Systems of linear differential equations (Sect. 5.1).

- $n \times n$ systems of linear differential equations.
- Second order equations and first order systems.
- Main concepts from Linear Algebra.
$n \times n$ systems of linear differential equations.
Remark: Many physical systems must be described with more than one differential equation.

Example

Newton's law of motion for a particle of mass m moving in space.
The unknown and the force are vector-valued functions,

$$
\mathbf{x}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right], \quad \mathbf{F}(t)=\left[\begin{array}{l}
F_{1}(t, \mathbf{x}) \\
F_{2}(t, \mathbf{x}) \\
F_{3}(t, \mathbf{x})
\end{array}\right]
$$

The equation of motion are: $m \frac{d^{2} \mathbf{x}}{d t^{2}}=\mathbf{F}(t, \mathbf{x}(t))$.
These are three differential equations,

$$
m \frac{d^{2} x_{1}}{d t^{2}}=F_{1}(t, \mathbf{x}(t)), \quad m \frac{d^{2} x_{2}}{d t^{2}}=F_{2}(t, \mathbf{x}(t)), \quad m \frac{d^{2} x_{3}}{d t^{2}}=F_{3}(t, \mathbf{x}(t)) .
$$

$n \times n$ systems of linear differential equations.

Definition

An $n \times n$ system of linear first order differential equations is the following: Given the functions $a_{i j}, g_{i}:[a, b] \rightarrow \mathbb{R}$, where $i, j=1, \cdots, n$, find n functions $x_{j}:[a, b] \rightarrow \mathbb{R}$ solutions of the n linear differential equations

$$
\begin{aligned}
x_{1}^{\prime} & =a_{11}(t) x_{1}+\cdots+a_{1 n}(t) x_{n}+g_{1}(t) \\
& \vdots \\
x_{n}^{\prime} & =a_{n 1}(t) x_{1}+\cdots+a_{n n}(t) x_{n}+g_{n}(t) .
\end{aligned}
$$

The system is called homogeneous iff the source functions satisfy that $g_{1}=\cdots=g_{n}=0$.
$n \times n$ systems of linear differential equations.

Example

$n=1$: Single differential equation: Find $x_{1}(t)$ solution of

$$
x_{1}^{\prime}=a_{11}(t) x_{1}+g_{1}(t)
$$

Example

$n=2: 2 \times 2$ linear system: Find $x_{1}(t)$ and $x_{2}(t)$ solutions of

$$
\begin{aligned}
& x_{1}^{\prime}=a_{11}(t) x_{1}+a_{12}(t) x_{2}+g_{1}(t), \\
& x_{2}^{\prime}=a_{21}(t) x_{1}+a_{22}(t) x_{2}+g_{2}(t) .
\end{aligned}
$$

Example

$n=2: 2 \times 2$ homogeneous linear system: Find $x_{1}(t)$ and $x_{2}(t)$,

$$
\begin{aligned}
& x_{1}^{\prime}=a_{11}(t) x_{1}+a_{12}(t) x_{2} \\
& x_{2}^{\prime}=a_{21}(t) x_{1}+a_{22}(t) x_{2} .
\end{aligned}
$$

$n \times n$ systems of linear differential equations.

Example

Find $x_{1}(t), x_{2}(t)$ solutions of the 2×2, constant coefficients, homogeneous system

$$
\begin{aligned}
x_{1}^{\prime} & =x_{1}-x_{2}, \\
x_{2}^{\prime} & =-x_{1}+x_{2} .
\end{aligned}
$$

Solution: Add up the equations, and subtract the equations,

$$
\left(x_{1}+x_{2}\right)^{\prime}=0, \quad\left(x_{1}-x_{2}\right)^{\prime}=2\left(x_{1}-x_{2}\right)
$$

Introduce the unknowns $v=x_{1}+x_{2}, w=x_{1}-x_{2}$, then

$$
\begin{array}{cc}
v^{\prime}=0 & \Rightarrow \quad v=c_{1} \\
w^{\prime}=2 w & \Rightarrow \quad w=c_{2} e^{2 t}
\end{array}
$$

Back to x_{1} and $x_{2}: \quad x_{1}=\frac{1}{2}(v+w), \quad x_{2}=\frac{1}{2}(v-w)$.
We conclude: $\quad x_{1}(t)=\frac{1}{2}\left(c_{1}+c_{2} e^{2 t}\right), \quad x_{2}(t)=\frac{1}{2}\left(c_{1}-c_{2} e^{2 t}\right)$.

