Review for Final Exam.
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Monday 12/09, 12:45-2:45pm in CC-403.
Exam is cumulative, 12-14 problems.

5 grading attempts per problem.
Problems similar to homeworks.
Integration and LT tables provided.

No notes, no books, no calculators.

Heat Eq. and Fourier Series (Chptr.6).
Eigenvalue-Eigenfunction BVP (Chptr. 6).
Systems of linear Equations (Chptr. 5).
Laplace transforms (Chptr. 4).

Second order linear equations (Chptr. 2).
First order differential equations (Chptr. 1).
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2
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If n = 2k, then by = % [(-1)*—1] =0.
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Fourier Series

Example

Find the Fourier series of the even-periodic extension of the
function f(x) =2 — x for x € (0,2).

. 4 n
Solution: Recall: b, =0, ap =2, a, = W[l —(-1)"].
If n =2k, then ay, = 4 [1- (—1)2k] =0.
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Fourier Series

Example

Find the Fourier series of the even-periodic extension of the
function f(x) =2 — x for x € (0,2).

Solution: Recall: b, =0, ap =2, a, = %[1 —(-1)"].
If n =2k, then ay = 4 [1- (—1)2k] =0.
(2k)2m2
If n=2k — 1, then we obtain
a2k-1) = (2kj1)27r2 [1-(-1)*7Y



Fourier Series

Example

Find the Fourier series of the even-periodic extension of the
function f(x) =2 — x for x € (0,2).

Solution: Recall: b, =0, ap =2, a, = %[1 —(-1)"].
If n =2k, then ay = 4 [1- (—1)2k] =0.
(2k)2m2
If n=2k — 1, then we obtain
ey = =g 1~ V) = i



Fourier Series

Example

Find the Fourier series of the even-periodic extension of the
function f(x) =2 — x for x € (0,2).

Solution: Recall: b, =0, ap =2, a, = #[1 —(-1)"].
If n =2k, then ay = 4 [1- (—1)2k] =0.
(2k)2m2
If n=2k — 1, then we obtain
ey = =g 1~ V) = i

. B 8 — 1 (2k — 1)mx
We conclude: f(x)—1+; ;(2/(1)2 cos( 5 >.<1



Review for Final Exam.

Heat Eq. and Fourier Series (Chptr.6).
Eigenvalue-Eigenfunction BVP (Chptr. 6).
Systems of linear Equations (Chptr. 5).
Laplace transforms (Chptr. 4).

Second order linear equations (Chptr. 2).

vV v v v v Y

First order differential equations (Chptr. 1).



Eigenvalue-Eigenfunction BVP.
Example
Find the positive eigenvalues and their eigenfunctions of

y"+Ay =0, y(0)=0, y(8)=0.



Eigenvalue-Eigenfunction BVP.
Example
Find the positive eigenvalues and their eigenfunctions of

y"+Ay =0, y(0)=0, y(8)=0.

Solution: Since A > 0,



Eigenvalue-Eigenfunction BVP.
Example
Find the positive eigenvalues and their eigenfunctions of

y"+Ay =0, y(0)=0, y(8)=0.

Solution: Since A > 0, introduce \ = 2,



Eigenvalue-Eigenfunction BVP.
Example
Find the positive eigenvalues and their eigenfunctions of

y"+Ay =0, y(0)=0, y(8)=0.

Solution: Since A > 0, introduce A = p?, with > 0.



Eigenvalue-Eigenfunction BVP.
Example
Find the positive eigenvalues and their eigenfunctions of

y"+Ay =0, y(0)=0, y(8)=0.

Solution: Since A > 0, introduce A = p?, with > 0.

x) = e™ implies that r is solution of
y



Eigenvalue-Eigenfunction BVP.
Example
Find the positive eigenvalues and their eigenfunctions of

y"+Ay =0, y(0)=0, y(8)=0.

Solution: Since A > 0, introduce A = p?, with > 0.
y(x) = e™ implies that r is solution of

p(r)=r*+u?=0



Eigenvalue-Eigenfunction BVP.
Example
Find the positive eigenvalues and their eigenfunctions of

y"+Ay =0, y(0)=0, y(8)=0.

Solution: Since A > 0, introduce A = p?, with > 0.
y(x) = e™ implies that r is solution of

p(r)=r+u2=0 = rp=4ui



Eigenvalue-Eigenfunction BVP.
Example
Find the positive eigenvalues and their eigenfunctions of

y"+Ay =0, y(0)=0, y(8)=0.

Solution: Since A > 0, introduce A = p?, with > 0.
y(x) = e™ implies that r is solution of

p(r)=r*+u2=0 = r=4pui

The general solution is y(x) = ¢ cos(ux) + ¢ sin(ux).



Eigenvalue-Eigenfunction BVP.
Example
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0 =y(0)
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Solution: Since A > 0, introduce A = p2, with > 0.
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Solution: Since A > 0, introduce A = p?, with > 0.
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Solution: Since A > 0, introduce A = p?, with > 0.
y(x) = e™ implies that r is solution of
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Example
Find the positive eigenvalues and their eigenfunctions of

y"+Ay =0 y(0)=0, y(8)=0.
Solution: Since A > 0, introduce A = p?, with > 0.
y(x) = e™ implies that r is solution of

p(r)=r*+u2=0 = r=4pui
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y(x) = e™ implies that r is solution of
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Eigenvalue-Eigenfunction BVP.
Example
Find the positive eigenvalues and their eigenfunctions of

y"+Ay =0 y(0)=0, y(8)=0.
Solution: Since A > 0, introduce A = p?, with > 0.
y(x) = e™ implies that r is solution of

p(r)=r*+u2=0 = r=4pui
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Example

Find the positive eigenvalues and their eigenfunctions of
y'+Ay =0 y(0)=0, y(8)=0.
Solution: The general solution is y(x) = c1 cos(ux) + ¢ sin(ux).
The boundary conditions imply:
0=y(0)=ca = y(x)=csin(ux).
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Find the positive eigenvalues and their eigenfunctions of
y'+Ay =0 y(0)=0, y(8)=0.
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Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of
y'+Ay =0 y(0)=0, y(8)=0.
Solution: The general solution is y(x) = c1 cos(ux) + ¢ sin(ux).
The boundary conditions imply:
0=y(0)=ca = y(x)=csin(ux).
0=y'(8) = cpuucos(u8), c#0 = cos(u8)=0.



