac{\partial}{\partial t}N(t,u) = 2u,
\frac{\partial}{\partial u}M(t,u) = 2u.$$

Remark: The ODE above is not separable and non-linear.
Exact differential equations.

Example
Show whether the differential equation below is exact,

\[2ty(t) y'(t) + 2t + y^2(t) = 0. \]

Solution: We first identify the functions \(N \) and \(M \),

\[[2ty(t)] \, y'(t) + [2t + y^2(t)] = 0 \]

Remark: The ODE above is not separable and non-linear.
Exact differential equations.

Example
Show whether the differential equation below is exact,

$$2ty(t)\ y'(t) + 2t + y^2(t) = 0.$$

Solution: We first identify the functions N and M,

$$[2ty(t)]\ y'(t) + [2t + y^2(t)] = 0 \quad \Rightarrow \quad \begin{cases}
N(t, u) = 2tu, \\
M(t, u) = 2t + u^2.
\end{cases}$$
Exact differential equations.

Example
Show whether the differential equation below is exact,

\[2ty(t) y'(t) + 2t + y^2(t) = 0. \]

Solution: We first identify the functions \(N \) and \(M \),

\[
[2ty(t)] y'(t) + [2t + y^2(t)] = 0 \quad \Rightarrow \quad \begin{cases}
N(t, u) = 2tu, \\
M(t, u) = 2t + u^2.
\end{cases}
\]

The equation is exact iff \(\partial_t N = \partial_u M \).
Exact differential equations.

Example
Show whether the differential equation below is exact,

\[2ty(t) y'(t) + 2t + y^2(t) = 0. \]

Solution: We first identify the functions \(N \) and \(M \),

\[
[2ty(t)] y'(t) + [2t + y^2(t)] = 0 \quad \Rightarrow \quad \left\{ \begin{array}{l}
N(t,u) = 2tu, \\
M(t,u) = 2t + u^2.
\end{array} \right.
\]

The equation is exact iff \(\partial_t N = \partial_u M \). Since

\[N(t, u) = 2tu \]
Exact differential equations.

Example
Show whether the differential equation below is exact,

\[2ty(t) y'(t) + 2t + y^2(t) = 0. \]

Solution: We first identify the functions \(N \) and \(M \),

\[[2ty(t)] y'(t) + [2t + y^2(t)] = 0 \quad \Rightarrow \quad \begin{cases} N(t, u) = 2tu, \\ M(t, u) = 2t + u^2. \end{cases} \]

The equation is exact iff \(\partial_t N = \partial_u M \). Since

\[N(t, u) = 2tu \quad \Rightarrow \quad \partial_t N(t, u) = 2u, \]

\[\partial_u M(t, u) = 2u. \]
Exact differential equations.

Example

Show whether the differential equation below is exact,

$$2ty(t) y'(t) + 2t + y^2(t) = 0.$$

Solution: We first identify the functions N and M,

$$\left[2ty(t)\right] y'(t) + \left[2t + y^2(t)\right] = 0 \quad \Rightarrow \quad \begin{cases} N(t, u) = 2tu, \\ M(t, u) = 2t + u^2. \end{cases}$$

The equation is exact iff $\partial_t N = \partial_u M$. Since

$N(t, u) = 2tu \quad \Rightarrow \quad \partial_t N(t, u) = 2u,$

$M(t, u) = 2t + u^2$
Exact differential equations.

Example
Show whether the differential equation below is exact,

$$2ty(t)y'(t) + 2t + y^2(t) = 0.$$

Solution: We first identify the functions \(N\) and \(M\),

\[
\begin{align*}
[2ty(t)] y'(t) + [2t + y^2(t)] &= 0 \\
&\Rightarrow \quad \begin{cases}
N(t, u) = 2tu, \\
M(t, u) = 2t + u^2.
\end{cases}
\end{align*}
\]

The equation is exact iff \(\partial_t N = \partial_u M\). Since

\[
\begin{align*}
N(t, u) &= 2tu \\
&\Rightarrow \quad \partial_t N(t, u) = 2u,
\end{align*}
\]

\[
\begin{align*}
M(t, u) &= 2t + u^2 \\
&\Rightarrow \quad \partial_u M(t, u) = 2u.
\end{align*}
\]

Remark: The ODE above is not separable and non-linear.
Exact differential equations.

Example

Show whether the differential equation below is exact,

\[2ty(t) y'(t) + 2t + y^2(t) = 0. \]

Solution: We first identify the functions \(N \) and \(M \),

\[[2ty(t)] y'(t) + [2t + y^2(t)] = 0 \quad \Rightarrow \quad \begin{cases} N(t, u) = 2tu, \\ M(t, u) = 2t + u^2. \end{cases} \]

The equation is exact iff \(\partial_t N = \partial_u M \). Since

\[N(t, u) = 2tu \quad \Rightarrow \quad \partial_t N(t, u) = 2u, \]

\[M(t, u) = 2t + u^2 \quad \Rightarrow \quad \partial_u M(t, u) = 2u. \]

We conclude: \(\partial_t N(t, u) = \partial_u M(t, u) \).
Exact differential equations.

Example
Show whether the differential equation below is exact,

\[2ty(t) \frac{dy}{dt} + 2t + y^2(t) = 0. \]

Solution: We first identify the functions \(N \) and \(M \),

\[
\begin{align*}
[2ty(t)] \frac{dy}{dt} + [2t + y^2(t)] &= 0 \\
\Rightarrow &\quad \begin{cases}
N(t, u) = 2tu, \\
M(t, u) = 2t + u^2.
\end{cases}
\end{align*}
\]

The equation is exact iff \(\partial_t N = \partial_u M \). Since

\[
N(t, u) = 2tu \quad \Rightarrow \quad \partial_t N(t, u) = 2u,
\]

\[
M(t, u) = 2t + u^2 \quad \Rightarrow \quad \partial_u M(t, u) = 2u.
\]

We conclude: \(\partial_t N(t, u) = \partial_u M(t, u) \).

Remark: The ODE above is not separable and non-linear.
Exact differential equations.

Example

Show whether the differential equation below is exact,

$$\sin(t)y'(t) + t^2 e^{y(t)} y'(t) - y'(t) = -y(t) \cos(t) - 2te^{y(t)}.$$
Exact differential equations.

Example

Show whether the differential equation below is exact,

$$\sin(t)y'(t) + t^2e^{y(t)}y'(t) - y'(t) = -y(t)\cos(t) - 2te^{y(t)}.$$

Solution: We first identify the functions N and M,

Exact differential equations.

Example
Show whether the differential equation below is exact,

\[\sin(t)y'(t) + t^2 e^{y(t)} y'(t) - y'(t) = -y(t) \cos(t) - 2te^{y(t)}. \]

Solution: We first identify the functions \(N \) and \(M \), if we write

\[
\begin{align*}
[\sin(t) + t^2 e^{y(t)} - 1] y'(t) + [y(t) \cos(t) + 2te^{y(t)}] &= 0,
\end{align*}
\]
Exact differential equations.

Example
Show whether the differential equation below is exact,

\[\sin(t)y'(t) + t^2 e^{y(t)} y'(t) - y'(t) = -y(t) \cos(t) - 2te^{y(t)}. \]

Solution: We first identify the functions \(N \) and \(M \), if we write

\[
\left[\sin(t) + t^2 e^{y(t)} - 1 \right] y'(t) + \left[y(t) \cos(t) + 2te^{y(t)} \right] = 0,
\]

we can see that

\[
N(t, u) = \sin(t) + t^2 e^u - 1
\]
Exact differential equations.

