Second order equations: Repeated roots (Sect. 2.4).

- Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.
- Guessing solutions: Repeated roots case.
- Main result for repeated roots.
- Application: Reduction of the order method.

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.
Summary:
Given constants $a_{1}, a_{0} \in \mathbb{R}$, consider the differential equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

with characteristic polynomial having roots

$$
r_{ \pm}=-\frac{a_{1}}{2} \pm \frac{1}{2} \sqrt{a_{1}^{2}-4 a_{0}} .
$$

(1) If $a_{1}^{2}-4 a_{0}>0$, then $y_{1}(t)=e^{r_{+} t}$ and $y_{2}(t)=e^{r_{-} t}$.
(2) If $a_{1}^{2}-4 a_{0}<0$, then introducing $\alpha=-\frac{a_{1}}{2}, \beta=\frac{1}{2} \sqrt{4 a_{0}-a_{1}^{2}}$,

$$
y_{1}(t)=e^{\alpha t} \cos (\beta t), \quad y_{2}(t)=e^{\alpha t} \sin (\beta t) .
$$

(3) If $a_{1}^{2}-4 a_{0}=0$, then $y_{1}(t)=e^{-\frac{a_{1}}{2} t}$.

Second order equations: Repeated roots (Sect. 2.4).

- Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.
- Guessing solutions: Repeated roots case.
- Main result for repeated roots.
- Application: Reduction of the order method.

Guessing solutions: Repeated roots case.

Remark:

- Case (3), where $4 a_{0}-a_{1}^{2}=0$ guessed as $\beta \rightarrow 0$ in case (2).
- Study solutions in the case (2) as $\beta \rightarrow 0$ for fixed t.
- Since $\cos (\beta t) \rightarrow 1$ as $\beta \rightarrow 0$, we conclude that

$$
y_{1 \beta}(t)=e^{-\frac{a_{1}}{2} t} \cos (\beta t) \rightarrow e^{-\frac{a_{1}}{2} t}=y_{1}(t)
$$

- Since $\frac{\sin (\beta t)}{\beta t} \rightarrow 1$ as $\beta \rightarrow 0$, that is, $\sin (\beta t) \rightarrow \beta t$,

$$
y_{2 \beta}(t)=e^{-\frac{a_{1}}{2} t} \sin (\beta t) \rightarrow \beta t e^{-\frac{a_{1}}{2} t} \rightarrow 0
$$

- Guessed solution: $y_{2}(t)=t y_{1}(t)$. Introducing y_{2} in the differential equation one obtains: Yes.
- Hence, y_{2} and y_{1} are a fundamental solutions in case (3).

Second order equations: Repeated roots (Sect. 2.4).

- Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.
- Guessing solutions: Repeated roots case.
- Main result for repeated roots.
- Application: Reduction of the order method.

Main result for repeated roots.

Theorem
If $a_{1}, a_{0} \in R$ satisfy that $a_{1}^{2}=4 a_{0}$, then the functions

$$
y_{1}(t)=e^{-\frac{\partial_{1}}{2} t}, \quad y_{2}(t)=t e^{-\frac{a_{1}}{2} t}
$$

are a fundamental solution set for the differential equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

Example

Find the general solution of $9 y^{\prime \prime}+6 y^{\prime}+y=0$.
Solution: The characteristic equation is $9 r^{2}+6 r+1=0$, so

$$
r_{ \pm}=\frac{1}{(2)(9)}[-6 \pm \sqrt{36-36}] \quad \Rightarrow \quad r_{ \pm}=-\frac{1}{3}
$$

Theorem (2.1.7) in LN implies that the general solution is

$$
y(t)=c_{1} e^{-t / 3}+c_{2} t e^{-t / 3} .
$$

Second order equations: Repeated roots (Sect. 2.4).

- Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.
- Guessing solutions: Repeated roots case.
- Main result for repeated roots.
- Application: Reduction of the order method.

Application: Reduction of the order method.

Proof case $a_{1}^{2}-4 a_{0}=0$:
Recall: The characteristic equation is $r^{2}+a_{1} r+a_{0}=0$, and its solutions are $r_{ \pm}=(1 / 2)\left[-a_{1} \pm \sqrt{a_{1}^{2}-4 a_{0}}\right]$.
The hypothesis $a_{1}^{2}=4 a_{0}$ implies $r_{+}=r_{-}=-a_{1} / 2$.
So, the solution r_{+}of the characteristic equation satisfies both

$$
r_{+}^{2}+a_{1} r_{+}+a_{0}=0, \quad 2 r_{+}+a_{1}=0
$$

It is clear that $y_{1}(t)=e^{r+t}$ is solutions of the differential equation.
A second solution y_{2} not proportional to y_{1} can be found as follows: (D'Alembert ~1750.)

