

Review: Linear constant coefficient equations

Definition

Given functions $a, b : \mathbb{R} \to \mathbb{R}$, a *first order linear ODE* in the unknown function $y : \mathbb{R} \to \mathbb{R}$ is the equation

$$y'(t) = a(t) y(t) + b(t).$$

Example

(a) A constant coefficients first order linear ODE is given by

$$y'(t) = -2y(t) + 3.$$

Here a = -2 and b = 3.

(b) A variable coefficients first order linear ODE is given by

$$y'(t) = -\frac{2}{t}y(t) + 4t.$$

Here a(t) = -2/t and b(t) = 4t.

Review: Linear constant coefficient equations

Theorem (Constant coefficients)

Given constants $a, b \in \mathbb{R}$ with $a \neq 0$, the linear differential equation

y'(t) = ay(t) + b

has infinitely many solutions, one for each value of $c \in \mathbb{R}$, given by

$$y(t)=c\,e^{at}-\frac{b}{a}.$$

Remarks:

(a) A proof is given in the Lecture Notes.

(b) Solutions to first order linear ODE can be obtained using the integrating factor method.

Review: Linear constant coefficient equations

Example

Find all functions y solution of the ODE y' = 2y + 3.

Solution: Write down the differential equation as y' - 2y = 3. Key idea: The left-hand side above is a total derivative if we multiply it by the exponential e^{-2t} . Indeed,

$$e^{-2t}y' - 2e^{-2t}y = 3e^{-2t} \Leftrightarrow e^{-2t}y' + (e^{-2t})'y = 3e^{-2t}$$

This is the key idea, because the derivative of a product implies

$$\left[e^{-2t}y\right]'=3\,e^{-2t}.$$

The exponential e^{-2t} is called an integrating factor. Integrating,

$$e^{-2t} y = -\frac{3}{2}e^{-2t} + c \quad \Leftrightarrow \quad y(t) = c e^{2t} - \frac{3}{2}.$$

The Initial Value Problem

Definition

The *Initial Value Problem* (IVP) for a linear ODE is the following: Given functions $a, b : \mathbb{R} \to \mathbb{R}$ and constants $t_0, y_0 \in R$, find a solution $y : \mathbb{R} \to \mathbb{R}$ of the problem

 $y' = a(t) y + b(t), \qquad y(t_0) = y_0.$

Remark: The initial condition selects one solution of the ODE.

Theorem (Constant coefficients)

Given constants $a, b, t_0, y_0 \in \mathbb{R}$, with $a \neq 0$, the initial value problem

y' = a y + b, $y(t_0) = y_0$

has the unique solution

$$y(t) = \left(y_0 + \frac{b}{a}\right)e^{a(t-t_0)} - \frac{b}{a}$$

The Initial Value Problem

Example

Find the solution to the initial value problem

$$y' = 2y + 3, \qquad y(0) = 1.$$

Solution: Every solution of the ODE above is given by

$$y(t)=c\,e^{2t}-rac{3}{2},\qquad c\in\mathbb{R}.$$

The initial condition y(0) = 1 selects only one solution:

$$1=y(0)=c-rac{3}{2}$$
 \Rightarrow $c=rac{5}{2}$

 \triangleleft

We conclude that $y(t) = \frac{5}{2}e^{2t} - \frac{3}{2}$.

The Initial Value Problem

Example

Find the solution y to the IVP y' = -3y + 1, y(0) = 1.

Solution: Write down the differential equation as y' + 3y = 1. Key idea: The left-hand side above is a total derivative if we multiply it by the exponential e^{3t} . Indeed,

$$e^{3t}y' + 3e^{3t}y = e^{3t} \Leftrightarrow e^{3t}y' + (e^{3t})'y = e^{3t}.$$

This is the key idea, because the derivative of a product implies

$$\left[e^{3t}y\right]'=e^{3t}.$$

The exponential e^{3t} is called an integrating factor. Integrating,

 $e^{3t} y = \frac{1}{3}e^{3t} + c \quad \Leftrightarrow \quad y(t) = c e^{-3t} + \frac{1}{3}.$

The Initial Value Problem

Example

Find the solution y to the IVP y' = -3y + 1, y(0) = 1.

Solution: Every solution of the ODE above is given by

$$y(t)=c\ e^{-3t}+rac{1}{3},\qquad c\in\mathbb{R}.$$

The initial condition y(0) = 2 selects only one solution:

$$1 = y(0) = c + \frac{1}{3} \quad \Rightarrow \quad c = \frac{2}{3}$$

We conclude that $y(t) = \frac{2}{3}e^{-3t} + \frac{1}{3}$.

