

Review: Classification of 2×2 systems.

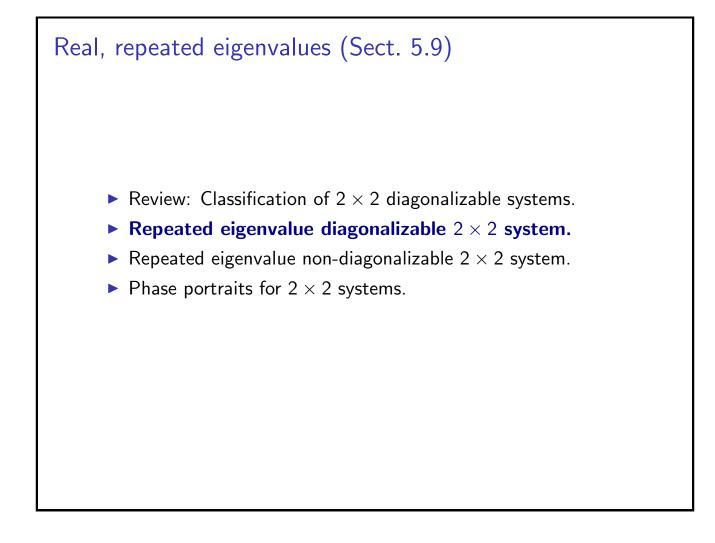
Remark:

Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.

- (a) $\lambda_1 \neq \lambda_2$, real-valued. Hence, A has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 (eigen-directions), (Section 5.7).
- (b) $\lambda_1 = \overline{\lambda}_2$, complex-valued. Hence, A has two non-proportional eigenvectors $\mathbf{v}_1 = \overline{\mathbf{v}}_2$, (Section 5.8).
- (c-1) $\lambda_1 = \lambda_2$ real-valued with two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 , (Section 5.9).

Remark:

(c-2) $\lambda_1 = \lambda_2$ real-valued with only one eigen-direction. Hence, A is not diagonalizable, (Section 5.9).



Repeated eigenvalue diagonalizable 2×2 system.

Remark: For 2×2 systems the situation is fairly simple.

Theorem

Every 2 × 2 diagonalizable matrix A with repeated eigenvalue λ has the form $A = \lambda I$.

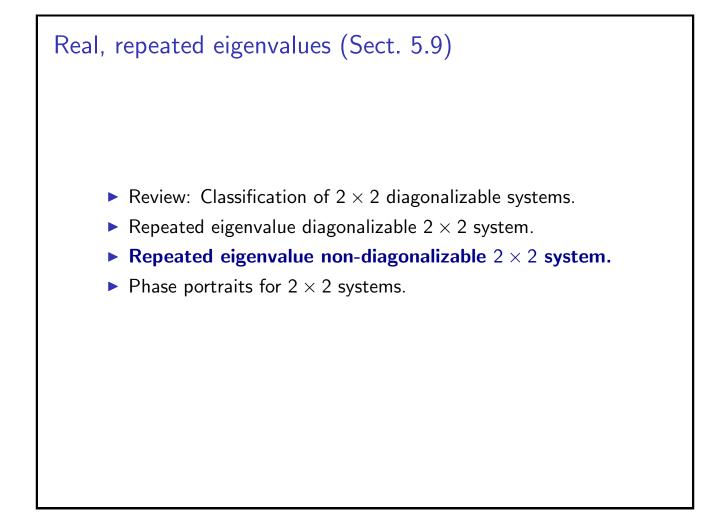
Proof: Since A is diagonalizable, exists P invertible such that

$$A = P \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} P^{-1} = P\lambda I P^{-1} = \lambda P P^{-1} = \lambda I.$$

Remark: The **x** general solution for $\mathbf{x}' = \lambda I \mathbf{x}$ is simple

$$\mathbf{x}(t) = egin{bmatrix} c_1 \ c_2 \end{bmatrix} e^{\lambda t} \quad \Leftrightarrow \quad \mathbf{x}(t) = c_1 \begin{bmatrix} 1 \ 0 \end{bmatrix} e^{\lambda t} + c_2 \begin{bmatrix} 0 \ 1 \end{bmatrix} e^{\lambda t}$$

Remark: The solution phase portraits are always straight lines passing through the origin.



Repeated eigenvalue non-diagonalizable 2×2 system.

Remark:

Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.

