Generalized sources (Sect. 4.4).

▶ The Dirac delta generalized function.
▶ Properties of Dirac's delta.
▶ Relation between deltas and steps.
▶ Dirac's delta in Physics.
▶ The Laplace Transform of Dirac's delta.
▶ Differential equations with Dirac's delta sources.
The Dirac delta generalized function.

Definition
Consider the sequence of functions for $n \geq 1$,

$$\delta_n(t) = \begin{cases}
0, & t < 0 \\
n, & 0 \leq t \leq \frac{1}{n} \\
0, & t > \frac{1}{n}.
\end{cases}$$

The Dirac delta generalized function is given by

$$\lim_{n \to \infty} \delta_n(t) = \delta(t), \quad t \in \mathbb{R}. \quad \text{(Remarks:)}$$

(a) There exist infinitely many sequences δ_n that define the same generalized function δ.

(b) For example, compare with the sequences δ_n in the literature.

The Dirac delta generalized function.

Remarks:
(a) The Dirac δ is a function on the domain $\mathbb{R} - \{0\}$, and $\delta(t) = 0$ for $t \in \mathbb{R} - \{0\}$.

(b) δ at $t = 0$ is not defined, since $\delta(0) = \lim_{n \to \infty} n = +\infty$.

(c) δ is not a function on \mathbb{R}.
Generalized sources (Sect. 4.4).

- The Dirac delta generalized function.
- **Properties of Dirac’s delta.**
- Relation between deltas and steps.
- Dirac’s delta in Physics.
- The Laplace Transform of Dirac’s delta.
- Differential equations with Dirac’s delta sources.

Properties of Dirac’s delta.

Remark: The Dirac δ is not a function on \mathbb{R}.

We define operations on Dirac’s δ as limits $n \to \infty$ of the operation on the sequence elements δ_n.

Definition

\[
\delta(t - c) = \lim_{n \to \infty} \delta_n(t - c),
\]

\[
a \delta(t) + b \delta(t) = \lim_{n \to \infty} [a \delta_n(t) + b \delta_n(t)],
\]

\[
f(t) \delta(t) = \lim_{n \to \infty} [f(t) \delta_n(t)],
\]

\[
\int_a^b \delta(t) \, dt = \lim_{n \to \infty} \int_a^b \delta_n(t) \, dt,
\]

\[
\mathcal{L}[\delta] = \lim_{n \to \infty} \mathcal{L}[\delta_n].
\]
Properties of Dirac's delta.

Theorem

\[\int_{-a}^{a} \delta(t) \, dt = 1, \quad a > 0. \]

Proof:

\[
\int_{-a}^{a} \delta(t) \, dt = \lim_{n \to \infty} \int_{-a}^{a} \delta_n(t) \, dt = \lim_{n \to \infty} \int_{0}^{1/n} n \, dt
\]

\[
\int_{-a}^{a} \delta(t) \, dt = \lim_{n \to \infty} \left[n \left(t \bigg|_{0}^{1/n} \right) \right] = \lim_{n \to \infty} \left[n \left(1/n \right) \right].
\]

We conclude: \(\int_{-a}^{a} \delta(t) \, dt = 1. \)

Properties of Dirac’s delta.

Theorem

If \(f : \mathbb{R} \to \mathbb{R} \) is continuous, \(t_0 \in \mathbb{R} \) and \(a > 0 \), then

\[\int_{t_0-a}^{t_0+a} \delta(t-t_0) f(t) \, dt = f(t_0). \]

Proof: Introduce the change of variable \(\tau = t - t_0 \),

\[
l = \int_{t_0-a}^{t_0+a} \delta(t-t_0) f(t) \, dt = \int_{-a}^{a} \delta(\tau) f(\tau + t_0) \, d\tau,
\]

\[
l = \lim_{n \to \infty} \int_{-a}^{a} \delta_n(\tau) f(\tau + t_0) \, d\tau = \lim_{n \to \infty} \int_{0}^{1/n} n f(\tau + t_0) \, d\tau
\]

Therefore, \(l = \lim_{n \to \infty} n \int_{0}^{1/n} F'(\tau + t_0) \, d\tau \), where we introduced the primitive \(F(t) = \int f(t) \, dt \), that is, \(f(t) = F'(t) \).
Properties of Dirac's delta.

