Power series solutions near regular points (Sect. 5.2).

- We study: $P(x) y'' + Q(x) y' + R(x) y = 0$.
- Review of power series.
- Regular point equations.
- Solutions using power series.
- Examples of the power series method.
Review of power series.

Definition

The *power series* of a function \(y : \mathbb{R} \to \mathbb{R} \) centered at \(x_0 \in \mathbb{R} \) is

\[
y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n.
\]
Review of power series.

Definition
The *power series* of a function $y : \mathbb{R} \to \mathbb{R}$ centered at $x_0 \in \mathbb{R}$ is

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n.$$

Example

$\frac{1}{1 - x} = \sum_{n=0}^{\infty} x^n$
Review of power series.

Definition

The *power series* of a function $y : \mathbb{R} \to \mathbb{R}$ centered at $x_0 \in \mathbb{R}$ is

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n.$$

Example

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \cdots.$$
Review of power series.

Definition
The **power series** of a function $y : \mathbb{R} \rightarrow \mathbb{R}$ centered at $x_0 \in \mathbb{R}$ is

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n.$$

Example

$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \cdots$. Here $x_0 = 0$ and $|x| < 1$.
Review of power series.

Definition
The \textit{power series} of a function \(y : \mathbb{R} \to \mathbb{R} \) centered at \(x_0 \in \mathbb{R} \) is
\[
y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n.
\]

Example
\begin{itemize}
 \item \(\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \cdots \). Here \(x_0 = 0 \) and \(|x| < 1 \).
 \item \(e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \)
Review of power series.

Definition

The *power series* of a function $y : \mathbb{R} \to \mathbb{R}$ centered at $x_0 \in \mathbb{R}$ is

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n.$$

Example

- $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \cdots$. Here $x_0 = 0$ and $|x| < 1$.
- $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \cdots$.
Review of power series.

Definition
The *power series* of a function $y : \mathbb{R} \to \mathbb{R}$ centered at $x_0 \in \mathbb{R}$ is

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n.$$

Example

\triangleright \quad $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \cdots$. Here $x_0 = 0$ and $|x| < 1$.

\triangleright \quad $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \cdots$. Here $x_0 = 0$ and $x \in \mathbb{R}$.
Review of power series.

Definition
The *power series* of a function $y : \mathbb{R} \rightarrow \mathbb{R}$ centered at $x_0 \in \mathbb{R}$ is

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n.$$

Example

- $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \cdots$. Here $x_0 = 0$ and $|x| < 1$.

- $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \cdots$. Here $x_0 = 0$ and $x \in \mathbb{R}$.

- The Taylor series of $y : \mathbb{R} \rightarrow \mathbb{R}$ centered at $x_0 \in \mathbb{R}$ is

$$y(x) = \sum_{n=0}^{\infty} \frac{y^{(n)}(x_0)}{n!} (x - x_0)^n$$
Review of power series.

Definition
The *power series* of a function $y : \mathbb{R} \to \mathbb{R}$ centered at $x_0 \in \mathbb{R}$ is

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n.$$

Example

$\Rightarrow \quad \frac{1}{1 - x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \cdots$. Here $x_0 = 0$ and $|x| < 1$.

$\Rightarrow \quad e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \cdots$. Here $x_0 = 0$ and $x \in \mathbb{R}$.

$\Rightarrow \quad$ The Taylor series of $y : \mathbb{R} \to \mathbb{R}$ centered at $x_0 \in \mathbb{R}$ is

$$y(x) = \sum_{n=0}^{\infty} \frac{y^{(n)}(x_0)}{n!} (x - x_0)^n = y(x_0) + y'(x_0)(x - x_0) + \cdots.$$
Review of power series.

Example
Find the Taylor series of $y(x) = \sin(x)$ centered at $x_0 = 0$.

\[
\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}
\]

Remark: The Taylor series of $y(x) = \cos(x)$ centered at $x_0 = 0$ is
\[
\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}
\]
Example
Find the Taylor series of $y(x) = \sin(x)$ centered at $x_0 = 0$.

Solution: $y(x) = \sin(x)$,
Review of power series.

Example
Find the Taylor series of $y(x) = \sin(x)$ centered at $x_0 = 0$.

Solution: $y(x) = \sin(x), \ y(0) = 0$.

\[
\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}
\]

Remark: The Taylor series of $y(x) = \cos(x)$ centered at $x_0 = 0$ is
\[
\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}
\]
Review of power series.

Example
Find the Taylor series of \(y(x) = \sin(x) \) centered at \(x_0 = 0 \).

Solution: \(y(x) = \sin(x), \ y(0) = 0. \ y'(x) = \cos(x), \)
Review of power series.

Example
Find the Taylor series of $y(x) = \sin(x)$ centered at $x_0 = 0$.

Solution: $y(x) = \sin(x)$, $y(0) = 0$. $y'(x) = \cos(x)$, $y'(0) = 1$.

$\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$.

Remark: The Taylor series of $y(x) = \cos(x)$ centered at $x_0 = 0$ is $\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$.

Review of power series.

Example
Find the Taylor series of $y(x) = \sin(x)$ centered at $x_0 = 0$.

Solution: $y(x) = \sin(x)$, $y(0) = 0$. $y'(x) = \cos(x)$, $y'(0) = 1$.

$y''(x) = -\sin(x)$,
Review of power series.

Example
Find the Taylor series of $y(x) = \sin(x)$ centered at $x_0 = 0$.

Solution: $y(x) = \sin(x), \ y(0) = 0. \ y'(x) = \cos(x), \ y'(0) = 1.$

$y''(x) = -\sin(x), \ y''(0) = 0.$

$\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}.$
Review of power series.

Example
Find the Taylor series of $y(x) = \sin(x)$ centered at $x_0 = 0$.

Solution: $y(x) = \sin(x)$, $y(0) = 0$. $y'(x) = \cos(x)$, $y'(0) = 1$.

$y''(x) = -\sin(x)$, $y''(0) = 0$. $y'''(x) = -\cos(x)$,
Review of power series.

Example
Find the Taylor series of \(y(x) = \sin(x) \) centered at \(x_0 = 0 \).

Solution: \(y(x) = \sin(x), \ y(0) = 0. \ y'(x) = \cos(x), \ y'(0) = 1. \)

\(y''(x) = -\sin(x), \ y''(0) = 0. \ y'''(x) = -\cos(x), \ y'''(0) = -1. \)
Review of power series.

Example
Find the Taylor series of $y(x) = \sin(x)$ centered at $x_0 = 0$.

Solution: $y(x) = \sin(x)$, $y(0) = 0$. $y'(x) = \cos(x)$, $y'(0) = 1$.

$y''(x) = -\sin(x)$, $y''(0) = 0$. $y'''(x) = -\cos(x)$, $y'''(0) = -1$.

$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots$
Example
Find the Taylor series of \(y(x) = \sin(x) \) centered at \(x_0 = 0 \).

Solution: \(y(x) = \sin(x), \ y(0) = 0. \ y'(x) = \cos(x), \ y'(0) = 1. \)

\(y''(x) = -\sin(x), \ y''(0) = 0. \ y'''(x) = -\cos(x), \ y'''(0) = -1. \)

\[
\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots \quad \Rightarrow \quad \sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n + 1)!} x^{2n+1}
\]
Review of power series.

Example
Find the Taylor series of $y(x) = \sin(x)$ centered at $x_0 = 0$.

Solution: $y(x) = \sin(x)$, $y(0) = 0$. $y'(x) = \cos(x)$, $y'(0) = 1$.

$y''(x) = -\sin(x)$, $y''(0) = 0$. $y'''(x) = -\cos(x)$, $y'''(0) = -1$.

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots \Rightarrow \sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}.$$

Remark: The Taylor series of $y(x) = \cos(x)$ centered at $x_0 = 0$ is

$$\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}.$$
Remark: The power series of a function may not be defined on the whole domain of the function.
Review of power series.

Remark: The power series of a function may not be defined on the whole domain of the function.

Example
The function \(y(x) = \frac{1}{1 - x} \) is defined for \(x \in \mathbb{R} - \{1\} \).
Review of power series.

Remark: The power series of a function may not be defined on the whole domain of the function.

Example
The function $y(x) = \frac{1}{1 - x}$ is defined for $x \in \mathbb{R} - \{1\}$.
Review of power series.

Remark: The power series of a function may not be defined on the whole domain of the function.

Example

The function $y(x) = \frac{1}{1 - x}$ is defined for $x \in \mathbb{R} - \{1\}$.

The power series

$$y(x) = \frac{1}{1 - x} = \sum_{n=0}^{\infty} x^n$$

converges only for $|x| < 1$.

Review of power series.

Definition

The power series \(y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n \) converges absolutely iff the series \(\sum_{n=0}^{\infty} |a_n| |x - x_0|^n \) converges.
Review of power series.

Definition

The power series \(y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n \) converges absolutely iff the series \(\sum_{n=0}^{\infty} |a_n| |x - x_0|^n \) converges.

Example

The series \(s = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \) converges,
Review of power series.

Definition

The power series \(y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n \) converges absolutely iff the series \(\sum_{n=0}^{\infty} |a_n| |x - x_0|^n \) converges.

Example

The series \(s = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \) converges, but it does not converge absolutely,
Review of power series.

Definition

The power series \(y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n \) converges absolutely iff the series \(\sum_{n=0}^{\infty} |a_n| |x - x_0|^n \) converges.

Example

The series \(s = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \) converges, but it does not converge absolutely, since \(\sum_{n=1}^{\infty} \frac{1}{n} \) diverges.
Review of power series.

Definition
The radius of convergence of a power series

\[y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n \]

is the number \(\rho \geq 0 \) that satisfies both

(a) the series converges absolutely for \(|x - x_0| < \rho \);
(b) the series diverges for \(|x - x_0| > \rho \).
Review of power series.

Definition
The radius of convergence of a power series

\[y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n \]

is the number \(\rho \geq 0 \) that satisfies both

(a) the series converges absolutely for \(|x - x_0| < \rho \);

(b) the series diverges for \(|x - x_0| > \rho \).
Review of power series.

Example

(1) \[\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \] has radius of convergence \(\rho = 1 \).
Example

(1) \[\frac{1}{1 - x} = \sum_{n=0}^{\infty} x^n \] has radius of convergence \(\rho = 1 \).

(2) \[e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \] has radius of convergence \(\rho = \infty \).
Example

(1) \[\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \] has radius of convergence \(\rho = 1 \).

(2) \[e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \] has radius of convergence \(\rho = \infty \).

(3) \[\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{(2n+1)} \] has radius \(\rho = \infty \).
Review of power series.

Example

(1) \(\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \) has radius of convergence \(\rho = 1 \).

(2) \(e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \) has radius of convergence \(\rho = \infty \).

(3) \(\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} \) has radius \(\rho = \infty \).

(4) \(\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} \) has radius of convergence \(\rho = \infty \).
Theorem (Ratio test)

Given the power series $y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$, introduce the number $L = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}$. Then, the following statements hold:

1. The power series converges in the domain $|x - x_0|L < 1$.
2. The power series diverges in the domain $|x - x_0|L > 1$.
3. The power series may or may not converge at $|x - x_0|L = 1$.

Therefore, if $L \neq 0$, then $\rho = \frac{1}{L}$ is the series radius of convergence; if $L = 0$, then the radius of convergence is $\rho = \infty$.

Review of power series.
Review of power series.

Remarks: On summation indices:

\[y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n \]
Review of power series.

Remarks: On summation indices:

\[
y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \cdots
\]
Review of power series.

Remarks: On summation indices:

\[
y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \cdots
\]

\[
y(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k
\]
Review of power series.

Remarks: On summation indices:

\[y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \cdots \]

\[y(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k = \sum_{m=-3}^{\infty} a_{m+3} (x - x_0)^{m+3}. \]
Review of power series.

Remarks: On summation indices:

\[y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \cdots \]

\[y(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k = \sum_{m=-3}^{\infty} a_{m+3} (x - x_0)^{m+3}. \]

\[y'(x) = \sum_{n=0}^{\infty} n a_n (x - x_0)^{n-1} \]
Review of power series.

Remarks: On summation indices:

\[y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \cdots \]

\[y(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k = \sum_{m=-3}^{\infty} a_{m+3} (x - x_0)^{m+3}. \]

\[y'(x) = \sum_{n=0}^{\infty} n a_n (x - x_0)^{n-1} = a_1 + 2a_2(x - x_0) + \cdots \]
Review of power series.

Remarks: On summation indices:

\[y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \cdots \]

\[y(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k = \sum_{m=-3}^{\infty} a_{m+3} (x - x_0)^{m+3}. \]

\[y'(x) = \sum_{n=0}^{\infty} n a_n (x - x_0)^{n-1} = a_1 + 2a_2(x - x_0) + \cdots \]

\[y'(x) = \sum_{n=1}^{\infty} n a_n (x - x_0)^{n-1} \]
Review of power series.

Remarks: On summation indices:

\[y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \cdots \]

\[y(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k = \sum_{m=-3}^{\infty} a_{m+3} (x - x_0)^{m+3}. \]

\[y'(x) = \sum_{n=0}^{\infty} n a_n (x - x_0)^{n-1} = a_1 + 2a_2(x - x_0) + \cdots \]

\[y'(x) = \sum_{n=1}^{\infty} n a_n (x - x_0)^{n-1} = \sum_{m=0}^{\infty} (m + 1) a_{m+1} (x - x_0)^m \]

where \(m = n - 1 \), that is, \(n = m + 1 \).
Power series solutions near regular points (Sect. 5.2).

- We study: $P(x) y'' + Q(x) y' + R(x) y = 0$.
- Review of power series.
- **Regular point equations.**
- Solutions using power series.
- Examples of the power series method.
Regular point equations.

Problem: We look for solutions \(y \) of the variable coefficients equation

\[
P(x) y'' + Q(x) y' + R(x) y = 0.
\]

around \(x_0 \in \mathbb{R} \) where \(P(x_0) \neq 0 \) using a power series representation of the solution centered at \(x_0 \), that is,

\[
y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n.
\]
Regular point equations.

Problem: We look for solutions \(y \) of the variable coefficients equation

\[
P(x) y'' + Q(x) y' + R(x) y = 0.
\]

around \(x_0 \in \mathbb{R} \) where \(P(x_0) \neq 0 \) using a power series representation of the solution centered at \(x_0 \), that is,

\[
y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n.
\]

Definition

Given continuous functions \(P, Q, R : (x_1, x_2) \rightarrow \mathbb{R} \), a point \(x_0 \in (x_1, x_2) \) is called a **regular point** of the equation

\[
P(x) y'' + Q(x) y' + R(x) y = 0.
\]

iff \(P(x_0) \neq 0 \). The point \(x_0 \) is called a **singular point** iff \(P(x_0) = 0 \).
Regular point equations.

Problem: We look for solutions y of the variable coefficients equation

$$P(x) y'' + Q(x) y' + R(x) y = 0.$$

around $x_0 \in \mathbb{R}$ where $P(x_0) \neq 0$ using a power series representation of the solution centered at x_0, that is,

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n.$$

Definition

Given continuous functions $P, Q, R : (x_1, x_2) \rightarrow \mathbb{R}$, a point $x_0 \in (x_1, x_2)$ is called a *regular point* of the equation

$$P(x) y'' + Q(x) y' + R(x) y = 0.$$

iff $P(x_0) \neq 0$. The point x_0 is called a *singular point* iff $P(x_0) = 0$.

Remark: The equation order does not change near regular points.
Power series solutions near regular points (Sect. 5.2).

- We study: \(P(x) y'' + Q(x) y' + R(x) y = 0. \)
- Review of power series.
- Regular point equations.
- **Solutions using power series.**
- Examples of the power series method.
Solutions using power series.

Summary for regular points:

(1) Propose a power series representation of the solution centered at x_0, given by

$$y(x) = \sum_{n=0}^{\infty} a_n (x-x_0)^n;$$

(2) Introduce Eq. (1) into the differential equation

$$P(x)y'' + Q(x)y' + R(x)y = 0.$$

(3) Find a recurrence relation among the coefficients a_n;

(4) Solve the recurrence relation in terms of free coefficients;

(5) If possible, add up the resulting power series for the solution y.

Solutions using power series.

Summary for regular points:

1. Propose a power series representation of the solution centered at x_0, given by

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n; \quad (1)$$

2. Introduce Eq. (1) into the differential equation

$$P(x)y'' + Q(x)y' + R(x)y = 0.$$

3. Find a recurrence relation among the coefficients a_n;

4. Solve the recurrence relation in terms of free coefficients;

5. If possible, add up the resulting power series for the solution y.

Solutions using power series.

