Review for Final Exam.

- \blacktriangleright Exam is cumulative.
- \blacktriangleright Heat equation not included.
- \blacktriangleright 15 problems.
- \blacktriangleright Two and half hours.
- \blacktriangleright Fourier Series expansions (Chptr.6).
- Eigenvalue-Eigenfunction BVP (Chptr. 6).
- \triangleright Systems of linear Equations (Chptr. 5).
- \blacktriangleright Laplace transforms (Chptr. 4).
- \triangleright Second order linear equations (Chptr. 2).
- \blacktriangleright First order differential equations (Chptr. 1).

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x) = 1$ for $x \in (-1,0)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$
f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \Big[a_n \cos\Big(\frac{n\pi x}{L}\Big) + b_n \sin\Big(\frac{n\pi x}{L}\Big) \Big].
$$

Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_n = 0$.

$$
b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx = \frac{2}{L} \int_{0}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx.
$$

$$
b_n = 2 \int_{0}^{1} (-1) \sin(n\pi x) dx = (-2) \frac{(-1)}{n\pi} \cos(n\pi x) \Big|_{0}^{1},
$$

$$
b_n = \frac{2}{n\pi} \left[\cos(n\pi) - 1 \right] \implies b_n = \frac{2}{n\pi} \left[(-1)^n - 1 \right].
$$

Example

Graph the odd-periodic extension of $f(x) = 1$ for $x \in (-1,0)$, and then find the Fourier Series of this extension.

Solution: Recall:
$$
b_n = \frac{2}{n\pi} [(-1)^n - 1].
$$

\nIf $n = 2k$, then $b_{2k} = \frac{2}{2k\pi} [(-1)^{2k} - 1] = 0.$
\nIf $n = 2k - 1$,
\n $b_{(2k-1)} = \frac{2}{(2k-1)\pi} [(-1)^{2k-1} - 1] = -\frac{4}{(2k-1)\pi}.$

We conclude:
$$
f(x) = -\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{1}{(2k-1)} \sin[(2k-1)\pi x]
$$
.

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x) = 2 - x$ for $x \in (0, 2)$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$
f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \Big[a_n \cos\Big(\frac{n\pi x}{L}\Big) + b_n \sin\Big(\frac{n\pi x}{L}\Big) \Big].
$$

Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_n = 0$.

$$
b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx = \frac{2}{L} \int_{0}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx, \ L = 2,
$$

$$
b_n = \int_{0}^{2} (2 - x) \sin\left(\frac{n\pi x}{2}\right) dx.a
$$

Example

Graph the odd-periodic extension of $f(x) = 2 - x$ for $x \in (0, 2)$, and then find the Fourier Series of this extension.

Solution:
$$
b_n = 2 \int_0^2 \sin\left(\frac{n\pi x}{2}\right) dx - \int_0^2 x \sin\left(\frac{n\pi x}{2}\right) dx
$$
.

$$
\int \sin\left(\frac{n\pi x}{2}\right) dx = \frac{-2}{n\pi} \cos\left(\frac{n\pi x}{2}\right),
$$

The other integral is done by parts,

$$
I = \int x \sin\left(\frac{n\pi x}{2}\right) dx, \qquad \begin{cases} u = x, & v' = \sin\left(\frac{n\pi x}{2}\right) \\ u' = 1, & v = -\frac{2}{n\pi} \cos\left(\frac{n\pi x}{2}\right) \end{cases}
$$

$$
I = \frac{-2x}{n\pi} \cos\left(\frac{n\pi x}{2}\right) - \int \left(\frac{-2}{n\pi}\right) \cos\left(\frac{n\pi x}{2}\right) dx.
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the odd-periodic extension of $f(x) = 2 - x$ for $x \in (0, 2)$, and then find the Fourier Series of this extension.

Solution:
$$
I = \frac{-2x}{n\pi} \cos\left(\frac{n\pi x}{2}\right) - \int \left(\frac{-2}{n\pi}\right) \cos\left(\frac{n\pi x}{2}\right) dx.
$$

\n
$$
I = -\frac{2x}{n\pi} \cos\left(\frac{n\pi x}{2}\right) + \left(\frac{2}{n\pi}\right)^2 \sin\left(\frac{n\pi x}{2}\right). \text{ So, we get}
$$

\n
$$
b_n = 2\left[\frac{-2}{n\pi} \cos\left(\frac{n\pi x}{2}\right)\right]_0^2 + \left[\frac{2x}{n\pi} \cos\left(\frac{n\pi x}{2}\right)\right]_0^2 - \left(\frac{2}{n\pi}\right)^2 \sin\left(\frac{n\pi x}{2}\right)\Big|_0^2
$$

\n
$$
b_n = \frac{-4}{n\pi} \left[\cos(n\pi) - 1\right] + \left[\frac{4}{n\pi} \cos(n\pi) - 0\right] \implies b_n = \frac{4}{n\pi}.
$$

\nWe conclude:
$$
f(x) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin\left(\frac{n\pi x}{2}\right).
$$

Example

Graph the even-periodic extension of $f(x) = 2 - x$ for $x \in [0, 2]$, and then find the Fourier Series of this extension.