Systems of linear differential equations (Sect. 5.1).

- $n \times n$ systems of linear differential equations.
- Second order equations and first order systems.
- Main concepts from Linear Algebra.

Second order equations and first order systems.

Theorem (Reduction to first order)
Every solution y to the second order linear equation

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t) \tag{1}
\end{equation*}
$$

defines a solution $x_{1}=y$ and $x_{2}=y^{\prime}$ of the 2×2 first order linear differential system

$$
\begin{align*}
& x_{1}^{\prime}=x_{2}, \tag{2}\\
& x_{2}^{\prime}=-q(t) x_{1}-p(t) x_{2}+g(t) \tag{3}
\end{align*}
$$

Conversely, every solution x_{1}, x_{2} of the 2×2 first order linear system in Eqs. (2)-(3) defines a solution $y=x_{1}$ of the second order differential equation in (1).

Second order equations and first order systems.
Proof:
(\Rightarrow) Given y solution of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$, introduce $x_{1}=y$ and $x_{2}=y^{\prime}$, hence $x_{1}^{\prime}=y^{\prime}=x_{2}$, that is,

$$
x_{1}^{\prime}=x_{2} .
$$

Then, $x_{2}^{\prime}=y^{\prime \prime}=-q(t) y-p(t) y^{\prime}+g(t)$. That is,

$$
x_{2}^{\prime}=-q(t) x_{1}-p(t) x_{2}+g(t)
$$

(\Leftarrow) Introduce $x_{2}=x_{1}^{\prime}$ into $x_{2}^{\prime}=-q(t) x_{1}-p(t) x_{2}+g(t)$.

$$
x_{1}^{\prime \prime}=-q(t) x_{1}-p(t) x_{1}^{\prime}+g(t)
$$

that is

$$
x_{1}^{\prime \prime}+p(t) x_{1}^{\prime}+q(t) x_{1}=g(t)
$$

Second order equations and first order systems.

Example

Express as a first order system the equation

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\sin (a t)
$$

Solution: Introduce the new unknowns

$$
x_{1}=y, \quad x_{2}=y^{\prime} \quad \Rightarrow \quad x_{1}^{\prime}=x_{2} .
$$

Then, the differential equation can be written as

$$
x_{2}^{\prime}+2 x_{2}+2 x_{1}=\sin (a t) .
$$

We conclude that

$$
\begin{gather*}
x_{1}^{\prime}=x_{2} \\
x_{2}^{\prime}=-2 x_{1}-2 x_{2}+\sin (a t)
\end{gather*}
$$

Second order equations and first order systems.

Remark: Systems of first order equations can, sometimes, be transformed into a second order single equation.

Example

Express as a single second order equation the 2×2 system and solve it,

$$
\begin{aligned}
& x_{1}^{\prime}=-x_{1}+3 x_{2}, \\
& x_{2}^{\prime}=x_{1}-x_{2} .
\end{aligned}
$$

Solution: Compute x_{1} from the second equation: $x_{1}=x_{2}^{\prime}+x_{2}$. Introduce this expression into the first equation,

$$
\begin{gathered}
\left(x_{2}^{\prime}+x_{2}\right)^{\prime}=-\left(x_{2}^{\prime}+x_{2}\right)+3 x_{2}, \\
x_{2}^{\prime \prime}+x_{2}^{\prime}=-x_{2}^{\prime}-x_{2}+3 x_{2}, \\
x_{2}^{\prime \prime}+2 x_{2}^{\prime}-2 x_{2}=0 .
\end{gathered}
$$

Second order equations and first order systems.

