Non-homogeneous equations (Sect. 2.7).

- We study: $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)$.
- Method of variation of parameters.
- Using the method in an example.
- The proof of the variation of parameter method.
- Using the method in another example.

Method of variation of parameters.

Remarks:

- This is a general method to find solutions to equations having variable coefficients and non-homogeneous with a continuous but otherwise arbitrary source function,

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)
$$

- The variation of parameter method can be applied to more general equations than the undetermined coefficients method.
- The variation of parameter method usually takes more time to implement than the simpler method of undetermined coefficients.

Method of variation of parameters.

Theorem (Variation of parameters)
A particular solution to the equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)
$$

with $p, q, f:\left(t_{1}, t_{2}\right) \rightarrow \mathbb{R}$ continuous functions, is given by

$$
y_{p}=u_{1} y_{1}+u_{2} y_{2},
$$

where $y_{1}, y_{2}:\left(t_{1}, t_{2}\right) \rightarrow \mathbb{R}$ are fundamental solutions of the homogeneous equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

and functions u_{1} and u_{2} are defined by

$$
u_{1}(t)=\int-\frac{y_{2}(t) f(t)}{W_{y_{1} y_{2}}(t)} d t, \quad u_{2}(t)=\int \frac{y_{1}(t) f(t)}{W_{y_{1} y_{2}}(t)} d t
$$

with $W_{y_{1} y_{2}}$ the Wronskian of y_{1}, y_{2}.

Non-homogeneous equations (Sect. 2.7).

- We study: $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)$.
- Method of variation of parameters.
- Using the method in an example.
- The proof of the variation of parameter method.
- Using the method in another example.

Using the method in an example.

Example

Find the general solution of the inhomogeneous equation

$$
y^{\prime \prime}-5 y^{\prime}+6 y=2 e^{t}
$$

Solution:
First: Find fundamental solutions to the homogeneous equation.
The characteristic equation is

$$
r^{2}-5 r+6=0 \Rightarrow r=\frac{1}{2}(5 \pm \sqrt{25-24}) \quad \Rightarrow \quad\left\{\begin{array}{l}
r_{1}=3 \\
r_{2}=2
\end{array}\right.
$$

Hence, $y_{1}(t)=e^{3 t}$ and $y_{2}(t)=e^{2 t}$. Compute their Wronskian,

$$
W_{y_{1} y_{2}}(t)=\left(e^{3 t}\right)\left(2 e^{2 t}\right)-\left(3 e^{3 t}\right)\left(e^{2 t}\right) \quad \Rightarrow \quad W_{y_{1} y_{2}}(t)=-e^{5 t}
$$

Second: We compute the functions u_{1} and u_{2}. By definition,

$$
u_{1}^{\prime}=-\frac{y_{2} f}{W_{y_{1} y_{2}}}, \quad u_{2}^{\prime}=\frac{y_{1} f}{W_{y_{1} y_{2}}} .
$$

Using the method in an example.

Example

Find the general solution of the inhomogeneous equation

$$
y^{\prime \prime}-5 y^{\prime}+6 y=2 e^{t}
$$

Solution: Recall: $y_{1}(t)=e^{3 t}, y_{2}(t)=e^{2 t}, W_{y_{1} y_{2}}(t)=-e^{5 t}$, and

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{y_{2} f}{W_{y_{1} y_{2}}}, \quad u_{2}^{\prime}=\frac{y_{1} f}{W_{y_{1} y_{2}}} \\
u_{1}^{\prime}=-e^{2 t}\left(2 e^{t}\right)\left(-e^{-5 t}\right) \quad \Rightarrow \quad u_{1}^{\prime}=2 e^{-2 t} \quad \Rightarrow \quad u_{1}=-e^{-2 t}, \\
u_{2}^{\prime}=e^{3 t}\left(2 e^{t}\right)\left(-e^{-5 t}\right) \quad \Rightarrow \quad u_{2}^{\prime}=-2 e^{-t} \quad \Rightarrow \quad u_{2}=2 e^{-t}
\end{gathered}
$$

Third: The particular solution is

$$
y_{p}=\left(-e^{-2 t}\right)\left(e^{3 t}\right)+\left(2 e^{-t}\right)\left(e^{2 t}\right) \quad \Rightarrow \quad y_{p}=e^{t}
$$

The general solution is $y(t)=c_{1} e^{3 t}+c_{2} e^{2 t}+e^{t}, c_{1}, c_{2} \in \mathbb{R} . \quad \triangleleft$

Non-homogeneous equations (Sect. 2.7).

