Non-homogeneous equations (Sect. 2.5).

- ▶ We study: $y'' + a_1 y' + a_0 y = b(t)$.
- ▶ Operator notation and preliminary results.
- ▶ Summary of the undetermined coefficients method.
- Using the method in few examples.
- ▶ The guessing solution table.

Operator notation and preliminary results.

Notation: Given functions p, q, denote

$$L(y) = y'' + p(t)y' + q(t)y.$$

Therefore, the differential equation

$$y'' + p(t)y' + q(t)y = f(t)$$

can be written as

$$L(y) = f$$
.

The homogeneous equation can be written as

$$L(y)=0.$$

The function L acting on a function y is called an operator.

Operator notation and preliminary results.

Remark: The operator L is a linear function of y.

Theorem

For every continuously differentiable functions y_1 , y_2 : $(t_1, t_2) \to \mathbb{R}$ and every c_1 , $c_2 \in \mathbb{R}$ holds that

$$L(c_1y_1+c_2y_2)=c_1L(y_1)+c_2L(y_2).$$

Proof:

$$L(c_1y_1 + c_2y_2) = (c_1y_1 + c_2y_2)'' + p(t)(c_1y_1 + c_2y_2)' + q(t)(c_1y_1 + c_2y_2)$$

$$L(c_1y_1 + c_2y_2) = (c_1y_1'' + p(t)c_1y_1' + q(t)c_1y_1)$$

$$+ (c_2y_2'' + p(t)c_2y_2' + q(t)c_2y_2)$$

$$L(c_1y_1 + c_2y_2) = c_1L(y_1) + c_2L(y_2).$$

Operator notation and preliminary results.

Theorem

Given functions p, q, f, let L(y) = y'' + p(t)y' + q(t)y. If the functions y_1 and y_2 are fundamental solutions of the homogeneous equation

$$L(y)=0,$$

and y_p is any solution of the non-homogeneous equation

$$L(y_p) = f, (1)$$

then any other solution y of the non-homogeneous equation above is given by

$$y(t) = c_1 y_1(t) + c_2 y_2(t) + y_p(t),$$
 (2)

where c_1 , $c_2 \in \mathbb{R}$.

Notation: The expression for y in Eq. (2) is called the general solution of the non-homogeneous Eq. (1).

Operator notation and preliminary results.

Theorem

Given functions p, q, let L(y) = y'' + p(t)y' + q(t)y. If the function f can be written as $f(t) = f_1(t) + \cdots + f_n(t)$, with $n \ge 1$, and if there exist functions y_{p_1}, \cdots, y_{p_n} such that

$$L(y_{p_i}) = f_i, \qquad i = 1, \cdots, n,$$

then the function $y_p = y_{p_1} + \cdots + y_{p_n}$ satisfies the non-homogeneous equation

$$L(y_p)=f$$
.

Non-homogeneous equations (Sect. 2.5).

- ▶ We study: $y'' + a_1 y' + a_0 y = b(t)$.
- ▶ Operator notation and preliminary results.
- **▶** Summary of the undetermined coefficients method.
- Using the method in few examples.
- ▶ The guessing solution table.

Summary of the undetermined coefficients method.

Problem: Given a constant coefficients linear operator $L(y)=y''+a_1y'+a_0y$, with $a_1,\ a_2\in\mathbb{R}$, find every solution of the non-homogeneous differential equation

$$L(y) = f$$
.

Remarks:

- ► The undetermined coefficients is a method to find solutions to linear, non-homogeneous, constant coefficients, differential equations.
- ▶ It consists in guessing the solution y_p of the non-homogeneous equation

$$L(y_p) = f$$
,

for particularly simple source functions f.

Summary of the undetermined coefficients method.

Summary:

- (1) Find the general solution of the homogeneous equation $L(y_h) = 0$.
- (2) If f has the form $f = f_1 + \cdots + f_n$, with $n \ge 1$, then look for solutions y_{p_i} , with $i = 1, \dots, n$ to the equations

$$L(y_{p_i}) = f_i$$
.

Once the functions y_{p_i} are found, then construct

$$y_p=y_{p_1}+\cdots+y_{p_n}.$$

(3) Given the source functions f_i , guess the solutions functions y_{p_i} following the Table below.

Summary of the undetermined coefficients method.

Summary (cont.):

$f_i(t)$ (K, m, a, b, given.)	$y_{p_i}(t)$ (Guess) (k not given.)
Ke ^{at}	ke ^{at}
Kt ^m	$k_m t^m + k_{m-1} t^{m-1} + \cdots + k_0$
$K\cos(bt)$	$k_1\cos(bt)+k_2\sin(bt)$
$K\sin(bt)$	$k_1\cos(bt)+k_2\sin(bt)$
Kt ^m e ^{at}	$e^{at}(k_mt^m+\cdots+k_0)$
$Ke^{at}\cos(bt)$	$e^{at}\big[k_1\cos(bt)+k_2\sin(bt)\big]$
$KKe^{at}\sin(bt)$	$e^{at}\big[k_1\cos(bt)+k_2\sin(bt)\big]$
$Kt^m \cos(bt)$	$(k_m t^m + \cdots + k_0) [a_1 \cos(bt) + a_2 \sin(bt)]$
$Kt^m \sin(bt)$	$(k_m t^m + \cdots + k_0) [a_1 \cos(bt) + a_2 \sin(bt)]$

Summary of the undetermined coefficients method.

