
Special Second Order Equations (Sect. 2.2).

I Special Second order nonlinear equations.
I Function y missing. (Simpler)
I Variable t missing. (Harder)

I Reduction order method.

Special Second order nonlinear equations

Definition
Given a functions f : R3 → R, a second order differential equation
in the unknown function y : R → R is given by

y ′′ = f (t, y , y ′).

The equation is linear iff f is linear in the arguments y and y ′.

Remarks:

I Nonlinear second order differential equation are usually
difficult to solve.

I However, there are two particular cases where second order
equations can be transformed into first order equations.

(a) y ′′ = f (t, y ′). The function y is missing.
(b) y ′′ = f (y , y ′). The independent variable t is missing.
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Special Second order: y missing.

Theorem
If second order differential equation has the form y ′′ = f (t, y ′),
then the equation for v = y ′ is the first order equation v ′ = f (t, v).

Example

Find y solution of the second order nonlinear equation
y ′′ = −2t (y ′)2 with initial conditions y(0) = 2, y ′(0) = −1.

Solution: Introduce v = y ′. Then v ′ = y ′′, and

v ′ = −2t v2 ⇒ v ′

v2
= −2t ⇒ −1

v
= −t2 + c .

So,
1

y ′
= t2 − c , that is, y ′ =

1

t2 − c
. The initial condition implies

−1 = y ′(0) = −1

c
⇒ c = 1 ⇒ y ′ =

1

t2 − 1
.



Special Second order: y missing.

Example

Find the y solution of the second order nonlinear equation
y ′′ = −2t (y ′)2 with initial conditions y(0) = 2, y ′(0) = −1.

Solution: Then, y =

∫
dt

t2 − 1
+ c . Partial Fractions!

1

t2 − 1
=

1

(t − 1)(t + 1)
=

a

(t − 1)
+

b

(t + 1)
.

Hence, 1 = a(t + 1) + b(t − 1). Evaluating at t = 1 and t = −1

we get a =
1

2
, b = −1

2
. So

1

t2 − 1
=

1

2

[ 1

(t − 1)
− 1

(t + 1)

]
.

y =
1

2

(
ln |t − 1| − ln |t + 1|

)
+ c . 2 = y(0) =

1

2
(0− 0) + c .

We conclude y =
1

2

(
ln |t − 1| − ln |t + 1|

)
+ 2. C
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Special Second order: t missing.

Theorem
Consider a second order differential equation y ′′ = f (y , y ′), and
introduce the function v(t) = y ′(t). If the function y is invertible,
then the new function w(y) = v(t(y)) satisfies the first order
differential equation

dw

dy
=

1

w
f (y ,w(y)).

Proof: Denote ẇ =
dw

dy
and v ′ =

dv

dt
. Notice that

v ′(t) = f (y , v(t)). By chain rule

ẇ =
dw

dy

∣∣∣
y

=
dv

dt

∣∣∣
t(y)

dt

dy

∣∣∣
t(y)

=
v ′

y ′

∣∣∣
t(y)

=
v ′

v

∣∣∣
t(y)

=
f
(
y , v)

v

∣∣∣
t(y)

.

Therefore, ẇ = f (y ,w)/w .

Special Second order: t missing.

Example

Find a solution y to the second order equation y ′′ = 2y y ′.

Solution: The variable t does not appear in the equation.
Hence, v(t) = y ′(t). The equation is v ′(t) = 2y(t) v(t).
Now introduce w(y) = v(t(y)). Then

ẇ =
dw

dy
=

(dv

dt

dt

dy

)∣∣∣
t(y)

=
v ′

y ′

∣∣∣
t(y)

=
v ′

v

∣∣∣
t(y)

.

Using the differential equation,

ẇ =
2yv

v

∣∣∣
t(y)

⇒ ẇ = 2y ⇒ v̂(y) = y2 + c .

Since v(t) = w(y(t)), we get v(t) = y2(t) + c .



Special Second order: t missing.

Example

Find a solution y to the second order equation y ′′ = 2y y ′.

Solution: Recall: v(t) = y2(t) + c . This is a separable equation,

y ′(t)

y2(t) + c
= 1.

Since we only need to find a solution of the equation, and the
integral depends on whether c > 0, c = 0, c < 0, we choose (for
no special reason) only one case, c = 1.∫

dy

1 + y2
=

∫
dt +c0 ⇒ arctan(y) = t +c0y(t) = tan(t +c0).