- We study: $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)$.
- Method of variation of parameters.
- Using the method in an example.
- The proof of the variation of parameter method.
- Using the method in another example.

The proof of the variation of parameter method.

Proof: Denote $L(y)=y^{\prime \prime}+p(t) y^{\prime}+q(t) y$.
We need to find y_{p} solution of $L\left(y_{p}\right)=f$.
We know y_{1} and y_{2} solutions of $L\left(y_{1}\right)=0$ and $L\left(y_{2}\right)=0$.
Idea: The reduction of order method: Find y_{2} proposing $y_{2}=u y_{1}$.
First idea: Propose that y_{p} is given by $y_{p}=u_{1} y_{1}+u_{2} y_{2}$.
We hope that the equation for u_{1} and u_{2} will be simpler than the original equation for y_{p}, since y_{1} and y_{2} are solutions to the homogeneous equation. Compute:

$$
\begin{gathered}
y_{p}^{\prime}=u_{1}^{\prime} y_{1}+u_{1} y_{1}^{\prime}+u_{2}^{\prime} y_{2}+u_{2} y_{2}^{\prime} \\
y_{p}^{\prime \prime}=u_{1}^{\prime \prime} y_{1}+2 u_{1}^{\prime} y_{1}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2}^{\prime \prime} y_{2}+2 u_{2}^{\prime} y_{2}^{\prime}+u_{2} y_{2}^{\prime \prime}
\end{gathered}
$$

The proof of the variation of parameter method.
Proof: Then $L\left(y_{p}\right)=f$ is given by

$$
\begin{gathered}
{\left[u_{1}^{\prime \prime} y_{1}+2 u_{1}^{\prime} y_{1}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2}^{\prime \prime} y_{2}+2 u_{2}^{\prime} y_{2}^{\prime}+u_{2} y_{2}^{\prime \prime}\right]} \\
p(t)\left[u_{1}^{\prime} y_{1}+u_{1} y_{1}^{\prime}+u_{2}^{\prime} y_{2}+u_{2} y_{2}^{\prime}\right]+q(t)\left[u_{1} y_{1}+u_{2} y_{2}\right]=f(t) \\
u_{1}^{\prime \prime} y_{1}+u_{2}^{\prime \prime} y_{2}+2\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2} y_{2}^{\prime}\right)+p\left(u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}\right) \\
+u_{1}\left(y_{1}^{\prime \prime}+p y_{1}^{\prime}+q y_{1}\right)+u_{2}\left(y_{2}^{\prime \prime}+p y_{2}^{\prime}+q y_{2}\right)=f
\end{gathered}
$$

Recall: $y_{1}^{\prime \prime}+p y_{1}^{\prime}+q y_{1}=0$ and $y_{2}^{\prime \prime}+p y_{2}^{\prime}+q y_{2}=0$. Hence,

$$
u_{1}^{\prime \prime} y_{1}+u_{2}^{\prime \prime} y_{2}+2\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right)+p\left(u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}\right)=f
$$

Second idea: Look for u_{1} and u_{2} that satisfy the extra equation

$$
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0
$$

The proof of the variation of parameter method.
Proof: Recall: $u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0$ and

$$
u_{1}^{\prime \prime} y_{1}+u_{2}^{\prime \prime} y_{2}+2\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right)+p\left(u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}\right)=f
$$

These two equations imply that $L\left(y_{p}\right)=f$ is

$$
u_{1}^{\prime \prime} y_{1}+u_{2}^{\prime \prime} y_{2}+2\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right)=f
$$

From $u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0$ we get $\left[u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}\right]^{\prime}=0$, that is

$$
u_{1}^{\prime \prime} y_{1}+u_{2}^{\prime \prime} y_{2}+\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right)=0
$$

This information in $L\left(y_{p}\right)=f$ implies

$$
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f
$$

Summary: If u_{1} and u_{2} satisfy $u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0$ and $u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f$, then $y_{p}=u_{1} y_{1}+u_{2} y_{2}$ satisfies $L\left(y_{p}\right)=f$.

The proof of the variation of parameter method.
Proof: Summary: If u_{1} and u_{2} satisfy $\left\{\begin{array}{l}u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0, \\ u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f,\end{array}\right\}$ then $y_{p}=u_{1} y_{1}+u_{2} y_{2}$ satisfies $L\left(y_{p}\right)=f$.