Summary (cont.):

(4) If any guessed function y_{p_i} satisfies the homogeneous equation $L(y_{p_i}) = 0$, then change the guess to the function

$$t^s y_{p_i}$$
, with $s \geqslant 1$,

and s sufficiently large such that $L(t^s y_{p_i}) \neq 0$.

- (5) Impose the equation $L(y_{p_i}) = f_i$ to find the undetermined constants k_1, \dots, k_m , for the appropriate m, given in the table above.
- (6) The general solution to the original differential equation L(y) = f is then given by

$$y(t) = y_h(t) + y_{p_1} + \cdots + y_{p_n}.$$

Non-homogeneous equations (Sect. 2.5).

- ▶ We study: $y'' + a_1 y' + a_0 y = b(t)$.
- ▶ Operator notation and preliminary results.
- ▶ Summary of the undetermined coefficients method.
- **▶** Using the method in few examples.
- ▶ The guessing solution table.

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$y'' - 3y' - 4y = 3e^{2t}.$$

Solution: Notice: L(y) = y'' - 3y' - 4y and $f(t) = 3e^{2t}$.

(1) Find all solutions y_h to the homogeneous equation $L(y_h) = 0$. The characteristic equation is

$$r^2-3r-4=0$$
 \Rightarrow
$$\begin{cases} r_1=4, \\ r_2=-1. \end{cases}$$

$$y_h(t) = c_1 e^{4t} + c_2 e^{-t}$$
.

- (2) Trivial in our case. The source function $f(t) = 3e^{2t}$ cannot be simplified into a sum of simpler functions.
- (3) Table says: For $f(t) = 3e^{2t}$ guess $y_p(t) = k e^{2t}$

Example

Find all solutions to the non-homogeneous equation

$$y'' - 3y' - 4y = 3e^{2t}.$$

Solution: Recall: $y_p(t) = k e^{2t}$. We need to find k.

(4) Trivial here, since $L(y_p) \neq 0$, we do not modify our guess.

(Recall: $L(y_h) = 0$ iff $y_h(t) = c_1 e^{4t} + c_2 e^{-t}$.)

(5) Introduce y_p into $L(y_p) = f$ and find k.

$$(2^2 - 6 - 4)ke^{2t} = 3e^{2t} \Rightarrow -6k = 3 \Rightarrow k = -\frac{1}{2}.$$

We have obtained that $y_p(t) = -\frac{1}{2} e^{2t}$.

(6) The general solution to the inhomogeneous equation is

$$y(t) = c_1 e^{4t} + c_2 e^{-t} - \frac{1}{2} e^{2t}.$$

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$y'' - 3y' - 4y = 3e^{4t}.$$

Solution: We know that the general solution to homogeneous equation is $y_h(t) = c_1 e^{4t} + c_2 e^{-t}$.

Following the table we guess y_p as $y_p = k e^{4t}$.

However, this guess satisfies $L(y_p) = 0$.

So we modify the guess to $y_p = kt e^{4t}$.

Introduce the guess into $L(y_p) = f$. We need to compute

$$y_p' = k e^{4t} + 4kt e^{4t}, \qquad y_p'' = 8k e^{4t} + 16kt e^{4t}.$$

Example

Find all solutions to the non-homogeneous equation

$$y'' - 3y' - 4y = 3e^{4t}.$$

Solution: Recall:

$$y_p = kt e^{4t}, \quad y_p' = k e^{4t} + 4kt e^{4t}, \quad y_p'' = 8k e^{4t} + 16kt e^{4t}.$$
$$\left[(8k + 16kt) - 3(k + 4kt) - 4kt \right] e^{4t} = 3e^{4t}.$$
$$\left[(8 + 16t) - 3(1 + 4t) - 4t \right] k = 3 \quad \Rightarrow \quad \left[5 + (16 - 12 - 4) t \right] k = 3$$

We obtain that $k = \frac{3}{5}$. Therefore, $y_p(t) = \frac{3}{5} t e^{4t}$, and

$$y(t) = c_1 e^{4t} + c_2 e^{-t} + \frac{3}{5} t e^{4t}.$$

Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

$$y'' - 3y' - 4y = 2\sin(t).$$

Solution: We know that the general solution to homogeneous equation is $y(t) = c_1 e^{4t} + c_2 e^{-t}$.