Summary for regular points:

(1) Propose a power series representation of the solution centered at x_0, given by

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n; \quad (1)$$

(2) Introduce Eq. (1) into the differential equation

$$P(x) y'' + Q(x) y' + R(x) y = 0.$$
Solutions using power series.

Summary for regular points:

(1) Propose a power series representation of the solution centered at x_0, given by

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n; \quad (1)$$

(2) Introduce Eq. (1) into the differential equation

$$P(x) y'' + Q(x) y' + R(x) y = 0.$$

(3) Find a recurrence relation among the coefficients a_n;

(4) Solve the recurrence relation in terms of free coefficients;

(5) If possible, add up the resulting power series for the solution y.
Solutions using power series.

Summary for regular points:

(1) Propose a power series representation of the solution centered at \(x_0 \), given by

\[
y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n;
\]

(2) Introduce Eq. (1) into the differential equation

\[P(x) y'' + Q(x) y' + R(x) y = 0.\]

(3) Find a recurrence relation among the coefficients \(a_n \);

(4) Solve the recurrence relation in terms of free coefficients;
Solutions using power series.

Summary for regular points:

(1) Propose a power series representation of the solution centered at \(x_0 \), given by

\[
y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n; \quad (1)
\]

(2) Introduce Eq. (1) into the differential equation

\[
P(x) y'' + Q(x) y' + R(x) y = 0.
\]

(3) Find a recurrence relation among the coefficients \(a_n \);

(4) Solve the recurrence relation in terms of free coefficients;

(5) If possible, add up the resulting power series for the solution \(y \).
Power series solutions near regular points (Sect. 5.2).

- We study: \(P(x) y'' + Q(x) y' + R(x) y = 0 \).
- Review of power series.
- Regular point equations.
- Solutions using power series.
- **Examples of the power series method.**
Examples of the power series method.

Example
Find a power series solution $y(x)$ around the point $x_0 = 0$ of the equation

$$y' + c y = 0, \quad c \in \mathbb{R}.$$
Examples of the power series method.

Example
Find a power series solution \(y(x) \) around the point \(x_0 = 0 \) of the equation
\[
y' + c y = 0, \quad c \in \mathbb{R}.\]

Solution: Recall: The solution is \(y(x) = a_0 e^{-cx} \).
Examples of the power series method.

Example
Find a power series solution $y(x)$ around the point $x_0 = 0$ of the equation

$$y' + c y = 0, \quad c \in \mathbb{R}.$$

Solution: Recall: The solution is $y(x) = a_0 e^{-c x}$.

We now use the power series method.
Examples of the power series method.

Example
Find a power series solution $y(x)$ around the point $x_0 = 0$ of the equation

$$y' + cy = 0, \quad c \in \mathbb{R}.$$

Solution: Recall: The solution is $y(x) = a_0 e^{-cx}$.

We now use the power series method. We propose a power series centered at $x_0 = 0$:

$$y(x) = \sum_{n=0}^{\infty} a_n x^n$$
Examples of the power series method.

Example
Find a power series solution $y(x)$ around the point $x_0 = 0$ of the equation

$$y' + c y = 0, \quad c \in \mathbb{R}.$$

Solution: Recall: The solution is $y(x) = a_0 e^{-c x}$.

We now use the power series method. We propose a power series centered at $x_0 = 0$:

$$y(x) = \sum_{n=0}^{\infty} a_n x^n \quad \Rightarrow \quad y'(x) = \sum_{n=0}^{\infty} n a_n x^{(n-1)}$$
Examples of the power series method.

Example
Find a power series solution \(y(x) \) around the point \(x_0 = 0 \) of the equation
\[
y' + c \, y = 0, \quad c \in \mathbb{R}.
\]

Solution: Recall: The solution is \(y(x) = a_0 \, e^{-c \cdot x} \).

We now use the power series method. We propose a power series centered at \(x_0 = 0 \):
\[
y(x) = \sum_{n=0}^{\infty} a_n \, x^n \quad \Rightarrow \quad y'(x) = \sum_{n=0}^{\infty} n \, a_n \, x^{(n-1)} = \sum_{n=1}^{\infty} n \, a_n \, x^{(n-1)}.
\]
Examples of the power series method.

Example
Find a power series solution $y(x)$ around the point $x_0 = 0$ of the equation

$$y' + c y = 0, \quad c \in \mathbb{R}.$$

Solution: Recall: The solution is $y(x) = a_0 e^{-c x}$.

We now use the power series method. We propose a power series centered at $x_0 = 0$:

$$y(x) = \sum_{n=0}^{\infty} a_n x^n \quad \Rightarrow \quad y'(x) = \sum_{n=0}^{\infty} na_n x^{(n-1)} = \sum_{n=1}^{\infty} na_n x^{(n-1)}.$$

Change the summation index: $m = n - 1$, so $n = m + 1$.
Examples of the power series method.

Example

Find a power series solution \(y(x) \) around the point \(x_0 = 0 \) of the equation

\[
y' + c y = 0, \quad c \in \mathbb{R}.
\]

Solution: Recall: The solution is \(y(x) = a_0 e^{-cx} \).

We now use the power series method. We propose a power series centered at \(x_0 = 0 \):

\[
y(x) = \sum_{n=0}^{\infty} a_n x^n \quad \Rightarrow \quad y'(x) = \sum_{n=0}^{\infty} n a_n x^{(n-1)} = \sum_{n=1}^{\infty} n a_n x^{(n-1)}.
\]

Change the summation index: \(m = n - 1 \), so \(n = m + 1 \).

\[
y'(x) = \sum_{m=0}^{\infty} (m + 1) a_{m+1} x^m
\]
Examples of the power series method.

Example
Find a power series solution $y(x)$ around the point $x_0 = 0$ of the equation

$$y' + c y = 0, \quad c \in \mathbb{R}.$$

Solution: Recall: The solution is $y(x) = a_0 e^{-c x}$.

We now use the power series method. We propose a power series centered at $x_0 = 0$:

$$y(x) = \sum_{n=0}^{\infty} a_n x^n \quad \Rightarrow \quad y'(x) = \sum_{n=0}^{\infty} n a_n x^{n-1} = \sum_{n=1}^{\infty} n a_n x^{n-1}.$$

Change the summation index: $m = n - 1$, so $n = m + 1$.

$$y'(x) = \sum_{m=0}^{\infty} (m + 1) a_{m+1} x^m = \sum_{n=0}^{\infty} (n + 1) a_{n+1} x^n.$$
Examples of the power series method.

Example
Find a power series solution $y(x)$ around the point $x_0 = 0$ of the equation

$$y' + cy = 0, \quad c \in \mathbb{R}.$$

Solution: $y(x) = \sum_{n=0}^{\infty} a_n x^n$, and $y'(x) = \sum_{n=0}^{\infty} (n + 1)a_{n+1} x^n$.
Examples of the power series method.

Example
Find a power series solution \(y(x) \) around the point \(x_0 = 0 \) of the equation

\[
y' + c y = 0, \quad c \in \mathbb{R}.
\]

Solution: \(y(x) = \sum_{n=0}^{\infty} a_n x^n \), and \(y'(x) = \sum_{n=0}^{\infty} (n + 1)a_{n+1} x^n \).

Introduce \(y \) and \(y' \) into the differential equation,

\[
\sum_{n=0}^{\infty} (n + 1)a_{n+1} x^n + \sum_{n=0}^{\infty} c a_n x^n = 0
\]
Examples of the power series method.

Example

Find a power series solution \(y(x) \) around the point \(x_0 = 0 \) of the equation

\[
y' + cy = 0, \quad c \in \mathbb{R}.
\]

Solution: \(y(x) = \sum_{n=0}^{\infty} a_n x^n \), and \(y'(x) = \sum_{n=0}^{\infty} (n + 1)a_{n+1} x^n \).

Introduce \(y \) and \(y' \) into the differential equation,

\[
\sum_{n=0}^{\infty} (n + 1)a_{n+1} x^n + \sum_{n=0}^{\infty} c a_n x^n = 0
\]

\[
\sum_{n=0}^{\infty} [(n + 1)a_{n+1} + c a_n] x^n = 0
\]
Examples of the power series method.

Example

Find a power series solution \(y(x) \) around the point \(x_0 = 0 \) of the equation

\[
y' + c \, y = 0, \quad c \in \mathbb{R}.
\]

Solution: \(y(x) = \sum_{n=0}^{\infty} a_n \, x^n \), and \(y'(x) = \sum_{n=0}^{\infty} (n + 1) a_{n+1} \, x^n \).

Introduce \(y \) and \(y' \) into the differential equation,

\[
\sum_{n=0}^{\infty} (n + 1) a_{n+1} \, x^n + \sum_{n=0}^{\infty} c \, a_n \, x^n = 0
\]

\[
\sum_{n=0}^{\infty} \left[(n + 1) a_{n+1} + c \, a_n \right] \, x^n = 0
\]

The recurrence relation is \((n + 1) a_{n+1} + c \, a_n = 0 \) for all \(n \geq 0 \).
Examples of the power series method.

Example
Find a power series solution $y(x)$ around the point $x_0 = 0$ of the equation

$$y' + c y = 0, \quad c \in \mathbb{R}.$$

Solution: Recurrence relation: $(n + 1)a_{n+1} + c a_n = 0, \quad n \geq 0.$
Examples of the power series method.

Example
Find a power series solution \(y(x) \) around the point \(x_0 = 0 \) of the equation
\[
y' + c y = 0, \quad c \in \mathbb{R}.
\]

Solution: Recurrence relation: \((n + 1)a_{n+1} + c a_n = 0, \quad n \geq 0. \)

Equivalently: \(a_{n+1} = -\frac{c}{n+1} a_n. \)
Examples of the power series method.

Example
Find a power series solution \(y(x) \) around the point \(x_0 = 0 \) of the equation
\[
y' + cy = 0, \quad c \in \mathbb{R}.
\]

Solution: Recurrence relation: \((n + 1)a_{n+1} + ca_n = 0, \quad n \geq 0.\)

Equivalently: \(a_{n+1} = -\frac{c}{n+1} a_n.\) That is,
\[
n = 0, \quad a_1 = -ca_0
\]
Examples of the power series method.

Example
Find a power series solution $y(x)$ around the point $x_0 = 0$ of the equation

$$y' + c y = 0, \quad c \in \mathbb{R}.$$

Solution: Recurrence relation: $(n + 1)a_{n+1} + c a_n = 0, \quad n \geq 0$.

Equivalently: $a_{n+1} = -\frac{c}{n+1} a_n$. That is,

$$n = 0, \quad a_1 = -c a_0 \quad \Rightarrow \quad a_1 = -c a_0,$$
Examples of the power series method.

Example
Find a power series solution $y(x)$ around the point $x_0 = 0$ of the equation
\[y' + c y = 0, \quad c \in \mathbb{R}. \]

Solution: Recurrence relation: \((n + 1)a_{n+1} + c a_n = 0, \quad n \geq 0.\)

Equivalently: \(a_{n+1} = -\frac{c}{n+1} a_n.\) That is,

- \(n = 0, \quad a_1 = -c a_0 \quad \Rightarrow \quad a_1 = -c a_0,\)

- \(n = 1, \quad 2a_2 = -c a_1\)
Examples of the power series method.

Example
Find a power series solution \(y(x) \) around the point \(x_0 = 0 \) of the equation
\[
y' + c y = 0, \quad c \in \mathbb{R}.
\]

Solution: Recurrence relation: \((n + 1) a_{n+1} + c a_n = 0, \quad n \geq 0.\)
Equivalently: \(a_{n+1} = -\frac{c}{n+1} a_n \). That is,
\[
n = 0, \quad a_1 = -c a_0 \quad \Rightarrow \quad a_1 = -c a_0,
\]
\[
n = 1, \quad 2a_2 = -c a_1 \quad \Rightarrow \quad a_2 = \frac{c^2}{2!} a_0,
\]
Examples of the power series method.

Example
Find a power series solution $y(x)$ around the point $x_0 = 0$ of the equation

$$y' + c y = 0, \quad c \in \mathbb{R}.$$

Solution: Recurrence relation: $(n + 1)a_{n+1} + c a_n = 0, \quad n \geq 0$.

Equivalently: $a_{n+1} = -\frac{c}{n+1} a_n$. That is,

- $n = 0, \quad a_1 = -c a_0 \quad \Rightarrow \quad a_1 = -c a_0$,
- $n = 1, \quad 2a_2 = -c a_1 \quad \Rightarrow \quad a_2 = \frac{c^2}{2!} a_0$,
- $n = 2, \quad 3a_3 = -c a_2$
Examples of the power series method.

Example
Find a power series solution \(y(x) \) around the point \(x_0 = 0 \) of the equation
\[
y' + c y = 0, \quad c \in \mathbb{R}.
\]

Solution: Recurrence relation: \((n + 1)a(n+1) + c a_n = 0, \quad n \geq 0\).

Equivalently: \(a_{n+1} = -\frac{c}{n+1} a_n\). That is,
\[

to\quad a_1 = -c a_0,
\]
\[

to\quad a_2 = \frac{c^2}{2!} a_0,
\]
\[

to\quad a_3 = -\frac{c^3}{3!} a_0,
\]
Examples of the power series method.

Example
Find a power series solution $y(x)$ around the point $x_0 = 0$ of the equation

$$y' + c y = 0, \quad c \in \mathbb{R}.$$

Solution: Recurrence relation: $(n + 1)a_{n+1} + c a_n = 0, \quad n \geq 0$.

Equivalently: $a_{n+1} = -\frac{c}{n+1} a_n$. That is,

- $n = 0, \quad a_1 = -c a_0 \quad \Rightarrow \quad a_1 = -c a_0$,
- $n = 1, \quad 2a_2 = -c a_1 \quad \Rightarrow \quad a_2 = \frac{c^2}{2!} a_0$,
- $n = 2, \quad 3a_3 = -c a_2 \quad \Rightarrow \quad a_3 = -\frac{c^3}{3!} a_0$,
- $n = 3, \quad 4a_4 = -c a_3$.
Examples of the power series method.

Example

Find a power series solution $y(x)$ around the point $x_0 = 0$ of the equation

$$y' + c y = 0, \quad c \in \mathbb{R}.$$

Solution: Recurrence relation: $(n + 1)a_{n+1} + c a_n = 0, \quad n \geq 0$.

Equivalently: $a_{n+1} = -\frac{c}{n+1} a_n$. That is,

- $n = 0$, $a_1 = -c a_0 \Rightarrow a_1 = -c a_0$,

- $n = 1$, $2a_2 = -c a_1 \Rightarrow a_2 = \frac{c^2}{2!} a_0$,

- $n = 2$, $3a_3 = -c a_2 \Rightarrow a_3 = -\frac{c^3}{3!} a_0$,

- $n = 3$, $4a_4 = -c a_3 \Rightarrow a_4 = \frac{c^4}{4!} a_0$.
Examples of the power series method.

Example
Find a power series solution \(y(x) \) around the point \(x_0 = 0 \) of the equation

\[
y' + cy = 0, \quad c \in \mathbb{R}.
\]

Solution: Solved recurrence relation: \(a_n = \frac{(-c)^n}{n!} a_0 \).
Examples of the power series method.

Example
Find a power series solution $y(x)$ around the point $x_0 = 0$ of the equation

$$y' + c y = 0, \quad c \in \mathbb{R}.\]

Solution: Solved recurrence relation: $a_n = \frac{(-c)^n}{n!} a_0$.

The solution y of the differential equation is given by

$$y(x) = \sum_{n=0}^{\infty} \frac{(-c)^n}{n!} a_0 x^n$$
Examples of the power series method.

Example
Find a power series solution $y(x)$ around the point $x_0 = 0$ of the equation

$$y' + cy = 0, \quad c \in \mathbb{R}.$$

Solution: Solved recurrence relation: $a_n = \frac{(-c)^n}{n!} a_0$.

The solution y of the differential equation is given by

$$y(x) = \sum_{n=0}^{\infty} \frac{(-c)^n}{n!} a_0 x^n \implies y(x) = a_0 \sum_{n=0}^{\infty} \frac{(-c x)^n}{n!}.$$
Examples of the power series method.

Example
Find a power series solution \(y(x) \) around the point \(x_0 = 0 \) of the equation
\[
y' + c y = 0, \quad c \in \mathbb{R}.
\]

Solution: Solved recurrence relation: \(a_n = \frac{(-c)^n}{n!} a_0. \)

The solution \(y \) of the differential equation is given by
\[
y(x) = \sum_{n=0}^{\infty} \frac{(-c)^n}{n!} a_0 x^n \quad \Rightarrow \quad y(x) = a_0 \sum_{n=0}^{\infty} \frac{(-c x)^n}{n!}.
\]

If we recall the power series \(e^{ax} = \sum_{n=0}^{\infty} \frac{(ax)^n}{n!} \),
Examples of the power series method.