The equations above are simple to solve for u_{1} and u_{2},
$u_{2}^{\prime}=-\frac{y_{1}}{y_{2}} u_{1}^{\prime} \Rightarrow u_{1}^{\prime} y_{1}^{\prime}-\frac{y_{1} y_{2}^{\prime}}{y_{2}} u_{1}^{\prime}=f \quad \Rightarrow \quad u_{1}^{\prime}\left(\frac{y_{1}^{\prime} y_{2}-y_{1} y_{2}^{\prime}}{y_{2}}\right)=f$.
Since $W_{y_{1} y_{2}}=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}$, then $u_{1}^{\prime}=-\frac{y_{2} f}{W_{y_{1} y_{2}}} \quad \Rightarrow \quad u_{2}^{\prime}=\frac{y_{1} f}{W_{y_{1} y_{2}}}$. Integrating in the variable t we obtain

$$
u_{1}(t)=\int-\frac{y_{2}(t) f(t)}{W_{y_{1} y_{2}}(t)} d t, \quad u_{2}(t)=\int \frac{y_{1}(t) f(t)}{W_{y_{1} y_{2}}(t)} d t
$$

This establishes the Theorem.

Non-homogeneous equations (Sect. 2.7).

- We study: $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)$.
- Method of variation of parameters.
- Using the method in an example.
- The proof of the variation of parameter method.
- Using the method in another example.

Using the method in another example.

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: First, write the equation in the form of the Theorem.
That is, divide the whole equation by t^{2},

$$
y^{\prime \prime}-\frac{2}{t^{2}} y=3-\frac{1}{t^{2}} \Rightarrow f(t)=3-\frac{1}{t^{2}}
$$

We know that $y_{1}=t^{2}$ and $y_{2}=1 / t$. Their Wronskian is

$$
W_{y_{1} y_{2}}(t)=\left(t^{2}\right)\left(\frac{-1}{t^{2}}\right)-(2 t)\left(\frac{1}{t}\right) \quad \Rightarrow \quad W_{y_{1} y_{2}}(t)=-3
$$

Using the method in another example.

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: $y_{1}=t^{2}, \quad y_{2}=1 / t, \quad f(t)=3-\frac{1}{t^{2}}, W_{y_{1} y_{2}}(t)=-3$.
We now compute y_{1} and u_{2},

$$
\begin{aligned}
& u_{1}^{\prime}=-\frac{1}{t}\left(3-\frac{1}{t^{2}}\right) \frac{1}{-3}=\frac{1}{t}-\frac{1}{3} t^{-3} \quad \Rightarrow \quad u_{1}=\ln (t)+\frac{1}{6} t^{-2} \\
& u_{2}^{\prime}=\left(t^{2}\right)\left(3-\frac{1}{t^{2}}\right) \frac{1}{-3}=-t^{2}+\frac{1}{3} \quad \Rightarrow \quad u_{2}=-\frac{1}{3} t^{3}+\frac{1}{3} t
\end{aligned}
$$

Using the method in another example.

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: The particular solution $\tilde{y}_{p}=u_{1} y_{1}+u_{2} y_{2}$ is

$$
\begin{gathered}
\tilde{y}_{p}=\left[\ln (t)+\frac{1}{6} t^{-2}\right]\left(t^{2}\right)+\frac{1}{3}\left(-t^{3}+t\right)\left(t^{-1}\right) \\
\tilde{y}_{p}=t^{2} \ln (t)+\frac{1}{6}-\frac{1}{3} t^{2}+\frac{1}{3}=t^{2} \ln (t)+\frac{1}{2}-\frac{1}{3} t^{2} \\
\tilde{y}_{p}=t^{2} \ln (t)+\frac{1}{2}-\frac{1}{3} y_{1}(t)
\end{gathered}
$$

A simpler expression is $y_{p}=t^{2} \ln (t)+\frac{1}{2}$.

Using the method in another example.

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: If we do not remember the formulas for u_{1}, u_{2}, we can always solve the system

$$
\begin{gathered}
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f . \\
t^{2} u_{1}^{\prime}+u_{2}^{\prime} \frac{1}{t}=0, \quad 2 t u_{1}^{\prime}+u_{2}^{\prime} \frac{(-1)}{t^{2}}=3-\frac{1}{t^{2}} . \\
u_{2}^{\prime}=-t^{3} u_{1}^{\prime} \Rightarrow 2 t u_{1}^{\prime}+t u_{1}^{\prime}=3-\frac{1}{t^{2}} \Rightarrow\left\{\begin{array}{l}
u_{1}^{\prime}=\frac{1}{t}-\frac{1}{3 t^{3}} \\
u_{2}^{\prime}=-t^{2}+\frac{1}{3} .
\end{array}\right.
\end{gathered}
$$