Eigenvalue-Eigenfunction BVP.

Example

Find the positive eigenvalues and their eigenfunctions of
y'+Ay=0, y(0)=0, y'(8)=0.
Solution: The general solution is y(x) = c1 cos(ux) + ¢ sin(ux).
The boundary conditions imply:
0=y(0)=c = y(x)=csin(ux).
0=y'(8) = cpuucos(u8), c#0 = cos(u8)=0.
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Example
Find the positive eigenvalues and their eigenfunctions of

y'+Ay=0, y(0)=0, y'(8)=0.
Solution: The general solution is y(x) = c1 cos(ux) + ¢ sin(ux).
The boundary conditions imply:
0=y(0)=ca = y(x)=csin(ux).
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Eigenvalue-Eigenfunction BVP.

Example
Find the positive eigenvalues and their eigenfunctions of

y'+Ay =0 y(0)=0, y(8)=0.
Solution: The general solution is y(x) = c1 cos(ux) + ¢ sin(ux).
The boundary conditions imply:

0=y(0)=ca = y(x)=csin(ux).

0=y'(8) = coprcos(u8), @ #0 = cos(u8)=0.
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=(2 1)—= =—
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Eigenvalue-Eigenfunction BVP.

Example
Find the positive eigenvalues and their eigenfunctions of

y'+Ay =0 y(0)=0, y(8)=0.
Solution: The general solution is y(x) = c1 cos(ux) + ¢ sin(ux).
The boundary conditions imply:

0=y(0)=ca = y(x)=csin(ux).

0=y'(8) = coprcos(u8), @ #0 = cos(u8)=0.

s (2n+1)m
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Find the non-negative eigenvalues and their eigenfunctions of

y'+Ay=0, y'(0)=0, y(8)=0
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Example
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y'+Ay=0, y'(0)=0, y(8)=0
Solution: Case A > 0. Then, y(x) = c1 cos(ux) + ¢z sin(px).
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Then, choosing ¢; =1, for n =1,2,--- holds

- (5).



Eigenvalue-Eigenfunction BVP.
Example
Find the non-negative eigenvalues and their eigenfunctions of

y'+Ay=0, y'(0)=0, y(8)=0
Solution: Case A > 0. Then, y(x) = c1 cos(ux) + ¢z sin(px).
Then, y'(x) = —c1p sin(ux) 4+ cop cos(ux). The B.C. imply:
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Then, choosing ¢; =1, for n =1,2,--- holds
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Solution: The case A = 0. The general solution is

y(x) = a + ax.
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Example
Find the non-negative eigenvalues and their eigenfunctions of

y'+Ay =0, y'(0)=0, y(8)=0.
Solution: The case A = 0. The general solution is
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The B.C. imply:
0=y'(0)



Eigenvalue-Eigenfunction BVP.

Example
Find the non-negative eigenvalues and their eigenfunctions of

y'+Ay =0, y'(0)=0, y(8)=0.
Solution: The case A = 0. The general solution is
y(x) = a + ax.
The B.C. imply:
0=y (0)=c



Eigenvalue-Eigenfunction BVP.

Example
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Example
Find the non-negative eigenvalues and their eigenfunctions of

y'+Ay =0, y'(0)=0, y(8)=0.
Solution: The case A = 0. The general solution is
y(x) = a + ax.
The B.C. imply:
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Example
Find the non-negative eigenvalues and their eigenfunctions of

y'+Ay =0, y'(0)=0, y(8)=0.
Solution: The case A = 0. The general solution is
y(x) = a + ax.
The B.C. imply:
0=y'0)=cc = y(x)=a, y(x)=0
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Eigenvalue-Eigenfunction BVP.

Example
Find the non-negative eigenvalues and their eigenfunctions of

y'+Ay =0, y'(0)=0, y(8)=0.
Solution: The case A = 0. The general solution is
y(x) = a + ax.
The B.C. imply:
0=y'0)=cc = y(x)=a, y(x)=0
0=y'(8) =0.



Eigenvalue-Eigenfunction BVP.

Example
Find the non-negative eigenvalues and their eigenfunctions of

y'+Ay =0, y'(0)=0, y(8)=0.
Solution: The case A = 0. The general solution is
y(x) = a + ax.
The B.C. imply:
0=y0)=c = yx)=a, y(x)=0.
0=y'(8) =0.

Then, choosing ¢; = 1, holds,

A=0,



Eigenvalue-Eigenfunction BVP.

Example
Find the non-negative eigenvalues and their eigenfunctions of

y'+Ay =0, y'(0)=0, y(8)=0.
Solution: The case A = 0. The general solution is
y(x) = a + ax.
The B.C. imply:
0=y0)=c = yx)=a, y(x)=0.
0=y'(8) =0.
Then, choosing ¢; = 1, holds,
A=0, y(x) =1
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A Boundary Value Problem.

Example
Find the solution of the BVP
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Solution: y(x) = e™ implies that r is solution of
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Example
Find the solution of the BVP

y'+y=0, y(0)=1, y(x/3)=0.
Solution: y(x) = e™ implies that r is solution of

p(r)=r*+u>=0 = ry=-=+i



A Boundary Value Problem.

Example
Find the solution of the BVP

y'+y=0, y(0)=1, y(x/3)=0.
Solution: y(x) = e™ implies that r is solution of

p(r)=r*+u>=0 = ry=-=+i

The general solution is y(x) = ¢1 cos(x) + ¢ sin(x).



A Boundary Value Problem.

Example
Find the solution of the BVP

y'+y=0, y(0)=1, y(r/3)=0.
Solution: y(x) = e™ implies that r is solution of
p(r)=r*+u>=0 = ry=-=+i
The general solution is y(x) = ¢1 cos(x) + ¢ sin(x).

