
Modeling with first order equations (Sect. 1.5).

I Radioactive decay.
I Carbon-14 dating.

I Salt in a water tank.
I The experimental device.
I The main equations.
I Analysis of the mathematical model.
I Predictions for particular situations.

Radioactive decay

Remarks:

(a) Radioactive substances randomly emit protons, electors,
radiation, and they are transformed in another substance.

(b) It can be seen that the time rate of change of the amount N
of a radioactive substances is proportional to the negative
amount of radioactive substance.

N ′(t) = −a N(t), N(0) = N0, a > 0.

(c) The integrating factor method implies N(t) = N0 e−at .

(d) The half-life is the time τ needed to get N(τ) = N0/2.

N0 e−aτ =
N0

2
⇒ −aτ = ln

(1

2

)
⇒ τ =

ln(2)

a
.

(e) Using the half-life, we get N(t) = N0 2−t/τ .



Radioactive decay

Example

Remains containing 14% of the original amount of Carbon-14 are
found. Knowing that Carbon-14 half-live is τ = 5730 years, date
the remains.

Solution: Set t = 0 when the organism dies. Since the amount N
of Carbon-14 only decays after the organism dies,

N(t) = N0 2−t/τ , τ = 5730 years.

The remains contain 14% of the original amount at the time t,

N(t)

N0

=
14

100
⇒ 2−t/τ =

14

100

− t

τ
= log2(14/100) ⇒ t = τ log2(100/14).

The organism died 16, 253 years ago. C
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Salt in a water tank.

Problem: Describe the salt concentration in a tank with water if
salty water comes in and goes out of the tank.

Main ideas of the test:

I Since the mass of salt and water is conserved, we construct a
mathematical model for the salt concentration in water.

I The amount of salt in the tank depends on the salt
concentration coming in and going out of the tank.

I The salt in the tank also depends on the water rates coming
in and going out of the tank.

I To construct a model means to find the differential equation
that takes into account the above properties of the system.

I Finding the solution to the differential equation with a
particular initial condition means we can predict the evolution
of the salt in the tank if we know the tank initial condition.
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The experimental device.
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The experimental device.

Definitions:

I ri (t), ro(t): Rates in and out of water entering and leaving
the tank at the time t.

I qi (t), qo(t): Salt concentration of the water entering and
leaving the tank at the time t.

I V (t): Water volume in the tank at the time t.

I Q(t): Salt mass in the tank at the time t.

Units:[
ri (t)

]
=

[
ro(t)

]
=

Volume

Time
,

[
qi (t)

]
=

[
qo(t)

]
=

Mass

Volume
.

[
V (t)

]
= Volume,

[
Q(t)

]
= Mass.
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The main equations.

Remark: The mass conservation provides the main equations of
the mathematical description for salt in water.

Main equations:

d

dt
V (t) = ri (t)− ro(t), Volume conservation, (1)

d

dt
Q(t) = ri (t) qi (t)− ro(t) qo(t), Mass conservation, (2)

qo(t) =
Q(t)

V (t)
, Instantaneously mixed, (3)

ri , ro : Constants. (4)



The main equations.

Remarks: [dV

dt

]
=

Volume

Time
=

[
ri − ro

]
,

[dQ

dt

]
=

Mass

Time
=

[
riqi − roqo

]
,

[
riqi − roqo

]
=

Volume

Time

Mass

Volume
=

Mass

Time
.
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Analysis of the mathematical model.

Eqs. (4) and (1) imply

V (t) = (ri − ro) t + V0, (5)

where V (0) = V0 is the initial volume of water in the tank.

Eqs. (3) and (2) imply

d

dt
Q(t) = ri qi (t)− ro

Q(t)

V (t)
. (6)

Eqs. (5) and (6) imply

d

dt
Q(t) = ri qi (t)−

ro
(ri − ro) t + V0

Q(t). (7)

Analysis of the mathematical model.

Recall:
d

dt
Q(t) = ri qi (t)−

ro
(ri − ro) t + V0

Q(t).

Notation: a(t) = − ro
(ri − ro) t + V0

, and b(t) = ri qi (t).

The main equation of the description is given by

Q ′(t) = a(t) Q(t) + b(t).

