Separable differential equations (Sect. 1.3).

- Separable ODE.
- Solutions to separable ODE.
- Explicit and implicit solutions.
- Euler homogeneous equations.

Separable ODE.

Definition

A separable differential equation on the function y has the form

$$
h(y) y^{\prime}(t)=g(t)
$$

where h, g are given scalar functions.
Remark:
A differential equation $y^{\prime}(t)=f(t, y(t))$ is separable iff

$$
y^{\prime}=\frac{g(t)}{h(y)} \quad \Leftrightarrow \quad f(t, y)=\frac{g(t)}{h(y)}
$$

Example

$$
y^{\prime}(t)=\frac{t^{2}}{1-y^{2}(t)}, \quad y^{\prime}(t)+y^{2}(t) \cos (2 t)=0
$$

Separable ODE.

Example

Determine whether the differential equation below is separable,

$$
y^{\prime}(t)=\frac{t^{2}}{1-y^{2}(t)}
$$

Solution: The differential equation is separable, since it is equivalent to

$$
\left(1-y^{2}\right) y^{\prime}=t^{2} \quad \Rightarrow \quad\left\{\begin{array}{l}
g(t)=t^{2} \\
h(y)=1-y^{2}
\end{array}\right.
$$

Remark: The functions g and h are not uniquely defined. Another choice here is:

$$
g(t)=c t^{2}, \quad h(y)=c\left(1-y^{2}\right), \quad c \in \mathbb{R} .
$$

Separable ODE.

Example

Determine whether The differential equation below is separable,

$$
y^{\prime}(t)+y^{2}(t) \cos (2 t)=0
$$

Solution: The differential equation is separable, since it is equivalent to

$$
\frac{1}{y^{2}} y^{\prime}=-\cos (2 t) \Rightarrow\left\{\begin{array}{l}
g(t)=-\cos (2 t) \\
h(y)=\frac{1}{y^{2}}
\end{array}\right.
$$

Remark: The functions g and h are not uniquely defined. Another choice here is:

$$
g(t)=\cos (2 t), \quad h(y)=-\frac{1}{y^{2}}
$$

Separable ODE.

Remark: Not every first order ODE is separable.

Example

- The differential equation $y^{\prime}(t)=e^{y(t)}+\cos (t)$ is not separable.
- The linear differential equation $y^{\prime}(t)=-\frac{2}{t} y(t)+4 t$ is not separable.
- The linear differential equation $y^{\prime}(t)=-a(t) y(t)+b(t)$, with $b(t)$ non-constant, is not separable.

Separable differential equations (Sect. 1.3).

- Separable ODE.
- Solutions to separable ODE.
- Explicit and implicit solutions.
- Euler homogeneous equations.

Solutions to separable ODE.

Theorem (Separable equations)
If the functions h, g are continuous, $h \neq 0$, then the separable $O D E$

$$
h(y) y^{\prime}=g(t)
$$

has infinitely many solutions y satisfying the algebraic equation

$$
H(y(t))=G(t)+c,
$$

where $c \in \mathbb{R}$ is arbitrary, and where H and G are primitives (antiderivatives) of h and g, respectively; that is,

$$
H^{\prime}(u)=h(u), \quad G^{\prime}(t)=g(t)
$$

Remark: Given functions g, h, find their primitives G, H.

Solutions to separable ODE.

Example

Find all solutions y to the equation $y^{\prime}(t)=\frac{t^{2}}{1-y^{2}(t)}$.
Solution: The equation is equivalent to

$$
\left(1-y^{2}\right) y^{\prime}(t)=t^{2} \quad \Rightarrow \quad g(t)=t^{2}, \quad h(y)=1-y^{2}
$$

Integrate on both sides of the equation,

$$
\int\left[1-y^{2}(t)\right] y^{\prime}(t) d t=\int t^{2} d t+c
$$

The substitution $u=y(t), d u=y^{\prime}(t) d t$, implies that

$$
\int\left(1-u^{2}\right) d u=\int t^{2} d t+c \quad \Leftrightarrow \quad\left(u-\frac{u^{3}}{3}\right)=\frac{t^{3}}{3}+c .
$$

Solutions to separable ODE.

Example

Find all solutions y to the equation $y^{\prime}(t)=\frac{t^{2}}{1-y^{2}(t)}$.
Solution: Recall: $\left(u-\frac{u^{3}}{3}\right)=\frac{t^{3}}{3}+c$.
Substitute the unknown function y back in the equation above,

$$
\left(y-\frac{y^{3}}{3}\right)=\frac{t^{3}}{3}+c, \quad c \in \mathbb{R} .
$$

Remark: Recall the notation in the Theorem:

$$
\begin{aligned}
g(t)=t^{2} & \Rightarrow G(t)=\frac{t^{3}}{3}, \\
h(y)=1-y^{2} & \Rightarrow H(y)=y-\frac{y^{3}}{3} .
\end{aligned}
$$

Hence we recover the Theorem expression: $H(y(t))=G(t)+c$.

