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Radioactive decay

Remarks:

(a) Radioactive substances randomly emit protons, electors,
radiation, and they are transformed in another substance.

(b) It can be seen that the time rate of change of the amount N
of a radioactive substances is proportional to the negative
amount of radioactive substance.

N'(t) = —a N(t), N(0) = No, a>0.
(c) The integrating factor method implies N(t) = Ny e 2.
(d) The half-life is the time 7 needed to get N(7) = Np/2.

N 1 In(2
70 = —aT:In<§> = 7= ng).

(e) Using the half-life, we get N(t) = No27t/7.

No e T —




Radioactive decay

Example

Remains containing 14% of the original amount of Carbon-14 are
found. Knowing that Carbon-14 half-live is 7 = 5730 years, date
the remains.

Solution: Set t = 0 when the organism dies. Since the amount N
of Carbon-14 only decays after the organism dies,

N(t) = No27t/7, 7 = 5730 years.

The remains contain 14% of the original amount at the time t,

N(t) 14 " 14
- o—t/T _ T
N, 100 100

t
—— = log,(14/100) = t = 7log,(100/14).
-

The organism died 16,253 years ago. <
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Salt in a water tank.

Problem: Describe the salt concentration in a tank with water if
salty water comes in and goes out of the tank.

Main ideas of the test:

>

Since the mass of salt and water is conserved, we construct a
mathematical model for the salt concentration in water.

The amount of salt in the tank depends on the salt
concentration coming in and going out of the tank.

The salt in the tank also depends on the water rates coming
in and going out of the tank.

To construct a model means to find the differential equation
that takes into account the above properties of the system.

Finding the solution to the differential equation with a
particular initial condition means we can predict the evolution
of the salt in the tank if we know the tank initial condition.
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The experimental device.
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The experimental device.

Definitions:

> ri(t), ro(t): Rates in and out of water entering and leaving
the tank at the time t.

> qi(t), go(t): Salt concentration of the water entering and
leaving the tank at the time t.

» V/(t): Water volume in the tank at the time t.
» Q(t): Salt mass in the tank at the time t.

Mass

Volume'
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The main equations.

Remark: The mass conservation provides the main equations of
the mathematical description for salt in water.

Main equations:

aV(t) = ri(t) — ro(t), Volume conservation, (1)
%Q(t) = ri(t) gi(t) — ro(t) go(t), Mass conservation,  (2)
qo(t) = %, Instantaneously mixed, (3)

ri, ro : Constants. (4)




The main equations.

Remarks:
[dV} B Volume B [ . }
dtl = Time L7 o)
{@}_Mass_{r. o, }
dil T Time iqi oqo |,
{r- o, } B Volume Mass B Mass
i9i — foGo| = Time Volume  Time’
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Analysis of the mathematical model.

Egs. (4) and (1) imply
V(t)=(ri—ro)t+ Vo, (5)
where V(0) = Vj is the initial volume of water in the tank.

Egs. (3) and (2) imply

o0 =na() - o) (©
Egs. (5) and (6) imply
GO0 =ra() - L0, ()

Analysis of the mathematical model.

d ro
Recall: EQ(t) = ri qi(t) — CETAIEaY Q(t).
. L ro L
Notation: a(t) = =)t Vo' and b(t) = r;iqi(t).

The main equation of the description is given by
Q(t) = a(t) Q(t) + b(t).

Linear ODE for Q. Solution: Integrating factor method.

t
Q(t) = A [Qo+ / e~ ) p(s) ds}
0

with Q(0) = Qp, and A(t) = /ta(s) ds.
0
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Predictions for particular situations.

Example

Assume that rj = r, = r and g; are constants.
If r, qi;, Qo and V; are given, find Q(t).

Solution: Always holds Q'(t) = a(t) Q(t) + b(t).
In this case:
o r

a(t) = _(fi )T Vo = a(t) = —— = —ao,

b(t) =riqi(t) = b(t)=rqi = bo.

We need to solve the IVP:

Q'(t) = —a0 Q(t) + by, Q(0) = Qo.




Predictions for particular situations.

Example

Assume that r; = r, = r and g; are constants.
If r, gi, Qo and Vp are given, find Q(t).

Solution: Recall the IVP: Q'(t) + a0 Q(t) = by, Q(0) = Qo.

Integrating factor method:

t
A(t) = aot, p(t)=e™", e™'Q(t)= Qo -I-/ e®t py ds.
0

Q)= et [Q+ 2 (e —1)]. = (@ ) et 4 2.
40 a0 ao
b Vi
But 0 _ rq; 2= qiVo, and ag = L. We conclude:
ao r VO

Q(t) = (Qo — qiVo) e V0 + q; o

Predictions for particular situations.

Example

Assume that r; = r, = r and g; are constants.
If r, gi, Qo and Vj are given, find Q(t).

Solution: Recall: Q(t) = (Qo — ¢i Vo) e "t/Vo 4 g V.
Particular cases:

> - > 4i Q

> — =gqj, so Q(t) = Qu; Q=4

> — <4q.
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Predictions for particular situations.

Example

Assume that r; = r, = r and g; are constants.
If r = 2 liters/min, g; = 0, Vo = 200 liters, Qo/ Vo = 1 grams/liter,
find t; such that q(t1) = Q(t1)/V/(t1) is 1% the initial value.

Solution: This problem is a particular case g; = 0 of the previous
Example. Since Q(t) = (Qo — q; Vo) e ™0 + q; Vo, we get

Q(t) = Qoe /0.
Since V(t) = (ri — ro) t + Vo and r; = r,, we obtain V(t) = .
So q(t) = Q(t)/V/(t) is given by q(t) = % e "t/Vo_ Therefore,
0

1 1
QO - (tl) %(()) e—rtl/Vo = e—rtl/Vo = m

Predictions for particular situations.

Example

Assume that r; = r, = r and g; are constants.
If r =2 liters/min, gq; = 0, Vo = 200 liters, Qo/ Vo = 1 grams/liter,
find t; such that q(t1) = Q(t1)/V/(t1) is 1% the initial value.

1
lution: Recall: e /Y0 — _~_ Then,
Solution: Recall: e 100 en

r 1 r
B (_):—| 100 — t; = In(100).
Vo = "\ 100 n(100) = 37t =In(100)

V
We conclude that t; = TO In(100).

In this case: t; = 100 In(100). <




Predictions for particular situations.

Example

Assume that r; = r, = r are constants. If r = 5x10° gal/year,
qi(t) = 2+ sin(2t) grams/gal, Vo = 10° gal, Qo = 0, find Q(t).
Solution: Recall: Q'(t) = a(t) Q(t) + b(t). In this case:

fo r

a(t) = RCETSIERY = a(t) = —— = —ao,

b(t)=riqi(t) = b(t)=r[2+sin(2t)].

We need to solve the IVP: Q'(t) = —ag Q(t) + b(t), Q(0) = 0.

t
et Q(t) :/ e?° b(s) ds.
0

t
We conclude: Q(t) = re~"t/Vo / e™/Vo [2 + sin(2s)] ds.
0




