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Review: Classification of 2× 2 diagonalizable systems.

Remark:
Diagonalizable 2× 2 matrices A with real coefficients are classified
according to their eigenvalues.

(a) λ1 6= λ2, real-valued. Hence, A has two non-proportional
eigenvectors v1, v2 (eigen-directions), (Section 5.7).

(b) λ1 = λ2, complex-valued. Hence, A has two non-proportional
eigenvectors v1 = v2, (Section 5.8).

(c-1) λ1 = λ2 real-valued with two non-proportional eigenvectors v1,
v2, (Section 5.9).

Remark:

(c-2) λ1 = λ2 real-valued with only one eigen-direction. Hence, A is
not diagonalizable, (Section 5.9).
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Review: The case of diagonalizable matrices.

Theorem (Diagonalizable matrix)

If n × n matrix A is diagonalizable, with a linearly independent
eigenvectors set {v1, · · · , vn} and corresponding eigenvalues
{λ1, · · · , λn}, then the general solution x to the homogeneous,
constant coefficients, linear system

x′(t) = A x(t)

is given by the expression below, where c1, · · · , cn ∈ R,

x(t) = c1v1 eλ1t + · · ·+ cnvn eλnt .



Complex, distinct eigenvalues (Sect. 5.9)

I Review: Classification of 2× 2 diagonalizable systems.

I Review: The case of diagonalizable matrices.

I The algebraic multiplicity of an eigenvalue.

I Non-diagonalizable matrices with a repeated eigenvalue.

I Phase portraits for 2× 2 systems.

The algebraic multiplicity of an eigenvalue.

Definition
Let {λ1, · · · , λk} be the set of eigenvalues of an n × n matrix,
where 1 6 k 6 n, hence the characteristic polynomial is

p(λ) = (−1)n (λ− λ1)
r1 · · · (λ− λk)rk .

The positive integer ri , for i = 1, · · · , k, is called the algebraic
multiplicity of the eigenvalue λi . The eigenvalue λi is called
repeated iff ri > 1.

Remark:

I A matrix with repeated eigenvalues may or may not be
diagonalizable.

I Equivalently: An n × n matrix with repeated eigenvalues may
or may not have a linearly independent set of n eigenvectors.



The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

A =

3 0 1
0 3 2
0 0 1

 , B =

3 1 1
0 3 2
0 0 1

 .

Solution: The eigenvalues of A are the solutions of∣∣∣∣∣∣
(3− λ) 0 1

0 (3− λ) 2
0 0 (1− λ)

∣∣∣∣∣∣ = −(λ− 3)2 (λ− 1) = 0,

We conclude: λ1 = 3, r1 = 2, and λ2 = 1, r2 = 1.

Verify that the eigenvalues are:
{1

0
0

 ,

0
1
0

 ,

−1
−2
2

}
.

We conclude: A is diagonalizable.

The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

A =

3 0 1
0 3 2
0 0 1

 , B =

3 1 1
0 3 2
0 0 1

 .

Solution: The eigenvalues of B are the solutions of∣∣∣∣∣∣
(3− λ) 1 1

0 (3− λ) 2
0 0 (1− λ)

∣∣∣∣∣∣ = −(λ− 3)2 (λ− 1) = 0,

We conclude: λ1 = 3, r1 = 2, and λ2 = 1, r2 = 1.

Verify that the eigenvalues are:
{1

0
0

 ,

 0
−1
1

}
.

We conclude: B is not diagonalizable.



The algebraic multiplicity of an eigenvalue.

Example

Find a fundamental set of solutions to

x′(t) = A x(t), A =

3 0 1
0 3 2
0 0 1

 ,

Solution: Since matrix A is diagonalizable, with eigen-pairs,

λ1 = 3,
{1

0
0

 ,

0
1
0

}
and λ2 = 1,

{−1
−2
2

}
.

We conclude that a set of fundamental solutions is

{
x1(t) =

1
0
0

 e3t , x2(t) =

0
1
0

 e3t , x3(t) =

−1
−2
2

 et
}

.
C
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Non-diagonalizable matrices with a repeated eigenvalue.

Theorem (Repeated eigenvalue)

If λ is an eigenvalue of an n × n matrix A having algebraic
multiplicity r = 2 and only one associated eigen-direction, then the
differential equation

x′(t) = A x(t),

has a linearly independent set of solutions given by{
x(1)(t) = v eλt , x(2)(t) =

(
v t + w

)
eλt

}
.

where the vector w is solution of

(A− λI )w = v

which always has a solution w.

Non-diagonalizable matrices with a repeated eigenvalue.

Recall: The case of a single second order equation

y ′′ + a1 y ′ + a0 y = 0

with characteristic polynomial

p(r) = r2 + a1 r + a0 = (r − r1)
2.

In this case a fundamental set of solutions is{
y1(t) = er1t , y2(t) = t er1t

}
.

This is not the case with systems of first order linear equations,{
x(1)(t) = v eλt , x(2)(t) =

(
v t + w

)
eλt

}
.

In general, w 6= 0.



Non-diagonalizable matrices with a repeated eigenvalue.

