Exact equations (Sect. 1.4).

- Exact differential equations.
- The Poincaré Lemma.
- Implicit solutions and the potential function.
- Generalization: The integrating factor method.

Exact differential equations.

Definition

Given an open rectangle $R=\left(t_{1}, t_{2}\right) \times\left(u_{1}, u_{2}\right) \subset \mathbb{R}^{2}$ and continuously differentiable functions $M, N: R \rightarrow \mathbb{R}$, denoted as $(t, u) \mapsto M(t, u)$ and $(t, u) \mapsto N(t, u)$, the differential equation in the unknown function $y:\left(t_{1}, t_{2}\right) \rightarrow \mathbb{R}$ given by

$$
N(t, y(t)) y^{\prime}(t)+M(t, y(t))=0
$$

is called exact iff for every point $(t, u) \in R$ holds

$$
\partial_{t} N(t, u)=\partial_{u} M(t, u)
$$

Recall: we use the notation: $\partial_{t} N=\frac{\partial N}{\partial t}$, and $\partial_{u} M=\frac{\partial M}{\partial u}$.

Exact differential equations.

Example

Show whether the differential equation below is exact,

$$
2 t y(t) y^{\prime}(t)+2 t+y^{2}(t)=0
$$

Solution: We first identify the functions N and M,

$$
[2 t y(t)] y^{\prime}(t)+\left[2 t+y^{2}(t)\right]=0 \Rightarrow\left\{\begin{array}{l}
N(t, u)=2 t u \\
M(t, u)=2 t+u^{2}
\end{array}\right.
$$

The equation is exact iff $\partial_{t} N=\partial_{u} M$. Since

$$
\begin{gathered}
N(t, u)=2 t u \quad \Rightarrow \quad \partial_{t} N(t, u)=2 u, \\
M(t, u)=2 t+u^{2} \quad \Rightarrow \quad \partial_{u} M(t, u)=2 u .
\end{gathered}
$$

We conclude: $\partial_{t} N(t, u)=\partial_{u} M(t, u)$.
Remark: The ODE above is not separable and non-linear.

Exact differential equations.

Example

Show whether the differential equation below is exact,

$$
\sin (t) y^{\prime}(t)+t^{2} e^{y(t)} y^{\prime}(t)-y^{\prime}(t)=-y(t) \cos (t)-2 t e^{y(t)} .
$$

Solution: We first identify the functions N and M, if we write

$$
\left[\sin (t)+t^{2} e^{y(t)}-1\right] y^{\prime}(t)+\left[y(t) \cos (t)+2 t e^{y(t)}\right]=0
$$

we can see that

$$
\begin{aligned}
& N(t, u)=\sin (t)+t^{2} e^{u}-1 \quad \Rightarrow \quad \partial_{t} N(t, u)=\cos (t)+2 t e^{u} \\
& M(t, u)=u \cos (t)+2 t e^{u} \quad \Rightarrow \quad \partial_{u} M(t, u)=\cos (t)+2 t e^{u}
\end{aligned}
$$

The equation is exact, since $\partial_{t} N(t, u)=\partial_{u} M(t, u)$.

Exact differential equations.

Example

Show whether the linear differential equation below is exact,

$$
y^{\prime}(t)=-a(t) y(t)+b(t), \quad a(t) \neq 0
$$

Solution: We first find the functions N and M,

$$
y^{\prime}+a(t) y-b(t)=0 \Rightarrow\left\{\begin{array}{l}
N(t, u)=1 \\
M(t, u)=a(t) u-b(t)
\end{array}\right.
$$

The differential equation is not exact, since

$$
\begin{gathered}
N(t, u)=1 \quad \Rightarrow \quad \partial_{t} N(t, u)=0, \\
M(t, u)=a(t) u-b(t) \quad \Rightarrow \quad \partial_{u} M(t, u)=a(t) .
\end{gathered}
$$

This implies that $\partial_{t} N(t, u) \neq \partial_{u} M(t, u)$.

Exact equations (Sect. 1.4).

- Exact differential equations.
- The Poincaré Lemma.
- Implicit solutions and the potential function.
- Generalization: The integrating factor method.

The Poincaré Lemma.

Remark: The coefficients N and M of an exact equations are the derivatives of a potential function ψ.
Lemma (Poincaré)
Given an open rectangle $R=\left(t_{1}, t_{2}\right) \times\left(u_{1}, u_{2}\right) \subset \mathbb{R}^{2}$, the continuously differentiable functions $M, N: R \rightarrow \mathbb{R}$ satisfy the equation

$$
\partial_{t} N(t, u)=\partial_{u} M(t, u)
$$

iff there exists a twice continuously differentiable function
$\psi: R \rightarrow \mathbb{R}$, called potential function, such that for all $(t, u) \in R$ holds

$$
\partial_{u} \psi(t, u)=N(t, u), \quad \partial_{t} \psi(t, u)=M(t, u)
$$

Proof: (\Leftarrow) Simple: $\left.\begin{array}{c}\partial_{t} N=\partial_{t} \partial_{u} \psi, \\ \partial_{u} M=\partial_{u} \partial_{t} \psi,\end{array}\right\} \Rightarrow \partial_{t} N=\partial_{u} M$.
(\Rightarrow) Difficult: Poincaré, 1880.