Theorem

If $f : \mathbb{R} \to \mathbb{R}$ is continuous, $t_0 \in \mathbb{R}$ and $a > 0$, then

$$\int_{t_0-a}^{t_0+a} \delta(t - t_0) f(t) \, dt = f(t_0).$$

Proof: So, $I = \lim_{n \to \infty} n \int_0^{1/n} F'(\tau + t_0) \, d\tau$, with $f(t) = F'(t)$.

$$I = \lim_{n \to \infty} n \left[F(\tau + t_0) \bigg|_0^{1/n} \right] = \lim_{n \to \infty} n \left[F(t_0 + \frac{1}{n}) - F(t_0) \right].$$

$$I = \lim_{n \to \infty} \frac{F(t_0 + \frac{1}{n}) - F(t_0)}{\frac{1}{n}} = F'(t_0) = f(t_0).$$

We conclude: $\int_{t_0-a}^{t_0+a} \delta(t - t_0) f(t) \, dt = f(t_0)$. \qed

Generalized sources (Sect. 4.4).

- The Dirac delta generalized function.
- Properties of Dirac’s delta.
- **Relation between deltas and steps.**
- Dirac’s delta in Physics.
- The Laplace Transform of Dirac’s delta.
- Differential equations with Dirac’s delta sources.
Relation between deltas and steps.

Theorem

The sequence of functions for $n \geq 1$,

$$u_n(t) = \begin{cases}
0, & t < 0 \\
nt, & 0 \leq t \leq \frac{1}{n} \\
1, & t > \frac{1}{n}.
\end{cases}$$

satisfies, for $t \in (-\infty, 0) \cup (0, 1/n) \cup (1/n, \infty)$, both equations,

$$u_n'(t) = \delta_n(t), \quad \lim_{n \to \infty} u_n(t) = u(t), \quad t \in \mathbb{R}.$$

Remark:

- If we generalize the notion of derivative as $u'(t) = \lim_{n \to \infty} u_n'(t)$, then holds $u'(t) = \delta(t)$.
- Dirac’s delta is a generalized derivative of the step function.

Generalized sources (Sect. 4.4).

- The Dirac delta generalized function.
- Properties of Dirac’s delta.
- Relation between deltas and steps.
- **Dirac’s delta in Physics.**
- The Laplace Transform of Dirac’s delta.
- Differential equations with Dirac’s delta sources.
Dirac’s delta in Physics.

Remarks:
(a) Dirac’s delta generalized function is useful to describe *impulsive forces* in mechanical systems.

(b) An impulsive force transmits a finite momentum in an infinitely short time.

(c) For example: The momentum transmitted to a pendulum when hit by a hammer. Newton’s law of motion says,

\[m v'(t) = F(t), \quad \text{with} \quad F(t) = F_0 \delta(t - t_0). \]

The momentum transfer is:

\[
\Delta I = \lim_{\Delta t \to 0} mv(t)\bigg|_{t_0-\Delta t}^{t_0+\Delta t} = \lim_{\Delta t \to 0} \int_{t_0-\Delta t}^{t_0+\Delta t} F(t) \, dt = F_0.
\]

That is, \(\Delta I = F_0. \)

Generalized sources (Sect. 4.4).

- The Dirac delta generalized function.
- Properties of Dirac’s delta.
- Relation between deltas and steps.
- Dirac’s delta in Physics.
- **The Laplace Transform of Dirac’s delta.**
- Differential equations with Dirac’s delta sources.
Recall: The Laplace Transform can be generalized to Dirac's delta function, as follows:

\[\mathcal{L}[\delta(t - c)] = \lim_{n \to \infty} \mathcal{L}[\delta_n(t - c)]. \]

Theorem

\[\mathcal{L}[\delta(t - c)] = e^{-cs}. \]

Proof:

\[\mathcal{L}[\delta(t - c)] = \lim_{n \to \infty} \mathcal{L}[\delta_n(t - c)], \quad \delta_n(t) = n \left[u(t) - u(t - \frac{1}{n}) \right]. \]

\[\mathcal{L}[\delta(t - c)] = \lim_{n \to \infty} n \left(\mathcal{L}[u(t - c)] - \mathcal{L}[u(t - c - \frac{1}{n})] \right) \]

\[\mathcal{L}[\delta(t - c)] = \lim_{n \to \infty} n \left(\frac{e^{-cs}}{s} - \frac{e^{-s(c + \frac{1}{n})}}{s} \right) = e^{-cs} \lim_{n \to \infty} \frac{1 - e^{-\frac{s}{n}}}{\left(\frac{s}{n} \right)}. \]

This is a singular limit, \(\frac{0}{0} \). Use l'Hôpital's rule.

