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Review: n × n linear differential systems.

Recall:

I Given an n × n matrix A(t), n-vector b(t), find x(t) solution

x′(t) = A(t) x(t) + b(t).

I The system is homogeneous iff b = 0, that is,

x′(t) = A(t) x(t).

I The system has constant coefficients iff matrix A does not
depend on t, that is,

x′(t) = A x(t) + b(t).

I We study homogeneous, constant coefficient systems, that is,

x′(t) = A x(t).



Review: n × n linear differential systems.

Recall:

I Given continuous functions A, b on (t1, t2) ⊂ R, a constant
t0 ∈ (t1, t2) and a vector x0, there exists a unique function x
solution of the IVP

x′(t) = A(t) x(t) + b(t), x(t0) = x0.

I Today we learn to find such solution in the case of
homogeneous, constant coefficients, n × n linear systems,

x′(t) = A x(t).
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The case of diagonalizable matrices.
Theorem (Diagonalizable matrix)

If n × n matrix A is diagonalizable, with a linearly independent
eigenvectors set {v1, · · · , vn} and corresponding eigenvalues
{λ1, · · · , λn}, then the general solution x to the homogeneous,
constant coefficients, linear system

x′(t) = A x(t)

is given by the expression below, where c1, · · · , cn ∈ R,

x(t) = c1v1 eλ1t + · · ·+ cnvn eλnt .

Remark:

I The differential system for the variable x is coupled, that is, A
is not diagonal.

I We transform the system into a system for a variable y such
that the system for y is decoupled, that is, y′(t) = D y(t),
where D is a diagonal matrix.

I We solve for y(t) and we transform back to x(t).

The case of diagonalizable matrices.

Proof: Since A is diagonalizable, we know that A = PDP−1, with

P =
[
v1, · · · , vn

]
, D = diag

[
λ1, · · · , λn

]
.

Equivalently, P−1AP = D. Multiply x′ = A x by P−1 on the left

P−1x′(t) = P−1A x(t) ⇔
(
P−1x

)′
=

(
P−1AP

) (
P−1x

)
.

Introduce the new unknown y(t) = P−1x(t), then

y′(t) = D y(t) ⇔


y ′1(t) = λ1 y1(t),

...

y ′n(t) = λn yn(t),

⇒ y(t) =

c1 eλ1t

...
cn eλnt

 .



The case of diagonalizable matrices.

Proof: Recall: y(t) = P−1x(t), and y(t) =

c1 eλ1t

...
cn eλnt

.

Transform back to x(t), that is,

x(t) = P y(t) =
[
v1, · · · , vn

] c1 eλ1t

...
cn eλnt


We conclude: x(t) = c1v1 eλ1t + · · ·+ cnvn eλnt .

Remark:

I A vi = λivi .

I The eigenvalues and eigenvectors of A are crucial to solve the
differential linear system x′(t) = A x(t).

The case of diagonalizable matrices.

Remark: Here is another argument useful to understand why the
vector x(t) = c1v1 eλ1t + · · ·+ cnvn eλnt is solution of the linear
system x′(t) = A x(t). On the one hand, derivate x,

x′(t) = c1λ1 v1 eλ1t + · · ·+ cnλn vn eλnt .

On the other hand, compute A x(t),

A x(t) = c1(A v1) eλ1t + · · ·+ cn(A vn) eλnt ,

A x(t) = c1λ1 v1 eλ1t + · · ·+ cnλn vn eλnt .

We conclude: x′(t) = A x(t).

Remark: Unlike the proof of the Theorem, this second argument
does not show that x(t) = c1v1 eλ1t + · · ·+ cnvn eλnt are all
possible solutions to the system.
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Second order equations and first order systems.

Theorem (Reduction to first order)

Every solution y to the second order linear equation

y ′′ + p(t) y ′ + q(t) y = g(t), (1)

defines a solution x1 = y and x2 = y ′ of the 2× 2 first order linear
differential system

x ′1 = x2, (2)

x ′2 = −q(t) x1 − p(t) x2 + g(t). (3)

Conversely, every solution x1, x2 of the 2× 2 first order linear
system in Eqs. (2)-(3) defines a solution y = x1 of the second order
differential equation in (1).



Second order equations and first order systems.

Proof:
(⇒) Given y solution of y ′′ + p(t) y ′ + q(t) y = g(t),

introduce x1 = y and x2 = y ′, hence x ′1 = y ′ = x2, that is,

x ′1 = x2.

