

Review: $n \times n$ linear differential systems.

Recall:

• Given an $n \times n$ matrix A(t), *n*-vector $\mathbf{b}(t)$, find $\mathbf{x}(t)$ solution

 $\mathbf{x}'(t) = A(t)\,\mathbf{x}(t) + \mathbf{b}(t).$

• The system is *homogeneous* iff $\mathbf{b} = 0$, that is,

$$\mathbf{x}'(t) = A(t)\,\mathbf{x}(t).$$

The system has constant coefficients iff matrix A does not depend on t, that is,

$$\mathbf{x}'(t) = A\mathbf{x}(t) + \mathbf{b}(t).$$

▶ We study homogeneous, constant coefficient systems, that is,

 $\mathbf{x}'(t) = A\mathbf{x}(t).$

The case of diagonalizable matrices. Theorem (Diagonalizable matrix)

If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ and corresponding eigenvalues $\{\lambda_1, \dots, \lambda_n\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

 $\mathbf{x}'(t) = A \mathbf{x}(t)$

is given by the expression below, where $c_1, \cdots, c_n \in \mathbb{R}$,

 $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}.$

Remark:

- The differential system for the variable x is coupled, that is, A is not diagonal.
- We transform the system into a system for a variable y such that the system for y is decoupled, that is, y'(t) = D y(t), where D is a diagonal matrix.
- We solve for $\mathbf{y}(t)$ and we transform back to $\mathbf{x}(t)$.

The case of diagonalizable matrices.
Proof: Since *A* is diagonalizable, we know that
$$A = PDP^{-1}$$
, with
 $P = [\mathbf{v}_1, \dots, \mathbf{v}_n], \quad D = \operatorname{diag}[\lambda_1, \dots, \lambda_n].$
Equivalently, $P^{-1}AP = D$. Multiply $\mathbf{x}' = A\mathbf{x}$ by P^{-1} on the left
 $P^{-1}\mathbf{x}'(t) = P^{-1}A\mathbf{x}(t) \quad \Leftrightarrow \quad (P^{-1}\mathbf{x})' = (P^{-1}AP) (P^{-1}\mathbf{x}).$
Introduce the new unknown $\mathbf{y}(t) = P^{-1}\mathbf{x}(t)$, then
 $\mathbf{y}'(t) = D\mathbf{y}(t) \iff \begin{cases} \mathbf{y}'_1(t) = \lambda_1 \mathbf{y}_1(t), \\ \vdots \\ \mathbf{y}'_n(t) = \lambda_n \mathbf{y}_n(t), \end{cases} \Rightarrow \mathbf{y}(t) = \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix}.$

The case of diagonalizable matrices.
Proof: Recall:
$$\mathbf{y}(t) = P^{-1}\mathbf{x}(t)$$
, and $\mathbf{y}(t) = \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix}$.
Transform back to $\mathbf{x}(t)$, that is,
 $\mathbf{x}(t) = P \mathbf{y}(t) = [\mathbf{v}_1, \cdots, \mathbf{v}_n] \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix}$
We conclude: $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}$.

The eigenvalues and eigenvectors of A are crucial to solve the differential linear system x'(t) = A x(t).

The case of diagonalizable matrices.

Remark: Here is another argument useful to understand why the vector $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}$ is solution of the linear system $\mathbf{x}'(t) = A \mathbf{x}(t)$. On the one hand, derivate \mathbf{x} ,

$$\mathbf{x}'(t) = c_1 \lambda_1 \, \mathbf{v}_1 \, e^{\lambda_1 t} + \cdots + c_n \lambda_n \, \mathbf{v}_n \, e^{\lambda_n t}.$$

On the other hand, compute $A\mathbf{x}(t)$,

$$A\mathbf{x}(t) = c_1(A\mathbf{v}_1) e^{\lambda_1 t} + \dots + c_n(A\mathbf{v}_n) e^{\lambda_n t},$$
$$A\mathbf{x}(t) = c_1\lambda_1 \mathbf{v}_1 e^{\lambda_1 t} + \dots + c_n\lambda_n \mathbf{v}_n e^{\lambda_n t}.$$

We conclude: $\mathbf{x}'(t) = A \mathbf{x}(t)$.

Remark: Unlike the proof of the Theorem, this second argument does not show that $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}$ are all possible solutions to the system.

Second order equations and first order systems.

