Modeling with first order equations (Sect. 1.5).

- Radioactive decay.
- Carbon-14 dating.
- Salt in a water tank.
- The experimental device.
- The main equations.
- Analysis of the mathematical model.
- Predictions for particular situations.

Radioactive decay

Remarks:

(a) Radioactive substances randomly emit protons, electors, radiation, and they are transformed in another substance.
(b) It can be seen that the time rate of change of the amount N of a radioactive substances is proportional to the negative amount of radioactive substance.

$$
N^{\prime}(t)=-a N(t), \quad N(0)=N_{0}, \quad a>0
$$

(c) The integrating factor method implies $N(t)=N_{0} e^{-a t}$.
(d) The half-life is the time τ needed to get $N(\tau)=N_{0} / 2$.

$$
N_{0} e^{-a \tau}=\frac{N_{0}}{2} \Rightarrow-a \tau=\ln \left(\frac{1}{2}\right) \quad \Rightarrow \quad \tau=\frac{\ln (2)}{a} .
$$

(e) Using the half-life, we get $N(t)=N_{0} 2^{-t / \tau}$.

Radioactive decay

Example

Remains containing 14% of the original amount of Carbon-14 are found. Knowing that Carbon-14 half-live is $\tau=5730$ years, date the remains.

Solution: Set $t=0$ when the organism dies. Since the amount N of Carbon-14 only decays after the organism dies,

$$
N(t)=N_{0} 2^{-t / \tau}, \quad \tau=5730 \text { years }
$$

The remains contain 14% of the original amount at the time t,

$$
\begin{aligned}
\frac{N(t)}{N_{0}}=\frac{14}{100} & \Rightarrow \quad 2^{-t / \tau}=\frac{14}{100} \\
-\frac{t}{\tau}=\log _{2}(14 / 100) & \Rightarrow \quad t=\tau \log _{2}(100 / 14)
\end{aligned}
$$

The organism died 16, 253 years ago.

Modeling with first order equations (Sect. 1.5).

- Radioactive decay.
- Carbon-14 dating.
- Salt in a water tank.
- The experimental device.
- The main equations.
- Analysis of the mathematical model.
- Predictions for particular situations.

Salt in a water tank.

Problem: Describe the salt concentration in a tank with water if salty water comes in and goes out of the tank.

Main ideas of the test:

- Since the mass of salt and water is conserved, we construct a mathematical model for the salt concentration in water.
- The amount of salt in the tank depends on the salt concentration coming in and going out of the tank.
- The salt in the tank also depends on the water rates coming in and going out of the tank.
- To construct a model means to find the differential equation that takes into account the above properties of the system.
- Finding the solution to the differential equation with a particular initial condition means we can predict the evolution of the salt in the tank if we know the tank initial condition.

Modeling with first order equations (Sect. 1.5).

- Radioactive decay.
- Carbon-14 dating.
- Main example: Salt in a water tank.
- The experimental device.
- The main equations.
- Analysis of the mathematical model.
- Predictions for particular situations.

The experimental device.

The experimental device.

Definitions:

- $r_{i}(t), r_{o}(t)$: Rates in and out of water entering and leaving the tank at the time t.
- $q_{i}(t), q_{0}(t)$: Salt concentration of the water entering and leaving the tank at the time t.
- $V(t)$: Water volume in the tank at the time t.
- $Q(t)$: Salt mass in the tank at the time t.

Units:

$$
\begin{array}{r}
{\left[r_{i}(t)\right]=\left[r_{0}(t)\right]=\frac{\text { Volume }}{\text { Time }}, \quad\left[q_{i}(t)\right]=\left[q_{0}(t)\right]} \\
{[V(t)]=\text { Volume }, \quad[Q(t)]=\text { Mass } .}
\end{array}
$$

- Radioactive decay.
- Carbon-14 dating.
- Main example: Salt in a water tank.
- The experimental device.
- The main equations.
- Analysis of the mathematical model.
- Predictions for particular situations.

The main equations.
Remark: The mass conservation provides the main equations of the mathematical description for salt in water.

