Review for Exam 3.

6 problems, 60 minutes, in CC-415.
5 grading attempts per problem.

Integration table an LT table provided.

>
>

» Problems similar to homeworks.

>

» No notes, no books, no calculators.
>

Exam covers:
» Chapter 4: Laplace Transform methods.

» Definition of Laplace Transform (4.1).
Solving IVP using LT (4.2).
Solving IVP with discontinuous sources using LT, (4.3).
Solving IVP with generalized sources using LT (4.4).
» Convolutions and LT (4.5).
» Chapter 5: Systems of linear equations.
» Systems of linear Differential Equations (5.1).
» 2 x 2 systems (actual 5.7, 5.8, 5.9).

» BVP, eigenfunction problems, (6.1).
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Laplace transforms (Chptr. 4).

Summary:
» Main Properties:
L[ ()] = s" L[f(t)] — sV F0) — - — F7D(0);  (18)
e L[f(t)] = Lluc(t) f(t — c)]; (13)
LI, = £le (1) (14)

» Convolutions:

L[(f « g)(t)] = L[f(2)] LIg(t)].

» Partial fraction decompositions, completing the squares.

Chapter 4: Laplace Transform methods.

Example
Use Laplace Transform to find y solution of

y'=2y'+2y =4(t—-2), y(0)=1, y'(0)=3.

Solution: Compute the LT of the equation,
Ly" 2Ll 1+ 2L[y] = LI5(t —2)] = e

Lly"]=s*LIy] —sy(0) —y'(0), L[yl = sLly] - y(0).
(s> =25+ 2)L[y] —sy(0) — y'(0) +2y(0) = e~**

(s —25s+2)L[y] —s—1=e"*

(5 + 1) + 1 e—2s
(s2—25+2) (s2—2s5+2) '

Lly] =




Chapter 4: Laplace Transform methods.

Example
Use Laplace Transform to find y solution of

y' =2y +2y =4(t—-2), y(0)=1, y'(0)=23.

(S + 1) 1 —2s

Solution: Recall: L[y] = (52— 25 +2) + (52— 25+ 2) e

1
s2—25+2=0 = si:§[2j:\/4—8, complex roots.

225 4+2=(s>-2s+1)—1+2=(s—1)*+1.

B s+1 1 o
M=t eopesa©

s—1+1)+1 1 o
o)=Y =

G-172+1 (s-12+1

Chapter 4: Laplace Transform methods.

Example
Use Laplace Transform to find y solution of

(5_1)+2+ 1 e—25
(s—1)2+1 (s—1)2+1

Solution: Recall: L[y] =

_ (5_1) 1 —2s 1
M=oyt P21t ot
L[cos(at)] = su;;ﬂ L[sin(at)] = ﬂ%

Lly] = [,[cos(t)]‘(s_l) + 2£[sin(t)]|(s_1) e % E[sin(t)]‘(s_l).




Chapter 4: Laplace Transform methods.

Example
Use Laplace Transform to find y solution of

y' =2y +2y=4(t-2), y(0)=1, y'(0)=3.
Solution: Recall:

Lly] = E[cos(t)]|(s_1) + 2 L][sin(t)] ‘(5—1) + e %" E[sin(t)]|(s_1)

and L[f(t)]| (sc) = L[e f(t)]. Therefore,
Lly] = L[e* cos(t)] + 2 L[e" sin(t)] + e~ L[e" sin(t)].
Also recall: e~ L[f(t)] = L[uc(t) F(t — c)]. Therefore,
Lly] = L[e* cos(t)] + 2 L[e" sin(t)] + L[ua(t) e~ sin(t — 2)].

y(t) = [cos(t) +2sin(t)] e + un(t) sin(t —2) 2. <

Chapter 4: Laplace Transform methods.

Example
Sketch the graph of g and use LT to find y solution of

3y —g(8), y(0)=y(0)=0, gt)=d 5 o 57
Vit =g, yO=y0)=0 s®)=1 s .,

Solution: _ _
Express g using step functions,

g(t) = uo(t) et=2).

Therefore,

Llg(t)] = e"*L]e"].

Lluc(t) f(t—c)] = e < L[f(t)]




Chapter 4: Laplace Transform methods.

Example
Sketch the graph of g and use LT to find y solution of

3y —g(t), y(0)=y(0) =0, gt)={ 5 o ‘=7
V=g, yO=YO)=0 s®)=1 sy .,

e—25

Solution: Recall: L[g(t)] =

(s—1) e
z[y”]:i £ly) = £lg(0)] = ¢ — 0
(s> +3)L[y] = -1) = Lly]=e* G213
H(s) = 1 _a (bs+ c)

G113 (-1 (2+3)

1=a(s*+3)+ (bs+c)(s — 1)

Chapter 4: Laplace Transform methods.

