Second order linear homogeneous ODE (Sect. 2.3).

- Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.
- Characteristic polynomial with complex roots.
- Two main sets of fundamental solutions.
- Review of Complex numbers.
- A real-valued fundamental and general solutions.
- Application: The RLC circuit.

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.
Theorem (Constant coefficients)
Given real constants a_{1}, a_{0}, consider the homogeneous, linear differential equation on the unknown $y: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

Let r_{+}, r_{-}be the roots of the characteristic polynomial $p(r)=r^{2}+a_{1} r+a_{0}$, and let c_{0}, c_{1} be arbitrary constants. Then, the general solution y of the differential equation is given by
(a) If $r_{+} \neq r_{-}$, real or complex, then $y(t)=c_{1} e^{r_{+} t}+c_{2} e^{r_{-} t}$.
(b) If $r_{+}=r_{-}=\hat{r} \in \mathbb{R}$, then $y(t)=c_{1} e^{\hat{\imath} t}+c_{2} t e^{\hat{r} t}$.

Furthermore, given real constants t_{0}, y_{1} and y_{2}, there is a unique solution to the initial value problem

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0, \quad y\left(t_{0}\right)=y_{1}, \quad y^{\prime}\left(t_{0}\right)=y_{2} .
$$

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Example

Find the general solution of the equation $y^{\prime \prime}-y^{\prime}-6 y=0$.
Solution: Since solutions have the form $e^{r t}$, we need to find the roots of the characteristic polynomial $p(r)=r^{2}-r-6$, that is,

$$
r_{ \pm}=\frac{1}{2}(1 \pm \sqrt{1+24})=\frac{1}{2}(1 \pm 5) \quad \Rightarrow \quad r_{+}=3, \quad r_{-}=-2 .
$$

So, $r_{ \pm}$are real-valued. A fundamental solution set is formed by

$$
y_{1}(t)=e^{3 t}, \quad y_{2}(t)=e^{-2 t} .
$$

The general solution of the differential equations is an arbitrary linear combination of the fundamental solutions, that is,

$$
y(t)=c_{1} e^{3 t}+c_{2} e^{-2 t}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

Remark: Since $c_{1}, c_{2} \in \mathbb{R}$, then y is real-valued.

Second order linear homogeneous ODE (Sect. 2.3).

- Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.
- Characteristic polynomial with complex roots.
- Two main sets of fundamental solutions.
- Review of Complex numbers.
- A real-valued fundamental and general solutions.
- Application: The RLC circuit.

Two main sets of fundamental solutions.

Example

Find the general solution of the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.
Solution: We first find the roots of the characteristic polynomial,

$$
r^{2}-2 r+6=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}(2 \pm \sqrt{4-24}) \quad \Rightarrow \quad r_{ \pm}=1 \pm i \sqrt{5}
$$

A fundamental solution set is

$$
\tilde{y}_{1}(t)=e^{(1+i \sqrt{5}) t}, \quad \tilde{y}_{2}(t)=e^{(1-i \sqrt{5}) t}
$$

These are complex-valued functions. The general solution is

$$
y(t)=\tilde{c}_{1} e^{(1+i \sqrt{5}) t}+\tilde{c}_{2} e^{(1-i \sqrt{5}) t}, \quad \tilde{c}_{1}, \tilde{c}_{2} \in \mathbb{C}
$$

Two main sets of fundamental solutions.

Remark:

- The solutions found above include real-valued and complex-valued solutions.
- Since the differential equation is real-valued, it is usually important in applications to obtain the most general real-valued solution. (See RLC circuit below.)
- In the expression above it is difficult to take apart real-valued solutions from complex-valued solutions.
- In other words: It is not simple to see what values of \tilde{c}_{1} and \tilde{c}_{2} make the general solution above to be real-valued.
- One way to find the real-valued general solution is to find real-valued fundamental solutions.

Second order linear homogeneous ODE (Sect. 2.3).

- Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.
- Characteristic polynomial with complex roots.
- Two main sets of fundamental solutions.
- Review of Complex numbers.
- A real-valued fundamental and general solutions.
- Application: The RLC circuit.

Review of complex numbers.

