

Review: Classification of 2×2 diagonalizable systems.

Remark:

Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.

- (a) $\lambda_1 \neq \lambda_2$, real-valued. Hence, A has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 (eigen-directions), (Section 5.7).
- (b) $\lambda_1 = \overline{\lambda}_2$, complex-valued. Hence, *A* has two non-proportional eigenvectors $\mathbf{v}_1 = \overline{\mathbf{v}}_2$, (Section 5.8).
- (c-1) $\lambda_1 = \lambda_2$ real-valued with two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 , (Section 5.9).

Remark:

(c-2) $\lambda_1 = \lambda_2$ real-valued with only one eigen-direction. Hence, A is not diagonalizable, (Section 5.9).

Review: The case of diagonalizable matrices.

Theorem (Diagonalizable matrix)

If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ and corresponding eigenvalues $\{\lambda_1, \dots, \lambda_n\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

$\mathbf{x}'(t) = A\mathbf{x}(t)$

is given by the expression below, where $c_1, \cdots, c_n \in \mathbb{R}$,

 $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}.$

The algebraic multiplicity of an eigenvalue.

Definition

Let $\{\lambda_1, \dots, \lambda_k\}$ be the set of eigenvalues of an $n \times n$ matrix, where $1 \leq k \leq n$, hence the characteristic polynomial is

$$p(\lambda) = (-1)^n (\lambda - \lambda_1)^{r_1} \cdots (\lambda - \lambda_k)^{r_k}.$$

The positive integer r_i , for $i = 1, \dots, k$, is called the *algebraic multiplicity* of the eigenvalue λ_i . The eigenvalue λ_i is called *repeated* iff $r_i > 1$.

Remark:

- A matrix with repeated eigenvalues may or may not be diagonalizable.
- Equivalently: An n × n matrix with repeated eigenvalues may or may not have a linearly independent set of n eigenvectors.

The algebraic multiplicity of an eigenvalue. Example Show that matrix A is diagonalizable but matrix B is not, where $A = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 1 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix}.$ Solution: The eigenvalues of A are the solutions of $\begin{vmatrix} (3-\lambda) & 0 & 1 \\ 0 & (3-\lambda) & 2 \\ 0 & 0 & (1-\lambda) \end{vmatrix} = -(\lambda-3)^2(\lambda-1) = 0,$ We conclude: $\lambda_1 = 3$, $r_1 = 2$, and $\lambda_2 = 1$, $r_2 = 1$. Verify that the eigenvalues are: $\begin{cases} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ -2 \\ 2 \end{bmatrix}$. We conclude: A is diagonalizable.

The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

$$A = egin{bmatrix} 3 & 0 & 1 \ 0 & 3 & 2 \ 0 & 0 & 1 \end{bmatrix}, \quad B = egin{bmatrix} 3 & 1 & 1 \ 0 & 3 & 2 \ 0 & 0 & 1 \end{bmatrix}.$$

Solution: The eigenvalues of B are the solutions of

$$egin{array}{cccc} |(3-\lambda) & 1 & 1 \ 0 & (3-\lambda) & 2 \ 0 & 0 & (1-\lambda) \ \end{array} igg| = -(\lambda-3)^2\,(\lambda-1) = 0,$$

We conclude: $\lambda_1 = 3$, $r_1 = 2$, and $\lambda_2 = 1$, $r_2 = 1$. Verify that the eigenvalues are: $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\-1\\1 \end{bmatrix} \right\}$. We conclude: *B* is not diagonalizable.

The algebraic multiplicity of an eigenvalue. Example Find a fundamental set of solutions to $\mathbf{x}'(t) = A\mathbf{x}(t), \quad A = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix},$ Solution: Since matrix A is diagonalizable, with eigen-pairs, $\lambda_1 = 3, \quad \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\} \text{ and } \lambda_2 = 1, \quad \left\{ \begin{bmatrix} -1 \\ -2 \\ 2 \end{bmatrix} \right\}.$ We conclude that a set of fundamental solutions is $\left\{ \mathbf{x}_1(t) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} e^{3t}, \mathbf{x}_2(t) = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} e^{3t}, \mathbf{x}_3(t) = \begin{bmatrix} -1 \\ -2 \\ 2 \end{bmatrix} e^t \right\}.$

Complex, distinct eigenvalues (Sect. 5.9)
Review: Classification of 2 × 2 diagonalizable systems.
Review: The case of diagonalizable matrices.
The algebraic multiplicity of an eigenvalue.
Non-diagonalizable matrices with a repeated eigenvalue.
Phase portraits for 2 × 2 systems.

Non-diagonalizable matrices with a repeated eigenvalue.

Theorem (Repeated eigenvalue)

If λ is an eigenvalue of an $n \times n$ matrix A having algebraic multiplicity r = 2 and only one associated eigen-direction, then the differential equation

 $\mathbf{x}'(t) = A\mathbf{x}(t),$

has a linearly independent set of solutions given by

$$\{\mathbf{x}^{(1)}(t) = \mathbf{v} \ e^{\lambda t}, \quad \mathbf{x}^{(2)}(t) = (\mathbf{v} \ t + \mathbf{w}) \ e^{\lambda t}\}.$$

where the vector \mathbf{w} is solution of

$$(A - \lambda I)\mathbf{w} = \mathbf{v}$$

which always has a solution w.

Non-diagonalizable matrices with a repeated eigenvalue.

Recall: The case of a single second order equation

$$y'' + a_1 y' + a_0 y = 0$$

with characteristic polynomial

$$p(r) = r^2 + a_1 r + a_0 = (r - r_1)^2.$$

In this case a fundamental set of solutions is

$$\{y_1(t) = e^{r_1 t}, \quad y_2(t) = t e^{r_1 t}\}.$$

This is not the case with systems of first order linear equations,

 $\{\mathbf{x}^{(1)}(t) = \mathbf{v} \ e^{\lambda t}, \quad \mathbf{x}^{(2)}(t) = (\mathbf{v} \ t + \mathbf{w}) \ e^{\lambda t}\}.$

In general, $\mathbf{w} \neq \mathbf{0}$.