Remarks:

- (a) This result is consistent with a previous result:
 \[\int_{t_0-a}^{t_0+a} \delta(t - t_0) f(t) \, dt = f(t_0). \]

- (b) \(\mathcal{L}[\delta(t - c)] = \int_0^\infty \delta(t - c) e^{-st} \, dt = e^{-cs}. \)

- (c) \(\mathcal{L}[\delta(t - c) f(t)] = \int_0^\infty \delta(t - c) e^{-st} f(t) \, dt = e^{-cs} f(c). \)
Generalized sources (Sect. 4.4).

- The Dirac delta generalized function.
- Properties of Dirac's delta.
- Relation between deltas and steps.
- Dirac's delta in Physics.
- The Laplace Transform of Dirac's delta.
- **Differential equations with Dirac's delta sources.**

Differential equations with Dirac's delta sources.

Example

Find the solution y to the initial value problem

$$y'' - y = -20 \delta(t - 3), \quad y(0) = 1, \quad y'(0) = 0.$$

Solution: Compute: $\mathcal{L}[y''] - \mathcal{L}[y] = -20 \mathcal{L}[\delta(t - 3)].$

$$\mathcal{L}[y''] = s^2 \mathcal{L}[y] - sy(0) - y'(0) \quad \Rightarrow \quad (s^2 - 1) \mathcal{L}[y] - s = -20 e^{-3s},$$

We arrive to the equation

$$\mathcal{L}[y] = \frac{s}{(s^2 - 1)} - 20 e^{-3s} \frac{1}{(s^2 - 1)},$$

$$\mathcal{L}[y] = \mathcal{L}[\cosh(t)] - 20 \mathcal{L}[u(t - 3) \sinh(t - 3)],$$

We conclude: $y(t) = \cosh(t) - 20 u(t - 3) \sinh(t - 3). \quad \triangle$
Differential equations with Dirac’s delta sources.

Example
Find the solution to the initial value problem
\[y'' + 4y = \delta(t - \pi) - \delta(t - 2\pi), \quad y(0) = 0, \quad y'(0) = 0. \]

Solution: Compute:
\[\mathcal{L}[y''] + 4 \mathcal{L}[y] = \mathcal{L}[\delta(t - \pi)] - \mathcal{L}[\delta(t - 2\pi)], \]
\((s^2 + 4) \mathcal{L}[y] = e^{-\pi s} - e^{-2\pi s} \implies \mathcal{L}[y] = \frac{e^{-\pi s}}{(s^2 + 4)} - \frac{e^{-2\pi s}}{(s^2 + 4)}, \]
that is, \(\mathcal{L}[y] = \frac{e^{-\pi s}}{2} \frac{2}{(s^2 + 4)} - \frac{e^{-2\pi s}}{2} \frac{2}{(s^2 + 4)}. \)

Recall: \(e^{-cs} \mathcal{L}[f(t)] = \mathcal{L}[u(t - c)f(t - c)]. \) Therefore,
\[\mathcal{L}[y] = \frac{1}{2} \mathcal{L}
\left[u(t - \pi) \sin(2(t - \pi))\right] - \frac{1}{2} \mathcal{L}
\left[u(t - 2\pi) \sin(2(t - 2\pi))\right]. \]

This implies that,
\[y(t) = \frac{1}{2} u(t - \pi) \sin(2(t - \pi)) - \frac{1}{2} u(t - 2\pi) \sin(2(t - 2\pi)), \]
We conclude: \[y(t) = \frac{1}{2} \left[u(t - \pi) - u(t - 2\pi)\right] \sin(2t). \]

Differential equations with Dirac’s delta sources.

Example
Find the solution to the initial value problem
\[y'' + 4y = \delta(t - \pi) - \delta(t - 2\pi), \quad y(0) = 0, \quad y'(0) = 0. \]

Solution: Recall:
\[\mathcal{L}[y] = \frac{1}{2} \mathcal{L}
\left[u(t - \pi) \sin(2(t - \pi))\right] - \frac{1}{2} \mathcal{L}
\left[u(t - 2\pi) \sin(2(t - 2\pi))\right]. \]

This implies that,
\[y(t) = \frac{1}{2} u(t - \pi) \sin(2(t - \pi)) - \frac{1}{2} u(t - 2\pi) \sin(2(t - 2\pi)), \]
We conclude: \[y(t) = \frac{1}{2} \left[u(t - \pi) - u(t - 2\pi)\right] \sin(2t). \]