Example
Show whether the differential equation below is exact,

\[
sin(t)y'(t) + t^2 e^{y(t)}y'(t) - y'(t) = -y(t) \cos(t) - 2te^{y(t)}.\]

Solution: We first identify the functions \(N\) and \(M\), if we write

\[
\begin{align*}
\left[sin(t) + t^2 e^{y(t)} - 1 \right] y'(t) + \left[y(t) \cos(t) + 2te^{y(t)} \right] &= 0,
\end{align*}
\]

we can see that

\[
N(t, u) = \sin(t) + t^2 e^u - 1 \quad \Rightarrow \quad \partial_t N(t, u) = \cos(t) + 2te^u,
\]
Exact differential equations.

Example

Show whether the differential equation below is exact,

\[\sin(t)y'(t) + t^2 e^{y(t)} y'(t) - y'(t) = -y(t) \cos(t) - 2te^{y(t)}. \]

Solution: We first identify the functions \(N \) and \(M \), if we write

\[
\left[\sin(t) + t^2 e^{y(t)} - 1 \right] y'(t) + \left[y(t) \cos(t) + 2te^{y(t)} \right] = 0,
\]

we can see that

\[
N(t, u) = \sin(t) + t^2 e^u - 1 \quad \Rightarrow \quad \partial_t N(t, u) = \cos(t) + 2te^u,
\]

\[
M(t, u) = u \cos(t) + 2te^u
\]
Exact differential equations.

Example
Show whether the differential equation below is exact,

\[\sin(t)y'(t) + t^2e^{y(t)}y'(t) - y'(t) = -y(t)\cos(t) - 2te^{y(t)}. \]

Solution: We first identify the functions \(N \) and \(M \), if we write

\[
\left[\sin(t) + t^2e^{y(t)} - 1 \right] y'(t) + \left[y(t)\cos(t) + 2te^{y(t)} \right] = 0,
\]

we can see that

\[N(t, u) = \sin(t) + t^2e^{u} - 1 \quad \Rightarrow \quad \partial_t N(t, u) = \cos(t) + 2te^u, \]

\[M(t, u) = u\cos(t) + 2te^u \quad \Rightarrow \quad \partial_u M(t, u) = \cos(t) + 2te^u. \]
Exact differential equations.

Example
Show whether the differential equation below is exact,

\[\sin(t)y'(t) + t^2 e^{y(t)}y'(t) - y'(t) = -y(t)\cos(t) - 2te^{y(t)}. \]

Solution: We first identify the functions \(N \) and \(M \), if we write

\[\left[\sin(t) + t^2 e^{y(t)} - 1 \right] y'(t) + \left[y(t)\cos(t) + 2te^{y(t)} \right] = 0, \]

we can see that

\[
N(t, u) = \sin(t) + t^2 e^u - 1 \quad \Rightarrow \quad \partial_t N(t, u) = \cos(t) + 2te^u,
\]

\[
M(t, u) = u\cos(t) + 2te^u \quad \Rightarrow \quad \partial_u M(t, u) = \cos(t) + 2te^u.
\]

The equation is exact, since \(\partial_t N(t, u) = \partial_u M(t, u) \). \(\triangleq \)
Exact differential equations.

Example
Show whether the linear differential equation below is exact,

\[y'(t) = -a(t) y(t) + b(t), \quad a(t) \neq 0. \]
Exact differential equations.

Example
Show whether the linear differential equation below is exact,

\[y'(t) = -a(t) y(t) + b(t), \quad a(t) \neq 0. \]

Solution: We first find the functions \(N \) and \(M \),
Exact differential equations.

Example
Show whether the linear differential equation below is exact,

\[y'(t) = -a(t) y(t) + b(t), \quad a(t) \neq 0. \]

Solution: We first find the functions \(N \) and \(M \),

\[y' + a(t)y - b(t) = 0 \]
Exact differential equations.

Example
Show whether the linear differential equation below is exact,

\[y'(t) = -a(t) y(t) + b(t), \quad a(t) \neq 0. \]

Solution: We first find the functions \(N \) and \(M \),

\[y' + a(t)y - b(t) = 0 \quad \Rightarrow \quad \begin{cases} N(t, u) = 1, \\ M(t, u) = a(t) u - b(t). \end{cases} \]
Exact differential equations.

Example
Show whether the linear differential equation below is exact,

\[y'(t) = -a(t)y(t) + b(t), \quad a(t) \neq 0. \]

Solution: We first find the functions \(N \) and \(M \),

\[y' + a(t)y - b(t) = 0 \quad \Rightarrow \quad \begin{cases} N(t, u) = 1, \\ M(t, u) = a(t)u - b(t). \end{cases} \]

The differential equation is not exact,
Exact differential equations.

Example
Show whether the linear differential equation below is exact,

\[y'(t) = -a(t) y(t) + b(t), \quad a(t) \neq 0. \]

Solution: We first find the functions \(N \) and \(M \),

\[y' + a(t)y - b(t) = 0 \quad \Rightarrow \quad \begin{cases} \quad N(t, u) = 1, \\ M(t, u) = a(t)u - b(t). \end{cases} \]

The differential equation is not exact, since

\[N(t, u) = 1 \]
Example
Show whether the linear differential equation below is exact,

\[y'(t) = -a(t) y(t) + b(t), \quad a(t) \neq 0. \]

Solution: We first find the functions \(N \) and \(M \),

\[y' + a(t)y - b(t) = 0 \quad \Rightarrow \quad \begin{cases} N(t, u) = 1, \\ M(t, u) = a(t) u - b(t). \end{cases} \]

The differential equation is not exact, since

\[N(t, u) = 1 \quad \Rightarrow \quad \partial_t N(t, u) = 0, \]
Exact differential equations.

Example
Show whether the linear differential equation below is exact,

\[y'(t) = -a(t) y(t) + b(t), \quad a(t) \neq 0. \]

Solution: We first find the functions \(N \) and \(M \),

\[y' + a(t)y - b(t) = 0 \quad \Rightarrow \quad \begin{cases} N(t, u) = 1, \\ M(t, u) = a(t)u - b(t). \end{cases} \]

The differential equation is not exact, since

\[N(t, u) = 1 \quad \Rightarrow \quad \partial_t N(t, u) = 0, \]

\[M(t, u) = a(t)u - b(t) \]
Exact differential equations.

Example
Show whether the linear differential equation below is exact,

\[y'(t) = -a(t) y(t) + b(t), \quad a(t) \neq 0. \]

Solution: We first find the functions \(N \) and \(M \),

\[y' + a(t)y - b(t) = 0 \quad \Rightarrow \quad \begin{cases} N(t, u) = 1, \\ M(t, u) = a(t) u - b(t). \end{cases} \]

The differential equation is not exact, since

\[N(t, u) = 1 \quad \Rightarrow \quad \partial_t N(t, u) = 0, \]

\[M(t, u) = a(t) u - b(t) \quad \Rightarrow \quad \partial_u M(t, u) = a(t). \]
Exact differential equations.

Example

Show whether the linear differential equation below is exact,

\[y'(t) = -a(t) y(t) + b(t), \quad a(t) \neq 0. \]

Solution: We first find the functions \(N \) and \(M \),

\[\begin{align*}
 y' + a(t)y - b(t) &= 0 \quad \Rightarrow \quad \\
 &\begin{cases}
 N(t, u) = 1, \\
 M(t, u) = a(t)u - b(t).
 \end{cases}
\end{align*} \]

The differential equation is not exact, since

\[\begin{align*}
 N(t, u) = 1 \quad &\Rightarrow \quad \partial_t N(t, u) = 0, \\
 M(t, u) = a(t)u - b(t) \quad &\Rightarrow \quad \partial_u M(t, u) = a(t).
\end{align*} \]

This implies that \(\partial_t N(t, u) \neq \partial_u M(t, u) \).

\[\triangle \]
Exact equations (Sect. 1.4).

- Exact differential equations.
- **The Poincaré Lemma.**
- Implicit solutions and the potential function.
- Generalization: The integrating factor method.
The Poincaré Lemma.

Remark: The coefficients N and M of an exact equations are the derivatives of a potential function ψ.

