Review for Exam 2.

- ▶ 6 or 7 problems.
- No multiple choice questions.
- ▶ No notes, no books, no calculators.
- Problems similar to homeworks.
- Exam covers:
 - ► Variation of parameters (2.6).
 - Undetermined coefficients (2.5).
 - Constant coefficients, homogeneous, (2.2)-(2.4).
 - ▶ Reduction order method, (2.4.2).
 - Second order variable coefficients, (2.1).
 - First order homogeneous (1.3.2).

Review for Exam 2.

- ▶ 5 problems.
- No multiple choice questions.
- No notes, no books, no calculators.
- Problems similar to homeworks.
- Exam covers:
 - ► Variation of parameters (2.6).
 - Undetermined coefficients (2.5).
 - Constant coefficients, homogeneous, (2.2)-(2.4).
 - Reduction order method, (2.4.2).
 - Second order variable coefficients, (2.1).
 - First order homogeneous (1.3.2).

Variation of parameters (2.6).

Theorem (Variation of parameters)

Let p, q, $f : (t_1, t_2) \to \mathbb{R}$ be continuous functions, then let functions y_1 , $y_2 : (t_1, t_2) \to \mathbb{R}$ be linearly independent solutions to the homogeneous equation

y'' + p(t) y' + q(t) y = 0,

and let the function $W_{y_1y_2}$ be the Wronskian of solutions y_1 and y_2 . If the functions u_1 and u_2 are defined by

$$u_1(t) = \int -rac{y_2(t)f(t)}{W_{y_1y_2}(t)} dt, \qquad u_2(t) = \int rac{y_1(t)f(t)}{W_{y_1y_2}(t)} dt,$$

then a particular solution y_p to the non-homogeneous differential equation y'' + p(t) y' + q(t) y = f(t) is given by

$$y_p = u_1 y_1 + u_2 y_2.$$

Variation of parameters (2.6).

Proof: Summary: If u_1 and u_2 satisfy $\begin{cases} u'_1y_1 + u'_2y_2 = 0, \\ u'_1y'_1 + u'_2y'_2 = f, \end{cases}$ then $y_p = u_1y_1 + u_2y_2$ satisfies $L(y_p) = f$.

The equations above are simple to solve for u_1 and u_2 ,

$$u'_{2} = -\frac{y_{1}}{y_{2}} u'_{1} \quad \Rightarrow \quad u'_{1}y'_{1} - \frac{y_{1}y'_{2}}{y_{2}} u'_{1} = f \quad \Rightarrow \quad u'_{1}\Big(\frac{y'_{1}y_{2} - y_{1}y'_{2}}{y_{2}}\Big) = f.$$

Since $W_{y_1y_2} = y_1y_2' - y_1'y_2$, then $u_1' = -\frac{y_2f}{W_{y_1y_2}} \Rightarrow u_2' = \frac{y_1f}{W_{y_1y_2}}$.

Integrating in the variable t we obtain

$$u_1(t) = \int -\frac{y_2(t)f(t)}{W_{y_1y_2}(t)} dt, \qquad u_2(t) = \int \frac{y_1(t)f(t)}{W_{y_1y_2}(t)} dt,$$

This establishes the Theorem.

Variation of parameters (2.6).

Example

Find a particular solution to the differential equation

$$t^2y'' - 2y = 3t^2 - 1,$$

knowing that the functions $y_1 = t^2$ and $y_2 = 1/t$ are solutions to the homogeneous equation $t^2y'' - 2y = 0$.

Solution: First, write the equation in the form of the Theorem. That is, divide the whole equation by t^2 ,

$$y'' - \frac{2}{t^2}y = 3 - \frac{1}{t^2} \quad \Rightarrow \quad f(t) = 3 - \frac{1}{t^2}.$$

We know that $y_1 = t^2$ and $y_2 = 1/t$. Their Wronskian is

$$W_{y_1y_2}(t) = (t^2) \left(\frac{-1}{t^2} \right) - (2t) \left(\frac{1}{t} \right) \quad \Rightarrow \quad W_{y_1y_2}(t) = -3.$$

Variation of parameters (2.6).