Solution: The Fourier series is

$$
f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \Big[a_n \cos\Big(\frac{n\pi x}{L}\Big) + b_n \sin\Big(\frac{n\pi x}{L}\Big) \Big].
$$

Since f is even and periodic, then the Fourier Series is a Cosine Series, that is, $b_n = 0$.

$$
a_0 = \frac{1}{2} \int_{-2}^{2} f(x) dx = \int_{0}^{2} (2 - x) dx = \frac{\text{base} \times \text{height}}{2} \implies a_0 = 2.
$$

$$
a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos(\frac{n\pi x}{L}) dx = \frac{2}{L} \int_{0}^{L} f(x) \cos(\frac{n\pi x}{L}) dx, \ L = 2,
$$

$$
a_n = \int_{0}^{2} (2 - x) \cos(\frac{n\pi x}{2}) dx.
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x) = 2 - x$ for $x \in [0, 2]$, and then find the Fourier Series of this extension.

Solution:
$$
a_n = 2 \int_0^2 \cos\left(\frac{n\pi x}{2}\right) dx - \int_0^2 x \cos\left(\frac{n\pi x}{2}\right) dx
$$
.

$$
\int \cos\left(\frac{n\pi x}{2}\right) dx = \frac{2}{n\pi} \sin\left(\frac{n\pi x}{2}\right),
$$

The other integral is done by parts,

$$
I = \int x \cos\left(\frac{n\pi x}{2}\right) dx, \qquad \begin{cases} u = x, & v' = \cos\left(\frac{n\pi x}{2}\right) \\ u' = 1, & v = \frac{2}{n\pi} \sin\left(\frac{n\pi x}{2}\right) \end{cases}
$$

$$
I = \frac{2x}{n\pi} \sin\left(\frac{n\pi x}{2}\right) - \int \frac{2}{n\pi} \sin\left(\frac{n\pi x}{2}\right) dx.
$$

Example

Graph the even-periodic extension of $f(x) = 2 - x$ for $x \in [0, 2]$, and then find the Fourier Series of this extension.

Solution: Recall:
$$
I = \frac{2x}{n\pi} \sin\left(\frac{n\pi x}{2}\right) - \int \frac{2}{n\pi} \sin\left(\frac{n\pi x}{2}\right) dx.
$$

$$
I = \frac{2x}{n\pi} \sin\left(\frac{n\pi x}{2}\right) + \left(\frac{2}{n\pi}\right)^2 \cos\left(\frac{n\pi x}{2}\right). \text{ So, we get}
$$

$$
a_n = 2\left[\frac{2}{n\pi} \sin\left(\frac{n\pi x}{2}\right)\right]_0^2 - \left[\frac{2x}{n\pi} \sin\left(\frac{n\pi x}{2}\right)\right]_0^2 - \left(\frac{2}{n\pi}\right)^2 \cos\left(\frac{n\pi x}{2}\right)\Big|_0^2
$$

$$
a_n = 0 - 0 - \frac{4}{n^2\pi^2} \left[\cos(n\pi) - 1\right] \implies a_n = \frac{4}{n^2\pi^2} [1 - (-1)^n].
$$

Fourier Series: Even/Odd-periodic extensions.

Example

Graph the even-periodic extension of $f(x) = 2 - x$ for $x \in [0, 2]$, and then find the Fourier Series of this extension.

Solution: Recall:
$$
b_n = 0
$$
, $a_0 = 2$, $a_n = \frac{4}{n^2 \pi^2} [1 - (-1)^n]$.

If
$$
n = 2k
$$
, then $a_{2k} = \frac{4}{(2k)^2 \pi^2} \left[1 - (-1)^{2k} \right] = 0$.

If $n = 2k - 1$, then we obtain

$$
a_{(2k-1)}=\frac{4}{(2k-1)^2\pi^2}\left[1-(-1)^{2k-1}\right]=\frac{8}{(2k-1)^2\pi^2}.
$$

We conclude: $f(x) = 1 + \frac{8}{x^2}$ π^2 \sum ∞ $k=1$ 1 $(2k-1)^2$ $\cos\left(\frac{(2k-1)\pi x}{2}\right)$ 2 $\big)$. \triangleleft

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y'' + \lambda y = 0, \quad y(0) = 0, \quad y(8) = 0.
$$

Solution: Since $\lambda > 0$, introduce $\lambda = \mu^2$, with $\mu > 0$.