Proof:

(\Leftarrow) Simple: $\partial_t N = \partial_u \partial_t \psi$, $\partial_u M = \partial_t \partial_u \psi$, \{⇒\} $\partial_t N = \partial_u M$.

(\Rightarrow) Difficult: Poincaré, 1880.
The Poincaré Lemma.

Remark: The coefficients N and M of an exact equations are the derivatives of a potential function ψ.

Lemma (Poincaré)

Given an open rectangle $R = (t_1, t_2) \times (u_1, u_2) \subset \mathbb{R}^2$, the continuously differentiable functions $M, N : R \to \mathbb{R}$ satisfy the equation

$$\partial_t N(t, u) = \partial_u M(t, u)$$

iff there exists a twice continuously differentiable function $\psi : R \to \mathbb{R}$, called potential function, such that for all $(t, u) \in R$ holds

$$\partial_u \psi(t, u) = N(t, u), \quad \partial_t \psi(t, u) = M(t, u).$$
The Poincaré Lemma.

Remark: The coefficients N and M of an exact equations are the derivatives of a potential function ψ.

Lemma (Poincaré)

Given an open rectangle $R = (t_1, t_2) \times (u_1, u_2) \subset \mathbb{R}^2$, the continuously differentiable functions $M, N : R \to \mathbb{R}$ satisfy the equation

$$\partial_t N(t, u) = \partial_u M(t, u)$$

iff there exists a twice continuously differentiable function $\psi : R \to \mathbb{R}$, called potential function, such that for all $(t, u) \in R$ holds

$$\partial_u \psi(t, u) = N(t, u), \quad \partial_t \psi(t, u) = M(t, u).$$

Proof: (\Leftarrow) Simple:
The Poincaré Lemma.

Remark: The coefficients N and M of an exact equations are the derivatives of a potential function ψ.

Lemma (Poincaré)

Given an open rectangle $R = (t_1, t_2) \times (u_1, u_2) \subset \mathbb{R}^2$, the continuously differentiable functions $M, N : R \to \mathbb{R}$ satisfy the equation

$$\partial_t N(t, u) = \partial_u M(t, u)$$

iff there exists a twice continuously differentiable function $\psi : R \to \mathbb{R}$, called potential function, such that for all $(t, u) \in R$ holds

$$\partial_u \psi(t, u) = N(t, u), \quad \partial_t \psi(t, u) = M(t, u).$$

Proof: (\Leftarrow) Simple: \[
\begin{aligned}
\partial_t N &= \partial_t \partial_u \psi, \\
\partial_u M &= \partial_u \partial_t \psi,
\end{aligned}
\] \[
\Rightarrow \partial_t N = \partial_u M.
\]
The Poincaré Lemma.

Remark: The coefficients N and M of an exact equations are the derivatives of a potential function ψ.

Lemma (Poincaré)

*Given an open rectangle $R = (t_1, t_2) \times (u_1, u_2) \subset \mathbb{R}^2$, the continuously differentiable functions $M, N : R \to \mathbb{R}$ satisfy the equation

$$\partial_t N(t, u) = \partial_u M(t, u)$$

iff there exists a twice continuously differentiable function

$\psi : R \to \mathbb{R}$, called potential function, such that for all $(t, u) \in R$ holds

$$\partial_u \psi(t, u) = N(t, u), \quad \partial_t \psi(t, u) = M(t, u).$$

Proof: (\Leftarrow) Simple: \[
\begin{align*}
\partial_t N & = \partial_t \partial_u \psi, \\
\partial_u M & = \partial_u \partial_t \psi,
\end{align*}
\]

$\Rightarrow \partial_t N = \partial_u M.$

(\Rightarrow) Difficult: Poincaré, 1880.
The Poincaré Lemma.

Example
Show that the function $\psi(t, u) = t^2 + tu^2$ is the potential function for the exact differential equation

$$2ty(t) y'(t) + 2t + y^2(t) = 0.$$
The Poincaré Lemma.

Example
Show that the function $\psi(t, u) = t^2 + tu^2$ is the potential function for the exact differential equation

$$2ty(t)y'(t) + 2t + y^2(t) = 0.$$

Solution: We already saw that the differential equation above is exact,
The Poincaré Lemma.

Example
Show that the function $\psi(t, u) = t^2 + tu^2$ is the potential function for the exact differential equation

$$2ty(t)y'(t) + 2t + y^2(t) = 0.$$

Solution: We already saw that the differential equation above is exact, since the functions M and N,

$$N(t, u) = 2tu,$$

$$M(t, u) = 2t + u^2$$
The Poincaré Lemma.

Example

Show that the function \(\psi(t, u) = t^2 + tu^2 \) is the potential function for the exact differential equation

\[
2ty(t)y'(t) + 2t + y^2(t) = 0.
\]

Solution: We already saw that the differential equation above is exact, since the functions \(M \) and \(N \),

\[
\begin{align*}
N(t, u) &= 2tu, \\
M(t, u) &= 2t + u^2
\end{align*}
\]

\[\Rightarrow \quad \partial_t N = 2u = \partial_u M.\]
The Poincaré Lemma.

Example
Show that the function \(\psi(t, u) = t^2 + tu^2 \) is the potential function for the exact differential equation

\[
2ty(t)y'(t) + 2t + y^2(t) = 0.
\]

Solution: We already saw that the differential equation above is exact, since the functions \(M \) and \(N \),

\[
\begin{align*}
N(t, u) &= 2tu, \\
M(t, u) &= 2t + u^2
\end{align*}
\]

\[
\Rightarrow \quad \partial_t N = 2u = \partial_u M.
\]

The potential function is \(\psi(t, u) = t^2 + tu^2 \).
The Poincaré Lemma.

Example
Show that the function \(\psi(t, u) = t^2 + tu^2 \) is the potential function for the exact differential equation

\[
2ty(t) y'(t) + 2t + y^2(t) = 0.
\]

Solution: We already saw that the differential equation above is exact, since the functions \(M \) and \(N \),

\[
\begin{align*}
N(t, u) &= 2tu, \\
M(t, u) &= 2t + u^2
\end{align*}
\]

\(\Rightarrow \quad \partial_t N = 2u = \partial_u M. \)

The potential function is \(\psi(t, u) = t^2 + tu^2 \), since

\[
\partial_t \psi = 2t + u^2 = M,
\]
The Poincaré Lemma.

Example
Show that the function \(\psi(t, u) = t^2 + tu^2 \) is the potential function for the exact differential equation

\[
2ty(t) y'(t) + 2t + y^2(t) = 0.
\]

Solution: We already saw that the differential equation above is exact, since the functions \(M \) and \(N \),

\[
\begin{align*}
N(t, u) &= 2tu, \\
M(t, u) &= 2t + u^2
\end{align*}
\]

\[\Rightarrow \partial_t N = 2u = \partial_u M.\]

The potential function is \(\psi(t, u) = t^2 + tu^2 \), since

\[
\partial_t \psi = 2t + u^2 = M, \quad \partial_u \psi = 2tu = N.
\]

\[\triangleq\]
The Poincaré Lemma.

Example
Show that the function $\psi(t, u) = t^2 + tu^2$ is the potential function for the exact differential equation

$$2ty(t) y'(t) + 2t + y^2(t) = 0.$$

Solution: We already saw that the differential equation above is exact, since the functions M and N,

$$\begin{align*}
M(t, u) &= 2t + u^2, \\
N(t, u) &= 2tu,
\end{align*}$$

$$\Rightarrow \partial_t N = 2u = \partial_u M.$$

The potential function is $\psi(t, u) = t^2 + tu^2$, since

$$\partial_t \psi = 2t + u^2 = M, \quad \partial_u \psi = 2tu = N.$$

Remark: The Poincaré Lemma only states necessary and sufficient conditions on N and M for the existence of ψ.

\[\triangle\]
Exact equations (Sect. 1.4).