- Complex numbers have the form $z=a+i b$, where $i^{2}=-1$.
- The complex conjugate of z is the number $\bar{z}=a-i b$.
- $\operatorname{Re}(z)=a, \operatorname{Im}(z)=b$ are the real and imaginary parts of z
- Hence: $\operatorname{Re}(z)=\frac{z+\bar{z}}{2}$ and $\operatorname{Im}(z)=\frac{z-\bar{z}}{2 i}$
- $e^{a+i b}=\sum_{n=0}^{\infty} \frac{(a+i b)^{n}}{n!}$. In particular holds $e^{a+i b}=e^{a} e^{i b}$.
- Euler's formula: $e^{i b}=\cos (b)+i \sin (b)$.
- Hence, a complex number of the form $e^{a+i b}$ can be written as

$$
e^{a+i b}=e^{a}[\cos (b)+i \sin (b)], \quad e^{a-i b}=e^{a}[\cos (b)-i \sin (b)] .
$$

- From $e^{a+i b}$ and $e^{a-i b}$ we get the real numbers

$$
\frac{1}{2}\left(e^{a+i b}+e^{a-i b}\right)=e^{a} \cos (b), \quad \frac{1}{2 i}\left(e^{a+i b}-e^{a-i b}\right)=e^{a} \sin (b) .
$$

Two main sets of fundamental solutions.

Theorem (Complex roots)
If the constants $a_{1}, a_{0} \in \mathbb{R}$ satisfy that $a_{1}^{2}-4 a_{0}<0$, then the characteristic polynomial $p(r)=r^{2}+a_{1} r+a_{0}$ of the equation

$$
\begin{equation*}
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0 \tag{1}
\end{equation*}
$$

has complex roots $r_{+}=\alpha+i \beta$ and $r_{-}=\alpha-i \beta$, where

$$
\alpha=-\frac{a_{1}}{2}, \quad \beta=\frac{1}{2} \sqrt{4 a_{0}-a_{1}^{2}} .
$$

Furthermore, a fundamental set of solutions to Eq. (1) is

$$
\tilde{y}_{1}(t)=e^{(\alpha+i \beta) t}, \quad \tilde{y}_{2}(t)=e^{(\alpha-i \beta) t}
$$

while another fundamental set of solutions to Eq. (1) is

$$
y_{1}(t)=e^{\alpha t} \cos (\beta t), \quad y_{2}(t)=e^{\alpha t} \sin (\beta t)
$$

Review of complex numbers.

Idea of the Proof: Recall that the functions

$$
\tilde{y}_{1}(t)=e^{(\alpha+i \beta) t}, \quad \tilde{y}_{2}(t)=e^{(\alpha-i \beta) t}
$$

are solutions to $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$. Also recall that

$$
\tilde{y}_{1}(t)=e^{\alpha t}[\cos (\beta t)+i \sin (\beta t)], \quad \tilde{y}_{2}(t)=e^{\alpha t}[\cos (\beta t)-i \sin (\beta t)] .
$$

Then the functions

$$
y_{1}(t)=\frac{1}{2}\left(\tilde{y}_{1}(t)+\tilde{y}_{2}(t)\right) \quad y_{2}(t)=\frac{1}{2 i}\left(\tilde{y}_{1}(t)-\tilde{y}_{2}(t)\right)
$$

are also solutions to the same differential equation. We conclude that y_{1} and y_{2} are real valued and

$$
y_{1}(t)=e^{\alpha t} \cos (\beta t), \quad y_{2}(t)=e^{\alpha t} \sin (\beta t)
$$

Second order linear homogeneous ODE (Sect. 2.3).

- Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.
- Characteristic polynomial with complex roots.
- Two main sets of fundamental solutions.
- Review of Complex numbers.
- A real-valued fundamental and general solutions.
- Application: The RLC circuit.