Then, y'(x) = —c¢ sin(x) + ¢, cos(x).
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y'+y=0, y(0)=1, y(r/3)=0.
Solution: y(x) = e™ implies that r is solution of
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The general solution is y(x) = ¢1 cos(x) + ¢ sin(x).
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1=y'(0)
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A Boundary Value Problem.

Example
Find the solution of the BVP

y'+y=0, y(0)=1, y(r/3)=0.
Solution: y(x) = e™ implies that r is solution of
p(r)=r*+u>=0 = ry=-=+i
The general solution is y(x) = ¢1 cos(x) + ¢ sin(x).
Then, y'(x) = —c1 sin(x) 4+ 2 cos(x). The B.C. imply:
1=y'(0)=c = y(x)=c cos(x) +sin(x).



A Boundary Value Problem.

Example
Find the solution of the BVP

y'+y=0, y(0)=1, y(r/3)=0.
Solution: y(x) = e™ implies that r is solution of
p(r)=r*+u>=0 = ry=-=+i
The general solution is y(x) = ¢1 cos(x) + ¢ sin(x).
Then, y'(x) = —c1 sin(x) 4+ 2 cos(x). The B.C. imply:
1=y'(0)=c = y(x)=c cos(x) +sin(x).

0=y(n/3)
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Example
Find the solution of the BVP

y'+y=0, y(0)=1, y(r/3)=0.
Solution: y(x) = e™ implies that r is solution of
p(r)=r*+u>=0 = ry=-=+i
The general solution is y(x) = ¢1 cos(x) + ¢ sin(x).
Then, y'(x) = —c1 sin(x) 4+ 2 cos(x). The B.C. imply:
1=y'(0)=c = y(x)=c cos(x) +sin(x).

0 =y(xw/3) = c1 cos(w/3) + sin(xw/3)
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y'+y=0, y(0)=1, y(r/3)=0.
Solution: y(x) = e™ implies that r is solution of
p(r)=r*+u>=0 = ry=-=+i
The general solution is y(x) = ¢; cos(x) + ¢ sin(x).
Then, y'(x) = —c1 sin(x) 4+ 2 cos(x). The B.C. imply:
1=y'(0)=c = y(x)=c cos(x) +sin(x).
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A Boundary Value Problem.

Example
Find the solution of the BVP

y'+y=0, y(0)=1, y(r/3)=0.
Solution: y(x) = e™ implies that r is solution of
p(r)=r*+u>=0 = ry=-=+i
The general solution is y(x) = ¢1 cos(x) + ¢ sin(x).
Then, y'(x) = —c1 sin(x) 4+ 2 cos(x). The B.C. imply:
1=y'(0)=c = y(x)=c cos(x) +sin(x).

sin(m/3)

0=y(n/3) = ¢ cos(w/3) +sin(w/3) = = ~cos(n/3)"
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A Boundary Value Problem.

Example
Find the solution of the BVP

y'+y=0, y(0)=1, y(x/3)=0.
Solution: y(x) = e™ implies that r is solution of

p(r)=r*+u>=0 = ry=-=+i

The general solution is y(x) = ¢; cos(x) + ¢ sin(x).
Then, y'(x) = —c1 sin(x) 4+ 2 cos(x). The B.C. imply:
1=y'(0)=c = y(x)=c cos(x) +sin(x).
B B _ _ sin(m/3)
0= y(w/i)f; c1 cos(m/3) +sin(n/3) = a = ~cos(n/3)"
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A Boundary Value Problem.

Example
Find the solution of the BVP

y'+y=0, y(0)=1, y(r/3)=0.
Solution: y(x) = e™ implies that r is solution of
p(r)=r*+u>=0 = ry=-=+i
The general solution is y(x) = ¢1 cos(x) + ¢ sin(x).
Then, y'(x) = —c1 sin(x) 4+ 2 cos(x). The B.C. imply:
1=y'(0)=c = y(x)=c cos(x) +sin(x).

B B _ _ sin(m/3)
0=y(n/3) = ¢ cos(w/3) +sin(w/3) = = ~cos(n/3)"
= —@ = —V3 = y(x) = —V/3 cos(x) + sin(x).

1/2
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Review for Final Exam.

Heat Eq. and Fourier Series (Chptr.6).
Eigenvalue-Eigenfunction BVP (Chptr. 6).
Systems of linear Equations (Chptr. 5).
Laplace transforms (Chptr. 4).

Second order linear equations (Chptr. 2).

vV v v v v Y

First order differential equations (Chptr. 1).
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v —a+ b/, the complex-valued fundamental solutions
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Summary: Find solutions of x’ = Ax, with A a 2 x 2 matrix.

First find the eigenvalues )\; and the eigenvectors v(7) of A.
(a) If Ay # Ao, real, then {v(1) v(®)} are linearly independent, and
the general solution is x(x) = c; v eMt 4 ¢, v(?) Mot

(b) If A1 # A2, complex, then denoting Ay = o £+ 37 and
v —a+ b/, the complex-valued fundamental solutions
x(F) = (a+bi) eloEBt

x(F) = et (a + bi) [cos(Bt) + isin(Bt)].
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Summary: Find solutions of x’ = Ax, with A a 2 x 2 matrix.

First find the eigenvalues )\; and the eigenvectors v(7) of A.

(a) If Ay # Ao, real, then {v(1) v(®)} are linearly independent, and
the general solution is x(x) = c; v eMt 4 ¢, v(?) Mot

(b) If A1 # A2, complex, then denoting Ay = o £+ 37 and
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Summary: Find solutions of x’ = Ax, with A a 2 x 2 matrix.

First find the eigenvalues )\; and the eigenvectors v(7) of A.
(a) If Ay # Ao, real, then {v(1) v(®)} are linearly independent, and
the general solution is x(x) = c; v eMt 4 ¢, v(?) Mot

(b) If A1 # A2, complex, then denoting Ay = o £+ 37 and
v —a+ b/, the complex-valued fundamental solutions

x(F) = (a+bi) eloEBt
x(*) = e (a + bi) [cos(Bt) + isin(Bt)].
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Systems of linear Equations.