Then, x ′2 = y ′′ = −q(t) y − p(t) y ′ + g(t). That is,

x ′2 = −q(t) x1 − p(t) x2 + g(t).

(⇐) Introduce x2 = x ′1 into x ′2 = −q(t) x1 − p(t) x2 + g(t).

x ′′1 = −q(t) x1 − p(t) x ′1 + g(t),

that is
x ′′1 + p(t) x ′1 + q(t) x1 = g(t).

Second order equations and first order systems.

Example

Express as a first order system the equation

y ′′ + 2y ′ + 2y = sin(at).

Solution: Introduce the new unknowns

x1 = y , x2 = y ′ ⇒ x ′1 = x2.

Then, the differential equation can be written as

x ′2 + 2x2 + 2x1 = sin(at).

We conclude that
x ′1 = x2.

x ′2 = −2x1 − 2x2 + sin(at). C



Second order equations and first order systems.

Remark: Systems of first order equations can, sometimes, be
transformed into a second order single equation.

Example

Express as a single second order equation
the 2× 2 system and solve it,

x ′1 = −x1 + 3x2,

x ′2 = x1 − x2.

Solution: Compute x1 from the second equation: x1 = x ′2 + x2.
Introduce this expression into the first equation,

(x ′2 + x2)
′ = −(x ′2 + x2) + 3x2,

x ′′2 + x ′2 = −x ′2 − x2 + 3x2,

x ′′2 + 2x ′2 − 2x2 = 0.

Second order equations and first order systems.

Example

Express as a single second order equation
the 2× 2 system and solve it,

x ′1 = −x1 + 3x2,

x ′2 = x1 − x2.

Solution: Recall: x ′′2 + 2x ′2 − 2x2 = 0.

r2+2r−2 = 0 ⇒ r± =
1

2

[
−2±

√
4 + 8

]
⇒ r± = −1±

√
3.

Therefore, x2 = c1 er+ t + c2 er− t . Since x1 = x ′2 + x2,

x1 =
(
c1r+ er+ t + c2r− er− t

)
+

(
c1 er+ t + c2 er− t

)
,

We conclude: x1 = c1(1 + r+) er+ t + c2(1 + r−) er− t . C
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Examples: 2× 2 linear systems.

Example

Find the general solution to x′ = Ax, with A =

[
1 3
3 1

]
.

Solution: Find eigenvalues and eigenvectors of A. We found that:

λ1 = 4, v(1) =

[
1
1

]
, and λ2 = −2, v(2) =

[
−1
1

]
.

Fundamental solutions are

x(1) =

[
1
1

]
e4t , x(2) =

[
−1
1

]
e−2t .

The general solution is x(t) = c1 x(1)(t) + c2 x(2)(t), that is,

x(t) = c1

[
1
1

]
e4t + c2

[
−1
1

]
e−2t , c1, c2 ∈ R. C



Examples: 2× 2 linear systems.

Remark:

Re-writing the solution vector x(t) = c1

[
1
1

]
e4t + c2

[
−1
1

]
e−2t in

components x(t) =

[
x1(t)
x2(t)

]
, then

x1(t) = c1 e4t − c2 e−2t , x2(t) = c1 e4t + c2 e−2t .

Introducing the fundamental matrix X (t) =
[
x(1)(t), x(2)(t)

]
and

the vector c,

X (t) =

[
e4t −e−2t

e4t e−2t

]
, c =

[
c1

c2

]
,

then the general solution above can be expressed as follows

x(t) = X (t)c ⇔
[
x1(t)
x2(t)

]
=

[
e4t −e−2t

e4t e−2t

] [
c1

c2

]
.

Examples: 2× 2 linear systems.

Example

Solve the IVP x′ = Ax, where x(0) =

[
2
4

]
, and A =

[
1 3
3 1

]
.

Solution: The general solution: x(t) = c1

[
1
1

]
e4t + c2

[
−1
1

]
e−2t .

The initial condition is,

x(0) =

[
2
4

]
= c1

[
1
1

]
+ c2

[
−1
1

]
.

We need to solve the linear system[
1 −1
1 1

] [
c1

c2

]
=

[
2
4

]
⇒

[
c1

c2

]
=

1

2

[
1 1
−1 1

] [
2
4

]
.

Therefore,

[
c1

c2

]
=

[
3
1

]
, hence x(t) = 3

[
1
1

]
e4t +

[
−1
1

]
e−2t . C
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Classification of 2× 2 diagonalizable systems.

Remark:
Diagonalizable 2× 2 matrices A with real coefficients are classified
according to their eigenvalues.