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

$$
y^{\prime \prime}-2 y^{\prime}+6 y=0
$$

Solution: Recall: Complex valued solutions are

$$
\tilde{y}_{1}(t)=e^{(1+i \sqrt{5}) t}, \quad \tilde{y}_{2}(t)=e^{(1-i \sqrt{5}) t}
$$

Any linear combination of these functions is solution of the differential equation. In particular,

$$
y_{1}(t)=\frac{1}{2}\left[\tilde{y}_{1}(t)+\tilde{y}_{2}(t)\right], \quad y_{2}(t)=\frac{1}{2 i}\left[\tilde{y}_{1}(t)-\tilde{y}_{2}(t)\right] .
$$

Now, recalling $e^{(1 \pm i \sqrt{5}) t}=e^{t} e^{ \pm i \sqrt{5} t}$
$y_{1}(t)=\frac{1}{2}\left[e^{t} e^{i \sqrt{5} t}+e^{t} e^{-i \sqrt{5} t}\right], \quad y_{2}(t)=\frac{1}{2 i}\left[e^{t} e^{i \sqrt{5} t}-e^{t} e^{-i \sqrt{5} t}\right]$,

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

$$
y^{\prime \prime}-2 y^{\prime}+6 y=0
$$

Solution: $y_{1}=\frac{e^{t}}{2}\left[e^{i \sqrt{5} t}+e^{-i \sqrt{5} t}\right], \quad y_{2}=\frac{e^{t}}{2 i}\left[e^{i \sqrt{5} t}-e^{-i \sqrt{5} t}\right]$.
The Euler formula and its complex-conjugate formula

$$
\begin{aligned}
e^{i \sqrt{5} t} & =[\cos (\sqrt{5} t)+i \sin (\sqrt{5} t)] \\
e^{-i \sqrt{5} t} & =[\cos (\sqrt{5} t)-i \sin (\sqrt{5} t)]
\end{aligned}
$$

imply the inverse relations

$$
e^{i \sqrt{5} t}+e^{-i \sqrt{5} t}=2 \cos (\sqrt{5} t), \quad e^{i \sqrt{5} t}-e^{-i \sqrt{5} t}=2 i \sin (\sqrt{5} t)
$$

So functions y_{1} and y_{2} can be written as

$$
y_{1}(t)=e^{t} \cos (\sqrt{5} t), \quad y_{2}(t)=e^{t} \sin (\sqrt{5} t)
$$

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

$$
y^{\prime \prime}-2 y^{\prime}+6 y=0
$$

Solution: Recall: $y(t)=\tilde{c}_{1} e^{(1+i \sqrt{5}) t}+\tilde{c}_{2} e^{(1-i \sqrt{5}) t}, \tilde{c}_{1}, \tilde{c}_{2} \in \mathbb{C}$.
The calculation above says that a real-valued fundamental set is

$$
y_{1}(t)=e^{t} \cos (\sqrt{5} t), \quad y_{2}(t)=e^{t} \sin (\sqrt{5} t)
$$

Hence, the complex-valued general solution can also be written as

$$
y(t)=\left[c_{1} \cos (\sqrt{5} t)+c_{2} \sin (\sqrt{5} t)\right] e^{t}, \quad c_{1}, c_{2} \in \mathbb{C}
$$

The real-valued general solution is simple to obtain:

$$
y(t)=\left[c_{1} \cos (\sqrt{5} t)+c_{2} \sin (\sqrt{5} t)\right] e^{t}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

We just restricted the coefficients c_{1}, c_{2} to be real-valued.

A real-valued fundamental and general solutions.

Example

Show that $y_{1}(t)=e^{t} \cos (\sqrt{5} t)$ and $y_{2}(t)=e^{t} \sin (\sqrt{5} t)$ are fundamental solutions to the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.

Solution: $y_{1}(t)=e^{t} \cos (\sqrt{5} t), \quad y_{2}(t)=e^{t} \sin (\sqrt{5} t)$.

Summary:

- These functions are solutions of the differential equation.
- They are not proportional to each other, Hence li.
- Therefore, y_{1}, y_{2} form a fundamental set.
- The general solution of the equation is

$$
y(t)=\left[c_{1} \cos (\sqrt{5} t)+c_{2} \sin (\sqrt{5} t)\right] e^{t} .
$$

- y is real-valued for $c_{1}, c_{2} \in \mathbb{R}$.
- y is complex-valued for $c_{1}, c_{2} \in \mathbb{C}$.

A real-valued fundamental and general solutions.

