

Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.

Theorem (Constant coefficients)

Given real constants a_1 , a_0 , consider the homogeneous, linear differential equation on the unknown $y : \mathbb{R} \to \mathbb{R}$ given by

 $y'' + a_1 y' + a_0 y = 0.$

Let r_+ , r_- be the roots of the characteristic polynomial $p(r) = r^2 + a_1r + a_0$, and let c_0 , c_1 be arbitrary constants. Then, the general solution y of the differential equation is given by

(a) If $r_+ \neq r_-$, real or complex, then $y(t) = c_1 e^{r_+ t} + c_2 e^{r_- t}$.

(b) If
$$r_{+} = r_{-} = \hat{r} \in \mathbb{R}$$
, then $y(t) = c_{1} e^{\hat{r}t} + c_{2} t e^{\hat{r}t}$

Furthermore, given real constants t_0 , y_1 and y_2 , there is a unique solution to the initial value problem

 $y'' + a_1 y' + a_0 y = 0,$ $y(t_0) = y_1,$ $y'(t_0) = y_2.$

Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.

Example

Find the general solution of the equation y'' - y' - 6y = 0.

Solution: Since solutions have the form e^{rt} , we need to find the roots of the characteristic polynomial $p(r) = r^2 - r - 6$, that is,

$$r_{\pm} = \frac{1}{2} \left(1 \pm \sqrt{1+24} \right) = \frac{1}{2} (1 \pm 5) \quad \Rightarrow \quad r_{+} = 3, \quad r_{-} = -2.$$

So, r_{\pm} are real-valued. A fundamental solution set is formed by

$$y_1(t) = e^{3t}, \qquad y_2(t) = e^{-2t}.$$

The general solution of the differential equations is an arbitrary linear combination of the fundamental solutions, that is,

$$y(t)=c_1e^{3t}+c_2e^{-2t}, \qquad c_1, c_2\in\mathbb{R}.$$

Remark: Since $c_1, c_2 \in \mathbb{R}$, then y is real-valued.

Two main sets of fundamental solutions.

Example

Find the general solution of the equation y'' - 2y' + 6y = 0.

Solution: We first find the roots of the characteristic polynomial,

$$r^2-2r+6=0$$
 \Rightarrow $r_{\pm}=rac{1}{2}\left(2\pm\sqrt{4-24}
ight)$ \Rightarrow $r_{\pm}=1\pm i\sqrt{5}.$

A fundamental solution set is

$$\tilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \qquad \tilde{y}_2(t) = e^{(1-i\sqrt{5})t}.$$

These are complex-valued functions. The general solution is

$$y(t) = \tilde{c}_1 e^{(1+i\sqrt{5})t} + \tilde{c}_2 e^{(1-i\sqrt{5})t}, \qquad \tilde{c}_1, \tilde{c}_2 \in \mathbb{C}.$$

Two main sets of fundamental solutions.

Remark:

- The solutions found above include real-valued and complex-valued solutions.
- Since the differential equation is real-valued, it is usually important in applications to obtain the most general real-valued solution. (See RLC circuit below.)
- In the expression above it is difficult to take apart real-valued solutions from complex-valued solutions.
- In other words: It is not simple to see what values of c₁ and c₂ make the general solution above to be real-valued.
- One way to find the real-valued general solution is to find real-valued fundamental solutions.

Review of complex numbers.

- Complex numbers have the form z = a + ib, where $i^2 = -1$.
- The complex conjugate of z is the number $\overline{z} = a ib$.
- $\operatorname{Re}(z) = a$, $\operatorname{Im}(z) = b$ are the real and imaginary parts of z
- Hence: $\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$ and $\operatorname{Im}(z) = \frac{z \overline{z}}{2i}$
- $e^{a+ib} = \sum_{n=0}^{\infty} \frac{(a+ib)^n}{n!}$. In particular holds $e^{a+ib} = e^a e^{ib}$.
- Euler's formula: $e^{ib} = \cos(b) + i\sin(b)$.
- Hence, a complex number of the form e^{a+ib} can be written as $e^{a+ib} = e^a [\cos(b) + i \sin(b)], \quad e^{a-ib} = e^a [\cos(b) i \sin(b)].$
- From e^{a+ib} and e^{a-ib} we get the real numbers

$$\frac{1}{2}(e^{a+ib}+e^{a-ib})=e^{a}\cos(b), \quad \frac{1}{2i}(e^{a+ib}-e^{a-ib})=e^{a}\sin(b).$$

Two main sets of fundamental solutions.

