Boundary Value Problems (Sect. 10.1).

- Two-point BVP.
- Example from physics.
- Comparison: IVP vs BVP.
- Existence, uniqueness of solutions to BVP.
- Particular case of BVP: Eigenvalue-eigenfunction problem.
Two-point Boundary Value Problem.

Definition

A two-point \textit{BVP} is the following: Given functions \(p, q, g \), and constants
\[x_1 < x_2, \quad y_1, y_2, \quad b_1, b_2, \quad \tilde{b}_1, \tilde{b}_2, \]
find a function \(y \) solution of the differential equation
\[y'' + p(x) y' + q(x) y = g(x), \]
together with the extra, \textit{boundary conditions},
\[b_1 \, y(x_1) + b_2 \, y'(x_1) = y_1, \]
\[\tilde{b}_1 \, y(x_2) + \tilde{b}_2 \, y'(x_2) = y_2. \]
Two-point Boundary Value Problem.

Definition
A *two-point BVP* is the following: Given functions p, q, g, and constants $x_1 < x_2$, y_1, y_2, b_1, b_2, \tilde{b}_1, \tilde{b}_2, find a function y solution of the differential equation
\[y'' + p(x) y' + q(x) y = g(x), \]
[together with the extra, *boundary conditions*,
\[b_1 y(x_1) + b_2 y'(x_1) = y_1, \]
\[\tilde{b}_1 y(x_2) + \tilde{b}_2 y'(x_2) = y_2. \]

Remarks:
- Both y and y' might appear in the boundary condition, evaluated at the same point.
Two-point Boundary Value Problem.

Definition
A *two-point BVP* is the following: Given functions \(p, q, g \), and constants
\[
 x_1 < x_2, \quad y_1, y_2, \quad b_1, b_2, \quad \tilde{b}_1, \tilde{b}_2,
\]
find a function \(y \) solution of the differential equation
\[
y'' + p(x) y' + q(x) y = g(x),
\]
 together with the extra, *boundary conditions*,
\[
 b_1 y(x_1) + b_2 y'(x_1) = y_1, \\
 \tilde{b}_1 y(x_2) + \tilde{b}_2 y'(x_2) = y_2.
\]

Remarks:
- Both \(y \) and \(y' \) might appear in the boundary condition, evaluated at the same point.
- In this notes we only study the case of constant coefficients,
\[
y'' + a_1 y' + a_0 y = g(x).
\]
Two-point Boundary Value Problem.

Example
Examples of BVP.
Two-point Boundary Value Problem.

Example
Examples of BVP. Assume $x_1 \neq x_2$.

(1) Find y solution of

$$y'' + a_1 y' + a_0 y = g(x), \quad y(x_1) = y_1, \quad y(x_2) = y_2.$$
Two-point Boundary Value Problem.

Example

Examples of BVP. Assume $x_1 \neq x_2$.

(1) Find y solution of

$$y'' + a_1 y' + a_0 y = g(x), \quad y(x_1) = y_1, \quad y(x_2) = y_2.$$

(2) Find y solution of

$$y'' + a_1 y' + a_0 y = g(x), \quad y'(x_1) = y_1, \quad y'(x_2) = y_2.$$
Two-point Boundary Value Problem.

Example
Examples of BVP. Assume $x_1 \neq x_2$.

1. Find y solution of

$$y'' + a_1 y' + a_0 y = g(x), \quad y(x_1) = y_1, \quad y(x_2) = y_2.$$

2. Find y solution of

$$y'' + a_1 y' + a_0 y = g(x), \quad y'(x_1) = y_1, \quad y'(x_2) = y_2.$$

3. Find y solution of

$$y'' + a_1 y' + a_0 y = g(x), \quad y(x_1) = y_1, \quad y'(x_2) = y_2.$$
Boundary Value Problems (Sect. 10.1).

- Two-point BVP.
- **Example from physics.**
- Comparison: IVP vs BVP.
- Existence, uniqueness of solutions to BVP.
- Particular case of BVP: Eigenvalue-eigenfunction problem.
Example from physics.

Problem: The equilibrium (time independent) temperature of a bar of length L with insulated horizontal sides and the bar vertical extremes kept at fixed temperatures T_0, T_L is the solution of the BVP:

$$T''(x) = 0, \quad x \in (0, L), \quad T(0) = T_0, \quad T(L) = T_L,$$
Example from physics.

Problem: The equilibrium (time independent) temperature of a bar of length L with insulated horizontal sides and the bar vertical extremes kept at fixed temperatures T_0, T_L is the solution of the BVP:

$$T''(x) = 0, \quad x \in (0, L), \quad T(0) = T_0, \quad T(L) = T_L,$$
Boundary Value Problems (Sect. 10.1).

- Two-point BVP.
- Example from physics.
- **Comparison: IVP vs BVP.**
- Existence, uniqueness of solutions to BVP.
- Particular case of BVP: Eigenvalue-eigenfunction problem.
Comparison: IVP vs BVP.

Review: IVP:
Find the function values $y(t)$ solutions of the differential equation
\[y'' + a_1 y' + a_0 y = g(t),\]

together with the initial conditions
\[y(t_0) = y_1, \quad y'(t_0) = y_2.\]
Comparison: IVP vs BVP.

Review: IVP:
Find the function values \(y(t) \) solutions of the differential equation
\[
y'' + a_1 y' + a_0 y = g(t),
\]
together with the initial conditions
\[
y(t_0) = y_1, \quad y'(t_0) = y_2.
\]

Remark: In physics:
\(y(t) \): Position at time \(t \).
Comparison: IVP vs BVP.

Review: IVP:
Find the function values $y(t)$ solutions of the differential equation

$$y'' + a_1 y' + a_0 y = g(t),$$

together with the initial conditions

$$y(t_0) = y_1, \quad y'(t_0) = y_2.$$

Remark: In physics:
- $y(t)$: Position at time t.
- Initial conditions: Position and velocity at the initial time t_0.
Comparison: IVP vs BVP.

Review: BVP:
Find the function values $y(x)$ solutions of the differential equation

$$y'' + a_1 y' + a_0 y = g(x),$$

together with the initial conditions

$$y(x_1) = y_1, \quad y(x_2) = y_2.$$
Comparison: IVP vs BVP.

Review: BVP:
Find the function values $y(x)$ solutions of the differential equation

$$y'' + a_1 y' + a_0 y = g(x),$$

together with the initial conditions

$$y(x_1) = y_1, \quad y(x_2) = y_2.$$

Remark: In physics:

- $y(x)$: A physical quantity (temperature) at a position x.
Comparison: IVP vs BVP.

Review: BVP:
Find the function values \(y(x) \) solutions of the differential equation

\[
y'' + a_1 y' + a_0 y = g(x),
\]

together with the initial conditions

\[
y(x_1) = y_1, \quad y(x_2) = y_2.
\]

Remark: In physics:
- \(y(x) \): A physical quantity (temperature) at a position \(x \).
- **Boundary conditions**: Conditions at the boundary of the object under study, where \(x_1 \neq x_2 \).
Boundary Value Problems (Sect. 10.1).

- Two-point BVP.
- Example from physics.
- Comparison: IVP vs BVP.
- **Existence, uniqueness of solutions to BVP.**
- Particular case of BVP: Eigenvalue-eigenfunction problem.
Existence, uniqueness of solutions to BVP.

Review: The initial value problem.

Theorem (IVP)

Consider the homogeneous initial value problem:

\[y'' + a_1 y' + a_0 y = 0, \quad y(t_0) = y_0, \quad y'(t_0) = y_1, \]

and let \(r_{\pm} \) be the roots of the characteristic polynomial

\[p(r) = r^2 + a_1 r + a_0. \]

If \(r_+ \neq r_- \), real or complex, then for every choice of \(y_0, y_1 \), there exists a unique solution \(y \) to the initial value problem above.
Existence, uniqueness of solutions to BVP.

Review: The initial value problem.

Theorem (IVP)

Consider the homogeneous initial value problem:

\[y'' + a_1 y' + a_0 y = 0, \quad y(t_0) = y_0, \quad y'(t_0) = y_1, \]

and let \(r_\pm \) be the roots of the characteristic polynomial

\[p(r) = r^2 + a_1 r + a_0. \]

If \(r_+ \neq r_- \), real or complex, then for every choice of \(y_0, y_1 \), there exists a unique solution \(y \) to the initial value problem above.

Summary: The IVP above always has a unique solution, no matter what \(y_0 \) and \(y_1 \) we choose.
Existence, uniqueness of solutions to BVP.

Theorem (BVP)

Consider the homogeneous boundary value problem:

\[y'' + a_1 y' + a_0 y = 0, \quad y(0) = y_0, \quad y(L) = y_1, \]

and let \(r_{\pm} \) be the roots of the characteristic polynomial

\[p(r) = r^2 + a_1 r + a_0. \]

(A) If \(r_+ \neq r_- \), real, then for every choice of \(L \neq 0 \) and \(y_0, y_1 \), there exists a unique solution \(y \) to the BVP above.

(B) If \(r_\pm = \alpha \pm i\beta \), with \(\beta \neq 0 \), and \(\alpha, \beta \in \mathbb{R} \), then the solutions to the BVP above belong to one of these possibilities:

1. There exists a unique solution.
2. There exists no solution.
3. There exist infinitely many solutions.
Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case \(r_+ \neq r_- \).
Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case \(r_+ \neq r_- \). The general solution is

\[
y(t) = c_1 e^{r_- t} + c_2 e^{r_+ t},
\]

where \(c_1, c_2 \in \mathbb{R} \). The initial conditions determine \(c_1 \) and \(c_2 \) as follows:

\[
y_0 = y(t_0) = c_1 e^{r_- t_0} + c_2 e^{r_+ t_0},
\]

\[
y_1 = y'(t_0) = c_1 (r_- - e^{r_- t_0}) + c_2 (r_+ + e^{r_+ t_0}).
\]

Using matrix notation,

\[
\begin{bmatrix}
 e^{r_- t_0} & e^{r_+ t_0} \\
 r_- e^{r_- t_0} & r_+ e^{r_+ t_0}
\end{bmatrix}
\begin{bmatrix}
 c_1 \\
 c_2
\end{bmatrix}
=
\begin{bmatrix}
 y_0 \\
 y_1
\end{bmatrix}.
\]

The linear system above has a unique solution \(c_1 \) and \(c_2 \) for every constants \(y_0 \) and \(y_1 \) iff

\[
\text{det}(Z) \neq 0,
\]

where

\[
Z =
\begin{bmatrix}
 e^{r_- t_0} & e^{r_+ t_0} \\
 r_- e^{r_- t_0} & r_+ e^{r_+ t_0}
\end{bmatrix}.
\]
Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_+ \neq r_-$. The general solution is

$$y(t) = c_1 e^{r_- t} + c_2 e^{r_+ t}, \quad c_1, c_2 \in \mathbb{R}.$$
Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case \(r_+ \neq r_- \). The general solution is

\[y(t) = c_1 e^{r_- t} + c_2 e^{r_+ t}, \quad c_1, c_2 \in \mathbb{R}. \]

The initial conditions determine \(c_1 \) and \(c_2 \).
Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_+ \neq r_-$. The general solution is

$$y(t) = c_1 e^{r_- t} + c_2 e^{r_+ t}, \quad c_1, c_2 \in \mathbb{R}.$$

The initial conditions determine c_1 and c_2 as follows:

$$y_0 = y(t_0)$$
Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_+ \neq r_-$. The general solution is

$$y(t) = c_1 e^{r_- t} + c_2 e^{r_+ t}, \quad c_1, c_2 \in \mathbb{R}.$$

The initial conditions determine c_1 and c_2 as follows:

$$y_0 = y(t_0) = c_1 e^{r_- t_0} + c_2 e^{r_+ t_0}$$
Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case \(r_+ \neq r_- \). The general solution is

\[
y(t) = c_1 e^{r_- t} + c_2 e^{r_+ t}, \quad c_1, c_2 \in \mathbb{R}.
\]

The initial conditions determine \(c_1 \) and \(c_2 \) as follows:

\[
y_0 = y(t_0) = c_1 e^{r_- t_0} + c_2 e^{r_+ t_0}
\]

\[
y_1 = y'(t_0)
\]
Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_+ \neq r_-$. The general solution is

$$y(t) = c_1 e^{r_- t} + c_2 e^{r_+ t}, \quad c_1, c_2 \in \mathbb{R}.$$

The initial conditions determine c_1 and c_2 as follows:

$$y_0 = y(t_0) = c_1 e^{r_- t_0} + c_2 e^{r_+ t_0}$$

$$y_1 = y'(t_0) = c_1 r_- e^{r_- t_0} + c_2 r_+ e^{r_+ t_0}$$
Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_+ \neq r_-$. The general solution is

$$y(t) = c_1 e^{r_- t} + c_2 e^{r_+ t}, \quad c_1, c_2 \in \mathbb{R}.$$

The initial conditions determine c_1 and c_2 as follows:

$$y_0 = y(t_0) = c_1 e^{r_- t_0} + c_2 e^{r_+ t_0}$$

$$y_1 = y'(t_0) = c_1 r_- e^{r_- t_0} + c_2 r_+ e^{r_+ t_0}$$

Using matrix notation,

$$\begin{bmatrix}
e^{r_- t_0} & e^{r_+ t_0} \\
r_- e^{r_- t_0} & r_+ e^{r_+ t_0}
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2
\end{bmatrix}

=
\begin{bmatrix}
y_0 \\
y_1
\end{bmatrix}.$$
Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_+ \neq r_-$. The general solution is

$$y(t) = c_1 e^{r_- t} + c_2 e^{r_+ t}, \quad c_1, c_2 \in \mathbb{R}.$$

The initial conditions determine c_1 and c_2 as follows:

$$y_0 = y(t_0) = c_1 e^{r_- t_0} + c_2 e^{r_+ t_0}$$

$$y_1 = y'(t_0) = c_1 r_- e^{r_- t_0} + c_2 r_+ e^{r_+ t_0}$$

Using matrix notation,

$$\begin{bmatrix} e^{r_- t_0} & e^{r_+ t_0} \\ r_- e^{r_- t_0} & r_+ e^{r_+ t_0} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}.$$

The linear system above has a unique solution c_1 and c_2 for every constants y_0 and y_1 iff

$$\det(Z) \neq 0,$$

where $Z = \begin{bmatrix} e^{r_- t_0} & e^{r_+ t_0} \\ r_- e^{r_- t_0} & r_+ e^{r_+ t_0} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}.$$

The linear system above has a unique solution c_1 and c_2 for every constants y_0 and y_1 iff
Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case \(r_+ \neq r_- \). The general solution is
\[
y(t) = c_1 e^{r_- t} + c_2 e^{r_+ t}, \quad c_1, c_2 \in \mathbb{R}.
\]
The initial conditions determine \(c_1 \) and \(c_2 \) as follows:
\[
y_0 = y(t_0) = c_1 e^{r_- t_0} + c_2 e^{r_+ t_0}
\]
\[
y_1 = y'(t_0) = c_1 r_- e^{r_- t_0} + c_2 r_+ e^{r_+ t_0}
\]
Using matrix notation,
\[
\begin{bmatrix}
e^{r_- t_0} & e^{r_+ t_0} \\
r_- e^{r_- t_0} & r_+ e^{r_+ t_0}
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2
\end{bmatrix}
= \begin{bmatrix}
y_0 \\
y_1
\end{bmatrix}.
\]
The linear system above has a unique solution \(c_1 \) and \(c_2 \) for every constants \(y_0 \) and \(y_1 \) iff the \(\text{det}(Z) \neq 0 \),
Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_+ \neq r_-$. The general solution is

$$y(t) = c_1 e^{r_- t} + c_2 e^{r_+ t}, \quad c_1, c_2 \in \mathbb{R}.$$

The initial conditions determine c_1 and c_2 as follows:

$$y_0 = y(t_0) = c_1 e^{r_- t_0} + c_2 e^{r_+ t_0}$$

$$y_1 = y'(t_0) = c_1 r_- e^{r_- t_0} + c_2 r_+ e^{r_+ t_0}$$

Using matrix notation,

$$\begin{bmatrix} e^{r_- t_0} & e^{r_+ t_0} \\
 r_- e^{r_- t_0} & r_+ e^{r_+ t_0} \end{bmatrix} \begin{bmatrix} c_1 \\
 c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\
 y_1 \end{bmatrix}. $$

The linear system above has a unique solution c_1 and c_2 for every constants y_0 and y_1 iff the det(Z) $\neq 0$, where

$$Z = \begin{bmatrix} e^{r_- t_0} & e^{r_+ t_0} \\
 r_- e^{r_- t_0} & r_+ e^{r_+ t_0} \end{bmatrix}.$$
Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case \(r_+ \neq r_- \). The general solution is

\[
y(t) = c_1 e^{r_- t} + c_2 e^{r_+ t}, \quad c_1, c_2 \in \mathbb{R}.
\]

The initial conditions determine \(c_1 \) and \(c_2 \) as follows:

\[
y_0 = y(t_0) = c_1 e^{r_- t_0} + c_2 e^{r_+ t_0}
\]

\[
y_1 = y'(t_0) = c_1 r_- e^{r_- t_0} + c_2 r_+ e^{r_+ t_0}
\]

Using matrix notation,

\[
\begin{bmatrix}
 e^{r_- t_0} & e^{r_+ t_0} \\
 r_- e^{r_- t_0} & r_+ e^{r_+ t_0}
\end{bmatrix}
\begin{bmatrix}
 c_1 \\
 c_2
\end{bmatrix}
=
\begin{bmatrix}
 y_0 \\
 y_1
\end{bmatrix}.
\]

The linear system above has a unique solution \(c_1 \) and \(c_2 \) for every constants \(y_0 \) and \(y_1 \) iff the \(\det(Z) \neq 0 \), where

\[
Z =
\begin{bmatrix}
 e^{r_- t_0} & e^{r_+ t_0} \\
 r_- e^{r_- t_0} & r_+ e^{r_+ t_0}
\end{bmatrix}
\Rightarrow
Z \begin{bmatrix}
 c_1 \\
 c_2
\end{bmatrix}
=
\begin{bmatrix}
 y_0 \\
 y_1
\end{bmatrix}.
\]
Existence, uniqueness of solutions to BVP.

