Review for Exam 1.

- Exam in webwork, in CC-415, Computer Center.
- 5 grading attempts per problem.
- 5 to 6 problems, 60 minutes.
- Problems similar to webwork problems.
- Integration table provided in the handout.
- No notes, no books, no calculators, no phones.
- MLC Exam Review for MTH 235, today, 7:30pm, ANH-1281.
- MTH 340 Exam 1 covers:
- Linear equations (1.1), (1.2).
- Bernoulli equation (1.2).
- Separable equations (1.3).
- Euler homogeneous equations (1.3).
- Exact equations (1.4).
- Exact equations with integrating factors (1.4).
- Applications (1.5).
- Picard-Lindelöf iteration (1.6).

Exam overview

Remark:

- Exam problems will be: Solve this equation. We don't tell you if the equation is linear, separable, etc. You must find that out.
- If you know what type of equation is, then the equation is simple to solve.
- The difficult part in Exam 1 is to know what type of equation is the one you have to solve.

Exam overview

Advice: In order to find out what type of equation is the one you have to solve, check from simple types to the more difficult types:

1. Linear equations.
(Just by looking at it: $y^{\prime}+a(t) y=b(t)$.)
2. Bernoulli equations.
(Just by looking at it: $y^{\prime}+a(t) y=b(t) y^{n}$.)
3. Separable equations.
(Few manipulations: $h(y) y^{\prime}=g(t)$.)
4. Euler homogeneous equations.
(Several manipulations: $y^{\prime}=F(y / t)$.)
5. Exact equations.
(Check one equation: $N y^{\prime}+M=0$, and $\partial_{t} N=\partial_{y} M$.)
6. Exact equation with integrating factor.
(Could be very complicated to check.)

Review Exam 1.

Example

Find every solution y to the equation $\left(t^{2}+y^{2}\right)\left(t+y y^{\prime}\right)+2=0$.
Solution: Rewrite the equation in a more standard way:

$$
\left(t^{2}+y^{2}\right) y y^{\prime}+\left(t^{2}+y^{2}\right) t+2=0 \quad \Leftrightarrow \quad y^{\prime}=-\frac{\left(t^{2}+y^{2}\right) t+2}{\left(t^{2}+y^{2}\right) y}
$$

Not linear. Not Bernoulli. Not Separable. Not Euler homogeneous. So the equation must be exact or exact with integrating factor.

$$
\begin{gathered}
N=t^{2} y+y^{3} \quad \Rightarrow \quad \partial_{t} N=2 t y \\
M=t^{3}+t y^{2}+2 \quad \Rightarrow \quad \partial_{y} M=2 t y
\end{gathered}
$$

The equation is exact: $\partial_{t} N=\partial_{y} M$.

Review Exam 1.

Example

Find every solution y to the equation $\left(t^{2}+y^{2}\right)\left(t+y y^{\prime}\right)+2=0$.
Solution: $\partial_{t} N=\partial_{y} M, \quad\left[\left(t^{2}+y^{2}\right) y\right] y^{\prime}+\left[\left(t^{2}+y^{2}\right) t+2\right]=0$.
There exits a potential function ψ such that

$$
\begin{gather*}
\partial_{y} \psi=N, \quad \partial_{t} \psi=M \\
\partial_{y} \psi=t^{2} y+y^{3} \quad \Rightarrow \quad \psi=t^{2} \frac{y^{2}}{2}+\frac{y^{4}}{4}+g(t) \\
t y^{2}+g^{\prime}(t)=\partial_{t} \psi=M=t^{3}+t y^{2}+2 . \\
g^{\prime}(t)=t^{3}+2 \Rightarrow g(t)=\frac{t^{4}}{4}+2 t . \\
\psi(t, y)=\frac{1}{2} t^{2} y^{2}+\frac{y^{4}}{4}+\frac{t^{4}}{4}+2 t, \quad \psi(t, y(t))=c .
\end{gather*}
$$

Review Exam 1.