 $y(x) = e^{rx}$ implies that r is solution of

$$
p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu i.
$$

The general solution is $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$. The boundary conditions imply:

$$
0 = y(0) = c_1 \Rightarrow y(x) = c_2 \sin(\mu x).
$$

$$
0=y(8)=c_2\sin(\mu 8),\quad c_2\neq 0\quad\Rightarrow\quad \sin(\mu 8)=0.
$$

$$
\mu = \frac{n\pi}{8}, \quad \lambda = \left(\frac{n\pi}{8}\right)^2, \quad y_n(x) = \sin\left(\frac{n\pi x}{8}\right), \quad n = 1, 2, \cdots
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of

$$
y'' + \lambda y = 0
$$
, $y(0) = 0$, $y'(8) = 0$.

Solution: The general solution is $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$. The boundary conditions imply:

 $0 = y(0) = c_1 \Rightarrow y(x) = c_2 \sin(\mu x).$ $0=y'(8)=c_2\mu\cos(\mu 8),\quad c_2\neq 0\quad\Rightarrow\quad \cos(\mu 8)=0.$ $8\mu = (2n+1)\frac{\pi}{2}$ 2 $, \Rightarrow \mu =$ $(2n+1)\pi$ 16 .

Then, for $n = 1, 2, \cdots$ holds

$$
\lambda = \left[\frac{(2n+1)\pi}{16}\right]^2, \quad y_n(x) = \sin\left(\frac{(2n+1)\pi x}{16}\right).
$$

Eigenvalue-Eigenfunction BVP.

Example

Find the non-negative eigenvalues and their eigenfunctions of

$$
y'' + \lambda y = 0, \quad y'(0) = 0, \quad y'(8) = 0.
$$

Solution: Case $\lambda > 0$. Then, $y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$. Then, $y'(x) = -c_1\mu \sin(\mu x) + c_2\mu \cos(\mu x)$. The B.C. imply: $0 = y'(0) = c_2 \Rightarrow y(x) = c_1 \cos(\mu x), y'(x) = -c_1 \mu \sin(\mu x).$ $0 = y'(8) = c_1 \mu \sin(\mu 8), \quad c_1 \neq 0 \quad \Rightarrow \quad \sin(\mu 8) = 0.$ $8\mu = n\pi, \Rightarrow \mu =$ $n\pi$ 8 .

Then, choosing $c_1 = 1$, for $n = 1, 2, \cdots$ holds

$$
\lambda = \left(\frac{n\pi}{8}\right)^2, \quad y_n(x) = \cos\left(\frac{n\pi x}{8}\right).
$$

Eigenvalue-Eigenfunction BVP. Example Find the non-negative eigenvalues and their eigenfunctions of $y'' + \lambda y = 0$, $y'(0) = 0$, $y'(8) = 0$. Solution: The case $\lambda = 0$. The general solution is $y(x) = c_1 + c_2x$. The B.C. imply: $0 = y'(0) = c_2 \Rightarrow y(x) = c_1, y'(x) = 0.$ $0 = y'(8) = 0.$ Then, choosing $c_1 = 1$, holds, $\lambda = 0, \qquad y_0(x) = 1.$

A Boundary Value Problem.

Example

Find the solution of the BVP

$$
y'' + y = 0
$$
, $y'(0) = 1$, $y(\pi/3) = 0$.

Solution: $y(x) = e^{rx}$ implies that r is solution of

$$
p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm i.
$$

The general solution is $y(x) = c_1 \cos(x) + c_2 \sin(x)$.

Then,
$$
y'(x) = -c_1 \sin(x) + c_2 \cos(x)
$$
. The B.C. imply:
\n
$$
1 = y'(0) = c_2 \implies y(x) = c_1 \cos(x) + \sin(x).
$$

$$
0 = y(\pi/3) = c_1 \cos(\pi/3) + \sin(\pi/3) \implies c_1 = -\frac{\sin(\pi/3)}{\cos(\pi/3)}.
$$

$$
c_1 = -\frac{\sqrt{3}/2}{1/2} = -\sqrt{3} \implies y(x) = -\sqrt{3} \cos(x) + \sin(x). \quad \text{and}
$$

Systems of linear Equations.

Summary: Find solutions of $x' = Ax$, with A a 2 \times 2 matrix.

First find the eigenvalues λ_i and the eigenvectors $\mathbf{v}^{(i)}$ of A.