Following the table: Since $f = 2\sin(t)$, then we guess

$$y_p = k_1 \sin(t) + k_2 \cos(t).$$

This guess satisfies $L(y_p) \neq 0$.

Compute: $y_p' = k_1 \cos(t) - k_2 \sin(t)$, $y_p'' = -k_1 \sin(t) - k_2 \cos(t)$.

$$L(y_p) = [-k_1 \sin(t) - k_2 \cos(t)] - 3[k_1 \cos(t) - k_2 \sin(t)]$$
$$-4[k_1 \sin(t) + k_2 \cos(t)] = 2\sin(t),$$

Example

Find all the solutions to the inhomogeneous equation

$$y'' - 3y' - 4y = 2\sin(t).$$

Solution: Recall:

$$L(y_p) = [-k_1 \sin(t) - k_2 \cos(t)] - 3[k_1 \cos(t) - k_2 \sin(t)]$$
$$-4[k_1 \sin(t) + k_2 \cos(t)] = 2\sin(t),$$

$$(-5k_1+3k_2)\sin(t)+(-3k_1-5k_2)\cos(t)=2\sin(t).$$

This equation holds for all $t \in \mathbb{R}$. In particular, at $t = \frac{\pi}{2}$, t = 0.

$$\begin{cases}
-5k_1 + 3k_2 = 2, \\
-3k_1 - 5k_2 = 0,
\end{cases} \Rightarrow \begin{cases}
k_1 = -\frac{5}{17}, \\
k_2 = \frac{3}{17}.
\end{cases}$$

Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

$$y'' - 3y' - 4y = 2\sin(t).$$

Solution: Recall: $k_1 = -\frac{5}{17}$ and $k_2 = \frac{3}{17}$.

So the particular solution to the inhomogeneous equation is

$$y_p(t) = \frac{1}{17} \left[-5\sin(t) + 3\cos(t) \right].$$

The general solution is

$$y(t) = c_1 e^{4t} + c_2 e^{-t} + \frac{1}{17} \left[-5\sin(t) + 3\cos(t) \right].$$

Example

Find all the solutions to the inhomogeneous equation

$$y'' - 3y' - 4y = 3e^{2t} + 2\sin(t).$$

Solution: We know that the general solution y is given by

$$y(t) = y_h(t) + y_{p_1}(t) + y_{p_2}(t),$$

where $y_h(t)=c_1e^{4t}+c_2e^{2t}$, $L(y_{p_1})=3e^{2t}$, and $L(y_{p_2})=2\sin(t)$. We have just found out that

$$y_p(t) = -\frac{1}{2}e^{2t}, \qquad y_{p_2}(t) = \frac{1}{17}\left[-5\sin(t) + 3\cos(t)\right].$$

We conclude that

$$y(t) = c_1 e^{4t} + c_2 e^{2t} - \frac{1}{2} e^{2t} + \frac{1}{17} \left[-5\sin(t) + 3\cos(t) \right].$$

Using the method in few examples.

Example

► For
$$y'' - 3y' - 4y = 3e^{2t}\sin(t)$$
, guess $y_p(t) = [k_1\sin(t) + k_2\cos(t)]e^{2t}$.

For
$$y'' - 3y' - 4y = 2t^2 e^{3t}$$
, guess
$$y_p(t) = (k_0 + k_1 t + k_2 t^2) e^{3t}.$$

► For
$$y'' - 3y' - 4y = 3t \sin(t)$$
, guess
$$y_p(t) = (1 + k_1 t) [k_2 \sin(t) + k_3 \cos(t)].$$

Non-homogeneous equations (Sect. 2.5).

- We study: $y'' + a_1 y' + a_0 y = b(t)$.
- ▶ Operator notation and preliminary results.
- ▶ Summary of the undetermined coefficients method.
- ▶ Using the method in few examples.
- ► The guessing solution table.

The guessing solution table.

Guessing Solution Table.

$f_i(t)$ (K, m, a, b, given.)	$y_{p_i}(t)$ (Guess) (k not given.)
Ke ^{at}	ke ^{at}
Kt ^m	$k_m t^m + k_{m-1} t^{m-1} + \cdots + k_0$
$K\cos(bt)$	$k_1\cos(bt)+k_2\sin(bt)$
$K\sin(bt)$	$k_1\cos(bt)+k_2\sin(bt)$
Kt ^m e ^{at}	$e^{at}(k_mt^m+\cdots+k_0)$
$Ke^{at}\cos(bt)$	$e^{at}\big[k_1\cos(bt)+k_2\sin(bt)\big]$
$KKe^{at}\sin(bt)$	$e^{at}\big[k_1\cos(bt)+k_2\sin(bt)\big]$
$Kt^m \cos(bt)$	$(k_m t^m + \cdots + k_0) [a_1 \cos(bt) + a_2 \sin(bt)]$
$Kt^m \sin(bt)$	$(k_m t^m + \cdots + k_0) [a_1 \cos(bt) + a_2 \sin(bt)]$