Example

Find the explicit solution y to the IVP

$$
y^{\prime}=\frac{t\left(t^{2}+e^{t}\right)}{4 y^{3}}, \quad y(0)=-\sqrt{2}
$$

Solution: Not linear. Bernoulli with $n=-3$. Numerator depends only on t, denominator depends only on y : Separable.

$$
4 y^{3} y^{\prime}=t^{3}+t e^{t} \Rightarrow \int 4 y^{3} y^{\prime} d t=\int\left(t^{3}+t e^{t}\right) d t+c
$$

The usual substitution: $u=y(t)$ implies $d u=y^{\prime}(t) d t$,

$$
\int 4 u^{3} d u=\int\left(t^{3}+t e^{t}\right) d t+c \quad \Rightarrow \quad u^{4}=\frac{t^{4}}{4}+\int t e^{t} d t+c
$$

Review Exam 1.

Example

Find the explicit solution y to the IVP

$$
y^{\prime}=\frac{t\left(t^{2}+e^{t}\right)}{4 y^{3}}, \quad y(0)=-\sqrt{2} .
$$

Solution: Recall: $u^{4}=\frac{t^{4}}{4}+\int t e^{t} d t+c$. Integration by parts:

$$
\left.\begin{array}{rl}
f & =t, \\
f^{\prime} & =1, \\
& =e^{t}, \\
& =e^{t},
\end{array}\right\} \quad \Rightarrow \quad \int t e^{t} d t=t e^{t}-\int e^{t} d t=(t-1) e^{t}
$$

We obtain: $y^{4}(t)=\frac{t^{4}}{4}+(t-1) e^{t}+c$. The initial condition:

$$
(-\sqrt{2})^{4}=0+(0-1)+c \Rightarrow 4=-1+c \Rightarrow c=5 .
$$

We conclude: $y^{4}(t)=\frac{t^{4}}{4}+(t-1) e^{t}+5$. Implicit form.

Review Exam 1.

Example

Find the explicit solution y to the IVP

$$
y^{\prime}=\frac{t\left(t^{2}+e^{t}\right)}{4 y^{3}}, \quad y(0)=-\sqrt{2}
$$

Solution: Recall: $y^{4}(t)=\frac{t^{4}}{4}+(t-1) e^{t}+5$. Implicit form.
The explicit form of the solution is one of:

$$
y(t)= \pm\left[\frac{t^{4}}{4}+(t-1) e^{t}+5\right]^{1 / 4}
$$

The initial condition implies $y(0)=-\sqrt{2}<0$.
We conclude that the unique solution to the IVP is

$$
y(t)=-\left[\frac{t^{4}}{4}+(t-1) e^{t}+5\right]^{1 / 4}
$$

Review Exam 1.

Example

Find every solution y of the equation $y^{\prime}=\frac{3 y^{2}-t^{2}}{2 t y}$.
Solution: Not linear. Bernoulli $n=-1: \quad y^{\prime}=\frac{3 y}{2 t}-\frac{t}{2 y}$.
Not separable. Every term on the right hand side is of the form $t^{n} y^{m}$ with $n+m=2$. Euler homogeneous.

$$
y^{\prime}=\frac{3 y^{2}-t^{2}}{2 t y} \frac{\left(\frac{1}{t^{2}}\right)}{\left(\frac{1}{t^{2}}\right)} \Rightarrow y^{\prime}=\frac{3\left(\frac{y}{t}\right)^{2}-1}{2\left(\frac{y}{t}\right)}
$$

We introduce the change of unknown:

$$
v=\frac{y}{t} \Rightarrow y=t v \Rightarrow y^{\prime}=v+t v^{\prime}
$$

Review Exam 1.

Example

Find every solution y of the equation $y^{\prime}=\frac{3 y^{2}-t^{2}}{2 t y}$.
Solution: $y^{\prime}=\frac{3\left(\frac{y}{t}\right)^{2}-1}{2\left(\frac{y}{t}\right)}, \quad v=\frac{y}{t}, \quad y^{\prime}=v+t v^{\prime}$.

$$
\begin{gathered}
v+t v^{\prime}=\frac{3 v^{2}-1}{2 v} \Rightarrow t v^{\prime}=\frac{3 v^{2}-1}{2 v}-v=\frac{3 v^{2}-1-2 v^{2}}{2 v} \\
t v^{\prime}=\frac{v^{2}-1}{2 v} \Rightarrow \frac{2 v}{v^{2}-1} v^{\prime}=\frac{1}{t}
\end{gathered}
$$

This is a separable equation for $v: \int \frac{2 v}{v^{2}-1} v^{\prime} d t=\int \frac{1}{t} d t+c$.