Example

Find a power series solution $y(x)$ around the point $x_0 = 0$ of the equation

$$y' + c y = 0, \quad c \in \mathbb{R}.$$

Solution: Solved recurrence relation: $a_n = \frac{(-c)^n}{n!} a_0$.

The solution y of the differential equation is given by

$$y(x) = \sum_{n=0}^{\infty} \frac{(-c)^n}{n!} a_0 x^n \Rightarrow y(x) = a_0 \sum_{n=0}^{\infty} \frac{(-c x)^n}{n!}.$$

If we recall the power series $e^{ax} = \sum_{n=0}^{\infty} \frac{(ax)^n}{n!}$,

then, we conclude that the solution is $y(x) = a_0 e^{-c x}$. △
Examples of the power series method.

Example
Find a power series solution $y(x)$ around the point $x_0 = 0$ of the equation

$$y'' + y = 0.$$
Examples of the power series method.

Example
Find a power series solution $y(x)$ around the point $x_0 = 0$ of the equation

$$y'' + y = 0.$$

Solution: Recall: The characteristic polynomial is $r^2 + 1 = 0,$
Examples of the power series method.

Example
Find a power series solution \(y(x) \) around the point \(x_0 = 0 \) of the equation
\[
y'' + y = 0.
\]

Solution: Recall: The characteristic polynomial is \(r^2 + 1 = 0 \), hence the general solution is \(y(x) = a_0 \cos(x) + a_1 \sin(x) \).
Examples of the power series method.

Example

Find a power series solution $y(x)$ around the point $x_0 = 0$ of the equation

$$y'' + y = 0.$$

Solution: Recall: The characteristic polynomial is $r^2 + 1 = 0$, hence the general solution is $y(x) = a_0 \cos(x) + a_1 \sin(x)$.

We re-obtain this solution using the power series method:
Examples of the power series method.

Example
Find a power series solution \(y(x) \) around the point \(x_0 = 0 \) of the equation

\[y'' + y = 0. \]

Solution: Recall: The characteristic polynomial is \(r^2 + 1 = 0 \), hence the general solution is \(y(x) = a_0 \cos x + a_1 \sin x \).

We re-obtain this solution using the power series method:

\[y = \sum_{n=0}^{\infty} a_n x^n \]
Examples of the power series method.

Example
Find a power series solution \(y(x) \) around the point \(x_0 = 0 \) of the equation
\[
y'' + y = 0.
\]

Solution: Recall: The characteristic polynomial is \(r^2 + 1 = 0 \), hence the general solution is \(y(x) = a_0 \cos(x) + a_1 \sin(x) \).

We re-obtain this solution using the power series method:
\[
y = \sum_{n=0}^{\infty} a_n x^n \quad \Rightarrow \quad y' = \sum_{n=1}^{\infty} na_n x^{(n-1)}
\]
Examples of the power series method.

Example
Find a power series solution $y(x)$ around the point $x_0 = 0$ of the equation

$$y'' + y = 0.$$

Solution: Recall: The characteristic polynomial is $r^2 + 1 = 0$, hence the general solution is $y(x) = a_0 \cos(x) + a_1 \sin(x)$.

We re-obtain this solution using the power series method:

$$y = \sum_{n=0}^{\infty} a_n x^n \quad \Rightarrow \quad y' = \sum_{n=1}^{\infty} na_n x^{n-1} = \sum_{m=0}^{\infty} (m + 1) a_{m+1} x^m,$$
Examples of the power series method.

Example
Find a power series solution $y(x)$ around the point $x_0 = 0$ of the equation

$$y'' + y = 0.$$

Solution: Recall: The characteristic polynomial is $r^2 + 1 = 0$, hence the general solution is $y(x) = a_0 \cos(x) + a_1 \sin(x)$.

We re-obtain this solution using the power series method:

$$y = \sum_{n=0}^{\infty} a_n x^n \quad \Rightarrow \quad y' = \sum_{n=1}^{\infty} n a_n x^{(n-1)} = \sum_{m=0}^{\infty} (m + 1) a_{m+1} x^m,$$

where $m = n - 1$, so $n = m + 1$;
Examples of the power series method.

Example

Find a power series solution \(y(x) \) around the point \(x_0 = 0 \) of the equation

\[
y'' + y = 0.
\]

Solution: Recall: The characteristic polynomial is \(r^2 + 1 = 0 \), hence the general solution is \(y(x) = a_0 \cos(x) + a_1 \sin(x) \).

We re-obtain this solution using the power series method:

\[
y = \sum_{n=0}^{\infty} a_n x^n \quad \Rightarrow \quad y' = \sum_{n=1}^{\infty} n a_n x^{n-1} = \sum_{m=0}^{\infty} (m + 1) a_{m+1} x^m,
\]

where \(m = n - 1 \), so \(n = m + 1 \);

\[
y'' = \sum_{n=2}^{\infty} n(n - 1) a_n x^{n-2}
\]
Examples of the power series method.

Example
Find a power series solution $y(x)$ around the point $x_0 = 0$ of the equation

$$y'' + y = 0.$$

Solution: Recall: The characteristic polynomial is $r^2 + 1 = 0$, hence the general solution is $y(x) = a_0 \cos(x) + a_1 \sin(x)$.

We re-obtain this solution using the power series method:

$$y = \sum_{n=0}^{\infty} a_n x^n \quad \Rightarrow \quad y' = \sum_{n=1}^{\infty} na_n x^{(n-1)} = \sum_{m=0}^{\infty} (m + 1)a_{m+1} x^m,$$

where $m = n - 1$, so $n = m + 1$;

$$y'' = \sum_{n=2}^{\infty} n(n - 1)a_n x^{(n-2)} = \sum_{m=0}^{\infty} (m + 2)(m + 1)a_{m+2} x^m.$$
Examples of the power series method.

Example

Find a power series solution $y(x)$ around the point $x_0 = 0$ of the equation

$$y'' + y = 0.$$

Solution: Recall: The characteristic polynomial is $r^2 + 1 = 0$, hence the general solution is $y(x) = a_0 \cos(x) + a_1 \sin(x)$.

We re-obtain this solution using the power series method:

$$y = \sum_{n=0}^{\infty} a_n x^n \quad \Rightarrow \quad y' = \sum_{n=1}^{\infty} na_n x^{(n-1)} = \sum_{m=0}^{\infty} (m + 1) a_{m+1} x^m,$$

where $m = n - 1$, so $n = m + 1$;

$$y'' = \sum_{n=2}^{\infty} n(n - 1)a_n x^{(n-2)} = \sum_{m=0}^{\infty} (m + 2)(m + 1) a_{m+2} x^m.$$

where $m = n - 2$, so $n = m + 2$.
Examples of the power series method.

Example

Find a power series solution \(y(x) \) around the point \(x_0 = 0 \) of the equation

\[y'' + y = 0. \]

Solution: Introduce \(y \) and \(y'' \) into the differential equation,

\[
\sum_{n=0}^{\infty} (n + 2)(n + 1)a_{n+2} x^n + \sum_{n=0}^{\infty} a_n x^n = 0
\]
Examples of the power series method.

Example
Find a power series solution $y(x)$ around the point $x_0 = 0$ of the equation

$$y'' + y = 0.$$

Solution: Introduce y and y'' into the differential equation,

$$\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n + \sum_{n=0}^{\infty} a_n x^n = 0$$

$$\sum_{n=0}^{\infty} \left[(n+2)(n+1)a_{n+2} + a_n \right] x^n = 0.$$
Examples of the power series method.

Example
Find a power series solution $y(x)$ around the point $x_0 = 0$ of the equation

$$y'' + y = 0.$$

Solution: Introduce y and y'' into the differential equation,

$$\sum_{n=0}^{\infty} (n + 2)(n + 1)a_{n+2} x^n + \sum_{n=0}^{\infty} a_n x^n = 0$$

$$\sum_{n=0}^{\infty} [(n + 2)(n + 1)a_{n+2} + a_n] x^n = 0.$$

The recurrence relation is $(n + 2)(n + 1)a_{n+2} + a_n = 0, \ n \geq 0.$
Examples of the power series method.

Example
Find a power series solution $y(x)$ around the point $x_0 = 0$ of the equation
$$y'' + y = 0.$$

Solution: Introduce y and y'' into the differential equation,
$$
\sum_{n=0}^{\infty} (n + 2)(n + 1)a_{n+2} x^n + \sum_{n=0}^{\infty} a_n x^n = 0
$$

$$
\sum_{n=0}^{\infty} [(n + 2)(n + 1)a_{n+2} + a_n] x^n = 0.
$$

The recurrence relation is $(n + 2)(n + 1)a_{n+2} + a_n = 0, \quad n \geq 0$.

Equivalently: $(n + 2)(n + 1) a_{n+2} = -a_n$.
Examples of the power series method.

Example
Find a power series solution $y(x)$ around the point $x_0 = 0$ of the equation

$$y'' + y = 0.$$

Solution: Recall: $(n + 2)(n + 1) a_{(n+2)} = -a_n, \ n \geq 0.$
Examples of the power series method.

Example
Find a power series solution \(y(x) \) around the point \(x_0 = 0 \) of the equation
\[
y'' + y = 0.
\]

Solution: Recall: \((n + 2)(n + 1) a_{n+2} = -a_n, \ n \geq 0.\)

For \(n \) even: \(n = 0, \ (2)(1)a_2 = -a_0 \)
Examples of the power series method.

Example

Find a power series solution \(y(x) \) around the point \(x_0 = 0 \) of the equation

\[y'' + y = 0. \]

Solution: Recall: \((n + 2)(n + 1) a_{(n+2)} = -a_n, \ n \geq 0. \)

For \(n \) even: \(n = 0, \ (2)(1)a_2 = -a_0 \ \Rightarrow \ a_2 = -\frac{1}{2!} a_0, \)
Examples of the power series method.

Example
Find a power series solution $y(x)$ around the point $x_0 = 0$ of the equation

$$y'' + y = 0.$$

Solution: Recall: $(n + 2)(n + 1)a_{n+2} = -a_n$, $n \geq 0$.

For n even: $n = 0$, $(2)(1)a_2 = -a_0 \Rightarrow a_2 = -\frac{1}{2!}a_0,

n = 2, \quad (4)(3)a_4 = -a_2$
Examples of the power series method.

Example
Find a power series solution \(y(x)\) around the point \(x_0 = 0\) of the equation
\[y'' + y = 0.\]

Solution: Recall: \((n + 2)(n + 1)a_{n+2} = -a_n, \ n \geq 0.\)

For \(n\) even: \(n = 0, \ (2)(1)a_2 = -a_0 \ \Rightarrow \ a_2 = -\frac{1}{2!} a_0,\)
\[n = 2, \ (4)(3)a_4 = -a_2 \ \Rightarrow \ a_4 = \frac{1}{4!} a_0,\]
Examples of the power series method.

Example
Find a power series solution \(y(x) \) around the point \(x_0 = 0 \) of the equation
\[
y'' + y = 0.
\]

Solution: Recall: \((n + 2)(n + 1) a_{n+2} = -a_n, \ n \geq 0.\)

For \(n \) even: \(n = 0, \ \ (2)(1)a_2 = -a_0 \ \Rightarrow \ a_2 = -\frac{1}{2!} a_0, \)
\[
n = 2, \ \ (4)(3)a_4 = -a_2 \ \Rightarrow \ a_4 = \frac{1}{4!} a_0,
\]
\[
n = 4, \ \ (6)(5)a_6 = -a_4
\]
Examples of the power series method.

Example
Find a power series solution \(y(x) \) around the point \(x_0 = 0 \) of the equation
\[
y'' + y = 0.
\]

Solution: Recall: \((n + 2)(n + 1) a_{n+2} = -a_n, \quad n \geq 0.\)

For \(n \) even: \(n = 0, \quad (2)(1)a_2 = -a_0 \quad \Rightarrow \quad a_2 = -\frac{1}{2!} a_0, \)
\[
n = 2, \quad (4)(3)a_4 = -a_2 \quad \Rightarrow \quad a_4 = \frac{1}{4!} a_0,
\]
\[
n = 4, \quad (6)(5)a_6 = -a_4 \quad \Rightarrow \quad a_6 = -\frac{1}{6!} a_0.
\]
Examples of the power series method.

Example
Find a power series solution $y(x)$ around the point $x_0 = 0$ of the equation
\[y'' + y = 0. \]

Solution: Recall: $(n + 2)(n + 1)a_{n+2} = -a_n$, $n \geq 0$.

For n even:

- $n = 0$, $(2)(1)a_2 = -a_0$ \implies $a_2 = -\frac{1}{2!}a_0$,

- $n = 2$, $(4)(3)a_4 = -a_2$ \implies $a_4 = \frac{1}{4!}a_0$,

- $n = 4$, $(6)(5)a_6 = -a_4$ \implies $a_6 = -\frac{1}{6!}a_0$.

We obtain: $a_{2k} = \frac{(-1)^k}{(2k)!}a_0$, for $k \geq 0$.
Examples of the power series method.

Example

Find a power series solution $y(x)$ around the point $x_0 = 0$ of the equation

$$y'' + y = 0.$$

Solution: Recall: $a_{2k} = \frac{(-1)^k}{(2k)!} a_0$ and $(n + 2)(n + 1) a_{n+2} = -a_n$.

Examples of the power series method.

Example
Find a power series solution $y(x)$ around the point $x_0 = 0$ of the equation

$$y'' + y = 0.$$

Solution: Recall: $a_{2k} = \frac{(-1)^k}{(2k)!} a_0$ and $(n + 2)(n + 1) a_{n+2} = -a_n$.

For n odd: $n = 1$, \hspace{1cm} (3)(2)a_3 = -a_1
Examples of the power series method.

Example
Find a power series solution $y(x)$ around the point $x_0 = 0$ of the equation

$$y'' + y = 0.$$

Solution: Recall: $a_{2k} = \frac{(-1)^k}{(2k)!} a_0$ and $(n + 2)(n + 1) a_{n+2} = -a_n$.

For n odd: $n = 1$, $(3)(2)a_3 = -a_1 \implies a_3 = -\frac{1}{3!} a_1$,

Examples of the power series method.

Example

Find a power series solution \(y(x) \) around the point \(x_0 = 0 \) of the equation

\[
y'' + y = 0.
\]

Solution: Recall: \(a_{2k} = \frac{(-1)^k}{(2k)!} a_0 \) and \((n + 2)(n + 1) a_{(n+2)} = -a_n \).

For \(n \) odd: \(n = 1 \), \((3)(2)a_3 = -a_1 \) \(\Rightarrow \) \(a_3 = -\frac{1}{3!} a_1 \),

\[
n = 3, \quad (5)(4)a_5 = -a_3
\]
Examples of the power series method.

Example

Find a power series solution $y(x)$ around the point $x_0 = 0$ of the equation

$$y'' + y = 0.$$

Solution: Recall: $a_{2k} = \frac{(-1)^k}{(2k)!} a_0$ and $(n + 2)(n + 1) a_{n+2} = -a_n$.

For n odd: $n = 1$, \((3)(2)a_3 = -a_1 \quad \Rightarrow \quad a_3 = -\frac{1}{3!}a_1,$

$$n = 3, \quad (5)(4)a_5 = -a_3 \quad \Rightarrow \quad a_5 = \frac{1}{5!}a_1,$$
Examples of the power series method.

Example
Find a power series solution $y(x)$ around the point $x_0 = 0$ of the equation

$$y'' + y = 0.$$

Solution: Recall: $a_{2k} = \frac{(-1)^k}{(2k)!} a_0$ and $(n + 2)(n + 1) a_{(n+2)} = -a_n$.

For n odd: $n = 1$, \((3)(2)a_3 = -a_1 \quad \Rightarrow \quad a_3 = -\frac{1}{3!} a_1, \)

$n = 3$, \((5)(4)a_5 = -a_3 \quad \Rightarrow \quad a_5 = \frac{1}{5!} a_1, \)

$n = 5$, \((7)(6)a_7 = -a_5 \)
Examples of the power series method.

Example
Find a power series solution \(y(x) \) around the point \(x_0 = 0 \) of the equation
\[
y'' + y = 0.
\]

Solution: Recall: \(a_{2k} = \frac{(-1)^k}{(2k)!} a_0 \) and \((n + 2)(n + 1) a_{(n+2)} = -a_n \).

