## Overview of Fourier Series (Sect. 6.2).

- Origins of the Fourier Series.
- Periodic functions.
- Orthogonality of Sines and Cosines.
- Main result on Fourier Series.


## Origins of the Fourier Series.

## Summary:

Daniel Bernoulli ( $\sim 1750$ ) found solutions to the equation that describes waves propagating on a vibrating string.


The function $u$, measuring the vertical displacement of the string, is the solution to the wave equation,

$$
\partial_{t}^{2} u(t, x)=v^{2} \partial_{x}^{2} u(t, x), \quad v \in \mathbb{R}, \quad x \in[0, L], \quad t \in[0, \infty),
$$

with initial conditions,

$$
u(0, x)=f(x), \quad \partial_{t} u(0, x)=0
$$

and boundary conditions,

$$
u(t, 0)=0, \quad u(t, L)=0
$$

## Origins of the Fourier Series.

## Summary:

Bernoulli found particular solutions to the wave equation.
If the initial condition is $f_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)$,
then the solution is $u_{n}(t, x)=\sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{v n \pi t}{L}\right)$.
Bernoulli also realized that

$$
U_{N}(t, x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{v n \pi t}{L}\right), \quad a_{n} \in \mathbb{R}
$$

is also solution of the wave equation with initial condition

$$
F_{N}(x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right) .
$$

Remark: The wave equation and its solutions provide a mathematical description of music.

## Origins of the Fourier Series.

## Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.
- A proof is: Given a function $F$ with $F(0)=F(L)=0$, but otherwise arbitrary, find $N$ and the coefficients $a_{n}$ such that $F$ is approximated by an expansion $F_{N}$ given in the previous slide.
- Joseph Fourier ( $\sim 1800$ ) provided such formula for the coefficients $a_{n}$, while studying a different problem:
The heat transport in a solid material.
- Find the temperature function $u$ solution of the heat equation

$$
\begin{gathered}
\partial_{t} u(t, x)=k \partial_{x}^{2} u(t, x), \quad k>0, \quad x \in[0, L], \quad t \in[0, \infty), \\
\text { I.C. } u(0, x)=f(x) \\
\text { B.C. } u(t, 0)=0, \quad u(t, L)=0 .
\end{gathered}
$$

## Origins of the Fourier Series.

Remarks:
Fourier found particular solutions to the heat equation.
If the initial condition is $f_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)$,
then the solution is $u_{n}(t, x)=\sin \left(\frac{n \pi x}{L}\right) e^{-k\left(\frac{n \pi}{L}\right)^{2} t}$.
Fourier also realized that

$$
U_{N}(t, x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right) e^{-k\left(\frac{n \pi}{L}\right)^{2} t}, \quad a_{n} \in \mathbb{R}
$$

is also solution of the heat equation with initial condition

$$
F_{N}(x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right) .
$$

Remark: The heat equation and its solutions provide a mathematical description of heat transport in a solid material.

## Origins of the Fourier Series.

## Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients $a_{n}$ in terms of the function $F$.
- Given an initial data function $F$, satisfying $F(0)=F(L)=0$, but otherwise arbitrary, Fourier proved that one can construct an expansion $F_{N}$ as follows,

$$
F_{N}(x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

for $N$ any positive integer, where the $a_{n}$ are given by

$$
a_{n}=\frac{2}{L} \int_{0}^{L} F(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

- To find all solutions to the heat equation problem above one must prove one more thing: That $F_{N}$ approximates $F$ for large enough $N$. That is, $\lim _{N \rightarrow \infty} F_{N}=F$. Fourier didn't show this.


## Origins of the Fourier Series.

## Remarks:

- Based on Bernoulli and Fourier works, people have been able to prove that. Every continuous, $\tau$-periodic function can be expressed as an infinite linear combination of sine and cosine functions.
- More precisely: Every continuous, $\tau$-periodic function $F$, there exist constants $a_{0}, a_{n}, b_{n}$, for $n=1,2, \cdots$ such that

$$
F_{N}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{N}\left[a_{n} \cos \left(\frac{2 n \pi x}{\tau}\right)+b_{n} \sin \left(\frac{2 n \pi x}{\tau}\right)\right]
$$

satisfies $\lim _{N \rightarrow \infty} F_{N}(x)=F(x)$ for every $x \in \mathbb{R}$.
Notation: $F(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{2 n \pi x}{\tau}\right)+b_{n} \sin \left(\frac{2 n \pi x}{\tau}\right)\right]$.

## Origins of the Fourier Series.

The main problem in our class:
Given a continuous, $\tau$-periodic function $f$, find the formulas for $a_{n}$ and $b_{n}$ such that

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{2 n \pi x}{\tau}\right)+b_{n} \sin \left(\frac{2 n \pi x}{\tau}\right)\right]
$$

Remarks: We need to review two main concepts:

- The notion of periodic functions.
- The notion of orthogonal functions, in particular the orthogonality of Sines and Cosines.


## Fourier Series (Sect. 6.2).

- Origins of the Fourier Series.
- Periodic functions.
- Orthogonality of Sines and Cosines.
- Main result on Fourier Series.


## Periodic functions.

## Definition

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called periodic iff there exists $\tau>0$ such that for all $x \in \mathbb{R}$ holds

$$
f(x+\tau)=f(x)
$$

Remark: $f$ is invariant under translations by $\tau$.

## Definition

A period $T$ of a periodic function $f$ is the smallest value of $\tau$ such that $f(x+\tau)=f(x)$ holds.

Notation:
A periodic function with period $T$ is also called $T$-periodic.

