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Second order linear differential equations.

Definition
Given functions a1, a0, b : R→ R, the differential equation in the
unknown function y : R→ R given by

y ′′ + a1(t) y ′ + a0(t) y = b(t) (1)

is called a second order linear differential equation with variable
coefficients. The equation in (1) is called homogeneous iff for all
t ∈ R holds

b(t) = 0.

The equation in (1) is called of constant coefficients iff a1, a0, and
b are constants.

Remark: The notion of an homogeneous equation presented here is
not the same as the Euler homogeneous from the previous chapter.



Second order linear differential equations.

Example

(a) A second order, linear, homogeneous, constant coefficients
equation is

y ′′ + 5y ′ + 6 = 0.

(b) A second order order, linear, constant coefficients,
non-homogeneous equation is

y ′′ − 3y ′ + y = 1.

(c) A second order, linear, non-homogeneous, variable coefficients
equation is

y ′′ + 2t y ′ − ln(t) y = e3t .

(d) Newton’s second law of motion (ma = f ) for point particles of
mass m moving in one space dimension under a force
f : R→ R is given by

m y ′′(t) = f (t). C
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Existence and uniqueness of solutions.

Theorem (Variable coefficients)

If the functions a1, a0, b : I → R are continuous on I, t0 ∈ I , and
y0, y1 ∈ R are any constants, then there exist a unique solution
y : I → R to the initial value problem

y ′′ + a1(t) y ′ + a0(t) y = b(t), y(t0) = y0, y ′(t0) = ŷ0.

Remarks:

I A proof of this Theorem can be constructed with a
generalization of the fixed-point arguments and the
Picard-Lindelöf iteration used in first order nonlinear
equations.

I Two integrations must be done to find solutions to second
order linear. Therefore, initial value problems with two initial
conditions can have a unique solution.

Existence and uniqueness of solutions.

Example

Find the longest interval I ∈ R such that there exists a unique
solution to the initial value problem

(t − 1)y ′′ − 3ty ′ + 4y = t(t − 1), y(−2) = 2, y ′(−2) = 1.

Solution: We first write the equation above in the form given in
the Theorem above,

y ′′ − 3t

t − 1
y ′ +

4

t − 1
y = t.

The intervals where the hypotheses in the Theorem above are
satisfied, that is, where the equation coefficients are continuous,
are I1 = (−∞, 1) and I2 = (1,∞). Since the initial condition
belongs to I1, the solution domain is

I1 = (−∞, 1). C



Existence and uniqueness of solutions.

Remarks:

I Every solution of the first order linear equation

y ′ + a(t) y = 0

is given by y(t) = c e−A(t), with A(t) =

∫
a(t) dt.

I All solutions above are proportional to each other:

y1(t) = c1 e−A(t), y2(t) = c2 e−A(t) ⇒ y1(t) =
c1

c2

y2(t)

Remark: The above statement is not true for solutions of second
order, linear, homogeneous equations, y ′′ + a1(t) y ′ + a0(t)y = 0.
Before we prove this statement we need few definitions:

I Proportional functions (linearly dependent).

I Wronskian of two functions.
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Operator notation.

Notation: Given functions a1, a0, denote

L(y) = y ′′ + a1(t) y ′ + a0(t) y .

Therefore, the differential equation

y ′′ + a1(t) y ′ + a(t) y = f (t)

can be written as
L(y) = f .

The homogeneous equation can be written as

L(y) = 0.

The function L acting on a function y is called an operator.
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Linear operator and superposition property.

Remark: The operator L(y) = y ′′ + a1(t) y ′ + a0(t) y is a linear
function of y .

Theorem
For every continuously differentiable functions y1, y2 : I → R and
every c1, c2 ∈ R holds that

L(c1y1 + c2y2) = c1L(y1) + c2L(y2).

Proof:

L(c1y1+c2y2) = (c1y1+c2y2)
′′+a1(t) (c1y1+c2y2)

′+a0(t) (c1y1+c2y2)

L(c1y1 + c2y2) =
(
c1y

′′
1 + a1(t) c1y

′
1 + a0(t) c1y1

)
+

(
c2y

′′
2 + a1(t) c2y

′
2 + a0(t) c2y2

)
L(c1y1 + c2y2) = c1L(y1) + c2L(y2).

Linear operator and superposition property.

Theorem
If L is a linear operator and y1, y2 are solutions of the homogeneous
equations L(y1) = 0, L(y2) = 0, then for every constants c1, c2

holds that L(c1 y1 + c2 y2) = 0.

Proof: Verify that the function y = c1y1 + c2y2 satisfies L(y) = 0
for every constants c1, c2, that is,

L(y) = L(c1y1 + c2y2) = c1 L(y1) + c2 L(y2) = 0
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Linearly dependent and independent functions.

Definition
Two continuous functions y1, y2 : (t1, t2) ⊂ R→ R are called
linearly dependent, (ld), on the interval (t1, t2) iff there exists a
constant c such that for all t ∈ I holds

y1(t) = c y2(t).

