Review of Linear Algebra (Sect. 5.2, 5.3)

This Class:

- $n \times n$ systems of linear algebraic equations.
- The matrix-vector product.
- A matrix is a function.
- The inverse of a square matrix.
- The determinant of a square matrix.

Next Class:

- Eigenvalues, eigenvectors of a matrix.
- Computing eigenvalues and eigenvectors.
- Diagonalizable matrices.
$n \times n$ systems of linear algebraic equations.

Definition

An $n \times n$ algebraic system of linear equations is the following:
Given constants $a_{i j}$ and b_{i}, where indices $i, j=1 \cdots, n \geqslant 1$, find the constants x_{j} solutions of the system

$$
\begin{aligned}
a_{11} x_{1}+\cdots+a_{1 n} x_{n} & =b_{1}, \\
& \vdots \\
a_{n 1} x_{1}+\cdots+a_{n n} x_{n} & =b_{n} .
\end{aligned}
$$

The system is called homogeneous iff the sources vanish, that is, $b_{1}=\cdots=b_{n}=0$.

Example

Review of Linear Algebra (Sect. 5.2, 5.3)

- $n \times n$ systems of linear algebraic equations.
- The matrix-vector product.
- A matrix is a function.
- The inverse of a square matrix.
- The determinant of a square matrix.

The matrix-vector product.

Definition

The matrix-vector product is the matrix multiplication of an $n \times n$ matrix A and an n-vector \mathbf{v}, resulting in an n-vector $A \mathbf{v}$, that is,

$$
\begin{array}{cc}
A & \mathbf{v} \\
n \times n & \longrightarrow
\end{array} \begin{gathered}
A \mathbf{v} \\
n \times 1
\end{gathered}
$$

Example

Find the matrix-vector product $A \mathbf{v}$ for

$$
A=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{l}
1 \\
3
\end{array}\right] .
$$

Solution: This is a straightforward computation,

$$
A \mathbf{v}=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{c}
2-3 \\
-1+6
\end{array}\right] \quad \Rightarrow \quad A \mathbf{v}=\left[\begin{array}{c}
-1 \\
5
\end{array}\right]
$$

$n \times n$ systems of linear algebraic equations.
Remark: Matrix notation is useful to work with systems of linear algebraic equations.
Introduce the coefficient matrix, the source vector, and the unknown vector, respectively,

$$
A=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

Using this matrix notation and the matrix-vector product, the linear algebraic system above can be written as

$$
\begin{gathered}
a_{11} x_{1}+\cdots+a_{1 n} x_{n}=b_{1}, \\
\vdots \\
a_{n 1} x_{1}+\cdots+a_{n n} x_{n}=b_{n} .
\end{gathered} \Leftrightarrow\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]
$$

$n \times n$ systems of linear algebraic equations.

Example

Find the solution to the linear system $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
0 \\
3
\end{array}\right] .
$$

Solution: The linear system is

$$
\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
3
\end{array}\right] \quad \Leftrightarrow \quad \begin{array}{r}
2 x_{1}-x_{2}=0 \\
-x_{1}+2 x_{2}=3
\end{array}
$$

Since $x_{2}=2 x_{1}$, then $-x_{1}+4 x_{1}=3$, that is $x_{1}=1$, hence $x_{2}=2$.
The solution is: $x=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.

Review of Linear Algebra (Sect. 5.2, 5.3)

- $n \times n$ systems of linear algebraic equations.
- The matrix-vector product.
- A matrix is a function.
- The inverse of a square matrix.
- The determinant of a square matrix.

A matrix is a function.

Remark:

- The matrix-vector product provides a new interpretation for a matrix. A matrix is a function.
- An $n \times n$ matrix A is a function $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, given by $\mathbf{v} \mapsto A \mathbf{v}$.
For example, $A=\left[\begin{array}{rr}2 & -1 \\ -1 & 2\end{array}\right]: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, is a function that associates $\left[\begin{array}{l}1 \\ 3\end{array}\right] \rightarrow\left[\begin{array}{c}-1 \\ 5\end{array}\right]$, since,

$$
\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{c}
-1 \\
5
\end{array}\right] .
$$

- A matrix is a function, and matrix multiplication is equivalent to function composition.

A matrix is a function.

Example

Show that $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ is a rotation in \mathbb{R}^{2} by $\pi / 2$ counterclockwise.

Solution: Matrix A is 2×2, so $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Given $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \in \mathbb{R}^{2}$,

$$
\begin{aligned}
& A \mathbf{x}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-x_{2} \\
x_{1}
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \\
& {\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right],} \\
& {\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
-1 \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1
\end{array}\right] .}
\end{aligned}
$$

A matrix is a function.