Theorem (Reduction to first order)

Every solution y to the second order linear equation

$$y'' + p(t) y' + q(t) y = g(t),$$
 (1)

defines a solution $x_1 = y$ and $x_2 = y'$ of the 2 \times 2 first order linear differential system

$$x_1' = x_2, \tag{2}$$

$$x_{2}' = -q(t) x_{1} - p(t) x_{2} + g(t).$$
(3)

Conversely, every solution x_1 , x_2 of the 2 × 2 first order linear system in Eqs. (2)-(3) defines a solution $y = x_1$ of the second order differential equation in (1).

Second order equations and first order systems. Proof: (\Rightarrow) Given y solution of y'' + p(t)y' + q(t)y = g(t), introduce $x_1 = y$ and $x_2 = y'$, hence $x'_1 = y' = x_2$, that is, $x'_1 = x_2$. Then, $x'_2 = y'' = -q(t)y - p(t)y' + g(t)$. That is, $x'_2 = -q(t)x_1 - p(t)x_2 + g(t)$. (\Leftarrow) Introduce $x_2 = x'_1$ into $x'_2 = -q(t)x_1 - p(t)x_2 + g(t)$. $x''_1 = -q(t)x_1 - p(t)x'_1 + g(t)$, that is $x''_1 + p(t)x'_1 + q(t)x_1 = g(t)$.

Second order equations and first order systems.

Example

Express as a first order system the equation

$$y'' + 2y' + 2y = \sin(at).$$

Solution: Introduce the new unknowns

$$x_1 = y, \quad x_2 = y' \quad \Rightarrow \quad x_1' = x_2.$$

Then, the differential equation can be written as

$$x_2' + 2x_2 + 2x_1 = \sin(at).$$

We conclude that

$$x'_1 = x_2.$$

 $x'_2 = -2x_1 - 2x_2 + \sin(at).$

Second order equations and first order systems. Remark: Systems of first order equations can, sometimes, be transformed into a second order single equation. Example Express as a single second order equation $x'_1 = -x_1 + 3x_2$, the 2 × 2 system and solve it, $x'_2 = x_1 - x_2$. Solution: Compute x_1 from the second equation: $x_1 = x'_2 + x_2$. Introduce this expression into the first equation, $(x'_2 + x_2)' = -(x'_2 + x_2) + 3x_2$, $x''_2 + x'_2 = -x'_2 - x_2 + 3x_2$, $x''_1 + 2x'_2 - 2x_2 = 0$.

Second order equations and first order systems.

Example

Express as a single second order equation $x'_1 =$ the 2 × 2 system and solve it, $x'_2 =$

 $x_1' = -x_1 + 3x_2,$ $x_2' = x_1 - x_2.$

Solution: Recall: $x_2'' + 2x_2' - 2x_2 = 0$.

$$r^2+2r-2=0$$
 \Rightarrow $r_{\pm}=\frac{1}{2}\left[-2\pm\sqrt{4+8}\right]$ \Rightarrow $r_{\pm}=-1\pm\sqrt{3}.$

Therefore, $x_2 = c_1 e^{r_+ t} + c_2 e^{r_- t}$. Since $x_1 = x_2' + x_2$,

$$x_1 = (c_1r_+ e^{r_+t} + c_2r_- e^{r_-t}) + (c_1e^{r_+t} + c_2e^{r_-t}),$$

We conclude: $x_1 = c_1(1+r_+) e^{r_+ t} + c_2(1+r_-) e^{r_- t}$.

Examples: 2×2 linear systems.

Example

Find the general solution to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Find eigenvalues and eigenvectors of A. We found that:

$$\lambda_1 = 4, \quad \mathbf{v}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \text{and} \quad \lambda_2 = -2, \quad \mathbf{v}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

Fundamental solutions are

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}, \quad \mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}.$$

The general solution is $\mathbf{x}(t) = c_1 \mathbf{x}^{(1)}(t) + c_2 \mathbf{x}^{(2)}(t)$, that is,

$$\mathbf{x}(t) = c_1 egin{bmatrix} 1 \ 1 \end{bmatrix} e^{4t} + c_2 egin{bmatrix} -1 \ 1 \end{bmatrix} e^{-2t}, \qquad c_1, c_2 \in \mathbb{R}.$$

Examples: 2 × 2 linear systems. Remark: Re-writing the solution vector $\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ in components $\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$, then $x_1(t) = c_1 e^{4t} - c_2 e^{-2t}$, $x_2(t) = c_1 e^{4t} + c_2 e^{-2t}$. Introducing the fundamental matrix $X(t) = [\mathbf{x}^{(1)}(t), \mathbf{x}^{(2)}(t)]$ and the vector \mathbf{c} , $X(t) = \begin{bmatrix} e^{4t} & -e^{-2t} \\ e^{4t} & e^{-2t} \end{bmatrix}$, $\mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$, then the general solution above can be expressed as follows

$$\mathbf{x}(t) = X(t)\mathbf{c} \quad \Leftrightarrow \quad \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} e^{4t} & -e^{-2t} \\ e^{4t} & e^{-2t} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}.$$

Examples: 2×2 linear systems.