Again, for no reason, we choose c0 = 0, and we conclude that one
possible solution to our problem is y(t) = tan(t). C
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Reduction of the order method

Remark: Knowing one solution to a differential equation is enough
to find a second solution not proportional to the first one.

Theorem
If a non-zero function y1 is solution to

y ′′ + p(t) y ′ + q(t) y = 0. (1)

where p, q are given functions, then a second solution to this same
equation is given by

y2(t) = y1(t)

∫
e−P(t)

y2
1 (t)

dt, (2)

where P(t) =
∫

p(t) dt. Furthermore, y1 and y2 are fundamental
solutions to Eq. (1).

Reduction of the order method

Example

Find a fundamental set of solutions to

t2y ′′ + 2ty ′ − 2y = 0,

knowing that y1(t) = t is a solution.

Solution: Express y2(t) = v(t) y1(t). The equation for v comes
from t2y ′′2 + 2ty ′2 − 2y2 = 0. We need to compute

y2 = v t, y ′2 = t v ′ + v , y ′′2 = t v ′′ + 2v ′.

So, the equation for v is given by

t2
(
t v ′′ + 2v ′

)
+ 2t

(
t v ′ + v

)
− 2t v = 0

t3 v ′′ + (2t2 + 2t2) v ′ + (2t − 2t) v = 0

t3 v ′′ + (4t2) v ′ = 0 ⇒ v ′′ +
4

t
v ′ = 0.



Reduction of the order method

Example

Find a fundamental set of solutions to

t2y ′′ + 2ty ′ − 2y = 0,

knowing that y1(t) = t is a solution.

Solution: Recall: v ′′ +
4

t
v ′ = 0.

This is a first order equation for w = v ′, given by w ′ +
4

t
w = 0, so

w ′

w
= −4

t
⇒ ln(w) = −4 ln(t) + c0 ⇒ w(t) = c1t

−4, c1 ∈ R.

Integrating w we obtain v , that is, v = c2t
−3 + c3, with c2, c3 ∈ R.

Recalling that y2 = t v we then conclude that y2 = c2t
−2 + c3t.

Choosing c2 = 1 and c3 = 0 we obtain the fundamental solutions

y1(t) = t and y2(t) =
1

t2
. C

Reduction of the order method

Proof of the Theorem: The choice of y2 = vy1 implies

y ′2 = v ′ y1 + v y ′1, y ′′2 = v ′′ y1 + 2v ′ y ′1 + v y ′′1 .

This information introduced into the differential equation says that

(v ′′ y1 + 2v ′ y ′1 + v y ′′1 ) + p (v ′ y1 + v y ′1) + qv y1 = 0

y1 v ′′ + (2y ′1 + p y1) v ′ + (y ′′1 + p y ′1 + q y1) v = 0.

The function y1 is solution of y ′′1 + p y ′1 + q y1 = 0.

Then, the equation for v is given by

y1 v ′′ + (2y ′1 + p y1) v ′ = 0.



Reduction of the order method

Recall: y1 v ′′ + (2y ′1 + p y1) v ′ = 0.

This is a first order eq. for w(t) = v ′(t). That is,

w ′ +
(
2
y ′1
y1

+ p
)

w = 0.

This is the origin of hte name: Reduction of order method.
Integrating factor: µ = y2

1 eP , with P ′ = p. Then(
y2
1 eP w)′ = 0 ⇒ w = w0e

−P/y2
1 choose w0 = 1.

Then v ′ = e−P/y2
1 , hence

v(t) =

∫
e−P

y2
1

dt ⇒ y2(t) = y1(t)

∫
e−P(t)

y2
1 (t)

dt

Reduction of the order method

Proof: Recall y1 v ′′ + (2y ′1 + p y1) v ′ = 0. We now need to show
that y1 and y2 = vy1 are linearly independent.

Wy1y2 =

∣∣∣∣y1 vy1

y ′1 (v ′y1 + vy ′1)

∣∣∣∣ = y1(v
′y1 + vy ′1)− vy1y

′
1.

We obtain Wy1y2 = v ′y2
1 . Recall we have w = v ′,

v ′ = w = e−P/y2
1 ⇒ y2

1 v ′ = e−P

Recall that P is a primitive of p, that is, P ′(t) = p(t), then we
obtain

Wy1y2 = e−P ,

which is non-zero. We conclude that y1 and y2 = vy1 are linearly
independent.