Summary: Find solutions of x’ = Ax, with A a 2 x 2 matrix.

First find the eigenvalues )\; and the eigenvectors v(7) of A.

(a) If Ay # Ao, real, then {v(1) v(®)} are linearly independent, and
the general solution is x(x) = c; v eMt 4 ¢, v(?) Mot

(b) If A1 # A2, complex, then denoting Ay = o £+ 37 and
v —a+ b/, the complex-valued fundamental solutions

x(F) = (a+bi) eloEBt
x(*) = e (a + bi) [cos(Bt) + isin(Bt)].
x5 = et [acos(At) —bsin(Bt)] £ie®* [asin(3t)+bcos(Gt)].
Real-valued fundamental solutions are
x(D) = et [acos(8t) — bsin(Bt)],

x?) = e [asin((t) + b cos(5t)].
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Summary: Find solutions of X' = Ax, with A a 2 x 2 matrix.
First find the eigenvalues \; and the eigenvectors v() of A.

(c) If A\ = A2 = A, real, and their eigenvectors {v(l),v(2)} are
linearly independent, then the general solution is

x(x) = co vV M 4 v et
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First find the eigenvalues \; and the eigenvectors v() of A.
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Summary: Find solutions of X’ = Ax, with A a 2 x 2 matrix.
First find the eigenvalues \; and the eigenvectors v() of A.

(c) If A\ = A2 = A, real, and their eigenvectors {v(l),v(2)} are
linearly independent, then the general solution is

x(x) = co vV M 4 v et
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then find w solution of (A — A/)w = v. Then fundamental
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Systems of linear Equations.

Summary: Find solutions of X’ = Ax, with A a 2 x 2 matrix.

First find the eigenvalues \; and the eigenvectors v() of A.

(c) If A\; = X\a = ), real, and their eigenvectors {v(}) v(?)} are
linearly independent, then the general solution is

x(x) = co vV M 4 v et

(d) If Ay = A2 = A, real, and there is only one eigendirection v,
then find w solution of (A — A/)w = v. Then fundamental
solutions to the differential equation are given by

x =ver  x®) = (vt+w)e.

Then, the general solution is

x=cveM 4o (vt+w)er
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Systems of linear Equations.

Example

_ _ . 3 1 4
Find the solution to: x' = Ax, x(0)= [2] , A= [2 _1]-
Solution:

1-x 4
PV=" 5 (1o )\)‘

=(A-1)(\+1)—-8=X—-1-8,
p(A) =X —-9=0 = \.=43
Case \y =3,

A-—-3l
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2 2 -1
Solution:
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Solution:
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Systems of linear Equations.

Example

_ _ . 3 1 4
Find the solution to: x' = Ax, x(0)= [2] , A= [2 _1]-
Solution:

1-)) 4 ‘

p()\):‘( 2 (1o =(A-1)(\+1)—-8=X—-1-8,

p(A) =X —-9=0 = \.=43

Case \y =3,

L |72 4 1 -2 _ +) _ |2
A 3/—[2 _4}—>[0 0] = vy =2wn = Vv —[J
Case \_ = -3,

A+ 3l



Systems of linear Equations.

Example

_ _ . 3 1 4
Find the solution to: x' = Ax, x(0)= [2] , A= [2 _1]-
Solution:

1-)) 4 ‘

p()\):‘( 2 (1o =(A-1)(\+1)—-8=X—-1-8,

p(A) =X —-9=0 = \.=43

Case \y =3,

L |72 4 1 -2 _ +) _ |2
A 3/—[2 _4}—>[0 0] = vy =2wn = Vv —[J
Case \_ = -3,
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Example

_ _ . 3 1 4
Find the solution to: x' = Ax, x(0)= [2] , A= [2 _1]-
Solution:

1-)) 4 ‘

p()\):‘( 2 (1o =(A-1)(\+1)—-8=X—-1-8,

p(A) =X —-9=0 = \.=43

Case \y =3,
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Systems of linear Equations.

Example

_ _ . 3 1 4
Find the solution to: x' = Ax, x(0)= [2] , A= [2 _1]-
Solution:

1-)) 4 ‘

p()\):‘( 2 (1o =(A-1)(\+1)—-8=X—-1-8,

p(A) =X —-9=0 = \.=43

Case \y =3,

L |72 4 1 -2 _ +) _ |2
A 3/—[2 _4}—>[0 0] = vy =2wn = Vv —[J
Case \_ = -3,

4 4 1 1
A—|—3/:|:2 2:|—>|:0 0:| = Vi =—W



Systems of linear Equations.

Example

_ _ . 3 1 4
Find the solution to: x' = Ax, x(0)= [2] , A= [2 _1]-
Solution:

1-)) 4 ‘

p()\):‘( 2 (1o =(A-1)(\+1)—-8=X—-1-8,

p(A) =X —-9=0 = \.=43

Case \y =3,

L |72 4 1 -2 _ +) _ |2
A 3/—[2 _4}—>[0 0] = vy =2wn = Vv —[J
Case \_ = -3,

|4 4 1 1 _ () _ -1
/4—1—3/—[2 2}%[0 0] = vy=— = V —[ ]
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Solution: Recall: Ay = +3, v(t) = [



Systems of linear Equations.

Example
. . / 3 1 4
Find the solution to: x' = Ax, x(0) = , A= .
2 2 -1
=) = |71
=7
~3t

The general solution is x(t) = ¢ [2} e+ o [_ } e

Solution: Recall: Ay = 43, vit) = [ﬂ

1 1



Systems of linear Equations.

Example

Find the solution to: x' = Ax, x(0) = B]

1 4
, A[z _1].
v<>:[—11].
-3t

The general solution is x(t) = ¢ [ﬂ e+ o [_1} e

Solution: Recall: Ay = 43, vit) = [ﬂ

The initial condition implies,



Systems of linear Equations.

Example
: . / 3 1 4
Find the solution to: x' = Ax, x(0) = , A= .

