Complex, distinct eigenvalues (Sect. 5.8)

- Review: The case of diagonalizable matrices.
- Classification of 2×2 diagonalizable systems.
- Real matrix with a pair of complex eigenvalues.
- Phase portraits for 2×2 systems.

Review: The case of diagonalizable matrices.

Theorem (Diagonalizable matrix)
If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$ and corresponding eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$, then the general solution \mathbf{x} to

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)
$$

is given by the expression below, where $c_{1}, \cdots, c_{n} \in \mathbb{R}$,

$$
\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+\cdots+c_{n} \mathbf{v}_{n} e^{\lambda_{n} t}
$$

Example

Find the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: $\lambda_{1}=4, \quad \mathbf{v}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \quad \lambda_{2}=-2, \quad \mathbf{v}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.
The general solution is: $\mathbf{x}(t)=c_{1}\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}+c_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$.

Complex, distinct eigenvalues (Sect. 5.8)

- Review: The case of diagonalizable matrices.
- Classification of 2×2 diagonalizable systems.
- Real matrix with a pair of complex eigenvalues.
- Phase portraits for 2×2 systems.

Review: Classification of 2×2 diagonalizable systems.

Remark:
Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.
(a) $\lambda_{1} \neq \lambda_{2}$, real-valued. Hence, A has two non-proportional eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ (eigen-directions), (Section 5.7).
(b) $\lambda_{1}=\bar{\lambda}_{2}$, complex-valued. Hence, A has two non-proportional eigenvectors $\mathbf{v}_{1}=\overline{\mathbf{v}}_{2}$, (Section 5.8).
(c-1) $\lambda_{1}=\lambda_{2}$ real-valued with two non-proportional eigenvectors \mathbf{v}_{1}, \mathbf{v}_{2}, (Section 5.9).

Remark:

(c-2) $\lambda_{1}=\lambda_{2}$ real-valued with only one eigen-direction. Hence, A is not diagonalizable, (Section 5.9).

Complex, distinct eigenvalues (Sect. 5.8)

- Review: The case of diagonalizable matrices.
- Classification of 2×2 diagonalizable systems.
- Real matrix with a pair of complex eigenvalues.
- Phase portraits for 2×2 systems.

Real matrix with a pair of complex eigenvalues.

Theorem

If $\{\lambda, \mathbf{v}\}$ is an eigen-pair of an $n \times n$ real-valued matrix A, then $\{\bar{\lambda}, \overline{\mathbf{v}}\}$ also is an eigen-pair of matrix A.

Proof: By hypothesis $A \mathbf{v}=\lambda \mathbf{v}$ and $\bar{A}=A$. Then

$$
\overline{A \mathbf{v}}=\overline{\lambda \mathbf{v}} \quad \Leftrightarrow \quad \bar{A} \overline{\mathbf{v}}=\bar{\lambda} \overline{\mathbf{v}} \quad \Leftrightarrow \quad A \overline{\mathbf{v}}=\bar{\lambda} \overline{\mathbf{v}} .
$$

Therefore $\{\bar{\lambda}, \overline{\mathbf{v}}\}$ is an eigen-pair of matrix A.
Remark: The Theorem above is equivalent to the following: If an $n \times n$ real-valued matrix A has eigen pairs

$$
\lambda_{1}=\alpha+i \beta, \quad \mathbf{v}_{1}=\mathbf{a}+i \mathbf{b}
$$

with $\alpha, \beta \in \mathbb{R}$ and $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n}$, then so is

$$
\lambda_{2}=\alpha-i \beta, \quad \mathbf{v}_{2}=\mathbf{a}-i \mathbf{b} .
$$

Real matrix with a pair of complex eigenvalues.

Theorem (Complex pairs)
If an $n \times n$ real-valued matrix A has eigen pairs

$$
\left.\lambda_{ \pm}=\alpha \pm i \beta, \quad \mathbf{v}^{ \pm}\right)=\mathbf{a} \pm i \mathbf{b},
$$

with $\alpha, \beta \in \mathbb{R}$ and $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n}$, then the differential equation

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)
$$

has a linearly independent set of two complex-valued solutions

$$
\mathbf{x}^{(+)}=\mathbf{v}^{(+)} e^{\lambda+t}, \quad \mathbf{x}^{(-)}=\mathbf{v}^{(-)} e^{\lambda-t}
$$

and it also has a linearly independent set of two real-valued solutions

$$
\begin{aligned}
& \mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}, \\
& \mathbf{x}^{(2)}=[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t} .
\end{aligned}
$$

Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is

$$
\mathbf{x}^{(+)}=\mathbf{v}^{(+)} e^{\lambda_{+} t}=(\mathbf{a}+i \mathbf{b}) e^{(\alpha+i \beta) t}=(\mathbf{a}+i \mathbf{b}) e^{\alpha t} e^{i \beta t}
$$

Euler equation implies

$$
\begin{gathered}
\mathbf{x}^{(+)}=(\mathbf{a}+i \mathbf{b}) e^{\alpha t}[\cos (\beta t)+i \sin (\beta t)] \\
\mathbf{x}^{(+)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}+i[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t}
\end{gathered}
$$

A similar calculation done on $\mathbf{x}^{(-)}$implies
$\mathbf{x}^{(-)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}-i[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t}$.
Introduce $\mathbf{x}^{(1)}=\left(\mathbf{x}^{(+)}+\mathbf{x}^{(-)}\right) / 2, \mathbf{x}^{(2)}=\left(\mathbf{x}^{(+)}-\mathbf{x}^{(-)}\right) /(2 i)$, then

$$
\begin{aligned}
& \mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t} \\
& \mathbf{x}^{(2)}=[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t}
\end{aligned}
$$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right]
$$