(a) If $\lambda_1 \neq \lambda_2$, real, then $\{v^{(1)}, v^{(2)}\}$ are linearly independent, and the general solution is $\mathbf{x}(x) = c_1 \mathbf{v}^{(1)} e^{\lambda_1 t} + c_2 \mathbf{v}^{(2)} e^{\lambda_2 t}.$

(b) If $\lambda_1 \neq \lambda_2$, complex, then denoting $\lambda_{\pm} = \alpha \pm \beta i$ and $\mathbf{v}^{(\pm)}=\mathbf{a}\pm\mathbf{b}$ i, the complex-valued fundamental solutions $\mathsf{x}^{(\pm)} = (\mathsf{a} \pm \mathsf{b} i) \, e^{(\alpha \pm \beta i) t}$

$$
\mathbf{x}^{(\pm)} = e^{\alpha t} (\mathbf{a} \pm \mathbf{b}i) [\cos(\beta t) + i \sin(\beta t)].
$$

 $\mathbf{x}^{(\pm)}=e^{\alpha t}\left[\mathbf{a}\cos(\beta t)-\mathbf{b}\sin(\beta t)\right]\pm ie^{\alpha t}\left[\mathbf{a}\sin(\beta t)+\mathbf{b}\cos(\beta t)\right].$

Real-valued fundamental solutions are

 $\mathbf{x}^{(1)}=e^{\alpha t}\left[\mathbf{a}\cos(\beta t)-\mathbf{b}\sin(\beta t)\right],$ $\mathbf{x}^{(2)} = e^{\alpha t} \left[\mathbf{a} \sin(\beta t) + \mathbf{b} \cos(\beta t) \right].$

Systems of linear Equations.

Summary: Find solutions of $x' = Ax$, with A a 2 \times 2 matrix.

First find the eigenvalues λ_i and the eigenvectors $\mathbf{v}^{(i)}$ of A.

(c) If $\lambda_1=\lambda_2=\lambda$, real, and their eigenvectors $\{{\bf v}^{(1)},{\bf v}^{(2)}\}$ are linearly independent, then the general solution is

 $\mathbf{x}(x) = c_1 \mathbf{v}^{(1)} e^{\lambda t} + c_2 \mathbf{v}^{(2)} e^{\lambda t}.$

(d) If $\lambda_1 = \lambda_2 = \lambda$, real, and there is only one eigendirection **v**, then find **w** solution of $(A - \lambda I)\mathbf{w} = \mathbf{v}$. Then fundamental solutions to the differential equation are given by

$$
\mathbf{x}^{(1)} = \mathbf{v} e^{\lambda t}, \quad \mathbf{x}^{(2)} = (\mathbf{v} t + \mathbf{w}) e^{\lambda t}.
$$

Then, the general solution is

$$
\mathbf{x} = c_1 \mathbf{v} e^{\lambda t} + c_2 (\mathbf{v} t + \mathbf{w}) e^{\lambda t}.
$$

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}' = A\mathbf{x}$, $\mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ 2 1 $, A =$ $\begin{bmatrix} 1 & 4 \end{bmatrix}$ 2 -1 1 . Solution:

$$
p(\lambda)=\begin{vmatrix} (1-\lambda) & 4 \\ 2 & (-1-\lambda) \end{vmatrix}=(\lambda-1)(\lambda+1)-8=\lambda^2-1-8,
$$

$$
p(\lambda) = \lambda^2 - 9 = 0 \quad \Rightarrow \quad \lambda_{\pm} = \pm 3.
$$

Case $\lambda_+ = 3$,

$$
A-3I = \begin{bmatrix} -2 & 4 \\ 2 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix} \Rightarrow v_1 = 2v_2 \Rightarrow \mathbf{v}^{(+)} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}
$$

Case $\lambda_- = -3$.

$$
A + 3I = \begin{bmatrix} 4 & 4 \\ 2 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \Rightarrow v_1 = -v_2 \Rightarrow \mathbf{v}^{(-)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}
$$

Systems of linear Equations.

Example

Find the solution to: $\mathbf{x}' = A\mathbf{x}$, $\mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ 2 1 $, A =$ $\begin{bmatrix} 1 & 4 \end{bmatrix}$ 2 -1 1 . Solution: Recall: $\lambda_{\pm} = \pm 3$, $\mathbf{v}^{(+)} = \begin{bmatrix} 2 & 1 \ 1 & 2 \end{bmatrix}$ 1 1 , $\mathbf{v}^{(-)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ 1 1 . The general solution is $\, {\bf x}(t) = c_1 \,$ $\sqrt{2}$ 1 1 $e^{3t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ 1 1 e^{-3t} . The initial condition implies, $\lceil 3 \rceil$ 2 1 $=\mathsf{x}(0)=c_1$ $\sqrt{2}$ 1 1 $+ c_2$ $\lceil -1 \rceil$ 1 1 ⇒ $\begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$ 1 = $\lceil 3 \rceil$ 2 1 . $\lceil c_1 \rceil$ $c₂$ 1 = $\frac{1}{(2+1)}\begin{bmatrix}1&1\-1&2\end{bmatrix}\begin{bmatrix}3\ 2\end{bmatrix}$ 1 ⇒ $\lceil c_1 \rceil$ $c₂$ 1 = 1 3 $\sqrt{5}$ 1 1 . We conclude: $\mathbf{x}(t) = \frac{5}{3}$ 3 $\sqrt{2}$ 1 1 $e^{3t} + \frac{1}{2}$ 3 $[-1]$ 1 1 e^{-3t} . \triangleleft

Review for Final Exam.