Example

Find real-valued fundamental solutions to the equation

$$
y^{\prime \prime}+2 y^{\prime}+6 y=0
$$

Solution:

The roots of the characteristic polynomial $p(r)=r^{2}+2 r+6$ are

$$
r_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4-24}]=\frac{1}{2}[-2 \pm \sqrt{-20}] \Rightarrow r_{ \pm}=-1 \pm i \sqrt{5} .
$$

These are complex-valued roots, with

$$
\alpha=-1, \quad \beta=\sqrt{5} .
$$

Real-valued fundamental solutions are

$$
y_{1}(t)=e^{-t} \cos (\sqrt{5} t), \quad y_{2}(t)=e^{-t} \sin (\sqrt{5} t)
$$

A real-valued fundamental and general solutions.

Example

Find real-valued fundamental solutions to the equation

$$
y^{\prime \prime}+2 y^{\prime}+6 y=0
$$

Solution: $y_{1}(t)=e^{-t} \cos (\sqrt{5} t), \quad y_{2}(t)=e^{-t} \sin (\sqrt{5} t)$.

Differential equations like the one in this example describe physical processes related to damped oscillations. For example pendulums with friction.

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of $y^{\prime \prime}+5 y=0$.
Solution: The characteristic polynomial is $p(r)=r^{2}+5$.
Its roots are $r_{ \pm}= \pm \sqrt{5} i$. This is the case $\alpha=0$, and $\beta=\sqrt{5}$.
Real-valued fundamental solutions are

$$
y_{1}(t)=\cos (\sqrt{5} t), \quad y_{2}(t)=\sin (\sqrt{5} t)
$$

The real-valued general solution is

$$
y(t)=c_{1} \cos (\sqrt{5} t)+c_{2} \sin (\sqrt{5} t), \quad c_{1}, c_{2} \in \mathbb{R}
$$

Remark: Equations like the one in this example describe oscillatory physical processes without dissipation, $\alpha=0$.

Second order linear homogeneous ODE (Sect. 2.3).

- Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.
- Characteristic polynomial with complex roots.
- Two main sets of fundamental solutions.
- Review of Complex numbers.
- A real-valued fundamental and general solutions.
- Application: The RLC circuit.

Application: The RLC circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

I (t) : electric current.

The electric current flowing in such circuit satisfies:

$$
L I^{\prime}(t)+R I(t)+\frac{1}{C} \int_{t_{0}}^{t} I(s) d s=0 .
$$

Derivate both sides above: $L I^{\prime \prime}(t)+R I^{\prime}(t)+\frac{1}{C} I(t)=0$.
Divide by $L: \quad I^{\prime \prime}(t)+2\left(\frac{R}{2 L}\right) I^{\prime}(t)+\frac{1}{L C} I(t)=0$.
Introduce $\alpha=\frac{R}{2 L}$ and $\omega=\frac{1}{\sqrt{L C}}$, then $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$.

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r)=r^{2}+2 \alpha r+\omega^{2}$. The roots are:

$$
r_{ \pm}=\frac{1}{2}\left[-2 \alpha \pm \sqrt{4 \alpha^{2}-4 \omega^{2}}\right] \quad \Rightarrow \quad r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}
$$

Case (a) $R=0$. This implies $\alpha=0$, so $r_{ \pm}= \pm i \omega$. Therefore,

$$
I_{1}(t)=\cos (\omega t), \quad I_{2}(t)=\sin (\omega t)
$$

Remark: When the circuit has no resistance, the current oscillates without dissipation.

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: Recall: $r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}$.
Case (b) $R<\sqrt{4 L / C}$. This implies

$$
R^{2}<\frac{4 L}{C} \Leftrightarrow \frac{R^{2}}{4 L^{2}}<\frac{1}{L C} \quad \Leftrightarrow \quad \alpha^{2}<\omega^{2}
$$

Therefore, $r_{ \pm}=-\alpha \pm i \sqrt{\omega^{2}-\alpha^{2}}$. The fundamental solutions are

$$
I_{1}(t)=e^{-\alpha t} \cos \left(\sqrt{\omega^{2}-\alpha^{2}} t\right), \quad I_{2}(t)=e^{-\alpha t} \sin \left(\sqrt{\omega^{2}-\alpha^{2}} t\right) .
$$

The resistance R damps the current oscillations.