Solution: (1) Find the eigenvalues of matrix A above,

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
(2-\lambda) & 3 \\
-3 & (2-\lambda)
\end{array}\right|=(\lambda-2)^{2}+9
$$

The roots of the characteristic polynomial are

$$
(\lambda-2)^{2}+9=0 \quad \Rightarrow \quad \lambda_{ \pm}-2= \pm 3 i \quad \Rightarrow \quad \lambda_{ \pm}=2 \pm 3 i
$$

(2) Find the eigenvectors of matrix A above. For λ_{+},

$$
A-\lambda_{+} I=A-(2+3 i) I=\left[\begin{array}{cc}
2-(2+3 i) & 3 \\
-3 & 2-(2+3 i)
\end{array}\right]
$$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right]
$$

Solution: $\lambda_{ \pm}=2 \pm 3 i,\left(A-\lambda_{+} I\right)=\left[\begin{array}{cc}2-(2+3 i) & 3 \\ -3 & 2-(2+3 i)\end{array}\right]$.
We need to solve $\left(A-\lambda_{+} I\right) \mathbf{v}^{(+)}=\mathbf{0}$ for $\mathbf{v}^{(+)}$. Gauss operations

$$
\left[\begin{array}{cc}
-3 i & 3 \\
-3 & -3 i
\end{array}\right] \rightarrow\left[\begin{array}{cc}
-i & 1 \\
-1 & -i
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & i \\
-1 & -i
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & i \\
0 & 0
\end{array}\right]
$$

So, the eigenvector $\mathbf{v}^{(+)}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ is given by $v_{1}=-i v_{2}$. Choose

$$
v_{2}=1, \quad v_{1}=-i, \quad \Rightarrow \quad \mathbf{v}^{(+)}=\left[\begin{array}{r}
-i \\
1
\end{array}\right], \quad \lambda_{+}=2+3 i
$$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: Recall: eigenvalues $\lambda_{ \pm}=2 \pm 3 i$, and $\mathbf{v}^{(+)}=\left[\begin{array}{c}-i \\ 1\end{array}\right]$.
The second eigenvector is $\mathbf{v}^{(-)}=\mathbf{v}^{(+)}$, that is, $\mathbf{v}^{(-)}=\left[\begin{array}{l}i \\ 1\end{array}\right]$.
Notice that $\mathbf{v}^{(\pm)}=\left[\begin{array}{l}0 \\ 1\end{array}\right] \pm\left[\begin{array}{c}-1 \\ 0\end{array}\right]$ i.
The notation $\lambda_{ \pm}=\alpha \pm \beta i$ and $\mathbf{v}^{ \pm}=\mathbf{a} \pm \mathbf{b i}$ implies

$$
\alpha=2, \quad \beta=3, \quad \mathbf{a}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right] .
$$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: Recall: $\alpha=2, \beta=3, \quad \mathbf{a}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$.
Real-valued solutions are $\mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}$, and $\mathbf{x}^{(2)}=[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t}$. That is

$$
\begin{aligned}
& \mathbf{x}^{(1)}=\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right] \cos (3 t)-\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \sin (3 t)\right) e^{2 t} \Rightarrow \mathbf{x}^{(1)}=\left[\begin{array}{c}
\sin (3 t) \\
\cos (3 t)
\end{array}\right] e^{2 t} \\
& \mathbf{x}^{(2)}=\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right] \sin (3 t)+\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \cos (3 t)\right) e^{2 t} \Rightarrow \mathbf{x}^{(2)}=\left[\begin{array}{c}
-\cos (3 t) \\
\sin (3 t)
\end{array}\right] e^{2 t}
\end{aligned}
$$

- Review: The case of diagonalizable matrices.
- Classification of 2×2 diagonalizable systems.
- Real matrix with a pair of complex eigenvalues.
- Phase portraits for 2×2 systems.

Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of $\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}2 & 3 \\ -3 & 2\end{array}\right]$.

Solution:

The phase portrait of the vectors

$$
\begin{gathered}
\tilde{\mathbf{x}}^{(1)}=\left[\begin{array}{c}
\sin (3 t) \\
\cos (3 t)
\end{array}\right] \\
\tilde{\mathbf{x}}^{(2)}=\left[\begin{array}{c}
-\cos (3 t) \\
\sin (3 t)
\end{array}\right],
\end{gathered}
$$

is a radius one circle.

Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of $\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{rr}2 & 3 \\ -3 & 2\end{array}\right]$.
Solution:
The phase portrait of the solutions

$$
\begin{gathered}
\tilde{\mathbf{x}}^{(1)}=\left[\begin{array}{c}
\sin (3 t) \\
\cos (3 t)
\end{array}\right] e^{2 t}, \\
\tilde{\mathbf{x}}^{(2)}=\left[\begin{array}{c}
-\cos (3 t) \\
\sin (3 t)
\end{array}\right] e^{2 t},
\end{gathered}
$$

are outgoing spirals.

Phase portraits for 2×2 systems.

Example

Given any vectors a and \mathbf{b}, sketch qualitative phase portraits of

$$
\mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}, \mathbf{x}^{(2)}=[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t} .
$$

for the cases $\alpha=0, \alpha>0$, and $\alpha<0$, where $\beta>0$.
Solution:

