Variable coefficients second order linear ODE (Sect. 2.1).

- Second order linear ODE.
- Existence and uniqueness of solutions.
- Operator notation.
- Linear operator and Superposition property.
- Linearly dependent and independent functions.
- General and fundamental solutions.
- The Wronskian of two functions.
- Abel's theorem on the Wronskian.

Second order linear differential equations.

Definition

Given functions $a_{1}, a_{0}, b: \mathbb{R} \rightarrow \mathbb{R}$, the differential equation in the unknown function $y: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
y^{\prime \prime}+a_{1}(t) y^{\prime}+a_{0}(t) y=b(t) \tag{1}
\end{equation*}
$$

is called a second order linear differential equation with variable coefficients. The equation in (1) is called homogeneous iff for all $t \in \mathbb{R}$ holds

$$
b(t)=0
$$

The equation in (1) is called of constant coefficients iff a_{1}, a_{0}, and b are constants.

Remark: The notion of an homogeneous equation presented here is not the same as the Euler homogeneous from the previous chapter.

Second order linear differential equations.

Example

(a) A second order, linear, homogeneous, constant coefficients equation is

$$
y^{\prime \prime}+5 y^{\prime}+6=0
$$

(b) A second order order, linear, constant coefficients, non-homogeneous equation is

$$
y^{\prime \prime}-3 y^{\prime}+y=1
$$

(c) A second order, linear, non-homogeneous, variable coefficients equation is

$$
y^{\prime \prime}+2 t y^{\prime}-\ln (t) y=e^{3 t}
$$

(d) Newton's second law of motion $(m a=f)$ for point particles of mass m moving in one space dimension under a force $f: \mathbb{R} \rightarrow \mathbb{R}$ is given by

$$
m y^{\prime \prime}(t)=f(t)
$$

Variable coefficients second order linear ODE (Sect. 2.1).

- Second order linear ODE.
- Existence and uniqueness of solutions.
- Operator notation.
- Linear operator and Superposition property.
- Linearly dependent and independent functions.
- General and fundamental solutions.
- The Wronskian of two functions.
- Abel's theorem on the Wronskian.

Existence and uniqueness of solutions.

Theorem (Variable coefficients)

If the functions $a_{1}, a_{0}, b: I \rightarrow \mathbb{R}$ are continuous on $I, t_{0} \in I$, and $y_{0}, y_{1} \in \mathbb{R}$ are any constants, then there exist a unique solution $y: I \rightarrow \mathbb{R}$ to the initial value problem

$$
y^{\prime \prime}+a_{1}(t) y^{\prime}+a_{0}(t) y=b(t), \quad y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=\hat{y}_{0} .
$$

Remarks:

- A proof of this Theorem can be constructed with a generalization of the fixed-point arguments and the Picard-Lindelöf iteration used in first order nonlinear equations.
- Two integrations must be done to find solutions to second order linear. Therefore, initial value problems with two initial conditions can have a unique solution.

Existence and uniqueness of solutions.

Example

Find the longest interval $I \in \mathbb{R}$ such that there exists a unique solution to the initial value problem
$(t-1) y^{\prime \prime}-3 t y^{\prime}+4 y=t(t-1), \quad y(-2)=2, \quad y^{\prime}(-2)=1$.
Solution: We first write the equation above in the form given in the Theorem above,

$$
y^{\prime \prime}-\frac{3 t}{t-1} y^{\prime}+\frac{4}{t-1} y=t
$$

The intervals where the hypotheses in the Theorem above are satisfied, that is, where the equation coefficients are continuous, are $I_{1}=(-\infty, 1)$ and $I_{2}=(1, \infty)$. Since the initial condition belongs to I_{1}, the solution domain is

$$
I_{1}=(-\infty, 1) .
$$

Existence and uniqueness of solutions.

Remarks:

- Every solution of the first order linear equation

$$
y^{\prime}+a(t) y=0
$$

is given by $y(t)=c e^{-A(t)}$, with $A(t)=\int a(t) d t$.

- All solutions above are proportional to each other:

$$
y_{1}(t)=c_{1} e^{-A(t)}, \quad y_{2}(t)=c_{2} e^{-A(t)} \Rightarrow y_{1}(t)=\frac{c_{1}}{c_{2}} y_{2}(t)
$$

Remark: The above statement is not true for solutions of second order, linear, homogeneous equations, $y^{\prime \prime}+a_{1}(t) y^{\prime}+a_{0}(t) y=0$. Before we prove this statement we need few definitions:

- Proportional functions (linearly dependent).
- Wronskian of two functions.

Variable coefficients second order linear ODE (Sect. 2.1).

- Second order linear ODE.
- Existence and uniqueness of solutions.
- Operator notation.
- Linear operator and Superposition property.
- Linearly dependent and independent functions.
- General and fundamental solutions.
- The Wronskian of two functions.
- Abel's theorem on the Wronskian.

Operator notation.

Notation: Given functions a_{1}, a_{0}, denote

$$
L(y)=y^{\prime \prime}+a_{1}(t) y^{\prime}+a_{0}(t) y
$$

Therefore, the differential equation

$$
\left.y^{\prime \prime}+a_{1}(t) y^{\prime}+a_{(} t\right) y=f(t)
$$

can be written as

$$
L(y)=f
$$

The homogeneous equation can be written as

$$
L(y)=0
$$

The function L acting on a function y is called an operator.

Variable coefficients second order linear ODE (Sect. 2.1).

- Second order linear ODE.
- Existence and uniqueness of solutions.
- Operator notation.
- Linear operator and superposition property.
- Linearly dependent and independent functions.
- General and fundamental solutions.
- The Wronskian of two functions.
- Abel's theorem on the Wronskian.

Linear operator and superposition property.
Remark: The operator $L(y)=y^{\prime \prime}+a_{1}(t) y^{\prime}+a_{0}(t) y$ is a linear function of y.

Theorem
For every continuously differentiable functions $y_{1}, y_{2}: I \rightarrow \mathbb{R}$ and every $c_{1}, c_{2} \in \mathbb{R}$ holds that

$$
L\left(c_{1} y_{1}+c_{2} y_{2}\right)=c_{1} L\left(y_{1}\right)+c_{2} L\left(y_{2}\right) .
$$

Proof:

$$
\begin{gathered}
L\left(c_{1} y_{1}+c_{2} y_{2}\right)=\left(c_{1} y_{1}+c_{2} y_{2}\right)^{\prime \prime}+a_{1}(t)\left(c_{1} y_{1}+c_{2} y_{2}\right)^{\prime}+a_{0}(t)\left(c_{1} y_{1}+c_{2} y_{2}\right) \\
\begin{aligned}
L\left(c_{1} y_{1}+c_{2} y_{2}\right) & =\left(c_{1} y_{1}^{\prime \prime}+a_{1}(t) c_{1} y_{1}^{\prime}+a_{0}(t) c_{1} y_{1}\right) \\
& +\left(c_{2} y_{2}^{\prime \prime}+a_{1}(t) c_{2} y_{2}^{\prime}+a_{0}(t) c_{2} y_{2}\right)
\end{aligned} \\
L\left(c_{1} y_{1}+c_{2} y_{2}\right)=c_{1} L\left(y_{1}\right)+c_{2} L\left(y_{2}\right) .
\end{gathered}
$$

Linear operator and superposition property.

Theorem

If L is a linear operator and y_{1}, y_{2} are solutions of the homogeneous equations $L\left(y_{1}\right)=0, L\left(y_{2}\right)=0$, then for every constants c_{1}, c_{2} holds that $L\left(c_{1} y_{1}+c_{2} y_{2}\right)=0$.

Proof: Verify that the function $y=c_{1} y_{1}+c_{2} y_{2}$ satisfies $L(y)=0$ for every constants c_{1}, c_{2}, that is,

$$
L(y)=L\left(c_{1} y_{1}+c_{2} y_{2}\right)=c_{1} L\left(y_{1}\right)+c_{2} L\left(y_{2}\right)=0
$$

Variable coefficients second order linear ODE (Sect. 2.1).

- Second order linear ODE.
- Existence and uniqueness of solutions.
- Operator notation.
- Linear operator and superposition property.
- Linearly dependent and independent functions.
- General and fundamental solutions.
- The Wronskian of two functions.
- Abel's theorem on the Wronskian.

Linearly dependent and independent functions.

Definition

Two continuous functions $y_{1}, y_{2}:\left(t_{1}, t_{2}\right) \subset \mathbb{R} \rightarrow \mathbb{R}$ are called linearly dependent, (ld), on the interval $\left(t_{1}, t_{2}\right)$ iff there exists a constant c such that for all $t \in I$ holds

$$
y_{1}(t)=c y_{2}(t)
$$

The two functions are called linearly independent, (li), on the interval $\left(t_{1}, t_{2}\right)$ iff they are not linearly dependent.

Remarks:

- $y_{1}, y_{2}:\left(t_{1}, t_{2}\right) \rightarrow \mathbb{R}$ are Id \Leftrightarrow there exist constants c_{1}, c_{2}, not both zero, such that $c_{1} y_{1}(t)+c_{2} y_{2}(t)=0$ for all $t \in\left(t_{1}, t_{2}\right)$.
- $y_{1}, y_{2}:\left(t_{1}, t_{2}\right) \rightarrow \mathbb{R}$ are $\mathrm{i} \Leftrightarrow$ the only constants c_{1}, c_{2}, solutions of $c_{1} y_{1}(t)+c_{2} y_{2}(t)=0$ for all $t \in\left(t_{1}, t_{2}\right)$ are $c_{1}=c_{2}=0$.

Linearly dependent and independent functions.

Example

(a) Show that $y_{1}(t)=\sin (t), y_{2}(t)=2 \sin (t)$ are Id.
(b) Show that $y_{1}(t)=\sin (t), y_{2}(t)=t \sin (t)$ are li.

Solution:

Case (a): Trivial. $y_{2}=2 y_{1}$.
Case (b): Find constants c_{1}, c_{2} such that for all $t \in \mathbb{R}$ holds

$$
c_{1} \sin (t)+c_{2} t \sin (t)=0 \quad \Leftrightarrow \quad\left(c_{1}+c_{2} t\right) \sin (t)=0
$$

Evaluating at $t=\pi / 2$ and $t=3 \pi / 2$ we obtain

$$
c_{1}+\frac{\pi}{2} c_{2}=0, \quad c_{1}+\frac{3 \pi}{2} c_{2}=0 \quad \Rightarrow \quad c_{1}=0, \quad c_{2}=0
$$

We conclude: The functions y_{1} and y_{2} are li.

Variable coefficients second order linear ODE (Sect. 2.1).

- Second order linear ODE.
- Existence and uniqueness of solutions.
- Operator notation.
- Linear operator and superposition property.
- Linearly dependent and independent functions.
- General and fundamental solutions.
- The Wronskian of two functions.
- Abel's theorem on the Wronskian.

General and fundamental solutions.

Theorem (General solution)

If y_{1} and y_{2} are linearly independent solutions of the equations $L\left(y_{1}\right)=0$ and $L\left(y_{2}\right)=0$, where $L(y)=y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y$, and a_{1}, a_{2} are continuous functions, then there exist unique constants c_{1}, c_{2} such that every solution y of the differential equation $L(y)=0$ can be written as a linear combination

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t) .
$$

Definition

Two linearly independent solutions y_{1}, y_{2} of $L\left(y_{1}\right)=0, L\left(y_{2}\right)=0$, with L a linear operator, are called fundamental solutions.

Given any two fundamental solutions y_{1}, y_{2}, and arbitrary constants c_{1}, c_{2}, the general solution of the homogeneous equation $L\left(y_{\text {gen }}\right)=0$ is the set of all functions given by the expression

$$
y_{\mathrm{gen}}(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

General and fundamental solutions.

Idea of the Proof: Given any fundamental solution pair, y_{1}, y_{2}, any other solution to $L(y)=0$ must be

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

The existence-uniquenes theorem of IVP implies: Good parameters to label all solutions to $L(y)=0$ are the initial conditions

$$
y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=\hat{y}_{0} .
$$

Show that the map between y_{0}, \hat{y}_{0} and c_{1}, c_{2} is invertible.

$$
\begin{aligned}
& y_{0}=c_{1} y_{1}\left(t_{0}\right)+c_{2} y_{2}\left(t_{0}\right) \\
& \hat{y}_{0}=c_{1} y_{1}^{\prime}\left(t_{0}\right)+c_{2} y_{2}^{\prime}\left(t_{0}\right) .
\end{aligned}
$$

This map is invertible iff holds

$$
\left|\begin{array}{ll}
y_{1}\left(t_{0}\right) & y_{2}\left(t_{0}\right) \\
y_{1}^{\prime}\left(t_{0}\right) & y_{2}^{\prime}\left(t_{0}\right)
\end{array}\right|=y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)-y_{1}^{\prime}\left(t_{0}\right) y_{2}\left(t_{0}\right) \neq 0 .
$$

Study: $W_{y_{1}, y_{2}}=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}$. Conclusion: The map is invertibe.

Variable coefficients second order linear ODE (Sect. 2.1).

- Second order linear ODE.
- Existence and uniqueness of solutions.
- Operator notation.
- Linear operator and superposition property.
- Linearly dependent and independent functions.
- General and fundamental solutions.
- The Wronskian of two functions.
- Abel's theorem on the Wronskian.

The Wronskian of two functions.

Remark:
(a) The Wronskian is a function computed out of two other functions.
(b) The Wronskian values provide information about the linear dependence of the two functions used to compute it.

Definition

The Wronskian of functions $y_{1}, y_{2}: I \rightarrow \mathbb{R}$ is the function

$$
W_{y_{1} y_{2}}(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t) .
$$

Remark:

- If $A(t)=\left[\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right]$, then $W_{y_{1} y_{2}}(t)=\operatorname{det}(A(t))$.
- An alternative notation is: $W_{y_{1} y_{2}}=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$.

The Wronskian of two functions.

Example

Find the Wronskian of the functions:
(a) $y_{1}(t)=\sin (t)$ and $y_{2}(t)=2 \sin (t)$. (Id)
(b) $y_{1}(t)=\sin (t)$ and $y_{2}(t)=t \sin (t)$. (li)

Solution:
Case (a): $W_{y_{1} y_{2}}=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|=\left|\begin{array}{ll}\sin (t) & 2 \sin (t) \\ \cos (t) & 2 \cos (t)\end{array}\right|$. Therefore,

$$
W_{y_{1} y_{2}}(t)=\sin (t) 2 \cos (t)-\cos (t) 2 \sin (t) \quad \Rightarrow \quad W_{y_{1} y_{2}}(t)=0
$$

Case (b): $W_{y_{1} y_{2}}=\left|\begin{array}{cc}\sin (t) & t \sin (t) \\ \cos (t) & \sin (t)+t \cos (t)\end{array}\right|$. Therefore,

$$
W_{y_{1} y_{2}}(t)=\sin (t)[\sin (t)+t \cos (t)]-\cos (t) t \sin (t)
$$

We obtain $W_{y_{1} y_{2}}(t)=\sin ^{2}(t)$.

The Wronskian of two functions.