Proof of IVP:
Recall: \(Z = \begin{bmatrix} e^{r_- t_0} & e^{r_+ t_0} \\ r_- e^{r_- t_0} & r_+ e^{r_+ t_0} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix} \).
Existence, uniqueness of solutions to BVP.

Proof of IVP:
Recall: \[Z = \begin{bmatrix} e^{r_- t_0} & e^{r_+ t_0} \\ r_- e^{r_- t_0} & r_+ e^{r_+ t_0} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}. \]

A simple calculation shows

\[
\text{det}(Z) = (r_+ - r_-) e^{(r_+ + r_-) t_0}
\]
Existence, uniqueness of solutions to BVP.

Proof of IVP:
Recall: \[Z = \begin{bmatrix} e^{r_- t_0} & e^{r_+ t_0} \\ r_- e^{r_- t_0} & r_+ e^{r_+ t_0} \end{bmatrix} \quad \Rightarrow \quad Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}. \]

A simple calculation shows

\[
\det(Z) = (r_+ - r_-) e^{(r_+ + r_-) t_0} \neq 0 \quad \Leftrightarrow \quad r_+ \neq r_-.
\]
Existence, uniqueness of solutions to BVP.

Proof of IVP:
Recall: \[Z = \begin{bmatrix} e^{r_-t_0} & e^{r_+t_0} \\ r_- e^{r_-t_0} & r_+ e^{r_+t_0} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}. \]

A simple calculation shows
\[\det(Z) = (r_+ - r_-) e^{(r_+ + r_-)t_0} \neq 0 \Leftrightarrow r_+ \neq r_- .\]

Since \(r_+ \neq r_- \), the matrix \(Z \) is invertible
Proof of IVP:

Recall: \[Z = \begin{bmatrix} e^{r_- t_0} & e^{r_+ t_0} \\ r_- e^{r_- t_0} & r_+ e^{r_+ t_0} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}. \]

A simple calculation shows

\[\det(Z) = (r_+ - r_-) e^{(r_+ + r_-) t_0} \neq 0 \iff r_+ \neq r_. \]

Since \(r_+ \neq r_- \), the matrix \(Z \) is invertible and so

\[\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = Z^{-1} \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}. \]
Existence, uniqueness of solutions to BVP.

Proof of IVP:
Recall: \[Z = \begin{bmatrix} e^{r_- t_0} & e^{r_+ t_0} \\ r_- e^{r_- t_0} & r_+ e^{r_+ t_0} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}. \]

A simple calculation shows
\[
\det(Z) = (r_+ - r_-) e^{(r_+ - r_-) t_0} \neq 0 \iff r_+ \neq r_-.
\]
Since \(r_+ \neq r_- \), the matrix \(Z \) is invertible and so
\[
\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = Z^{-1} \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}.
\]

We conclude that for every choice of \(y_0 \) and \(y_1 \), there exist a unique value of \(c_1 \) and \(c_2 \), so the IVP above has a unique solution. \(\square \)
Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

\[y(x) = c_1 e^{r_- x} + c_2 e^{r_+ x}, \]
Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

$$y(x) = c_1 e^{r^- x} + c_2 e^{r^+ x}, \quad c_1, c_2 \in \mathbb{R}.$$
Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

$$y(x) = c_1 e^{r_- x} + c_2 e^{r_+ x}, \quad c_1, c_2 \in \mathbb{R}.$$

The boundary conditions determine c_1 and c_2
Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

\[y(x) = c_1 e^{r_1 x} + c_2 e^{r_2 x}, \quad c_1, c_2 \in \mathbb{R}. \]

The boundary conditions determine \(c_1 \) and \(c_2 \) as follows:

\[y_0 = y(0) \]
Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

\[y(x) = c_1 e^{r_- x} + c_2 e^{r_+ x}, \quad c_1, c_2 \in \mathbb{R}. \]

The boundary conditions determine \(c_1 \) and \(c_2 \) as follows:

\[y_0 = y(0) = c_1 + c_2. \]
Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

\[y(x) = c_1 e^{r_- x} + c_2 e^{r_+ x}, \quad c_1, c_2 \in \mathbb{R}. \]

The boundary conditions determine \(c_1 \) and \(c_2 \) as follows:

\[y_0 = y(0) = c_1 + c_2. \]

\[y_1 = y(L) \]
Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

$$y(x) = c_1 e^{r_- x} + c_2 e^{r_+ x}, \quad c_1, c_2 \in \mathbb{R}.$$

The boundary conditions determine c_1 and c_2 as follows:

$$y_0 = y(0) = c_1 + c_2.$$

$$y_1 = y(L) = c_1 e^{r_- L} + c_2 e^{r_+ L}$$
Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

\[y(x) = c_1 e^{r_- x} + c_2 e^{r_+ x}, \quad c_1, c_2 \in \mathbb{R}. \]

The boundary conditions determine \(c_1 \) and \(c_2 \) as follows:

\[y_0 = y(0) = c_1 + c_2. \]

\[y_1 = y(L) = c_1 e^{r_- L} + c_2 e^{r_+ L} \]

Using matrix notation,

\[
\begin{bmatrix}
1 & 1 \\
e^{r_- L} & e^{r_+ L}
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2
\end{bmatrix}
= \begin{bmatrix}
y_0 \\
y_1
\end{bmatrix}.
\]
Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is
\[y(x) = c_1 e^{r_+ x} + c_2 e^{r_- x}, \quad c_1, c_2 \in \mathbb{R}. \]

The boundary conditions determine \(c_1 \) and \(c_2 \) as follows:
\[y_0 = y(0) = c_1 + c_2. \]
\[y_1 = y(L) = c_1 e^{r_- L} + c_2 e^{r_+ L} \]

Using matrix notation,
\[
\begin{bmatrix}
1 & 1 \\
e^{r_- L} & e^{r_+ L}
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2
\end{bmatrix}
=
\begin{bmatrix}
y_0 \\
y_1
\end{bmatrix}.
\]

The linear system above has a unique solution \(c_1 \) and \(c_2 \) for every constants \(y_0 \) and \(y_1 \) iff
Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

\[y(x) = c_1 e^{r_- x} + c_2 e^{r_+ x}, \quad c_1, c_2 \in \mathbb{R}. \]

The boundary conditions determine \(c_1 \) and \(c_2 \) as follows:

\[y_0 = y(0) = c_1 + c_2. \]
\[y_1 = y(L) = c_1 e^{r_- L} + c_2 e^{r_+ L} \]

Using matrix notation,

\[
\begin{bmatrix}
1 & 1 \\
e^{r_- L} & e^{r_+ L}
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2
\end{bmatrix}
= \begin{bmatrix}
y_0 \\
y_1
\end{bmatrix}.
\]

The linear system above has a unique solution \(c_1 \) and \(c_2 \) for every constants \(y_0 \) and \(y_1 \) iff the \(\det(Z) \neq 0 \),
Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

\[y(x) = c_1 e^{r_- x} + c_2 e^{r_+ x}, \quad c_1, c_2 \in \mathbb{R}. \]

The boundary conditions determine \(c_1 \) and \(c_2 \) as follows:

\[y_0 = y(0) = c_1 + c_2. \]
\[y_1 = y(L) = c_1 e^{r_- L} + c_2 e^{r_+ L} \]

Using matrix notation,

\[
\begin{bmatrix}
1 & 1 \\
e^{r_- L} & e^{r_+ L}
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2
\end{bmatrix} =
\begin{bmatrix}
y_0 \\
y_1
\end{bmatrix}.
\]

The linear system above has a unique solution \(c_1 \) and \(c_2 \) for every constants \(y_0 \) and \(y_1 \) iff the \(\det(Z) \neq 0 \), where

\[
Z =
\begin{bmatrix}
1 & 1 \\
e^{r_- L} & e^{r_+ L}
\end{bmatrix}
\]
Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

\[y(x) = c_1 e^{r^- x} + c_2 e^{r^+ x}, \quad c_1, c_2 \in \mathbb{R}. \]

The boundary conditions determine \(c_1 \) and \(c_2 \) as follows:

\[y_0 = y(0) = c_1 + c_2. \]

\[y_1 = y(L) = c_1 e^{r^- L} + c_2 e^{r^+ L} \]

Using matrix notation,

\[
\begin{bmatrix}
1 & 1 \\
e^{r^- L} & e^{r^+ L}
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2
\end{bmatrix} =
\begin{bmatrix}
y_0 \\
y_1
\end{bmatrix}.
\]

The linear system above has a unique solution \(c_1 \) and \(c_2 \) for every constants \(y_0 \) and \(y_1 \) iff the \(\det(Z) \neq 0 \), where

\[
Z = \begin{bmatrix}
1 & 1 \\
e^{r^- L} & e^{r^+ L}
\end{bmatrix} \Rightarrow Z \begin{bmatrix}
c_1 \\
c_2
\end{bmatrix} = \begin{bmatrix}
y_0 \\
y_1
\end{bmatrix}.
\]
Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: \(Z = \begin{bmatrix} 1 & 1 \\ e^{r_- L} & e^{r_+ L} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}. \)
Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: \(Z = \begin{bmatrix} 1 & 1 \\ e^{r_- L} & e^{r_+ L} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix} \).

A simple calculation shows

\[\det(Z) = e^{r_+ L} - e^{r_- L} \]
Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: \(Z = \begin{bmatrix} 1 & 1 \\ e^{r_+ L} & e^{r_- L} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix} \).

A simple calculation shows
\[
\text{det}(Z) = e^{r_+ L} - e^{r_- L} \neq 0 \iff e^{r_+ L} \neq e^{r_- L}.
\]
Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: \(Z = \begin{bmatrix} 1 & 1 \\ e^{r_- L} & e^{r_+ L} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix} \).

A simple calculation shows
\[
\det(Z) = e^{r_+ L} - e^{r_- L} \neq 0 \iff e^{r_+ L} \neq e^{r_- L}.
\]

(A) If \(r_+ \neq r_- \) and real-valued,

(1) If \(\beta L \neq n\pi \), then BVP has a unique solution.
(2) If \(\beta L = n\pi \) then BVP either has no solutions or it has infinitely many solutions.
Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: \[Z = \begin{bmatrix} 1 & 1 \\ e^{r_- L} & e^{r_+ L} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}. \]

A simple calculation shows
\[\det(Z) = e^{r_+ L} - e^{r_- L} \neq 0 \iff e^{r_+ L} \neq e^{r_- L}. \]

(A) If \(r_+ \neq r_- \) and real-valued, then \(\det(Z) \neq 0. \)
Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: \[Z = \begin{bmatrix} 1 & 1 \\ e^{r_-L} & e^{r_+L} \end{bmatrix} \Rightarrow \begin{bmatrix} Z \\ c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}. \]

A simple calculation shows
\[\det(Z) = e^{r_+L} - e^{r_-L} \neq 0 \iff e^{r_+L} \neq e^{r_-L}. \]

(A) If \(r_+ \neq r_- \) and real-valued, then \(\det(Z) \neq 0 \).

We conclude: For every choice of \(y_0 \) and \(y_1 \), there exist a unique value of \(c_1 \) and \(c_2 \), so the BVP in (A) above has a unique solution.
Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: \[Z = \begin{bmatrix} 1 & 1 \\ e^{-L} & e^{L} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}. \]

A simple calculation shows
\[
\det(Z) = e^{L} - e^{-L} \neq 0 \iff e^{L} \neq e^{-L}.
\]

(A) If \(r_+ \neq r_- \) and real-valued, then \(\det(Z) \neq 0 \).

We conclude: For every choice of \(y_0 \) and \(y_1 \), there exist a unique value of \(c_1 \) and \(c_2 \), so the BVP in (A) above has a unique solution.

(B) If \(r_\pm = \alpha \pm i\beta \), with \(\alpha, \beta \in \mathbb{R} \) and \(\beta \neq 0 \),
Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: \(Z = \begin{bmatrix} 1 & 1 \\ e^{r_-L} & e^{r_+L} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}. \)

A simple calculation shows
\[
\det(Z) = e^{r_+L} - e^{r_-L} \neq 0 \iff e^{r_+L} \neq e^{r_-L}.
\]

(A) If \(r_+ \neq r_- \) and real-valued, then \(\det(Z) \neq 0. \)

We conclude: For every choice of \(y_0 \) and \(y_1 \), there exist a unique value of \(c_1 \) and \(c_2 \), so the BVP in (A) above has a unique solution.

(B) If \(r_\pm = \alpha \pm i\beta \), with \(\alpha, \beta \in \mathbb{R} \) and \(\beta \neq 0 \), then
\[
\det(Z) = e^{\alpha L}(e^{i\beta L} - e^{-i\beta L})
\]
Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: \(Z = \begin{bmatrix} 1 & 1 \\ e^{r_- L} & e^{r_+ L} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix} \).

A simple calculation shows

\[
\det(Z) = e^{r_+ L} - e^{r_- L} \neq 0 \iff e^{r_+ L} \neq e^{r_- L}.
\]

(A) If \(r_+ \neq r_- \) and real-valued, then \(\det(Z) \neq 0 \).

We conclude: For every choice of \(y_0 \) and \(y_1 \), there exist a unique value of \(c_1 \) and \(c_2 \), so the BVP in (A) above has a unique solution.

(B) If \(r_\pm = \alpha \pm i\beta \), with \(\alpha, \beta \in \mathbb{R} \) and \(\beta \neq 0 \), then

\[
\det(Z) = e^{\alpha L} (e^{i\beta L} - e^{-i\beta L}) \Rightarrow \det(Z) = 2i e^{\alpha L} \sin(\beta L).
\]
Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: \(Z = \begin{bmatrix} 1 & 1 \\ e^{-rL} & e^{r_+ L} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix} \).

A simple calculation shows

\[\det(Z) = e^{r_+ L} - e^{r_- L} \neq 0 \iff e^{r_+ L} \neq e^{r_- L}. \]

(A) If \(r_+ \neq r_- \) and real-valued, then \(\det(Z) \neq 0 \).

We conclude: For every choice of \(y_0 \) and \(y_1 \), there exist a unique value of \(c_1 \) and \(c_2 \), so the BVP in (A) above has a unique solution.

(B) If \(r_\pm = \alpha \pm i\beta \), with \(\alpha, \beta \in \mathbb{R} \) and \(\beta \neq 0 \), then

\[\det(Z) = e^{\alpha L}(e^{i\beta L} - e^{-i\beta L}) \Rightarrow \det(Z) = 2i e^{\alpha L} \sin(\beta L). \]

Since \(\det(Z) = 0 \) iff \(\beta L = n\pi \), with \(n \) integer,
Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: \[Z = \begin{bmatrix} 1 & 1 \\ e^{r_+ L} & e^{r_- L} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}. \]

A simple calculation shows

\[\det(Z) = e^{r_+ L} - e^{r_- L} \neq 0 \iff e^{r_+ L} \neq e^{r_- L}. \]

(A) If \(r_+ \neq r_- \) and real-valued, then \(\det(Z) \neq 0 \).

We conclude: For every choice of \(y_0 \) and \(y_1 \), there exist a unique value of \(c_1 \) and \(c_2 \), so the BVP in (A) above has a unique solution.

(B) If \(r_\pm = \alpha \pm i\beta \), with \(\alpha, \beta \in \mathbb{R} \) and \(\beta \neq 0 \), then

\[\det(Z) = e^{\alpha L} (e^{i\beta L} - e^{-i\beta L}) \Rightarrow \det(Z) = 2i e^{\alpha L} \sin(\beta L). \]

Since \(\det(Z) = 0 \) iff \(\beta L = n\pi \), with \(n \) integer,

(1) If \(\beta L \neq n\pi \), then BVP has a unique solution.
Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: \[Z = \begin{bmatrix} 1 & 1 \\ e^{r_- L} & e^{r_+ L} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}. \]

A simple calculation shows
\[\det(Z) = e^{r_+ L} - e^{r_- L} \neq 0 \iff e^{r_+ L} \neq e^{r_- L}. \]

(A) If \(r_+ \neq r_- \) and real-valued, then \(\det(Z) \neq 0 \).

We conclude: For every choice of \(y_0 \) and \(y_1 \), there exist a unique value of \(c_1 \) and \(c_2 \), so the BVP in (A) above has a unique solution.

(B) If \(r_\pm = \alpha \pm i\beta \), with \(\alpha, \beta \in \mathbb{R} \) and \(\beta \neq 0 \), then
\[\det(Z) = e^{\alpha L} (e^{i\beta L} - e^{-i\beta L}) \Rightarrow \det(Z) = 2i e^{\alpha L} \sin(\beta L). \]

Since \(\det(Z) = 0 \) iff \(\beta L = n\pi \), with \(n \) integer,

1. If \(\beta L \neq n\pi \), then BVP has a unique solution.
2. If \(\beta L = n\pi \) then BVP either has no solutions or it has infinitely many solutions. \(\square \)
Example
Find \(y \) solution of the BVP

\[
y'' + y = 0, \quad y(0) = 1, \quad y(\pi) = -1.
\]
Existence, uniqueness of solutions to BVP.

Example
Find \(y \) solution of the BVP

\[
y'' + y = 0, \quad y(0) = 1, \quad y(\pi) = -1.
\]

Solution: The characteristic polynomial is

\[
p(r) = r^2 + 1
\]
Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$y'' + y = 0, \quad y(0) = 1, \quad y(\pi) = -1.$$

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.$$
Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP

$$y'' + y = 0, \quad y(0) = 1, \quad y(\pi) = -1.$$

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.$$

The general solution is

$$y(x) = c_1 \cos(x) + c_2 \sin(x).$$
Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$y'' + y = 0, \quad y(0) = 1, \quad y(\pi) = -1.$$

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.$$

The general solution is

$$y(x) = c_1 \cos(x) + c_2 \sin(x).$$

The boundary conditions are

$$1 = y(0) = c_1,$$
Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$y'' + y = 0, \quad y(0) = 1, \quad y(\pi) = -1.$$

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.$$

The general solution is

$$y(x) = c_1 \cos(x) + c_2 \sin(x).$$

The boundary conditions are

$$1 = y(0) = c_1, \quad -1 = y(\pi) = -c_1.$$
Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP

$$y'' + y = 0, \quad y(0) = 1, \quad y(\pi) = -1.$$

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.$$

The general solution is

$$y(x) = c_1 \cos(x) + c_2 \sin(x).$$

The boundary conditions are

$$1 = y(0) = c_1, \quad -1 = y(\pi) = -c_1 \quad \Rightarrow \quad c_1 = 1, \quad c_2 \text{ free.}$$
Existence, uniqueness of solutions to BVP.

Example
Find \(y \) solution of the BVP

\[
y'' + y = 0, \quad y(0) = 1, \quad y(\pi) = -1.
\]

Solution: The characteristic polynomial is

\[
p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.
\]

The general solution is

\[
y(x) = c_1 \cos(x) + c_2 \sin(x).
\]

The boundary conditions are

\[
1 = y(0) = c_1, \quad -1 = y(\pi) = -c_1 \quad \Rightarrow \quad c_1 = 1, \quad c_2 \text{ free.}
\]

We conclude: \(y(x) = \cos(x) + c_2 \sin(x) \), with \(c_2 \in \mathbb{R} \).
Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$y'' + y = 0, \quad y(0) = 1, \quad y(\pi) = -1.$$

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_\pm = \pm i.$$

The general solution is

$$y(x) = c_1 \cos(x) + c_2 \sin(x).$$

The boundary conditions are

$$1 = y(0) = c_1, \quad -1 = y(\pi) = -c_1 \quad \Rightarrow \quad c_1 = 1, \quad c_2 \text{ free}.$$

We conclude: $y(x) = \cos(x) + c_2 \sin(x)$, with $c_2 \in \mathbb{R}$.

The BVP has infinitely many solutions. \hspace{1cm} \triangleleft
Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP

$$y'' + y = 0, \quad y(0) = 1, \quad y(\pi) = 0.$$
Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP

$$y'' + y = 0, \quad y(0) = 1, \quad y(\pi) = 0.$$

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1$$
Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP

$$y'' + y = 0, \quad y(0) = 1, \quad y(\pi) = 0.$$

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_\pm = \pm i.$$
Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP
\[y'' + y = 0, \quad y(0) = 1, \quad y(\pi) = 0. \]

Solution: The characteristic polynomial is
\[p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i. \]

The general solution is
\[y(x) = c_1 \cos(x) + c_2 \sin(x). \]
Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP
\[y'' + y = 0, \quad y(0) = 1, \quad y(\pi) = 0. \]

Solution: The characteristic polynomial is
\[p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i. \]

The general solution is
\[y(x) = c_1 \cos(x) + c_2 \sin(x). \]

The boundary conditions are
\[1 = y(0) = c_1, \]
Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP

$$y'' + y = 0, \quad y(0) = 1, \quad y(\pi) = 0.$$

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \implies r_\pm = \pm i.$$

The general solution is

$$y(x) = c_1 \cos(x) + c_2 \sin(x).$$

The boundary conditions are

$$1 = y(0) = c_1, \quad 0 = y(\pi) = -c_1.$$
Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP

$$y'' + y = 0, \quad y(0) = 1, \quad y(\pi) = 0.$$

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.$$

The general solution is

$$y(x) = c_1 \cos(x) + c_2 \sin(x).$$

The boundary conditions are

$$1 = y(0) = c_1, \quad 0 = y(\pi) = -c_1$$

The BVP has no solution. \[\triangle\]
Existence, uniqueness of solutions to BVP.

Example
Find \(y \) solution of the BVP
\[
y'' + y = 0, \quad y(0) = 1, \quad y(\pi/2) = 1.
\]

Solution:
The characteristic polynomial is
\[
p(r) = r^2 + 1 \Rightarrow r = \pm i.
\]
The general solution is
\[
y(x) = c_1 \cos(x) + c_2 \sin(x).
\]
The boundary conditions are
\[
1 = y(0) = c_1,
\]
\[
1 = y(\pi/2) = c_2 \Rightarrow c_1 = c_2 = 1.
\]
We conclude:
\[
y(x) = \cos(x) + \sin(x).
\]
The BVP has a unique solution.
Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP

$$y'' + y = 0, \quad y(0) = 1, \quad y(\pi/2) = 1.$$

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1$$
Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP

$$y'' + y = 0, \quad y(0) = 1, \quad y(\pi/2) = 1.$$

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.$$
Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP

$$y'' + y = 0, \quad y(0) = 1, \quad y(\pi/2) = 1.$$

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.$$

The general solution is

$$y(x) = c_1 \cos(x) + c_2 \sin(x).$$
Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP

$$y'' + y = 0, \quad y(0) = 1, \quad y(\pi/2) = 1.$$

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_\pm = \pm i.$$

The general solution is

$$y(x) = c_1 \cos(x) + c_2 \sin(x).$$

The boundary conditions are

$$1 = y(0) = c_1,$$
Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP

$$y'' + y = 0, \quad y(0) = 1, \quad y(\pi/2) = 1.$$

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.$$

The general solution is

$$y(x) = c_1 \cos(x) + c_2 \sin(x).$$

The boundary conditions are

$$1 = y(0) = c_1, \quad 1 = y(\pi/2) = c_2$$
Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP

$$y'' + y = 0, \quad y(0) = 1, \quad y(\pi/2) = 1.$$

Solution:
The characteristic polynomial is

$$p(r) = r^2 + 1 \implies r_{\pm} = \pm i.$$

The general solution is

$$y(x) = c_1 \cos(x) + c_2 \sin(x).$$

The boundary conditions are

$$1 = y(0) = c_1, \quad 1 = y(\pi/2) = c_2 \implies c_1 = c_2 = 1.$$
Example

Find \(y \) solution of the BVP

\[
y'' + y = 0, \quad y(0) = 1, \quad y(\pi/2) = 1.
\]

Solution: The characteristic polynomial is

\[
p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.
\]

The general solution is

\[
y(x) = c_1 \cos(x) + c_2 \sin(x).
\]

The boundary conditions are

\[
1 = y(0) = c_1, \quad 1 = y(\pi/2) = c_2 \quad \Rightarrow \quad c_1 = c_2 = 1.
\]

We conclude: \(y(x) = \cos(x) + \sin(x) \).
Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP
\[y'' + y = 0, \quad y(0) = 1, \quad y(\pi/2) = 1. \]

Solution: The characteristic polynomial is
\[p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i. \]

The general solution is
\[y(x) = c_1 \cos(x) + c_2 \sin(x). \]

The boundary conditions are
\[1 = y(0) = c_1, \quad 1 = y(\pi/2) = c_2 \quad \Rightarrow \quad c_1 = c_2 = 1. \]

We conclude: $y(x) = \cos(x) + \sin(x)$.

The BVP has a unique solution.
Boundary Value Problems (Sect. 10.1).

- Two-point BVP.
- Example from physics.
- Comparison: IVP vs BVP.
- Existence, uniqueness of solutions to BVP.
- Particular case of BVP: Eigenvalue-eigenfunction problem.
Particular case of BVP: Eigenvalue-eigenfunction problem.

Problem:
Find a number λ and a non-zero function y solutions to the boundary value problem

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Problem:
Find a number λ and a non-zero function y solutions to the boundary value problem

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Remark: This problem is similar to the eigenvalue-eigenvector problem in Linear Algebra:
Particular case of BVP: Eigenvalue-eigenfunction problem.

Problem:
Find a number λ and a non-zero function y solutions to the boundary value problem

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Remark: This problem is similar to the eigenvalue-eigenvector problem in Linear Algebra: Given an $n \times n$ matrix A, find λ and a non-zero n-vector v solutions of

$$Av - \lambda v = 0.$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Problem:
Find a number λ and a non-zero function y solutions to the boundary value problem

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Remark: This problem is similar to the eigenvalue-eigenvector problem in Linear Algebra: Given an $n \times n$ matrix A, find λ and a non-zero n-vector v solutions of

$$Av - \lambda v = 0.$$

Differences:

$\rightarrow A \rightarrow \begin{cases} \text{computing a second derivative and} \\ \text{applying the boundary conditions.} \end{cases}$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Problem:
Find a number λ and a non-zero function y solutions to the boundary value problem

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Remark: This problem is similar to the eigenvalue-eigenvector problem in Linear Algebra: Given an $n \times n$ matrix A, find λ and a non-zero n-vector v solutions of

$$Av - \lambda v = 0.$$

Differences:

▶ $A \rightarrow \left\{ \begin{array}{l} \text{computing a second derivative and} \\ \text{applying the boundary conditions.} \end{array} \right\}$

▶ $v \rightarrow \{ \text{a function } y \}$.
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Remarks: We will show that:

(1) If $\lambda \leq 0$, then the BVP has no solution.

(2) If $\lambda > 0$, then there exist infinitely many eigenvalues λ_n and eigenfunctions y_n, with n any positive integer, given by

$$\lambda_n = \left(\frac{n\pi}{L}\right)^2, \quad y_n(x) = \sin\left(\frac{n\pi}{L}x\right),$$

(3) Analogous results can be proven for the same equation but with different types of boundary conditions. For example, for $y(0) = 0$, $y'(L) = 0$; or for $y'(0) = 0$, $y'(L) = 0$.
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Remarks: We will show that:

(1) If $\lambda \leq 0$, then the BVP has no solution.
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Remarks: We will show that:

1. If $\lambda \leq 0$, then the BVP has no solution.
2. If $\lambda > 0$, then there exist infinitely many eigenvalues λ_n and eigenfunctions y_n, with n any positive integer,
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Remarks: We will show that:

1. If $\lambda \leq 0$, then the BVP has no solution.
2. If $\lambda > 0$, then there exist infinitely many eigenvalues λ_n and eigenfunctions y_n, with n any positive integer, given by

$$\lambda_n = \left(\frac{n\pi}{L}\right)^2, \quad y_n(x) = \sin\left(\frac{n\pi x}{L}\right),$$

Analogous results can be proven for the same equation but with different types of boundary conditions. For example, for $y(0) = 0, \quad y'(L) = 0$; or for $y'(0) = 0, \quad y'(L) = 0$.
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Remarks: We will show that:
(1) If $\lambda \leq 0$, then the BVP has no solution.
(2) If $\lambda > 0$, then there exist infinitely many eigenvalues λ_n and eigenfunctions y_n, with n any positive integer, given by

$$\lambda_n = \left(\frac{n\pi}{L}\right)^2, \quad y_n(x) = \sin\left(\frac{n\pi x}{L}\right),$$

(3) Analogous results can be proven for the same equation but with different types of boundary conditions.
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every \(\lambda \in \mathbb{R} \) and non-zero functions \(y \) solutions of the BVP

\[
 y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.
\]

Remarks: We will show that:

(1) If \(\lambda \leq 0 \), then the BVP has no solution.

(2) If \(\lambda > 0 \), then there exist infinitely many eigenvalues \(\lambda_n \) and eigenfunctions \(y_n \), with \(n \) any positive integer, given by

\[
 \lambda_n = \left(\frac{n\pi}{L} \right)^2, \quad y_n(x) = \sin\left(\frac{n\pi x}{L} \right),
\]

(3) Analogous results can be proven for the same equation but with different types of boundary conditions. For example, for \(y(0) = 0, \quad y'(L) = 0 \);
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Remarks: We will show that:

(1) If $\lambda \leq 0$, then the BVP has no solution.

(2) If $\lambda > 0$, then there exist infinitely many eigenvalues λ_n and eigenfunctions y_n, with n any positive integer, given by

$$\lambda_n = \left(\frac{n\pi}{L}\right)^2, \quad y_n(x) = \sin\left(\frac{n\pi x}{L}\right),$$

(3) Analogous results can be proven for the same equation but with different types of boundary conditions. For example, for $y(0) = 0, \ y'(L) = 0$; or for $y'(0) = 0, \ y'(L) = 0$.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$
Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda = 0$.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda = 0$. The equation is

$$y'' = 0$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda = 0$. The equation is

$$y'' = 0 \quad \Rightarrow \quad y(x) = c_1 + c_2 x.$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda = 0$. The equation is

$$y'' = 0 \quad \Rightarrow \quad y(x) = c_1 + c_2 x.$$

The boundary conditions imply

$$0 = y(0)$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda = 0$. The equation is

$$y'' = 0 \quad \Rightarrow \quad y(x) = c_1 + c_2 x.$$

The boundary conditions imply

$$0 = y(0) = c_1,$$
Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda = 0$. The equation is

$$y'' = 0 \quad \Rightarrow \quad y(x) = c_1 + c_2 x.$$

The boundary conditions imply

$$0 = y(0) = c_1, \quad 0 = c_1 + c_2 L$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda = 0$. The equation is

$$y'' = 0 \quad \Rightarrow \quad y(x) = c_1 + c_2x.$$

The boundary conditions imply

$$0 = y(0) = c_1, \quad 0 = c_1 + c_2L \quad \Rightarrow \quad c_1 = c_2 = 0.$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda = 0$. The equation is

$$y'' = 0 \quad \Rightarrow \quad y(x) = c_1 + c_2x.$$

The boundary conditions imply

$$0 = y(0) = c_1, \quad 0 = c_1 + c_2L \quad \Rightarrow \quad c_1 = c_2 = 0.$$

Since $y = 0$, there are NO non-zero solutions for $\lambda = 0.$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda < 0$.
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda < 0$. Introduce the notation $\lambda = -\mu^2$.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda < 0$. Introduce the notation $\lambda = -\mu^2$. The characteristic equation is

$$p(r) = r^2 - \mu^2 = 0$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda < 0$. Introduce the notation $\lambda = -\mu^2$. The characteristic equation is

$$p(r) = r^2 - \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu.$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda < 0$. Introduce the notation $\lambda = -\mu^2$. The characteristic equation is

$$p(r) = r^2 - \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu.$$

The general solution is

$$y(x) = c_1 e^{\mu x} + c_2 e^{-\mu x}.$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda < 0$. Introduce the notation $\lambda = -\mu^2$. The characteristic equation is

$$p(r) = r^2 - \mu^2 = 0 \quad \Rightarrow \quad r_\pm = \pm \mu.$$

The general solution is

$$y(x) = c_1 e^{\mu x} + c_2 e^{-\mu x}.$$

The boundary condition are

$$0 = y(0)$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda < 0$. Introduce the notation $\lambda = -\mu^2$. The characteristic equation is

$$p(r) = r^2 - \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu.$$

The general solution is

$$y(x) = c_1 e^{\mu x} + c_2 e^{-\mu x}.$$

The boundary condition are

$$0 = y(0) = c_1 + c_2,$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda < 0$. Introduce the notation $\lambda = -\mu^2$. The characteristic equation is

$$p(r) = r^2 - \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu.$$

The general solution is

$$y(x) = c_1 e^{\mu x} + c_2 e^{-\mu x}.$$

The boundary condition are

$$0 = y(0) = c_1 + c_2,$$

$$0 = y(L) = c_1 e^{\mu L} + c_2 e^{-\mu L}.$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Recall: $y(x) = c_1 e^{\mu x} + c_2 e^{\mu x}$ and

$$c_1 + c_2 = 0, \quad c_1 e^{\mu L} + c_2 e^{-\mu L} = 0.$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Recall: $y(x) = c_1 e^{\mu x} + c_2 e^{\mu x}$ and

$$c_1 + c_2 = 0, \quad c_1 e^{\mu L} + c_2 e^{-\mu L} = 0.$$

We need to solve the linear system

$$
\begin{bmatrix}
1 & 1 \\
e^{\mu L} & e^{-\mu L}
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2
\end{bmatrix} =
\begin{bmatrix}
0 \\
0
\end{bmatrix}
$$

Since $\det(Z) = e^{-\mu L} - e^{\mu L} \neq 0$ for $L > 0$, matrix Z is invertible, so the linear system above has a unique solution $c_1 = 0$ and $c_2 = 0$. Since $y = 0$, there are NO non-zero solutions for $\lambda < 0$.
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Recall: $y(x) = c_1 e^{\mu x} + c_2 e^{\mu x}$ and

$$c_1 + c_2 = 0, \quad c_1 e^{\mu L} + c_2 e^{-\mu L} = 0.$$

We need to solve the linear system

$$
\begin{bmatrix}
1 & 1 \\
e^{\mu L} & e^{-\mu L}
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0
\end{bmatrix}
\iff
Z
\begin{bmatrix}
c_1 \\
c_2
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0
\end{bmatrix},
$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Recall: $y(x) = c_1 e^{\mu x} + c_2 e^{\mu x}$ and

$$c_1 + c_2 = 0, \quad c_1 e^{\mu L} + c_2 e^{-\mu L} = 0.$$

We need to solve the linear system

$$\begin{bmatrix} 1 & 1 \\ e^{\mu L} & e^{-\mu L} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \iff Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad Z = \begin{bmatrix} 1 & 1 \\ e^{\mu L} & e^{-\mu L} \end{bmatrix}$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Recall: $y(x) = c_1 e^{\mu x} + c_2 e^{\mu x}$ and

$$c_1 + c_2 = 0, \quad c_1 e^{\mu L} + c_2 e^{-\mu L} = 0.$$

We need to solve the linear system

$$\begin{bmatrix} 1 & 1 \\ \mu L & -\mu L \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \iff Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad Z = \begin{bmatrix} 1 & 1 \\ e^{\mu L} & e^{-\mu L} \end{bmatrix}$$

Since $\det(Z) = e^{-\mu L} - e^{\mu L} \neq 0$ for $L \neq 0$, matrix Z is invertible, so the linear system above has a unique solution $c_1 = 0$ and $c_2 = 0$.