## Periodic functions.

## Example

The following functions are periodic, with period $T$,

$$
\begin{aligned}
f(x)=\sin (x), & T=2 \pi \\
f(x)=\cos (x), & T=2 \pi \\
f(x)=\tan (x), & T=\pi \\
f(x)=\sin (a x), & T=\frac{2 \pi}{a}
\end{aligned}
$$

The proof of the latter statement is the following:

$$
f\left(x+\frac{2 \pi}{a}\right)=\sin \left(a x+a \frac{2 \pi}{a}\right)=\sin (a x+2 \pi)=\sin (a x)=f(x) .
$$

## Periodic functions.

## Example

Show that the function below is periodic, and find its period,

$$
f(x)=e^{x}, \quad x \in[0,2), \quad f(x-2)=f(x)
$$

Solution: We just graph the function,


So the function is periodic with period $T=2$.

## Periodic functions.

Theorem
A linear combination of $T$-periodic functions is also $T$-periodic.
Proof: If $f(x+T)=f(x)$ and $g(x+T)=g(x)$, then

$$
a f(x+T)+b g(x+T)=a f(x)+b g(x)
$$

so $(a f+b g)$ is also $T$-periodic.

## Example

$f(x)=2 \sin (3 x)+7 \cos (3 x)$ is periodic with period $T=2 \pi / 3 . \triangleleft$
Remark: The functions below are periodic with period $T=\frac{\tau}{n}$,

$$
f(x)=\cos \left(\frac{2 \pi n x}{\tau}\right), \quad g(x)=\sin \left(\frac{2 \pi n x}{\tau}\right)
$$

Since $f$ and $g$ are invariant under translations by $\tau / n$, they are also invariant under translations by $\tau$.

## Periodic functions.

## Corollary

Any function $f$ given by

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{2 n \pi x}{\tau}\right)+b_{n} \sin \left(\frac{2 n \pi x}{\tau}\right)\right]
$$

is periodic with period $\tau$.

Remark: We will show that the converse statement is true.
Theorem
A function $f$ is $\tau$-periodic iff holds

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{2 n \pi x}{\tau}\right)+b_{n} \sin \left(\frac{2 n \pi x}{\tau}\right)\right]
$$

Fourier Series (Sect. 6.2).

- Origins of the Fourier Series.
- Periodic functions.
- Orthogonality of Sines and Cosines.
- Main result on Fourier Series.


## Orthogonality of Sines and Cosines.

Remark:
From now on we work on the following domain: $[-L, L]$.


## Orthogonality of Sines and Cosines.

Theorem (Orthogonality)
The following relations hold for all $n, m \in \mathbb{N}$,

$$
\begin{aligned}
& \int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0 & n \neq m \\
L & n=m \neq 0 \\
2 L & n=m=0\end{cases} \\
& \int_{-L}^{L} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0 & n \neq m \\
L & n=m\end{cases} \\
& \int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x=0
\end{aligned}
$$

Remark:

- The operation $f \cdot g=\int_{-L}^{L} f(x) g(x) d x$ is an inner product in the vector space of functions. Like the dot product is in $\mathbb{R}^{2}$.
- Two functions $f, g$, are orthogonal iff $f \cdot g=0$.


## Orthogonality of Sines and Cosines.

Recall: $\quad \cos (\theta) \cos (\phi)=\frac{1}{2}[\cos (\theta+\phi)+\cos (\theta-\phi)] ;$

$$
\begin{aligned}
\sin (\theta) \sin (\phi) & =\frac{1}{2}[\cos (\theta-\phi)-\cos (\theta+\phi)] \\
\sin (\theta) \cos (\phi) & =\frac{1}{2}[\sin (\theta+\phi)+\sin (\theta-\phi)]
\end{aligned}
$$

Proof: First formula: If $n=m=0$, it is simple to see that

$$
\int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x=\int_{-L}^{L} d x=2 L .
$$

In the case where one of $n$ or $m$ is non-zero, use the relation

$$
\begin{aligned}
\int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) & \cos \left(\frac{m \pi x}{L}\right) d x=\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n+m) \pi x}{L}\right] d x \\
& +\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x .
\end{aligned}
$$

## Orthogonality of Sines and Cosines.

Proof: Since one of $n$ or $m$ is non-zero, holds
$\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n+m) \pi x}{L}\right] d x=\left.\frac{L}{2(n+m) \pi} \sin \left[\frac{(n+m) \pi x}{L}\right]\right|_{-L} ^{L}=0$.
We obtain that

$$
\int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x=\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x .
$$

If we further restrict $n \neq m$, then

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x=\left.\frac{L}{2(n-m) \pi} \sin \left[\frac{(n-m) \pi x}{L}\right]\right|_{-L} ^{L}=0
$$

If $n=m \neq 0$, we have that

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x=\frac{1}{2} \int_{-L}^{L} d x=L
$$

This establishes the first equation in the Theorem. The remaining equations are proven in a similar way.

## Overview of Fourier Series (Sect. 6.2).

- Origins of the Fourier Series.
- Periodic functions.
- Orthogonality of Sines and Cosines.
- Main result on Fourier Series.


## Main result on Fourier Series.

Theorem (Fourier Series)
If the function $f:[-L, L] \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous, then $f$ can be expressed as an infinite series

$$
\begin{equation*}
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] \tag{1}
\end{equation*}
$$

with the constants $a_{n}$ and $b_{n}$ given by

$$
\begin{array}{ll}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 0, \\
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 1 .
\end{array}
$$

Furthermore, the Fourier series in Eq. (??) provides a 2L-periodic extension of $f$ from the domain $[-L, L] \subset \mathbb{R}$ to $\mathbb{R}$.