The two functions are called linearly independent, (li), on the
interval (t1, t2) iff they are not linearly dependent.

Remarks:

I y1, y2 : (t1, t2)→ R are ld ⇔ there exist constants c1, c2, not
both zero, such that c1 y1(t) + c2 y2(t) = 0 for all t ∈ (t1, t2).

I y1, y2 : (t1, t2)→ R are li ⇔ the only constants c1, c2, solutions
of c1 y1(t) + c2 y2(t) = 0 for all t ∈ (t1, t2) are c1 = c2 = 0.



Linearly dependent and independent functions.

Example

(a) Show that y1(t) = sin(t), y2(t) = 2 sin(t) are ld.

(b) Show that y1(t) = sin(t), y2(t) = t sin(t) are li.

Solution:
Case (a): Trivial. y2 = 2y1.

Case (b): Find constants c1, c2 such that for all t ∈ R holds

c1 sin(t) + c2t sin(t) = 0 ⇔ (c1 + c2t) sin(t) = 0.

Evaluating at t = π/2 and t = 3π/2 we obtain

c1 +
π

2
c2 = 0, c1 +

3π

2
c2 = 0 ⇒ c1 = 0, c2 = 0.

We conclude: The functions y1 and y2 are li. C

Variable coefficients second order linear ODE (Sect. 2.1).

I Second order linear ODE.

I Existence and uniqueness of solutions.

I Operator notation.

I Linear operator and superposition property.

I Linearly dependent and independent functions.

I General and fundamental solutions.

I The Wronskian of two functions.

I Abel’s theorem on the Wronskian.



General and fundamental solutions.

Theorem (General solution)

If y1 and y2 are linearly independent solutions of the equations
L(y1) = 0 and L(y2) = 0, where L(y) = y ′′ + a1 y ′ + a0 y, and a1, a2

are continuous functions, then there exist unique constants c1, c2

such that every solution y of the differential equation L(y) = 0 can
be written as a linear combination

y(t) = c1 y1(t) + c2 y2(t).

Definition
Two linearly independent solutions y1, y2 of L(y1) = 0, L(y2) = 0,
with L a linear operator, are called fundamental solutions.

Given any two fundamental solutions y1, y2, and arbitrary constants
c1, c2, the general solution of the homogeneous equation
L(ygen) = 0 is the set of all functions given by the expression

ygen(t) = c1 y1(t) + c2 y2(t).

General and fundamental solutions.

Idea of the Proof: Given any fundamental solution pair, y1, y2,
any other solution to L(y) = 0 must be

y(t) = c1 y1(t) + c2 y2(t),

The existence-uniquenes theorem of IVP implies: Good parameters
to label all solutions to L(y) = 0 are the initial conditions

y(t0) = y0, y ′(t0) = ŷ0.

Show that the map between y0, ŷ0 and c1, c2 is invertible.

y0 = c1 y1(t0) + c2 y2(t0)

ŷ0 = c1 y ′1(t0) + c2 y ′2(t0).

This map is invertible iff holds∣∣∣∣y1(t0) y2(t0)
y ′1(t0) y ′2(t0)

∣∣∣∣ = y1(t0) y ′2(t0)− y ′1(t0)y2(t0) 6= 0.

Study: Wy1,y2 = y1 y ′2− y ′1y2. Conclusion: The map is invertibe.
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The Wronskian of two functions.

Remark:

(a) The Wronskian is a function computed out of two other
functions.

(b) The Wronskian values provide information about the linear
dependence of the two functions used to compute it.

Definition
The Wronskian of functions y1, y2 : I → R is the function

Wy1y2(t) = y1(t)y
′
2(t)− y ′1(t)y2(t).

Remark:

I If A(t) =

[
y1 y2

y ′1 y ′2

]
, then Wy1y2(t) = det

(
A(t)

)
.

I An alternative notation is: Wy1y2 =

∣∣∣∣y1 y2

y ′1 y ′2

∣∣∣∣.



The Wronskian of two functions.

Example

Find the Wronskian of the functions:

(a) y1(t) = sin(t) and y2(t) = 2 sin(t). (ld)

(b) y1(t) = sin(t) and y2(t) = t sin(t). (li)

Solution:

Case (a): Wy1y2 =

∣∣∣∣y1 y2

y ′1 y ′2

∣∣∣∣ =

∣∣∣∣sin(t) 2 sin(t)
cos(t) 2 cos(t)

∣∣∣∣. Therefore,

Wy1y2(t) = sin(t)2 cos(t)− cos(t)2 sin(t) ⇒ Wy1y2(t) = 0.

Case (b): Wy1y2 =

∣∣∣∣sin(t) t sin(t)
cos(t) sin(t) + t cos(t)

∣∣∣∣. Therefore,

Wy1y2(t) = sin(t)
[
sin(t) + t cos(t)

]
− cos(t)t sin(t).

We obtain Wy1y2(t) = sin2(t). C

The Wronskian of two functions.