The Poincaré Lemma.

Example

Show that the function $\psi(t, u)=t^{2}+t u^{2}$ is the potential function for the exact differential equation

$$
2 t y(t) y^{\prime}(t)+2 t+y^{2}(t)=0
$$

Solution: We already saw that the differential equation above is exact, since the functions M and N,

$$
\left.\begin{array}{l}
N(t, u)=2 t u \\
M(t, u)=2 t+u^{2}
\end{array}\right\} \quad \Rightarrow \quad \partial_{t} N=2 u=\partial_{u} M
$$

The potential function is $\psi(t, u)=t^{2}+t u^{2}$, since

$$
\partial_{t} \psi=2 t+u^{2}=M, \quad \partial_{u} \psi=2 t u=N
$$

Remark: The Poincaré Lemma only states necessary and sufficient conditions on N and M for the existence of ψ.

Exact equations (Sect. 1.4).

- Exact differential equations.
- The Poincaré Lemma.
- Implicit solutions and the potential function.
- Generalization: The integrating factor method.

Implicit solutions and the potential function.

Theorem (Exact differential equations)
Let $M, N: R \rightarrow \mathbb{R}$ be continuously differentiable functions on an open rectangle $R=\left(t_{1}, t_{2}\right) \times\left(u_{1}, u_{2}\right) \subset \mathbb{R}^{2}$. If the differential equation

$$
\begin{equation*}
N(t, y(t)) y^{\prime}(t)+M(t, y(t))=0 \tag{1}
\end{equation*}
$$

is exact, then every solution $y:\left(t_{1}, t_{2}\right) \rightarrow \mathbb{R}$ must satisfy the algebraic equation

$$
\psi(t, y(t))=c
$$

where $c \in \mathbb{R}$ and $\psi: R \rightarrow \mathbb{R}$ is a potential function for $E q$. (1).
Proof: $\left.0=N(t, y) y^{\prime}+M(t, y)=\partial_{y} \psi(t, y) \frac{d y}{d t}+\partial_{t} \psi(t, y)\right)$.

$$
0=\frac{d}{d t} \psi(t, y(t)) \quad \Leftrightarrow \quad \psi(t, y(t))=c
$$

Implicit solutions and the potential function.

Example

Find all solutions y to the equation

$$
\left[\sin (t)+t^{2} e^{y(t)}-1\right] y^{\prime}(t)+y(t) \cos (t)+2 t e^{y(t)}=0
$$

Solution: Recall: The equation is exact,

$$
\begin{aligned}
& N(t, u)=\sin (t)+t^{2} e^{u}-1 \quad \Rightarrow \quad \partial_{t} N(t, u)=\cos (t)+2 t e^{u} \\
& M(t, u)=u \cos (t)+2 t e^{u} \quad \Rightarrow \quad \partial_{u} M(t, u)=\cos (t)+2 t e^{u}
\end{aligned}
$$

hence, $\partial_{t} N=\partial_{u} M$. Poincaré Lemma says the exists ψ,

$$
\partial_{u} \psi(t, u)=N(t, u), \quad \partial_{t} \psi(t, u)=M(t, u) .
$$

These are actually equations for ψ. From the first one,

$$
\psi(t, u)=\int\left[\sin (t)+t^{2} e^{u}-1\right] d u+g(t)
$$

Implicit solutions and the potential function.

Example

Find all solutions y to the equation

$$
\left[\sin (t)+t^{2} e^{y(t)}-1\right] y^{\prime}(t)+y(t) \cos (t)+2 t e^{y(t)}=0 .
$$

Solution: $\psi(t, u)=\int\left[\sin (t)+t^{2} e^{u}-1\right] d u+g(t)$. Integrating,

$$
\psi(t, u)=u \sin (t)+t^{2} e^{u}-u+g(t) .
$$

Introduce this expression into $\partial_{t} \psi(t, u)=M(t, u)$, that is,

$$
\partial_{t} \psi(t, u)=u \cos (t)+2 t e^{u}+g^{\prime}(t)=M(t, u)=u \cos (t)+2 t e^{u}
$$

Therefore, $g^{\prime}(t)=0$, so we choose $g(t)=0$. We obtain,

$$
\psi(t, u)=u \sin (t)+t^{2} e^{u}-u
$$

So the solution y satisfies $y(t) \sin (t)+t^{2} e^{y(t)}-y(t)=c$.

Exact equations (Sect. 1.4).

- Exact differential equations.
- The Poincaré Lemma.
- Implicit solutions and the potential function.
- Generalization: The integrating factor method.