- (a) $\lambda_1 \neq \lambda_2$, real-valued. Hence, A has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 (eigen-directions), (Section 5.7).
- (b) $\lambda_1 = \overline{\lambda}_2$, complex-valued. Hence, *A* has two non-proportional eigenvectors $\mathbf{v}_1 = \overline{\mathbf{v}}_2$, (Section 5.8).
- (c-1) $\lambda_1 = \lambda_2$ real-valued with two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 , (Section 5.9).

Remark:

(c-2) $\lambda_1 = \lambda_2$ real-valued with only one eigen-direction. Hence, A is not diagonalizable, (Section 5.9). Next Class.

Repeated eigenvalue non-diagonalizable 2×2 system. Example

Show that matrix $B = \frac{1}{2} \begin{bmatrix} 3 & 1 \\ -1 & 5 \end{bmatrix}$ is not diagonalizable.

Solution: We need to show that all eigenvectors of matrix B are proportional to each other. We start computing the eigenvalues,

$$p(\lambda) = \det(B - \lambda I) = \begin{vmatrix} \frac{3}{2} - \lambda & \frac{1}{2} \\ -\frac{1}{2} & \frac{5}{2} - \lambda \end{vmatrix} = \left(\frac{3}{2} - \lambda\right) \left(\frac{5}{2} - \lambda\right) + \frac{1}{4}$$
$$p(\lambda) = \lambda^2 - 4\lambda + 4 = 0 \quad \Rightarrow \quad \lambda_{\pm} = 2.$$

We now compute the corresponding eigenvectors,

$$(B-2I) = = \begin{bmatrix} \frac{3}{2}-2 & \frac{1}{2} \\ -\frac{1}{2} & \frac{5}{2}-2 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}.$$

Hence all eigenvectors are proportional to $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \lhd$

Repeated eigenvalue non-diagonalizable 2×2 system.

Theorem (Repeated eigenvalue)

If λ is an eigenvalue of an $n \times n$ matrix A having algebraic multiplicity r = 2 and only one associated eigen-direction, then the differential equation

$$\mathbf{x}'(t) = A\mathbf{x}(t),$$

has a linearly independent set of solutions given by

$$\{\mathbf{x}^{(1)}(t) = \mathbf{v} \ e^{\lambda t}, \quad \mathbf{x}^{(2)}(t) = (\mathbf{v} \ t + \mathbf{w}) \ e^{\lambda t}\}.$$

where the vector \boldsymbol{w} is solution of

$$(A - \lambda I)\mathbf{w} = \mathbf{v}$$

which always has a solution w.

Recall: The case of a single second order equation $y'' + a_1 y' + a_0 y = 0$ with characteristic polynomial $p(r) = r^2 + a_1 r + a_0 = (r - r_1)^2$. In this case a fundamental set of solutions is

This is not the case with systems of first order linear equations,

$$\{\mathbf{x}^{(1)}(t) = \mathbf{v} \ e^{\lambda t}, \quad \mathbf{x}^{(2)}(t) = (\mathbf{v} \ t + \mathbf{w}) \ e^{\lambda t}\}.$$

 $\{y_1(t) = e^{r_1 t}, y_2(t) = t e^{r_1 t}\}.$

In general, $\mathbf{w} \neq \mathbf{0}$.

Repeated eigenvalue non-diagonalizable 2×2 system.

Example

Find fundamental solutions of $\mathbf{x}' = A \mathbf{x}$, with $A = \frac{1}{4} \begin{bmatrix} -6 & 4 \\ -1 & -2 \end{bmatrix}$.

Solution: Find the eigenvalues of A. Its characteristic polynomial is

$$p(\lambda) = egin{pmatrix} \left(-rac{3}{2}-\lambda
ight) & 1\ -rac{1}{4} & \left(-rac{1}{2}-\lambda
ight) \end{bmatrix} = \left(\lambda+rac{3}{2}
ight) \left(\lambda+rac{1}{2}
ight) + rac{1}{4}.$$

So $p(\lambda) = \lambda^2 + 2\lambda + 1 = (\lambda + 1)^2$. The roots and multiplicity are $\lambda = -1, \qquad r = 2.$

The corresponding eigenvectors are the solutions of $(A + I)\mathbf{v} = \mathbf{0}$,

$$\begin{bmatrix} \left(-\frac{3}{2}+1\right) & 1\\ -\frac{1}{4} & \left(-\frac{1}{2}+1\right) \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} & 1\\ -\frac{1}{4} & \frac{1}{2} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2\\ 1 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2\\ 0 & 0 \end{bmatrix}$$