Solutions to separable ODE.

Remarks:

- The equation $y(t)-\frac{y^{3}(t)}{3}=\frac{t^{3}}{3}+c$ is algebraic in y, since there is no y^{\prime} in the equation.
- Every function y satisfying the algebraic equation

$$
y(t)-\frac{y^{3}(t)}{3}=\frac{t^{3}}{3}+c,
$$

is a solution of the differential equation above.

- We now verify the previous statement: Differentiate on both sides with respect to t, that is,

$$
y^{\prime}(t)-3\left(\frac{y^{2}(t)}{3}\right) y^{\prime}(t)=3 \frac{t^{2}}{3} \quad \Rightarrow \quad\left(1-y^{2}\right) y^{\prime}=t^{2}
$$

Solutions to separable ODE.

Example

Find all solutions y to the equation $y^{\prime}(t)+y^{2}(t) \cos (2 t)=0$.
Solution: The differential equation is separable,

$$
\frac{y^{\prime}(t)}{y^{2}(t)}=-\cos (2 t) \quad \Rightarrow \quad g(t)=-\cos (2 t), \quad h(y)=\frac{1}{y^{2}}
$$

Integrate on both sides of the equation,

$$
\int \frac{y^{\prime}(t)}{y^{2}(t)} d t=-\int \cos (2 t) d t+c
$$

The substitution $u=y(t), d u=y^{\prime}(t) d t$, implies that

$$
\int \frac{d u}{u^{2}}=-\int \cos (2 t) d t+c \quad \Leftrightarrow \quad-\frac{1}{u}=-\frac{1}{2} \sin (2 t)+c
$$

Solutions to separable ODE.

Example

Find all solutions y to the equation $y^{\prime}(t)+y^{2}(t) \cos (2 t)=0$.
Solution: Recall: $-\frac{1}{u}=-\frac{1}{2} \sin (2 t)+c$.
Substitute the unknown function y back in the equation above,

$$
-\frac{1}{y(t)}=-\frac{1}{2} \sin (2 t)+c, \quad c \in \mathbb{R}
$$

Remark: Recall the notation in the Theorem:

$$
\begin{array}{cl}
g(t)=-\cos (2 t) & \Rightarrow \quad G(t)=-\frac{1}{2} \sin (2 t) \\
h(y)=\frac{1}{y^{2}} & \Rightarrow \quad H(y)=-\frac{1}{y}
\end{array}
$$

Hence we recover the Theorem expression: $H(y(t))=G(t)+c$.

Separable differential equations (Sect. 1.3).

- Separable ODE.
- Solutions to separable ODE.
- Explicit and implicit solutions.
- Euler homogeneous equations.

Explicit and implicit solutions.

Definition

Assume the notation in the Theorem above. The solution y of a separable ODE is given in implicit form iff function y is given by

$$
H(y(t))=G(t)+c,
$$

The solution is given in explicit form iff function H is invertible and

$$
y(t)=H^{-1}(G(t)+c)
$$

Example

(a) $y(t)-\frac{y^{3}(t)}{3}=\frac{t^{3}}{3}+c$ is in implicit form.
(b) $-\frac{1}{y(t)}=-\frac{1}{2} \sin (2 t)+c$ is in implicit form.
(c) $y(t)=\frac{2}{\sin (2 t)-2 c}$ is in explicit form.

Separable differential equations (Sect. 1.3).

- Separable ODE.
- Solutions to separable ODE.
- Explicit and implicit solutions.
- Euler homogeneous equations.

Euler homogeneous equations.

Definition

The first order ODE $y^{\prime}(t)=f(t, y(t))$ is called Euler homogeneous iff for every numbers $c, t, u \in \mathbb{R}$ the function f satisfies

$$
f(c t, c u)=f(t, u)
$$

Remark:

- The function f is invariant under the change of scale of its arguments.
- If $f(t, u)$ has the property above, it must depend only on u / t.
- Therefore, there exists $F: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(t, u)=F\left(\frac{u}{t}\right)$.
- So, a first order ODE is Euler homogeneous iff it has the form

$$
y^{\prime}(t)=F\left(\frac{y(t)}{t}\right)
$$

Euler homogeneous equations.

Example

Show that the equation below is Euler homogeneous,

$$
(t-y) y^{\prime}-2 y+3 t+\frac{y^{2}}{t}=0
$$

Solution: Rewrite the equation in the standard form

$$
(t-y) y^{\prime}=2 y-3 t-\frac{y^{2}}{t} \quad \Rightarrow \quad y^{\prime}=\frac{\left(2 y-3 t-\frac{y^{2}}{t}\right)}{(t-y)}
$$

Divide numerator and denominator by t. We get,

$$
y^{\prime}=\frac{\left(2 y-3 t-\frac{y^{2}}{t}\right)}{(t-y)} \frac{\left(\frac{1}{t}\right)}{\left(\frac{1}{t}\right)} \Rightarrow y^{\prime}=\frac{2\left(\frac{y}{t}\right)-3-\left(\frac{y}{t}\right)^{2}}{\left[1-\left(\frac{y}{t}\right)\right]}
$$

Euler homogeneous equations.