- \blacktriangleright Fourier Series expansions (Chptr.6).
- \triangleright Eigenvalue-Eigenfunction BVP (Chptr. 6).
- \triangleright Systems of linear Equations (Chptr. 5).
- \blacktriangleright Laplace transforms (Chptr. 4).
- \triangleright Second order linear equations (Chptr. 2).
- \blacktriangleright First order differential equations (Chptr. 1).

Laplace transforms.

Summary:

Main Properties:

$$
\mathcal{L}[f^{(n)}(t)] = s^n \mathcal{L}[f(t)] - s^{(n-1)} f(0) - \cdots - f^{(n-1)}(0); \quad (18)
$$

$$
e^{-cs} \mathcal{L}[f(t)] = \mathcal{L}[u_c(t) f(t-c)]; \qquad (13)
$$

$$
\mathcal{L}[f(t)]\Big|_{(s-c)} = \mathcal{L}[e^{ct} f(t)]. \tag{14}
$$

 \blacktriangleright Convolutions:

$$
\mathcal{L}[(f * g)(t)] = \mathcal{L}[f(t)] \mathcal{L}[g(t)].
$$

 \blacktriangleright Partial fraction decompositions, completing the squares.

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y'' + 9y = u_5(t)
$$
, $y(0) = 3$, $y'(0) = 2$.

Solution: Compute $\mathcal{L}[y''] + 9 \mathcal{L}[y] = \mathcal{L}[u_5(t)] =$ e^{-5s} s , and recall,

$$
\mathcal{L}[y''] = s^2 \mathcal{L}[y] - s y(0) - y'(0) \quad \Rightarrow \quad \mathcal{L}[y''] = s^2 \mathcal{L}[y] - 3s - 2.
$$

$$
(s2 + 9) \mathcal{L}[y] - 3s - 2 = \frac{e^{-5s}}{s}
$$

$$
\mathcal{L}[y] = \frac{(3s + 2)}{(s2 + 9)} + e^{-5s} \frac{1}{s(s2 + 9)}.
$$

$$
\mathcal{L}[y] = \frac{(35 + 2)}{(s^2 + 9)} + e^{-5s} \frac{1}{s(s^2 + 9)}.
$$

$$
\mathcal{L}[y] = 3 \frac{s}{(s^2 + 9)} + \frac{2}{3} \frac{3}{(s^2 + 9)} + e^{-5s} \frac{1}{s(s^2 + 9)}.
$$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y'' + 9y = u_5(t)
$$
, $y(0) = 3$, $y'(0) = 2$.

Solution: Recall
$$
\mathcal{L}[y] = 3 \frac{s}{(s^2 + 9)} + \frac{2}{3} \frac{3}{(s^2 + 9)} + e^{-5s} \frac{1}{s(s^2 + 9)}
$$
.

$$
\mathcal{L}[y] = 3 \mathcal{L}[\cos(3t)] + \frac{2}{3} \mathcal{L}[\sin(3t)] + e^{-5s} \frac{1}{s(s^2+9)}.
$$

Partial fractions on

$$
H(s) = \frac{1}{s(s^2+9)} = \frac{a}{s} + \frac{(bs+c)}{(s^2+9)} = \frac{a(s^2+9) + (bs+c)s}{s(s^2+9)},
$$

$$
1 = as^2 + 9a + bs^2 + cs = (a+b)s^2 + cs + 9a
$$

$$
a = \frac{1}{9}, \quad c = 0, \quad b = -a \quad \Rightarrow \quad b = -\frac{1}{9}.
$$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y'' + 9y = u_5(t)
$$
, $y(0) = 3$, $y'(0) = 2$.

Solution: So, $\mathcal{L}[y] = 3 \mathcal{L}[\cos(3t)] + \frac{2}{3}$ 3 $\mathcal{L}[\sin(3t)] + e^{-5s} H(s)$, and

$$
H(s) = \frac{1}{s(s^2+9)} = \frac{1}{9} \left[\frac{1}{s} - \frac{s}{s^2+9} \right] = \frac{1}{9} \Big(\mathcal{L}[u(t)] - \mathcal{L}[\cos(3t)] \Big)
$$

$$
e^{-5s} H(s) = \frac{1}{9} \Big(e^{-5s} \mathcal{L}[u(t)] - e^{-5s} \mathcal{L}[cos(3t)] \Big)
$$

$$
e^{-5s} H(s) = \frac{1}{9} \Big(\mathcal{L}[u_5(t)] - \mathcal{L}[u_5(t) cos(3(t-5))] \Big).
$$

$$
\mathcal{L}[y] = 3 \mathcal{L}[\cos(3t)] + \frac{2}{3} \mathcal{L}[\sin(3t)] + \frac{1}{9} (\mathcal{L}[u_5(t)] - \mathcal{L}[u_5(t) \cos(3(t-5))]).
$$

Laplace transforms.