Non-diagonalizable matrices with a repeated eigenvalue. Example

Find fundamental solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = \frac{1}{4} \begin{bmatrix} -6 & 4 \\ -1 & -2 \end{bmatrix}$.

Solution: Find the eigenvalues of A. Its characteristic polynomial is

$$p(\lambda) = egin{pmatrix} \left(-rac{3}{2}-\lambda
ight) & 1\ -rac{1}{4} & \left(-rac{1}{2}-\lambda
ight) \end{bmatrix} = \left(\lambda+rac{3}{2}
ight)\left(\lambda+rac{1}{2}
ight)+rac{1}{4}.$$

So $p(\lambda) = \lambda^2 + 2\lambda + 1 = (\lambda + 1)^2$. The roots and multiplicity are $\lambda = -1, \qquad r = 2.$

The corresponding eigenvectors are the solutions of $(A + I)\mathbf{v} = \mathbf{0}$,

$$\begin{bmatrix} \left(-\frac{3}{2}+1\right) & 1\\ -\frac{1}{4} & \left(-\frac{1}{2}+1\right) \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} & 1\\ -\frac{1}{4} & \frac{1}{2} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2\\ 1 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2\\ 0 & 0 \end{bmatrix}$$

Non-diagonalizable matrices with a repeated eigenvalue.

Example

Find fundamental solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = \frac{1}{4} \begin{bmatrix} -6 & 4 \\ -1 & -2 \end{bmatrix}$.

Solution: Recall: $\lambda = -1$, with r = 2, and $(A + I) \rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix}$.

The eigenvector components satisfy: $v_1 = 2v_2$. We obtain,

$$\lambda = -1, \qquad \mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} v_2.$$

We conclude that this eigenvalue has only one eigen-direction. Matrix A is not diagonalizable.

Theorem above says we need to find **w** solution of $(A + I)\mathbf{w} = \mathbf{v}$.

$$\begin{bmatrix} -\frac{1}{2} & 1 & | & 2 \\ -\frac{1}{4} & \frac{1}{2} & | & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & | & -4 \\ 1 & -2 & | & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & | & -4 \\ 0 & 0 & | & 0 \end{bmatrix}$$

Non-diagonalizable matrices with a repeated eigenvalue. Example Find fundamental solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = \frac{1}{4} \begin{bmatrix} -6 & 4 \\ -1 & -2 \end{bmatrix}$. Solution: Recall that: $\lambda = -1$, $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} v_2$, and $(A + I)\mathbf{w} = \mathbf{v} \Rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -4 \\ 0 \end{bmatrix}$. We obtain $w_1 = 2w_2 - 4$. That is, $\mathbf{w} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} w_2 + \begin{bmatrix} -4 \\ 0 \end{bmatrix}$. Given a solution \mathbf{w} , then $c\mathbf{v} + \mathbf{w}$ is also a solution, $c \in \mathbb{R}$. We choose the simplest solution, $\mathbf{w} = \begin{bmatrix} -4 \\ 0 \end{bmatrix}$. We conclude, $\mathbf{x}^{(1)}(t) = \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{-t}$, $\mathbf{x}^{(2)}(t) = \left(\begin{bmatrix} 2 \\ 1 \end{bmatrix} t + \begin{bmatrix} -4 \\ 0 \end{bmatrix} \right) e^{-t}$.

Non-diagonalizable matrices with a repeated eigenvalue.

Example

Find the solution \mathbf{x} to the IVP

$$\mathbf{x}' = A \mathbf{x}, \quad \mathbf{x}(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad A = \frac{1}{4} \begin{bmatrix} -6 & 4 \\ -1 & -2 \end{bmatrix}$$

Solution: The general solution is

$$\mathbf{x}(t) = c_1 \begin{bmatrix} 2\\1 \end{bmatrix} e^{-t} + c_2 \left(\begin{bmatrix} 2\\1 \end{bmatrix} t + \begin{bmatrix} -4\\0 \end{bmatrix} \right) e^{-t}.$$

The initial condition is $\mathbf{x}(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -4 \\ 0 \end{bmatrix}$.

$$\begin{bmatrix} 2 & -4 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \implies \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 0 & 4 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1/4 \end{bmatrix}.$$

We conclude:
$$\mathbf{x}(t) = \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{-t} + \frac{1}{4} \left(\begin{bmatrix} 2 \\ 1 \end{bmatrix} t + \begin{bmatrix} -4 \\ 0 \end{bmatrix} \right) e^{-t}.$$

Phase portraits for 2 × 2 systems. Example Sketch a phase portrait for solutions of $\mathbf{x}' = A\mathbf{x}, \ A = \frac{1}{4} \begin{bmatrix} -6 & 4 \\ -1 & -2 \end{bmatrix}$. Solution: Now plot the solutions $\mathbf{x}^{(1)}, \ -\mathbf{x}^{(1)},$ $\mathbf{x}^{(2)}, \ -\mathbf{x}^{(2)},$ This is the case $\lambda < 0$.

Phase portraits for 2×2 systems.

Example

Given any vectors **v** and **w**, and any constant λ , plot the phase portraits of the functions

$$\mathbf{x}^{(1)}(t) = \mathbf{v} e^{\lambda t}, \qquad \mathbf{x}^{(2)}(t) = (\mathbf{v} t + \mathbf{w}) e^{\lambda t},$$

Solution: The case $\lambda > 0$. We plot the functions