Example

Show that the equation below is Euler homogeneous,

$$
(t-y) y^{\prime}-2 y+3 t+\frac{y^{2}}{t}=0
$$

Solution: Recall: $y^{\prime}=\frac{2\left(\frac{y}{t}\right)-3-\left(\frac{y}{t}\right)^{2}}{\left[1-\left(\frac{y}{t}\right)\right]}$.
We conclude that the ODE is Euler homogeneous, because the right-hand side of the equation above depends only on y / t.

Indeed, in our case:

$$
f(t, y)=\frac{2 y-3 t-\left(y^{2} / t\right)}{t-y}, \quad F(x)=\frac{2 x-3-x^{2}}{1-x}
$$

and $f(t, y)=F(y / t)$.

Euler homogeneous equations.

Example

Determine whether the equation below is Euler homogeneous,

$$
y^{\prime}=\frac{t^{2}}{1-y^{3}}
$$

Solution:

Divide numerator and denominator by t^{3}, we obtain

$$
y^{\prime}=\frac{t^{2}}{\left(1-y^{3}\right)} \frac{\left(\frac{1}{t^{3}}\right)}{\left(\frac{1}{t^{3}}\right)} \Rightarrow y^{\prime}=\frac{\left(\frac{1}{t}\right)}{\left(\frac{1}{t^{3}}\right)-\left(\frac{y}{t}\right)^{3}}
$$

Then, the differential equation is not Euler homogeneous.

Euler homogeneous equations.

Theorem

If the equation $y^{\prime}(t)=f(t, y(t))$ is Euler homogeneous, then the differential equation for the unknown $v(t)=\frac{y(t)}{t}$ is separable.

Remark: Euler homogeneous equations can be transformed into separable equations.

Proof: If $y^{\prime}=f(t, y)$ is Euler homogeneous, then it can be written as $y^{\prime}=F(y / t)$ for some function F. Introducing $v=y / t$,

$$
y(t)=t v(t) \quad \Rightarrow \quad y^{\prime}(t)=v(t)+t v^{\prime}(t)
$$

Introduce all these changes into the ODE, then

$$
v+t v^{\prime}=F(v) \quad \Rightarrow \quad v^{\prime}=\frac{(F(v)-v)}{t} .
$$

This last equation is separable.

Euler homogeneous equations.

Example

Find all solutions y of the equation $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: The equation is Euler homogeneous, since

$$
y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y} \frac{\left(\frac{1}{t^{2}}\right)}{\left(\frac{1}{t^{2}}\right)} \quad \Rightarrow \quad y^{\prime}=\frac{1+3\left(\frac{y}{t}\right)^{2}}{2\left(\frac{y}{t}\right)}
$$

Therefore, we introduce the change of unknown $v=y / t$, so $y=t v$ and $y^{\prime}=v+t v^{\prime}$. Hence

$$
v+t v^{\prime}=\frac{1+3 v^{2}}{2 v} \Rightarrow t v^{\prime}=\frac{1+3 v^{2}}{2 v}-v=\frac{1+3 v^{2}-2 v^{2}}{2 v}
$$

We obtain the separable equation $v^{\prime}=\frac{1}{t}\left(\frac{1+v^{2}}{2 v}\right)$.

Euler homogeneous equations.

Example

Find all solutions y of the equation $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: Recall: $v^{\prime}=\frac{1}{t}\left(\frac{1+v^{2}}{2 v}\right)$. We rewrite and integrate it,

$$
\frac{2 v}{1+v^{2}} v^{\prime}=\frac{1}{t} \Rightarrow \int \frac{2 v}{1+v^{2}} v^{\prime} d t=\int \frac{1}{t} d t+c_{0}
$$

The substitution $u=1+v^{2}(t)$ implies $d u=2 v(t) v^{\prime}(t) d t$, so $\int \frac{d u}{u}=\int \frac{d t}{t}+c_{0} \Rightarrow \ln (u)=\ln (t)+c_{0} \quad \Rightarrow \quad u=e^{\ln (t)+c_{0}}$.

But $u=e^{\ln (t)} e^{c_{0}}$, so denoting $c_{1}=e^{c_{0}}$, then $u=c_{1} t$. Hence

$$
1+v^{2}=c_{1} t \quad \Rightarrow \quad 1+\left(\frac{y}{t}\right)^{2}=c_{1} t \quad \Rightarrow \quad y(t)= \pm t \sqrt{c_{1} t-1}
$$

