Linear Variable coefficient equations (Sect. 1.2)

- Review: Linear constant coefficient equations.
- The Initial Value Problem.
- Linear variable coefficients equations.
- The Bernoulli equation: A nonlinear equation.

Review: Linear constant coefficient equations

Definition

Given functions a, b, a first order, linear ODE in the unknown function y is the equation

$$
y^{\prime}(t)=a(t) y(t)+b(t)
$$

Theorem (Constant coefficients)

Given constants $a, b \in \mathbb{R}$ with $a \neq 0$, the linear differential equation

$$
y^{\prime}(t)=a y(t)+b
$$

has infinitely many solutions, one for each value of $c \in \mathbb{R}$, given by

$$
y(t)=c e^{a t}-\frac{b}{a} .
$$

Review: Linear constant coefficient equations

Example

Find all functions y solution of the $\operatorname{ODE} y^{\prime}=2 y+3$.
Solution:
We concluded that the ODE has
infinitely many solutions, given by

$$
y(t)=c e^{2 t}-\frac{3}{2}, \quad c \in \mathbb{R} .
$$

Since we did one integration, it is reasonable that the solution contains a constant of
 integration, $c \in \mathbb{R}$.
Verification: $y^{\prime}=2 c e^{2 t}$, but we know that $2 c e^{2 t}=2 y+3$, therefore we conclude that y satisfies the ODE $y^{\prime}=2 y+3$.

Linear Variable coefficient equations (Sect. 1.2)

- Review: Linear constant coefficient equations.
- The Initial Value Problem.
- Linear variable coefficients equations.
- The Bernoulli equation: A nonlinear equation.

The Initial Value Problem

Definition

The Initial Value Problem (IVP) for a linear ODE is the following:
Given functions a, b and constants t_{0}, y_{0}, find a function y solving

$$
y^{\prime}=a(t) y+b(t), \quad y\left(t_{0}\right)=y_{0} .
$$

Remark: The initial condition selects one solution of the ODE.
Theorem (Constant coefficients)
Given constants a, b, t_{0}, y_{0}, with $a \neq 0$, the initial value problem

$$
y^{\prime}=a y+b, \quad y\left(t_{0}\right)=y_{0}
$$

has the unique solution

$$
y(t)=\left(y_{0}+\frac{b}{a}\right) e^{a\left(t-t_{0}\right)}-\frac{b}{a} .
$$

The Initial Value Problem

Example

Find the solution to the initial value problem

$$
y^{\prime}=2 y+3, \quad y(0)=1
$$

Solution: Every solution of the ODE above is given by

$$
y(t)=c e^{2 t}-\frac{3}{2}, \quad c \in \mathbb{R} .
$$

The initial condition $y(0)=1$ selects only one solution:

$$
1=y(0)=c-\frac{3}{2} \Rightarrow c=\frac{5}{2} .
$$

We conclude that $y(t)=\frac{5}{2} e^{2 t}-\frac{3}{2}$.

Linear Variable coefficient equations (Sect. 1.2)

- Review: Linear constant coefficient equations.
- The Initial Value Problem.
- Linear variable coefficients equations.
- The Bernoulli equation: A nonlinear equation.

Linear variable coefficients equations

Theorem (Variable coefficients)

Given continuous functions a, b and constants t_{0}, y_{0}, all solutions to the equation

$$
y^{\prime}=a(t) y+b(t)
$$

are given by

$$
y(t)=c e^{A(t)}+e^{A(t)} \int e^{-A(t)} b(t) d t
$$

where we have introduced the function $A(t)=\int a(t) d t$.
Remarks:
(a) The function $\mu(t)=e^{-A(t)}$ is called an integrating factor.
(b) See the proof in the Lecture Notes.

Linear variable coefficients equations

Example

Find all solutions y to the equation

$$
t y^{\prime}=-2 y+4 t^{2}
$$

Solution: We first express the equation as in the Theorem,

$$
\begin{gathered}
y^{\prime}=-\frac{2}{t} y+4 t \quad \Rightarrow \quad y^{\prime}+\frac{2}{t} y=4 \\
e^{f(t)} y^{\prime}+\frac{2}{t} e^{f(t)} y=4 t e^{f(t)}, \quad f^{\prime}(t)=\frac{2}{t}
\end{gathered}
$$

This function $\mu=e^{f(t)}$ is an integrating factor.

$$
f(t)=\int \frac{2}{t} d t=2 \ln (t)=\ln \left(t^{2}\right)
$$

Therefore, $\mu(t)=e^{f(t)}=t^{2}$.

Linear variable coefficients equations

Example

Find the solution y to the IVP

$$
t y^{\prime}+2 y=4 t^{2}, \quad y(1)=2
$$

Solution: The integrating factor is $\mu(t)=t^{2}$. Hence,

$$
\begin{gathered}
t^{2}\left(y^{\prime}+\frac{2}{t} y\right)=t^{2}(4 t) \quad \Leftrightarrow \quad t^{2} y^{\prime}+2 t y=4 t^{3} \\
\left(t^{2} y\right)^{\prime}=4 t^{3} \quad \Leftrightarrow \quad t^{2} y=t^{4}+c \quad \Leftrightarrow \quad y=t^{2}+\frac{c}{t^{2}}
\end{gathered}
$$

We conclude $y(t)=t^{2}+\frac{c}{t^{2}}$ for any $c \in \mathbb{R}$.

Linear variable coefficients equations

Theorem (Variable coefficients)
Given continuous functions $a, b: \mathbb{R} \rightarrow \mathbb{R}$ and given constants $t_{0}, y_{0} \in \mathbb{R}$, the IVP

$$
y^{\prime}=a(t) y+b(t) \quad y\left(t_{0}\right)=y_{0}
$$

has the unique solution

$$
y(t)=e^{A(t)}\left(y_{0}+\int_{t_{0}}^{t} e^{-A(s)} b(s) d s\right)
$$

where we have introduced the function $A(t)=\int_{t_{0}}^{t} a(s) d s$.
Remarks:
(a) The function $\mu(t)=e^{-A(t)}$ is called an integrating factor.
(b) See the proof in the Lecture Notes.

Linear variable coefficients equations

Example

Find the solution y to the IVP

$$
t y^{\prime}+2 y=4 t^{2}, \quad y(1)=2
$$

Solution: We already know that all solutions to the differential equation are

$$
y=t^{2}+\frac{c}{t^{2}}
$$

The initial condition implies

$$
2=y(1)=1+c, \quad \Rightarrow \quad c=1
$$

We conclude that $y(t)=t^{2}+\frac{1}{t^{2}}$.

Linear Variable coefficient equations (Sect. 1.2)

- Review: Linear constant coefficient equations.
- The Initial Value Problem.
- Linear variable coefficients equations.
- The Bernoulli equation: A nonlinear equation.

The Bernoulli equation

Remark: The Bernoulli equation is a non-linear differential equation that can be transformed into a linear differential equation.

Definition

Given functions $p, q: \mathbb{R} \rightarrow \mathbb{R}$ and a real number n, the differential equation in the unknown function $y: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
y^{\prime}+p(t) y=q(t) y^{n}
$$

is called the Bernoulli equation.
Theorem
The function $y: \mathbb{R} \rightarrow \mathbb{R}$ is a solution of the Bernoulli equation for

$$
y^{\prime}+p(t) y=q(t) y^{n}, \quad n \neq 1
$$

iff the function $v=1 / y^{(n-1)}$ is solution of the linear differential equation

$$
v^{\prime}-(n-1) p(t) v=-(n-1) q(t)
$$

The Bernoulli equation

Example

Given arbitrary constants $a \neq 0$ and b, find every solution of the differential equation

$$
y^{\prime}=a y+b y^{3}
$$

Solution: This is a Bernoulli equation. Divide the equation by y^{3},

$$
\frac{y^{\prime}}{y^{3}}=\frac{a}{y^{2}}+b
$$

Introduce the function $v=1 / y^{2}$, with derivative $v^{\prime}=-2\left(\frac{y^{\prime}}{y^{3}}\right)$, into the differential equation above,

$$
-\frac{v^{\prime}}{2}=a v+b \quad \Rightarrow \quad v^{\prime}=-2 a v-2 b \quad \Rightarrow \quad v^{\prime}+2 a v=-2 b .
$$

The Bernoulli equation

Example

Given arbitrary constants $a \neq 0$ and b, find every solution of the differential equation

$$
y^{\prime}=a y+b y^{3}
$$

Solution: Recall: $v^{\prime}+2 a v=-2 b$.
The last equation is a linear differential equation for v. This equation can be solved using the integrating factor method. Multiply the equation by $\mu(t)=e^{2 a t}$,

$$
\left(e^{2 a t} v\right)^{\prime}=-2 b e^{2 a t} \quad \Rightarrow \quad e^{2 a t} v=-\frac{b}{a} e^{2 a t}+c
$$

We obtain that $v=c e^{-2 a t}-\frac{b}{a}$. Since $v=1 / y^{2}$,

$$
\frac{1}{y^{2}}=c e^{-2 a t}-\frac{b}{a} \Rightarrow y(t)= \pm \frac{1}{\left(c e^{-2 a t}-\frac{b}{a}\right)^{1 / 2}}
$$