Example
Sketch the graph of g and use LT to find y solution of

3y —g(8), y(0)=y(0)=0, gt)=d 5 o =7
Virdy =gl yO)=y0)=0 &)=y 05 .,

Solution: Recall: 1 = a(s® +3) + (bs + c)(s — 1).
1=as®+3a+bs*+cs—bs—c
1=(a+b)s*+(c—b)s+(3a—c)

a+b=0, c—b=0, 3a—c=1.

1 1 1
a=—b c=b —3b—b=1 = b=-—-- a=- c=—-
4 4 4

1r 1 s+ 1

H :—{ _ }

)=7ls-1 23




Chapter 4: Laplace Transform methods.

Example
Sketch the graph of g and use LT to find y solution of
V' 43y =gl y(0) =y (0) =0, g(t)- {O’ -
et=2)  t>02

s+1
s2 43

Solution: Recall: H(s) = %L i ] } L[y] = e 2 H(s).

s V3
H(s) = %[sil 243 \;§s2—f3}’
H(s) = Hc[et] — L[cos(V3t)] - %L[sin(ﬁ t)”.
H(s) = EE( f —cos(V3t) — % sin(\/§t))}.

Chapter 4: Laplace Transform methods.

Example
Sketch the graph of g and use LT to find y solution of

0, t <2,

"1+ 3y = g(t), 0) = y'(0) =0, t) =
y y =g(t), y(0)=y(0) g(t) {e(t2), £ 2.

Solution: Recall: H(s) = EE (et — cos(\/§ t) — % sin(\/§ t))}
1

h(t) = Z< f—cos(V3t) - \% sin(v/3 t)), H(s) = L[h(t)].

Lly] = e 25 H(s) = e~ L[h(t)] = L[ua(t) h(t — 2)].

We conclude: y(t) = ux(t) h(t — 2). Equivalently,

y(t) = uzT(t) [e(t_z) —cos(V3(t—2)) - % sin(V3 (t — 2))}
<




Chapter 4: Laplace Transform methods.

Example

e—2s

(s—1)(s2+3)

Solution: One way to solve this is with the splitting

Use convolutions to find f satisfying L[f(t)] =

_ o 2s 1 1 _e_25 1 \/§ L
Ol=e e -0=° BE)6-1)

CIF(8)] = 2 % Clsin(v/31)] £[e]
1

L[f(1)] = \/§£[u2(t) sin(V3 (t — 2))] L[e'].

f(t) = % /0 up(7) sin(\/§ (t—2)) e(t=7) dr. <

Chapter 4: Laplace Transform methods.

Example
Sketch the graph of g and use LT to find y solution of

y// - 6y _ g(t), )/(0) — y’(O) = 0, g(t) = { Z’in(t _ 71-) i i :7

Solution: _ _
Express g using step functions,

g(t) = ux(t) sin(t — 7).

Lluc(t) f(t—c)] = e < L[f(t)]

Therefore,

Llg(t)] = e7™L]sin(z)].

We obtain: L[g(t)] = Se




Chapter 4: Laplace Transform methods.

Example
Sketch the graph of g and use LT to find y solution of

0, t<m,

y" —6y =g(t), y(0)=y'(0)=0, g(t){sin(tﬂ) t>m.

e—Tl'S

Solution: L[g(t)]

SRR
£l - 6 £y] = Llg(t)] = 5
E-0L= gy = = gy

Hs) = 1 _ 1
(s2+1)(s2=6) (s241)(s+ V6)(s — v6)
) =1 +aﬁ) s —b\/6) * ((Z -t il)) '

Chapter 4: Laplace Transform methods.

Example
Sketch the graph of g and use LT to find y solution of

y// . 6y _ g(t), y(O) — y'(O) = 0, g(t) = { Z,in(t _ 71-) i i :7

a N b +(cs+d)
(s+v6) (s—v6) (s°+1)

Solution: H(s) =

1 B b (cs + d)

(1)1 VB)(s— Vo) (51v6) (s vB)  (£+1)

1=a(s — v6)(s* + 1) + b(s + v6)(s*> + 1) + (cs + d)(s* — 6).

1 1 1
The solution is: a = ——— 0, d=—=.