Since $y = 0$, there are NO non-zero solutions for $\lambda < 0$.
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Recall: $y(x) = c_1 e^{\mu x} + c_2 e^{\mu x}$ and

$$c_1 + c_2 = 0, \quad c_1 e^{\mu L} + c_2 e^{-\mu L} = 0.$$

We need to solve the linear system

$$\begin{bmatrix} 1 & 1 \\ e^{\mu L} & e^{-\mu L} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \iff Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad Z = \begin{bmatrix} 1 & 1 \\ e^{\mu L} & e^{-\mu L} \end{bmatrix}$$

Since $\det(Z) = e^{-\mu L} - e^{\mu L} \neq 0$ for $L \neq 0$, matrix Z is invertible, so the linear system above has a unique solution $c_1 = 0$ and $c_2 = 0$.

Since $y = 0$, there are NO non-zero solutions for $\lambda < 0$.
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda > 0$.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda > 0$. Introduce the notation $\lambda = \mu^2$.
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every \(\lambda \in \mathbb{R} \) and non-zero functions \(y \) solutions of the BVP

\[
y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.
\]

Solution: Case \(\lambda > 0 \). Introduce the notation \(\lambda = \mu^2 \). The characteristic equation is

\[
p(r) = r^2 + \mu^2 = 0
\]
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda > 0$. Introduce the notation $\lambda = \mu^2$. The characteristic equation is

$$p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu i.$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda > 0$. Introduce the notation $\lambda = \mu^2$. The characteristic equation is

$$p(r) = r^2 + \mu^2 = 0 \implies r_{\pm} = \pm \mu i.$$

The general solution is

$$y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x).$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every \(\lambda \in \mathbb{R} \) and non-zero functions \(y \) solutions of the BVP

\[
y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.
\]

Solution: Case \(\lambda > 0 \). Introduce the notation \(\lambda = \mu^2 \). The characteristic equation is

\[
p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu i.
\]

The general solution is

\[
y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x).
\]

The boundary condition are

\[
0 = y(0)
\]
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda > 0$. Introduce the notation $\lambda = \mu^2$. The characteristic equation is

$$p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu i.$$

The general solution is

$$y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x).$$

The boundary condition are

$$0 = y(0) = c_1,$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda > 0$. Introduce the notation $\lambda = \mu^2$. The characteristic equation is

$$p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu i.$$

The general solution is

$$y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x).$$

The boundary condition are

$$0 = y(0) = c_1, \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x).$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda > 0$. Introduce the notation $\lambda = \mu^2$. The characteristic equation is

$$p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu i.$$

The general solution is

$$y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x).$$

The boundary condition are

$$0 = y(0) = c_1, \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x).$$

$$0 = y(L) = c_2 \sin(\mu L),$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda > 0$. Introduce the notation $\lambda = \mu^2$. The characteristic equation is

$$p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu i.$$

The general solution is

$$y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x).$$

The boundary condition are

$$0 = y(0) = c_1, \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x).$$

$$0 = y(L) = c_2 \sin(\mu L), \quad c_2 \neq 0$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Case $\lambda > 0$. Introduce the notation $\lambda = \mu^2$. The characteristic equation is

$$p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu i.$$

The general solution is

$$y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x).$$

The boundary condition are

$$0 = y(0) = c_1, \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x).$$

$$0 = y(L) = c_2 \sin(\mu L), \quad c_2 \neq 0 \quad \Rightarrow \quad \sin(\mu L) = 0.$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Recall: $c_1 = 0$, $c_2 \neq 0$, and $\sin(\mu L) = 0$.

\triangleright
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Recall: $c_1 = 0$, $c_2 \neq 0$, and $\sin(\mu L) = 0$.

The non-zero solution condition is the reason for $c_2 \neq 0$.

\therefore
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Recall: $c_1 = 0$, $c_2 \neq 0$, and $\sin(\mu L) = 0$.

The non-zero solution condition is the reason for $c_2 \neq 0$. Hence

$$\sin(\mu L) = 0.$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every \(\lambda \in \mathbb{R} \) and non-zero functions \(y \) solutions of the BVP
\[
y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.
\]

Solution: Recall: \(c_1 = 0, \ c_2 \neq 0 \), and \(\sin(\mu L) = 0 \).
The non-zero solution condition is the reason for \(c_2 \neq 0 \). Hence
\[
\sin(\mu L) = 0 \quad \Rightarrow \quad \mu_n L = n\pi
\]
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Recall: $c_1 = 0$, $c_2 \neq 0$, and $\sin(\mu L) = 0$.

The non-zero solution condition is the reason for $c_2 \neq 0$. Hence

$$\sin(\mu L) = 0 \quad \Rightarrow \quad \mu_n L = n\pi \quad \Rightarrow \quad \mu_n = \frac{n\pi}{L}.$$
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Recall: $c_1 = 0$, $c_2 \neq 0$, and $\sin(\mu L) = 0$.

The non-zero solution condition is the reason for $c_2 \neq 0$. Hence

$$\sin(\mu L) = 0 \quad \Rightarrow \quad \mu_n L = n\pi \quad \Rightarrow \quad \mu_n = \frac{n\pi}{L}.$$

Recalling that $\lambda_n = \mu_n^2$, and choosing $c_2 = 1$,

\begin{align*}
\end{align*}
Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0, \quad y(0) = 0, \quad y(L) = 0, \quad L > 0.$$

Solution: Recall: $c_1 = 0$, $c_2 \neq 0$, and $\sin(\mu L) = 0$.

The non-zero solution condition is the reason for $c_2 \neq 0$. Hence

$$\sin(\mu L) = 0 \quad \Rightarrow \quad \mu_n L = n\pi \quad \Rightarrow \quad \mu_n = \frac{n\pi}{L}.$$

Recalling that $\lambda_n = \mu_n^2$, and choosing $c_2 = 1$, we conclude

$$\lambda_n = \left(\frac{n\pi}{L}\right)^2, \quad y_n(x) = \sin\left(\frac{n\pi x}{L}\right).$$ \quad \triangleq
Overview of Fourier Series (Sect. 10.2).

- Origins of the Fourier Series.
- Periodic functions.
- Orthogonality of Sines and Cosines.
- Main result on Fourier Series.
Origins of the Fourier Series.

Summary:
Daniel Bernoulli (≈ 1750) found solutions to the equation that describes waves propagating on a vibrating string.
Origins of the Fourier Series.

Summary:
Daniel Bernoulli (∼ 1750) found solutions to the equation that describes waves propagating on a vibrating string.

\[\frac{\partial^2 u(t, x)}{\partial t^2} = v^2 \frac{\partial^2 u(t, x)}{\partial x^2}, \quad v \in \mathbb{R}, \quad x \in [0, L], \quad t \in [0, \infty) \]

with initial conditions,
\[u(0, x) = f(x), \quad \frac{\partial u(0, x)}{\partial t} = 0 \]

and boundary conditions,
\[u(t, 0) = 0, \quad u(t, L) = 0 \]
Origins of the Fourier Series.

Summary:
Daniel Bernoulli (∼ 1750) found solutions to the equation that describes waves propagating on a vibrating string.

The function u, measuring the vertical displacement of the string,
Origins of the Fourier Series.

Summary:
Daniel Bernoulli (∼ 1750) found solutions to the equation that describes waves propagating on a vibrating string.

The function u, measuring the vertical displacement of the string, is the solution to the wave equation,

$$\frac{\partial^2 u}{\partial t^2} - v^2 \frac{\partial^2 u}{\partial x^2} = 0, \quad v \in \mathbb{R}, \quad x \in [0, L], \quad t \in [0, \infty),$$

with initial conditions,
$$u(0, x) = f(x), \quad \frac{\partial u}{\partial t}(0, x) = 0,$$

and boundary conditions,
$$u(t, 0) = 0, \quad u(t, L) = 0.$$
Origins of the Fourier Series.

Summary:
Daniel Bernoulli (∼ 1750) found solutions to the equation that describes waves propagating on a vibrating string.

The function u, measuring the vertical displacement of the string, is the solution to the wave equation,

$$
\partial_t^2 u(t, x) = v^2 \partial_x^2 u(t, x), \quad v \in \mathbb{R}, \quad x \in [0, L], \quad t \in [0, \infty),
$$
Origins of the Fourier Series.

Summary:
Daniel Bernoulli (∼1750) found solutions to the equation that describes waves propagating on a vibrating string.

The function \(u \), measuring the vertical displacement of the string, is the solution to the wave equation,

\[
\frac{\partial^2 u(t, x)}{\partial t^2} = v^2 \frac{\partial^2 u(t, x)}{\partial x^2}, \quad v \in \mathbb{R}, \quad x \in [0, L], \quad t \in [0, \infty),
\]

with initial conditions,

\[
u(0, x) = f(x), \quad \partial_t u(0, x) = 0,
\]
Origins of the Fourier Series.

Summary:
Daniel Bernoulli (∼ 1750) found solutions to the equation that describes waves propagating on a vibrating string.

The function u, measuring the vertical displacement of the string, is the solution to the wave equation,

$$\partial_t^2 u(t, x) = v^2 \partial_x^2 u(t, x), \quad v \in \mathbb{R}, \quad x \in [0, L], \quad t \in [0, \infty),$$

with initial conditions,

$$u(0, x) = f(x), \quad \partial_t u(0, x) = 0,$$

and boundary conditions,

$$u(t, 0) = 0, \quad u(t, L) = 0.$$
Origins of the Fourier Series.

Summary:
Bernoulli found particular solutions to the wave equation.

Remark: The wave equation and its solutions provide a mathematical description of music.
Origins of the Fourier Series.

Summary:
Bernoulli found particular solutions to the wave equation.

If the initial condition is $f_n(x) = \sin\left(\frac{n\pi x}{L}\right)$,

Then the solution is $u_n(t, x) = \sin\left(\frac{n\pi x}{L}\right)\cos\left(\frac{vn\pi t}{L}\right)$.

Remark: The wave equation and its solutions provide a mathematical description of music.
Origins of the Fourier Series.

Summary:
Bernoulli found particular solutions to the wave equation.

If the initial condition is $f_n(x) = \sin\left(\frac{n\pi x}{L}\right)$,

then the solution is $u_n(t, x) = \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{v_n\pi t}{L}\right)$.

Remark: The wave equation and its solutions provide a mathematical description of music.
Origins of the Fourier Series.

Summary:
Bernoulli found particular solutions to the wave equation.

If the initial condition is \(f_n(x) = \sin\left(\frac{n\pi x}{L}\right) \),

then the solution is \(u_n(t, x) = \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{vn\pi t}{L}\right) \).

Bernoulli also realized that

\[
U_N(t, x) = \sum_{n=1}^{N} a_n \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{vn\pi t}{L}\right), \quad a_n \in \mathbb{R}
\]
Origins of the Fourier Series.

Summary:
Bernoulli found particular solutions to the wave equation.

If the initial condition is \(f_n(x) = \sin\left(\frac{n\pi x}{L}\right) \),
then the solution is \(u_n(t, x) = \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{vn\pi t}{L}\right) \).

Bernoulli also realized that
\[
U_N(t, x) = \sum_{n=1}^{N} a_n \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{vn\pi t}{L}\right), \quad a_n \in \mathbb{R}
\]
is also solution of the wave equation with initial condition
\[
F_N(x) = \sum_{n=1}^{N} a_n \sin\left(\frac{n\pi x}{L}\right).
\]

Remark:
The wave equation and its solutions provide a mathematical description of music.
Origins of the Fourier Series.

Summary:
Bernoulli found particular solutions to the wave equation.

If the initial condition is \(f_n(x) = \sin\left(\frac{n\pi x}{L}\right) \),
then the solution is \(u_n(t, x) = \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{vn\pi t}{L}\right) \).

Bernoulli also realized that

\[
U_N(t, x) = \sum_{n=1}^{N} a_n \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{vn\pi t}{L}\right), \quad a_n \in \mathbb{R}
\]

is also solution of the wave equation with initial condition

\[
F_N(x) = \sum_{n=1}^{N} a_n \sin\left(\frac{n\pi x}{L}\right).
\]

Remark: The wave equation and its solutions provide a mathematical description of music.
Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.
Origins of the Fourier Series.

Remarks:

▶ Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
▶ However, he did not prove that claim.
▶ A proof is: Given a function F with $F(0) = F(L) = 0$, but otherwise arbitrary, find N and the coefficients a_n such that F is approximated by an expansion F_N given in the previous slide.
Origins of the Fourier Series.

Remarks:
- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.
- A proof is: Given a function F with $F(0) = F(L) = 0$, but otherwise arbitrary, find N and the coefficients a_n such that F is approximated by an expansion F_N given in the previous slide.
- Joseph Fourier (~ 1800) provided such formula for the coefficients a_n, while studying a different problem:
Origins of the Fourier Series.

Remarks:

▶ Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
▶ However, he did not prove that claim.
▶ A proof is: Given a function F with $F(0) = F(L) = 0$, but otherwise arbitrary, find N and the coefficients a_n such that F is approximated by an expansion F_N given in the previous slide.
▶ Joseph Fourier (∼1800) provided such formula for the coefficients a_n, while studying a different problem: The heat transport in a solid material.
Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.
- A proof is: Given a function F with $F(0) = F(L) = 0$, but otherwise arbitrary, find N and the coefficients a_n such that F is approximated by an expansion F_N given in the previous slide.
- Joseph Fourier (\sim 1800) provided such formula for the coefficients a_n, while studying a different problem: The heat transport in a solid material.
- Find the temperature function u solution of the heat equation

$$
\partial_t u(t, x) = k \partial_x^2 u(t, x),
$$
Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.
- A proof is: Given a function F with $F(0) = F(L) = 0$, but otherwise arbitrary, find N and the coefficients a_n such that F is approximated by an expansion F_N given in the previous slide.
- Joseph Fourier (∼1800) provided such formula for the coefficients a_n, while studying a different problem: The heat transport in a solid material.
- Find the temperature function u solution of the heat equation

$$
\partial_t u(t,x) = k \partial_x^2 u(t,x), \quad k > 0,
$$
Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.
- A proof is: Given a function F with $F(0) = F(L) = 0$, but otherwise arbitrary, find N and the coefficients a_n such that F is approximated by an expansion F_N given in the previous slide.
- Joseph Fourier (~ 1800) provided such formula for the coefficients a_n, while studying a different problem: The heat transport in a solid material.
- Find the temperature function u solution of the heat equation

$$\partial_t u(t,x) = k \partial_x^2 u(t,x), \quad k > 0, \quad x \in [0, L],$$
Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.
- A proof is: Given a function F with $F(0) = F(L) = 0$, but otherwise arbitrary, find N and the coefficients a_n such that F is approximated by an expansion F_N given in the previous slide.
- Joseph Fourier (~1800) provided such formula for the coefficients a_n, while studying a different problem: The heat transport in a solid material.
- Find the temperature function u solution of the heat equation

$$\partial_t u(t, x) = k \partial_x^2 u(t, x), \quad k > 0, \quad x \in [0, L], \quad t \in [0, \infty),$$
Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.
- A proof is: Given a function F with $F(0) = F(L) = 0$, but otherwise arbitrary, find N and the coefficients a_n such that F is approximated by an expansion F_N given in the previous slide.
- Joseph Fourier (∼ 1800) provided such formula for the coefficients a_n, while studying a different problem: The heat transport in a solid material.
- Find the temperature function u solution of the heat equation

$$\partial_t u(t, x) = k \partial_x^2 u(t, x), \quad k > 0, \quad x \in [0, L], \quad t \in [0, \infty),$$

I.C. $u(0, x) = f(x)$,
Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.
- A proof is: Given a function F with $F(0) = F(L) = 0$, but otherwise arbitrary, find N and the coefficients a_n such that F is approximated by an expansion F_N given in the previous slide.
- Joseph Fourier (∼ 1800) provided such formula for the coefficients a_n, while studying a different problem: The heat transport in a solid material.
- Find the temperature function u solution of the heat equation

$$
\partial_t u(t, x) = k \partial_x^2 u(t, x), \quad k > 0, \quad x \in [0, L], \quad t \in [0, \infty),
$$

I.C. \quad $u(0, x) = f(x)$,

B.C. \quad $u(t, 0) = 0, \quad u(t, L) = 0$.
Origins of the Fourier Series.