For \(n \) odd: \(n = 1 \), \((3)(2)a_3 = -a_1 \) \(\Rightarrow \) \(a_3 = -\frac{1}{3!} a_1 \),

\(n = 3 \), \((5)(4)a_5 = -a_3 \) \(\Rightarrow \) \(a_5 = \frac{1}{5!} a_1 \),

\(n = 5 \), \((7)(6)a_7 = -a_5 \) \(\Rightarrow \) \(a_7 = -\frac{1}{7!} a_1 \).
Examples of the power series method.

Example
Find a power series solution $y(x)$ around the point $x_0 = 0$ of the equation

$$y'' + y = 0.$$

Solution: Recall: $a_{2k} = \frac{(-1)^k}{(2k)!} a_0$ and $(n + 2)(n + 1) a_{(n+2)} = -a_n$.

For n odd: $n = 1,$ (3)(2)$a_3 = -a_1 \Rightarrow a_3 = -\frac{1}{3!} a_1$,

$$n = 3, \quad (5)(4)a_5 = -a_3 \Rightarrow a_5 = \frac{1}{5!} a_1,$$

$$n = 5, \quad (7)(6)a_7 = -a_5 \Rightarrow a_7 = -\frac{1}{7!} a_1.$$

We obtain $a_{2k+1} = \frac{(-1)^k}{(2k + 1)!} a_1$ for $k \geq 0$.
Examples of the power series method.

Example
Find a power series solution \(y(x) \) around the point \(x_0 = 0 \) of the equation

\[y'' + y = 0. \]

Solution: Recall: \(a_{2k} = \frac{(-1)^k}{(2k)!} a_0 \) and \(a_{2k+1} = \frac{(-1)^k}{(2k + 1)!} a_1. \)
Examples of the power series method.

Example
Find a power series solution $y(x)$ around the point $x_0 = 0$ of the equation

$$y'' + y = 0.$$

Solution: Recall:

$$a_{2k} = \frac{(-1)^k}{(2k)!} a_0 \quad \text{and} \quad a_{2k+1} = \frac{(-1)^k}{(2k + 1)!} a_1.$$

Therefore, the solution of the differential equation is given by

$$y(x) = a_0 \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k} + a_1 \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k + 1)!} x^{2k+1}.$$
Examples of the power series method.

Example
Find a power series solution \(y(x) \) around the point \(x_0 = 0 \) of the equation
\[
y'' + y = 0.
\]

Solution: Recall: \(a_{2k} = \frac{(-1)^k}{(2k)!} a_0 \) and \(a_{2k+1} = \frac{(-1)^k}{(2k + 1)!} a_1 \).

Therefore, the solution of the differential equation is given by
\[
y(x) = a_0 \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k} + a_1 \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k + 1)!} x^{2k+1}.
\]

One can check that these are precisely the power series representations of the cosine and sine functions,
Examples of the power series method.

Example
Find a power series solution $y(x)$ around the point $x_0 = 0$ of the equation

$$y'' + y = 0.$$

Solution: Recall: $a_{2k} = \frac{(-1)^k}{(2k)!} a_0$ and $a_{2k+1} = \frac{(-1)^k}{(2k + 1)!} a_1$.

Therefore, the solution of the differential equation is given by

$$y(x) = a_0 \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k} + a_1 \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k + 1)!} x^{2k+1}.$$

One can check that these are precisely the power series representations of the cosine and sine functions, respectively,

$$y(x) = a_0 \cos(x) + a_1 \sin(x).$$
Examples of the power series method.

Example
Find the first three terms of the power series expansion around the point \(x_0 = 2 \) of each fundamental solution to the differential equation

\[y'' - xy = 0. \]
Examples of the power series method.

Example

Find the first three terms of the power series expansion around the point $x_0 = 2$ of each fundamental solution to the differential equation

$$y'' - x y = 0.$$

Solution: We propose: $y = \sum_{n=0}^{\infty} a_n(x - 2)^n$.
Examples of the power series method.

Example
Find the first three terms of the power series expansion around the point $x_0 = 2$ of each fundamental solution to the differential equation

$$y'' - xy = 0.$$

Solution: We propose: $y = \sum_{n=0}^{\infty} a_n(x - 2)^n$.

It is convenient to rewrite the function xy as follows,

$$xy = \sum_{n=0}^{\infty} a_n x(x - 2)^n$$
Examples of the power series method.

Example
Find the first three terms of the power series expansion around the point $x_0 = 2$ of each fundamental solution to the differential equation

$$y'' - x y = 0.$$

Solution: We propose: $y = \sum_{n=0}^{\infty} a_n(x - 2)^n$.

It is convenient to rewrite the function xy as follows,

$$xy = \sum_{n=0}^{\infty} a_n x(x - 2)^n = \sum_{n=0}^{\infty} a_n [(x - 2) + 2](x - 2)^n,$$
Examples of the power series method.

Example
Find the first three terms of the power series expansion around the point $x_0 = 2$ of each fundamental solution to the differential equation

$$y'' - x y = 0.$$

Solution: We propose: $y = \sum_{n=0}^{\infty} a_n (x - 2)^n$.

It is convenient to rewrite the function xy as follows,

$$xy = \sum_{n=0}^{\infty} a_n x(x - 2)^n = \sum_{n=0}^{\infty} a_n [(x - 2) + 2](x - 2)^n,$$

$$xy = \sum_{n=0}^{\infty} a_n (x - 2)^{n+1} + \sum_{n=0}^{\infty} 2a_n (x - 2)^n.$$
Examples of the power series method.

Example
Find the first three terms of the power series expansion around the point $x_0 = 2$ of each fundamental solution to the differential equation

$$y'' - xy = 0.$$

Solution: We propose: $y = \sum_{n=0}^{\infty} a_n(x - 2)^n$.

It is convenient to rewrite the function xy as follows,

$$xy = \sum_{n=0}^{\infty} a_n x (x - 2)^n = \sum_{n=0}^{\infty} a_n [(x - 2) + 2] (x - 2)^n,$$

$$xy = \sum_{n=0}^{\infty} a_n (x - 2)^{n+1} + \sum_{n=0}^{\infty} 2a_n (x - 2)^n.$$

We relabel the first sum: $\sum_{n=0}^{\infty} a_n (x - 2)^{n+1} = \sum_{n=1}^{\infty} a_{n-1} (x - 2)^n$.

Examples of the power series method.

Example
Find the first three terms of the power series expansion around the point $x_0 = 2$ of each fundamental solution to the differential equation

$$y'' - x y = 0.$$

Solution: We relabel the y'',

\[\begin{align*}
\sum_{n=2}^{\infty} n(n-1)a_n(x-2)^{n-2} &= 0 \\
\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}(x-2)^{n+2} &= 0 \\
\sum_{n=1}^{\infty} a_n(x-2)^{n-1} &= 0
\end{align*}\]
Examples of the power series method.

Example

Find the first three terms of the power series expansion around the point $x_0 = 2$ of each fundamental solution to the differential equation

$$y'' - xy = 0.$$

Solution: We relabel the y'',

$$y'' = \sum_{n=2}^{\infty} n(n-1)a_n(x-2)^{n-2}$$
Examples of the power series method.

Example
Find the first three terms of the power series expansion around the point $x_0 = 2$ of each fundamental solution to the differential equation

$$y'' - x y = 0.$$

Solution: We relabel the y'',

$$y'' = \sum_{n=2}^{\infty} n(n-1)a_n(x-2)^{n-2} = \sum_{n=0}^{\infty} (n + 2)(n + 1)a_{n+2}(x-2)^n.$$
Examples of the power series method.

Example
Find the first three terms of the power series expansion around the point \(x_0 = 2 \) of each fundamental solution to the differential equation

\[
y'' - xy = 0.
\]

Solution: We relabel the \(y'' \),

\[
y'' = \sum_{n=2}^{\infty} n(n - 1) a_n (x - 2)^{n-2} = \sum_{n=0}^{\infty} (n + 2)(n + 1) a_{n+2} (x - 2)^n.
\]

Introduce \(y'' \) and \(xy \) in the differential equation
Examples of the power series method.

Example

Find the first three terms of the power series expansion around the point \(x_0 = 2 \) of each fundamental solution to the differential equation

\[y'' - x y = 0. \]

Solution: We relabel the \(y'' \),

\[y'' = \sum_{n=2}^{\infty} n(n - 1)a_n(x - 2)^{n-2} = \sum_{n=0}^{\infty} (n + 2)(n + 1)a_{n+2}(x - 2)^n. \]

Introduce \(y'' \) and \(xy \) in the differential equation

\[\sum_{n=0}^{\infty} (n + 2)(n + 1)a_{n+2}(x - 2)^n - \sum_{n=0}^{\infty} 2a_n(x - 2)^n - \sum_{n=1}^{\infty} a_{n-1}(x - 2)^n = 0 \]
Examples of the power series method.

Example

Find the first three terms of the power series expansion around the point $x_0 = 2$ of each fundamental solution to the differential equation

$$y'' - xy = 0.$$

Solution: We relabel the y'',

$$y'' = \sum_{n=2}^{\infty} n(n-1)a_n(x-2)^{n-2} = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}(x-2)^n.$$

Introduce y'' and xy in the differential equation

$$\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}(x-2)^n - \sum_{n=0}^{\infty} 2a_n(x-2)^n - \sum_{n=1}^{\infty} a_{n-1}(x-2)^n = 0$$

$$(2)(1)a_2 - 2a_0 + \sum_{n=1}^{\infty} \left[(n+2)(n+1)a_{n+2} - 2a_n - a_{n-1} \right] (x-2)^n = 0.$$
Examples of the power series method.

Example

Find the first three terms of the power series expansion around the point $x_0 = 2$ of each fundamental solution to the differential equation

$$y'' - x y = 0.$$

Solution: We relabel the y'',

$$y'' = \sum_{n=2}^{\infty} n(n-1)a_n(x-2)^{n-2} = \sum_{n=0}^{\infty} (n+2)(n+1)a_{(n+2)}(x-2)^n.$$

Introduce y'' and xy in the differential equation

$$\sum_{n=0}^{\infty} (n+2)(n+1)a_{(n+2)}(x-2)^n - \sum_{n=0}^{\infty} 2a_n(x-2)^n - \sum_{n=1}^{\infty} a_{(n-1)}(x-2)^n = 0$$

$$(2)(1)a_2 - 2a_0 + \sum_{n=1}^{\infty} \left[(n+2)(n+1)a_{(n+2)} - 2a_n - a_{(n-1)}\right] (x-2)^n = 0.$$

The recurrence relation for the coefficients a_n is:

$$a_2 - a_0 = 0, \quad (n+2)(n+1)a_{(n+2)} - 2a_n - a_{(n-1)} = 0, \quad n \geq 1.$$
Examples of the power series method.

Example

Find the first three terms of the power series expansion around the point \(x_0 = 2 \) of each fundamental solution to the differential equation

\[y'' - x \, y = 0. \]

Solution: The recurrence relation is:

\[a_2 - a_0 = 0, \quad (n + 2)(n + 1)a_{n+2} - 2a_n - a_{n-1} = 0, \quad n \geq 1. \]
Examples of the power series method.

Example

Find the first three terms of the power series expansion around the point $x_0 = 2$ of each fundamental solution to the differential equation

$$y'' - x y = 0.$$

Solution: The recurrence relation is:

$$a_2 - a_0 = 0, \quad (n + 2)(n + 1)a_{(n+2)} - 2a_n - a_{(n-1)} = 0, \quad n \geq 1.$$

We solve this recurrence relation for the first four coefficients,
Examples of the power series method.

Example

Find the first three terms of the power series expansion around the point \(x_0 = 2 \) of each fundamental solution to the differential equation

\[y'' - x y = 0. \]

Solution: The recurrence relation is:

\[a_2 - a_0 = 0, \quad (n + 2)(n + 1)a_{n+2} - 2a_n - a_{n-1} = 0, \quad n \geq 1. \]

We solve this recurrence relation for the first four coefficients,

\[n = 0 \quad a_2 - a_0 = 0 \]
Examples of the power series method.

Example
Find the first three terms of the power series expansion around the point \(x_0 = 2 \) of each fundamental solution to the differential equation

\[y'' - x \, y = 0. \]

Solution: The recurrence relation is:

\[a_2 - a_0 = 0, \quad (n + 2)(n + 1)a_{(n+2)} - 2a_n - a_{(n-1)} = 0, \quad n \geq 1. \]

We solve this recurrence relation for the first four coefficients,

\[n = 0 \quad a_2 - a_0 = 0 \quad \Rightarrow \quad a_2 = a_0, \]
Examples of the power series method.

Example

Find the first three terms of the power series expansion around the point \(x_0 = 2 \) of each fundamental solution to the differential equation

\[y'' - x y = 0. \]

Solution: The recurrence relation is:

\[a_2 - a_0 = 0, \quad (n + 2)(n + 1)a_{n+2} - 2a_n - a_{n-1} = 0, \quad n \geq 1. \]

We solve this recurrence relation for the first four coefficients,

\[n = 0 \quad a_2 - a_0 = 0 \quad \Rightarrow \quad a_2 = a_0, \]

\[n = 1 \quad (3)(2)a_3 - 2a_1 - a_0 = 0 \]
Examples of the power series method.

Example

Find the first three terms of the power series expansion around the point $x_0 = 2$ of each fundamental solution to the differential equation

$$y'' - xy = 0.$$

Solution: The recurrence relation is:

$$a_2 - a_0 = 0, \quad (n + 2)(n + 1)a_{n+2} - 2a_n - a_{n-1} = 0, \quad n \geq 1.$$

We solve this recurrence relation for the first four coefficients,

$$\begin{align*}
 n = 0 & \quad a_2 - a_0 = 0 \quad \Rightarrow \quad a_2 = a_0, \\
 n = 1 & \quad (3)(2)a_3 - 2a_1 - a_0 = 0 \quad \Rightarrow \quad a_3 = \frac{a_0}{6} + \frac{a_1}{3},
\end{align*}$$
Examples of the power series method.

Example
Find the first three terms of the power series expansion around the point \(x_0 = 2 \) of each fundamental solution to the differential equation
\[
y'' - xy = 0.
\]

Solution: The recurrence relation is:
\[
a_2 - a_0 = 0, \quad (n + 2)(n + 1)a_{(n+2)} - 2a_n - a_{(n-1)} = 0, \quad n \geq 1.
\]
We solve this recurrence relation for the first four coefficients,

\[
n = 0 \quad a_2 - a_0 = 0 \quad \Rightarrow \quad a_2 = a_0,
\]

\[
n = 1 \quad (3)(2)a_3 - 2a_1 - a_0 = 0 \quad \Rightarrow \quad a_3 = \frac{a_0}{6} + \frac{a_1}{3},
\]

\[
n = 2 \quad (4)(3)a_4 - 2a_2 - a_1 = 0
\]
Examples of the power series method.

Example

Find the first three terms of the power series expansion around the point \(x_0 = 2 \) of each fundamental solution to the differential equation

\[y'' - x y = 0. \]

Solution: The recurrence relation is:

\[a_2 - a_0 = 0, \quad (n + 2)(n + 1)a_{n+2} - 2a_n - a_{n-1} = 0, \quad n \geq 1. \]

We solve this recurrence relation for the first four coefficients,

\[n = 0 \quad a_2 - a_0 = 0 \quad \Rightarrow \quad a_2 = a_0, \]

\[n = 1 \quad (3)(2)a_3 - 2a_1 - a_0 = 0 \quad \Rightarrow \quad a_3 = \frac{a_0}{6} + \frac{a_1}{3}, \]

\[n = 2 \quad (4)(3)a_4 - 2a_2 - a_1 = 0 \quad \Rightarrow \quad a_4 = \frac{a_0}{6} + \frac{a_1}{12}. \]
Examples of the power series method.

Example

Find the first three terms of the power series expansion around the point $x_0 = 2$ of each fundamental solution to the differential equation

$$y'' - x y = 0.$$

Solution: The recurrence relation is:

$$a_2 - a_0 = 0, \quad (n + 2)(n + 1)a_{(n+2)} - 2a_n - a_{(n-1)} = 0, \quad n \geq 1.$$

We solve this recurrence relation for the first four coefficients,

$$n = 0 \quad a_2 - a_0 = 0 \quad \Rightarrow \quad a_2 = a_0,$$

$$n = 1 \quad (3)(2)a_3 - 2a_1 - a_0 = 0 \quad \Rightarrow \quad a_3 = \frac{a_0}{6} + \frac{a_1}{3},$$

$$n = 2 \quad (4)(3)a_4 - 2a_2 - a_1 = 0 \quad \Rightarrow \quad a_4 = \frac{a_0}{6} + \frac{a_1}{12}.$$

$$y \simeq a_0 + a_1(x - 2) + a_0(x - 2)^2 + \left(\frac{a_0}{6} + \frac{a_1}{3}\right)(x - 2)^3 + \left(\frac{a_0}{6} + \frac{a_1}{12}\right)(x - 2)^4.$$
Examples of the power series method.

Example

Find the first three terms of the power series expansion around the point $x_0 = 2$ of each fundamental solution to the differential equation

$$y'' - x y = 0.$$

Solution: The first terms in the power series expression for y are

$$y \approx a_0 + a_1(x - 2) + a_0(x - 2)^2 + \left(\frac{a_0}{6} + \frac{a_1}{3}\right)(x - 2)^3 + \left(\frac{a_0}{6} + \frac{a_1}{12}\right)(x - 2)^4.$$
Examples of the power series method.

Example

Find the first three terms of the power series expansion around the point $x_0 = 2$ of each fundamental solution to the differential equation

$$y'' - x\,y = 0.$$

Solution: The first terms in the power series expression for y are

$y \approx a_0 + a_1(x - 2) + a_0(x - 2)^2 + \left(\frac{a_0}{6} + \frac{a_1}{3}\right)(x - 2)^3 + \left(\frac{a_0}{6} + \frac{a_1}{12}\right)(x - 2)^4.$

$$y = a_0 \left[1 + (x - 2)^2 + \frac{1}{6}(x - 2)^3 + \frac{1}{6}(x - 2)^4 + \cdots\right]$$

$$+ a_1 \left[(x - 2) + \frac{1}{3}(x - 2)^3 + \frac{1}{12}(x - 2)^4 + \cdots\right]$$
Examples of the power series method.

Example
Find the first three terms of the power series expansion around the point $x_0 = 2$ of each fundamental solution to the differential equation

$$y'' - xy = 0.$$

Solution: The first terms in the power series expression for y are

$$y \approx a_0 + a_1(x - 2) + a_0(x - 2)^2 + \left(\frac{a_0}{6} + \frac{a_1}{3}\right)(x - 2)^3 + \left(\frac{a_0}{6} + \frac{a_1}{12}\right)(x - 2)^4.$$

$$y = a_0 \left[1 + (x - 2)^2 + \frac{1}{6}(x - 2)^3 + \frac{1}{6}(x - 2)^4 + \cdots\right]$$

$$+ a_1 \left[(x - 2) + \frac{1}{3}(x - 2)^3 + \frac{1}{12}(x - 2)^4 + \cdots\right]$$

So the first three terms on each fundamental solution are given by

$$y_1 \approx 1 + (x - 2)^2 + \frac{1}{6}(x - 2)^3, \quad y_2 \approx (x - 2) + \frac{1}{3}(x - 2)^3 + \frac{1}{12}(x - 2)^4.$$
The Euler equation (Sect. 5.4).

- Overview: Equations with singular points.
- We study the Euler Equation:
 \[(x - x_0)^2 y'' + p_0 (x - x_0) y' + q_0 y = 0. \]
- Solutions to the Euler equation near \(x_0 \).
- The roots of the indicial polynomial.
 - Different real roots.
 - Repeated roots.
 - Different complex roots.
Overview: Equations with singular points.

Recall: The point $x_0 \in \mathbb{R}$ is a **singular point** of the equation

$$P(x) y'' + Q(x) y' + R(x) y = 0$$

iff holds $P(x_0) = 0$.
Overview: Equations with singular points.

Recall: The point $x_0 \in \mathbb{R}$ is a singular point of the equation

$$P(x) y'' + Q(x) y' + R(x) y = 0$$

iff holds $P(x_0) = 0$.

Remarks:

- We are interested in finding solutions to the equation above arbitrary close to a singular point x_0.

- The order of the differential equation changes in a neighborhood of a singular point.

- In the limit $x \to x_0$ the following could happen:

 (a) The two linearly independent solutions remain bounded.

 (b) Only one solution remains bounded.

 (c) None solution remains bounded.
Overview: Equations with singular points.

Recall: The point \(x_0 \in \mathbb{R} \) is a singular point of the equation

\[
P(x) y'' + Q(x) y' + R(x) y = 0
\]

iff holds \(P(x_0) = 0 \).

Remarks:

- We are interested in finding solutions to the equation above arbitrary close to a singular point \(x_0 \).
- The order of the differential equation changes in a neighborhood of a singular point.
Overview: Equations with singular points.

Recall: The point $x_0 \in \mathbb{R}$ is a singular point of the equation

$$P(x) y'' + Q(x) y' + R(x) y = 0$$

iff holds $P(x_0) = 0$.

Remarks:

- We are interested in finding solutions to the equation above arbitrary close to a singular point x_0.
- The order of the differential equation changes in a neighborhood of a singular point.
- In the limit $x \to x_0$ the following could happen:
Overview: Equations with singular points.

Recall: The point \(x_0 \in \mathbb{R} \) is a singular point of the equation

\[
P(x) y'' + Q(x) y' + R(x) y = 0
\]

iff holds \(P(x_0) = 0 \).

Remarks:

- We are interested in finding solutions to the equation above arbitrary close to a singular point \(x_0 \).
- The order of the differential equation changes in a neighborhood of a singular point.
- In the limit \(x \to x_0 \) the following could happen:
 1. The two linearly independent solutions remain bounded.
Overview: Equations with singular points.

Recall: The point \(x_0 \in \mathbb{R} \) is a singular point of the equation

\[
P(x) y'' + Q(x) y' + R(x) y = 0
\]

iff holds \(P(x_0) = 0 \).

Remarks:

- We are interested in finding solutions to the equation above arbitrary close to a singular point \(x_0 \).
- The order of the differential equation changes in a neighborhood of a singular point.
- In the limit \(x \to x_0 \) the following could happen:
 - (a) The two linearly independent solutions remain bounded.
 - (b) Only one solution remains bounded.
Overview: Equations with singular points.

Recall: The point \(x_0 \in \mathbb{R} \) is a singular point of the equation

\[
P(x) y'' + Q(x) y' + R(x) y = 0
\]

iff holds \(P(x_0) = 0 \).

Remarks:

- We are interested in finding solutions to the equation above arbitrary close to a singular point \(x_0 \).
- The order of the differential equation changes in a neighborhood of a singular point.
- In the limit \(x \to x_0 \) the following could happen:

 (a) The two linearly independent solutions remain bounded.
 (b) Only one solution remains bounded.
 (c) None solution remains bounded.
Overview: Equations with singular points.

Remarks:

▶ If the singular point of a differential equation is not so singular, in a sense to be made precise later on, then it is known how to find solutions to such equation.
Overview: Equations with singular points.

Remarks:

- If the singular point of a differential equation is not so singular, in a sense to be made precise later on, then it is known how to find solutions to such equation.

- Singular points where the singular behavior of the solution is somehow mild, in a sense to be made precise later, will be called regular-singular points.
Overview: Equations with singular points.

Remarks:

▶ If the singular point of a differential equation is not so singular, in a sense to be made precise later on, then it is known how to find solutions to such equation.

▶ Singular points where the singular behavior of the solution is somehow mild, in a sense to be made precise later, will be called regular-singular points.

▶ The main example of a equation with a regular-singular point is the Euler differential equation.
The Euler equation (Sect. 5.4).

- Overview: Equations with singular points.
- We study the Euler Equation:
 \[(x - x_0)^2 y'' + p_0 (x - x_0) y' + q_0 y = 0.\]
- Solutions to the Euler equation near \(x_0\).
- The roots of the indicial polynomial.
 - Different real roots.
 - Repeated roots.
 - Different complex roots.
The Euler equation

Definition
Given real constants \(p_0, q_0 \), the Euler differential equation for the unknown \(y \) with singular point at \(x_0 \in \mathbb{R} \) is given by

\[
(x - x_0)^2 y'' + p_0 (x - x_0) y' + q_0 y = 0.
\]
The Euler equation

Definition
Given real constants p_0, q_0, the Euler differential equation for the unknown y with singular point at $x_0 \in R$ is given by

$$(x - x_0)^2 y'' + p_0 (x - x_0) y' + q_0 y = 0.$$

Remarks:

- The Euler equation has variable coefficients.
- Functions $y(x) = e^{rx}$ are not solutions of the Euler equation.
- The point $x_0 \in R$ is a singular point of the equation.
- The particular case $x_0 = 0$ is given by $x^2 y'' + p_0 x y' + q_0 y = 0$.
The Euler equation

Definition
Given real constants p_0, q_0, the Euler differential equation for the unknown y with singular point at $x_0 \in R$ is given by

$$(x - x_0)^2 y'' + p_0 (x - x_0) y' + q_0 y = 0.$$

Remarks:
- The Euler equation has variable coefficients.
- Functions $y(x) = e^{rx}$ are not solutions of the Euler equation.
The Euler equation

Definition
Given real constants p_0, q_0, the *Euler differential equation* for the unknown y with singular point at $x_0 \in \mathbb{R}$ is given by

$$(x - x_0)^2 y'' + p_0 (x - x_0) y' + q_0 y = 0.$$

Remarks:
- The Euler equation has variable coefficients.
- Functions $y(x) = e^{rx}$ are not solutions of the Euler equation.
- The point $x_0 \in \mathbb{R}$ is a singular point of the equation.
The Euler equation

Definition
Given real constants p_0, q_0, the Euler differential equation for the unknown y with singular point at $x_0 \in \mathbb{R}$ is given by

$$(x - x_0)^2 y'' + p_0 (x - x_0) y' + q_0 y = 0.$$

Remarks:
- The Euler equation has variable coefficients.
- Functions $y(x) = e^{rx}$ are not solutions of the Euler equation.
- The point $x_0 \in \mathbb{R}$ is a singular point of the equation.
- The particular case $x_0 = 0$ is given by

$$x^2 y'' + p_0 x y' + q_0 y = 0.$$
The Euler equation (Sect. 5.4).

- Overview: Equations with singular points.
- We study the Euler Equation:
 \[(x - x_0)^2 y'' + p_0 (x - x_0) y' + q_0 y = 0.\]
- **Solutions to the Euler equation near** \(x_0\).
- The roots of the indicial polynomial.
 - Different real roots.
 - Repeated roots.
 - Different complex roots.
Solutions to the Euler equation near x_0.

Summary of the main idea:

- The main idea to find solution to the constant coefficients equation $y'' + a_1 y' + a_0 y = 0$ was to look for functions of the form $y(x) = e^{rx}$.
Solutions to the Euler equation near x_0.

Summary of the main idea:

▶ The main idea to find solution to the constant coefficients equation $y'' + a_1 y' + a_0 y = 0$ was to look for functions of the form $y(x) = e^{rx}$. The exponential cancels out from the equation and we obtain an equation only for r without x.

\[
(e^{rx})'' + a_1 (e^{rx})' + a_0 (e^{rx}) = 0 \Leftrightarrow (r^2 + a_1 r + a_0) e^{rx} = 0.
\]
Solutions to the Euler equation near x_0.

Summary of the main idea:

- The main idea to find solution to the constant coefficients equation $y'' + a_1 y' + a_0 y = 0$ was to look for functions of the form $y(x) = e^{rx}$. The exponential cancels out from the equation and we obtain an equation only for r without x,

$$ (r^2 + a_1 r + a_0) e^{rx} = 0 \iff (r^2 + a_1 r + a_0) = 0. \quad (2) $$
Solutions to the Euler equation near x_0.

Summary of the main idea:

- The main idea to find solution to the constant coefficients equation $y'' + a_1 y' + a_0 y = 0$ was to look for functions of the form $y(x) = e^{rx}$. The exponential cancels out from the equation and we obtain an equation only for r without x,

$$\left(r^2 + a_1 r + a_0 \right) e^{rx} = 0 \iff \left(r^2 + a_1 r + a_0 \right) = 0. \quad (2)$$

- In the case of the Euler equation $x^2 y'' + p_0 x y' + q_0 y = 0$ the exponential functions e^{rx} do not have the property given in Eq. (2),
Solutions to the Euler equation near x_0.

Summary of the main idea:

- The main idea to find solution to the constant coefficients equation $y'' + a_1 y' + a_0 y = 0$ was to look for functions of the form $y(x) = e^{rx}$. The exponential cancels out from the equation and we obtain an equation only for r without x,

$$ (r^2 + a_1 r + a_0) e^{rx} = 0 \iff (r^2 + a_1 r + a_0) = 0. \quad (2) $$

- In the case of the Euler equation $x^2 y'' + p_0 x y' + q_0 y = 0$ the exponential functions e^{rx} do not have the property given in Eq. (2), since

$$ (x^2 r^2 + p_0 x r + q_0) e^{rx} = 0 \iff x^2 r^2 + p_0 x r + q_0 = 0, $$
Solutions to the Euler equation near x_0.

Summary of the main idea:

- The main idea to find solution to the constant coefficients equation $y'' + a_1 y' + a_0 y = 0$ was to look for functions of the form $y(x) = e^{rx}$. The exponential cancels out from the equation and we obtain an equation only for r without x,

 $$ (r^2 + a_1 r + a_0) e^{rx} = 0 \iff (r^2 + a_1 r + a_0) = 0. \quad (2) $$

- In the case of the Euler equation $x^2 y'' + p_0 x y' + q_0 y = 0$ the exponential functions e^{rx} do not have the property given in Eq. (2), since

 $$ (x^2 r^2 + p_0 x r + q_0) e^{rx} = 0 \iff x^2 r^2 + p_0 x r + q_0 = 0, $$

 but the later equation still involves the variable x.
Solutions to the Euler equation near x_0.

Summary of the main idea: Look for solutions like $y(x) = x^r$.

Introduce $y = x^r$ into Euler's equation $x^2y'' + p_0xy' + q_0y = 0$, for $x \neq 0$ we obtain

$$r(r-1) + p_0r + q_0 = 0.$$

The last equation involves only r, not x.

This equation is called the **indicial equation** and is also called the **Euler characteristic equation**.
Solutions to the Euler equation near x_0.

Summary of the main idea: Look for solutions like $y(x) = x^r$.
These function have the following property:

$$y'(x) = r x^{r-1}$$
Solutions to the Euler equation near \(x_0 \).

Summary of the main idea: Look for solutions like \(y(x) = x^r \).

These function have the following property:

\[
y'(x) = r x^{r-1} \quad \Rightarrow \quad x y'(x) = r x^r;
\]
Solutions to the Euler equation near x_0.

Summary of the main idea: Look for solutions like $y(x) = x^r$.

These functions have the following properties:

$$y'(x) = r x^{r-1} \Rightarrow x y'(x) = r x^r;$$

$$y''(x) = r(r - 1) x^{r-2}$$
Solutions to the Euler equation near x_0.

Summary of the main idea: Look for solutions like $y(x) = x^r$.

These functions have the following properties:

\[
y'(x) = r x^{r-1} \quad \Rightarrow \quad x y'(x) = r x^r;
\]

\[
y''(x) = r(r - 1) x^{r-2} \quad \Rightarrow \quad x^2 y''(x) = r(r - 1) x^r.
\]
Solutions to the Euler equation near x_0.

Summary of the main idea: Look for solutions like $y(x) = x^r$.

These functions have the following properties:

\[
y'(x) = rx^{r-1} \quad \Rightarrow \quad x\,y'(x) = rx^r;
\]
\[
y''(x) = r(r-1)x^{r-2} \quad \Rightarrow \quad x^2\,y''(x) = r(r-1)x^r.
\]

Introduce $y = x^r$ into Euler’s equation $x^2\,y'' + p_0\,x\,y' + q_0\,y = 0$, where p_0 and q_0 are constants.
Solutions to the Euler equation near x_0.

Summary of the main idea: Look for solutions like $y(x) = x^r$.

These functions have the following property:

$$y'(x) = r x^{r-1} \implies x y'(x) = r x^r;$$

$$y''(x) = r(r - 1) x^{r-2} \implies x^2 y''(x) = r(r - 1) x^r.$$

Introduce $y = x^r$ into Euler’s equation $x^2 y'' + p_0 x y' + q_0 y = 0$, for $x \neq 0$ we obtain

$$[r(r - 1) + p_0 r + q_0] x^r = 0$$
Solutions to the Euler equation near x_0.

Summary of the main idea: Look for solutions like $y(x) = x^r$.

These function have the following property:

$$y'(x) = r x^{r-1} \quad \Rightarrow \quad x y'(x) = r x^r;$$

$$y''(x) = r(r-1) x^{r-2} \quad \Rightarrow \quad x^2 y''(x) = r(r-1) x^r.$$

Introduce $y = x^r$ into Euler’s equation $x^2 y'' + p_0 x y' + q_0 y = 0$, for $x \neq 0$ we obtain

$$[r(r-1) + p_0 r + q_0] x^r = 0 \quad \Leftrightarrow \quad r(r-1) + p_0 r + q_0 = 0.$$
Solutions to the Euler equation near x_0.