Remark:
Sometimes a non-exact equation can we transformed into an exact equation multiplying the equation by an integrating factor. Just like in the case of linear differential equations.

Generalization: The integrating factor method.

Theorem (Integrating factor)
Let $M, N: R \rightarrow \mathbb{R}$ be continuously differentiable functions on $R=\left(t_{1}, t_{2}\right) \times\left(u_{1}, u_{2}\right) \subset \mathbb{R}^{2}$, with $N \neq 0$. If the equation

$$
N(t, y(t)) y^{\prime}(t)+M(t, y(t))=0
$$

is not exact, that is, $\partial_{t} N(t, u) \neq \partial_{u} M(t, u)$, and if the function

$$
\frac{1}{N(t, u)}\left[\partial_{u} M(t, u)-\partial_{t} N(t, u)\right]
$$

does not depend on the variable u, then the equation

$$
\mu(t)\left[N(t, y(t)) y^{\prime}(t)+M(t, y(t))\right]=0
$$

is exact, where $\frac{\mu^{\prime}(t)}{\mu(t)}=\frac{1}{N(t, u)}\left[\partial_{u} M(t, u)-\partial_{t} N(t, u)\right]$.

Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0
$$

Solution: The equation is not exact:

$$
\begin{aligned}
N(t, u)=t^{2}+t u & \Rightarrow \partial_{t} N(t, u)=2 t+u \\
M(t, u)=3 t u+u^{2} & \Rightarrow \partial_{u} M(t, u)=3 t+2 u
\end{aligned}
$$

hence $\partial_{t} N \neq \partial_{u} M$. We now verify whether the extra condition in Theorem above holds:

$$
\begin{gathered}
\frac{\left[\partial_{u} M(t, u)-\partial_{t} N(t, u)\right]}{N(t, u)}=\frac{1}{\left(t^{2}+t u\right)}[(3 t+2 u)-(2 t+u)] \\
\frac{\left[\partial_{u} M(t, u)-\partial_{t} N(t, u)\right]}{N(t, u)}=\frac{1}{t(t+u)}(t+u)=\frac{1}{t}
\end{gathered}
$$

Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0
$$

Solution: $\frac{\left[\partial_{u} M(t, u)-\partial_{t} N(t, u)\right]}{N(t, u)}=\frac{1}{t}$.
We find a function μ solution of $\frac{\mu^{\prime}}{\mu}=\frac{\left[\partial_{u} M-\partial_{t} N\right]}{N}$, that is

$$
\frac{\mu^{\prime}(t)}{\mu(t)}=\frac{1}{t} \quad \Rightarrow \quad \ln (\mu(t))=\ln (t) \quad \Rightarrow \quad \mu(t)=t
$$

Therefore, the equation below is exact:

$$
\left[t^{3}+t^{2} y(t)\right] y^{\prime}(t)+\left[3 t^{2} y(t)+t y^{2}(t)\right]=0
$$

Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0
$$

Solution: $\left[t^{3}+t^{2} y(t)\right] y^{\prime}(t)+\left[3 t^{2} y(t)+t y^{2}(t)\right]=0$.
This equation is exact:

$$
\begin{array}{cc}
\tilde{N}(t, u)=t^{3}+t^{2} u \quad & \Rightarrow \quad \partial_{t} \tilde{N}(t, u)=3 t^{2}+2 t u \\
\tilde{M}(t, u)=3 t^{2} u+t u^{2} & \Rightarrow \quad \partial_{u} \tilde{M}(t, u)=3 t^{2}+2 t u
\end{array}
$$

that is, $\partial_{t} \tilde{N}=\partial_{u} \tilde{M}$. Therefore, there exists ψ such that

$$
\partial_{u} \psi(t, u)=\tilde{N}(t, u), \quad \partial_{t} \psi(t, u)=\tilde{M}(t, u)
$$

From the first equation above we obtain

$$
\partial_{u} \psi=t^{3}+t^{2} u \quad \Rightarrow \quad \psi(t, u)=\int\left(t^{3}+t^{2} u\right) d u+g(t) .
$$

Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0
$$

Solution: $\psi(t, u)=\int\left(t^{3}+t^{2} u\right) d u+g(t)$.
Integrating, $\psi(t, u)=t^{3} u+\frac{1}{2} t^{2} u^{2}+g(t)$.
Introduce ψ in $\partial_{t} \psi=\tilde{M}$, where $\tilde{M}=3 t^{2} u+t u^{2}$. So,

$$
\partial_{t} \psi(t, u)=3 t^{2} u+t u^{2}+g^{\prime}(t)=\tilde{M}(t, u)=3 t^{2} u+t u^{2}
$$

So $g^{\prime}(t)=0$ and we choose $g(t)=0$. We conclude that a potential function is $\psi(t, u)=t^{3} u+\frac{1}{2} t^{2} u^{2}$.
And every solution y satisfies $t^{3} y(t)+\frac{1}{2} t^{2}[y(t)]^{2}=c$.