Remarks:
Fourier found particular solutions to the heat equation.

If the initial condition is $f_n(x) = \sin(n\pi x L)$, then the solution is $u_n(t,x) = \sin(n\pi x L) e^{-k(n\pi L)^2 t}$.

Fourier also realized that $U_N(t,x) = \sum_{n=1}^{N} a_n \sin(n\pi x L) e^{-k(n\pi L)^2 t}$, $a_n \in \mathbb{R}$ is also solution of the heat equation with initial condition $F_N(x) = \sum_{n=1}^{N} a_n \sin(n\pi x L)$.

Remark: The heat equation and its solutions provide a mathematical description of heat transport in a solid material.
Origins of the Fourier Series.

Remarks:
Fourier found particular solutions to the heat equation.

If the initial condition is $$f_n(x) = \sin\left(\frac{n\pi x}{L}\right)$$,
Origins of the Fourier Series.

Remarks:
Fourier found particular solutions to the heat equation.

If the initial condition is \(f_n(x) = \sin\left(\frac{n\pi x}{L}\right) \),

then the solution is \(u_n(t, x) = \sin\left(\frac{n\pi x}{L}\right) e^{-k\left(\frac{n\pi}{L}\right)^2 t} \).
Remarks:
Fourier found particular solutions to the heat equation.

If the initial condition is \(f_n(x) = \sin\left(\frac{n\pi x}{L}\right) \),
then the solution is \(u_n(t, x) = \sin\left(\frac{n\pi x}{L}\right) e^{-k(\frac{n\pi}{L})^2 t} \).

Fourier also realized that

\[
U_N(t, x) = \sum_{n=1}^{N} a_n \sin\left(\frac{n\pi x}{L}\right) e^{-k(\frac{n\pi}{L})^2 t}, \quad a_n \in \mathbb{R}
\]
Origins of the Fourier Series.

Remarks:
Fourier found particular solutions to the heat equation.

If the initial condition is \(f_n(x) = \sin \left(\frac{n\pi x}{L} \right) \),
then the solution is \(u_n(t, x) = \sin \left(\frac{n\pi x}{L} \right) e^{-k \left(\frac{n\pi}{L} \right)^2 t} \).

Fourier also realized that
\[
U_N(t, x) = \sum_{n=1}^{N} a_n \sin \left(\frac{n\pi x}{L} \right) e^{-k \left(\frac{n\pi}{L} \right)^2 t}, \quad a_n \in \mathbb{R}
\]
is also solution of the heat equation with initial condition
\[
F_N(x) = \sum_{n=1}^{N} a_n \sin \left(\frac{n\pi x}{L} \right).
\]
Origins of the Fourier Series.

Remarks:
Fourier found particular solutions to the heat equation.

If the initial condition is \(f_n(x) = \sin\left(\frac{n\pi x}{L}\right) \),
then the solution is \(u_n(t, x) = \sin\left(\frac{n\pi x}{L}\right) e^{-k\left(\frac{n\pi}{L}\right)^2 t} \).

Fourier also realized that

\[
U_N(t, x) = \sum_{n=1}^{N} a_n \sin\left(\frac{n\pi x}{L}\right) e^{-k\left(\frac{n\pi}{L}\right)^2 t}, \quad a_n \in \mathbb{R}
\]

is also solution of the heat equation with initial condition

\[
F_N(x) = \sum_{n=1}^{N} a_n \sin\left(\frac{n\pi x}{L}\right).
\]

Remark: The heat equation and its solutions provide a mathematical description of heat transport in a solid material.
Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli.
Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_n in terms of the function F.

Given an initial data function F, satisfying $F(0) = F(L) = 0$, but otherwise arbitrary, Fourier proved that one can construct an expansion F_N as follows,

$$F_N(x) = \sum_{n=1}^{N} a_n \sin\left(\frac{n \pi x}{L}\right),$$

for N any positive integer, where the a_n are given by

$$a_n = \frac{2}{L} \int_{0}^{L} F(x) \sin\left(\frac{n \pi x}{L}\right) dx.$$

To find all solutions to the heat equation problem above one must prove one more thing: That F_N approximates F for large enough N. That is, $\lim_{N \to \infty} F_N = F$. Fourier didn't show this.
Origins of the Fourier Series.

Remarks:

▶ However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_n in terms of the function F.

▶ Given an initial data function F, satisfying $F(0) = F(L) = 0$, but otherwise arbitrary,
Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_n in terms of the function F.

- Given an initial data function F, satisfying $F(0) = F(L) = 0$, but otherwise arbitrary, Fourier proved that one can construct an expansion F_N.
Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_n in terms of the function F.
- Given an initial data function F, satisfying $F(0) = F(L) = 0$, but otherwise arbitrary, Fourier proved that one can construct an expansion F_N as follows,

\[F_N(x) = \sum_{n=1}^{N} a_n \sin\left(\frac{n\pi x}{L}\right), \]
Origins of the Fourier Series.

Remarks:

► However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_n in terms of the function F.

► Given an initial data function F, satisfying $F(0) = F(L) = 0$, but otherwise arbitrary, Fourier proved that one can construct an expansion F_N as follows,

$$F_N(x) = \sum_{n=1}^{N} a_n \sin\left(\frac{n\pi x}{L}\right),$$

for N any positive integer,
Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_n in terms of the function F.

- Given an initial data function F, satisfying $F(0) = F(L) = 0$, but otherwise arbitrary, Fourier proved that one can construct an expansion F_N as follows,

$$F_N(x) = \sum_{n=1}^{N} a_n \sin\left(\frac{n\pi x}{L}\right),$$

for N any positive integer, where the a_n are given by

$$a_n = \frac{2}{L} \int_{0}^{L} F(x) \sin\left(\frac{n\pi x}{L}\right) dx.$$
Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_n in terms of the function F.
- Given an initial data function F, satisfying $F(0) = F(L) = 0$, but otherwise arbitrary, Fourier proved that one can construct an expansion F_N as follows,

$$F_N(x) = \sum_{n=1}^{N} a_n \sin\left(\frac{n\pi x}{L}\right),$$

for N any positive integer, where the a_n are given by

$$a_n = \frac{2}{L} \int_{0}^{L} F(x) \sin\left(\frac{n\pi x}{L}\right) dx.$$

- To find all solutions to the heat equation problem above one must prove one more thing:
Origins of the Fourier Series.

Remarks:

▶ However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_n in terms of the function F.

▶ Given an initial data function F, satisfying $F(0) = F(L) = 0$, but otherwise arbitrary, Fourier proved that one can construct an expansion F_N as follows,

$$F_N(x) = \sum_{n=1}^{N} a_n \sin\left(\frac{n\pi x}{L}\right),$$

for N any positive integer, where the a_n are given by

$$a_n = \frac{2}{L} \int_{0}^{L} F(x) \sin\left(\frac{n\pi x}{L}\right) \, dx.$$

▶ To find all solutions to the heat equation problem above one must prove one more thing: That F_N approximates F for large enough N.
Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_n in terms of the function F.

- Given an initial data function F, satisfying $F(0) = F(L) = 0$, but otherwise arbitrary, Fourier proved that one can construct an expansion F_N as follows,

$$F_N(x) = \sum_{n=1}^{N} a_n \sin\left(\frac{n\pi x}{L}\right),$$

for N any positive integer, where the a_n are given by

$$a_n = \frac{2}{L} \int_{0}^{L} F(x) \sin\left(\frac{n\pi x}{L}\right) \, dx.$$

- To find all solutions to the heat equation problem above one must prove one more thing: That F_N approximates F for large enough N. That is, $\lim_{N \to \infty} F_N = F$.
Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_n in terms of the function F.

- Given an initial data function F, satisfying $F(0) = F(L) = 0$, but otherwise arbitrary, Fourier proved that one can construct an expansion F_N as follows,

 $$F_N(x) = \sum_{n=1}^{N} a_n \sin\left(\frac{n\pi x}{L}\right),$$

 for N any positive integer, where the a_n are given by

 $$a_n = \frac{2}{L} \int_{0}^{L} F(x) \sin\left(\frac{n\pi x}{L}\right) dx.$$

- To find all solutions to the heat equation problem above one must prove one more thing: That F_N approximates F for large enough N. That is, $\lim_{N \to \infty} F_N = F$. Fourier didn’t show this.
Remarks:

- Based on Bernoulli and Fourier works, people have been able to prove that.

\[
F(x) = a_0 + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{2n\pi x}{\tau}\right) + b_n \sin\left(\frac{2n\pi x}{\tau}\right) \right],
\]

satisfies

\[
\lim_{N \to \infty} F_N(x) = F(x)
\]

for every \(x \in \mathbb{R}\).
Origins of the Fourier Series.

Remarks:
- Based on Bernoulli and Fourier works, people have been able to prove that. Every continuous, τ-periodic function can be expressed as an infinite linear combination of sine and cosine functions.
Origins of the Fourier Series.

Remarks:

▶ Based on Bernoulli and Fourier works, people have been able to prove that. Every continuous, τ-periodic function can be expressed as an infinite linear combination of sine and cosine functions.

▶ More precisely: Every continuous, τ-periodic function F, there exist constants a_0, a_n, b_n, for $n = 1, 2, \cdots$ such that

$$F_N(x) = \frac{a_0}{2} + \sum_{n=1}^{N} \left[a_n \cos\left(\frac{2n\pi x}{\tau}\right) + b_n \sin\left(\frac{2n\pi x}{\tau}\right) \right],$$

satisfies $\lim_{N \to \infty} F_N(x) = F(x)$ for every $x \in \mathbb{R}$.
Origins of the Fourier Series.

Remarks:

- Based on Bernoulli and Fourier works, people have been able to prove that. Every continuous, \(\tau \)-periodic function can be expressed as an infinite linear combination of sine and cosine functions.

- More precisely: Every continuous, \(\tau \)-periodic function \(F \), there exist constants \(a_0, a_n, b_n \), for \(n = 1, 2, \cdots \) such that

\[
F_N(x) = \frac{a_0}{2} + \sum_{n=1}^{N} \left[a_n \cos \left(\frac{2n\pi x}{\tau} \right) + b_n \sin \left(\frac{2n\pi x}{\tau} \right) \right],
\]

satisfies \(\lim_{N \to \infty} F_N(x) = F(x) \) for every \(x \in \mathbb{R} \).

Notation: \(F(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos \left(\frac{2n\pi x}{\tau} \right) + b_n \sin \left(\frac{2n\pi x}{\tau} \right) \right] \).
The main problem in our class:
Given a continuous, τ-periodic function f, find the formulas for a_n and b_n such that

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{2n\pi x}{\tau}\right) + b_n \sin\left(\frac{2n\pi x}{\tau}\right) \right].$$
The main problem in our class:
Given a continuous, τ-periodic function f, find the formulas for a_n and b_n such that

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{2n\pi x}{\tau}\right) + b_n \sin\left(\frac{2n\pi x}{\tau}\right) \right].$$

Remarks: We need to review two main concepts:
Origins of the Fourier Series.

The main problem in our class:
Given a continuous, τ-periodic function f, find the formulas for a_n and b_n such that

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{2n\pi x}{\tau}\right) + b_n \sin\left(\frac{2n\pi x}{\tau}\right) \right].$$

Remarks: We need to review two main concepts:
- The notion of periodic functions.
Origins of the Fourier Series.

The main problem in our class:
Given a continuous, τ-periodic function f, find the formulas for a_n and b_n such that

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos \left(\frac{2n\pi x}{\tau} \right) + b_n \sin \left(\frac{2n\pi x}{\tau} \right) \right].$$

Remarks: We need to review two main concepts:

- The notion of periodic functions.
- The notion of orthogonal functions, in particular the orthogonality of Sines and Cosines.
Fourier Series (Sect. 10.2).

- Origins of the Fourier Series.
- **Periodic functions.**
- Orthogonality of Sines and Cosines.
- Main result on Fourier Series.
Periodic functions.

Definition
A function $f : \mathbb{R} \to \mathbb{R}$ is called *periodic* iff there exists $\tau > 0$ such that for all $x \in \mathbb{R}$ holds

$$f(x + \tau) = f(x).$$
Periodic functions.

Definition
A function $f : \mathbb{R} \to \mathbb{R}$ is called periodic iff there exists $\tau > 0$ such that for all $x \in \mathbb{R}$ holds

$$f(x + \tau) = f(x).$$

Remark: f is invariant under translations by τ.
Periodic functions.

Definition
A function \(f : \mathbb{R} \to \mathbb{R} \) is called \textit{periodic} iff there exists \(\tau > 0 \) such that for all \(x \in \mathbb{R} \) holds

\[
f(x + \tau) = f(x).
\]

Remark: \(f \) is invariant under translations by \(\tau \).

Definition
A \textit{period} \(T \) of a periodic function \(f \) is the smallest value of \(\tau \) such that \(f(x + \tau) = f(x) \) holds.
Periodic functions.

Definition
A function $f : \mathbb{R} \to \mathbb{R}$ is called *periodic* iff there exists $\tau > 0$ such that for all $x \in \mathbb{R}$ holds

$$f(x + \tau) = f(x).$$

Remark: f is invariant under translations by τ.

Definition
A *period* T of a periodic function f is the smallest value of τ such that $f(x + \tau) = f(x)$ holds.

Notation:
A periodic function with period T is also called T-periodic.
Periodic functions.

Example

The following functions are periodic, with period T,

\[
\begin{align*}
 f(x) &= \sin(x), & T &= 2\pi. \\
 f(x) &= \cos(x), & T &= 2\pi. \\
 f(x) &= \tan(x), & T &= \pi. \\
 f(x) &= \sin(ax), & T &= \frac{2\pi}{a}.
\end{align*}
\]
Periodic functions.

Example

The following functions are periodic, with period \(T \),

\[f(x) = \sin(x), \quad T = 2\pi. \]
\[f(x) = \cos(x), \quad T = 2\pi. \]
\[f(x) = \tan(x), \quad T = \pi. \]
\[f(x) = \sin(ax), \quad T = \frac{2\pi}{a}. \]

The proof of the latter statement is the following:
Periodic functions.

Example

The following functions are periodic, with period \(T \),

\[
\begin{align*}
 f(x) &= \sin(x), & T &= 2\pi. \\
 f(x) &= \cos(x), & T &= 2\pi. \\
 f(x) &= \tan(x), & T &= \pi. \\
 f(x) &= \sin(ax), & T &= \frac{2\pi}{a}.
\end{align*}
\]

The proof of the latter statement is the following:

\[
f\left(x + \frac{2\pi}{a}\right)
\]
Periodic functions.

Example

The following functions are periodic, with period T,

$$f(x) = \sin(x), \quad T = 2\pi.$$
$$f(x) = \cos(x), \quad T = 2\pi.$$
$$f(x) = \tan(x), \quad T = \pi.$$
$$f(x) = \sin(ax), \quad T = \frac{2\pi}{a}.$$

The proof of the latter statement is the following:

$$f\left(x + \frac{2\pi}{a}\right) = \sin\left(ax + a\frac{2\pi}{a}\right)$$
Periodic functions.

Example

The following functions are periodic, with period T,

\[f(x) = \sin(x), \quad T = 2\pi. \]
\[f(x) = \cos(x), \quad T = 2\pi. \]
\[f(x) = \tan(x), \quad T = \pi. \]
\[f(x) = \sin(ax), \quad T = \frac{2\pi}{a}. \]

The proof of the latter statement is the following:

\[f\left(x + \frac{2\pi}{a}\right) = \sin\left(ax + a \frac{2\pi}{a}\right) = \sin(ax + 2\pi) \]
Periodic functions.