Example

Express as a single second order equation the 2×2 system and solve it,

$$
\begin{aligned}
x_{1}^{\prime} & =-x_{1}+3 x_{2}, \\
x_{2}^{\prime} & =x_{1}-x_{2} .
\end{aligned}
$$

Solution: Recall: $x_{2}^{\prime \prime}+2 x_{2}^{\prime}-2 x_{2}=0$.

$$
r^{2}+2 r-2=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4+8}] \quad \Rightarrow \quad r_{ \pm}=-1 \pm \sqrt{3}
$$

Therefore, $x_{2}=c_{1} e^{r+t}+c_{2} e^{r-t}$. Since $x_{1}=x_{2}^{\prime}+x_{2}$,

$$
x_{1}=\left(c_{1} r_{+} e^{r_{+} t}+c_{2} r_{-} e^{r_{-} t}\right)+\left(c_{1} e^{r_{+} t}+c_{2} e^{r_{-} t}\right)
$$

We conclude: $x_{1}=c_{1}\left(1+r_{+}\right) e^{r_{+} t}+c_{2}\left(1+r_{-}\right) e^{r_{-} t}$.

Systems of linear differential equations (Sect. 5.1).

- $n \times n$ systems of linear differential equations.
- Second order equations and first order systems.
- Main concepts from Linear Algebra.

Main concepts from Linear Algebra.

Remark: Ideas from Linear Algebra are useful to study systems of linear differential equations.

We review:

- Matrices $m \times n$.
- Matrix operations.
- n-vectors, dot product.
- matrix-vector product.

Definition

An $m \times n$ matrix, A, is an array of numbers

$$
A=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right], \quad n \text { rows, } \quad n \text { columns. }
$$

where $a_{i j} \in \mathbb{C}$ and $i=1, \cdots, m$, and $j=1, \cdots, n$. An $n \times n$ matrix is called a square matrix.

Main concepts from Linear Algebra.

Example

(a) 2×2 matrix: $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.
(b) 2×3 matrix: $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$.
(c) 3×2 matrix: $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]$.
(d) 2×2 complex-valued matrix: $A=\left[\begin{array}{cc}1+i & 2-i \\ 3 & 4 i\end{array}\right]$.
(e) The coefficients of a linear system can be grouped in a matrix,

$$
\left.\begin{array}{l}
x_{1}^{\prime}=-x_{1}+3 x_{2} \\
x_{2}^{\prime}=x_{1}-x_{2}
\end{array}\right\} \quad \Rightarrow \quad A=\left[\begin{array}{cc}
-1 & 3 \\
1 & -1
\end{array}\right] .
$$

Main concepts from Linear Algebra.

Remark: An $m \times 1$ matrix is called an m-vector.

Definition

An m-vector, \mathbf{v}, is the array of numbers $\mathbf{v}=\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{m}\end{array}\right]$, where the vector components $v_{i} \in \mathbb{C}$, with $i=1, \cdots, m$.

Example

The unknowns of a 2×2 linear system can be grouped in a 2 -vector, for example,

$$
\left.\begin{array}{l}
x_{1}^{\prime}=-x_{1}+3 x_{2} \\
x_{2}^{\prime}=x_{1}-x_{2}
\end{array}\right\} \quad \Rightarrow \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Main concepts from Linear Algebra.

Remark: We present only examples of matrix operations.

Example

Consider a 2×3 matrix $A=\left[\begin{array}{ccc}1 & 2+i & -1+2 i \\ 3 i & 2 & 1\end{array}\right]$.
(a) A-transpose: Interchange rows with columns:

$$
A^{T}=\left[\begin{array}{cc}
1 & 3 i \\
2+i & 2 \\
-1+2 i & 1
\end{array}\right] . \quad \text { Notice that: }\left(A^{T}\right)^{T}=A
$$

(b) A-conjugate: Conjugate every matrix coefficient:

$$
\bar{A}=\left[\begin{array}{ccc}
1 & 2-i & -1-2 i \\
-3 i & 2 & 1
\end{array}\right] . \quad \text { Notice that: } \overline{(\bar{A})}=A .
$$

Matrix A is real iff $\bar{A}=A$. Matrix A is imaginary iff $\bar{A}=-A$.