Summary of the main idea: Look for solutions like $y(x) = x^r$.

These functions have the following property:

$$y'(x) = r x^{r-1} \quad \Rightarrow \quad x y'(x) = r x^r;$$

$$y''(x) = r(r - 1) x^{r-2} \quad \Rightarrow \quad x^2 y''(x) = r(r - 1) x^r.$$

Introduce $y = x^r$ into Euler’s equation $x^2 y'' + p_0 x y' + q_0 y = 0$, for $x \neq 0$ we obtain

$$\left[r(r - 1) + p_0 r + q_0 \right] x^r = 0 \quad \Leftrightarrow \quad r(r - 1) + p_0 r + q_0 = 0.$$

The last equation involves only r, not x.
Solutions to the Euler equation near x_0.

Summary of the main idea: Look for solutions like $y(x) = x^r$.

These functions have the following properties:

$$y'(x) = r x^{r-1} \quad \Rightarrow \quad x y'(x) = r x^r;$$

$$y''(x) = r(r-1) x^{r-2} \quad \Rightarrow \quad x^2 y''(x) = r(r-1) x^r. $$

Introduce $y = x^r$ into Euler's equation $x^2 y'' + p_0 x y' + q_0 y = 0$, for $x \neq 0$ we obtain

$$\left[r(r-1) + p_0 r + q_0 \right] x^r = 0 \quad \Leftrightarrow \quad r(r-1) + p_0 r + q_0 = 0.$$

The last equation involves only r, not x.

This equation is called the *indicial equation*, and is also called the *Euler characteristic equation*.
Solutions to the Euler equation near x_0.

Theorem (Euler equation)

Given p_0, q_0, $x_0 \in \mathbb{R}$, consider the Euler equation

$$(x - x_0)^2 y'' + p_0 (x - x_0) y' + q_0 y = 0. \quad (3)$$

Let r_+, r_- be solutions of $r(r - 1) + p_0 r + q_0 = 0$.

(a) If $r_+ \neq r_-$, then a real-valued general solution of Eq. (3) is

$$y(x) = c_0 |x - x_0|^{r_+} + c_1 |x - x_0|^{r_-}, \quad x \neq x_0, \quad c_0, c_1 \in \mathbb{R}.$$

(b) If $r_+ = r_-$, then a real-valued general solution of Eq. (3) is

$$y(x) = \left[c_0 + c_1 \ln(|x - x_0|) \right] |x - x_0|^{r_+}, \quad x \neq x_0, \quad c_0, c_1 \in \mathbb{R}.$$

Given $x_0 \neq x_1$, y_0, $y_1 \in \mathbb{R}$, there is a unique solution to the IVP

$$(x - x_0)^2 y'' + p_0 (x - x_0) y' + q_0 y = 0, \quad y(x_1) = y_0, \quad y'(x_1) = y_1.$$
The Euler equation (Sect. 5.4).

- Overview: Equations with singular points.
- We study the Euler Equation:
 \[(x - x_0)^2 y'' + p_0 (x - x_0) y' + q_0 y = 0.\]
- Solutions to the Euler equation near \(x_0\).
- The roots of the indicial polynomial.
 - Different real roots.
 - Repeated roots.
 - Different complex roots.
Different real roots.

Example
Find the general solution of the Euler equation

\[x^2 y'' + 4x y' + 2y = 0. \]
Different real roots.

Example
Find the general solution of the Euler equation
\[x^2 y'' + 4x y' + 2y = 0. \]

Solution: We look for solutions of the form \(y(x) = x^r \),
Different real roots.

Example

Find the general solution of the Euler equation

\[x^2 y'' + 4x y' + 2y = 0. \]

Solution: We look for solutions of the form \(y(x) = x^r \),

\[x y'(x) = rx^r, \]

\[x^2 y'' + 4x y' + 2y = 0. \]
Different real roots.

Example
Find the general solution of the Euler equation

\[x^2 y'' + 4x y' + 2y = 0. \]

Solution: We look for solutions of the form \(y(x) = x^r \),

\[x y'(x) = rx^r, \quad x^2 y''(x) = r(r - 1)x^r. \]
Different real roots.

Example
Find the general solution of the Euler equation
\[x^2 y'' + 4x y' + 2y = 0. \]

Solution: We look for solutions of the form \(y(x) = x^r \),
\[x y'(x) = r x^r, \quad x^2 y''(x) = r(r - 1) x^r. \]
Introduce \(y(x) = x^r \) into Euler equation,
Different real roots.

Example

Find the general solution of the Euler equation

\[x^2 y'' + 4x y' + 2y = 0. \]

Solution: We look for solutions of the form \(y(x) = x^r \),

\[x y'(x) = r x^r, \quad x^2 y''(x) = r(r - 1) x^r. \]

Introduce \(y(x) = x^r \) into Euler equation,

\[[r(r - 1) + 4r + 2] x^r = 0 \]
Different real roots.

Example
Find the general solution of the Euler equation

\[x^2 y'' + 4x y' + 2 y = 0. \]

Solution: We look for solutions of the form \(y(x) = x^r \),
\[
 x y'(x) = r x^r, \quad x^2 y''(x) = r(r - 1) x^r.
\]
Introduce \(y(x) = x^r \) into Euler equation,
\[
 \left[r(r - 1) + 4r + 2 \right] x^r = 0 \iff r(r - 1) + 4r + 2 = 0.
\]
Different real roots.

Example
Find the general solution of the Euler equation
\[x^2 y'' + 4x y' + 2y = 0. \]

Solution: We look for solutions of the form \(y(x) = x^r \),
\[x y'(x) = r x^r, \quad x^2 y''(x) = r(r - 1) x^r. \]
Introduce \(y(x) = x^r \) into Euler equation,
\[[r(r - 1) + 4r + 2] x^r = 0 \iff r(r - 1) + 4r + 2 = 0. \]
The solutions of \(r^2 + 3r + 2 = 0 \) are given by
Different real roots.

Example
Find the general solution of the Euler equation

\[x^2 y'' + 4x y' + 2 y = 0. \]

Solution: We look for solutions of the form \(y(x) = x^r \),

\[x y'(x) = r x^r, \quad x^2 y''(x) = r(r - 1) x^r. \]

Introduce \(y(x) = x^r \) into Euler equation,

\[
[r(r - 1) + 4r + 2] x^r = 0 \quad \Leftrightarrow \quad r(r - 1) + 4r + 2 = 0.
\]

The solutions of \(r^2 + 3r + 2 = 0 \) are given by

\[
r_{\pm} = \frac{1}{2} \left[-3 \pm \sqrt{9 - 8} \right]
\]
Different real roots.

Example
Find the general solution of the Euler equation
\[x^2 y'' + 4x y' + 2y = 0. \]

Solution: We look for solutions of the form \(y(x) = x^r \),
\[x y'(x) = rx^r, \quad x^2 y''(x) = r(r - 1) x^r. \]
Introduce \(y(x) = x^r \) into Euler equation,
\[[r(r - 1) + 4r + 2] x^r = 0 \iff r(r - 1) + 4r + 2 = 0. \]
The solutions of \(r^2 + 3r + 2 = 0 \) are given by
\[r_\pm = \frac{1}{2} \left[-3 \pm \sqrt{9 - 8} \right] \Rightarrow r_+ = -1 \quad r_- = -2. \]
Different real roots.

Example
Find the general solution of the Euler equation
\[x^2 y'' + 4x y' + 2y = 0. \]

Solution: We look for solutions of the form \(y(x) = x^r \),
\[xy'(x) = r x^r, \quad x^2 y''(x) = r(r - 1) x^r. \]
Introduce \(y(x) = x^r \) into Euler equation,
\[[r(r - 1) + 4r + 2] x^r = 0 \iff r(r - 1) + 4r + 2 = 0. \]
The solutions of \(r^2 + 3r + 2 = 0 \) are given by
\[r_{\pm} = \frac{1}{2} \left[-3 \pm \sqrt{9 - 8} \right] \Rightarrow r_+ = -1 \quad r_- = -2. \]
The general solution is \(y(x) = c_1 |x|^{-1} + c_2 |x|^{-2}. \) △
Overview: Equations with singular points.

We study the Euler Equation:
\[(x - x_0)^2 y'' + p_0 (x - x_0) y' + q_0 y = 0.\]

Solutions to the Euler equation near \(x_0\).

The roots of the indicial polynomial.

- Different real roots.
- Repeated roots.
- Different complex roots.
Repeated roots.

Example

Find the general solution of \(x^2 y'' - 3x y' + 4y = 0 \).
Repeated roots.

Example
Find the general solution of \(x^2 y'' - 3x y' + 4y = 0. \)
Solution: We look for solutions of the form \(y(x) = x^r, \)
Repeated roots.

Example
Find the general solution of $x^2 y'' - 3x y' + 4 y = 0$.
Solution: We look for solutions of the form $y(x) = x^r$,
\[x y'(x) = r x^r, \]
Repeated roots.

Example
Find the general solution of \(x^2 y'' - 3x y' + 4y = 0 \).

Solution: We look for solutions of the form \(y(x) = x^r \),

\[
x y'(x) = r x^r, \quad x^2 y''(x) = r(r - 1) x^r.
\]
Repeated roots.

Example
Find the general solution of \(x^2 y'' - 3x y' + 4 y = 0. \)
Solution: We look for solutions of the form \(y(x) = x^r, \)
\[
 x y'(x) = r x^r, \quad x^2 y''(x) = r(r - 1) x^r.
\]
Introduce \(y(x) = x^r \) into Euler equation,
Repeated roots.

Example
Find the general solution of \(x^2 y'' - 3x y' + 4 y = 0 \).
Solution: We look for solutions of the form \(y(x) = x^r \),
\[
x y'(x) = rx^r, \quad x^2 y''(x) = r(r - 1) x^r.
\]
Introduce \(y(x) = x^r \) into Euler equation,
\[
[r(r - 1) - 3r + 4] x^r = 0
\]
Repeated roots.

Example
Find the general solution of \(x^2 y'' - 3x y' + 4y = 0 \).

Solution: We look for solutions of the form \(y(x) = x^r \),
\[
x y'(x) = r x^r, \quad x^2 y''(x) = r(r - 1) x^r.
\]
Introduce \(y(x) = x^r \) into Euler equation,
\[
[r(r - 1) - 3r + 4] x^r = 0 \iff r(r - 1) - 3r + 4 = 0.
\]
Repeated roots.

Example
Find the general solution of \(x^2 y'' - 3x y' + 4 y = 0 \).

Solution: We look for solutions of the form \(y(x) = x^r \),

\[
x y'(x) = r x^r, \quad x^2 y''(x) = r(r-1) x^r.
\]

Introduce \(y(x) = x^r \) into Euler equation,

\[
[r(r-1) - 3r + 4] x^r = 0 \quad \Leftrightarrow \quad r(r-1) - 3r + 4 = 0.
\]

The solutions of \(r^2 - 4r + 4 = 0 \) are given by
Repeated roots.

Example
Find the general solution of \(x^2 y'' - 3x y' + 4y = 0 \).

Solution: We look for solutions of the form \(y(x) = x^r \),
\[
x y'(x) = r x^r, \quad x^2 y''(x) = r(r - 1) x^r.
\]

Introduce \(y(x) = x^r \) into Euler equation,
\[
[r(r - 1) - 3r + 4] x^r = 0 \quad \iff \quad r(r - 1) - 3r + 4 = 0.
\]

The solutions of \(r^2 - 4r + 4 = 0 \) are given by
\[
r_{\pm} = \frac{1}{2} [4 \pm \sqrt{16 - 16}]
\]
Repeated roots.

Example
Find the general solution of \(x^2 y'' - 3x y' + 4 y = 0 \).
Solution: We look for solutions of the form \(y(x) = x^r \),
\[
x y'(x) = r x^r, \quad x^2 y''(x) = r(r - 1) x^r.
\]
Introduce \(y(x) = x^r \) into Euler equation,
\[
[r(r - 1) - 3r + 4] x^r = 0 \iff r(r - 1) - 3r + 4 = 0.
\]
The solutions of \(r^2 - 4r + 4 = 0 \) are given by
\[
r_{\pm} = \frac{1}{2} [4 \pm \sqrt{16 - 16}] \quad \Rightarrow \quad r_{\pm} = r_{-} = 2.
\]
Repeated roots.

Example
Find the general solution of \(x^2 y'' - 3x y' + 4 y = 0 \).

Solution: We look for solutions of the form \(y(x) = x^r \),
\[
x y'(x) = rx^r, \quad x^2 y''(x) = r(r - 1) x^r.
\]
Introduce \(y(x) = x^r \) into Euler equation,
\[
[r(r - 1) - 3r + 4] x^r = 0 \quad \Leftrightarrow \quad r(r - 1) - 3r + 4 = 0.
\]
The solutions of \(r^2 - 4r + 4 = 0 \) are given by
\[
r_{\pm} = \frac{1}{2} \left[4 \pm \sqrt{16 - 16} \right] \quad \Rightarrow \quad r_+ = r_- = 2.
\]
Two linearly independent solutions are
\[
y_1(x) = x^2, \quad y_2 = x^2 \ln(|x|).
\]
Repeated roots.

Example
Find the general solution of \(x^2 y'' - 3x y' + 4 y = 0 \).

Solution: We look for solutions of the form \(y(x) = x^r \),

\[
x y'(x) = r x^r, \quad x^2 y''(x) = r(r - 1) x^r.
\]

Introduce \(y(x) = x^r \) into Euler equation,

\[
[r(r - 1) - 3r + 4] x^r = 0 \iff r(r - 1) - 3r + 4 = 0.
\]

The solutions of \(r^2 - 4r + 4 = 0 \) are given by

\[
r_{\pm} = \frac{1}{2} \left[4 \pm \sqrt{16 - 16} \right] \Rightarrow r_{+} = r_{-} = 2.
\]

Two linearly independent solutions are

\[
y_1(x) = x^2, \quad y_2 = x^2 \ln(|x|).
\]

The general solution is \(y(x) = c_1 x^2 + c_2 x^2 \ln(|x|) \). \(\triangleq \)
The Euler equation (Sect. 5.4).

- Overview: Equations with singular points.
- We study the Euler Equation:
 \[(x - x_0)^2 y'' + p_0 (x - x_0) y' + q_0 y = 0.\]
- Solutions to the Euler equation near \(x_0\).
- **The roots of the indicial polynomial.**
 - Different real roots.
 - Repeated roots.
 - Different complex roots.
Different complex roots.

Example
Find the general solution of the Euler equation
\[x^2 y'' - 3x y' + 13 y = 0. \]
Different complex roots.

Example

Find the general solution of the Euler equation

\[x^2 y'' - 3x y' + 13 y = 0. \]

Solution: We look for solutions of the form \(y(x) = x^r \),

\[r^2 - 4r + 13 = 0. \]

The solutions of the indicial equation are

\[r_{\pm} = \frac{4 \pm \sqrt{16 - 52}}{2} = \frac{4 \pm \sqrt{-36}}{2} = 2 \pm 3i. \]

The general solution is

\[y(x) = c_1 |x|^{2+3i} + c_2 |x|^{2-3i}. \]
Different complex roots.

Example
Find the general solution of the Euler equation
\[x^2 y'' - 3x y' + 13 y = 0. \]

Solution: We look for solutions of the form \(y(x) = x^r \),
\[x y'(x) = rx^r, \]
\[x^2 y''(x) = r(r-1)x^{r-2}. \]
Different complex roots.

Example
Find the general solution of the Euler equation
\[x^2 y'' - 3x y' + 13 y = 0. \]

Solution: We look for solutions of the form \(y(x) = x^r \),
\[x y'(x) = r x^r, \quad x^2 y''(x) = r(r - 1) x^r. \]
Example
Find the general solution of the Euler equation
\[x^2 y'' - 3x y' + 13 y = 0. \]

Solution: We look for solutions of the form \(y(x) = x^r \),
\[x y'(x) = r x^r, \quad x^2 y''(x) = r(r-1) x^r. \]

Introduce \(y(x) = x^r \) into Euler equation
\[r(r-1) - 3r + 13 = 0. \]
Different complex roots.

Example
Find the general solution of the Euler equation

\[x^2 y'' - 3x y' + 13 y = 0. \]

Solution: We look for solutions of the form \(y(x) = x^r \),

\[x y'(x) = rx^r, \quad x^2 y''(x) = r(r - 1)x^r. \]

Introduce \(y(x) = x^r \) into Euler equation

\[[r(r - 1) - 3r + 13] x^r = 0 \]
Different complex roots.