Linear ODE for Q. Solution: Integrating factor method.

Q(t) = eA(t)
[
Q0 +

∫ t

0
e−A(s) b(s) ds

]
with Q(0) = Q0, and A(t) =

∫ t

0
a(s) ds.
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Predictions for particular situations.

Example

Assume that ri = ro = r and qi are constants.
If r , qi , Q0 and V0 are given, find Q(t).

Solution: Always holds Q ′(t) = a(t) Q(t) + b(t).
In this case:

a(t) = − ro
(ri − ro) t + V0

⇒ a(t) = − r

V0
= −a0,

b(t) = ri qi (t) ⇒ b(t) = rqi = b0.

We need to solve the IVP:

Q ′(t) = −a0 Q(t) + b0, Q(0) = Q0.



Predictions for particular situations.

Example

Assume that ri = ro = r and qi are constants.
If r , qi , Q0 and V0 are given, find Q(t).

Solution: Recall the IVP: Q ′(t) + a0 Q(t) = b0, Q(0) = Q0.

Integrating factor method:

A(t) = a0t, µ(t) = ea0t , ea0tQ(t) = Q0 +

∫ t

0
ea0t b0 ds.

Q(t) = e−a0t
[
Q0 +

b0

a0

(
ea0t − 1

)]
. =

(
Q0 −

b0

a0

)
e−a0t +

b0

a0
.

But
b0

a0
= rqi

V0

r
= qiV0, and a0 =

r

V0
. We conclude:

Q(t) =
(
Q0 − qiV0

)
e−rt/V0 + qiV0.

Predictions for particular situations.

Example

Assume that ri = ro = r and qi are constants.
If r , qi , Q0 and V0 are given, find Q(t).

Solution: Recall: Q(t) =
(
Q0 − qiV0

)
e−rt/V0 + qiV0.

Particular cases:

I
Q0

V0
> qi ;

I
Q0

V0
= qi , so Q(t) = Q0;

I
Q0

V0
< qi .
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Predictions for particular situations.

Example

Assume that ri = ro = r and qi are constants.
If r = 2 liters/min, qi = 0, V0 = 200 liters, Q0/V0 = 1 grams/liter,
find t1 such that q(t1) = Q(t1)/V (t1) is 1% the initial value.

Solution: This problem is a particular case qi = 0 of the previous
Example. Since Q(t) =

(
Q0 − qiV0

)
e−rt/V0 + qiV0, we get

Q(t) = Q0 e−rt/V0 .

Since V (t) = (ri − ro) t + V0 and ri = ro , we obtain V (t) = V0.

So q(t) = Q(t)/V (t) is given by q(t) =
Q0

V0
e−rt/V0 . Therefore,

1

100

Q0

V0
= q(t1) =

Q0

V0
e−rt1/V0 ⇒ e−rt1/V0 =

1

100
.

Predictions for particular situations.

Example

Assume that ri = ro = r and qi are constants.
If r = 2 liters/min, qi = 0, V0 = 200 liters, Q0/V0 = 1 grams/liter,
find t1 such that q(t1) = Q(t1)/V (t1) is 1% the initial value.

Solution: Recall: e−rt1/V0 =
1

100
. Then,

− r

V0
t1 = ln

( 1

100

)
= − ln(100) ⇒ r

V0
t1 = ln(100).

We conclude that t1 =
V0

r
ln(100).

In this case: t1 = 100 ln(100). C



Predictions for particular situations.

Example

Assume that ri = ro = r are constants. If r = 5x106 gal/year,
qi (t) = 2 + sin(2t) grams/gal, V0 = 106 gal, Q0 = 0, find Q(t).

Solution: Recall: Q ′(t) = a(t) Q(t) + b(t). In this case:

a(t) = − ro
(ri − ro) t + V0

⇒ a(t) = − r

V0
= −a0,

b(t) = ri qi (t) ⇒ b(t) = r
[
2 + sin(2t)

]
.

We need to solve the IVP: Q ′(t) = −a0 Q(t) + b(t), Q(0) = 0.

ea0tQ(t) =

∫ t

0
ea0s b(s) ds.

We conclude: Q(t) = re−rt/V0

∫ t

0
ers/V0

[
2 + sin(2s)

]
ds.