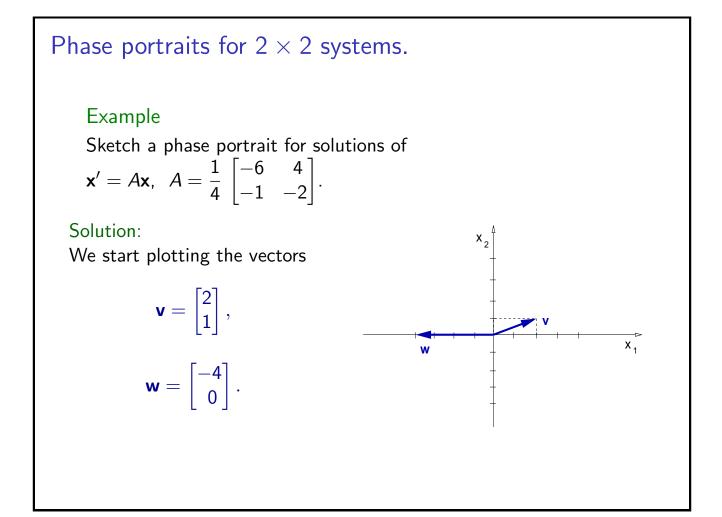
Repeated eigenvalue non-diagonalizable 2 × 2 system. Example Find fundamental solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = \frac{1}{4} \begin{bmatrix} -6 & 4 \\ -1 & -2 \end{bmatrix}$. Solution: Recall: $\lambda = -1$, with r = 2, and $(A + I) \rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix}$. The eigenvector components satisfy: $\mathbf{v}_1 = 2\mathbf{v}_2$. We obtain, $\lambda = -1$, $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \mathbf{v}_2$. We conclude that this eigenvalue has only one eigen-direction. Matrix A is not diagonalizable. Theorem above says we need to find \mathbf{w} solution of $(A + I)\mathbf{w} = \mathbf{v}$. $\begin{bmatrix} -\frac{1}{2} & 1 & | & 2 \\ -\frac{1}{4} & \frac{1}{2} & | & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & | & -4 \\ 1 & -2 & | & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & | & -4 \\ 0 & 0 & | & 0 \end{bmatrix}$

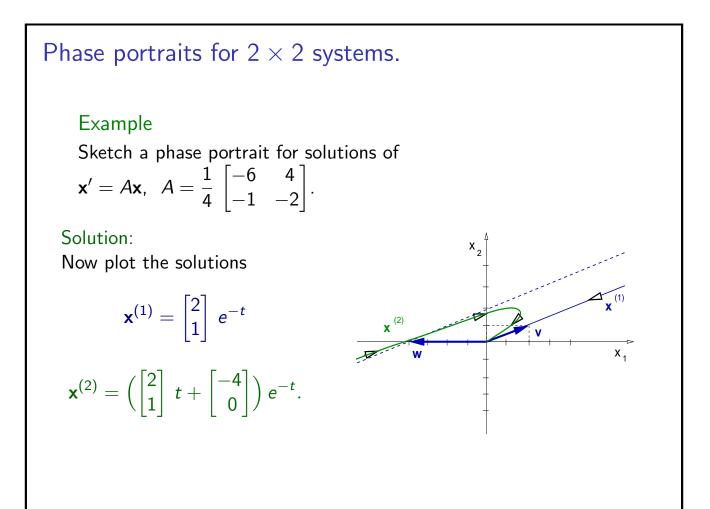
Repeated eigenvalue non-diagonalizable 2×2 system.