 \triangleleft

Linear variable coefficients equations

Theorem (Variable coefficients)

Given continuous functions $a, b : \mathbb{R} \to \mathbb{R}$ and given constants $t_0, y_0 \in \mathbb{R}$, the IVP

$$y' = a(t)y + b(t)$$
 $y(t_0) = y_0$

has the unique solution

$$y(t)=e^{A(t)}\left[y_0+\int_{t_0}^t e^{-A(s)}b(s)ds
ight],$$

where we have introduced the function $A(t) = \int_{t_0}^t a(s) ds$.

Remarks:

(a) The function $\mu(t) = e^{-A(t)}$ is called an integrating factor.

(b) See the proof in the Lecture Notes.

Linear variable coefficients equations

Example

Find the solution y to the IVP

$$t y' = -2y + 4t^2, \qquad y(1) = 2.$$

Solution: We first express the equation as in the Theorem,

$$y' = -\frac{2}{t}y + 4t \implies y' + \frac{2}{t}y = 4.$$

 $e^{f(t)}y' + \frac{2}{t}e^{f(t)}y = 4te^{f(t)}, \quad f'(t) = \frac{2}{t}.$

This function $\mu = e^{f(t)}$ is the integrating factor.

$$f(t) = \int_{1}^{t} \frac{2}{s} ds = 2[\ln(t) - \ln(1)] = 2\ln(t) = \ln(t^{2}).$$

Therefore, $\mu(t) = e^{f(t)} = t^2$.

Linear variable coefficients equations

Example

Find the solution y to the IVP

$$t y' + 2y = 4t^2$$
, $y(1) = 2$.

Solution: The integrating factor is $\mu(t) = t^2$. Hence,

$$t^2\left(y'+\frac{2}{t}y\right)=t^2(4t) \quad \Leftrightarrow \quad t^2y'+2ty=4t^3$$

$$(t^2y)' = 4t^3 \quad \Leftrightarrow \quad t^2y = t^4 + c \quad \Leftrightarrow \quad y = t^2 + \frac{c}{t^2}.$$

The initial condition implies 2 = y(1) = 1 + c, that is, c = 1. We conclude that $y(t) = t^2 + \frac{1}{t^2}$.

 \triangleleft

The Bernoulli equation

Remark: The Bernoulli equation is a non-linear differential equation that can be transformed into a linear differential equation.

Definition

Given functions $p, q : \mathbb{R} \to \mathbb{R}$ and a real number n, the differential equation in the unknown function $y : \mathbb{R} \to \mathbb{R}$ given by

$$y' + p(t) y = q(t) y^n$$

is called the Bernoulli equation.

Theorem

The function $y : \mathbb{R} \to \mathbb{R}$ is a solution of the Bernoulli equation for

 $y'+p(t)y=q(t)y^n, \qquad n\neq 1,$

iff the function $v = 1/y^{(n-1)}$ is solution of the linear differential equation v' - (n-1)p(t)v = -(n-1)q(t).

The Bernoulli equation

Example

Given arbitrary constants $a \neq 0$ and b, find every solution of the differential equation

$$y' = a y + b y^3.$$

Solution: This is a Bernoulli equation. Divide the equation by y^3 ,

$$\frac{y'}{y^3} = \frac{a}{y^2} + b.$$

Introduce the function $v = 1/y^2$, with derivative $v' = -2\left(\frac{y'}{y^3}\right)$, into the differential equation above,

$$-\frac{v'}{2} = av + b \quad \Rightarrow \quad v' = -2av - 2b \quad \Rightarrow \quad v' + 2av = -2b.$$

The Bernoulli equation

Example

Given arbitrary constants $a \neq 0$ and b, find every solution of the differential equation b = 1 + 3

$$y' = a y + b y^3.$$

Solution: Recall: v' + 2av = -2b.

The last equation is a linear differential equation for v. This equation can be solved using the integrating factor method. Multiply the equation by $\mu(t) = e^{2at}$,

$$(e^{2at}v)' = -2b e^{2at} \quad \Rightarrow \quad e^{2at}v = -\frac{b}{a}e^{2at} + c$$

We obtain that $v = c e^{-2at} - \frac{b}{a}$. Since $v = 1/y^2$,

$$\frac{1}{y^2} = c e^{-2at} - \frac{b}{a} \quad \Rightarrow \quad y(t) = \pm \frac{1}{\left(c e^{-2at} - \frac{b}{a}\right)^{1/2}}. \quad <$$