- Exact differential equations.
- The Poincaré Lemma.
- **Implicit solutions and the potential function.**
- Generalization: The integrating factor method.
Implicit solutions and the potential function.

Theorem (Exact differential equations)

Let $M, N : \mathbb{R} \to \mathbb{R}$ be continuously differentiable functions on an open rectangle $R = (t_1, t_2) \times (u_1, u_2) \subset \mathbb{R}^2$. If the differential equation

$$N(t, y(t)) y'(t) + M(t, y(t)) = 0$$

is exact, then every solution $y : (t_1, t_2) \to \mathbb{R}$ must satisfy the algebraic equation

$$\psi(t, y(t)) = c,$$

where $c \in \mathbb{R}$ and $\psi : R \to \mathbb{R}$ is a potential function for Eq. (8).
Implicit solutions and the potential function.

Theorem (Exact differential equations)

Let $M, N : \mathbb{R} \rightarrow \mathbb{R}$ be continuously differentiable functions on an open rectangle $R = (t_1, t_2) \times (u_1, u_2) \subset \mathbb{R}^2$. If the differential equation

$$N(t, y(t)) y'(t) + M(t, y(t)) = 0 \quad (8)$$

is exact, then every solution $y : (t_1, t_2) \rightarrow \mathbb{R}$ must satisfy the algebraic equation

$$\psi(t, y(t)) = c,$$

where $c \in \mathbb{R}$ and $\psi : R \rightarrow \mathbb{R}$ is a potential function for Eq. (8).

Proof: $0 = N(t, y) y' + M(t, y)$
Implicit solutions and the potential function.

Theorem (Exact differential equations)

Let \(M, N : R \rightarrow \mathbb{R} \) be continuously differentiable functions on an open rectangle \(R = (t_1, t_2) \times (u_1, u_2) \subset \mathbb{R}^2 \). If the differential equation

\[
N(t, y(t)) y'(t) + M(t, y(t)) = 0
\]

is exact, then every solution \(y : (t_1, t_2) \rightarrow \mathbb{R} \) must satisfy the algebraic equation

\[
\psi(t, y(t)) = c,
\]

where \(c \in \mathbb{R} \) and \(\psi : R \rightarrow \mathbb{R} \) is a potential function for Eq. (8).

Proof: \(0 = N(t, y) y' + M(t, y) = \partial_y \psi(t, y) \frac{dy}{dt} + \partial_t \psi(t, y) \).
Implicit solutions and the potential function.

Theorem (Exact differential equations)

Let $M, N : \mathbb{R} \to \mathbb{R}$ be continuously differentiable functions on an open rectangle $R = (t_1, t_2) \times (u_1, u_2) \subset \mathbb{R}^2$. If the differential equation

$$N(t, y(t)) y'(t) + M(t, y(t)) = 0 \quad (8)$$

is exact, then every solution $y : (t_1, t_2) \to \mathbb{R}$ must satisfy the algebraic equation

$$\psi(t, y(t)) = c,$$

where $c \in \mathbb{R}$ and $\psi : R \to \mathbb{R}$ is a potential function for Eq. (8).

Proof: $0 = N(t, y) y' + M(t, y) = \partial_y \psi(t, y) \frac{dy}{dt} + \partial_t \psi(t, y))$.

$$0 = \frac{d}{dt} \psi(t, y(t))$$
Implicit solutions and the potential function.

Theorem (Exact differential equations)

Let $M, N : R \to \mathbb{R}$ be continuously differentiable functions on an open rectangle $R = (t_1, t_2) \times (u_1, u_2) \subset \mathbb{R}^2$. If the differential equation

$$N(t, y(t)) y'(t) + M(t, y(t)) = 0$$

is exact, then every solution $y : (t_1, t_2) \to \mathbb{R}$ must satisfy the algebraic equation

$$\psi(t, y(t)) = c,$$

where $c \in \mathbb{R}$ and $\psi : R \to \mathbb{R}$ is a potential function for Eq. (8).

Proof: $0 = N(t, y) y' + M(t, y) = \partial_y \psi(t, y) \frac{dy}{dt} + \partial_t \psi(t, y)$.

$$0 = \frac{d}{dt} \psi(t, y(t)) \iff \psi(t, y(t)) = c.$$
Implicit solutions and the potential function.

Example

Find all solutions y to the equation

$$[\sin(t) + t^2 e^{y(t)} - 1] y'(t) + y(t) \cos(t) + 2te^{y(t)} = 0.$$
Implicit solutions and the potential function.

Example
Find all solutions y to the equation

$$\left[\sin(t) + t^2 e^{y(t)} - 1 \right] y'(t) + y(t) \cos(t) + 2te^{y(t)} = 0.$$

Solution: Recall: The equation is exact,
Implicit solutions and the potential function.

Example
Find all solutions y to the equation

$$\left[\sin(t) + t^2 e^{y(t)} - 1 \right] y'(t) + y(t) \cos(t) + 2te^{y(t)} = 0.$$

Solution: Recall: The equation is exact,

$$N(t, u) = \sin(t) + t^2 e^u - 1$$
Implicit solutions and the potential function.

Example
Find all solutions y to the equation

$$\left[\sin(t) + t^2 e^{y(t)} - 1 \right] y'(t) + y(t) \cos(t) + 2t e^{y(t)} = 0.$$

Solution: Recall: The equation is exact,

$$N(t, u) = \sin(t) + t^2 e^u - 1 \quad \Rightarrow \quad \partial_t N(t, u) = \cos(t) + 2te^u,$$
Implicit solutions and the potential function.

Example
Find all solutions y to the equation

$$\left[\sin(t) + t^2 e^{y(t)} - 1 \right] y'(t) + y(t) \cos(t) + 2te^{y(t)} = 0.$$

Solution: Recall: The equation is exact,

$$N(t, u) = \sin(t) + t^2 e^u - 1 \quad \Rightarrow \quad \partial_t N(t, u) = \cos(t) + 2te^u,$$

$$M(t, u) = u \cos(t) + 2te^u$$
Implicit solutions and the potential function.

Example

Find all solutions y to the equation

$$\left[\sin(t) + t^2 e^{y(t)} - 1 \right] y'(t) + y(t) \cos(t) + 2te^{y(t)} = 0.$$

Solution: Recall: The equation is exact,

$$N(t, u) = \sin(t) + t^2 e^u - 1 \quad \Rightarrow \quad \partial_t N(t, u) = \cos(t) + 2te^u,$$

$$M(t, u) = u \cos(t) + 2te^u \quad \Rightarrow \quad \partial_u M(t, u) = \cos(t) + 2te^u,$$
Implicit solutions and the potential function.

Example
Find all solutions y to the equation

$$\left[\sin(t) + t^2 e^y(t) - 1\right] \frac{dy}{dt} + y(t) \cos(t) + 2te^y(t) = 0.$$

Solution: Recall: The equation is exact,

$$N(t, u) = \sin(t) + t^2 e^u - 1 \Rightarrow \partial_t N(t, u) = \cos(t) + 2te^u,$$

$$M(t, u) = u \cos(t) + 2te^u \Rightarrow \partial_u M(t, u) = \cos(t) + 2te^u,$$

hence, $\partial_t N = \partial_u M$.

Implicit solutions and the potential function.

Example

Find all solutions y to the equation

$$\left[\sin(t) + t^2 e^{y(t)} - 1 \right] y'(t) + y(t) \cos(t) + 2te^{y(t)} = 0.$$

Solution: Recall: The equation is exact,

$$N(t, u) = \sin(t) + t^2 e^u - 1 \quad \Rightarrow \quad \partial_t N(t, u) = \cos(t) + 2te^u,$$

$$M(t, u) = u \cos(t) + 2te^u \quad \Rightarrow \quad \partial_u M(t, u) = \cos(t) + 2te^u,$$

hence, $\partial_t N = \partial_u M$. Poincaré Lemma says the exists ψ,

$$\partial_u \psi(t, u) = N(t, u), \quad \partial_t \psi(t, u) = M(t, u).$$
Implicit solutions and the potential function.