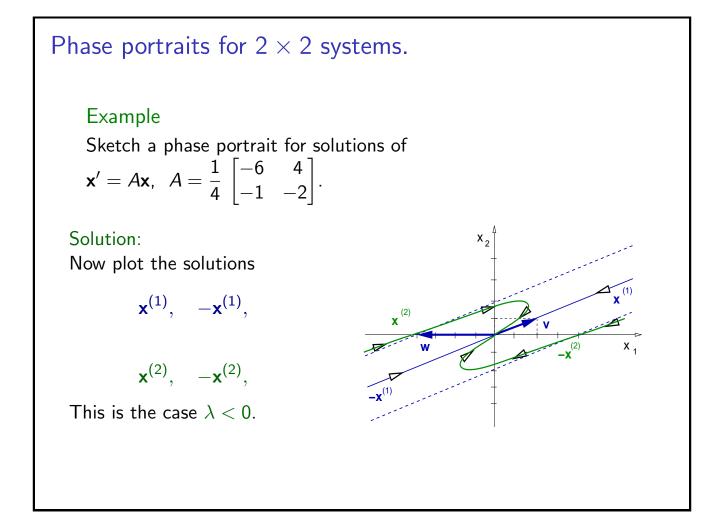
Example

Find fundamental solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = \frac{1}{4} \begin{bmatrix} -6 & 4 \\ -1 & -2 \end{bmatrix}$. Solution: Recall that: $\lambda = -1$, $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \mathbf{v}_2$, and $(A+I)\mathbf{w} = \mathbf{v} \Rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -4 \\ 0 \end{bmatrix}$. We obtain $w_1 = 2w_2 - 4$. That is, $\mathbf{w} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} w_2 + \begin{bmatrix} -4 \\ 0 \end{bmatrix}$. Given a solution \mathbf{w} , then $c\mathbf{v} + \mathbf{w}$ is also a solution, $c \in \mathbb{R}$. We choose the simplest solution, $\mathbf{w} = \begin{bmatrix} -4 \\ 0 \end{bmatrix}$. We conclude, $\mathbf{x}^{(1)}(t) = \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{-t}, \qquad \mathbf{x}^{(2)}(t) = \left(\begin{bmatrix} 2 \\ 1 \end{bmatrix} t + \begin{bmatrix} -4 \\ 0 \end{bmatrix} \right) e^{-t}.$ Repeated eigenvalue non-diagonalizable 2 × 2 system. Example Find the solution **x** to the IVP $\mathbf{x}' = A\mathbf{x}, \quad \mathbf{x}(0) = \begin{bmatrix} 1\\1 \end{bmatrix}, \quad A = \frac{1}{4} \begin{bmatrix} -6 & 4\\-1 & -2 \end{bmatrix}.$ Solution: The general solution is $\mathbf{x}(t) = c_1 \begin{bmatrix} 2\\1 \end{bmatrix} e^{-t} + c_2 \left(\begin{bmatrix} 2\\1 \end{bmatrix} t + \begin{bmatrix} -4\\0 \end{bmatrix} \right) e^{-t}.$ The initial condition is $\mathbf{x}(0) = \begin{bmatrix} 1\\1 \end{bmatrix} = c_1 \begin{bmatrix} 2\\1 \end{bmatrix} + c_2 \begin{bmatrix} -4\\0 \end{bmatrix}.$ $\begin{bmatrix} 2 & -4\\1 & 0 \end{bmatrix} \begin{bmatrix} c_1\\c_2 \end{bmatrix} = \begin{bmatrix} 1\\1 \end{bmatrix} \Rightarrow \begin{bmatrix} c_1\\c_2 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 0 & 4\\-1 & 2 \end{bmatrix} \begin{bmatrix} 1\\1 \end{bmatrix} = \begin{bmatrix} 1\\1/4 \end{bmatrix}.$ We conclude: $\mathbf{x}(t) = \begin{bmatrix} 2\\1 \end{bmatrix} e^{-t} + \frac{1}{4} \left(\begin{bmatrix} 2\\1 \end{bmatrix} t + \begin{bmatrix} -4\\0 \end{bmatrix} \right) e^{-t}.$

Real, repeated eigenvalues (Sect. 5.9)
Review: Classification of 2 × 2 diagonalizable systems.
Repeated eigenvalue diagonalizable 2 × 2 system.
Repeated eigenvalue non-diagonalizable 2 × 2 system.
Phase portraits for 2 × 2 systems.







Phase portraits for 2×2 systems.

Example

Given any vectors **v** and **w**, and any constant λ , plot the phase portraits of the functions

$$\mathbf{x}^{(1)}(t) = \mathbf{v} e^{\lambda t}, \qquad \mathbf{x}^{(2)}(t) = (\mathbf{v} t + \mathbf{w}) e^{\lambda t},$$

Solution: The case $\lambda < 0$. We plot the functions

$$x^{(1)}, -x^{(1)}$$

$$\mathbf{x}^{(2)}, -\mathbf{x}^{(2)}$$