Example

Find fundamental solutions of x′ = A x, with A =
1

4

[
−6 4
−1 −2

]
.

Solution: Find the eigenvalues of A. Its characteristic polynomial is

p(λ) =

∣∣∣∣∣∣∣
(
−3

2
− λ

)
1

−1

4

(
−1

2
− λ

)
∣∣∣∣∣∣∣ =

(
λ +

3

2

)(
λ +

1

2

)
+

1

4
.

So p(λ) = λ2 + 2λ + 1 = (λ + 1)2. The roots and multiplicity are

λ = −1, r = 2.

The corresponding eigenvectors are the solutions of (A + I )v = 0,
(
−3

2
+ 1

)
1

−1

4

(
−1

2
+ 1

)
 =

−1

2
1

−1

4

1

2

 →
[
1 −2
1 −2

]
→

[
1 −2
0 0

]

Non-diagonalizable matrices with a repeated eigenvalue.

Example

Find fundamental solutions of x′ = A x, with A =
1

4

[
−6 4
−1 −2

]
.

Solution: Recall: λ = −1, with r = 2, and (A + I ) →
[
1 −2
0 0

]
.

The eigenvector components satisfy: v1 = 2v2. We obtain,

λ = −1, v =

[
2
1

]
v2.

We conclude that this eigenvalue has only one eigen-direction.
Matrix A is not diagonalizable.
Theorem above says we need to find w solution of (A + I )w = v.−

1

2
1

∣∣∣ 2

−1

4

1

2

∣∣∣∣∣ 1

 →
[
1 −2

∣∣ −4
1 −2

∣∣ −4

]
→

[
1 −2

∣∣ −4
0 0

∣∣ 0

]



Non-diagonalizable matrices with a repeated eigenvalue.

Example

Find fundamental solutions of x′ = A x, with A =
1

4

[
−6 4
−1 −2

]
.

Solution: Recall that:

λ = −1, v =

[
2
1

]
v2, and (A + I )w = v ⇒

[
1 −2

∣∣ −4
0 0

∣∣ 0

]
.

We obtain w1 = 2w2 − 4. That is, w =

[
2
1

]
w2 +

[
−4
0

]
.

Given a solution w, then cv + w is also a solution, c ∈ R.

We choose the simplest solution, w =

[
−4
0

]
. We conclude,

x(1)(t) =

[
2
1

]
e−t , x(2)(t) =

([
2
1

]
t +

[
−4
0

])
e−t . C

Non-diagonalizable matrices with a repeated eigenvalue.

Example

Find the solution x to the IVP

x′ = A x, x(0) =

[
1
1

]
, A =

1

4

[
−6 4
−1 −2

]
.

Solution: The general solution is

x(t) = c1

[
2
1

]
e−t + c2

([
2
1

]
t +

[
−4
0

])
e−t .

The initial condition is x(0) =

[
1
1

]
= c1

[
2
1

]
+ c2

[
−4
0

]
.

[
2 −4
1 0

] [
c1

c2

]
=

[
1
1

]
⇒

[
c1

c2

]
=

1

4

[
0 4
−1 2

] [
1
1

]
=

[
1

1/4

]
.

We conclude: x(t) =

[
2
1

]
e−t +

1

4

([
2
1

]
t +

[
−4
0

])
e−t . C
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Phase portraits for 2× 2 systems.

Example

Sketch a phase portrait for solutions of

x′ = Ax, A =
1

4

[
−6 4
−1 −2

]
.

Solution:
We start plotting the vectors

v =

[
2
1

]
,

w =

[
−4
0

]
.

1w

v

2
x

x



Phase portraits for 2× 2 systems.

Example

Sketch a phase portrait for solutions of

x′ = Ax, A =
1

4

[
−6 4
−1 −2

]
.

Solution:
Now plot the solutions

x(1) =

[
2
1

]
e−t

x(2) =
([

2
1

]
t +

[
−4
0

])
e−t .

(2)
x

w

v

2
x

x 1

x
(1)

Phase portraits for 2× 2 systems.

Example

Sketch a phase portrait for solutions of

x′ = Ax, A =
1

4

[
−6 4
−1 −2

]
.

Solution:
Now plot the solutions

x(1), −x(1),

x(2), −x(2),

This is the case λ < 0.

1

x

−x

(1)

(2)

v

w

(1)

x
(2)

−x

2x

x



Phase portraits for 2× 2 systems.
Example

Given any vectors v and w, and any constant λ, plot the phase
portraits of the functions

x(1)(t) = v eλt , x(2)(t) =
(
v t + w

)
eλt ,

Solution:
The case λ < 0. We plot
the functions

x(1), −x(1),

x(2), −x(2).

x
x (2)

−x

(1)

(1)

−x
(2)

w
v

2x

x 1

Phase portraits for 2× 2 systems.
Example

Given any vectors v and w, and any constant λ, plot the phase
portraits of the functions

x(1)(t) = v eλt , x(2)(t) =
(
v t + w

)
eλt ,

Solution:
The case λ > 0. We plot
the functions

x(1), −x(1),

x(2), −x(2).

1

(1)
−x

vw

2x x
(2)

x
(1)

(2)
−x

x