Main equations:

$$
\begin{align*}
& \frac{d}{d t} V(t)=r_{i}(t)-r_{0}(t), \text { Volume conservation, } \tag{1}\\
& \frac{d}{d t} Q(t)=r_{i}(t) q_{i}(t)-r_{0}(t) q_{o}(t), \quad \text { Mass conservation, } \tag{2}\\
& q_{0}(t)=\frac{Q(t)}{V(t)}, \quad \text { Instantaneously mixed, } \tag{3}\\
& r_{i}, r_{0}: \quad \text { Constants. } \tag{4}
\end{align*}
$$

The main equations.

Remarks:

$$
\begin{gathered}
{\left[\frac{d V}{d t}\right]=\frac{\text { Volume }}{\text { Time }}=\left[r_{i}-r_{0}\right],} \\
{\left[\frac{d Q}{d t}\right]=\frac{\text { Mass }}{\text { Time }}=\left[r_{i} q_{i}-r_{o} q_{0}\right],} \\
{\left[r_{i} q_{i}-r_{0} q_{0}\right]=\frac{\text { Volume }}{\text { Time }} \frac{\text { Mass }}{\text { Volume }}=\frac{\text { Mass }}{\text { Time }} .}
\end{gathered}
$$

Modeling with first order equations (Sect. 1.5).

- Radioactive decay.
- Carbon-14 dating.
- Main example: Salt in a water tank.
- The experimental device.
- The main equations.
- Analysis of the mathematical model.
- Predictions for particular situations.

Analysis of the mathematical model.

Eqs. (4) and (1) imply

$$
\begin{equation*}
V(t)=\left(r_{i}-r_{o}\right) t+V_{0} \tag{5}
\end{equation*}
$$

where $V(0)=V_{0}$ is the initial volume of water in the tank.
Eqs. (3) and (2) imply

$$
\begin{equation*}
\frac{d}{d t} Q(t)=r_{i} q_{i}(t)-r_{o} \frac{Q(t)}{V(t)} . \tag{6}
\end{equation*}
$$

Eqs. (5) and (6) imply

$$
\begin{equation*}
\frac{d}{d t} Q(t)=r_{i} q_{i}(t)-\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}} Q(t) \tag{7}
\end{equation*}
$$

Analysis of the mathematical model.

Recall: $\frac{d}{d t} Q(t)=r_{i} q_{i}(t)-\frac{r_{0}}{\left(r_{i}-r_{o}\right) t+V_{0}} Q(t)$.
Notation: $a(t)=-\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}}$, and $b(t)=r_{i} q_{i}(t)$.
The main equation of the description is given by

$$
Q^{\prime}(t)=a(t) Q(t)+b(t)
$$

Linear ODE for Q. Solution: Integrating factor method.

$$
Q(t)=e^{A(t)}\left[Q_{0}+\int_{0}^{t} e^{-A(s)} b(s) d s\right]
$$

with $Q(0)=Q_{0}$, and $A(t)=\int_{0}^{t} a(s) d s$.

Modeling with first order equations (Sect. 1.5).

- Radioactive decay.
- Carbon-14 dating.
- Main example: Salt in a water tank.
- The experimental device.
- The main equations.
- Analysis of the mathematical model.
- Predictions for particular situations.

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Always holds $Q^{\prime}(t)=a(t) Q(t)+b(t)$.
In this case:

$$
\begin{gathered}
a(t)=-\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}} \Rightarrow a(t)=-\frac{r}{V_{0}}=-a_{0} \\
b(t)=r_{i} q_{i}(t) \Rightarrow b(t)=r q_{i}=b_{0} .
\end{gathered}
$$

We need to solve the IVP:

$$
Q^{\prime}(t)=-a_{0} Q(t)+b_{0}, \quad Q(0)=Q_{0} .
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Recall the IVP: $Q^{\prime}(t)+a_{0} Q(t)=b_{0}, \quad Q(0)=Q_{0}$.
Integrating factor method:

$$
\begin{aligned}
& A(t)=a_{0} t, \quad \mu(t)=e^{a_{0} t}, \quad e^{a_{0} t} Q(t)=Q_{0}+\int_{0}^{t} e^{a_{0} t} b_{0} d s . \\
& Q(t)=e^{-a_{0} t}\left[Q_{0}+\frac{b_{0}}{a_{0}}\left(e^{a_{0} t}-1\right)\right] .=\left(Q_{0}-\frac{b_{0}}{a_{0}}\right) e^{-a_{0} t}+\frac{b_{0}}{a_{0}}
\end{aligned}
$$