Example

Find a particular solution to the differential equation

$$t^2y'' - 2y = 3t^2 - 1,$$

knowing that the functions $y_1 = t^2$ and $y_2 = 1/t$ are solutions to the homogeneous equation $t^2y'' - 2y = 0$.

Solution:
$$y_1 = t^2$$
, $y_2 = 1/t$, $f(t) = 3 - \frac{1}{t^2}$, $W_{y_1y_2}(t) = -3$.

We now compute y_1 and u_2 ,

$$u_1' = -\frac{1}{t} \left(3 - \frac{1}{t^2}\right) \frac{1}{-3} = \frac{1}{t} - \frac{1}{3} t^{-3} \quad \Rightarrow \quad u_1 = \ln(t) + \frac{1}{6} t^{-2},$$

$$u_2' = (t^2) \left(3 - \frac{1}{t^2}\right) \frac{1}{-3} = -t^2 + \frac{1}{3} \quad \Rightarrow \quad u_2 = -\frac{1}{3} t^3 + \frac{1}{3} t.$$

Variation of parameters (2.6).

Example

Find a particular solution to the differential equation

$$t^2y'' - 2y = 3t^2 - 1,$$

knowing that the functions $y_1 = t^2$ and $y_2 = 1/t$ are solutions to the homogeneous equation $t^2y'' - 2y = 0$.

Solution: The particular solution $\tilde{y}_p = u_1 y_1 + u_2 y_2$ is $\tilde{y}_p = \left[\ln(t) + \frac{1}{6}t^{-2} \right] (t^2) + \frac{1}{3}(-t^3 + t)(t^{-1})$ $\tilde{y}_p = t^2 \ln(t) + \frac{1}{6} - \frac{1}{3}t^2 + \frac{1}{3} = t^2 \ln(t) + \frac{1}{2} - \frac{1}{3}t^2$ $\tilde{y}_p = t^2 \ln(t) + \frac{1}{2} - \frac{1}{3}y_1(t).$ A simpler expression is $y_p = t^2 \ln(t) + \frac{1}{2}$.

Variation of parameters (2.6).

Example

Find a particular solution to the differential equation

$$t^2y'' - 2y = 3t^2 - 1,$$

 \triangleleft

knowing that the functions $y_1 = t^2$ and $y_2 = 1/t$ are solutions to the homogeneous equation $t^2y'' - 2y = 0$.

Solution: If we do not remember the formulas for u_1 , u_2 , we can always solve the system

$$u'_{1}y_{1} + u'_{2}y_{2} = 0$$

$$u'_{1}y'_{1} + u'_{2}y'_{2} = f.$$

$$t^{2}u'_{1} + u'_{2}\frac{1}{t} = 0, \quad 2t u'_{1} + u'_{2}\frac{(-1)}{t^{2}} = 3 - \frac{1}{t^{2}}.$$

$$u'_{2} = -t^{3}u'_{1} \Rightarrow 2t u'_{1} + t u'_{1} = 3 - \frac{1}{t^{2}} \Rightarrow \begin{cases} u'_{1} = \frac{1}{t} - \frac{1}{3t^{3}} \\ u'_{2} = -t^{2} + \frac{1}{3} \end{cases}$$

Variation of parameters (2.6). Example Use the variation of parameters to find the general solution of $y'' + 4y' + 4y = x^{-2} e^{-2x}$. Solution: We find the solutions of the homogeneous equation, $r^2 + 4r + 4 = 0 \implies r_{\pm} = \frac{1}{2} \left[-4 \pm \sqrt{16 - 16} \right] \implies r_{\pm} = -2$. Fundamental solutions of the homogeneous equations are $y_1 = e^{-2x}, \quad y_2 = x e^{-2x}$. We now compute their Wronskian, $W = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} e^{-2x} & x e^{-2x} \\ -2e^{-2x} & (1 - 2x) e^{-2x} \end{vmatrix} = (1 - 2x) e^{-4x} + 2x e^{-4x}$. Hence $W = e^{-4x}$.