Example

Use L.T. to find the solution to the IVP

$$
y'' + 9y = u_5(t)
$$
, $y(0) = 3$, $y'(0) = 2$.

Solution:

$$
\mathcal{L}[y] = 3 \mathcal{L}[\cos(3t)] + \frac{2}{3} \mathcal{L}[\sin(3t)] + \frac{1}{9} \Big(\mathcal{L}[u_5(t)] - \mathcal{L}[u_5(t) \cos(3(t-5))] \Big).
$$

Therefore, we conclude that,

$$
y(t) = 3\cos(3t) + \frac{2}{3}\sin(3t) + \frac{u_5(t)}{9}\Big[1 - \cos(3(t-5))\Big].
$$

 \triangleleft

Second order linear equations. Summary: Solve $y'' + a_1 y' + a_0 y = g(t)$. First find fundamental solutions $y(t) = e^{rt}$ to the case $g = 0$, where r is a root of $p(r) = r^2 + a_1r + a_0$. (a) If $r_1 \neq r_2$, real, then the general solution is $y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}.$ (b) If $r_1 \neq r_2$, complex, then denoting $r_{\pm} = \alpha \pm \beta i$, complex-valued fundamental solutions are $\mathsf{y}_{\pm}(t) = e^{(\alpha \pm \beta i)t} \quad \Leftrightarrow \quad \mathsf{y}_{\pm}(t) = e^{\alpha t} \left[\cos(\beta t) \pm i \sin(\beta t) \right],$ and real-valued fundamental solutions are $y_1(t) = e^{\alpha t} \cos(\beta t), \qquad y_2(t) = e^{\alpha t} \sin(\beta t).$ If $r_1 = r_2 = r$, real, then the general solution is $y(t) = (c_1 + c_2 t) e^{rt}.$

Second order linear equations.

Remark: Case (c) is solved using the reduction of order method. See page 170 in the textbook. Do the extra homework problems Sect. 3.4: 23, 25, 27.

Summary:

Non-homogeneous equations: $g \neq 0$.

- (i) Undetermined coefficients: Guess the particular solution y_p using the guessing table, $g \rightarrow y_p$.
- (ii) Variation of parameters: If y_1 and y_2 are fundamental solutions to the homogeneous equation, and W is their Wronskian, then $y_p = u_1y_1 + u_2y_2$, where

$$
u_1'=-\frac{y_2g}{W}, \qquad u_2'=\frac{y_1g}{W}.
$$

Second order linear equations.

Example

Knowing that $y_1(x) = x^2$ solves $x^2y'' - 4xy' + 6y = 0$, with $x > 0$, find a second solution y_2 not proportional to y_1 .

Solution: Use the reduction of order method. We verify that $y_1 = x^2$ solves the equation,

$$
x^2(2) - 4x(2x) + 6x^2 = 0.
$$

Look for a solution $y_2(x) = v(x) y_1(x)$, and find an equation for v .

$$
y_2 = x^2v, \quad y_2' = x^2v' + 2xv, \quad y_2'' = x^2v'' + 4xv' + 2v.
$$

$$
x^2(x^2v'' + 4xv' + 2v) - 4x(x^2v' + 2xv) + 6(x^2v) = 0.
$$

$$
x^4v'' + (4x^3 - 4x^3)v' + (2x^2 - 8x^2 + 6x^2)v = 0.
$$

$$
v'' = 0 \quad \Rightarrow \quad v = c_1 + c_2x \quad \Rightarrow \quad y_2 = c_1y_1 + c_2x y_1.
$$

Choose $c_1 = 0$, $c_2 = 1$. Hence $y_2(x) = x^3$, and $y_1(x) = x^2$.

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y'' - 2y' - 3y = 3e^{-t}
$$
, $y(0) = 1$, $y'(0) = \frac{1}{4}$.

Solution: (1) Solve the homogeneous equation.

$$
y(t) = e^{rt}
$$
, $p(r) = r^2 - 2r - 3 = 0$.

$$
r_{\pm} = \frac{1}{2} \big[2 \pm \sqrt{4 + 12} \big] = \frac{1}{2} \big[2 \pm \sqrt{16} \big] = 1 \pm 2 \ \Rightarrow \ \begin{cases} \, r_+ = 3, \\ \, r_- = -1. \end{cases}
$$

Fundamental solutions: $y_1(t) = e^{3t}$ and $y_2(t) = e^{-t}$. (2) Guess y_p . Since $g(t) = 3 e^{-t}$ \Rightarrow $y_p(t) = k e^{-t}$. But this $y_p = k e^{-t}$ is solution of the homogeneous equation. Then propose $y_p(t) = kt e^{-t}$.