Example
The following functions are periodic, with period T,

- $f(x) = \sin(x), \quad T = 2\pi.$
- $f(x) = \cos(x), \quad T = 2\pi.$
- $f(x) = \tan(x), \quad T = \pi.$
- $f(x) = \sin(ax), \quad T = \frac{2\pi}{a}.$

The proof of the latter statement is the following:

$$f \left(x + \frac{2\pi}{a} \right) = \sin \left(ax + a \frac{2\pi}{a} \right) = \sin(ax + 2\pi) = \sin(ax)$$
Periodic functions.

Example
The following functions are periodic, with period T,

\[f(x) = \sin(x), \quad T = 2\pi. \]
\[f(x) = \cos(x), \quad T = 2\pi. \]
\[f(x) = \tan(x), \quad T = \pi. \]
\[f(x) = \sin(ax), \quad T = \frac{2\pi}{a}. \]

The proof of the latter statement is the following:

\[
\begin{align*}
 f\left(x + \frac{2\pi}{a}\right) &= \sin\left(ax + a\frac{2\pi}{a}\right) \\
 &= \sin(ax + 2\pi) \\
 &= \sin(ax) \\
 &= f(x).
\end{align*}
\]
Periodic functions.

Example
Show that the function below is periodic, and find its period,

\[f(x) = e^x, \quad x \in [0, 2), \quad f(x - 2) = f(x). \]
Periodic functions.

Example
Show that the function below is periodic, and find its period,

\[f(x) = e^x, \quad x \in [0, 2), \quad f(x - 2) = f(x). \]

Solution: We just graph the function,
Periodic functions.

Example
Show that the function below is periodic, and find its period,

\[f(x) = e^x, \quad x \in [0, 2), \quad f(x - 2) = f(x). \]

Solution: We just graph the function,

So the function is periodic with period \(T = 2 \).
Periodic functions.

Theorem

A linear combination of T-periodic functions is also T-periodic.

Example

$f(x) = 2 \sin(3x) + 7 \cos(3x)$ is periodic with period $T = \frac{2\pi}{3}$.

Remark:

The functions below are periodic with period $T = \tau n$,

$f(x) = \cos(2\pi nx \tau)$,

$g(x) = \sin(2\pi nx \tau)$,

Since f and g are invariant under translations by τ/n, they are also invariant under translations by τ.
Periodic functions.

Theorem

A linear combination of T-periodic functions is also T-periodic.

Proof: If $f(x + T) = f(x)$ and $g(x + T) = g(x)$, then

$$af(x + T) + bg(x + T) = af(x) + bg(x),$$

so $(af + bg)$ is also T-periodic. \hfill \square
Theorem
A linear combination of T-periodic functions is also T-periodic.

Proof: If $f(x + T) = f(x)$ and $g(x + T) = g(x)$, then

$$af(x + T) + bg(x + T) = af(x) + bg(x),$$

so $(af + bg)$ is also T-periodic.

Example
$f(x) = 2\sin(3x) + 7\cos(3x)$ is periodic with period $T = 2\pi/3$. \(\triangle\)
Periodic functions.

Theorem
A linear combination of T-periodic functions is also T-periodic.

Proof: If $f(x + T) = f(x)$ and $g(x + T) = g(x)$, then

$$af(x + T) + bg(x + T) = af(x) + bg(x),$$

so $(af + bg)$ is also T-periodic. \qed

Example
$f(x) = 2 \sin(3x) + 7 \cos(3x)$ is periodic with period $T = 2\pi/3$. \triangleleft

Remark: The functions below are periodic with period $T = \frac{\tau}{n}$,

$$f(x) = \cos\left(\frac{2\pi nx}{\tau}\right), \quad g(x) = \sin\left(\frac{2\pi nx}{\tau}\right),$$
Periodic functions.

Theorem
A linear combination of T-periodic functions is also T-periodic.

Proof: If $f(x + T) = f(x)$ and $g(x + T) = g(x)$, then

$$af(x + T) + bg(x + T) = af(x) + bg(x),$$

so $(af + bg)$ is also T-periodic. \(\square\)

Example
$f(x) = 2 \sin(3x) + 7 \cos(3x)$ is periodic with period $T = 2\pi/3$. \(\triangleleft\)

Remark: The functions below are periodic with period $T = \frac{\tau}{n}$,

$$f(x) = \cos\left(\frac{2\pi nx}{\tau}\right), \quad g(x) = \sin\left(\frac{2\pi nx}{\tau}\right),$$

Since f and g are invariant under translations by τ/n, they are also invariant under translations by τ.\(\triangleleft\)
Periodic functions.

Corollary

Any function \(f \) given by

\[
f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{2n\pi x}{\tau}\right) + b_n \sin\left(\frac{2n\pi x}{\tau}\right) \right]
\]

is periodic with period \(\tau \).
Periodic functions.

Corollary

Any function f given by

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{2n\pi x}{\tau}\right) + b_n \sin\left(\frac{2n\pi x}{\tau}\right) \right]$$

is periodic with period τ.

Remark: We will show that the converse statement is true.
Periodic functions.

Corollary

Any function f given by

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{2n\pi x}{\tau}\right) + b_n \sin\left(\frac{2n\pi x}{\tau}\right) \right]$$

is periodic with period τ.

Remark: We will show that the converse statement is true.

Theorem

A function f is τ-periodic iff holds

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{2n\pi x}{\tau}\right) + b_n \sin\left(\frac{2n\pi x}{\tau}\right) \right].$$
Fourier Series (Sect. 10.2).

- Origins of the Fourier Series.
- Periodic functions.
- **Orthogonality of Sines and Cosines.**
- Main result on Fourier Series.
Orthogonality of Sines and Cosines.

Remark:
From now on we work on the following domain: \([-L, L]\).
Orthogonality of Sines and Cosines.

Remark:
From now on we work on the following domain: \([-L, L]\).
Orthogonality of Sines and Cosines.

Theorem (Orthogonality)

The following relations hold for all \(n, m \in \mathbb{N} \),

\[
\int_{-L}^{L} \cos\left(\frac{n\pi x}{L} \right) \cos\left(\frac{m\pi x}{L} \right) \, dx = \left\{ \begin{array}{ll}
0 & n \neq m, \\
L & n = m \neq 0, \\
2L & n = m = 0,
\end{array} \right.
\]

\[
\int_{-L}^{L} \sin\left(\frac{n\pi x}{L} \right) \sin\left(\frac{m\pi x}{L} \right) \, dx = \left\{ \begin{array}{ll}
0 & n \neq m, \\
L & n = m,
\end{array} \right.
\]

\[
\int_{-L}^{L} \cos\left(\frac{n\pi x}{L} \right) \sin\left(\frac{m\pi x}{L} \right) \, dx = 0.
\]

Remark:

The operation \(f \cdot g = \int_{-L}^{L} f(x) g(x) \, dx \) is an inner product in the vector space of functions. Like the dot product in \(\mathbb{R}^2 \).

Two functions \(f, g \), are orthogonal iff \(f \cdot g = 0 \).
Orthogonality of Sines and Cosines.

Theorem (Orthogonality)

The following relations hold for all \(n, m \in \mathbb{N} \),

\[
\begin{align*}
\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) \, dx &= \begin{cases}
0 & n \neq m, \\
L & n = m \neq 0, \\
2L & n = m = 0,
\end{cases} \\
\int_{-L}^{L} \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) \, dx &= \begin{cases}
0 & n \neq m, \\
L & n = m,
\end{cases} \\
\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) \, dx &= 0.
\end{align*}
\]

Remark:

- The operation \(f \cdot g = \int_{-L}^{L} f(x) g(x) \, dx \) is an inner product in the vector space of functions.
Orthogonality of Sines and Cosines.

Theorem (Orthogonality)

The following relations hold for all $n, m \in \mathbb{N}$,

$$\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) \, dx = \begin{cases} 0 & n \neq m, \\ L & n = m \neq 0, \\ 2L & n = m = 0, \end{cases}$$

$$\int_{-L}^{L} \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) \, dx = \begin{cases} 0 & n \neq m, \\ L & n = m, \end{cases}$$

$$\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) \, dx = 0.$$

Remark:

- The operation $f \cdot g = \int_{-L}^{L} f(x) g(x) \, dx$ is an inner product in the vector space of functions. Like the dot product is in \mathbb{R}^2.
Orthogonality of Sines and Cosines.

Theorem (Orthogonality)

The following relations hold for all $n, m \in \mathbb{N}$,

\[
\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) \, dx = \begin{cases}
0 & n \neq m, \\
L & n = m \neq 0, \\
2L & n = m = 0,
\end{cases}
\]

\[
\int_{-L}^{L} \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) \, dx = \begin{cases}
0 & n \neq m, \\
L & n = m,
\end{cases}
\]

\[
\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) \, dx = 0.
\]

Remark:

- The operation $f \cdot g = \int_{-L}^{L} f(x) g(x) \, dx$ is an inner product in the vector space of functions. Like the dot product is in \mathbb{R}^2.
- Two functions f, g, are orthogonal iff $f \cdot g = 0$.
Orthogonality of Sines and Cosines.

Recall: \[\cos(\theta) \cos(\phi) = \frac{1}{2} \left[\cos(\theta + \phi) + \cos(\theta - \phi) \right]; \]
\[\sin(\theta) \sin(\phi) = \frac{1}{2} \left[\cos(\theta - \phi) - \cos(\theta + \phi) \right]; \]
\[\sin(\theta) \cos(\phi) = \frac{1}{2} \left[\sin(\theta + \phi) + \sin(\theta - \phi) \right]. \]
Orthogonality of Sines and Cosines.

Recall:
\[
\cos(\theta) \cos(\phi) = \frac{1}{2} \left[\cos(\theta + \phi) + \cos(\theta - \phi) \right];
\]
\[
\sin(\theta) \sin(\phi) = \frac{1}{2} \left[\cos(\theta - \phi) - \cos(\theta + \phi) \right];
\]
\[
\sin(\theta) \cos(\phi) = \frac{1}{2} \left[\sin(\theta + \phi) + \sin(\theta - \phi) \right].
\]

Proof: First formula:
Orthogonality of Sines and Cosines.

Recall: \[\cos(\theta) \cos(\phi) = \frac{1}{2} \left[\cos(\theta + \phi) + \cos(\theta - \phi) \right]; \]

\[\sin(\theta) \sin(\phi) = \frac{1}{2} \left[\cos(\theta - \phi) - \cos(\theta + \phi) \right]; \]

\[\sin(\theta) \cos(\phi) = \frac{1}{2} \left[\sin(\theta + \phi) + \sin(\theta - \phi) \right]. \]

Proof: First formula: If \(n = m = 0 \), it is simple to see that

\[\int_{-L}^{L} \cos \left(\frac{n\pi x}{L} \right) \cos \left(\frac{m\pi x}{L} \right) \, dx = \int_{-L}^{L} \, dx = 2L. \]
Orthogonality of Sines and Cosines.

Recall:
\[
\cos(\theta) \cos(\phi) = \frac{1}{2} \left[\cos(\theta + \phi) + \cos(\theta - \phi) \right];
\]
\[
\sin(\theta) \sin(\phi) = \frac{1}{2} \left[\cos(\theta - \phi) - \cos(\theta + \phi) \right];
\]
\[
\sin(\theta) \cos(\phi) = \frac{1}{2} \left[\sin(\theta + \phi) + \sin(\theta - \phi) \right].
\]

Proof: First formula: If \(n = m = 0 \), it is simple to see that
\[
\int_{-L}^{L} \cos \left(\frac{n\pi x}{L} \right) \cos \left(\frac{m\pi x}{L} \right) \, dx = \int_{-L}^{L} \, dx = 2L.
\]
In the case where one of \(n \) or \(m \) is non-zero, use the relation
\[
\int_{-L}^{L} \cos \left(\frac{n\pi x}{L} \right) \cos \left(\frac{m\pi x}{L} \right) \, dx = \frac{1}{2} \int_{-L}^{L} \cos \left(\frac{(n + m)\pi x}{L} \right) \, dx \\
+ \frac{1}{2} \int_{-L}^{L} \cos \left(\frac{(n - m)\pi x}{L} \right) \, dx.
\]
Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero,
Orthogonality of Sines and Cosines.

Proof: Since one of \(n \) or \(m \) is non-zero, holds

\[
\frac{1}{2} \int_{-L}^{L} \cos \left(\frac{(n + m)\pi x}{L} \right) \, dx = \frac{L}{2(n + m)\pi} \sin \left(\frac{(n + m)\pi x}{L} \right) \bigg|_{-L}^{L} = 0.
\]
Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero, holds

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n + m)\pi x}{L} \right] \, dx = \frac{L}{2(n + m)\pi} \sin \left[\frac{(n + m)\pi x}{L} \right] \bigg|_{-L}^{L} = 0.
$$

We obtain that

$$
\int_{-L}^{L} \cos \left(\frac{n\pi x}{L} \right) \cos \left(\frac{m\pi x}{L} \right) \, dx = \frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n - m)\pi x}{L} \right] \, dx.
$$
Orthogonality of Sines and Cosines.

Proof: Since one of \(n \) or \(m \) is non-zero, holds

\[
\frac{1}{2} \int_{-L}^{L} \cos \left(\frac{(n + m) \pi x}{L} \right) \, dx = \frac{L}{2(n + m) \pi} \sin \left[\frac{(n + m) \pi x}{L} \right] \bigg|_{-L}^{L} = 0.
\]

We obtain that

\[
\int_{-L}^{L} \cos \left(\frac{n \pi x}{L} \right) \cos \left(\frac{m \pi x}{L} \right) \, dx = \frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n - m) \pi x}{L} \right] \, dx.
\]

If we further restrict \(n \neq m \), then

\[
\frac{1}{2} \int_{-L}^{L} \cos \left(\frac{(n - m) \pi x}{L} \right) \, dx = \frac{L}{2(n - m) \pi} \sin \left[\frac{(n - m) \pi x}{L} \right] \bigg|_{-L}^{L} = 0.
\]
Orthogonality of Sines and Cosines.

Proof: Since one of \(n \) or \(m \) is non-zero, holds

\[
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n + m)\pi x}{L} \right] \, dx = \frac{L}{2(n + m)\pi} \sin \left[\frac{(n + m)\pi x}{L} \right] \bigg|_{-L}^{L} = 0.
\]

We obtain that

\[
\int_{-L}^{L} \cos \left(\frac{n\pi x}{L} \right) \cos \left(\frac{m\pi x}{L} \right) \, dx = \frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n - m)\pi x}{L} \right] \, dx.
\]

If we further restrict \(n \neq m \), then

\[
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n - m)\pi x}{L} \right] \, dx = \frac{L}{2(n - m)\pi} \sin \left[\frac{(n - m)\pi x}{L} \right] \bigg|_{-L}^{L} = 0.
\]

If \(n = m \neq 0 \), we have that

\[
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n - m)\pi x}{L} \right] \, dx = \frac{1}{2} \int_{-L}^{L} \, dx = L.
\]
Orthogonality of Sines and Cosines.

Proof: Since one of \(n \) or \(m \) is non-zero, holds

\[
\frac{1}{2} \int_{-L}^{L} \cos\left[\frac{(n + m) \pi x}{L} \right] \, dx = \frac{L}{2(n + m) \pi} \sin\left[\frac{(n + m) \pi x}{L} \right] \bigg|_{-L}^{L} = 0.
\]

We obtain that

\[
\int_{-L}^{L} \cos\left(\frac{n \pi x}{L} \right) \cos\left(\frac{m \pi x}{L} \right) \, dx = \frac{1}{2} \int_{-L}^{L} \cos\left[\frac{(n - m) \pi x}{L} \right] \, dx.
\]

If we further restrict \(n \neq m \), then

\[
\frac{1}{2} \int_{-L}^{L} \cos\left[\frac{(n - m) \pi x}{L} \right] \, dx = \frac{L}{2(n - m) \pi} \sin\left[\frac{(n - m) \pi x}{L} \right] \bigg|_{-L}^{L} = 0.
\]

If \(n = m \neq 0 \), we have that

\[
\frac{1}{2} \int_{-L}^{L} \cos\left[\frac{(n - m) \pi x}{L} \right] \, dx = \frac{1}{2} \int_{-L}^{L} \, dx = L.
\]

This establishes the first equation in the Theorem. The remaining equations are proven in a similar way. \(\square \)
Overview of Fourier Series (Sect. 10.2).

- Origins of the Fourier Series.
- Periodic functions.
- Orthogonality of Sines and Cosines.
- **Main result on Fourier Series.**
Main result on Fourier Series.

Theorem (Fourier Series)

If the function $f : [-L, L] \subset \mathbb{R} \to \mathbb{R}$ is continuous, then f can be expressed as an infinite series

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L} \right) + b_n \sin\left(\frac{n\pi x}{L} \right) \right] \quad (1)$$

with the constants a_n and b_n given by

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L} \right) \, dx, \quad n \geq 0,$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L} \right) \, dx, \quad n \geq 1.$$

Furthermore, the Fourier series in Eq. (1) provides a $2L$-periodic extension of f from the domain $[-L, L] \subset \mathbb{R}$ to \mathbb{R}.
Examples of the Fourier Theorem (Sect. 10.3).