Main concepts from Linear Algebra.

Example

Consider a 2×3 matrix $A=\left[\begin{array}{ccc}1 & 2+i & -1+2 i \\ 3 i & 2 & 1\end{array}\right]$.
(a) A-adjoint: Conjugate and transpose:

$$
A^{*}=\left[\begin{array}{cc}
1 & -3 i \\
2-i & 2 \\
-1-2 i & 1
\end{array}\right] . \quad \text { Notice that: }\left(A^{*}\right)^{*}=A .
$$

(b) Addition of two $m \times n$ matrices is performed component-wise:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]+\left[\begin{array}{ll}
2 & 3 \\
5 & 1
\end{array}\right]=\left[\begin{array}{ll}
(1+2) & (2+3) \\
(3+5) & (4+1)
\end{array}\right]=\left[\begin{array}{ll}
3 & 5 \\
8 & 5
\end{array}\right]
$$

The addition $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]+\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$ is not defined.

Main concepts from Linear Algebra.

Example

Consider a 2×3 matrix $A=\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 4 & 6\end{array}\right]$.
(a) Multiplication of a matrix by a number is performed component-wise:

$$
2 A=2\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right]=\left[\begin{array}{lll}
2 & 6 & 10 \\
4 & 8 & 12
\end{array}\right], \quad\left[\begin{array}{cc}
8 & 12 \\
16 & 20
\end{array}\right]=4\left[\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right] .
$$

Also:

$$
\frac{A}{3}=\frac{1}{3}\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right]=\left[\begin{array}{lll}
\frac{1}{3} & 1 & \frac{5}{3} \\
\frac{2}{3} & \frac{4}{3} & 2
\end{array}\right]
$$

Main concepts from Linear Algebra.

Example

(a) Matrix multiplication. The matrix sizes is important:

$$
\begin{array}{ccc}
A & \text { times } & B \\
m \times n & & n \times \ell
\end{array} \text { defines } \begin{gathered}
A B \\
m \times \ell
\end{gathered}
$$

Example: A is $2 \times 2, B$ is 2×3, so $A B$ is 2×3 :

$$
A B=\left[\begin{array}{ll}
4 & 3 \\
2 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]=\left[\begin{array}{ccc}
16 & 23 & 30 \\
6 & 9 & 12
\end{array}\right]
$$

Notice B is $2 \times 3, A$ is 2×2, so $B A$ is not defined.

$$
B A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{ll}
4 & 3 \\
2 & 1
\end{array}\right] \quad \text { not defined. }
$$

Main concepts from Linear Algebra.

Remark: The matrix product is not commutative, that is, in general holds $A B \neq B A$.

Example

Find $A B$ and $B A$ for $A=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$ and $B=\left[\begin{array}{cc}3 & 0 \\ 2 & -1\end{array}\right]$.
Solution:

$$
\begin{aligned}
& A B=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{cc}
3 & 0 \\
2 & -1
\end{array}\right]=\left[\begin{array}{cc}
(6-2) & (0+1) \\
(-3+4) & (0-2)
\end{array}\right]=\left[\begin{array}{cc}
4 & 1 \\
1 & -2
\end{array}\right] . \\
& B A=\left[\begin{array}{cc}
3 & 0 \\
2 & -1
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{ll}
(6+0) & (-3+0) \\
(4+1) & (-2-2)
\end{array}\right]=\left[\begin{array}{ll}
6 & -3 \\
5 & -4
\end{array}\right] .
\end{aligned}
$$

So $A B \neq B A$.

Main concepts from Linear Algebra.

Remark: There exist matrices $A \neq 0$ and $B \neq 0$ with $A B=0$.

Example

Find $A B$ for $A=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & -1 \\ 1 & -1\end{array}\right]$.
Solution:

$$
A B=\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{cc}
(1-1) & (-1+1) \\
(-1+1) & (1-1)
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

Recall: If $a, b \in \mathbb{R}$ and $a b=0$, then either $a=0$ or $b=0$.
We have just shown that this statement is not true for matrices.