Review Exam 1.

Example

Find every solution y of the equation $y^{\prime}=\frac{3 y^{2}-t^{2}}{2 t y}$.
Solution: $\int \frac{2 v}{v^{2}-1} v^{\prime} d t=\int \frac{1}{t} d t+c$.
The substitution $u=v^{2}-1$ implies $d u=2 v v^{\prime} d t$. So,

$$
\int \frac{d u}{u}=\int \frac{1}{t} d t+c \Rightarrow \ln (|u|)=\ln (|t|)+c \quad \Rightarrow \quad|u|=c_{1}|t|
$$

where $c_{1}=e^{c}$. Substitute back: $\left|v^{2}-1\right|=c_{1}|t|$. Finally, $v=y / t$,

$$
\left|\frac{y^{2}}{t^{2}}-1\right|=c_{1}|t| \quad \Rightarrow \quad\left|y^{2}-t^{2}\right|=c_{1}|t|^{3}
$$

Review Exam 1.

Example

A water tank initially has $V_{0}=100$ liters of water with Q_{0} grams of salt. At $t_{0}=0$ fresh water is poured into the tank. The salt in the tank is always well mixed. Find the rates r_{i} and r_{o} such that:
(a) The tank water volume is constant.
(b) The time to reduce the salt in the tank to one percent of the initial value is $t_{1}=25 \mathrm{~min}$.

Solution:
Part (a): Water volume constant implies $r_{i}=r_{0}=r$. Then $V^{\prime}(t)=0$, so $V(t)=V_{0}$.
Part (b): First find the salt in the tank $Q(t): \frac{d Q}{d t}=r_{i} q_{i}-r_{0} q_{o}(t)$. Incoming fresh water: $q_{i}=0$. Mixing: $q_{o}(t)=Q(t) / V(t)$.

$$
\frac{d Q}{d t}=-\frac{r}{V_{0}} Q(t) \quad \Rightarrow \quad Q(t)=Q_{0} e^{-r t / V_{0}}
$$

Review Exam 1.

Example

A water tank initially has $V_{0}=100$ liters of water with Q_{0} grams of salt. At $t_{0}=0$ fresh water is poured into the tank. The salt in the tank is always well mixed. Find the rates r_{i} and r_{0} such that:
(a) The tank water volume is constant.
(b) The time to reduce the salt in the tank to one percent of the initial value is $t_{1}=25 \mathrm{~min}$.

Solution: Recall: $Q(t)=Q_{0} e^{-r t / V_{0}}$. Condition for r :

$$
\begin{gathered}
Q\left(t_{1}\right)=\frac{Q_{0}}{100} \Rightarrow Q_{0} e^{\left(-r t_{1} / V_{0}\right)}=\frac{Q_{0}}{100} \Rightarrow-\frac{r t_{1}}{V_{0}}=\ln \left(\frac{1}{100}\right) \\
\frac{r t_{1}}{V_{0}}=\ln (100) \Rightarrow r=\frac{V_{0}}{t_{1}} \ln (100) \Rightarrow r=4 \ln (100)
\end{gathered}
$$

Review Exam 1.

Example

Find the solution y to the IVP

$$
y^{\prime}=\frac{2}{t} y-\frac{\sin (t)}{t} y^{2}, \quad y(2 \pi)=2 \pi, \quad t>0
$$

Solution: Not linear. Bernoulli for $n=2$. Divide by y^{2}.

$$
\begin{gathered}
\frac{y^{\prime}}{y^{2}}-\frac{2}{t} \frac{1}{y}=-\frac{\sin (t)}{t}, \quad v=\frac{1}{y} \quad \Rightarrow \quad v^{\prime}=-\frac{y^{\prime}}{y^{2}} . \\
-v^{\prime}-\frac{2}{t} v=-\frac{\sin (t)}{t} \quad \Rightarrow \quad v^{\prime}+\frac{2}{t} v=\frac{\sin (t)}{t}
\end{gathered}
$$

We solve the linear equation with the integrating factor method.

$$
A(t)=\int \frac{2}{t} d t=2 \ln (t)=\ln \left(t^{2}\right) \quad \Rightarrow \quad \mu(t)=t^{2}
$$

Review Exam 1.