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$y'' + 4y' + 4y = x^{-2} e^{-2x}.$$

Solution: $y_1 = e^{-2x}$, $y_2 = x e^{-2x}$, $g = x^{-2} e^{-2x}$, $W = e^{-4x}$.

Now we find the functions u_1 and u_2 ,

$$u_1' = -\frac{y_2g}{W} = -\frac{x e^{-2x} x^{-2} e^{-2x}}{e^{-4x}} = -\frac{1}{x} \quad \Rightarrow \quad u_1 = -\ln|x|.$$
$$u_1' = \frac{y_1g}{W} = \frac{e^{-2x} x^{-2} e^{-2x}}{e^{-2x}} = x^{-2} \quad \Rightarrow \quad u_2 = -\frac{1}{2}$$

$$u'_{2} = \frac{y_{1g}}{W} = \frac{c - x - c - 2x}{e^{-4x}} = x^{-2} \Rightarrow u_{2} = -\frac{1}{x}.$$

 $y_p = u_1 y_1 + u_2 y_2 = -\ln|x| e^{-2x} - \frac{1}{x} x e^{-2x} = -(1 + \ln|x|) e^{-2x}.$

Since $\tilde{y}_p = -\ln|x| e^{-2x}$ is solution, $y = (c_1 + c_2 x - \ln|x|) e^{-2x}$.

Review for Exam 2.

- ▶ 5 problems.
- No multiple choice questions.
- ▶ No notes, no books, no calculators.
- Problems similar to homeworks.
- Exam covers:
 - ► Variation of parameters (2.6).
 - ► Undetermined coefficients (2.5).
 - ► Constant coefficients, homogeneous, (2.2)-(2.4).
 - ▶ Reduction order method, (2.4.2).
 - Second order variable coefficients, (2.1).
 - ▶ First order homogeneous (1.3.2).

Undetermined coefficients (2.5).

Guessing Solution Table.

$f_i(t)$ (K, m, a, b, given.)	$y_{p_i}(t)$ (Guess) (k not given.)
Ke ^{at}	<i>ke^{at}</i>
Kt ^m	$k_m t^m + k_{m-1} t^{m-1} + \cdots + k_0$
$K\cos(bt)$	$k_1\cos(bt) + k_2\sin(bt)$
K sin(bt)	$k_1\cos(bt) + k_2\sin(bt)$
Kt ^m e ^{at}	$e^{at}(k_mt^m+\cdots+k_0)$
$Ke^{at}\cos(bt)$	$e^{at}[k_1\cos(bt)+k_2\sin(bt)]$
$KKe^{at}\sin(bt)$	$e^{at}[k_1\cos(bt)+k_2\sin(bt)]$
$Kt^m \cos(bt)$	$(k_m t^m + \cdots + k_0) [a_1 \cos(bt) + a_2 \sin(bt)]$
$Kt^m \sin(bt)$	$(k_m t^m + \cdots + k_0) [a_1 \cos(bt) + a_2 \sin(bt)]$

Undetermined coefficients (2.5). Example Find all the solutions to the inhomogeneous equation $y'' - 3y' - 4y = 2\sin(t)$. Solution: We know that the general solution to homogeneous equation is $y(t) = c_1 e^{4t} + c_2 e^{-t}$. Following the table: Since $f = 2\sin(t)$, then we guess $y_p = k_1 \sin(t) + k_2 \cos(t)$. This guess satisfies $L(y_p) \neq 0$. Compute: $y'_p = k_1 \cos(t) - k_2 \sin(t)$, $y''_p = -k_1 \sin(t) - k_2 \cos(t)$. $L(y_p) = [-k_1 \sin(t) - k_2 \cos(t)] - 3[k_1 \cos(t) - k_2 \sin(t)]$ $-4[k_1 \sin(t) + k_2 \cos(t)] = 2\sin(t)$,

Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation

$$y^{\prime\prime}-3y^{\prime}-4y=2\sin(t).$$

Solution: Recall:

$$L(y_p) = [-k_1 \sin(t) - k_2 \cos(t)] - 3[k_1 \cos(t) - k_2 \sin(t)] - 4[k_1 \sin(t) + k_2 \cos(t)] = 2\sin(t),$$

 $(-5k_1+3k_2)\sin(t)+(-3k_1-5k_2)\cos(t)=2\sin(t).$

This equation holds for all $t \in \mathbb{R}$. In particular, at $t = \frac{\pi}{2}$, t = 0.

$$\begin{array}{c} -5k_1 + 3k_2 = 2, \\ -3k_1 - 5k_2 = 0, \end{array} \qquad \Rightarrow \quad \begin{cases} k_1 = -\frac{5}{17} \\ k_2 = \frac{3}{17}. \end{cases}$$

Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation

$$y^{\prime\prime}-3y^{\prime}-4y=2\sin(t).$$

Solution: Recall: $k_1 = -\frac{5}{17}$ and $k_2 = \frac{3}{17}$.

So the particular solution to the inhomogeneous equation is

$$y_p(t) = rac{1}{17} \left[-5\sin(t) + 3\cos(t)
ight].$$

The general solution is

$$y(t) = c_1 e^{4t} + c_2 e^{-t} + \frac{1}{17} \left[-5\sin(t) + 3\cos(t) \right].$$

 \triangleleft

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$y^{\prime\prime}+4y=3\sin(2x)+e^{3x}$$

Solution: Find the solutions of the homogeneous problem,

$$r^2 + 4 = 0 \implies r_{\pm} = \pm 2i.$$

 $y_1 = \cos(2x), \quad y_2 = \sin(2x).$

Start with the first source, $f_1(x) = 3\sin(2x)$. The function $\tilde{y}_{p_1} = k_1\sin(2x) + k_2\cos(2x)$ is the wrong guess, since it is solution of the homogeneous equation. We guess:

 $y_p = x \big[k_1 \sin(2x) + k_2 \cos(2x) \big].$

$$y'_{p} = [k_{1}\sin(2x) + k_{2}\cos(2x)] + 2x[k_{1}\cos(2x) - k_{2}\sin(2x)].$$

$$y''_{p} = 4[k_{1}\cos(2x) - k_{2}\sin(2x)] + 4x[-k_{1}\sin(2x) - k_{2}\cos(2x)]$$

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$y'' + 4y = 3\sin(2x) + e^{3x}.$$

Solution: Recall: $y_1 = \sin(2x)$, and $y_2 = \cos(2x)$.

$$4[k_1\cos(2x) - k_2\sin(2x)] + 4x[-k_1\sin(2x) - k_2\cos(2x)] + 4x[k_1\sin(2x) + k_2\cos(2x)] = 3\sin(2x),$$

Therefore, $4[k_1 \cos(2x) - k_2 \sin(2x)] = 3\sin(2x)$.

Evaluating at x = 0 and $x = \pi/4$ we get

$$4k_1 = 0, \quad -4k_2 = 3 \quad \Rightarrow \quad k_1 = 0, \quad k_2 = -\frac{3}{4}.$$

Therefore, $y_{p_1} = -\frac{3}{4} x \cos(2x).$

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$y'' + 4y = 3\sin(2x) + e^{3x}.$$

Solution: Recall: $y_{p_1} = -\frac{3}{4} x \cos(2x)$.

We now compute y_{p_2} for $f_2(x) = e^{3x}$.

We guess: $y_{p_2} = k e^{3x}$. Then, $y''_{p_2} = 9 e^{3x}$,

$$(9+4)ke^{3x}=e^{3x}$$
 \Rightarrow $k=\frac{1}{13}$ \Rightarrow $y_{p_2}=\frac{1}{13}e^{3x}.$

Therefore, the general solution is

$$y(x) = c_1 \sin(2x) + \left(c_2 - \frac{3}{4}x\right) \cos(2x) + \frac{1}{13}e^{3x}.$$