Example

Find the general solution of the Euler equation

\[x^2 y'' - 3x y' + 13 y = 0. \]

Solution: We look for solutions of the form \(y(x) = x^r \),

\[
\begin{align*}
x y'(x) &= rx^r, \\
x^2 y''(x) &= r(r - 1)x^r.
\end{align*}
\]

Introduce \(y(x) = x^r \) into Euler equation

\[
[r(r - 1) - 3r + 13] x^r = 0 \iff r(r - 1) - 3r + 13 = 0.
\]
Different complex roots.

Example

Find the general solution of the Euler equation

\[x^2 y'' - 3x y' + 13 y = 0. \]

Solution: We look for solutions of the form \(y(x) = x^r \),

\[x y'(x) = r x^r, \quad x^2 y''(x) = r(r - 1) x^r. \]

Introduce \(y(x) = x^r \) into Euler equation

\[[r(r - 1) - 3r + 13] x^r = 0 \quad \iff \quad r(r - 1) - 3r + 13 = 0. \]

The solutions of the indicial equation \(r^2 - 4r + 13 = 0 \) are

\[r_{\pm} = \frac{1}{2} [4 \pm \sqrt{16 - 52}] \]
Different complex roots.

Example
Find the general solution of the Euler equation
\[x^2 y'' - 3x y' + 13 y = 0. \]

Solution: We look for solutions of the form \(y(x) = x^r \),
\[x y'(x) = rx^r, \quad x^2 y''(x) = r(r - 1) x^r. \]

Introduce \(y(x) = x^r \) into Euler equation
\[[r(r - 1) - 3r + 13] x^r = 0 \iff r(r - 1) - 3r + 13 = 0. \]
The solutions of the indicial equation \(r^2 - 4r + 13 = 0 \) are
\[r_\pm = \frac{1}{2} [4 \pm \sqrt{16 - 52}] \Rightarrow r_\pm = \frac{1}{2} [4 \pm \sqrt{-36}] \]
Different complex roots.

Example

Find the general solution of the Euler equation

\[x^2 y'' - 3x y' + 13 y = 0. \]

Solution: We look for solutions of the form \(y(x) = x^r \),

\[x y'(x) = r x^r, \quad x^2 y''(x) = r(r - 1) x^r. \]

Introduce \(y(x) = x^r \) into Euler equation

\[\left[r(r - 1) - 3r + 13 \right] x^r = 0 \quad \Leftrightarrow \quad r(r - 1) - 3r + 13 = 0. \]

The solutions of the indicial equation \(r^2 - 4r + 13 = 0 \) are

\[r_\pm = \frac{1}{2} \left[4 \pm \sqrt{16 - 52} \right] \Rightarrow r_\pm = \frac{1}{2} \left[4 \pm \sqrt{-36} \right] \Rightarrow \begin{cases} r_+ = 2 + 3i \\ r_- = 2 - 3i. \end{cases} \]
Different complex roots.

Example
Find the general solution of the Euler equation
\[x^2 y'' - 3x y' + 13 y = 0. \]

Solution: We look for solutions of the form \(y(x) = x^r \),
\[x y'(x) = r x^r, \quad x^2 y''(x) = r(r-1) x^r. \]

Introduce \(y(x) = x^r \) into Euler equation
\[\left[r(r-1) - 3r + 13 \right] x^r = 0 \iff r(r-1) - 3r + 13 = 0. \]

The solutions of the indicial equation \(r^2 - 4r + 13 = 0 \) are
\[r_\pm = \frac{1}{2} [4 \pm \sqrt{16 - 52}] \Rightarrow r_\pm = \frac{1}{2} [4 \pm \sqrt{-36}] \Rightarrow \begin{cases} r_+ = 2 + 3i \\ r_- = 2 - 3i. \end{cases} \]

The general solution is \(y(x) = c_1 |x|^{2+3i} + c_2 |x|^{2-3i}. \)
Different complex roots.

Theorem (Real-valued fundamental solutions)

If $p_0, q_0 \in \mathbb{R}$ satisfy that $[(p_0 - 1)^2 - 4q_0] < 0$, then the indicial polynomial $p(r) = r(r - 1) + p_0r + q_0$ of the Euler equation

$$x^2 y'' + p_0x y' + q_0 y = 0 \tag{4}$$

has complex roots $r_+ = \alpha + i\beta$ and $r_- = \alpha - i\beta$, where

$$\alpha = -\frac{(p_0 - 1)}{2}, \quad \beta = \frac{1}{2} \sqrt{4q_0 - (p_0 - 1)^2}.$$

Furthermore, a fundamental set of solution to Eq. (4) is

$$\tilde{y}_1(x) = |x|^{(\alpha+i\beta)}, \quad \tilde{y}_2(x) = |x|^{(\alpha-i\beta)},$$

while another fundamental set of solutions to Eq. (4) is

$$y_1(x) = |x|^{\alpha} \cos(\beta \ln |x|), \quad y_2(x) = |x|^{\alpha} \sin(\beta \ln |x|).$$
Different complex roots.

Proof: Given \(\tilde{y}_1 = |x|^{\alpha + i\beta} \) and \(\tilde{y}_2 = |x|^{\alpha - i\beta} \),
Different complex roots.

Proof: Given $\tilde{y}_1 = |x|^{(\alpha+i\beta)}$ and $\tilde{y}_2 = |x|^{(\alpha-i\beta)}$, introduce

$$y_1 = \frac{1}{2}(\tilde{y}_1 + \tilde{y}_2), \quad y_1 = \frac{1}{2i}(\tilde{y}_1 - \tilde{y}_2).$$
Different complex roots.

Proof: Given $\tilde{y}_1 = |x|^{(\alpha+i\beta)}$ and $\tilde{y}_2 = |x|^{(\alpha-i\beta)}$, introduce

$$y_1 = \frac{1}{2}(\tilde{y}_1 + \tilde{y}_2), \quad y_1 = \frac{1}{2i}(\tilde{y}_1 - \tilde{y}_2).$$

Use another Euler equation to rewrite \tilde{y}_1 and \tilde{y}_2.
Different complex roots.

Proof: Given $\tilde{y}_1 = |x|^{(\alpha+i\beta)}$ and $\tilde{y}_2 = |x|^{(\alpha-i\beta)}$, introduce

$$y_1 = \frac{1}{2}(\tilde{y}_1 + \tilde{y}_2), \quad y_1 = \frac{1}{2i}(\tilde{y}_1 - \tilde{y}_2).$$

Use another Euler equation to rewrite \tilde{y}_1 and \tilde{y}_2,

$$\tilde{y}_1 = |x|^{(\alpha+i\beta)}.$$
Different complex roots.

Proof: Given $\tilde{y}_1 = |x|^{(\alpha+i\beta)}$ and $\tilde{y}_2 = |x|^{(\alpha-i\beta)}$, introduce

$$y_1 = \frac{1}{2}(\tilde{y}_1 + \tilde{y}_2), \quad y_1 = \frac{1}{2i}(\tilde{y}_1 - \tilde{y}_2).$$

Use another Euler equation to rewrite \tilde{y}_1 and \tilde{y}_2,

$$\tilde{y}_1 = |x|^{(\alpha+i\beta)} = |x|^{\alpha} |x|^{i\beta}.$$
Different complex roots.

Proof: Given \(\tilde{y}_1 = |x|^{(\alpha+i\beta)} \) and \(\tilde{y}_2 = |x|^{(\alpha-i\beta)} \), introduce

\[
y_1 = \frac{1}{2} (\tilde{y}_1 + \tilde{y}_2), \quad y_1 = \frac{1}{2i} (\tilde{y}_1 - \tilde{y}_2).
\]

Use another Euler equation to rewrite \(\tilde{y}_1 \) and \(\tilde{y}_2 \),

\[
\tilde{y}_1 = |x|^{(\alpha+i\beta)} = |x|^\alpha |x|^{i\beta} = |x|^\alpha e^{\text{ln}(|x|^{i\beta})}
\]
Different complex roots.

Proof: Given $\tilde{y}_1 = |x|^{(\alpha+i\beta)}$ and $\tilde{y}_2 = |x|^{(\alpha-i\beta)}$, introduce

$$y_1 = \frac{1}{2}(\tilde{y}_1 + \tilde{y}_2), \quad y_1 = \frac{1}{2i}(\tilde{y}_1 - \tilde{y}_2).$$

Use another Euler equation to rewrite \tilde{y}_1 and \tilde{y}_2,

$$\tilde{y}_1 = |x|^{(\alpha+i\beta)} = |x|^\alpha |x|^i = |x|^\alpha e^{\ln(|x|^i)} = |x|^\alpha e^{i\beta \ln(|x|)}.$$
Different complex roots.

Proof: Given \(\tilde{y}_1 = |x|^{(\alpha+i\beta)} \) and \(\tilde{y}_2 = |x|^{(\alpha-i\beta)} \), introduce

\[
y_1 = \frac{1}{2} (\tilde{y}_1 + \tilde{y}_2), \quad y_1 = \frac{1}{2i} (\tilde{y}_1 - \tilde{y}_2).
\]

Use another Euler equation to rewrite \(\tilde{y}_1 \) and \(\tilde{y}_2 \),

\[
\tilde{y}_1 = |x|^{(\alpha+i\beta)} = |x|^\alpha |x|^{i\beta} = |x|^\alpha e^{\ln(|x|^{i\beta})} = |x|^\alpha e^{i\beta \ln(|x|)}.
\]

\[
\tilde{y}_1 = |x|^\alpha \left[\cos(\beta \ln |x|) + 1 \sin(\beta \ln |x|) \right],
\]
Different complex roots.

Proof: Given $\tilde{y}_1 = |x|^{(\alpha+i\beta)}$ and $\tilde{y}_2 = |x|^{(\alpha-i\beta)}$, introduce

$$y_1 = \frac{1}{2}(\tilde{y}_1 + \tilde{y}_2), \quad y_1 = \frac{1}{2i}(\tilde{y}_1 - \tilde{y}_2).$$

Use another Euler equation to rewrite \tilde{y}_1 and \tilde{y}_2,

$$\tilde{y}_1 = |x|^{(\alpha+i\beta)} = |x|^\alpha |x|^{i\beta} = |x|^{\alpha} e^{\ln(|x|^{i\beta})} = |x|^{\alpha} e^{i\beta \ln(|x|)}.$$

$$\tilde{y}_1 = |x|^{\alpha} \left[\cos(\beta \ln |x|) + 1 \sin(\beta \ln |x|) \right],$$

$$\tilde{y}_2 = |x|^{\alpha} \left[\cos(\beta \ln |x|) - 1 \sin(\beta \ln |x|) \right].$$
Different complex roots.

Proof: Given $\tilde{y}_1 = |x|^{(\alpha+i\beta)}$ and $\tilde{y}_2 = |x|^{(\alpha-i\beta)}$, introduce

$$y_1 = \frac{1}{2}(\tilde{y}_1 + \tilde{y}_2), \quad y_1 = \frac{1}{2i}(\tilde{y}_1 - \tilde{y}_2).$$

Use another Euler equation to rewrite \tilde{y}_1 and \tilde{y}_2,

$$\tilde{y}_1 = |x|^{(\alpha+i\beta)} = |x|^\alpha |x|^{i\beta} = |x|^\alpha e^{\ln(|x|^{i\beta})} = |x|^\alpha e^{i\beta \ln(|x|)}.$$

$$\tilde{y}_1 = |x|^\alpha \left[\cos(\beta \ln |x|) + 1 \sin(\beta \ln |x|) \right],$$

$$\tilde{y}_2 = |x|^\alpha \left[\cos(\beta \ln |x|) - 1 \sin(\beta \ln |x|) \right].$$

We conclude that

$$y_1(x) = |x|^\alpha \cos(\beta \ln |x|), \quad y_2(x) = |x|^\alpha \sin(\beta \ln |x|).$$
Different complex roots.

Example

Find a real-valued general solution of the Euler equation

\[x^2 y'' - 3x y' + 13 y = 0. \]
Different complex roots.

Example

Find a real-valued general solution of the Euler equation

\[x^2 y'' - 3x y' + 13 y = 0. \]

Solution: The indicial equation is \(r(r - 1) - 3r + 13 = 0. \)
Different complex roots.

Example

Find a real-valued general solution of the Euler equation

\[x^2 y'' - 3x y' + 13 y = 0. \]

Solution: The indicial equation is \(r(r - 1) - 3r + 13 = 0. \)

The solutions of the indicial equations are
Different complex roots.

Example
Find a real-valued general solution of the Euler equation

\[x^2 y'' - 3x y' + 13 y = 0. \]

Solution: The indicial equation is \(r(r - 1) - 3r + 13 = 0 \).
The solutions of the indicial equations are

\[r^2 - 4r + 13 = 0 \]
Different complex roots.

Example
Find a real-valued general solution of the Euler equation

\[x^2 y'' - 3x y' + 13 y = 0. \]

Solution: The indicial equation is \(r(r - 1) - 3r + 13 = 0. \)
The solutions of the indicial equations are

\[r^2 - 4r + 13 = 0 \quad \Rightarrow \quad r_+ = 2 + 3i, \quad r_- = 2 - 3i. \]
Different complex roots.

Example
Find a real-valued general solution of the Euler equation
\[x^2 y'' - 3x y' + 13 y = 0. \]

Solution: The indicial equation is \(r(r - 1) - 3r + 13 = 0. \)
The solutions of the indicial equations are
\[r^2 - 4r + 13 = 0 \quad \Rightarrow \quad r_+ = 2 + 3i, \quad r_- = 2 - 3i. \]
A complex-valued general solution is
\[y(x) = \tilde{c}_1 |x|^{(2+3i)} + \tilde{c}_2 |x|^{(2-3i)} \quad \tilde{c}_1, \tilde{c}_2 \in \mathbb{C}. \]
Different complex roots.

Example

Find a real-valued general solution of the Euler equation

\[x^2 y'' - 3x y' + 13 y = 0. \]

Solution: The indicial equation is \(r(r - 1) - 3r + 13 = 0 \).

The solutions of the indicial equations are

\[r^2 - 4r + 13 = 0 \implies r_+ = 2 + 3i, \quad r_- = 2 - 3i. \]

A complex-valued general solution is

\[y(x) = \tilde{c}_1 |x|^{2+3i} + \tilde{c}_2 |x|^{2-3i}, \quad \tilde{c}_1, \tilde{c}_2 \in \mathbb{C}. \]

A real-valued general solution is

\[y(x) = c_1 |x|^2 \cos(3 \ln |x|) + c_2 |x|^2 \sin(3 \ln |x|), \quad c_1, c_2 \in \mathbb{R}. \]
Equations with regular-singular points (Sect. 5.5).

- Equations with regular-singular points.
- Examples: Equations with regular-singular points.
- Method to find solutions.
- Example: Method to find solutions.
Equations with regular-singular points (Sect. 5.5).

- Equations with regular-singular points.
- Examples: Equations with regular-singular points.
- Method to find solutions.
- Example: Method to find solutions.

Recall:
The point $x_0 \in \mathbb{R}$ is a singular point of the equation

$$P(x) y'' + Q(x) y' + R(x) y = 0$$

iff holds that $P(x_0) = 0$.
Equations with regular-singular points.

Definition
A singular point \(x_0 \in \mathbb{R} \) of the equation

\[
P(x) y'' + Q(x) y' + R(x) y = 0
\]

is called a \textit{regular-singular} point iff the following limits are finite,

\[
\lim_{x \to x_0} \frac{(x - x_0) Q(x)}{P(x)}, \quad \lim_{x \to x_0} \frac{(x - x_0)^2 R(x)}{P(x)},
\]

and both functions

\[
\frac{(x - x_0) Q(x)}{P(x)}, \quad \frac{(x - x_0)^2 R(x)}{P(x)}
\]

admit convergent Taylor series expansions around \(x_0 \).
Equations with regular-singular points.

Remark:
- If x_0 is a regular-singular point of

$$P(x) y'' + Q(x) y' + R(x) y = 0$$

and $P(x) \simeq (x - x_0)^n$ near x_0, then near x_0 holds

$$Q(x) \simeq (x - x_0)^{n-1}, \quad R(x) \simeq (x - x_0)^{n-2}.$$
Remark:

- If \(x_0 \) is a regular-singular point of

\[
P(x) y'' + Q(x) y' + R(x) y = 0
\]

and \(P(x) \simeq (x - x_0)^n \) near \(x_0 \), then near \(x_0 \) holds

\[
Q(x) \simeq (x - x_0)^{n-1}, \quad R(x) \simeq (x - x_0)^{n-2}.
\]

- The main example is an Euler equation, case \(n = 2 \),

\[
(x - x_0)^2 y'' + p_0(x - x_0) y' + q_0 y = 0.
\]
Equations with regular-singular points.

Example
Show that the singular point of every Euler equation is a regular-singular point.
Equations with regular-singular points.

