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Review: n x n linear differential systems.

Recall:

» Given an n x n matrix A(t), n-vector b(t), find x(t) solution
x'(t) = A(t) x(t) + b(t).
» The system is homogeneous iff b = 0, that is,
x'(t) = A(t) x(t).

» The system has constant coefficients iff matrix A does not
depend on t, that is,

x'(t) = Ax(t) + b(t).
» We study homogeneous, constant coefficient systems, that is,
X' (t) = Ax(t).




Review: n X n linear differential systems.

Recall:

» Given continuous functions A, b on (t, t,) C R, a constant
to € (t,, t,) and a vector x,, there exists a unique function x
solution of the IVP

x'(t) = A(t) x(t) + b(t), x(to) = Xo.

» Today we learn to find such solution in the case of
homogeneous, constant coefficients, n x n linear systems,

X' (t) = Ax(t).
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The case of diagonalizable matrices.
Theorem (Diagonalizable matrix)

If n x n matrix A is diagonalizable, with a linearly independent
eigenvectors set {vi,--- ,v,} and corresponding eigenvalues
{A1,---,An}, then the general solution x to the homogeneous,
constant coefficients, linear system

x'(t) = Ax(t)

Is given by the expression below, where c1,--- ,c, € R,

x(t) = civy €M+ - 4 cpv, et

Remark:

» The differential system for the variable x is coupled, that is, A
is not diagonal.

» We transform the system into a system for a variable y such
that the system for y is decoupled, that is, y'(t) = Dy(t),
where D is a diagonal matrix.

» We solve for y(t) and we transform back to x(t).

The case of diagonalizable matrices.

Proof: Since A is diagonalizable, we know that A = PDP~!, with
P=|vi, - ,vn], D = diag[A1,- -+, An).
Equivalently, P~1AP = D. Multiply X’ = Ax by P~ on the left
PIX(t) = PrAx(t) & (P'x) = (P'AP) (P 1x).
Introduce the new unknown y(t) = P~1x(t), then

y{(t):Alyl(t)a c1 e)‘lt
y'(t)=Dy(t) & : = y(t) = :
YA(t) = An ya(t), cne™*




The case of diagonalizable matrices.

a1 e)\lt
Proof: Recall: y(t) = P~1x(t), and y(t) = :
c, et
Transform back to x(t), that is,
cp et
x(t) = Py(t) = [v1,--- ,Va] :
c, eMnt
We conclude: x(t) = cjvy eMt + - + v, et O
Remark:
> AV,’ = )\,‘V,‘.

» The eigenvalues and eigenvectors of A are crucial to solve the
differential linear system x'(t) = Ax(t).

The case of diagonalizable matrices.

Remark: Here is another argument useful to understand why the
vector x(t) = civy eME 4 -+ 4 c,v, et is solution of the linear
system x'(t) = Ax(t). On the one hand, derivate x,

X' (t) = cidivi eMt 4 A v, e
On the other hand, compute Ax(t),
Ax(t) = c1(Avy) Mt 4o 4 cp(Av,) e,
Ax(t) = cphivi Mt 4 o\, v, et

We conclude: x/(t) = Ax(t).

Remark: Unlike the proof of the Theorem, this second argument
does not show that x(t) = cjvy eM? + - - + c,v, et are all
possible solutions to the system.
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Second order equations and first order systems.

Theorem (Reduction to first order)

Every solution y to the second order linear equation

'+ p(t)y +q(t)y = g(t), (1)

defines a solution x; = y and x, = y’ of the 2 x 2 first order linear
differential system

X = X, (2)
x; = —q(t) x; — p(t) x; + g(t). (3)
Conversely, every solution x;, x, of the 2 x 2 first order linear

system in Egs. (2)-(3) defines a solution y = x; of the second order
differential equation in (1).




Second order equations and first order systems.

Proof:
(=) Given y solution of y” + p(t)y’' + q(t)y = g(t),

introduce x, = y and x, = y/, hence x| =y’ = x,, that is,
X, = X.
Then, x, = y" = —q(t)y — p(t) y' + g(t). That is,
x = —q(t)x — p(t) % + g(t).
(<) Introduce x, = x{ into x, = —q(t) x, — p(t) x, + g(t).
x; = —q(t)x — p(t) x + g(t),

that is
x;" + p(t) x| + q(t) x, = g(t).

Second order equations and first order systems.

Example
Express as a first order system the equation

y" 4+ 2y’ + 2y = sin(at).
Solution: Introduce the new unknowns
x=y, x=y = x =x.
Then, the differential equation can be written as
Xs + 2x, + 2x; = sin(at).
We conclude that ,
L= Xo.

X, = —2x; — 2%, + sin(at).




Second order equations and first order systems.

Remark: Systems of first order equations can, sometimes, be
transformed into a second order single equation.

Example
Express as a single second order equation X, = —x; + 3%,

the 2 x 2 system and solve it,

l\)><\

:Xl _X2.

Solution: Compute x, from the second equation: x; = x} + X,.
Introduce this expression into the first equation,

(X + %) = —(x + x) + 3x,
X) 4+ X, = —x, — X, + 3%,

X, + 2x, — 2x, = 0.

Second order equations and first order systems.

Example
Express as a single second order equation X, = —x; + 3x,
the 2 x 2 system and solve it, X =X — %.

Solution: Recall: x!' +2x] — 2x, = 0.

1
rP42r-2=0 = ry= 5[F2EVA+8] = = ~1+V/3.

Therefore, x, = ;e "+ ¢, e . Since x; = X} + x,,
xi = (ary e +oroe=f) + (et + e,

We conclude: x; = (1 +ri)e* +o(l+r)e <
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Examples: 2 x 2 linear systems.