- The Fourier Theorem: Continuous case.
- Example: Using the Fourier Theorem.
- The Fourier Theorem: Piecewise continuous case.
- Example: Using the Fourier Theorem.
The Fourier Theorem: Continuous case.

Theorem (Fourier Series)

If the function $f : [-L, L] \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous, then f can be expressed as an infinite series

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right]$$ \hspace{1cm} (2)

with the constants a_n and b_n given by

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) \, dx, \quad n \geq 0,$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) \, dx, \quad n \geq 1.$$

*Furthermore, the Fourier series in Eq. (2) provides a $2L$-periodic extension of function f from the domain $[-L, L] \subset \mathbb{R}$ to \mathbb{R}.***
The Fourier Theorem: Continuous case.

Sketch of the Proof:

- Define the partial sum functions

\[f_N(x) = \frac{a_0}{2} + \sum_{n=1}^{N} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right] \]

- Express \(f_N \) as a convolution of Sine, Cosine, functions and the original function \(f \).

- Use the convolution properties to show that \(\lim_{N \to \infty} f_N(x) = f(x), x \in [-L, L] \).
The Fourier Theorem: Continuous case.

Sketch of the Proof:

- Define the partial sum functions

\[f_N(x) = \frac{a_0}{2} + \sum_{n=1}^{N} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right] \]

with \(a_n \) and \(b_n \) given by

\[a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) \, dx, \quad n \geq 0, \]

\[b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) \, dx, \quad n \geq 1. \]
The Fourier Theorem: Continuous case.

Sketch of the Proof:

- Define the partial sum functions

\[f_N(x) = \frac{a_0}{2} + \sum_{n=1}^{N} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right] \]

with \(a_n \) and \(b_n \) given by

\[a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) \, dx, \quad n \geq 0, \]

\[b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) \, dx, \quad n \geq 1. \]

- Express \(f_N \) as a convolution of Sine, Cosine, functions and the original function \(f \).
The Fourier Theorem: Continuous case.

Sketch of the Proof:

- Define the partial sum functions

\[f_N(x) = \frac{a_0}{2} + \sum_{n=1}^{N} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right] \]

with \(a_n \) and \(b_n \) given by

\[a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) \, dx, \quad n \geq 0, \]

\[b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) \, dx, \quad n \geq 1. \]

- Express \(f_N \) as a convolution of Sine, Cosine, functions and the original function \(f \).

- Use the convolution properties to show that

\[\lim_{N \to \infty} f_N(x) = f(x), \quad x \in [-L, L]. \]
Examples of the Fourier Theorem (Sect. 10.3).

- The Fourier Theorem: Continuous case.
- **Example: Using the Fourier Theorem.**
- The Fourier Theorem: Piecewise continuous case.
- Example: Using the Fourier Theorem.
Example: Using the Fourier Theorem.

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: In this case \(L = 1 \).

The Fourier series expansion is

\[f(x) = a_0 + \sum_{n=1}^{\infty} \left[a_n \cos(n\pi x) + b_n \sin(n\pi x) \right], \]

where the \(a_n \), \(b_n \) are given in the Theorem.

We start with \(a_0 \),

\[a_0 = \frac{1}{2} \left[\int_{-1}^{0} (1 + x) \, dx + \int_{0}^{1} (1 - x) \, dx \right]. \]

We obtain:

\[a_0 = 1. \]
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
 1 + x & x \in [-1, 0), \\
 1 - x & x \in [0, 1].
\end{cases} \]

Solution: In this case \(L = 1 \).
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: In this case \(L = 1 \). The Fourier series expansion is

\[f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\pi x) + b_n \sin(n\pi x) \right], \]
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases} 1 + x & x \in [-1, 0), \\ 1 - x & x \in [0, 1]. \end{cases} \]

Solution: In this case \(L = 1 \). The Fourier series expansion is

\[f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\pi x) + b_n \sin(n\pi x) \right], \]

where the \(a_n, b_n \) are given in the Theorem.
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: In this case \(L = 1 \). The Fourier series expansion is

\[f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\pi x) + b_n \sin(n\pi x) \right], \]

where the \(a_n, b_n \) are given in the Theorem. We start with \(a_0 \),

\[a_0 = \int_{-1}^{1} f(x) \, dx \]
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: In this case \(L = 1 \). The Fourier series expansion is

\[f(x) = a_0 + \sum_{n=1}^{\infty} \left[a_n \cos(n\pi x) + b_n \sin(n\pi x) \right], \]

where the \(a_n, b_n \) are given in the Theorem. We start with \(a_0 \),

\[a_0 = \int_{-1}^{1} f(x) \, dx = \int_{-1}^{0} (1 + x) \, dx + \int_{0}^{1} (1 - x) \, dx. \]
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: In this case \(L = 1 \). The Fourier series expansion is

\[f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\pi x) + b_n \sin(n\pi x) \right], \]

where the \(a_n, b_n \) are given in the Theorem. We start with \(a_0 \),

\[a_0 = \int_{-1}^{1} f(x) \, dx = \int_{-1}^{0} (1 + x) \, dx + \int_{0}^{1} (1 - x) \, dx. \]

\[a_0 = \left(x + \frac{x^2}{2} \right) \bigg|_{-1}^{0} + \left(x - \frac{x^2}{2} \right) \bigg|_{0}^{1} \]
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: In this case \(L = 1 \). The Fourier series expansion is

\[f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\pi x) + b_n \sin(n\pi x) \right], \]

where the \(a_n, b_n \) are given in the Theorem. We start with \(a_0 \),

\[a_0 = \int_{-1}^{1} f(x) \, dx = \int_{-1}^{0} (1 + x) \, dx + \int_{0}^{1} (1 - x) \, dx. \]

\[a_0 = \left(x + \frac{x^2}{2} \right) \Big|_{-1}^{0} + \left(x - \frac{x^2}{2} \right) \Big|_{0}^{1} = \left(1 - \frac{1}{2} \right) + \left(1 - \frac{1}{2} \right) \]
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: In this case \(L = 1 \). The Fourier series expansion is

\[f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\pi x) + b_n \sin(n\pi x) \right], \]

where the \(a_n, b_n \) are given in the Theorem. We start with \(a_0 \),

\[a_0 = \int_{-1}^{1} f(x) \, dx = \int_{-1}^{0} (1 + x) \, dx + \int_{0}^{1} (1 - x) \, dx. \]

\[a_0 = \left. \left(x + \frac{x^2}{2} \right) \right|_{-1}^{0} + \left. \left(x - \frac{x^2}{2} \right) \right|_{0}^{1} = (1 - \frac{1}{2}) + (1 - \frac{1}{2}) \]

We obtain: \(a_0 = 1 \).
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall: \(a_0 = 1 \).
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall: \(a_0 = 1 \). Similarly, the rest of the \(a_n \) are given by,

\[a_n = \int_{-1}^{1} f(x) \cos(n\pi x) \, dx \]
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall: \(a_0 = 1 \). Similarly, the rest of the \(a_n \) are given by,

\[a_n = \int_{-1}^{1} f(x) \cos(n\pi x) \, dx \]

\[a_n = \int_{-1}^{0} (1 + x) \cos(n\pi x) \, dx + \int_{0}^{1} (1 - x) \cos(n\pi x) \, dx. \]
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall: \(a_0 = 1 \). Similarly, the rest of the \(a_n \) are given by,

\[a_n = \int_{-1}^{1} f(x) \cos(n\pi x) \, dx \]

\[a_n = \int_{-1}^{0} (1 + x) \cos(n\pi x) \, dx + \int_{0}^{1} (1 - x) \cos(n\pi x) \, dx. \]

Recall the integrals \(\int \cos(n\pi x) \, dx = \frac{1}{n\pi} \sin(n\pi x) \),
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall: \(a_0 = 1 \). Similarly, the rest of the \(a_n \) are given by,

\[a_n = \int_{-1}^{1} f(x) \cos(n\pi x) \, dx \]

\[a_n = \int_{-1}^{0} (1 + x) \cos(n\pi x) \, dx + \int_{0}^{1} (1 - x) \cos(n\pi x) \, dx. \]

Recall the integrals \(\int \cos(n\pi x) \, dx = \frac{1}{n\pi} \sin(n\pi x) \), and

\[\int x \cos(n\pi x) \, dx = \frac{x}{n\pi} \sin(n\pi x) + \frac{1}{n^2\pi^2} \cos(n\pi x). \]
Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: It is not difficult to see that

\[
a_n = \frac{1}{n\pi} \sin(n\pi x) \bigg|_{-1}^{0} + \left[\frac{x}{n\pi} \sin(n\pi x) + \frac{1}{n^2\pi^2} \cos(n\pi x) \right] \bigg|_{-1}^{0} \\
+ \frac{1}{n\pi} \sin(n\pi x) \bigg|_{0}^{1} - \left[\frac{x}{n\pi} \sin(n\pi x) + \frac{1}{n^2\pi^2} \cos(n\pi x) \right] \bigg|_{0}^{1}
\]
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: It is not difficult to see that

\[
a_n = \frac{1}{n\pi} \sin(n\pi x) \bigg|_0^1 - \left[\frac{x}{n\pi} \sin(n\pi x) + \frac{1}{n^2\pi^2} \cos(n\pi x) \right] \bigg|_1^0
\]

\[
= \left[\frac{1}{n^2\pi^2} - \frac{1}{n^2\pi^2} \cos(-n\pi) \right] - \left[\frac{1}{n^2\pi^2} \cos(n\pi) - \frac{1}{n^2\pi^2} \right].
\]
Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: It is not difficult to see that

\[
a_n = \frac{1}{n\pi} \sin(n\pi x) \bigg|_0^1 + \left[\frac{x}{n\pi} \sin(n\pi x) + \frac{1}{n^2\pi^2} \cos(n\pi x) \right] \bigg|_0^1
\]

\[
+ \frac{1}{n\pi} \sin(n\pi x) \bigg|_0^1 - \left[\frac{x}{n\pi} \sin(n\pi x) + \frac{1}{n^2\pi^2} \cos(n\pi x) \right] \bigg|_0^1
\]

\[
a_n = \left[\frac{1}{n^2\pi^2} - \frac{1}{n^2\pi^2} \cos(-n\pi) \right] - \left[\frac{1}{n^2\pi^2} \cos(n\pi) - \frac{1}{n^2\pi^2} \right].
\]

We then conclude that \(a_n = \frac{2}{n^2\pi^2} \left[1 - \cos(n\pi) \right]. \)
Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall: \(a_0 = 1 \), and \(a_n = \frac{2}{n^2\pi^2} \left[1 - \cos(n\pi) \right] \).
Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall: \(a_0 = 1 \), and \(a_n = \frac{2}{n^2 \pi^2} [1 - \cos(n\pi)] \).

Finally, we must find the coefficients \(b_n \).
Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall: \(a_0 = 1 \), and \(a_n = \frac{2}{n^2 \pi^2} [1 - \cos(n\pi)] \).

Finally, we must find the coefficients \(b_n \).

A similar calculation shows that \(b_n = 0 \).
Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall: \(a_0 = 1 \), and \(a_n = \frac{2}{n^2\pi^2} \left[1 - \cos(n\pi) \right] \).

Finally, we must find the coefficients \(b_n \).

A similar calculation shows that \(b_n = 0 \).

Then, the Fourier series of \(f \) is given by

\[f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2\pi^2} \left[1 - \cos(n\pi) \right] \cos(n\pi x). \]
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall:

\[f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} \left[1 - \cos(n\pi) \right] \cos(n\pi x). \]
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[
f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases}
\]

Solution: Recall: \(f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} [1 - \cos(n\pi)] \cos(n\pi x). \)

We can obtain a simpler expression for the Fourier coefficients \(a_n \).
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall: \[f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} [1 - \cos(n \pi)] \cos(n \pi x). \]

We can obtain a simpler expression for the Fourier coefficients \(a_n \).

Recall the relations \(\cos(n \pi) = (-1)^n \).
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
 1 + x & x \in [-1, 0), \\
 1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall: \[f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} \left[1 - \cos(n\pi) \right] \cos(n\pi x). \]

We can obtain a simpler expression for the Fourier coefficients \(a_n \).

Recall the relations \(\cos(n\pi) = (-1)^n \), then

\[f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} \left[1 - (-1)^n \right] \cos(n\pi x). \]
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases} 1 + x & x \in [-1, 0), \\ 1 - x & x \in [0, 1]. \end{cases} \]

Solution: Recall: \(f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2\pi^2} \left[1 - \cos(n\pi) \right] \cos(n\pi x). \)

We can obtain a simpler expression for the Fourier coefficients \(a_n \).

Recall the relations \(\cos(n\pi) = (-1)^n \), then

\[f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2\pi^2} \left[1 - (-1)^n \right] \cos(n\pi x). \]

\[f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2\pi^2} \left[1 + (-1)^{n+1} \right] \cos(n\pi x). \]
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall:

\[f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} [1 + (-1)^{n+1}] \cos(n\pi x). \]
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall:

\[f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} \left[1 + (-1)^{n+1} \right] \cos(n\pi x). \]

If \(n = 2k \),
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall:

\[f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} \left[1 + (-1)^{n+1} \right] \cos(n \pi x). \]

If \(n = 2k \), so \(n \) is even,
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall:

\[f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2\pi^2} \left[1 + (-1)^{n+1} \right] \cos(n\pi x). \]

If \(n = 2k \), so \(n \) is even, so \(n + 1 = 2k + 1 \) is odd,
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall: \(f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} \left[1 + (-1)^{n+1} \right] \cos(n \pi x). \)

If \(n = 2k \), so \(n \) is even, so \(n + 1 = 2k + 1 \) is odd, then

\[a_{2k} = \frac{2}{(2k)^2 \pi^2} (1 - 1) \]
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall:

\[f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} \left[1 + (-1)^{n+1} \right] \cos(n \pi x). \]

If \(n = 2k \), so \(n \) is even, so \(n + 1 = 2k + 1 \) is odd, then

\[a_{2k} = \frac{2}{(2k)^2 \pi^2} (1 - 1) \Rightarrow a_{2k} = 0. \]
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall:

\[f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} \left[1 + (-1)^{n+1} \right] \cos(n\pi x). \]

If \(n = 2k \), so \(n \) is even, so \(n + 1 = 2k + 1 \) is odd, then

\[a_{2k} = \frac{2}{(2k)^2 \pi^2} (1 - 1) \Rightarrow a_{2k} = 0. \]

If \(n = 2k - 1 \),
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[
f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases}
\]

Solution: Recall:

\[
f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2\pi^2} \left[1 + (-1)^{n+1}\right] \cos(n\pi x).
\]

If \(n = 2k \), so \(n \) is even, so \(n + 1 = 2k + 1 \) is odd, then

\[
a_{2k} = \frac{2}{(2k)^2\pi^2} (1 - 1) \implies a_{2k} = 0.
\]

If \(n = 2k - 1 \), so \(n \) is odd,
Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
 1 + x & x \in [-1, 0), \\
 1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall: \(f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} \left[1 + (-1)^{n+1} \right] \cos(n \pi x) \).

If \(n = 2k \), so \(n \) is even, so \(n + 1 = 2k + 1 \) is odd, then

\[a_{2k} = \frac{2}{(2k)^2 \pi^2} (1 - 1) \Rightarrow a_{2k} = 0. \]

If \(n = 2k - 1 \), so \(n \) is odd, so \(n + 1 = 2k \) is even,
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution: Recall: \[f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} \left[1 + (-1)^{n+1} \right] \cos(n\pi x). \]

If \(n = 2k \), so \(n \) is even, so \(n + 1 = 2k + 1 \) is odd, then

\[a_{2k} = \frac{2}{(2k)^2 \pi^2} (1 - 1) \Rightarrow a_{2k} = 0. \]

If \(n = 2k - 1 \), so \(n \) is odd, so \(n + 1 = 2k \) is even, then

\[a_{2k-1} = \frac{2}{(2k - 1)^2 \pi^2} (1 + 1) \]
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases} 1 + x & x \in [-1, 0), \\ 1 - x & x \in [0, 1]. \end{cases} \]

Solution: Recall:

\[f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} \left[1 + (-1)^{n+1} \right] \cos(n \pi x). \]

If \(n = 2k \), so \(n \) is even, so \(n + 1 = 2k + 1 \) is odd, then

\[a_{2k} = \frac{2}{(2k)^2 \pi^2} (1 - 1) \Rightarrow a_{2k} = 0. \]

If \(n = 2k - 1 \), so \(n \) is odd, so \(n + 1 = 2k \) is even, then

\[a_{2k-1} = \frac{2}{(2k - 1)^2 \pi^2} (1 + 1) \Rightarrow a_{2k-1} = \frac{4}{(2k - 1)^2 \pi^2}. \]
Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution:

Recall: \[f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} \left[1 + (-1)^{n+1} \right] \cos(n \pi x), \] and

\[a_{2k} = 0, \quad a_{2k-1} = \frac{4}{(2k - 1)^2 \pi^2}. \]
Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

\[f(x) = \begin{cases}
1 + x & x \in [-1, 0), \\
1 - x & x \in [0, 1].
\end{cases} \]

Solution:
Recall:

\[f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} \left[1 + (-1)^{n+1} \right] \cos(n \pi x), \quad \text{and} \]

\[a_{2k} = 0, \quad a_{2k-1} = \frac{4}{(2k - 1)^2 \pi^2}. \]

We conclude:

\[f(x) = \frac{1}{2} + \sum_{k=1}^{\infty} \frac{4}{(2k - 1)^2 \pi^2} \cos((2k - 1) \pi x). \]
Examples of the Fourier Theorem (Sect. 10.3).