) b — —1 C — 1
146 146 7




Chapter 4: Laplace Transform methods.

Example
Sketch the graph of g and use LT to find y solution of

y// . 6y _ g(t), )/(0) — y’(O) = 0, g(t) = { Z’in(t _ 71-) i i :7

Solution: H(s) = 141\/6 {—(

1
146

H(s) = E[Tl\@ (e ot/ —2vB sin(r)) |.

1 N 1 B 2\6}
s+v6) (s—v6) (s2+1)1

H(s) [—c[e—ﬁf} +L[eV81] — 26 L[sin(t)]}

h(t) = {—e_‘/ét NN sin(t)} = H(s) = L[h(t)].

1
146

Chapter 4: Laplace Transform methods.

Example
Sketch the graph of g and use LT to find y solution of

y// - 6y _ g(t), y(O) — y’(O) = 0, g(t) = { Z’in(t _ 71-) i i :7

Solution: Recall: L[y] = e ™ H(s), where H(s) = L[h(t)], and

1
146

Llyl = e™™ LIh(t)] = Llux(t) h(t = )] = y(t) = ux(t) h(t —7).

h(t) {—e_‘/étqte\@t—Q\/a sin(t)]

Equivalently:

y(t) = % Vo) 4 VBT 2 /6 sin(t — 7).

<




Review for Exam 3.

» Chapter 4: Laplace Transform methods.

» Definition of Laplace Transform (4.1).

Solving IVP using LT (4.2).

Solving IVP with discontinuous sources using LT, (4.3).
Solving IVP with generalized sources using LT (4.4).
Convolutions and LT (4.5).

» Chapter 5: Systems of linear equations.

» Systems of linear Differential Equations (5.1).
» 2 x 2 systems (actual 5.7, 5.8, 5.9).

» BVP, eigenfunction problems, (6.1).
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Second order equations and first order systems.

Theorem (Reduction to first order)

Every solution y to the second order linear equation

'+ p(t)y +q(t)y = g(t), (1)

defines a solution x; = y and x, = y’ of the 2 x 2 first order linear
differential system

1/ = Xo, (2)
x; = —q(t) x; — p(t) x; + g(t). (3)
Conversely, every solution x;, x, of the 2 x 2 first order linear

system in Egs. (2)-(3) defines a solution y = x; of the second order
differential equation in (1).




Second order equations and first order systems.

Remark: Systems of first order equations can, sometimes, be
transformed into a second order single equation.

Example
Express as a single second order equation X, = —x; + 3%,

the 2 x 2 system and solve it,

l\)><\

:Xl _X2.

Solution: Compute x, from the second equation: x; = x} + X,.
Introduce this expression into the first equation,

(X + %) = —(x + x) + 3x,
X) 4+ X, = —x, — X, + 3%,

X, + 2x, — 2x, = 0.

Second order equations and first order systems.

Example
Express as a single second order equation X, = —x; + 3x,
the 2 x 2 system and solve it, X =X — %.

Solution: Recall: x!' +2x] — 2x, = 0.

1
rP42r-2=0 = ry= 5[F2EVA+8] = = ~1+V/3.

Therefore, x, = ;e "+ ¢, e . Since x; = X} + x,,
xi = (ary e +oroe=f) + (et + e,

We conclude: x; = (1 +ri)e* +o(l+r)e <




Systems of linear Equations.

Summary: Find solutions of X’ = Ax, with A a 2 x 2 matrix.

First find the eigenvalues \; and the eigenvectors v(7) of A,
(a) If A1 # Mo, real, then {v(1) v(®} are linearly independent, and
the general solution is x(x) = ¢; v(!) et 4 ¢, v(2) Mot

(b) If Ay # A2, complex, then denoting A+ = a + (i and
v(®) = a £ bi, the complex-valued fundamental solutions

x(t) = (a + bj) el@tA)?
xE) = et (a £ bi) [cos(t) + isin(6t)].

x(£) = et [acos(4t) —bsin(5t)] +ie™* [asin(3t)+bcos(3t)].

Real-valued fundamental solutions are

xM) = et [acos(3t) — bsin(5t)],
x(?) = ¢ [asin(3t) + b cos(5t)].

Systems of linear Equations.

Summary: Find solutions of x’ = Ax, with A a 2 x 2 matrix.
First find the eigenvalues \; and the eigenvectors v{!) of A.