Example

Find the general solution to x’ = Ax, with A = E ﬂ

Solution: Find eigenvalues and eigenvectors of A. We found that:

M =4, vib)= E] , and A =-2, v® = [_11] .

Fundamental solutions are

€0 W ) VIR ) W Bt Y
=[] e =[] e

The general solution is x(t) = ¢; X (t) + o x®)(¢), that is,

x(t) = ¢ E] e’ + ¢ [ 1] e 2t ¢, G € R.




Examples: 2 x 2 linear systems.

Remark:

" : 1 -1 :
Re-writing the solution vector x(t) = ¢ [1] e* + ¢, [ 1] e 2t in
components x(t) = [Xl(t)], then

xa(t)
x((t)=c et — e ™2, x(t)=c e+ e

Introducing the fundamental matrix X(t) = [x(l)(t),x(z)(t)} and
the vector c,
4t —2t
et —e _a
X0 = Sal o= 2]
then the general solution above can be expressed as follows

B ettt o2t c
e4t e—2t G :

x(t) = X(t)e & [;Eg

Examples: 2 x 2 linear systems.

Example

Solve the IVP x’ = Ax, where x(0) = [i] and A= E ﬂ

Solution: The general solution: x(t) = ¢ E] e*t + ¢ [_11] e 2t

The initial condition is,
2 1 —1
0= [ =a ] +e 3]
We need to solve the linear system
1 -1] [q] 2 al 11 1] |2
1 1] || (4 ol 21|-1 1| |4]°

Therefore, || = 3 , hence x(t) =3 ! et + e
G 1 1
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Classification of 2 x 2 diagonalizable systems.

Remark:
Diagonalizable 2 x 2 matrices A with real coefficients are classified
according to their eigenvalues.

(a) Matrix A has two different, real eigenvalues \1 # Xy, so it has
two non-proportional eigenvectors vy, vy (eigen-directions).
(Section 5.7)

(b) Matrix A has two different, complex eigenvalues A\; = Mo, so it
has two non-proportional eigenvectors vy, vo. (Section 5.8)

(c-1) Matrix A has repeated, real eigenvalues, A\; = A € R with two
non-proportional eigenvectors vi, vo. (Section 5.9)

Remark:

(c-2) We will also study in Section 5.9 how to obtain solutions to a
2 x 2 system x’ = Ax in the case that A is not diagonalizable
and A has only one eigen-direction.
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Phase portraits for 2 x 2 systems.

Remark:

» There are two main types of graphs for solutions of 2 x 2
linear systems:
(i) The graphs of the vector components;
(ii) The phase portrait.

» Case (i): Express the solution in vector components

x(t) = xa(t) , and graph x; and x, as functions of t.
xa(t)

(Recall the solution in the IVP of the previous Example:
x1(t) = 3e* — e72t and xp(t) = 3 e* + e72t)
» Case (ii): Express the solution as a vector-valued function,
Aot
)

x(t) = cavieM + e

and plot the vector x(t) for different values of t.

» Case (ii) is called a phase portrait.




Phase portraits for 2 x 2 systems.

Example

Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

V) _ |1 g4 @ _ |71 -2t
= [D e =[] o

Solution:
We start plotting the :
vectors

Phase portraits for 2 x 2 systems.

Example

Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

(1) H et x(@) [—1] o2t

1 1
Solution: X,
We now plot the functions O o
X X
1 LT .
G XA




Phase portraits for 2 x 2 systems.

Example

Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

(1) H et x(@) [—1] o2t

1 1
Solution: X,
We now plot the functions
V)N H et .2 g
— NS T @
—X(2) = — [ 11] e_2t.

Phase portraits for 2 x 2 systems.

Example

Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

(1) H et x@ = [—1] o2t

1 1
Solution: )
2
We now plot the four
functions ) .
X 1 L X
xD @) v’ '
-1 1 X4
—xM i (2)
X - X
x?)  —x(@),




Phase portraits for 2 x 2 systems.
Example

Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

1) _ H it (@) [—1] o2t

1 1
Solution:
We now plot the four T PR
functions \ g
(2) S
X(1)7 —X(l), X(z)a _X(2)7 ’ v? il v? :
and x(M) + x(2), - : "
_X(l) -1+ (2)
1 4t —1 —2t -
e ik

Phase portraits for 2 x 2 systems.

Example

Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

1) _ H &t (@) [—1] o2t

Solution:

We now plot the eight X,

functions \//

x1 - —x() x@)  _x(3) ~ 1

x(D £ x@ 1) 4 @) : X,




Phase portraits for 2 x 2 systems.

Problem:

Case (a): Consider a 2 x 2 matrix A having two different, real
eigenvalues A\; # A2, so A has two non-proportional eigenvectors
vi, vo (eigen-directions).

Given a solution x(t) = ¢, vi Mt + ¢, vp eV, to X/(t) = Ax(t),
plot different solution vectors x(t) on the plane as function of t for
different choices of the constants ¢; and c>.

The plots are different depending on the eigenvalues signs.
We have the following three sub-cases:

(i) 0 < A2 < A1, both positive;
(i) A2 < 0 < A1, one positive the other negative;

(iii) A2 < A1 <0, both negative.

Phase portraits for 2 x 2 systems.

Phase portrait: Case (a), two different, real eigenvalues A1 # Xy,
sub-case 0 < Ay < A1, both eigenvalue positive.




Phase portraits for 2 x 2 systems.

Phase portrait: Case (a), two different, real eigenvalues A1 # Xy,
sub-case Ao < 0 < A1, one eigenvalue positive the other negative.

Phase portraits for 2 x 2 systems.
Phase portrait: Case (a), two different, real eigenvalues A1 # Xy,
sub-case Ao < A1 < 0, both eigenvalues negative.

A
X