Example
Find all solutions y to the equation
\[\sin(t) + t^2 e^{y(t)} - 1 \] \[y'(t) + y(t) \cos(t) + 2te^{y(t)} = 0. \]

Solution: Recall: The equation is exact,
\[N(t, u) = \sin(t) + t^2 e^u - 1 \quad \Rightarrow \quad \partial_t N(t, u) = \cos(t) + 2te^u, \]
\[M(t, u) = u \cos(t) + 2te^u \quad \Rightarrow \quad \partial_u M(t, u) = \cos(t) + 2te^u, \]

hence, $\partial_t N = \partial_u M$. Poincaré Lemma says the exists ψ,
\[\partial_u \psi(t, u) = N(t, u), \quad \partial_t \psi(t, u) = M(t, u). \]

These are actually equations for ψ.
Implicit solutions and the potential function.

Example
Find all solutions y to the equation
\[
[sin(t) + t^2e^{y(t)} - 1] y'(t) + y(t) \cos(t) + 2te^{y(t)} = 0.
\]

Solution: Recall: The equation is exact,
\[
N(t, u) = \sin(t) + t^2e^u - 1 \quad \Rightarrow \quad \partial_t N(t, u) = \cos(t) + 2te^u,
\]
\[
M(t, u) = u \cos(t) + 2te^u \quad \Rightarrow \quad \partial_u M(t, u) = \cos(t) + 2te^u,
\]
hence, $\partial_t N = \partial_u M$. Poincaré Lemma says the exists ψ,
\[
\partial_u \psi(t, u) = N(t, u), \quad \partial_t \psi(t, u) = M(t, u).
\]
These are actually equations for ψ. From the first one,
\[
\psi(t, u) = \int [\sin(t) + t^2e^u - 1] \, du + g(t).
\]
Implicit solutions and the potential function.

Example
Find all solutions \(y \) to the equation

\[
\left[\sin(t) + t^2 e^{y(t)} - 1 \right] y'(t) + y(t) \cos(t) + 2te^{y(t)} = 0.
\]

Solution: \(\psi(t, u) = \int \left[\sin(t) + t^2 e^u - 1 \right] du + g(t) \).
Implicit solutions and the potential function.

Example
Find all solutions y to the equation

$$\left[\sin(t) + t^2 e^{y(t)} - 1\right] y'(t) + y(t) \cos(t) + 2 te^{y(t)} = 0.$$

Solution: $\psi(t, u) = \int \left[\sin(t) + t^2 e^u - 1\right] du + g(t)$. Integrating,

$$\psi(t, u) = u \sin(t) + t^2 e^u - u + g(t).$$
Implicit solutions and the potential function.

Example
Find all solutions y to the equation

$$\left[\sin(t) + t^2 e^{y(t)} - 1 \right] y'(t) + y(t) \cos(t) + 2te^{y(t)} = 0.$$

Solution: $\psi(t, u) = \int \left[\sin(t) + t^2 e^u - 1 \right] du + g(t)$. Integrating,

$$\psi(t, u) = u \sin(t) + t^2 e^u - u + g(t).$$

Introduce this expression into $\partial_t \psi(t, u) = M(t, u)$,
Implicit solutions and the potential function.

Example
Find all solutions y to the equation

$$[\sin(t) + t^2e^{y(t)} - 1] y'(t) + y(t)\cos(t) + 2te^{y(t)} = 0.$$

Solution: $\psi(t, u) = \int [\sin(t) + t^2e^u - 1] \, du + g(t)$. Integrating,

$$\psi(t, u) = u\sin(t) + t^2e^u - u + g(t).$$

Introduce this expression into $\partial_t \psi(t, u) = M(t, u)$, that is,

$$\partial_t \psi(t, u) = u\cos(t) + 2te^u + g'(t).$$
Implicit solutions and the potential function.

Example
Find all solutions y to the equation

$$\left[\sin(t) + t^2 e^{y(t)} - 1\right] y'(t) + y(t) \cos(t) + 2te^{y(t)} = 0.$$

Solution: $\psi(t, u) = \int \left[\sin(t) + t^2 e^u - 1\right] du + g(t)$. Integrating,

$$\psi(t, u) = u \sin(t) + t^2 e^u - u + g(t).$$

Introduce this expression into $\partial_t \psi(t, u) = M(t, u)$, that is,

$$\partial_t \psi(t, u) = u \cos(t) + 2te^u + g'(t) = M(t, u).$$
Implicit solutions and the potential function.

Example
Find all solutions y to the equation

$$\left[\sin(t) + t^2 e^{y(t)} - 1 \right] y'(t) + y(t) \cos(t) + 2te^{y(t)} = 0.$$

Solution: $\psi(t, u) = \int \left[\sin(t) + t^2 e^u - 1 \right] du + g(t)$. Integrating,

$$\psi(t, u) = u \sin(t) + t^2 e^u - u + g(t).$$

Introduce this expression into $\partial_t \psi(t, u) = M(t, u)$, that is,

$$\partial_t \psi(t, u) = u \cos(t) + 2te^u + g'(t) = M(t, u) = u \cos(t) + 2te^u,$$

Therefore, $g'(t) = 0$, so we choose $g(t) = 0$.

We obtain,

$$\psi(t, u) = u \sin(t) + t^2 e^u - u.$$

So the solution y satisfies $y(t) \sin(t) + t^2 e^y(t) = c.$
Implicit solutions and the potential function.

Example

Find all solutions y to the equation

$$\left[\sin(t) + t^2 e^{y(t)} - 1 \right] y'(t) + y(t) \cos(t) + 2te^{y(t)} = 0.$$

Solution: $\psi(t, u) = \int \left[\sin(t) + t^2 e^{u} - 1 \right] du + g(t)$. Integrating,

$$\psi(t, u) = u \sin(t) + t^2 e^{u} - u + g(t).$$

Introduce this expression into $\partial_t \psi(t, u) = M(t, u)$, that is,

$$\partial_t \psi(t, u) = u \cos(t) + 2te^{u} + g'(t) = M(t, u) = u \cos(t) + 2te^{u},$$

Therefore, $g'(t) = 0$, so we choose $g(t) = 0$.

\[\int \]
Implicit solutions and the potential function.

Example
Find all solutions y to the equation

$$[\sin(t) + t^2 e^y(t) - 1] y'(t) + y(t) \cos(t) + 2te^y(t) = 0.$$

Solution: $\psi(t, u) = \int [\sin(t) + t^2 e^u - 1] \, du + g(t)$. Integrating,

$$\psi(t, u) = u \sin(t) + t^2 e^u - u + g(t).$$

Introduce this expression into $\partial_t \psi(t, u) = M(t, u)$, that is,

$$\partial_t \psi(t, u) = u \cos(t) + 2te^u + g'(t) = M(t, u) = u \cos(t) + 2te^u,$$

Therefore, $g'(t) = 0$, so we choose $g(t) = 0$. We obtain,

$$\psi(t, u) = u \sin(t) + t^2 e^u - u.$$
Implicit solutions and the potential function.

Example

Find all solutions y to the equation

$$\left[\sin(t) + t^2 e^{y(t)} - 1\right] y'(t) + y(t) \cos(t) + 2te^{y(t)} = 0.$$

Solution: $\psi(t, u) = \int \left[\sin(t) + t^2 e^u - 1\right] du + g(t)$. Integrating,

$$\psi(t, u) = u \sin(t) + t^2 e^u - u + g(t).$$

Introduce this expression into $\partial_t \psi(t, u) = M(t, u)$, that is,

$$\partial_t \psi(t, u) = u \cos(t) + 2te^u + g'(t) = M(t, u) = u \cos(t) + 2te^u,$$

Therefore, $g'(t) = 0$, so we choose $g(t) = 0$. We obtain,

$$\psi(t, u) = u \sin(t) + t^2 e^u - u.$$

So the solution y satisfies $y(t) \sin(t) + t^2 e^{y(t)} - y(t) = c$.

\[\triangle\]
Exact equations (Sect. 1.4).