. 2 -1 _
The general solution is x(t) = ¢ [ } et + o [ } e 3t
The initial condition implies,

E] =x(0) = a m +o [11]
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: . / 3 1 4
Find the solution to: x' = Ax, x(0) = , A= .
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The initial condition implies,
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Systems of linear Equations.

Example
: . / 3 1 4
Find the solution to: x' = Ax, x(0) = , A= .
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The general solution is x(t) = ¢ [2} e+ o [ } e 3t
The initial condition implies,
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Systems of linear Equations.

Example
: . / 3 1 4
Find the solution to: x' = Ax, x(0) = , A= .

-1
The general solution is x(t) = ¢ [2} e+ o [ } e 3t
The initial condition implies,

R R T K ]
e bl = )=l




Systems of linear Equations.

Example
: . / 3 1 4
Find the solution to: x' = Ax, x(0) = , A= .

-1
The general solution is x(t) = ¢ [2} e+ o [ } e 3t
The initial condition implies,

[ o-afl-ali] - B
a2 98 - -

We conclude: x(t) = g




Review for Final Exam.

Heat Eq. and Fourier Series (Chptr.6).
Eigenvalue-Eigenfunction BVP (Chptr. 6).
Systems of linear Equations (Chptr. 5).
Laplace transforms (Chptr. 4).

Second order linear equations (Chptr. 2).
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First order differential equations (Chptr. 1).
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Summary:
» Main Properties:
LlfO(8)] = s" LIF(1)] — s £(0) — - — F"7D(0); - (18)
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LI, = £le™ F(0)] (14)

» Convolutions:

L[(f = g)(1)] = LIF(t)] LLg(t)]-



Laplace transforms.

Summary:
» Main Properties:
LlfO(8)] = s" LIF(1)] — s £(0) — - — F"7D(0); - (18)
e~ LIF(£)] = Llue(t) F(t — O)]; (13)
LI, = £le™ F(0)] (14)

» Convolutions:
L[(f = g)(1)] = L[f(1)] Lg(1)]-

» Partial fraction decompositions, completing the squares.
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Example
Use L.T. to find the solution to the IVP
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Laplace transforms.

Example
Use L.T. to find the solution to the IVP
y'+9y =us(t), y(0)=3,  y'(0)=2
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Laplace transforms.

Example
Use L.T. to find the solution to the IVP

y'+9y =us(t), y(0)=3,  y'(0)=2
Solution:

L[y] = 3 L[cos(3t)]+ % L[sin(3t)]+ % (E[u5(t)] — L[us(t) cos(3(t—5))] ) :

Therefore, we conclude that,

y(t) = 3cos(3t) + % sin(3t) + “59“) 1 cos(3(t — 5)|-



Review for Final Exam.

Heat Eq. and Fourier Series (Chptr.6).
Eigenvalue-Eigenfunction BVP (Chptr. 6).
Systems of linear Equations (Chptr. 5).
Laplace transforms (Chptr. 4).

Second order linear equations (Chptr. 2).

vV v v v v Y

First order differential equations (Chptr. 1).



Second order linear equations.
Summary: Solve y”" + a1y’ + agy = g(t).



Second order linear equations.
Summary: Solve y”" + a1y’ + agy = g(t).

First find fundamental solutions y(t) = e'* to the case g = 0,



Second order linear equations.
Summary: Solve y”" + a1y’ + agy = g(t).

First find fundamental solutions y(t) = e'* to the case g = 0,
where r is a root of p(r) = r?> + air + ag.



Second order linear equations.
Summary: Solve y”" + a1y’ + agy = g(t).

First find fundamental solutions y(t) = e'* to the case g = 0,
where r is a root of p(r) = r?> + air + ag.

(a) If n # ra, real,



Second order linear equations.
Summary: Solve y”" + a1y’ + agy = g(t).

First find fundamental solutions y(t) = e'* to the case g = 0,
where r is a root of p(r) = r?> + air + ag.

(a) If rn # ra, real, then the general solution is

y(t) = cp et 4 et



Second order linear equations.
Summary: Solve y”" + a1y’ + agy = g(t).

First find fundamental solutions y(t) = e'* to the case g = 0,
where r is a root of p(r) = r?> + air + ag.

(a) If rn # ra, real, then the general solution is
y(t) = cp et 4 et

(b) If r1 # rp, complex,



Second order linear equations.
Summary: Solve y”" + a1y’ + agy = g(t).

First find fundamental solutions y(t) = e'* to the case g = 0,
where r is a root of p(r) = r?> + air + ag.

(a) If rn # ra, real, then the general solution is
y(t) = cp et 4 et

(b) If r1 # rp, complex, then denoting ri = o & i,



Second order linear equations.
Summary: Solve y” + a1y’ + aoy = g(t).
First find fundamental solutions y(t) = e'* to the case g = 0,
where r is a root of p(r) = r?> + air + ag.
(a) If rn # ra, real, then the general solution is
y(t) = cp et 4 et

(b) If r1 # rp, complex, then denoting ri = o & i,
complex-valued fundamental solutions are

}/j:(t) _ e(aiﬁi)t



Second order linear equations.
Summary: Solve y”" + a1y’ + agy = g(t).

First find fundamental solutions y(t) = e'* to the case g = 0,
where r is a root of p(r) = r?> + air + ag.

(a) If rn # ra, real, then the general solution is
y(t) = cp et 4 et

(b) If r1 # rp, complex, then denoting ri = o & i,
complex-valued fundamental solutions are

yi(t) = e@ENt oy (1) = et [cos(Bt) £ isin(Bt)],



Second order linear equations.
Summary: Solve y”" + a1y’ + agy = g(t).

First find fundamental solutions y(t) = e'* to the case g = 0,
where r is a root of p(r) = r?> + air + ag.

(a) If rn # ra, real, then the general solution is
y(t) = cp et 4 et

(b) If r1 # rp, complex, then denoting ri = o & i,
complex-valued fundamental solutions are

yi(t) = e@ENt oy (1) = et [cos(Bt) £ isin(Bt)],

and real-valued fundamental solutions are



Second order linear equations.
Summary: Solve y”" + a1y’ + agy = g(t).