Remark: The Wronskian is related to linear dependence.

Theorem (Wronskian I)

If the the continuously differentiable functions y1, y2 on an interval
I are linearly dependent, then Wy1y2(t) = 0 for all t ∈ I .

Remark: The converse is not true.
Example: y1(t) = t2, and y2(t) = |t| t.

Corollary (Wronskian I)

If the Wronskian Wy1y2(t0) 6= 0 at a single point t0 ∈ I , then the
functions y1, y2 : I → R are linearly independent.

Remark: The Corollary is the negative of the Theorem.



The Wronskian of two functions.

Remark: The Wronskian is related to linear dependence.

Theorem (Wronskian II)

Let y1, y2 : I → R be both solutions of L(y) = 0 on I . If there
exists one point t0 ∈ I such that Wy1y2(t0) = 0, then y1 y2 are
linearly dependent.

Remark: The proof of this Theorem requires Abel’s Theorem.

Corollary (Wronskian II)

Let y1, y2 : I → R be both solutions of L(y) = 0 on I . If y1 y2 are
linearly independent on I , then their Wronskian Wy1y2(t) 6= 0 for
all t ∈ I .

Remark: This Corollary is needed to prove the Theorem on
General solutions.
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Abel’s theorem on the Wronskian.

Theorem (Abel)

If a1, a0 : (t1, t2)→ R are continuous functions and y1, y2 are
continuously differentiable solutions of the equation

y ′′ + a1(t) y ′ + a0(t) y = 0,

then the Wronskian Wy1y2 is a solution of the equation

W ′
y1y2

(t) + a1(t) Wy1y2(t) = 0.

Therefore, for any t0 ∈ (t1, t2), the Wronskian Wy1y2 is given by

Wy1y2(t) = Wy1y2(t0) e−A(t) A(t) =

∫ t

t0

a1(s) ds.

Remarks: If the the Wronskian of two solutions vanishes at the
initial time, then it vanishes at all times.

Abel’s theorem on the Wronskian.

Example

Find the Wronskian of two solutions of the equation

t2 y ′′ − t(t + 2) y ′ + (t + 2) y = 0, t > 0.

Solution: Write the equation as in Abel’s Theorem,

y ′′ −
(2

t
+ 1

)
y ′ +

( 2

t2
+

1

t

)
y = 0.

Abel’s Theorem says that the Wronskian satisfies the equation

W ′
y1y2

(t)−
(2

t
+ 1

)
Wy1y2(t) = 0.

This is a first order, linear equation for Wy1y2 . The integrating
factor method implies

A(t) = −
∫ t

t0

(2

s
+ 1

)
ds = −2 ln

( t

t0

)
− (t − t0)



Abel’s theorem on the Wronskian.

Example

Find the Wronskian of two solutions of the equation

t2 y ′′ − t(t + 2) y ′ + (t + 2) y = 0, t > 0.

Solution: A(t) = −2 ln
( t

t0

)
− (t − t0) = ln

( t2
0

t2

)
− (t − t0).

The integrating factor is µ =
t2
0

t2
e−(t−t0). Therefore,

[
µ(t)Wy1y2(t)

]′
= 0 ⇒ µ(t)Wy1y2(t)− µ(t0)Wy1y2(t0) = 0

so, the solution is Wy1y2(t) = Wy1y2(t0)
t2

t2
0

e(t−t0).

Denoting c =
(
Wy1y2(t0)/t2

0

)
e−t0 , then Wy1y2(t) = c t2et . C

General and fundamental solutions.

Example

Show that y1 =
√

t and y2 = 1/t are fundamental solutions of

2t2 y ′′ + 3t y ′ − y = 0.

Solution: First show that y1 is a solution:

y1 = t1/2, y ′1 =
1

2
t−1/2, y ′′1 = −1

4
t−3/2,

2t2
(
−1

4
t−

3
2

)
+ 3t

(1

2
t−

1
2

)
− t

1
2 = −1

2
t

1
2 +

3

2
t

1
2 − t

1
2 = 0.

Now show that y2 is a solution:

y2 = t−1, y ′2 = −t−2, y ′′2 = 2t−3,

2t2
(
2t−3

)
+ 3t

(
−t−2

)
− t−1 = 4t−1 − 3t−1 − t−1 = 0.



General and fundamental solutions.

Example

Show that y1 =
√

t and y2 = 1/t are fundamental solutions of

2t2 y ′′ + 3t y ′ − y = 0.

Solution: We show that y1, y2 are linearly independent.

Wy1y2(t) =

∣∣∣∣y1 y2

y ′1 y ′2

∣∣∣∣ =

∣∣∣∣ t1/2 t−1

1
2 t−1/2 −t−2

∣∣∣∣ .

Wy1y2(t) = −t1/2 t−2 − 1

2
t−1/2 t−1 = −t−3/2 − 1

2
t−3/2

Wy1y2(t) = −3

3
t−3/2 ⇒ y1, y2 li. C