- The Fourier Theorem: Continuous case.
- Example: Using the Fourier Theorem.
- The Fourier Theorem: Piecewise continuous case.
- Example: Using the Fourier Theorem.
The Fourier Theorem: Piecewise continuous case.

Recall:

Definition
A function \(f : [a, b] \rightarrow \mathbb{R} \) is called \textit{piecewise continuous} iff holds,

(a) \([a, b]\) can be partitioned in a finite number of sub-intervals such that \(f \) is continuous on the interior of these sub-intervals.

(b) \(f \) has finite limits at the endpoints of all sub-intervals.
The Fourier Theorem: Piecewise continuous case.

Theorem (Fourier Series)

If \(f : [-L, L] \subset \mathbb{R} \rightarrow \mathbb{R} \) is piecewise continuous, then the function

\[
f_f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right]
\]

where \(a_n \) and \(b_n \) given by

\[
a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) \, dx, \quad n \geq 0,
\]

\[
b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) \, dx, \quad n \geq 1.
\]

satisfies that:

(a) \(f_f(x) = f(x) \) for all \(x \) where \(f \) is continuous;

(b) \(f_f(x_0) = \frac{1}{2} \left[\lim_{x \to x_0^+} f(x) + \lim_{x \to x_0^-} f(x) \right] \) for all \(x_0 \) where \(f \) is discontinuous.
Examples of the Fourier Theorem (Sect. 10.3).

- The Fourier Theorem: Continuous case.
- Example: Using the Fourier Theorem.
- The Fourier Theorem: Piecewise continuous case.
- **Example: Using the Fourier Theorem.**
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases}
-1 & x \in [-1, 0), \\
1 & x \in [0, 1)
\end{cases} \)

and periodic with period \(T = 2 \).
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases}
-1 & x \in [-1, 0), \\
1 & x \in [0, 1).
\end{cases} \)

and periodic with period \(T = 2 \).

Solution: We start computing the Fourier coefficients \(b_n \);
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases} -1 & x \in [-1, 0), \\ 1 & x \in [0, 1). \end{cases} \)

and periodic with period \(T = 2 \).

Solution: We start computing the Fourier coefficients \(b_n \);

\[
b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L} \right) \, dx,
\]

\(L = 1 \).
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases} -1 & x \in [-1, 0), \\ 1 & x \in [0, 1). \end{cases} \)

and periodic with period \(T = 2 \).

Solution: We start computing the Fourier coefficients \(b_n \);

\[
b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n\pi x}{L} \right) \, dx, \quad L = 1,
\]
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases} -1 & x \in [-1, 0), \\ 1 & x \in [0, 1). \end{cases} \)
and periodic with period \(T = 2 \).

Solution: We start computing the Fourier coefficients \(b_n \);

\[
b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n\pi x}{L} \right) \, dx, \quad L = 1,
\]

\[
b_n = \int_{-1}^{0} (-1) \sin(n\pi x) \, dx + \int_{0}^{1} (1) \sin(n\pi x) \, dx,
\]
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \[f(x) = \begin{cases} -1 & x \in [-1, 0), \\ 1 & x \in [0, 1). \end{cases} \]
and periodic with period \(T = 2 \).

Solution: We start computing the Fourier coefficients \(b_n \);

\[
b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n\pi x}{L} \right) \, dx, \quad L = 1,
\]

\[
b_n = \int_{-1}^{0} (-1) \sin(n\pi x) \, dx + \int_{0}^{1} (1) \sin(n\pi x) \, dx,
\]

\[
b_n = \frac{(-1)}{n\pi} \left[-\cos(n\pi x) \right]_{-1}^{0} + \frac{1}{n\pi} \left[-\cos(n\pi x) \right]_{0}^{1},
\]
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases} -1 & x \in [-1, 0), \\ 1 & x \in [0, 1). \end{cases} \)

and periodic with period \(T = 2 \).

Solution: We start computing the Fourier coefficients \(b_n \);

\[
 b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L} \right) \, dx, \quad L = 1,
\]

\[
 b_n = \int_{-1}^{0} (-1) \sin(n \pi x) \, dx + \int_{0}^{1} (1) \sin(n \pi x) \, dx,
\]

\[
 b_n = \frac{(-1)}{n \pi} \left[-\cos(n \pi x) \bigg|_{-1}^{0} \right] + \frac{1}{n \pi} \left[-\cos(n \pi x) \bigg|_{0}^{1} \right],
\]

\[
 b_n = \frac{(-1)}{n \pi} \left[-1 + \cos(-n \pi) \right] + \frac{1}{n \pi} \left[-\cos(n \pi) + 1 \right].
\]
Example: Using the Fourier Theorem.

Example

Find the Fourier series of\[f(x) = \begin{cases} -1 & x \in [-1, 0), \vspace{1em} \\ 1 & x \in [0, 1). \end{cases} \]

and periodic with period \(T = 2 \).

Solution: \(b_n = \frac{(-1)}{n\pi} [-1 + \cos(-n\pi)] + \frac{1}{n\pi} [-\cos(n\pi) + 1]. \)
Example: Using the Fourier Theorem.

Find the Fourier series of \(f(x) = \begin{cases}
-1 & x \in [-1, 0), \\
1 & x \in [0, 1).
\end{cases} \)
and periodic with period \(T = 2 \).

Solution:
\[b_n = \frac{(-1)}{n\pi} [-1 + \cos(-n\pi)] + \frac{1}{n\pi} [-\cos(n\pi) + 1]. \]
\[b_n = \frac{1}{n\pi} [1 - \cos(-n\pi) - \cos(n\pi) + 1] \]
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases} -1 & x \in [-1, 0), \\ 1 & x \in [0, 1) \end{cases} \)
and periodic with period \(T = 2 \).

Solution:

\[
 b_n = \frac{(-1)}{n\pi} \left[-1 + \cos(-n\pi) \right] + \frac{1}{n\pi} \left[-\cos(n\pi) + 1 \right].
\]

\[
 b_n = \frac{1}{n\pi} \left[1 - \cos(-n\pi) - \cos(n\pi) + 1 \right] = \frac{2}{n\pi} \left[1 - \cos(n\pi) \right],
\]
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases} -1 & x \in [-1, 0), \\ 1 & x \in [0, 1). \end{cases} \)

and periodic with period \(T = 2 \).

Solution: \(b_n = \frac{(-1)}{n\pi} \left[-1 + \cos(-n\pi) \right] + \frac{1}{n\pi} \left[-\cos(n\pi) + 1 \right]. \)

\[
b_n = \frac{1}{n\pi} \left[1 - \cos(-n\pi) - \cos(n\pi) + 1 \right] = \frac{2}{n\pi} \left[1 - \cos(n\pi) \right],
\]

We obtain: \(b_n = \frac{2}{n\pi} \left[1 - (-1)^n \right]. \)
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases} -1 & x \in [-1, 0), \\ 1 & x \in [0, 1). \end{cases} \)

and periodic with period \(T = 2 \).

Solution: \(b_n = \frac{(-1)}{n\pi}[-1 + \cos(-n\pi)] + \frac{1}{n\pi}[-\cos(n\pi) + 1]. \)

\[b_n = \frac{1}{n\pi}[1 - \cos(-n\pi) - \cos(n\pi) + 1] = \frac{2}{n\pi}[1 - \cos(n\pi)], \]

We obtain: \(b_n = \frac{2}{n\pi}[1 - (-1)^n]. \)

If \(n = 2k, \)
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases}
-1 & x \in [-1, 0), \\
1 & x \in [0, 1).
\end{cases} \)

and periodic with period \(T = 2 \).

Solution:

\[
b_n = \frac{(-1)}{n\pi} \left[-1 + \cos(-n\pi) \right] + \frac{1}{n\pi} \left[-\cos(n\pi) + 1 \right].
\]

\[
b_n = \frac{1}{n\pi} \left[1 - \cos(-n\pi) - \cos(n\pi) + 1 \right] = \frac{2}{n\pi} \left[1 - \cos(n\pi) \right],
\]

We obtain:

\[
b_n = \frac{2}{n\pi} \left[1 - (-1)^n \right].
\]

If \(n = 2k \), then

\[
b_{2k} = \frac{2}{2k\pi} \left[1 - (-1)^{2k} \right],
\]
Example: Using the Fourier Theorem.

Example

Find the Fourier series of

\[f(x) = \begin{cases}
 -1 & x \in [-1, 0), \\
 1 & x \in [0, 1).
\end{cases} \]

and periodic with period \(T = 2 \).

Solution:

\[b_n = \frac{(-1)^n}{n\pi} [-1 + \cos(-n\pi)] + \frac{1}{n\pi} [-\cos(n\pi) + 1]. \]

\[b_n = \frac{1}{n\pi} [1 - \cos(-n\pi) - \cos(n\pi) + 1] = \frac{2}{n\pi} [1 - \cos(n\pi)], \]

We obtain:

\[b_n = \frac{2}{n\pi} [1 - (-1)^n]. \]

If \(n = 2k \), then

\[b_{2k} = \frac{2}{2k\pi} [1 - (-1)^{2k}], \]

hence

\[b_{2k} = 0. \]
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases} -1 & x \in [-1, 0), \\ 1 & x \in [0, 1). \end{cases} \)
and periodic with period \(T = 2 \).

Solution: \(b_n = \frac{(-1)}{n\pi} [-1 + \cos(-n\pi)] + \frac{1}{n\pi} [-\cos(n\pi) + 1]. \)

\[
b_n = \frac{1}{n\pi} [1 - \cos(-n\pi) - \cos(n\pi) + 1] = \frac{2}{n\pi} [1 - \cos(n\pi)],
\]

We obtain: \(b_n = \frac{2}{n\pi} [1 - (-1)^n]. \)

If \(n = 2k \), then \(b_{2k} = \frac{2}{2k\pi} [1 - (-1)^{2k}] \), hence \(b_{2k} = 0. \)

If \(n = 2k - 1, \)
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases}
-1 & x \in [-1, 0), \\
1 & x \in [0, 1).
\end{cases} \)

and periodic with period \(T = 2 \).

Solution: \(b_n = \frac{(-1)^n}{n\pi} [-1 + \cos(-n\pi)] + \frac{1}{n\pi} [-\cos(n\pi) + 1]. \)

\[
b_n = \frac{1}{n\pi} [1 - \cos(-n\pi) - \cos(n\pi) + 1] = \frac{2}{n\pi} [1 - \cos(n\pi)],
\]

We obtain: \(b_n = \frac{2}{n\pi} [1 - (-1)^n]. \)

If \(n = 2k \), then \(b_{2k} = \frac{2}{2k\pi} [1 - (-1)^{2k}] \), hence \(b_{2k} = 0. \)

If \(n = 2k - 1 \), then \(b_{2k-1} = \frac{2}{(2k - 1)\pi} [1 - (-1)^{2k-1}], \)
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases} -1 & x \in [-1, 0), \\ 1 & x \in [0, 1). \end{cases} \)
and periodic with period \(T = 2 \).

Solution: \(b_n = \frac{(-1)^n}{n\pi} [-1 + \cos(-n\pi)] + \frac{1}{n\pi} [-\cos(n\pi) + 1]. \)

\[
b_n = \frac{1}{n\pi} [1 - \cos(-n\pi) - \cos(n\pi) + 1] = \frac{2}{n\pi} [1 - \cos(n\pi)],
\]

We obtain: \(b_n = \frac{2}{n\pi} [1 - (-1)^n]. \)

If \(n = 2k \), then \(b_{2k} = \frac{2}{2k\pi} [1 - (-1)^{2k}] \), hence \(b_{2k} = 0. \)

If \(n = 2k - 1 \), then \(b_{2k-1} = \frac{2}{(2k-1)\pi} [1 - (-1)^{2k-1}], \)

hence \(b_{2k} = \frac{4}{(2k-1)\pi}. \).
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases} -1 & x \in [-1, 0), \\ 1 & x \in [0, 1). \end{cases} \)

and periodic with period \(T = 2 \).

Solution: Recall: \(b_{2k} = 0 \), and \(b_{2k} = \frac{4}{(2k - 1)\pi} \).
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases} -1 & x \in [-1, 0), \\ 1 & x \in [0, 1). \end{cases} \)

and periodic with period \(T = 2 \).

Solution: Recall: \(b_{2k} = 0 \), and \(b_{2k} = \frac{4}{(2k - 1)\pi} \).

\[
a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n\pi x}{L} \right) \, dx,
\]
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases} -1 & x \in [-1, 0), \\ 1 & x \in [0, 1). \end{cases} \)
and periodic with period \(T = 2 \).

Solution: Recall: \(b_{2k} = 0 \), and \(b_{2k} = \frac{4}{(2k - 1)\pi} \).

\[
a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) \, dx, \quad L = 1,
\]
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases} -1 & x \in [-1, 0), \\ 1 & x \in [0, 1). \end{cases} \)
and periodic with period \(T = 2 \).

Solution: Recall: \(b_{2k} = 0 \), and \(b_{2k} = \frac{4}{(2k - 1)\pi} \).

\[
a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) \, dx, \quad L = 1,
\]

\[
a_n = \int_{-1}^{0} (-1) \cos(n\pi x) \, dx + \int_{0}^{1} (1) \cos(n\pi x) \, dx,
\]
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases} -1 & x \in [-1, 0), \\ 1 & x \in [0, 1). \end{cases} \)
and periodic with period \(T = 2 \).

Solution: Recall: \(b_{2k} = 0 \), and \(b_{2k} = \frac{4}{(2k - 1)\pi} \).

\[
a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) \, dx, \quad L = 1,
\]

\[
a_n = \int_{-1}^{0} (-1) \cos(n\pi x) \, dx + \int_{0}^{1} (1) \cos(n\pi x) \, dx,
\]

\[
a_n = \frac{(-1)}{n\pi} \left[\sin(n\pi x) \right]_{-1}^{0} + \frac{1}{n\pi} \left[\sin(n\pi x) \right]_{0}^{1},
\]
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases} -1 & x \in [-1, 0), \\ 1 & x \in [0, 1). \end{cases} \)
and periodic with period \(T = 2 \).

Solution: Recall: \(b_{2k} = 0 \), and \(b_{2k} = \frac{4}{(2k - 1)\pi} \).

\[
a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) \, dx, \quad L = 1,
\]

\[
a_n = \int_{-1}^{0} (-1) \cos(n\pi x) \, dx + \int_{0}^{1} (1) \cos(n\pi x) \, dx,
\]

\[
a_n = \frac{(-1)}{n\pi} \left[\sin(n\pi x) \right]_{-1}^{0} + \frac{1}{n\pi} \left[\sin(n\pi x) \right]_{0}^{1},
\]

\[
a_n = \frac{(-1)}{n\pi} [0 - \sin(-n\pi)] + \frac{1}{n\pi} [\sin(n\pi) - 0]
\]
Example: Using the Fourier Theorem.

Example

Find the Fourier series of
\[f(x) = \begin{cases} -1 & x \in [-1, 0), \\ 1 & x \in [0, 1). \end{cases} \]
and periodic with period \(T = 2 \).

Solution: Recall: \(b_{2k} = 0 \), and \(b_{2k} = \frac{4}{(2k - 1)\pi} \).

\[a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n\pi x}{L} \right) \, dx, \quad L = 1, \]

\[a_n = \int_{-1}^{0} (-1) \cos(n\pi x) \, dx + \int_{0}^{1} (1) \cos(n\pi x) \, dx, \]

\[a_n = \frac{(-1)}{n\pi} \left[\sin(n\pi x) \right]_{-1}^{0} + \frac{1}{n\pi} \left[\sin(n\pi x) \right]_{0}^{1}, \]

\[a_n = \frac{(-1)}{n\pi} \left[0 - \sin(-n\pi) \right] + \frac{1}{n\pi} \left[\sin(n\pi) - 0 \right] \Rightarrow a_n = 0. \]
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases}
-1 & x \in [-1, 0), \\
1 & x \in [0, 1).
\end{cases} \)
and periodic with period \(T = 2 \).

Solution: Recall: \(b_{2k} = 0 \), \(b_{2k} = \frac{4}{(2k - 1)\pi} \), and \(a_n = 0 \).
Example: Using the Fourier Theorem.

Example

Find the Fourier series of \(f(x) = \begin{cases} -1 & x \in [-1, 0), \\ 1 & x \in [0, 1). \end{cases} \)

and periodic with period \(T = 2 \).

Solution: Recall: \(b_{2k} = 0 \), \(b_{2k} = \frac{4}{(2k - 1)\pi} \), and \(a_n = 0 \).

Therefore, we conclude that

\[
f_F(x) = \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{1}{(2k - 1)} \sin((2k - 1)\pi x).
\]