First find fundamental solutions y(t) = e'* to the case g = 0,
where r is a root of p(r) = r?> + air + ag.

(a) If rn # ra, real, then the general solution is
y(t) = cp et 4 et

(b) If r1 # rp, complex, then denoting ri = o & i,
complex-valued fundamental solutions are

yi(t) = e@ENt oy (1) = et [cos(Bt) £ isin(Bt)],
and real-valued fundamental solutions are

y1(t) = e cos(pt),



Second order linear equations.
Summary: Solve y”" + a1y’ + agy = g(t).

First find fundamental solutions y(t) = e'* to the case g = 0,
where r is a root of p(r) = r?> + air + ag.

(a) If rn # ra, real, then the general solution is
y(t) = cp et 4 et

(b) If r1 # rp, complex, then denoting ri = o & i,
complex-valued fundamental solutions are

yi(t) = e@ENt oy (1) = et [cos(Bt) £ isin(Bt)],
and real-valued fundamental solutions are

y1(t) = e cos(pt), yo(t) = et sin(St).



Second order linear equations.
Summary: Solve y”" + a1y’ + agy = g(t).

First find fundamental solutions y(t) = e'* to the case g = 0,
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Second order linear equations.
Summary: Solve y”" + a1y’ + agy = g(t).

First find fundamental solutions y(t) = e'* to the case g = 0,
where r is a root of p(r) = r?> + air + ag.

(a) If rn # ra, real, then the general solution is
y(t) = cp et 4 et

(b) If r1 # rp, complex, then denoting ri = o & i,
complex-valued fundamental solutions are

yi(t) = e@ENt oy (1) = et [cos(Bt) £ isin(Bt)],
and real-valued fundamental solutions are
y1(t) = e cos(pt), yo(t) = et sin(St).
If n = r = r, real, then the general solution is

y(t) = (a1 + at) e™.
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Example
Knowing that y1(x) = x2 solves x? y” — 4xy’ + 6y = 0, with
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Solution: Use the reduction of order method. We verify that
y1= x2 solves the equation,

x?(2) — 4x(2x) +6x* = 0.

Look for a solution y»(x) = v(x) y1(x), and find an equation for v.

Yo =Xx°v, V5 = X2V + 2xv, vy = x2V" + 4xv' + 2v.

X ( 2y 1 axy' +2v) — 4X(X2vl+2xv)+6(X2v) =0.
XMW+ (83 — a3)V 4 (2x% — 8x2 +6x%) v = 0.
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Example
Knowing that y1(x) = x2 solves x? y” — 4xy’ + 6y = 0, with
x > 0, find a second solution y» not proportional to y;.

Solution: Use the reduction of order method. We verify that
y1= x2 solves the equation,

x?(2) — 4x(2x) +6x* = 0.

Look for a solution y»(x) = v(x) y1(x), and find an equation for v.

Yo =Xx°v, V5 = X2V + 2xv, vy = x2V" + 4xv' + 2v.
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Example
Knowing that y1(x) = x2 solves x? y” — 4xy’ + 6y = 0, with
x > 0, find a second solution y» not proportional to y;.

Solution: Use the reduction of order method. We verify that
y1= x2 solves the equation,

x?(2) — 4x(2x) +6x* = 0.

Look for a solution y»(x) = v(x) y1(x), and find an equation for v.

Yo =Xx°v, V5 = X2V + 2xv, vy = x2V" + 4xv' + 2v.

X ( 2y 1 axy' +2v) — 4X(X2vl+2xv)+6(X2v) =0.
XMW+ (83 — a3)V 4 (2x% — 8x2 +6x%) v = 0.
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Second order linear equations.

Example
Knowing that y1(x) = x2 solves x? y” — 4xy’ + 6y = 0, with
x > 0, find a second solution y» not proportional to y;.

Solution: Use the reduction of order method. We verify that
y1= x2 solves the equation,

x?(2) — 4x(2x) +6x* = 0.

Look for a solution y»(x) = v(x) y1(x), and find an equation for v.

Yo =Xx°v, V5 = X2V + 2xv, vy = x2V" + 4xv' + 2v.

X2(x2V" 4+ axv' +2v) — 4x (x*V/ 4 2xv) + 6 (x*v) = 0.
X 4 (4x3 = 4x3) vV + (2x° — 8x2 + 6x) v = 0.
Vi=0 = v=ca+tox = wm=ocy+oxn.

Choose ¢ =0, cp = 1.



Second order linear equations.

Example
Knowing that y1(x) = x2 solves x? y” — 4xy’ + 6y = 0, with
x > 0, find a second solution y» not proportional to y;.

Solution: Use the reduction of order method. We verify that
y1= x2 solves the equation,

x?(2) — 4x(2x) +6x* = 0.
Look for a solution y»(x) = v(x) y1(x), and find an equation for v.

Yo =Xx°v, V5 = X2V + 2xv, vy = x2V" + 4xv' + 2v.

X2(x2V" 4+ axv' +2v) — 4x (x*V/ 4 2xv) + 6 (x*v) = 0.
X 4 (4x3 = 4x3) vV + (2x° — 8x2 + 6x) v = 0.
Vi=0 = v=ca+tox = wm=ocy+oxn.

Choose ¢; =0, c; = 1. Hence y»(x) = x3, and y;(x) = x°. <
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Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: (1) Solve the homogeneous equation.

yt)=e", p(r)=r —2r-3



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: (1) Solve the homogeneous equation.

y(t)=e" p(r)=r*-2r-3=0.



Second order linear equations.

Example
Find the solution y to the initial value problem

_ 1
y'=2 =3y =3e" y(0)=1, y(0) =7
Solution: (1) Solve the homogeneous equation.

y(t)=e" p(r)=r*-2r-3=0.
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Second order linear equations.

Example
Find the solution y to the initial value problem

_ 1
y'=2 =3y =3e" y(0)=1, y(0) =7
Solution: (1) Solve the homogeneous equation.

y(t)=e" p(r)=r*-2r-3=0.
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Second order linear equations.