Remark: The Wronskian is related to linear dependence.

Theorem (Wronskian I)

If the the continuously differentiable functions y_{1}, y_{2} on an interval I are linearly dependent, then $W_{y_{1} y_{2}}(t)=0$ for all $t \in I$.

Remark: The converse is not true.
Example: $y_{1}(t)=t^{2}$, and $y_{2}(t)=|t| t$.
Corollary (Wronskian I)
If the Wronskian $W_{y_{1} y_{2}}\left(t_{0}\right) \neq 0$ at a single point $t_{0} \in I$, then the functions $y_{1}, y_{2}: I \rightarrow \mathbb{R}$ are linearly independent.

Remark: The Corollary is the negative of the Theorem.

The Wronskian of two functions.

Remark: The Wronskian is related to linear dependence.
Theorem (Wronskian II)
Let $y_{1}, y_{2}: I \rightarrow \mathbb{R}$ be both solutions of $L(y)=0$ on I. If there exists one point $t_{0} \in I$ such that $W_{y_{1} y_{2}}\left(t_{0}\right)=0$, then $y_{1} y_{2}$ are linearly dependent.

Remark: The proof of this Theorem requires Abel's Theorem.

Corollary (Wronskian II)

Let $y_{1}, y_{2}: I \rightarrow \mathbb{R}$ be both solutions of $L(y)=0$ on I. If $y_{1} y_{2}$ are linearly independent on I, then their Wronskian $W_{y_{1} y_{2}}(t) \neq 0$ for all $t \in I$.

Remark: This Corollary is needed to prove the Theorem on General solutions.

Variable coefficients second order linear ODE (Sect. 2.1).

- Second order linear ODE.
- Existence and uniqueness of solutions.
- Operator notation.
- Linear operator and superposition property.
- Linearly dependent and independent functions.
- General and fundamental solutions.
- The Wronskian of two functions.
- Abel's theorem on the Wronskian.

Abel's theorem on the Wronskian.

Theorem (Abel)
If $a_{1}, a_{0}:\left(t_{1}, t_{2}\right) \rightarrow \mathbb{R}$ are continuous functions and y_{1}, y_{2} are continuously differentiable solutions of the equation

$$
y^{\prime \prime}+a_{1}(t) y^{\prime}+a_{0}(t) y=0
$$

then the Wronskian $W_{y_{1} y_{2}}$ is a solution of the equation

$$
W_{y_{1} y_{2}}^{\prime}(t)+a_{1}(t) W_{y_{1} y_{2}}(t)=0
$$

Therefore, for any $t_{0} \in\left(t_{1}, t_{2}\right)$, the Wronskian $W_{y_{1} y_{2}}$ is given by

$$
W_{y_{1} y_{2}}(t)=W_{y_{1} y_{2}}\left(t_{0}\right) e^{-A(t)} \quad A(t)=\int_{t_{0}}^{t} a_{1}(s) d s
$$

Remarks: If the the Wronskian of two solutions vanishes at the initial time, then it vanishes at all times.

Abel's theorem on the Wronskian.

Example

Find the Wronskian of two solutions of the equation

$$
t^{2} y^{\prime \prime}-t(t+2) y^{\prime}+(t+2) y=0, \quad t>0
$$

Solution: Write the equation as in Abel's Theorem,

$$
y^{\prime \prime}-\left(\frac{2}{t}+1\right) y^{\prime}+\left(\frac{2}{t^{2}}+\frac{1}{t}\right) y=0
$$

Abel's Theorem says that the Wronskian satisfies the equation

$$
W_{y_{1} y_{2}}^{\prime}(t)-\left(\frac{2}{t}+1\right) W_{y_{1} y_{2}}(t)=0
$$

This is a first order, linear equation for $W_{y_{1} y_{2}}$. The integrating factor method implies

$$
A(t)=-\int_{t_{0}}^{t}\left(\frac{2}{s}+1\right) d s=-2 \ln \left(\frac{t}{t_{0}}\right)-\left(t-t_{0}\right)
$$

Abel's theorem on the Wronskian.