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y'' - 2y' - 3y = 3e^{-t}
$$
, $y(0) = 1$, $y'(0) = \frac{1}{4}$.

Solution: Recall: $y_p(t) = kt\,e^{-t}$. This is correct, since te^{-t} is not solution of the homogeneous equation.

(3) Find the undetermined coefficient k .

$$
y'_p = k e^{-t} - kt e^{-t}, y''_p = -2k e^{-t} + kt e^{-t}.
$$

 $(-2k e^{-t} + k t e^{-t}) - 2(k e^{-t} - k t e^{-t}) - 3(k t e^{-t}) = 3 e^{-t}$

.

.

 $(-2 + t - 2 + 2t - 3t) k e^{-t} = 3 e^{-t} \Rightarrow -4k = 3 \Rightarrow k = -\frac{3}{4}$ 4 We obtain: $y_p(t) = -$ 3 4 $t e^{-t}$.

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y'' - 2y' - 3y = 3e^{-t}
$$
, $y(0) = 1$, $y'(0) = \frac{1}{4}$.

Solution: Recall: $y_p(t) = -$ 3 4 $t e^{-t}$.

(4) Find the general solution: $y(t) = c_1 e^{3t} + c_2 e^{-t} - \frac{3}{4}$ 4 $t e^{-t}$. (5) Impose the initial conditions. The derivative function is

$$
y'(t) = 3c_1 e^{3t} - c_2 e^{-t} - \frac{3}{4} (e^{-t} - t e^{-t}).
$$

\n
$$
1 = y(0) = c_1 + c_2, \qquad \frac{1}{4} = y'(0) = 3c_1 - c_2 - \frac{3}{4}
$$

\n
$$
c_1 + c_2 = 1, \qquad \frac{1}{3} \implies \begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.
$$

Second order linear equations.

Example

Find the solution y to the initial value problem

$$
y'' - 2y' - 3y = 3e^{-t}
$$
, $y(0) = 1$, $y'(0) = \frac{1}{4}$.

Solution: Recall: $y(t) = c_1 e^{3t} + c_2 e^{-t} - \frac{3}{4}$ 4 $t e^{-t}$, and

$$
\begin{bmatrix} 1 & 1 \ 3 & -1 \end{bmatrix} \begin{bmatrix} c_1 \ c_2 \end{bmatrix} = \begin{bmatrix} 1 \ 1 \end{bmatrix} \Rightarrow \begin{bmatrix} c_1 \ c_2 \end{bmatrix} = \frac{1}{-4} \begin{bmatrix} -1 & -1 \ -3 & 1 \end{bmatrix} \begin{bmatrix} 1 \ 1 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 2 \ 2 \end{bmatrix}
$$

Since $c_1 =$ 1 2 and $c_2 =$ 1 2 , we obtain,

$$
y(t) = \frac{1}{2} (e^{3t} + e^{-t}) - \frac{3}{4} t e^{-t}.
$$

.

First order differential equations.

Summary:

- Inear, first order equations: $y' + p(t)y = q(t)$. Use the integrating factor method: $\mu(t) = e^{\int p(t) dt}$.
- Separable, non-linear equations: $h(y) y' = g(t)$.

Integrate with the substitution: $u = y(t)$, $du = y'(t) dt$, that is,

$$
\int h(u) du = \int g(t) dt + c.
$$

The solution can be found in implicit of explicit form.

 \blacktriangleright Homogeneous equations can be converted into separable equations.

Read page 49 in the textbook.

 \triangleright No modeling problems from Sect. 2.3.

First order differential equations.

Summary:

Bernoulli equations: $y' + p(t)y = q(t)y^n$, with $n \in \mathbb{R}$.

Read page 77 in the textbook, page 11 in the Lecture Notes.

A Bernoulli equation for y can be converted into a linear equation for $v =$ 1 $rac{1}{y^{n-1}}$.

 \triangleright Exact equations and integrating factors.

 $N(x, y) y' + M(x, y) = 0.$

The equation is exact iff $\partial_x N = \partial_y M$.

If the equation is exact, then there is a potential function ψ , such that $N = \partial_y \psi$ and $M = \partial_x \psi$.

The solution of the differential equation is

 $\psi(x,y(x))=c.$

First order differential equations.

Example

Find all solutions of
$$
y' = \frac{x^2 + xy + y^2}{xy}
$$
.