Express: $y_{2}(t)=v(t) y_{1}(t)$, and find the equation that function v satisfies from the condition $y_{2}^{\prime \prime}+a_{1} y_{2}^{\prime}+a_{0} y_{2}=0$.

Application: Reduction of the order method.

Recall: $y_{2}=v y_{1}$ and $y_{2}^{\prime \prime}+a_{1} y_{2}^{\prime}+a_{0} y_{2}=0$. So, $y_{2}=v e^{r_{+} t}$ and

$$
y_{2}^{\prime}=v^{\prime} e^{r_{+} t}+r_{+} v e^{r_{+} t}, \quad y_{2}^{\prime \prime}=v^{\prime \prime} e^{r_{+} t}+2 r_{+} v^{\prime} e^{r_{+} t}+r_{+}^{2} v e^{r_{+} t} .
$$

Introducing this information into the differential equation

$$
\begin{gathered}
{\left[v^{\prime \prime}+2 r_{+} v^{\prime}+r_{+}^{2} v\right] e^{r_{+} t}+a_{1}\left[v^{\prime}+r_{+} v\right] e^{r_{+} t}+a_{0} v e^{r_{+} t}=0} \\
{\left[v^{\prime \prime}+2 r_{+} v^{\prime}+r_{+}^{2} v\right]+a_{1}\left[v^{\prime}+r_{+} v\right]+a_{0} v=0} \\
v^{\prime \prime}+\left(2 r_{+}+a_{1}\right) v^{\prime}+\left(r_{+}^{2}+a_{1} r_{+}+a_{0}\right) v=0
\end{gathered}
$$

Recall that r_{+}satisfies: $r_{+}^{2}+a_{1} r_{+}+a_{0}=0$ and $2 r_{+}+a_{1}=0$.

$$
v^{\prime \prime}=0 \Rightarrow v=\left(c_{1}+c_{2} t\right) \Rightarrow y_{2}=\left(c_{1}+c_{2} t\right) e^{r_{+} t}
$$

Application: Reduction of the order method.

Recall: We have obtained that $y_{2}(t)=\left(c_{1}+c_{2} t\right) e^{r_{+} t}$.
If $c_{2}=0$, then $y_{2}=c_{1} e^{r_{+} t}$ and $y_{1}=e^{r_{+} t}$ are linearly dependent functions.
If $c_{2} \neq 0$, then $y_{2}=\left(c_{1}+c_{2} t\right) e^{r_{+} t}$ and $y_{1}=e^{r_{+} t}$ are linearly independent functions.
Simplest choice: $c_{1}=0$ and $c_{2}=1$. Then, a fundamental solution set to the differential equation is

$$
y_{1}(t)=e^{r_{+} t}, \quad y_{2}(t)=t e^{r_{+} t}
$$

The general solution to the differential equation is

$$
y(t)=\tilde{c}_{1} e^{r_{+} t}+\tilde{c}_{2} t e^{r_{+} t} .
$$

Application: Reduction of the order method.

Example

Find the solution to the initial value problem

$$
9 y^{\prime \prime}+6 y^{\prime}+y=0, \quad y(0)=1, \quad y^{\prime}(0)=\frac{5}{3}
$$

Solution: The solutions of $9 r^{2}+6 r+1=0$, are $r_{+}=r_{-}=-\frac{1}{3}$.
The Theorem above says that the general solution is

$$
y(t)=c_{1} e^{-t / 3}+c_{2} t e^{-t / 3} \Rightarrow y^{\prime}(t)=-\frac{c_{1}}{3} e^{-t / 3}+c_{2}\left(1-\frac{t}{3}\right) e^{-t / 3} .
$$

The initial conditions imply that

$$
\left.\begin{array}{rl}
1 & =y(0)=c_{1} \\
\frac{5}{3} & =y^{\prime}(0)=-\frac{c_{1}}{3}+c_{2}
\end{array}\right\} \quad \Rightarrow \quad c_{1}=1, \quad c_{2}=2
$$

We conclude that $y(t)=(1+2 t) e^{-t / 3}$.