Example
Find the solution y to the initial value problem

_ 1
y'=2 =3y =3e" y(0)=1, y(0) =7
Solution: (1) Solve the homogeneous equation.

y(t)=e" p(r)=r*-2r-3=0.

ri:%[2j:\/4+12] :%[21@] =142



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: (1) Solve the homogeneous equation.

y(t)=e" p(r)=r*-2r-3=0.

r— =-1.

ri:%[2j:\/4+12] :%[21@] =1+2 = {r+:



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: (1) Solve the homogeneous equation.

y(t)=e" p(r)=r*-2r-3=0.

r— =-1.
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Fundamental solutions: yi(t) = €3t and y(t) = e L.



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: (1) Solve the homogeneous equation.
y(t)=e" p(r)=r*-2r-3=0.

r— =-1.

ri:%[2j:\/4+12] :%[21@] =1+2 = {r+:
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Fundamental solutions: y;(t) = e’ and ys(t) = e~

(2) Guess yp.



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: (1) Solve the homogeneous equation.

y(t)=e" p(r)=r*-2r-3=0.

1 1 ry =

=2+ VAT =224 Vie =1£2 = { i .

ro=-1.

Fundamental solutions: yi(t) = €3t and y(t) = e L.
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Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: (1) Solve the homogeneous equation.

y(t)=e" p(r)=r*-2r-3=0.

r— =-1.

ri:%[2j:\/4+12] :%[21@] =1+2 = {r+:

Fundamental solutions: yi(t) = €3t and y(t) = e L.
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Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: (1) Solve the homogeneous equation.
y(t)=e" p(r)=r*-2r-3=0.
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Second order linear equations.
Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: (1) Solve the homogeneous equation.

y(t)=e" p(r)=r*-2r-3=0.

ri:%[2j:\/4+12] :%[21@] =142 = {:*i_l

Fundamental solutions: yi(t) = €3t and y(t) = e L.
(2) Guess y,. Since g(t)=3e™ " = y,(t)=ke "

But this y, = ket is solution of the homogeneous equation.



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: (1) Solve the homogeneous equation.

y(t)=e" p(r)=r*-2r-3=0.

r— =-1.

ri:%[2j:\/4+12] :%[21@] =1+2 = {r+:

Fundamental solutions: yi(t) = €3t and y(t) = e L.

(2) Guess y,. Since g(t)=3e™ " = y,(t)=ke "

But this y, = ket is solution of the homogeneous equation.

Then propose y,(t) = kte™".
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1
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Solution: Recall: y,(t) = kte .
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Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: Recall: y,(t) = kte™". This is correct, since te"* is not
solution of the homogeneous equation.
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Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: Recall: y,(t) = kte™". This is correct, since te"* is not
solution of the homogeneous equation.

(3) Find the undetermined coefficient k.
yl’, =ke ' —kte t, y,’)’ = 2ke ' kte l.

(—2ke "+ kte ') —2(ke t—kte ') —3(kte F)=3e "

(—2+t—2+2t—3t)ke " =3e " = —4k=3



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= T

Solution: Recall: y,(t) = kte™". This is correct, since te"* is not
solution of the homogeneous equation.

(3) Find the undetermined coefficient k.
yl’, =ke ' —kte t, y,’)’ = 2ke ' kte l.

(—2ke "+ kte ') —2(ke t—kte ') —3(kte F)=3e "

(—2+t—2+2t—-3t)ke ' =3e "' = —4k=3 = k:%,



Second order linear equations.

Example
Find the solution y to the initial value problem
1
y'=2 =3y =3e" y(0)=1, y(0)=7.

Solution: Recall: y,(t) = kte™". This is correct, since te"* is not
solution of the homogeneous equation.

(3) Find the undetermined coefficient k.
yl’, =ke ' —kte t, y,’)’ = 2ke ' kte l.
(—2ke "+ kte ') —2(ke t—kte ') —3(kte F)=3e "
(—2+t—2+2t—3t)ke '=3e ' = —4k=3 = k:—§

We obtain: y,(t) = —Zte*t.



Second order linear equations.

Example
Find the solution y to the initial value problem
1
y'=2y =3y =3e", y(0) =1, y(0)=7.

Solution: Recall: y,(t) = —§te_t.

4
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Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= 7

3
Solution: Recall: y,(t) = —Zte_t.

(4) Find the general solution:
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1
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3
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Second order linear equations.

Example
Find the solution y to the initial value problem

1
y'=2y' =3y =3e"", y(0)=1, y'(0)= 7

3
Solution: Recall: y,(t) = —Zte_t.

. . P
(4) Find the general solution: y(t) =c e + e f — ite £

(5) Impose the initial conditions.



Second order linear equations.

Example

Find the solution y to the initial value problem
1
y'=2y =3y =3e", y(0) =1, y(0)=7.

3
Solution: Recall: y,(t) = —Zte_t.

3
- z t eit.
(5) Impose the initial conditions. The derivative function is
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Second order linear equations.

Example

Find the solution y to the initial value problem
1
y'=2y =3y =3e", y(0) =1, y(0)=7.

Solution: Recall: y,(t) = —§te_t.

4
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(4) Find the general solution: y(t) =c e + e f — ite*t.
(5) Impose the initial conditions. The derivative function is

3
y(t)=3c e —cet - Z(e_t —te t).



Second order linear equations.

Example

Find the solution y to the initial value problem
1
y'=2y =3y =3e", y(0) =1, y(0)=7.

Solution: Recall: y,(t) = —§te_t.

4
. : 3
(4) Find the general solution: y(t) =c e + e f — ite*t.
(5) Impose the initial conditions. The derivative function is

3
y(t)=3c e —cet - Z(e_t —te t).

1=y(0)



Second order linear equations.

Example

Find the solution y to the initial value problem
1
y'=2y =3y =3e", y(0) =1, y(0)=7.

Solution: Recall: y,(t) = —§te_t.

4
. : 3
(4) Find the general solution: y(t) =c e + e f — ite*t.
(5) Impose the initial conditions. The derivative function is

3
y(t)=3c e —cet - Z(e_t —te t).