(c) If Ay = Mo = X, real, and their eigenvectors {v(1) v(2} are
linearly independent, then the general solution is

x(x) = c vP) M 4 ¢, v M

(d) If Ay = X2 = A, real, and there is only one eigendirection v,
then find w solution of (A — Al)w = v. Then fundamental
solutions to the differential equation are given by

x(1) = v et

x(?) = (vt +w) et
Then, the general solution is

x=cvel+o(vt+w)er




Exam: November 12, 2008. Problem 4.

Example

Find the general solution of X’ = Ax, where A = [\_/% g]

Solution: Eigenvalues of A:

(=3-1)

p()\):‘ " (_fx)‘ = (A+2)(A+3)—2=0

N +5A+4=0 = Ai:%[—Si 25 — 16 :%[—5i3]

Hence Ay = —1, A_ = —4. Eigenvector for \;.
[-2 V2 2 —/2 2 -2
wen=15 5 -l -6 e

2vi = V2 . Choosing vi = v/2 and v» = 2, we get v(T) = [\éﬁ]

Exam: November 12, 2008. Problem 4.

Example
. . -3 V2
! _ _
Find the general solution of X' = Ax, where A = [\/5 _2].
Solution: Recall: Ay = —1, A_ = —4, and v(t) = [\ﬂ

Eigenvector for \_.
asan=[g 9] =i Ve ~o %7

vi = —vV2w,. Choosing vi = —v/2 and v» = 1, so, v(i) = [_1/5]

Fundamental solutions: x(+) = [ﬂ et x(7) = [_ﬂ e 4t

General solution: x = ¢ [\éﬁ] e t+ o [_I/E] e 4t <




Extra problem.

Example
Find x solution of the IVP

;o |1 _|-3 4
X = Ax, x(0) = [3], A= [_1 1].
Solution: Eigenvalues of A:
p(A):(_3_>\) 4 =(A-1)(A+3)+4=0
—1 (1—-2X)

1
N +2X+1=0 = Ap = [-24VA—4] =1

Hence A, = A_ = —1. Eigenvector for \..
-2 4 1 -2 1 -2
(A+/)_[—1 2] —>[1 _2] —>[0 0].

vi = 2 va. Choosing v = 2 and v» = 1, we get v(t) = ﬁ]

Extra problem.

Example
Find x solution of the IVP

x = Ax, x(0) = [;] : A
: 2
Solution: Recall: . = —1, and v(t) = [ ]
Find w solution of (A+ )w = v.
—2 4| |myp 2 —2 2 1 -2 -1
— = JEEEN
-1 2| |w» 1 —1 1 0 O 0

Hence wy = 2wy — 1, that is, w = [2] wo + [_1].

N B

Choose wo =0, so w = [_01] .




Extra problem.

Example
Find x solution of the IVP
; |1 _|-3 4
x = Ax, x(0) = [3], A= [_1 1].
: -1
Solution: Recall: Ay = —1, v(t) = [1] and w = [ 0].

Extra problem.

Example
Find x solution of the IVP
;o 1 -3 4
X = Ax, x(0) [3] : A= 1 1] .
Solution: Recall: x = ¢ [ﬂ e t+ o (E] t+ [_Olb et

o fo 1] o] = o) e fa) = 15 2 B = L]

The solution is x =3 E] e t+5 ([2 t+ [_1]) et
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Eigenvalue-Eigenfunction BVP.
Example
Find the positive eigenvalues and their eigenfunctions of

y"+Ay=0 y(0)=0, y(8)=0.
Solution: Since A > 0, introduce A\ = 2, with x> 0.
y(x) = e™ implies that r is solution of

p(r)=r*+u>=0 = ry==4pui
The general solution is y(x) = ¢; cos(ux) + ¢ sin(ux).
The boundary conditions imply:

0=y(0)=a = y(x)=csin(ux).
0=y(8) =csin(u8), c#0 = sin(u8)=0.

2
:u:nga A:(%) ) yn(X):Sin<%>7 n:1727"‘




Eigenvalue-Eigenfunction BVP.

Example
Find the positive eigenvalues and their eigenfunctions of

y'+Ay=0, y(0)=0, y'(8)=0.
Solution: The general solution is y(x) = ¢1 cos(ux) + ¢ sin(ux).
The boundary conditions imply:

O0=y(0)=ca = y(x)=csin(ux).

0=1y'(8) = cpucos(u8), c2#0 = cos(u8)=0.

B 7r _ (2n+1)r
8,u—(2n—1—1)§, = u= T
Then, for n=1,2,--- holds
B (2n+1)7r}2 . ((2n—|—1)7rx>
A= [ 16 . yn(x) =sin 16 :