Example

Find the solution y to the IVP

$$
y^{\prime}=\frac{2}{t} y-\frac{\sin (t)}{t} y^{2}, \quad y(2 \pi)=2 \pi, \quad t>0
$$

Solution: Recall: $\mu(t)=t^{2}$. Then,

$$
t^{2}\left(v^{\prime}+\frac{2}{t} v\right)=t^{2} \frac{\sin (t)}{t} \Rightarrow\left(t^{2} v\right)^{\prime}=t \sin (t)
$$

Integrating: $t^{2} v=\int t \sin (t) d t+c$. The right hand side can be computed integrating by parts,

$$
\int t \sin (t) d t=-t \cos (t)+\int \cos (t) d t,\left\{\begin{aligned}
f & =t, & & g^{\prime}=\sin (t) \\
f^{\prime} & =1, & & g=-\cos (t)
\end{aligned}\right.
$$

Review Exam 1.

Example

Find the solution y to the IVP

$$
y^{\prime}=\frac{2}{t} y-\frac{\sin (t)}{t} y^{2}, \quad y(2 \pi)=2 \pi, \quad t>0
$$

Solution: $\int t \sin (t) d t=-t \cos (t)+\int \cos (t) d t$. Then,
$t^{2} v=-t \cos (t)+\sin (t)+c \quad \Rightarrow \quad t^{2} \frac{1}{y}=-t \cos (t)+\sin (t)+c$.
The initial condition: $4 \pi^{2} \frac{1}{2 \pi}=-2 \pi \cos (2 \pi)+0+c$, so $c=4 \pi$.

$$
y=\frac{t^{2}}{\sin (t)-t \cos (t)+4 \pi}
$$

Review Exam 1.

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$
\left(x^{3} e^{y}+\frac{x}{y}\right) y^{\prime}+\left(2 x^{2} e^{y}+1\right)=0
$$

Solution: We first verify if the equation is not exact.

$$
\begin{aligned}
& N=\left(x^{3} e^{y}+\frac{x}{y}\right) \quad \Rightarrow \quad \partial_{x} N=3 x^{2} e^{y}+\frac{1}{y} . \\
& M=\left(2 x^{2} e^{y}+1\right)=0 \quad \Rightarrow \quad \partial_{y} M=2 x^{2} e^{y} .
\end{aligned}
$$

So the equation is not exact. We now compute

$$
\frac{\partial_{y} M-\partial_{x} N}{N}=\frac{2 x^{2} e^{y}-\left(3 x^{2} e^{y}+\frac{1}{y}\right)}{\left(x^{3} e^{y}+\frac{x}{y}\right)}=\frac{-x^{2} e^{y}-\frac{1}{y}}{x\left(x^{2} e^{y}+\frac{1}{y}\right)}=-\frac{1}{x}
$$

Review Exam 1.

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$
\left(x^{3} e^{y}+\frac{x}{y}\right) y^{\prime}+\left(2 x^{2} e^{y}+1\right)=0 .
$$

Solution: Recall: $\frac{\partial_{y} M-\partial_{x} N}{N}=-\frac{1}{x}$. Therefore,

$$
\frac{\mu^{\prime}(x)}{\mu(x)}=-\frac{1}{x} \quad \Rightarrow \quad \ln (\mu)=-\ln (x)=\ln \left(\frac{1}{x}\right) \quad \Rightarrow \quad \mu(x)=\frac{1}{x} .
$$

So the equation $\left(x^{2} e^{y}+\frac{1}{y}\right) y^{\prime}+\left(2 x e^{y}+\frac{1}{x}\right)=0$ is exact. Indeed,

$$
\left.\begin{array}{l}
\tilde{N}=\left(x^{2} e^{y}+\frac{1}{y}\right) \quad \Rightarrow \quad \partial_{x} \tilde{N}=2 x e^{y}, \\
\tilde{M}=\left(2 x e^{y}+\frac{1}{x}\right) \quad \Rightarrow \quad \partial_{y} \tilde{M}=2 x e^{y},
\end{array}\right\} \quad \Rightarrow \quad \partial_{x} \tilde{N}=\partial_{y} \tilde{M}
$$

Review Exam 1.

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$
\left(x^{3} e^{y}+\frac{x}{y}\right) y^{\prime}+\left(2 x^{2} e^{y}+1\right)=0 .
$$

Solution: We first verify if the equation is not exact.

$$
\begin{aligned}
& N=\left(x^{3} e^{y}+\frac{x}{y}\right) \quad \Rightarrow \quad \partial_{x} N=3 x^{2} e^{y}+\frac{1}{y} \\
& M=\left(2 x^{2} e^{y}+1\right)=0 \quad \Rightarrow \quad \partial_{y} M=2 x^{2} e^{y} .
\end{aligned}
$$

So the equation is not exact. We now compute

$$
\frac{\partial_{y} M-\partial_{x} N}{N}=\frac{2 x^{2} e^{y}-\left(3 x^{2} e^{y}+\frac{1}{y}\right)}{\left(x^{3} e^{y}+\frac{x}{y}\right)}=\frac{-x^{2} e^{y}-\frac{1}{y}}{x\left(x^{2} e^{y}+\frac{1}{y}\right)}=-\frac{1}{x}
$$

Review Exam 1.

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$
\left(x^{3} e^{y}+\frac{x}{y}\right) y^{\prime}+\left(2 x^{2} e^{y}+1\right)=0
$$

Solution: Recall: $\frac{\partial_{y} M-\partial_{x} N}{N}=-\frac{1}{x}$. Therefore,

$$
\frac{\mu^{\prime}(x)}{\mu(x)}=-\frac{1}{x} \Rightarrow \ln (\mu)=-\ln (x)=\ln \left(\frac{1}{x}\right) \quad \Rightarrow \quad \mu(x)=\frac{1}{x} .
$$

So the equation $\left(x^{2} e^{y}+\frac{1}{y}\right) y^{\prime}+\left(2 x e^{y}+\frac{1}{x}\right)=0$ is exact. Indeed,

$$
\left.\begin{array}{l}
\tilde{N}=\left(x^{2} e^{y}+\frac{1}{y}\right) \quad \Rightarrow \quad \partial_{x} \tilde{N}=2 x e^{y}, \\
\tilde{M}=\left(2 x e^{y}+\frac{1}{x}\right) \quad \Rightarrow \quad \partial_{y} \tilde{M}=2 x e^{y},
\end{array}\right\} \quad \Rightarrow \quad \partial_{x} \tilde{N}=\partial_{y} \tilde{M}
$$

Review Exam 1.

Example

Find every solution y of the equation

$$
\left(x^{2} e^{y}+\frac{1}{y}\right) y^{\prime}+\left(2 x e^{y}+\frac{1}{x}\right)=0 .
$$

Solution: The equation is exact. We need to find the potential function ψ.

$$
\partial_{y} \psi=N, \quad \partial_{x} \psi=M
$$

From the first equation we get:

$$
\partial_{y} \psi=x^{2} e^{y}+\frac{1}{y} \quad \Rightarrow \quad \psi=x^{2} e^{y}+\ln (y)+g(x)
$$

Introduce the expression for ψ in the equation $\partial_{x} \psi=M$, that is,

$$
2 x e^{y}+g^{\prime}(x)=\partial_{x} \psi=M=2 x e^{y}+\frac{1}{x} \quad \Rightarrow \quad g^{\prime}(x)=\frac{1}{x} .
$$

Review Exam 1.

Example

Find every solution y of the equation

$$
\left(x^{2} e^{y}+\frac{1}{y}\right) y^{\prime}+\left(2 x e^{y}+\frac{1}{x}\right)=0
$$

Solution: Recall: $g^{\prime}(x)=\frac{1}{x}$. Therefore $g(x)=\ln (x)$.
The potential function is $\psi=x^{2} e^{y}+\ln (y)+\ln (x)$.
The solution y satisfies $x^{2} e^{y(x)}+\ln (y(x))+\ln (x)=c . \quad \triangleleft$
Verification: Compute the implicit derivative in the equation above, and you should get the original differential equation.

$$
2 x e^{y}+x^{2} e^{y} y^{\prime}+\frac{1}{y} y^{\prime}+\frac{1}{x}=0 .
$$

Review Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: The equation is: Not linear.
It is a Bernoulli equation: $y^{\prime}-4 x y=4 x y^{n}$, with $n=1 / 2$.
It is separable: $\frac{y^{\prime}}{y+\sqrt{y}}=4 x$.
The equation is not homogeneous. It is not exact.
Although the equation is both separable and Bernoulli, it is not simple to integrate using the separable equation method. Indeed

$$
\int \frac{y^{\prime}}{y+\sqrt{y}} d t=\int 4 x d x+c \Rightarrow \int \frac{d y}{y+\sqrt{y}}=2 x^{2}+c
$$

The integral on the left-hand side requires an integration table.

Review Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: We find solutions using the Bernoulli method.

$$
y^{\prime}-4 x y=4 x y^{1 / 2} \Rightarrow \frac{y^{\prime}}{y^{1 / 2}}-4 x y^{1 / 2}=4 x
$$

Change the unknowns: $v=1 / y^{n-1}$, with $n=1 / 2$. That is,

$$
\begin{gathered}
v=\frac{1}{y^{-1 / 2}} \Rightarrow v=y^{1 / 2}, \quad \Rightarrow \quad v^{\prime}=\frac{1}{2} \frac{y^{\prime}}{y^{1 / 2}} \\
2 v^{\prime}-4 x v=4 x \quad \Rightarrow \quad v^{\prime}-2 x v=2 x .
\end{gathered}
$$

The coefficient function is $a(x)=-2 x$, so $A(x)=-x^{2}$, and the integrating factor is $\mu(x)=e^{-x^{2}}$.

Review Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: Recall: $v^{\prime}-2 x v=2 x$ and $\mu(x)=e^{-x^{2}}$.

$$
\begin{gathered}
e^{-x^{2}} v^{\prime}-2 x e^{-x^{2}} v=2 x e^{-x^{2}} \stackrel{\text { Verify }!}{\Longrightarrow}\left(e^{-x^{2}} v\right)^{\prime}=2 x e^{-x^{2}} \\
e^{-x^{2}} v=\int 2 x e^{-x^{2}} d x+c \Rightarrow e^{-x^{2}} v=-e^{-x^{2}}+c
\end{gathered}
$$

We conclude that $v=c e^{x^{2}}-1$. The initial condition for y implies the initial condition for v, that is, $v(x)=\sqrt{y(x)}$ implies $v(0)=2$.

$$
2=v(0)=c-1 \Rightarrow c=3 \Rightarrow v(x)=3 e^{x^{2}}-1
$$

We finally find $y=v^{2}$, that is, $y(x)=\left(3 e^{x^{2}}-1\right)^{2}$.

Review Exam 1.

Example

Find the domain of the function y solution of the IVP

$$
y^{\prime}=-\frac{2 t}{y}, \quad y(1)=2
$$

Solution: We first need to find the solution y.
The equation is separable.
$y y^{\prime}=-2 t \quad \Rightarrow \quad \int y y^{\prime} d t=\int-2 t d t+c \quad \Rightarrow \quad \frac{y^{2}}{2}=-t^{2}+c$

$$
\frac{4}{2}=\frac{y^{2}(1)}{2}=-1+c \Rightarrow c=3 \Rightarrow y(t)=\sqrt{2\left(3-t^{2}\right)} .
$$

The domain of the solution y is $D=(-\sqrt{3}, \sqrt{3})$.
The points $\pm \sqrt{3}$ do not belong to the domain of y, since y^{\prime} and the differential equation are not defined there.

Review Exam 1.

Example

Find the domain of the function y solution of the IVP

$$
y^{\prime}=-\frac{2 t}{y}, \quad y\left(t_{0}\right)=y_{0}>0
$$

Solution: The solution y is given as above, $\frac{y^{2}}{2}=-t^{2}+c$.
The initial condition implies
$\frac{y_{0}^{2}}{2}=\frac{y^{2}\left(t_{0}\right)}{2}=-t_{0}^{2}+c \Rightarrow c=\frac{y_{0}^{2}}{2}+t_{0}^{2} \Rightarrow \frac{y^{2}}{2}=-t^{2}+t_{0}^{2}+\frac{y_{0}^{2}}{2}$.
The solution to the IVP is $y(t)=\sqrt{2\left(t_{0}^{2}-t^{2}\right)+y_{0}^{2}}$.
The domain of the solution depends on the initial condition t_{0}, y_{0} :

$$
D=\left(-\sqrt{t_{0}^{2}+\frac{y_{0}^{2}}{2}},+\sqrt{t_{0}^{2}+\frac{y_{0}^{2}}{2}}\right) .
$$

Review Exam 1.

Example

Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.
Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by $(1 / x)$.)
Is it exact? $(3 x+4 y) y^{\prime}+(2 x+3 y)=0$ implies $\partial_{x} N=3=\partial_{y} M$. So the equation is exact.

We choose here the exact equation method. (Finding the potential function is sometimes simpler that solving homogeneous Eqs.)

We need to find the potential function ψ :

$$
\begin{gathered}
\partial_{y} \psi=N \quad \Rightarrow \quad \psi=3 x y+2 y^{2}+g(x) \\
\partial_{x} \psi=M \quad \Rightarrow \quad 3 y+g^{\prime}(x)=2 x+3 y \quad \Rightarrow \quad g(x)=x^{2}
\end{gathered}
$$

We conclude: $\psi(x, y)=3 x y+2 y^{2}+x^{2}$, and $\psi(x, y(x))=c$.

Review Exam 1.

Example
Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.
Solution: If we solve the problem using that the equation is homogeneous, it is more complicated than the previous calculation. We just start the calculation to see the difficulty:

$$
y^{\prime}=-\frac{(2 x+3 y)}{(3 x+4 y)} \frac{\left(\frac{1}{x}\right)}{\left(\frac{1}{x}\right)}=-\frac{2+3\left(\frac{y}{x}\right)}{3+4\left(\frac{y}{x}\right)}
$$

The change $v=y / x$ implies $y=x v$ and $y^{\prime}=v+x v^{\prime}$. Hence
$v+x v^{\prime}=\frac{2+3 v}{3+4 v} \Rightarrow x v^{\prime}=\frac{2+3 v}{3+4 v}-v=\frac{2+3 v-3 v+4 v^{2}}{3+4 v}$.
We conclude that v satisfies $\frac{3+4 v}{2-4 v^{2}} v^{\prime}=\frac{1}{x}$.

Review Exam 1.

Example

Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.
Solution: Recall: $\frac{3+4 v}{2-4 v^{2}} v^{\prime}=\frac{1}{x}$.
This equation is complicated to integrate.

$$
\int \frac{3 v^{\prime}}{2-4 v^{2}} d x+\int \frac{4 v v^{\prime}}{2-4 v^{2}} d x=\int \frac{1}{x} d x+c=\ln (x)+c
$$

The usual substitution $u=v(x)$ implies $d u=v^{\prime} d x$, so

$$
\int \frac{3 d u}{2-4 u^{2}}+\int \frac{4 u d u}{2-4 u^{2}}=\ln (x)+c
$$

The first integral on the left-hand side requires integration tables.
This is why the exact method is simpler to use in this case.

Review Exam 1.

Example

Use the proof of Picard-Lindelöf's Theorem to find the solution to

$$
y^{\prime}=2 y+3 \quad y(0)=1
$$

Solution: First notice that the equation is linear. So it is simple to find the solution following Section 1.1,

$$
\begin{aligned}
e^{-2 t}\left(y^{\prime}-2 y\right)=3 e^{-2 t} & \Rightarrow \quad\left(e^{-2 t} y\right)=-\frac{3}{2} e^{-2 t}+c, \\
y(t) & =c e^{2 t}-\frac{3}{2}
\end{aligned}
$$

The initial condition implies,

$$
1=y(0)=c-\frac{3}{2} \Rightarrow y(t)=\frac{5}{2} e^{2 t}-\frac{3}{2} .
$$

In the next slide we use Picard-Lindelöf's idea.

Review Exam 1.