- Exact differential equations.
- The Poincaré Lemma.
- Implicit solutions and the potential function.
- **Generalization: The integrating factor method.**

Remark:
Sometimes a non-exact equation can be transformed into an exact equation multiplying the equation by an integrating factor. Just like in the case of linear differential equations.
Generalization: The integrating factor method.

Theorem (Integrating factor)

Let $M, N : \mathbb{R} \rightarrow \mathbb{R}$ be continuously differentiable functions on $R = (t_1, t_2) \times (u_1, u_2) \subset \mathbb{R}^2$, with $N \neq 0$. If the equation

$$N(t, y(t)) y'(t) + M(t, y(t)) = 0$$

is not exact, that is, $\partial_t N(t, u) \neq \partial_u M(t, u)$,
Generalization: The integrating factor method.

Theorem (Integrating factor)

Let $M, N : \mathbb{R} \rightarrow \mathbb{R}$ be continuously differentiable functions on $R = (t_1, t_2) \times (u_1, u_2) \subset \mathbb{R}^2$, with $N \neq 0$. If the equation

$$N(t, y(t))y'(t) + M(t, y(t)) = 0$$

is not exact, that is, $\partial_t N(t, u) \neq \partial_u M(t, u)$, and if the function

$$\frac{1}{N(t, u)} \left[\partial_u M(t, u) - \partial_t N(t, u) \right]$$

does not depend on the variable u,
Generalization: The integrating factor method.

Theorem (Integrating factor)

Let $M, N : \mathbb{R} \to \mathbb{R}$ be continuously differentiable functions on $\mathbb{R} = (t_1, t_2) \times (u_1, u_2) \subset \mathbb{R}^2$, with $N \neq 0$. If the equation

$$N(t, y(t)) y'(t) + M(t, y(t)) = 0$$

is not exact, that is, $\partial_t N(t, u) \neq \partial_u M(t, u)$, and if the function

$$\frac{1}{N(t, u)} \left[\partial_u M(t, u) - \partial_t N(t, u) \right]$$

does not depend on the variable u, then the equation

$$\mu(t) \left[N(t, y(t)) y'(t) + M(t, y(t)) \right] = 0$$

is exact, where

$$\frac{\mu'(t)}{\mu(t)} = \frac{1}{N(t, u)} \left[\partial_u M(t, u) - \partial_t N(t, u) \right].$$
Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$\left[t^2 + t y(t)\right] y'(t) + \left[3t y(t) + y^2(t)\right] = 0.$$
Generalization: The integrating factor method.

Example
Find all solutions y to the differential equation
\[
[t^2 + ty(t)]' + [3ty(t) + y^2(t)] = 0.
\]

Solution: The equation is not exact:
Generalization: The integrating factor method.

Example
Find all solutions y to the differential equation
\[
\left[t^2 + t \, y(t) \right] y'(t) + \left[3t \, y(t) + y^2(t) \right] = 0.
\]

Solution: The equation is not exact:
\[N(t, u) = t^2 + tu \]
Generalization: The integrating factor method.

Example
Find all solutions y to the differential equation
\[
[t^2 + t \, y(t)] \, y'(t) + [3t \, y(t) + y^2(t)] = 0.
\]

Solution: The equation is not exact:
\[
N(t, u) = t^2 + tu \quad \Rightarrow \quad \partial_t N(t, u) = 2t + u,
\]
Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$\left[t^2 + t \, y(t) \right] \, y'(t) + \left[3t \, y(t) + y^2(t) \right] = 0.$$

Solution: The equation is not exact:

$$N(t, u) = t^2 + tu \quad \Rightarrow \quad \partial_t N(t, u) = 2t + u,$$

$$M(t, u) = 3tu + u^2.$$
Generalization: The integrating factor method.

Example
Find all solutions \(y \) to the differential equation
\[
[t^2 + ty(t)] y'(t) + [3t y(t) + y^2(t)] = 0.
\]

Solution: The equation is not exact:
\[
N(t, u) = t^2 + tu \quad \Rightarrow \quad \partial_t N(t, u) = 2t + u,
\]
\[
M(t, u) = 3tu + u^2 \quad \Rightarrow \quad \partial_u M(t, u) = 3t + 2u,
\]
Generalization: The integrating factor method.

Example
Find all solutions y to the differential equation

$$\left[t^2 + ty(t)\right] y'(t) + \left[3ty(t) + y^2(t)\right] = 0.$$

Solution: The equation is not exact:

$$N(t, u) = t^2 + tu \quad \Rightarrow \quad \partial_t N(t, u) = 2t + u,$$

$$M(t, u) = 3tu + u^2 \quad \Rightarrow \quad \partial_u M(t, u) = 3t + 2u,$$

hence $\partial_t N \neq \partial_u M$.
Generalization: The integrating factor method.

Example
Find all solutions y to the differential equation

$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0$.

Solution: The equation is not exact:

$N(t, u) = t^2 + tu \quad \Rightarrow \quad \partial_t N(t, u) = 2t + u,$

$M(t, u) = 3tu + u^2 \quad \Rightarrow \quad \partial_u M(t, u) = 3t + 2u,$

hence $\partial_t N \neq \partial_u M$. We now verify whether the extra condition in Theorem above holds:
Generalization: The integrating factor method.

Example
Find all solutions y to the differential equation
\[
[t^2 + t \, y(t)] \, y'(t) + [3t \, y(t) + y^2(t)] = 0.
\]

Solution: The equation is not exact:
\[
N(t, u) = t^2 + tu \quad \Rightarrow \quad \partial_t N(t, u) = 2t + u,
\]
\[
M(t, u) = 3tu + u^2 \quad \Rightarrow \quad \partial_u M(t, u) = 3t + 2u,
\]
hence $\partial_t N \neq \partial_u M$. We now verify whether the extra condition in Theorem above holds:
\[
\frac{\partial_u M(t, u) - \partial_t N(t, u)}{N(t, u)}
\]
Generalization: The integrating factor method.

Example
Find all solutions y to the differential equation

$$\left[t^2 + ty(t) \right] y'(t) + \left[3ty(t) + y^2(t) \right] = 0.$$

Solution: The equation is not exact:

$$N(t, u) = t^2 + tu \quad \Rightarrow \quad \partial_t N(t, u) = 2t + u,$$

$$M(t, u) = 3tu + u^2 \quad \Rightarrow \quad \partial_u M(t, u) = 3t + 2u,$$

hence $\partial_t N \neq \partial_u M$. We now verify whether the extra condition in Theorem above holds:

$$\frac{\partial_u M(t, u) - \partial_t N(t, u)}{N(t, u)} = \frac{1}{(t^2 + tu)} \left[(3t + 2u) - (2t + u) \right]$$
Generalization: The integrating factor method.