Theorem (Complex roots)

If the constants a_1 , $a_0 \in \mathbb{R}$ satisfy that $a_1^2 - 4a_0 < 0$, then the characteristic polynomial $p(r) = r^2 + a_1r + a_0$ of the equation

 $y'' + a_1 y' + a_0 y = 0 \tag{1}$

has complex roots $r_{+} = \alpha + i\beta$ and $r_{-} = \alpha - i\beta$, where

$$\alpha = -\frac{a_1}{2}, \qquad \beta = \frac{1}{2}\sqrt{4a_0 - a_1^2}.$$

Furthermore, a fundamental set of solutions to Eq. (1) is

$$\tilde{y}_1(t) = e^{(\alpha+i\beta)t}, \qquad \tilde{y}_2(t) = e^{(\alpha-i\beta)t},$$

while another fundamental set of solutions to Eq. (1) is

$$y_1(t) = e^{\alpha t} \cos(\beta t), \qquad y_2(t) = e^{\alpha t} \sin(\beta t).$$

Review of complex numbers.

Idea of the Proof: Recall that the functions

$$\widetilde{y}_1(t)=e^{(lpha+ieta)t},\qquad \widetilde{y}_2(t)=e^{(lpha-ieta)t},$$

are solutions to $y'' + a_1 y' + a_0 y = 0$. Also recall that

$$\tilde{y}_1(t) = e^{\alpha t} \big[\cos(\beta t) + i \sin(\beta t) \big], \quad \tilde{y}_2(t) = e^{\alpha t} \big[\cos(\beta t) - i \sin(\beta t) \big].$$

Then the functions

$$y_1(t) = rac{1}{2} ig(ilde y_1(t) + ilde y_2(t) ig) \qquad y_2(t) = rac{1}{2i} ig(ilde y_1(t) - ilde y_2(t) ig)$$

are also solutions to the same differential equation. We conclude that y_1 and y_2 are real valued and

$$y_1(t) = e^{\alpha t} \cos(\beta t), \qquad y_2(t) = e^{\alpha t} \sin(\beta t).$$

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

$$y'' - 2y' + 6y = 0.$$

Solution: Recall: Complex valued solutions are

$$ilde{y}_1(t) = e^{(1+i\sqrt{5})\,t}, \qquad ilde{y}_2(t) = e^{(1-i\sqrt{5})\,t}.$$

Any linear combination of these functions is solution of the differential equation. In particular,

$$y_1(t) = rac{1}{2}ig[ilde{y}_1(t) + ilde{y}_2(t)ig], \quad y_2(t) = rac{1}{2i}ig[ilde{y}_1(t) - ilde{y}_2(t)ig].$$

Now, recalling $e^{(1\pm i\sqrt{5})t} = e^t e^{\pm i\sqrt{5}t}$

$$y_1(t) = \frac{1}{2} \left[e^t e^{i\sqrt{5}t} + e^t e^{-i\sqrt{5}t} \right], \quad y_2(t) = \frac{1}{2i} \left[e^t e^{i\sqrt{5}t} - e^t e^{-i\sqrt{5}t} \right],$$

A real-valued fundamental and general solutions. Example Find the real-valued general solution of the equation y'' - 2y' + 6y = 0.Solution: $y_1 = \frac{e^t}{2} \left[e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} \right], \quad y_2 = \frac{e^t}{2i} \left[e^{i\sqrt{5}t} - e^{-i\sqrt{5}t} \right].$ The Euler formula and its complex-conjugate formula $e^{i\sqrt{5}t} = \left[\cos(\sqrt{5}t) + i\sin(\sqrt{5}t) \right],$ $e^{-i\sqrt{5}t} = \left[\cos(\sqrt{5}t) - i\sin(\sqrt{5}t) \right],$ imply the inverse relations $e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} = 2\cos(\sqrt{5}t), \quad e^{i\sqrt{5}t} - e^{-i\sqrt{5}t} = 2i\sin(\sqrt{5}t).$ So functions y_1 and y_2 can be written as $y_1(t) = e^t \cos(\sqrt{5}t), \quad y_2(t) = e^t \sin(\sqrt{5}t).$

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

$$y^{\prime\prime}-2y^{\prime}+6y=0.$$

Solution: Recall: $y(t) = \tilde{c}_1 e^{(1+i\sqrt{5})t} + \tilde{c}_2 e^{(1-i\sqrt{5})t}$, $\tilde{c}_1, \tilde{c}_2 \in \mathbb{C}$.

The calculation above says that a real-valued fundamental set is

$$y_1(t) = e^t \cos(\sqrt{5} t), \qquad y_2(t) = e^t \sin(\sqrt{5} t),$$

Hence, the complex-valued general solution can also be written as

$$y(t) = \left[c_1\cos(\sqrt{5}t) + c_2\sin(\sqrt{5}t)\right]e^t, \qquad c_1, c_2 \in \mathbb{C}.$$

The real-valued general solution is simple to obtain:

$$y(t) = \left[c_1 \cos(\sqrt{5} t) + c_2 \sin(\sqrt{5} t)\right] e^t, \qquad c_1, c_2 \in \mathbb{R}.$$

 \triangleleft

We just restricted the coefficients c_1 , c_2 to be real-valued.