Example

Use the proof of Picard-Lindelöf's Theorem to find the solution to

$$
y^{\prime}=2 y+3 \quad y(0)=1
$$

Solution: We first transform the differential equation into an integral equation.

$$
\begin{aligned}
& \int_{0}^{t} y^{\prime}(s) d s=\int_{0}^{t}(2 y(s)+3) d s \\
& y(t)-y(0)=\int_{0}^{t}(2 y(s)+3) d s
\end{aligned}
$$

Using the initial condition, $y(0)=1$,

$$
y(t)=1+\int_{0}^{t}(2 y(s)+3) d s
$$

This is the integral equation.

Review Exam 1.

Example

Use the proof of Picard-Lindelöf's Theorem to find the solution to

$$
y^{\prime}=2 y+3 \quad y(0)=1
$$

Solution: Integral equation: $y(t)=1+\int_{0}^{t}(2 y(s)+3) d s$.
We now define the sequence of approximate solutions:

$$
y_{0}=y(0)=1, \quad y_{n+1}(t)=1+\int_{0}^{t}\left(2 y_{n}(s)+3\right) d s, \quad n \geqslant 0 .
$$

We now compute the first elements in the sequence.

$$
n=0, \quad y_{1}(t)=1+\int_{0}^{t}\left(2 y_{0}(s)+3\right) d s=1+\int_{0}^{t} 5 d s=1+5 t .
$$

So $y_{0}=1$, and $y_{1}=1+5 t$.

Review Exam 1.

Example

Use the proof of Picard-Lindelöf's Theorem to find the solution to

$$
y^{\prime}=2 y+3 \quad y(0)=1
$$

Solution: Integral equation: $y(t)=1+\int_{0}^{t}(2 y(s)+3) d s$.
And $y_{0}=1$, and $y_{1}=1+5 t$. Let's compute y_{2},

$$
\begin{gathered}
y_{2}=1+\int_{0}^{t}\left(2 y_{1}(s)+3\right) d s=1+\int_{0}^{t}(2(1+5 s)+3) d s \\
y_{2}=1+\int_{0}^{t}(5+10 s) d s=1+5 t+5 t^{2}
\end{gathered}
$$

So we've got $y_{2}(t)=1+5 t+5 t^{2}$.

Review Exam 1.

Example

Use the proof of Picard-Lindelöf's Theorem to find the solution to

$$
y^{\prime}=2 y+3 \quad y(0)=1
$$

Solution: Integral equation: $y(t)=1+\int_{0}^{t}(2 y(s)+3) d s$.
And $y_{0}=1$, and $y_{1}=1+5 t$, and $y_{2}=1+5 t+5 t^{2}$. Now y_{3},

$$
\begin{gathered}
y_{3}=1+\int_{0}^{t}\left(2 y_{2}(s)+3\right) d s=1+\int_{0}^{t}\left(2\left(1+5 s+5 s^{2}\right)+3\right) d s \\
y_{3}=1+\int_{0}^{t}\left(5+10 s+10 s^{2}\right) d s=1+5 t+5 t^{2}+\frac{10}{3} t^{3}
\end{gathered}
$$

So we've got $y_{3}(t)=1+5 t+5 t^{2}+\frac{10}{3} t^{3}$.
Rewrite: $y_{3}(t)=1+\frac{5}{2}\left[(2 t)+\frac{(2 t)^{2}}{2}+\frac{(2 t)^{3}}{3!}\right]$.

Review Exam 1.

Example

Use the proof of Picard-Lindelöf's Theorem to find the solution to

$$
y^{\prime}=2 y+3, \quad y(0)=1
$$

Solution: $y_{3}(t)=1+\frac{5}{2}\left[(2 t)+\frac{(2 t)^{2}}{2}+\frac{(2 t)^{3}}{3!}\right]$.
By computing few more terms one finds

$$
y_{n}(t)=1+\frac{5}{2} \sum_{k=1}^{n} \frac{(2 t)^{k}}{k!}
$$

Hence the limit $n \rightarrow \infty$ is given by

$$
y(t)=\lim _{n \rightarrow \infty} y_{n}(t)=1+\frac{5}{2} \sum_{k=1}^{\infty} \frac{(2 t)^{k}}{k!}=1+\frac{5}{2}\left(e^{2 t}-1\right)
$$

since $e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$. We conclude, $y(t)=\frac{5}{2} e^{2 t}-\frac{3}{2}$.