Example
Find all solutions \(y \) to the differential equation
\[
[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.
\]

Solution: The equation is not exact:
\[
N(t, u) = t^2 + tu \quad \Rightarrow \quad \partial_t N(t, u) = 2t + u,
\]
\[
M(t, u) = 3tu + u^2 \quad \Rightarrow \quad \partial_u M(t, u) = 3t + 2u,
\]
hence \(\partial_t N \neq \partial_u M \). We now verify whether the extra condition in Theorem above holds:
\[
\frac{\left[\partial_u M(t, u) - \partial_t N(t, u)\right]}{N(t, u)} = \frac{1}{(t^2 + tu)}[(3t + 2u) - (2t + u)]
\]
\[
= \frac{1}{t(t + u)}(t + u)
\]
Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$[t^2 + ty(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Solution: The equation is not exact:

$$N(t, u) = t^2 + tu \quad \Rightarrow \quad \partial_t N(t, u) = 2t + u,$$

$$M(t, u) = 3tu + u^2 \quad \Rightarrow \quad \partial_u M(t, u) = 3t + 2u,$$

hence $\partial_t N \neq \partial_u M$. We now verify whether the extra condition in Theorem above holds:

$$\frac{[\partial_u M(t, u) - \partial_t N(t, u)]}{N(t, u)} = \frac{1}{(t^2 + tu)} [(3t + 2u) - (2t + u)]$$

$$\frac{[\partial_u M(t, u) - \partial_t N(t, u)]}{N(t, u)} = \frac{1}{t(t + u)} (t + u) = \frac{1}{t}.$$
Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$
\left[t^2 + t y(t) \right] y'(t) + \left[3t y(t) + y^2(t) \right] = 0.
$$

Solution: \[
\frac{\partial_u M(t, u) - \partial_t N(t, u)}{N(t, u)} = \frac{1}{t}.
\]
Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Solution:

$$\frac{\partial_u M(t, u) - \partial_t N(t, u)}{N(t, u)} = \frac{1}{t}.$$

We find a function μ solution of

$$\frac{\mu'}{\mu} = \frac{\partial_u M - \partial_t N}{N}.$$
Generalization: The integrating factor method.

Example
Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Solution:

$$\frac{\partial_u M(t, u) - \partial_t N(t, u)}{N(t, u)} = \frac{1}{t}.$$

We find a function μ solution of

$$\frac{\mu'}{\mu} = \frac{[\partial_u M - \partial_t N]}{N},$$

that is

$$\frac{\mu'(t)}{\mu(t)} = \frac{1}{t}$$
Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$[t^2 + ty(t)] y'(t) + [3ty(t) + y^2(t)] = 0.$$

Solution: \[
\frac{\partial_u M(t, u) - \partial_t N(t, u)}{N(t, u)} = \frac{1}{t}.
\]

We find a function μ solution of \[
\frac{\mu'}{\mu} = \frac{\partial_u M - \partial_t N}{N},
\]
that is

$$\frac{\mu'(t)}{\mu(t)} = \frac{1}{t} \implies \ln(\mu(t)) = \ln(t)$$
Example

Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Solution:

$$\frac{\partial_u M(t, u) - \partial_t N(t, u)}{N(t, u)} = \frac{1}{t}.$$

We find a function μ solution of

$$\frac{\mu'}{\mu} = \frac{\partial_u M - \partial_t N}{N},$$

that is

$$\frac{\mu'(t)}{\mu(t)} = \frac{1}{t} \Rightarrow \ln(\mu(t)) = \ln(t) \Rightarrow \mu(t) = t.$$
Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3 t y(t) + y^2(t)] = 0.$$

Solution:

$$\frac{\partial_u M(t, u) - \partial_t N(t, u)}{N(t, u)} = \frac{1}{t}.$$

We find a function μ solution of

$$\frac{\mu'}{\mu} = \frac{\partial_u M - \partial_t N}{N},$$

that is

$$\frac{\mu'(t)}{\mu(t)} = \frac{1}{t} \quad \Rightarrow \quad \ln(\mu(t)) = \ln(t) \quad \Rightarrow \quad \mu(t) = t.$$

Therefore, the equation below is exact:

$$[t^3 + t^2 y(t)] y'(t) + [3 t^2 y(t) + t y^2(t)] = 0.$$
Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$\left[t^2 + t \, y(t)\right] y'(t) + \left[3t \, y(t) + y^2(t)\right] = 0.$$

Solution:

$$\left[t^3 + t^2 \, y(t)\right] y'(t) + \left[3t^2 \, y(t) + t \, y^2(t)\right] = 0.$$
Generalization: The integrating factor method.

Example
Find all solutions y to the differential equation
\[
\left[t^2 + t y(t) \right] y'(t) + \left[3t y(t) + y^2(t) \right] = 0.
\]

Solution:
\[
\left[t^3 + t^2 y(t) \right] y'(t) + \left[3t^2 y(t) + t y^2(t) \right] = 0.
\]

This equation is exact:
Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$\left[t^2 + t \, y(t)\right] y'(t) + \left[3t \, y(t) + y^2(t)\right] = 0.$$

Solution: $\left[t^3 + t^2 \, y(t)\right] y'(t) + \left[3t^2 \, y(t) + t \, y^2(t)\right] = 0$.

This equation is exact:

$$\tilde{N}(t, u) = t^3 + t^2 u.$$
Example
Find all solutions y to the differential equation

$$
[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.
$$

Solution: $[t^3 + t^2 y(t)] y'(t) + [3t^2 y(t) + t y^2(t)] = 0$.

This equation is exact:

$$
\tilde{N}(t, u) = t^3 + t^2 u \quad \Rightarrow \quad \partial_t \tilde{N}(t, u) = 3t^2 + 2tu,
$$
Generalization: The integrating factor method.

Example
Find all solutions y to the differential equation

$$\left[t^2 + ty(t) \right] y'(t) + \left[3ty(t) + y^2(t) \right] = 0.$$

Solution: $$\left[t^3 + t^2 y(t) \right] y'(t) + \left[3t^2 y(t) + ty^2(t) \right] = 0.$$

This equation is exact:

$$\tilde{N}(t, u) = t^3 + t^2 u \quad \Rightarrow \quad \partial_t \tilde{N}(t, u) = 3t^2 + 2tu,$$

$$\tilde{M}(t, u) = 3t^2 u + tu^2.$$
Generalization: The integrating factor method.

Example
Find all solutions y to the differential equation

$$[t^2 + ty(t)]y'(t) + [3ty(t) + y^2(t)] = 0.$$

Solution: $[t^3 + t^2y(t)]y'(t) + [3t^2y(t) + ty^2(t)] = 0.$

This equation is exact:

$$\tilde{N}(t, u) = t^3 + t^2u \quad \Rightarrow \quad \partial_t \tilde{N}(t, u) = 3t^2 + 2tu,$$

$$\tilde{M}(t, u) = 3t^2u + tu^2 \quad \Rightarrow \quad \partial_u \tilde{M}(t, u) = 3t^2 + 2tu,$$
Generalization: The integrating factor method.

Example
Find all solutions y to the differential equation
\[
[t^2 + t \, y(t)] \, y'(t) + [3t \, y(t) + y^2(t)] = 0.
\]

Solution: $[t^3 + t^2 \, y(t)] \, y'(t) + [3t^2 \, y(t) + t \, y^2(t)] = 0$. This equation is exact:
\[
\tilde{N}(t, u) = t^3 + t^2 \, u \quad \Rightarrow \quad \partial_t \tilde{N}(t, u) = 3t^2 + 2tu,
\]
\[
\tilde{M}(t, u) = 3t^2 \, u + tu^2 \quad \Rightarrow \quad \partial_u \tilde{M}(t, u) = 3t^2 + 2tu,
\]
that is, $\partial_t \tilde{N} = \partial_u \tilde{M}$.
Generalization: The integrating factor method.