1=y(0)=c + c,



Second order linear equations.

Example

Find the solution y to the initial value problem
1
y'=2y =3y =3e", y(0) =1, y(0)=7.

Solution: Recall: y,(t) = —§te_t.

4
. : 3
(4) Find the general solution: y(t) =c e + e f — ite*t.
(5) Impose the initial conditions. The derivative function is

3
y(t)=3c e —cet - Z(e_t —te t).

1
1=y(0)=c1 + o, Z:y'(O)



Second order linear equations.

Example

Find the solution y to the initial value problem
1
y'=2y =3y =3e", y(0) =1, y(0)=7.

3
Solution: Recall: y,(t) = —Zte_t.

3
- z t eit.
(5) Impose the initial conditions. The derivative function is

3
y(t)=3c e —cet - Z(e_t —te t).

(4) Find the general solution: y(t) =ci e’ + e’

1 3
1=y(0)=c + o, Z:y'(O):3q—c2—Z.



Second order linear equations.

Example

Find the solution y to the initial value problem
1
y'=2y =3y =3e", y(0) =1, y(0)=7.

Solution: Recall: y,(t) = —§te_t.

4

t t

3
- z te .
(5) Impose the initial conditions. The derivative function is

3
y(t)=3c e —cet - Z(e_t —te t).

(4) Find the general solution: y(t) =c e + e

1 3
1=y(0)=c + o, Z:y'(O):3q—c2—f.

4
at+ca=1,
31—C2:1



Second order linear equations.

Example

Find the solution y to the initial value problem
y'=2y'=3y=3e"f, y(0)=1 y'(0)=-

Solution: Recall: y,(t) = —Zte_t.

3
(4) Find the general solution: y(t) =ci e + et~ "te "

4
(5) Impose the initial conditions. The derivative function is

y(t)=3c e —cet - %(e‘t —te t).
1 3
1=y(0) =a+e, )’(0)_361—C2—Z-

srem -]



Second order linear equations.

Example
Find the solution y to the initial value problem

y' =2y =3y =3¢t y(0)=1, y'(0)=

t t

. 3
Solution: Recall: y(t)=c e + et — Zte* , and

RS



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y' =2y =3y =3¢t y(0)=1, y'(0)= T

t t

. 3
Solution: Recall: y(t)=c e + et — Zte* , and

2l fe)=0 - 3= A



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y' =2y =3y =3¢t y(0)=1, y'(0)= T

t t

. 3
Solution: Recall: y(t)=c e + et — Zte* , and

A= =S A=l



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y' =2y =3y =3¢t y(0)=1, y'(0)= T

t t

. 3
Solution: Recall: y(t)=c e + et — Zte* , and

A= =S A=l

1
Since ¢; = 5 and ¢ = 5



Second order linear equations.

Example
Find the solution y to the initial value problem

1
y' =2y =3y =3¢t y(0)=1, y'(0)= T

t t

. 3
Solution: Recall: y(t)=c e + et — Zte* , and

1 1] [a] 1 al 1 [-1 1] [1] _1]2
3 —1 |e| |1 ol =4 |-3 1] |1 4 |2
Since ¢ — = and ¢ — ~, we obtai
|ncec1—2an cz—2,weo ain,

(e3t + e_t) — %te‘t. 4

N —

y(t) =



Review for Final Exam.

Heat Eq. and Fourier Series (Chptr.6).
Eigenvalue-Eigenfunction BVP (Chptr. 6).
Systems of linear Equations (Chptr. 5).
Laplace transforms (Chptr. 4).

Second order linear equations (Chptr. 2).

vV v v v v Y

First order differential equations (Chptr. 1).
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First order differential equations.

Summary:
» Linear, first order equations: y’ + p(t)y = q(t).

Use the integrating factor method: p(t) = e/ P(D)dt,
» Separable, non-linear equations: h(y)y’ = g(t).
Integrate with the substitution: v = y(t), du = y'(t) dt,

that is,
/h(u) du = /g(t) dt +c.

The solution can be found in implicit of explicit form.

» Homogeneous equations can be converted into separable
equations.

Read page 49 in the textbook.

» No modeling problems from Sect. 2.3.
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First order differential equations.

Summary:
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Read page 77 in the textbook, page 11 in the Lecture Notes.
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First order differential equations.

Summary:
» Bernoulli equations: y' + p(t)y = q(t) y", with n € R.

Read page 77 in the textbook, page 11 in the Lecture Notes.

A Bernoulli equation for y can be converted into a linear

equation for v = =

» Exact equations and integrating factors.
N(x,y)y 4+ M(x,y) = 0.
The equation is exact iff OxN = 9, M.

If the equation is exact, then there is a potential function 1,
such that N =0,¢ and M = 0.

The solution of the differential equation is

w(x,y(x)) =c.
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First order differential equations.

Advice: In order to find out what type of equation is the one you
have to solve, check from simple types to the more difficult types:

1. Linear equations.
(Just by looking at it: y' + a(t)y = b(t).)
2. Bernoulli equations.
(Just by looking at it: y' + a(t)y = b(t) y".)
3. Separable equations.
(Few manipulations: h(y)y’ = g(t).)
4. Homogeneous equations.
(Several manipulations: y' = F(y/t).)
5. Exact equations.
(Check one equation: Ny’ + M =0, and 9;N = 0, M.)

6. Exact equation with integrating factor.
(Very complicated to check.)
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Find all solutions of y/ = ~ Y T ¥~
Xy

Solution:

The sum of the powers in x and y on every term is the

same number, two in this example. The equation is homogeneous.
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X v
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y =XV, y/:xv/—i—v xv/—l—v:u.
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Find all solutions of y' = M
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1
Solution: Recall: i This is a separable equation.

1_|‘i(:()x)v’(x)—1 = /1+(V(X dx—/+c

Use the substitution v = 1+ v, hence du = v/(x) dx
dx
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Y +y+e¥y =0,  y(0)==.

Solution: This is a Bernoulli equation, y’ +y = —e>y", n=3.

y' 1
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