A real-valued fundamental and general solutions.

Example

Show that $y_1(t) = e^t \cos(\sqrt{5}t)$ and $y_2(t) = e^t \sin(\sqrt{5}t)$ are fundamental solutions to the equation y'' - 2y' + 6y = 0.

Solution: $y_1(t) = e^t \cos(\sqrt{5} t), \ y_2(t) = e^t \sin(\sqrt{5} t).$

Summary:

- ▶ These functions are solutions of the differential equation.
- ▶ They are not proportional to each other, Hence li.
- Therefore, y_1 , y_2 form a fundamental set.
- ► The general solution of the equation is

 $y(t) = \left[c_1 \cos(\sqrt{5}t) + c_2 \sin(\sqrt{5}t)\right] e^t.$

- y is real-valued for c_1 , $c_2 \in \mathbb{R}$.
- y is complex-valued for c_1 , $c_2 \in \mathbb{C}$.

A real-valued fundamental and general solutions.

Example

Find real-valued fundamental solutions to the equation

$$y'' + 2y' + 6y = 0.$$

Solution:

The roots of the characteristic polynomial $p(r) = r^2 + 2r + 6$ are

$$r_{\pm} = \frac{1}{2} \left[-2 \pm \sqrt{4 - 24} \right] = \frac{1}{2} \left[-2 \pm \sqrt{-20} \right] \implies r_{\pm} = -1 \pm i\sqrt{5}.$$

These are complex-valued roots, with

$$\alpha = -1, \qquad \beta = \sqrt{5}.$$

Real-valued fundamental solutions are

$$y_1(t) = e^{-t} \cos(\sqrt{5} t), \qquad y_2(t) = e^{-t} \sin(\sqrt{5} t).$$

A real-valued fundamental and general solutions. Example Find real-valued fundamental solutions to the equation y'' + 2y' + 6y = 0. Solution: $y_1(t) = e^{-t} \cos(\sqrt{5}t), \quad y_2(t) = e^{-t} \sin(\sqrt{5}t)$. y_1^{-1} Differential equations like the one in this example describe physical processes related to damped oscillations. For example pendulums with friction.

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of y'' + 5y = 0. Solution: The characteristic polynomial is $p(r) = r^2 + 5$. Its roots are $r_{\pm} = \pm \sqrt{5}i$. This is the case $\alpha = 0$, and $\beta = \sqrt{5}$. Real-valued fundamental solutions are

$$y_1(t) = \cos(\sqrt{5} t), \qquad y_2(t) = \sin(\sqrt{5} t).$$

The real-valued general solution is

 $y(t) = c_1 \cos(\sqrt{5} t) + c_2 \sin(\sqrt{5} t), \qquad c_1, c_2 \in \mathbb{R}.$

Remark: Equations like the one in this example describe oscillatory physical processes without dissipation, $\alpha = 0$.

Application: The RLC circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

I (t) : electric current.

The electric current flowing in such circuit satisfies:

$$L I'(t) + R I(t) + \frac{1}{C} \int_{t_0}^t I(s) ds = 0.$$

Derivate both sides above: $LI''(t) + RI'(t) + \frac{1}{C}I(t) = 0.$ Divide by L: $I''(t) + 2\left(\frac{R}{2L}\right)I'(t) + \frac{1}{LC}I(t) = 0.$ Introduce $\alpha = \frac{R}{2L}$ and $\omega = \frac{1}{\sqrt{LC}}$, then $I'' + 2\alpha I' + \omega^2 I = 0.$

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r) = r^2 + 2\alpha r + \omega^2$. The roots are:

$$r_{\pm} = \frac{1}{2} \left[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2} \right] \quad \Rightarrow \quad r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$$

Case (a) R = 0. This implies $\alpha = 0$, so $r_{\pm} = \pm i\omega$. Therefore,

 $I_1(t) = \cos(\omega t), \qquad I_2(t) = \sin(\omega t).$

Remark: When the circuit has no resistance, the current oscillates without dissipation.

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: Recall: $r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Case (b) $R < \sqrt{4L/C}$. This implies

$$R^2 < \frac{4L}{C} \quad \Leftrightarrow \quad \frac{R^2}{4L^2} < \frac{1}{LC} \quad \Leftrightarrow \quad \alpha^2 < \omega^2.$$

Therefore, $r_{\pm} = -\alpha \pm i\sqrt{\omega^2 - \alpha^2}$. The fundamental solutions are

$$I_1(t) = e^{-\alpha t} \cos(\sqrt{\omega^2 - \alpha^2} t), \quad I_2(t) = e^{-\alpha t} \sin(\sqrt{\omega^2 - \alpha^2} t)$$

The resistance R damps the current oscillations.