Example

Find the Wronskian of two solutions of the equation

$$
t^{2} y^{\prime \prime}-t(t+2) y^{\prime}+(t+2) y=0, \quad t>0
$$

Solution: $A(t)=-2 \ln \left(\frac{t}{t_{0}}\right)-\left(t-t_{0}\right)=\ln \left(\frac{t_{0}^{2}}{t^{2}}\right)-\left(t-t_{0}\right)$.
The integrating factor is $\mu=\frac{t_{0}^{2}}{t^{2}} e^{-\left(t-t_{0}\right)}$. Therefore,

$$
\left[\mu(t) W_{y_{1} y_{2}}(t)\right]^{\prime}=0 \quad \Rightarrow \quad \mu(t) W_{y_{1} y_{2}}(t)-\mu\left(t_{0}\right) W_{y_{1} y_{2}}\left(t_{0}\right)=0
$$

so, the solution is $W_{y_{1} y_{2}}(t)=W_{y_{1} y_{2}}\left(t_{0}\right) \frac{t^{2}}{t_{0}^{2}} e^{\left(t-t_{0}\right)}$.
Denoting $c=\left(W_{y_{1} y_{2}}\left(t_{0}\right) / t_{0}^{2}\right) e^{-t_{0}}$, then $W_{y_{1} y_{2}}(t)=c t^{2} e^{t}$.

General and fundamental solutions.

Example

Show that $y_{1}=\sqrt{t}$ and $y_{2}=1 / t$ are fundamental solutions of

$$
2 t^{2} y^{\prime \prime}+3 t y^{\prime}-y=0
$$

Solution: First show that y_{1} is a solution:

$$
\begin{gathered}
y_{1}=t^{1 / 2}, \quad y_{1}^{\prime}=\frac{1}{2} t^{-1 / 2}, \quad y_{1}^{\prime \prime}=-\frac{1}{4} t^{-3 / 2}, \\
2 t^{2}\left(-\frac{1}{4} t^{-\frac{3}{2}}\right)+3 t\left(\frac{1}{2} t^{-\frac{1}{2}}\right)-t^{\frac{1}{2}}=-\frac{1}{2} t^{\frac{1}{2}}+\frac{3}{2} t^{\frac{1}{2}}-t^{\frac{1}{2}}=0 .
\end{gathered}
$$

Now show that y_{2} is a solution:

$$
\begin{gathered}
y_{2}=t^{-1}, \quad y_{2}^{\prime}=-t^{-2}, \quad y_{2}^{\prime \prime}=2 t^{-3} \\
2 t^{2}\left(2 t^{-3}\right)+3 t\left(-t^{-2}\right)-t^{-1}=4 t^{-1}-3 t^{-1}-t^{-1}=0
\end{gathered}
$$

General and fundamental solutions.

Example

Show that $y_{1}=\sqrt{t}$ and $y_{2}=1 / t$ are fundamental solutions of

$$
2 t^{2} y^{\prime \prime}+3 t y^{\prime}-y=0
$$

Solution: We show that y_{1}, y_{2} are linearly independent.

$$
\begin{gather*}
W_{y_{1} y_{2}}(t)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
t^{1 / 2} & t^{-1} \\
\frac{1}{2} t^{-1 / 2} & -t^{-2}
\end{array}\right| . \\
W_{y_{1} y_{2}}(t)=-t^{1 / 2} t^{-2}-\frac{1}{2} t^{-1 / 2} t^{-1}=-t^{-3 / 2}-\frac{1}{2} t^{-3 / 2} \\
W_{y_{1} y_{2}}(t)=-\frac{3}{3} t^{-3 / 2} \Rightarrow \quad y_{1}, y_{2} \text { li. }
\end{gather*}
$$