But $\frac{b_{0}}{a_{0}}=r q_{i} \frac{V_{0}}{r}=q_{i} V_{0}$, and $a_{0}=\frac{r}{V_{0}}$. We conclude:

$$
Q(t)=\left(Q_{0}-q_{i} V_{0}\right) e^{-r t / V_{0}}+q_{i} V_{0} .
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Recall: $Q(t)=\left(Q_{0}-q_{i} V_{0}\right) e^{-r t / V_{0}}+q_{i} V_{0}$.
Particular cases:

- $\frac{Q_{0}}{V_{0}}>q_{i} ;$
- $\frac{Q_{0}}{V_{0}}=q_{i}$, so $Q(t)=Q_{0}$;
- $\frac{Q_{0}}{V_{0}}<q_{i}$.

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants.
If $r=2$ liters $/ \mathrm{min}, q_{i}=0, V_{0}=200$ liters, $Q_{0} / V_{0}=1$ grams $/$ liter, find t_{1} such that $q\left(t_{1}\right)=Q\left(t_{1}\right) / V\left(t_{1}\right)$ is 1% the initial value.

Solution: This problem is a particular case $q_{i}=0$ of the previous Example. Since $Q(t)=\left(Q_{0}-q_{i} V_{0}\right) e^{-r t / V_{0}}+q_{i} V_{0}$, we get

$$
Q(t)=Q_{0} e^{-r t / V_{0}}
$$

Since $V(t)=\left(r_{i}-r_{0}\right) t+V_{0}$ and $r_{i}=r_{0}$, we obtain $V(t)=V_{0}$.
So $q(t)=Q(t) / V(t)$ is given by $q(t)=\frac{Q_{0}}{V_{0}} e^{-r t / V_{0}}$. Therefore,

$$
\frac{1}{100} \frac{Q_{0}}{V_{0}}=q\left(t_{1}\right)=\frac{Q_{0}}{V_{0}} e^{-r t_{1} / V_{0}} \quad \Rightarrow \quad e^{-r t_{1} / V_{0}}=\frac{1}{100}
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If $r=2$ liters $/ \mathrm{min}, q_{i}=0, V_{0}=200$ liters, $Q_{0} / V_{0}=1$ grams $/$ liter, find t_{1} such that $q\left(t_{1}\right)=Q\left(t_{1}\right) / V\left(t_{1}\right)$ is 1% the initial value.

Solution: Recall: $e^{-r t_{1} / V_{0}}=\frac{1}{100}$. Then,

$$
-\frac{r}{V_{0}} t_{1}=\ln \left(\frac{1}{100}\right)=-\ln (100) \quad \Rightarrow \quad \frac{r}{V_{0}} t_{1}=\ln (100) .
$$

We conclude that $t_{1}=\frac{V_{0}}{r} \ln (100)$.
In this case: $t_{1}=100 \ln (100)$.

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ are constants. If $r=5 \times 10^{6}$ gal/year, $q_{i}(t)=2+\sin (2 t)$ grams $/ \mathrm{gal}, V_{0}=10^{6} \mathrm{gal}, Q_{0}=0$, find $Q(t)$.

Solution: Recall: $Q^{\prime}(t)=a(t) Q(t)+b(t)$. In this case:

$$
\begin{gathered}
a(t)=-\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}} \quad \Rightarrow \quad a(t)=-\frac{r}{V_{0}}=-a_{0}, \\
b(t)=r_{i} q_{i}(t) \quad \Rightarrow \quad b(t)=r[2+\sin (2 t)] .
\end{gathered}
$$

We need to solve the IVP: $Q^{\prime}(t)=-a_{0} Q(t)+b(t), Q(0)=0$.

$$
e^{a_{0} t} Q(t)=\int_{0}^{t} e^{a_{0} s} b(s) d s
$$

We conclude: $Q(t)=r e^{-r t / V_{0}} \int_{0}^{t} e^{r s / V_{0}}[2+\sin (2 s)] d s$.