Example

Solve the IVP
$$\mathbf{x}' = A\mathbf{x}$$
, where $\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, and $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$

Solution: The general solution: $\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$. The initial condition is,

$$\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

We need to solve the linear system

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix} \implies \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix}.$$

Therefore, $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, hence $\mathbf{x}(t) = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}. \triangleleft$

Classification of 2×2 diagonalizable systems.

Remark:

Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.

- (a) Matrix A has two different, real eigenvalues λ₁ ≠ λ₂, so it has two non-proportional eigenvectors v₁, v₂ (eigen-directions). (Section 5.7)
- (b) Matrix A has two different, complex eigenvalues $\lambda_1 = \overline{\lambda}_2$, so it has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 . (Section 5.8)
- (c-1) Matrix A has repeated, real eigenvalues, $\lambda_1 = \lambda_2 \in \mathbb{R}$ with two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 . (Section 5.9)

Remark:

(c-2) We will also study in Section 5.9 how to obtain solutions to a 2×2 system $\mathbf{x}' = A\mathbf{x}$ in the case that A is not diagonalizable and A has only one eigen-direction.

Remark:

- There are two main types of graphs for solutions of 2 × 2 linear systems:
 - (i) The graphs of the vector components;
 - (ii) The phase portrait.
- Case (i): Express the solution in vector components $\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$, and graph x_1 and x_2 as functions of t. (Recall the solution in the IVP of the previous Example: $x_1(t) = 3 e^{4t} - e^{-2t}$ and $x_2(t) = 3 e^{4t} + e^{-2t}$.)
- Case (ii): Express the solution as a vector-valued function,

 $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + c_2 \mathbf{v}_2 e^{\lambda_2 t},$

and plot the vector $\mathbf{x}(t)$ for different values of t.

• Case (ii) is called a *phase portrait*.

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\mathbf{x}^{(1)} = egin{bmatrix} 1 \ 1 \end{bmatrix} e^{4t}, \quad \mathbf{x}^{(2)} = egin{bmatrix} -1 \ 1 \end{bmatrix} e^{-2t}$$

Solution: We now plot the functions $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t},$ $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}.$

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}, \quad \mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$$

Solution: We now plot the four functions

 $\mathbf{x}^{(1)}, -\mathbf{x}^{(1)},$

 $\mathbf{x}^{(2)}, -\mathbf{x}^{(2)}.$

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}, \quad \mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}.$$

Solution:

We now plot the eight functions

$$\mathbf{x}^{(1)}, \ -\mathbf{x}^{(1)}, \ \mathbf{x}^{(2)}, \ -\mathbf{x}^{(2)}$$

$$\mathbf{x}^{(1)} + \mathbf{x}^{(2)}, \quad -\mathbf{x}^{(1)} + \mathbf{x}^{(2)},$$

$$\mathbf{x}^{(1)} - \mathbf{x}^{(2)}, \quad -\mathbf{x}^{(1)} - \mathbf{x}^{(2)}.$$

Phase portraits for 2×2 systems. Problem: Case (a): Consider a 2×2 matrix A having two different, real eigenvalues $\lambda_1 \neq \lambda_2$, so A has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 (eigen-directions). Given a solution $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + c_2 \mathbf{v}_2 e^{\lambda_2 t}$, to $\mathbf{x}'(t) = A \mathbf{x}(t)$, plot different solution vectors $\mathbf{x}(t)$ on the plane as function of t for different choices of the constants c_1 and c_2 . The plots are different depending on the eigenvalues signs. We have the following three sub-cases: (i) $0 < \lambda_2 < \lambda_1$, both positive; (ii) $\lambda_2 < 0 < \lambda_1$, one positive the other negative; (iii) $\lambda_2 < \lambda_1 < 0$, both negative.

Phase portraits for 2×2 systems.

Phase portrait: Case (a), two different, real eigenvalues $\lambda_1 \neq \lambda_2$, sub-case $0 < \lambda_2 < \lambda_1$, both eigenvalue positive.

Phase portrait: Case (a), two different, real eigenvalues $\lambda_1 \neq \lambda_2$, sub-case $\lambda_2 < \lambda_1 < 0$, both eigenvalues negative.