Example
Find all solutions y to the differential equation
\[
[t^2 + t y(t)] y'(t) + [3 t y(t) + y^2(t)] = 0.
\]

Solution: \[
[t^3 + t^2 y(t)] y'(t) + [3 t^2 y(t) + t y^2(t)] = 0.
\]
This equation is exact:
\[
\tilde{N}(t, u) = t^3 + t^2 u \quad \Rightarrow \quad \partial_t \tilde{N}(t, u) = 3 t^2 + 2tu,
\]
\[
\tilde{M}(t, u) = 3 t^2 u + tu^2 \quad \Rightarrow \quad \partial_u \tilde{M}(t, u) = 3 t^2 + 2tu,
\]
that is, \(\partial_t \tilde{N} = \partial_u \tilde{M}\). Therefore, there exists \(\psi\) such that
\[
\partial_u \psi(t, u) = \tilde{N}(t, u), \quad \partial_t \psi(t, u) = \tilde{M}(t, u).
\]
Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$[t^2 + t \, y(t)] \, y'(t) + [3t \, y(t) + y^2(t)] = 0.$

Solution: $[t^3 + t^2 \, y(t)] \, y'(t) + [3t^2 \, y(t) + t \, y^2(t)] = 0.$

This equation is exact:

$\tilde{N}(t, u) = t^3 + t^2 \, u \quad \Rightarrow \quad \partial_t \tilde{N}(t, u) = 3t^2 + 2tu,$

$\tilde{M}(t, u) = 3t^2 \, u + tu^2 \quad \Rightarrow \quad \partial_u \tilde{M}(t, u) = 3t^2 + 2tu,$

that is, $\partial_t \tilde{N} = \partial_u \tilde{M}$. Therefore, there exists ψ such that

$\partial_u \psi(t, u) = \tilde{N}(t, u), \quad \partial_t \psi(t, u) = \tilde{M}(t, u).$

From the first equation above we obtain

$\partial_u \psi = t^3 + t^2 \, u$
Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Solution: $[t^3 + t^2 y(t)] y'(t) + [3t^2 y(t) + t y^2(t)] = 0.$

This equation is exact:

$$\tilde{N}(t, u) = t^3 + t^2 u \quad \Rightarrow \quad \partial_t \tilde{N}(t, u) = 3t^2 + 2tu,$$

$$\tilde{M}(t, u) = 3t^2 u + tu^2 \quad \Rightarrow \quad \partial_u \tilde{M}(t, u) = 3t^2 + 2tu,$$

that is, $\partial_t \tilde{N} = \partial_u \tilde{M}$. Therefore, there exists ψ such that

$$\partial_u \psi(t, u) = \tilde{N}(t, u), \quad \partial_t \psi(t, u) = \tilde{M}(t, u).$$

From the first equation above we obtain

$$\partial_u \psi = t^3 + t^2 u \quad \Rightarrow \quad \psi(t, u) = \int (t^3 + t^2 u) \, du + g(t).$$
Generalization: The integrating factor method.

Example
Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Solution: $\psi(t, u) = \int (t^3 + t^2 u) \, du + g(t)$.
Generalization: The integrating factor method.

Example
Find all solutions y to the differential equation
\[
\left[t^2 + t \, y(t)\right] y'(t) + \left[3t \, y(t) + y^2(t)\right] = 0.
\]

Solution: $\psi(t, u) = \int \left(t^3 + t^2 u\right) du + g(t)$.

Integrating, $\psi(t, u) = t^3 u + \frac{1}{2} t^2 u^2 + g(t)$.\)
Example

Find all solutions y to the differential equation

$$[t^2 + ty(t)] y'(t) + [3ty(t) + y^2(t)] = 0.$$

Solution: $\psi(t, u) = \int (t^3 + t^2 u) ~ du + g(t).$

Integrating, $\psi(t, u) = t^3 u + \frac{1}{2} t^2 u^2 + g(t).$

Introduce ψ in $\partial_t \psi = \tilde{M}$, where $\tilde{M} = 3t^2 u + tu^2.$
Generalization: The integrating factor method.

Example
Find all solutions y to the differential equation
\[
\left[t^2 + ty(t) \right] y'(t) + \left[3ty(t) + y^2(t) \right] = 0.
\]

Solution: $\psi(t, u) = \int (t^3 + t^2u) \, du + g(t)$.

Integrating, $\psi(t, u) = t^3u + \frac{1}{2}t^2u^2 + g(t)$.

Introduce ψ in $\partial_t \psi = \tilde{M}$, where $\tilde{M} = 3t^2u + tu^2$. So,
\[
\partial_t \psi(t, u) = 3t^2u + tu^2 + g'(t)
\]
Generalization: The integrating factor method.

Example
Find all solutions \(y \) to the differential equation

\[
[t^2 + ty(t)] y'(t) + [3ty(t) + y^2(t)] = 0.
\]

Solution: \(\psi(t, u) = \int (t^3 + t^2u) \, du + g(t). \)

Integrating, \(\psi(t, u) = t^3u + \frac{1}{2} t^2u^2 + g(t). \)

Introduce \(\psi \) in \(\partial_t \psi = \tilde{M} \), where \(\tilde{M} = 3t^2u + tu^2 \). So,

\[
\partial_t \psi(t, u) = 3t^2u + tu^2 + g'(t) = \tilde{M}(t, u)
\]
Example
Find all solutions y to the differential equation
\[[t^2 + ty(t)] y'(t) + [3ty(t) + y^2(t)] = 0. \]

Solution: $\psi(t, u) = \int (t^3 + t^2u) \, du + g(t)$.

Integrating, $\psi(t, u) = t^3u + \frac{1}{2}t^2u^2 + g(t)$.
Introduce ψ in $\partial_t \psi = \tilde{M}$, where $\tilde{M} = 3t^2u + tu^2$. So,
\[\partial_t \psi(t, u) = 3t^2u + tu^2 + g'(t) = \tilde{M}(t, u) = 3t^2u + tu^2, \]
Generalization: The integrating factor method.

Example
Find all solutions y to the differential equation
\[
[t^2 + t \, y(t)] \, y'(t) + [3t \, y(t) + y^2(t)] = 0.
\]

Solution: $\psi(t, u) = \int (t^3 + t^2 u) \, du + g(t)$.

Integrating, $\psi(t, u) = t^3 u + \frac{1}{2} t^2 u^2 + g(t)$.

Introduce ψ in $\partial_t \psi = \tilde{M}$, where $\tilde{M} = 3t^2 u + tu^2$. So,
\[
\partial_t \psi(t, u) = 3t^2 u + tu^2 + g'(t) = \tilde{M}(t, u) = 3t^2 u + tu^2,
\]
So $g'(t) = 0$ and we choose $g(t) = 0$.
Generalization: The integrating factor method.

Example
Find all solutions y to the differential equation
\[
[t^2 + t \cdot y(t)] \cdot y'(t) + [3t \cdot y(t) + y^2(t)] = 0.
\]

Solution: $\psi(t, u) = \int (t^3 + t^2 u) \, du + g(t)$.

Integrating, $\psi(t, u) = t^3 u + \frac{1}{2} t^2 u^2 + g(t)$.

Introduce ψ in $\partial_t \psi = \tilde{M}$, where $\tilde{M} = 3t^2 u + tu^2$. So,
\[
\partial_t \psi(t, u) = 3t^2 u + tu^2 + g'(t) = \tilde{M}(t, u) = 3t^2 u + tu^2,
\]

So $g'(t) = 0$ and we choose $g(t) = 0$. We conclude that a potential function is $\psi(t, u) = t^3 u + \frac{1}{2} t^2 u^2$.
Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$[t^2 + ty(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Solution: $\psi(t, u) = \int (t^3 + t^2 u) \, du + g(t)$.

Integrating, $\psi(t, u) = t^3 u + \frac{1}{2} t^2 u^2 + g(t)$. Introduce ψ in $\partial_t \psi = \tilde{M}$, where $\tilde{M} = 3t^2 u + tu^2$. So,

$$\partial_t \psi(t, u) = 3t^2 u + tu^2 + g'(t) = \tilde{M}(t, u) = 3t^2 u + tu^2,$$

So $g'(t) = 0$ and we choose $g(t) = 0$. We conclude that a potential function is $\psi(t, u) = t^3 u + \frac{1}{2} t^2 u^2$. And every solution y satisfies $t^3 y(t) + \frac{1}{2} t^2 [y(t)]^2 = c$. \triangle