(a) Matrix A has two different, real eigenvalues λ1 6= λ2, so it has
two non-proportional eigenvectors v1, v2 (eigen-directions).
(Section 5.7)

(b) Matrix A has two different, complex eigenvalues λ1 = λ2, so it
has two non-proportional eigenvectors v1, v2. (Section 5.8)

(c-1) Matrix A has repeated, real eigenvalues, λ1 = λ2 ∈ R with two
non-proportional eigenvectors v1, v2. (Section 5.9)

Remark:

(c-2) We will also study in Section 5.9 how to obtain solutions to a
2× 2 system x′ = A x in the case that A is not diagonalizable
and A has only one eigen-direction.
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Phase portraits for 2× 2 systems.
Remark:

I There are two main types of graphs for solutions of 2× 2
linear systems:
(i) The graphs of the vector components;
(ii) The phase portrait.

I Case (i): Express the solution in vector components

x(t) =

[
x1(t)
x2(t)

]
, and graph x1 and x2 as functions of t.

(Recall the solution in the IVP of the previous Example:
x1(t) = 3 e4t − e−2t and x2(t) = 3 e4t + e−2t .)

I Case (ii): Express the solution as a vector-valued function,

x(t) = c1 v1 eλ1t + c2 v2 eλ2t ,

and plot the vector x(t) for different values of t.

I Case (ii) is called a phase portrait.



Phase portraits for 2× 2 systems.
Example

Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

x(1) =

[
1
1

]
e4t , x(2) =

[
−1
1

]
e−2t .

Solution:
We start plotting the
vectors

v1 =

[
1
1

]
,

v2 =

[
−1
1

]
.
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Phase portraits for 2× 2 systems.

Example

Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

x(1) =

[
1
1

]
e4t , x(2) =

[
−1
1

]
e−2t .

Solution:
We now plot the functions

x(1) =

[
1
1

]
e4t ,

x(2) =

[
−1
1

]
e−2t .
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Phase portraits for 2× 2 systems.

Example

Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

x(1) =

[
1
1

]
e4t , x(2) =

[
−1
1

]
e−2t .

Solution:
We now plot the functions

−x(1) = −
[
1
1

]
e4t ,

−x(2) = −
[
−1
1

]
e−2t .
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Phase portraits for 2× 2 systems.

Example

Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

x(1) =

[
1
1

]
e4t , x(2) =

[
−1
1

]
e−2t .

Solution:
We now plot the four
functions

x(1), −x(1),

x(2), −x(2).
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Phase portraits for 2× 2 systems.
Example

Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

x(1) =

[
1
1

]
e4t , x(2) =

[
−1
1

]
e−2t .

Solution:
We now plot the four
functions

x(1), − x(1), x(2), − x(2),

and x(1) + x(2),[
1
1

]
e4t +

[
−1
1

]
e−2t .
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Phase portraits for 2× 2 systems.

Example

Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

x(1) =

[
1
1

]
e4t , x(2) =

[
−1
1

]
e−2t .

Solution:
We now plot the eight
functions

x(1), − x(1), x(2), − x(2),

x(1) + x(2), −x(1) + x(2),

x(1) − x(2), −x(1) − x(2).
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Phase portraits for 2× 2 systems.

Problem:
Case (a): Consider a 2× 2 matrix A having two different, real
eigenvalues λ1 6= λ2, so A has two non-proportional eigenvectors
v1, v2 (eigen-directions).

Given a solution x(t) = c1 v1 eλ1t + c2 v2 eλ2t , to x′(t) = A x(t),
plot different solution vectors x(t) on the plane as function of t for
different choices of the constants c1 and c2.

The plots are different depending on the eigenvalues signs.
We have the following three sub-cases:

(i) 0 < λ2 < λ1, both positive;

(ii) λ2 < 0 < λ1, one positive the other negative;

(iii) λ2 < λ1 < 0, both negative.

Phase portraits for 2× 2 systems.

Phase portrait: Case (a), two different, real eigenvalues λ1 6= λ2,
sub-case 0 < λ2 < λ1, both eigenvalue positive.
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Phase portraits for 2× 2 systems.

Phase portrait: Case (a), two different, real eigenvalues λ1 6= λ2,
sub-case λ2 < 0 < λ1, one eigenvalue positive the other negative.
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Phase portraits for 2× 2 systems.

Phase portrait: Case (a), two different, real eigenvalues λ1 6= λ2,
sub-case λ2 < λ1 < 0, both eigenvalues negative.
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