Solution: The sum of the powers in x and y on every term is the same number, two in this example. The equation is homogeneous.

$$
y' = \frac{x^2 + xy + y^2}{xy} \frac{(1/x^2)}{(1/x^2)} \quad \Rightarrow \quad y' = \frac{1 + (\frac{y}{x}) + (\frac{y}{x})^2}{(\frac{y}{x})}.
$$

$$
v(x) = \frac{y}{x} \quad \Rightarrow \quad y' = \frac{1 + v + v^2}{v}.
$$

$$
y = xv, \quad y' = xv' + v \quad xv' + v = \frac{1 + v + v^2}{v}.
$$

$$
xv' = \frac{1 + v + v^2}{v} - v = \frac{1 + v + v^2 - v^2}{v} \quad \Rightarrow \quad xv' = \frac{1 + v}{v}.
$$

First order differential equations.

Example

Find all solutions of $y' = \frac{x^2 + xy + y^2}{y^2}$ xy . Solution: Recall: $v' = \frac{1 + v}{ }$ v . This is a separable equation. $v(x)$ $1 + v(x)$ $v'(x) = \frac{1}{x}$ x ⇒ $\int v(x)$ $1 + v(x)$ $v'(x) dx =$ $\int dx$ x $+$ c. Use the substitution $u = 1 + v$, hence $du = v'(x) dx$. $\int (u-1)$ u $du =$ $\int dx$ x $+c$ \Rightarrow $\int (1-e^{-x}) dx$ 1 u $\Big) du =$ $\int dx$ x $+ c$ $u - \ln |u| = \ln |x| + c$ \Rightarrow $1 + v - \ln |1 + v| = \ln |x| + c$. $v =$ y x \Rightarrow 1 + $\frac{y(x)}{x}$ x $-$ ln I $\left|1+\frac{y(x)}{x}\right|$ $\overline{}$ l \vert $=$ ln |x| + c. \lhd

First order differential equations.

Example

Find the solution y to the initial value problem

$$
y' + y + e^{2x} y^3 = 0
$$
, $y(0) = \frac{1}{3}$.

Solution: This is a Bernoulli equation, $y' + y = -e^{2x}y^n$, $n = 3$. Divide by y^3 . That is, $\frac{y^{\prime}}{x^3}$ $\frac{y}{y^3}$ + 1 $\frac{1}{y^2} = -e^{2x}.$ Let $v =$ 1 $\frac{1}{y^2}$. Since $v' = -2\frac{y'}{y^3}$ $\frac{y}{y^3}$, we obtain $-$ 1 2 $v' + v = -e^{2x}$. We obtain the linear equation $v'-2v=2e^{2x}$. Use the integrating factor method. $\mu(x) = e^{-2x}$. $e^{-2x} v' - 2 e^{-2x} v = 2 \implies (e^{-2x} v)' = 2.$

First order differential equations. Example Find the solution y to the initial value problem $y' + y + e^{2x}y^3 = 0, \qquad y(0) = \frac{1}{2}$ 3 . Solution: Recall: $v =$ 1 $\frac{1}{y^2}$ and $(e^{-2x} v)' = 2$. $e^{-2x} v = 2x + c \Rightarrow v(x) = (2x + c) e^{2x} \Rightarrow \frac{1}{x}$ $\frac{1}{y^2} = (2x + c) e^{2x}.$ $y^2 = \frac{1}{2(2)}$ $e^{2}x(2x + c)$ $\Rightarrow y_{\pm}(x) = \pm$ e^{-x} $\overline{}$ $2x + c$. The initial condition $y(0) = 1/3 > 0$ implies: Choose y_+ . 1 3 $= y_{+}(0) = \frac{1}{4}$ \overline{c} $\Rightarrow c = 9 \Rightarrow y(x) = \frac{e^{-x}}{\sqrt{2}}$ √ $2x + 9$ \cdot d

First order differential equations.

Example

Find all solutions of $2xy^2 + 2y + 2x^2y y' + 2x y' = 0$.

Solution: Re-write the equation is a more organized way,

$$
[2x2y + 2x] y' + [2xy2 + 2y] = 0.
$$

$$
N = [2x2y + 2x] \Rightarrow \partial_x N = 4xy + 2.
$$

$$
M = [2xy2 + 2y] \Rightarrow \partial_y M = 4xy + 2.
$$

$$
\Rightarrow \partial_x N = \partial_y M.
$$

The equation is exact. There exists a potential function ψ with

$$
\partial_y \psi = N, \qquad \partial_x \psi = M.
$$

\n $\partial_y \psi = 2x^2y + 2x \implies \psi(x, y) = x^2y^2 + 2xy + g(x).$
\n $2xy^2 + 2y + g'(x) = \partial_x \psi = M = 2xy^2 + 2y \implies g'(x) = 0.$
\n $\psi(x, y) = x^2y^2 + 2xy + c, \quad x^2y^2(x) + 2xy(x) + c = 0.$