Definition

An $n \times n$ matrix I_{n} is called the identity matrix iff holds

$$
I_{n} \mathrm{x}=\mathrm{x} \quad \text { for all } \mathrm{x} \in \mathbb{R}^{n} .
$$

Example

Write down the identity matrices I_{2}, l_{3}, and I_{n}.
Solution:

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad I_{n}=\left[\begin{array}{ccc}
1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1
\end{array}\right]
$$

Review of Linear Algebra (Sect. 5.2, 5.3)

- $n \times n$ systems of linear algebraic equations.
- The matrix-vector product.
- A matrix is a function.
- The inverse of a square matrix.
- The determinant of a square matrix.

The inverse of a square matrix.

Definition

An $n \times n$ matrix A is called invertible iff there exists a matrix, denoted as A^{-1}, such

$$
\left(A^{-1}\right) A=I_{n}, \quad A\left(A^{-1}\right)=I_{n}
$$

Example

Show that $A=\left[\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right]$ has the inverse $A^{-1}=\frac{1}{4}\left[\begin{array}{cc}3 & -2 \\ -1 & 2\end{array}\right]$.
Solution: We have to compute the product
$A\left(A^{-1}\right)=\left[\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right] \frac{1}{4}\left[\begin{array}{cc}3 & -2 \\ -1 & 2\end{array}\right]=\frac{1}{4}\left[\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right] \quad \Rightarrow \quad A\left(A^{-1}\right)=I_{2}$.
Check that $\left(A^{-1}\right) A=I_{2}$ also holds.

The inverse of a square matrix.
Remark: Not every $n \times n$ matrix is invertible.
Theorem (2×2 case)
The matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is invertible iff holds that
$\Delta=a d-b c \neq 0$. Furthermore, if A is invertible, then

$$
A^{-1}=\frac{1}{\Delta}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] .
$$

Verify:

$$
A\left(A^{-1}\right)=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \frac{1}{\Delta}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]=\frac{1}{\Delta}\left[\begin{array}{cc}
\Delta & -a b+b a \\
c d-d c & \Delta
\end{array}\right]=I_{2} .
$$

It is not difficult to see that: $\left(A^{-1}\right) A=I_{2}$ also holds.

The inverse of a square matrix.

Example

Find A^{-1} for $A=\left[\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right]$.

Solution:

We use the formula in the previous Theorem.
In this case: $\Delta=6-2=4$, and

$$
A^{-1}=\frac{1}{\Delta}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] \quad \Rightarrow \quad A^{-1}=\frac{1}{4}\left[\begin{array}{cc}
3 & -2 \\
-1 & 2
\end{array}\right] .
$$

Remark: The formula for the inverse matrix can be generalized to $n \times n$ matrices having non-zero determinant.

Review of Linear Algebra (Sect. 5.2, 5.3)

- $n \times n$ systems of linear algebraic equations.
- The matrix-vector product.
- A matrix is a function.
- The inverse of a square matrix.
- The determinant of a square matrix.

The determinant of a square matrix.

Definition

The determinant of a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is the number

$$
\Delta=a d-b c .
$$

Notation: The determinant can be denoted in different ways:

$$
\Delta=\operatorname{det}(A)=|A|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right| .
$$

Example
(a) $\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|=4-6=-2$.

Remark: $\left|\operatorname{det}\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)\right|$ is the area of the parallelogram formed
(b) $\left|\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right|=8-3=5$.
(c) $\left|\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right|=4-4=0$.
$\triangleleft \quad\left[\begin{array}{l}a \\ c\end{array}\right]$ and $\left[\begin{array}{l}b \\ d\end{array}\right]$.

The determinant of a square matrix.

Definition

The determinant of a 3×3 matrix A is given by

$$
\begin{gathered}
\operatorname{det}(A)=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \\
=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| .
\end{gathered}
$$

Remark: The $|\operatorname{det}(A)|$ is the volume of the parallelepiped formed by the column vectors of A.

The determinant of a square matrix.

Example

Find the determinant of $A=\left[\begin{array}{ccc}1 & 3 & -1 \\ 2 & 1 & 1 \\ 3 & 2 & 1\end{array}\right]$.
Solution: We use the definition above, that is,

$$
\begin{gathered}
\operatorname{det}(A)=\left|\begin{array}{ccc}
1 & 3 & -1 \\
2 & 1 & 1 \\
3 & 2 & 1
\end{array}\right|=1\left|\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right|-3\left|\begin{array}{ll}
2 & 1 \\
3 & 1
\end{array}\right|+(-1)\left|\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right|, \\
\operatorname{det}(A)=(1-2)-3(2-3)-(4-3)=-1+3-1
\end{gathered}
$$

We conclude: $\operatorname{det}(A)=1$.

