Review: Second order linear ODE.

Definition
Given functions \(a_1, a_0, b : \mathbb{R} \rightarrow \mathbb{R} \), the differential equation in the unknown function \(y : \mathbb{R} \rightarrow \mathbb{R} \) given by

\[
y'' + a_1(t) y' + a_0(t) y = b(t)
\]

is called a second order linear differential equation. If \(b = 0 \), the equation is called homogeneous. If the coefficients \(a_1, a_2 \in \mathbb{R} \) are constants, the equation is called of constant coefficients.

Theorem (Superposition property)
If the functions \(y_1 \) and \(y_2 \) are solutions to the homogeneous linear equation

\[
y'' + a_1(t) y' + a_0(t) y = 0,
\]

then the linear combination \(c_1 y_1(t) + c_2 y_2(t) \) is also a solution for any constants \(c_1, c_2 \in \mathbb{R} \).
Second order linear ODE (Sect. 2.2).

- **Idea**: Solving constant coefficients equations.
- The characteristic equation.
- Solution formulas for constant coefficients equations.

Idea: Solving constant coefficients equations.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example
Find solutions to the equation $y'' + 5y' + 6y = 0$.

Solution: We look for solutions proportional to exponentials e^{rt}, for an appropriate constant $r \in \mathbb{R}$, since the exponential can be canceled out from the equation.

If $y(t) = e^{rt}$, then $y'(t) = re^{rt}$, and $y''(t) = r^2 e^{rt}$. Hence

$$(r^2 + 5r + 6)e^{rt} = 0 \iff r^2 + 5r + 6 = 0.$$

That is, r must be a root of the polynomial $p(r) = r^2 + 5r + 6$.

This polynomial is called the **characteristic polynomial** of the differential equation.
Idea: Solving constant coefficients equations.

Example
Find solutions to the equation $y'' + 5y' + 6y = 0$.

Solution: Recall: $p(r) = r^2 + 5r + 6$.

The roots of the characteristic polynomial are

$$r = \frac{1}{2} \left(-5 \pm \sqrt{25 - 24}\right) = \frac{1}{2} (-5 \pm 1) \Rightarrow \{ r_1 = -2, r_2 = -3 \}.$$

Therefore, we have found two solutions to the ODE,

$$y_1(t) = e^{-2t}, \quad y_2(t) = e^{-3t}.$$

Their superposition provides infinitely many solutions,

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}, \quad c_1, c_2 \in \mathbb{R}.$$

Summary: The differential equation $y'' + 5y' + 6y = 0$ has infinitely many solutions,

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}, \quad c_1, c_2 \in \mathbb{R}.$$

Remarks:

- There are two free constants in the solution found above.
- The ODE above is second order, so two integrations must be done to find the solution. This explains the origin of the two free constants in the solution.
- An IVP for a second order differential equation will have a unique solution if the IVP contains two initial conditions.
Second order linear ODE (Sect. 2.2).

- Idea: Solving constant coefficients equations.
- **The characteristic equation.**
- Solution formulas for constant coefficients equations.

The characteristic equation.

Definition

Given a second order linear homogeneous differential equation with constant coefficients

\[y'' + a_1 y' + a_0 = 0, \tag{1} \]

the *characteristic polynomial* and the *characteristic equation* associated with the differential equation in (1) are, respectively,

\[p(r) = r^2 + a_1 r + a_0, \quad p(r) = 0. \]

Remark: If \(r_1, r_2 \) are the solutions of the characteristic equation and \(c_1, c_2 \) are constants, then we will show that the general solution of Eq. (1) is given by

\[y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t} \]
Example
Find the solution \(y \) of the initial value problem
\[
y'' + 5y' + 6 = 0, \quad y(0) = 1, \quad y'(0) = -1.
\]

Solution: A solution of the differential equation above is
\[
y(t) = c_1 e^{-2t} + c_2 e^{-3t}.
\]
We now find the constants \(c_1 \) and \(c_2 \) that satisfy the initial conditions above:
\[
1 = y(0) = c_1 + c_2, \quad -1 = y'(0) = -2c_1 - 3c_2.
\]
\[
c_1 = 1 - c_2 \Rightarrow 1 = 2(1 - c_2) + 3c_2 \Rightarrow c_2 = -1 \Rightarrow c_1 = 2.
\]
Therefore, the unique solution to the initial value problem is
\[
y(t) = 2e^{-2t} - e^{-3t}.
\]

Example
Find the general solution \(y \) of the differential equation
\[
2y'' - 3y' + y = 0.
\]

Solution: We look for every solution of the form \(y(t) = e^{rt} \), where \(r \) is a solution of the characteristic equation
\[
2r^2 - 3r + 1 = 0 \Rightarrow r = \frac{1}{4} (3 \pm \sqrt{9 - 8}) \Rightarrow \begin{cases} r_1 &= 1, \\ r_2 &= \frac{1}{2}. \end{cases}
\]
Therefore, the general solution of the equation above is
\[
y(t) = c_1 e^t + c_2 e^{t/2},
\]
where \(c_1, c_2 \) are arbitrary constants.
Second order linear ODE (Sect. 2.2).

- Idea: Solving constant coefficients equations.
- The characteristic equation.
- **Solution formulas for constant coefficients equations.**

Solution formulas for constant coefficients equations.

Theorem (Constant coefficients)

Given real constants a_1, a_0, consider the homogeneous, linear differential equation on the unknown $y : \mathbb{R} \rightarrow \mathbb{R}$ given by

$$ y'' + a_1 y' + a_0 y = 0. $$

Let $r_+, r_- \in \mathbb{R}$ be the roots of the characteristic polynomial

$$ p(r) = r^2 + a_1 r + a_0, $$

and let c_0, c_1 be arbitrary constants. Then, the general solution of the differential equation is given by:

(a) If $r_+ \neq r_-$, real or complex, then

$$ y(t) = c_0 e^{r_+ t} + c_1 e^{r_- t}. $$

(b) If $r_+ = r_- = \hat{r} \in \mathbb{R}$, then

$$ y(t) = c_0 e^{\hat{r} t} + c_1 t e^{\hat{r} t}. $$

Furthermore, given real constants t_0, y_0 and y_1, there is a unique solution to the initial value problem

$$ y'' + a_1 y' + a_0 y = 0, \quad y(t_0) = y_0, \quad y'(t_0) = y_1. $$