Example
Show that the singular point of every Euler equation is a regular-singular point.

Solution: Consider the general Euler equation

$$(x - x_0)^2 y'' + p_0(x - x_0) y' + q_0 y = 0,$$

where p_0, q_0, x_0, are real constants.
Equations with regular-singular points.

Example

Show that the singular point of every Euler equation is a regular-singular point.

Solution: Consider the general Euler equation

\[(x - x_0)^2 y'' + p_0(x - x_0) y' + q_0 y = 0,\]

where \(p_0, q_0, x_0\), are real constants. This is an equation \(Py'' + Qy' + Ry = 0\) with

\[P(x) = (x - x_0)^2, \quad Q(x) = p_0(x - x_0), \quad R(x) = q_0.\]
Equations with regular-singular points.

Example
Show that the singular point of every Euler equation is a regular-singular point.

Solution: Consider the general Euler equation

$$(x - x_0)^2 y'' + p_0(x - x_0) y' + q_0 y = 0,$$

where p_0, q_0, x_0, are real constants. This is an equation $Py'' + Qy' + R y = 0$ with

$$P(x) = (x - x_0)^2, \quad Q(x) = p_0(x - x_0), \quad R(x) = q_0.$$

Therefore, we obtain,

$$\lim_{x \to x_0} \frac{(x - x_0) Q(x)}{P(x)}$$
Equations with regular-singular points.

Example
Show that the singular point of every Euler equation is a regular-singular point.

Solution: Consider the general Euler equation

\[(x - x_0)^2 y'' + p_0(x - x_0) y' + q_0 y = 0,\]

where \(p_0, q_0, x_0\), are real constants. This is an equation

\[P y'' + Q y' + R y = 0\]

with

\[P(x) = (x - x_0)^2, \quad Q(x) = p_0(x - x_0), \quad R(x) = q_0.\]

Therefore, we obtain,

\[\lim_{x \to x_0} \frac{(x - x_0) Q(x)}{P(x)} = p_0,\]
Equations with regular-singular points.

Example
Show that the singular point of every Euler equation is a regular-singular point.

Solution: Consider the general Euler equation

\[(x - x_0)^2 y'' + p_0(x - x_0) y' + q_0 y = 0,\]

where \(p_0, q_0, x_0\), are real constants. This is an equation

\[Py'' + Qy' + Ry = 0\]

with

\[P(x) = (x - x_0)^2, \quad Q(x) = p_0(x - x_0), \quad R(x) = q_0.\]

Therefore, we obtain,

\[\lim_{x \to x_0} \frac{(x - x_0)Q(x)}{P(x)} = p_0, \quad \lim_{x \to x_0} \frac{(x - x_0)^2R(x)}{P(x)} = q_0.\]
Equations with regular-singular points.

Example
Show that the singular point of every Euler equation is a regular-singular point.

Solution: Consider the general Euler equation

\[(x - x_0)^2 y'' + p_0(x - x_0) y' + q_0 y = 0,\]

where \(p_0, q_0, x_0,\) are real constants. This is an equation

\[P y'' + Q y' + R y = 0\]

with

\[P(x) = (x - x_0)^2, \quad Q(x) = p_0(x - x_0), \quad R(x) = q_0.\]

Therefore, we obtain,

\[\lim_{x \to x_0} \frac{(x - x_0) Q(x)}{P(x)} = p_0, \quad \lim_{x \to x_0} \frac{(x - x_0)^2 R(x)}{P(x)} = q_0.\]
Equations with regular-singular points.

Example
Show that the singular point of every Euler equation is a regular-singular point.

Solution: Consider the general Euler equation

\[(x - x_0)^2 y'' + p_0(x - x_0) y' + q_0 y = 0,\]

where \(p_0, q_0, x_0,\) are real constants. This is an equation

\[Py'' + Qy' + Ry = 0\]

with

\[P(x) = (x - x_0)^2, \quad Q(x) = p_0(x - x_0), \quad R(x) = q_0.\]

Therefore, we obtain,

\[\lim_{x \to x_0} \frac{(x - x_0) Q(x)}{P(x)} = p_0, \quad \lim_{x \to x_0} \frac{(x - x_0)^2 R(x)}{P(x)} = q_0.\]

We conclude that \(x_0\) is a regular-singular point. \(\triangle\)
Equations with regular-singular points.

Remark: Every equation $Py'' + Qy' + Ry = 0$ with a regular-singular point at x_0 is close to an Euler equation.
Equations with regular-singular points.

Remark: Every equation $Py'' + Qy' + Ry = 0$ with a regular-singular point at x_0 is close to an Euler equation.

Proof:
For $x \neq x_0$ divide the equation by $P(x)$,
Equations with regular-singular points.

Remark: Every equation \(Py'' + Qy' + Ry = 0 \) with a regular-singular point at \(x_0 \) is close to an Euler equation.

Proof:
For \(x \neq x_0 \) divide the equation by \(P(x) \),
\[
y'' + \frac{Q(x)}{P(x)} y' + \frac{R(x)}{P(x)} y = 0,
\]
Equations with regular-singular points.

Remark: Every equation \(Py'' + Qy' + Ry = 0 \) with a regular-singular point at \(x_0 \) is close to an Euler equation.

Proof:
For \(x \neq x_0 \) divide the equation by \(P(x) \),

\[
y'' + \frac{Q(x)}{P(x)} y' + \frac{R(x)}{P(x)} y = 0,
\]

and multiply it by \((x - x_0)^2\),
Equations with regular-singular points.

Remark: Every equation $Py'' + Qy' + Ry = 0$ with a regular-singular point at x_0 is close to an Euler equation.

Proof:
For $x \neq x_0$ divide the equation by $P(x)$,

$$y'' + \frac{Q(x)}{P(x)} y' + \frac{R(x)}{P(x)} y = 0,$$

and multiply it by $(x - x_0)^2$,

$$(x - x_0)^2 y'' + (x - x_0) \left[\frac{(x - x_0)Q(x)}{P(x)} \right] y' + \left[\frac{(x - x_0)^2 R(x)}{P(x)} \right] y = 0.$$
Equations with regular-singular points.

Remark: Every equation $Py'' + Qy' + Ry = 0$ with a regular-singular point at x_0 is close to an Euler equation.

Proof:
For $x \neq x_0$ divide the equation by $P(x)$,

$$y'' + \frac{Q(x)}{P(x)} y' + \frac{R(x)}{P(x)} y = 0,$$

and multiply it by $(x - x_0)^2$,

$$(x - x_0)^2 y'' + (x - x_0) \left[\frac{(x - x_0)Q(x)}{P(x)} \right] y' + \left[\frac{(x - x_0)^2 R(x)}{P(x)} \right] y = 0.$$

The factors between $[]$ approach constants, say p_0, q_0, as $x \to x_0$.
Equations with regular-singular points.

Remark: Every equation $Py'' + Qy' + Ry = 0$ with a regular-singular point at x_0 is close to an Euler equation.

Proof:
For $x \neq x_0$ divide the equation by $P(x)$,

$$y'' + \frac{Q(x)}{P(x)} y' + \frac{R(x)}{P(x)} y = 0,$$

and multiply it by $(x - x_0)^2$,

$$(x - x_0)^2 y'' + (x - x_0) \left[\frac{(x - x_0)Q(x)}{P(x)} \right] y' + \left[\frac{(x - x_0)^2 R(x)}{P(x)} \right] y = 0.$$

The factors between $[]$ approach constants, say p_0, q_0, as $x \rightarrow x_0$,

$$(x - x_0)^2 y'' + (x - x_0) p_0 y' + q_0 y = 0.$$
Equations with regular-singular points (Sect. 5.5).

- Equations with regular-singular points.
- **Examples: Equations with regular-singular points.**
- Method to find solutions.
- Example: Method to find solutions.
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

$$(1 - x^2) y'' - 2x y' + \alpha(\alpha + 1) y = 0,$$

where α is a real constant.

Solution:
Find the singular points of this equation,

$$0 = P(x) = (1 - x^2)(1 + x),$$

\Rightarrow

$$\{x_0 = 1, x_1 = -1\}.$$

Case $x_0 = 1$:
We then have

$$(x - 1)Q(x)P(x) = (x - 1)(-2x)(1 - x)(1 + x) = 2x^2 + x,$$

$$(x - 1)^2R(x)P(x) = (x - 1)^2[\alpha(\alpha + 1)](1 - x)(1 + x) = (x - 1)[\alpha(\alpha + 1)]1 + x;$$

both functions above have Taylor series around $x_0 = 1$.

Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation
\[
(1 - x^2) y'' - 2x y' + \alpha(\alpha + 1) y = 0,
\]
where \(\alpha\) is a real constant.

Solution: Find the singular points of this equation,
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

$$(1 - x^2) y'' - 2x y' + \alpha(\alpha + 1) y = 0,$$

where α is a real constant.

Solution: Find the singular points of this equation,

$$0 = P(x)$$
Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation

\[(1 - x^2) y'' - 2x y' + \alpha(\alpha + 1) y = 0,\]

where \(\alpha\) is a real constant.

Solution: Find the singular points of this equation,

\[0 = P(x) = (1 - x^2)\]
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

\[(1 - x^2) y'' - 2x y' + \alpha(\alpha + 1) y = 0,\]

where \(\alpha\) is a real constant.

Solution: Find the singular points of this equation,

\[0 = P(x) = (1 - x^2) = (1 - x)(1 + x)\]
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

\[(1 - x^2) y'' - 2x y' + \alpha(\alpha + 1) y = 0,\]

where \(\alpha\) is a real constant.

Solution: Find the singular points of this equation,

\[0 = P(x) = (1 - x^2) = (1 - x)(1 + x) \quad \Rightarrow \quad \begin{cases} x_0 = 1, \\ x_1 = -1. \end{cases} \]
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation
\[(1 - x^2) y'' - 2x y' + \alpha(\alpha + 1) y = 0,\]
where \(\alpha\) is a real constant.

Solution: Find the singular points of this equation,
\[0 = P(x) = (1 - x^2) = (1 - x)(1 + x) \quad \Rightarrow \quad \begin{cases} x_0 = 1, \\ x_1 = -1. \end{cases}\]

Case \(x_0 = 1\):
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation
\[(1 - x^2) y'' - 2x y' + \alpha(\alpha + 1) y = 0,\]
where \(\alpha\) is a real constant.

Solution: Find the singular points of this equation,
\[0 = P(x) = (1 - x^2) = (1 - x)(1 + x) \quad \Rightarrow \quad \begin{cases} x_0 = 1, \\ x_1 = -1. \end{cases}\]

Case \(x_0 = 1\): We then have
\[
\frac{(x - 1) Q(x)}{P(x)}
\]
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

\[(1 - x^2) y'' - 2x y' + \alpha(\alpha + 1) y = 0,\]

where \(\alpha\) is a real constant.

Solution: Find the singular points of this equation,

\[0 = P(x) = (1 - x^2) = (1 - x)(1 + x) \Rightarrow \left\{ \begin{array}{l} x_0 = 1, \\ x_1 = -1. \end{array} \right.\]

Case \(x_0 = 1\): We then have

\[
\frac{Q(x)}{P(x)} = \frac{(x - 1)(-2x)}{(1 - x)(1 + x)}
\]
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

\[(1 - x^2) y'' - 2x y' + \alpha(\alpha + 1) y = 0,\]

where \(\alpha\) is a real constant.

Solution: Find the singular points of this equation,

\[0 = P(x) = (1 - x^2) = (1 - x)(1 + x) \Rightarrow \begin{cases} x_0 = 1, \\ x_1 = -1. \end{cases}\]

Case \(x_0 = 1\): We then have

\[
\frac{(x - 1) Q(x)}{P(x)} = \frac{(x - 1)(-2x)}{(1 - x)(1 + x)} = \frac{2x}{1 + x},
\]
Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation

\[(1 - x^2) y'' - 2x y' + \alpha(\alpha + 1)y = 0,\]

where \(\alpha\) is a real constant.

Solution: Find the singular points of this equation,

\[0 = P(x) = (1 - x^2) = (1 - x)(1 + x) \implies \begin{cases} x_0 = 1, \\
x_1 = -1. \end{cases} \]

Case \(x_0 = 1\): We then have

\[\frac{(x - 1) Q(x)}{P(x)} = \frac{(x - 1)(-2x)}{(1 - x)(1 + x)} = \frac{2x}{1 + x},\]

\[\frac{(x - 1)^2 R(x)}{P(x)}\]
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

\[(1 - x^2) y'' - 2x y' + \alpha(\alpha + 1) y = 0,\]

where \(\alpha\) is a real constant.

Solution: Find the singular points of this equation,

\[0 = P(x) = (1 - x^2) = (1 - x)(1 + x) \implies \begin{cases} x_0 = 1, \\ x_1 = -1. \end{cases} \]

Case \(x_0 = 1\): We then have

\[\frac{(x - 1)Q(x)}{P(x)} = \frac{(x - 1)(-2x)}{(1 - x)(1 + x)} = \frac{2x}{1 + x},\]

\[\frac{(x - 1)^2 R(x)}{P(x)} = \frac{(x - 1)^2[\alpha(\alpha + 1)]}{(1 - x)(1 + x)}\]
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

\[(1 - x^2) y'' - 2x y' + \alpha(\alpha + 1) y = 0,\]

where \(\alpha\) is a real constant.

Solution: Find the singular points of this equation,

\[0 = P(x) = (1 - x^2) = (1 - x)(1 + x) \quad \Rightarrow \quad \begin{cases} x_0 = 1, \\ x_1 = -1. \end{cases}\]

Case \(x_0 = 1\): We then have

\[
\frac{(x - 1) Q(x)}{P(x)} = \frac{(x - 1)(-2x)}{(1 - x)(1 + x)} = \frac{2x}{1 + x},
\]

\[
\frac{(x - 1)^2 R(x)}{P(x)} = \frac{(x - 1)^2 [\alpha(\alpha + 1)]}{(1 - x)(1 + x)} = \frac{(x - 1)[\alpha(\alpha + 1)]}{1 + x},
\]
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

\[(1 - x^2) y'' - 2x y' + \alpha(\alpha + 1) y = 0,\]

where \(\alpha\) is a real constant.

Solution: Find the singular points of this equation,

\[0 = P(x) = (1 - x^2) = (1 - x)(1 + x) \quad \Rightarrow \quad \begin{cases} x_0 = 1, \\ x_1 = -1. \end{cases}\]

Case \(x_0 = 1\): We then have

\[
\frac{(x - 1) Q(x)}{P(x)} = \frac{(x - 1)(-2x)}{(1 - x)(1 + x)} = \frac{2x}{1 + x},
\]

\[
\frac{(x - 1)^2 R(x)}{P(x)} = \frac{(x - 1)^2 [\alpha(\alpha + 1)]}{(1 - x)(1 + x)} = \frac{(x - 1)[\alpha(\alpha + 1)]}{1 + x};
\]

both functions above have Taylor series around \(x_0 = 1\).
Example

Find the regular-singular points of the differential equation

\[(1 - x^2) y'' - 2x y' + \alpha(\alpha + 1) y = 0,\]

where \(\alpha\) is a real constant.

Solution: Recall:

\[
\frac{(x - 1) Q(x)}{P(x)} = \frac{2x}{1 + x}, \quad \frac{(x - 1)^2 R(x)}{P(x)} = \frac{(x - 1)[\alpha(\alpha + 1)]}{1 + x}.
\]
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

\[(1 - x^2) y'' - 2x y' + \alpha(\alpha + 1) y = 0,\]
where \(\alpha\) is a real constant.

Solution: Recall:

\[
\frac{(x - 1) Q(x)}{P(x)} = \frac{2x}{1 + x}, \quad \frac{(x - 1)^2 R(x)}{P(x)} = \frac{(x - 1)[\alpha(\alpha + 1)]}{1 + x}.
\]

Furthermore, the following limits are finite,

\[
\lim_{x \to 1} \frac{(x - 1) Q(x)}{P(x)}
\]
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

\[(1 - x^2) y'' - 2x y' + \alpha(\alpha + 1) y = 0,\]

where \(\alpha\) is a real constant.

Solution: Recall:

\[
\frac{(x - 1) Q(x)}{P(x)} = \frac{2x}{1 + x}, \quad \frac{(x - 1)^2 R(x)}{P(x)} = \frac{(x - 1)[\alpha(\alpha + 1)]}{1 + x}.
\]

Furthermore, the following limits are finite,

\[
\lim_{x \to 1} \frac{(x - 1) Q(x)}{P(x)} = 1,
\]
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

$$(1 - x^2) y'' - 2x y' + \alpha (\alpha + 1) y = 0,$$

where α is a real constant.

Solution: Recall:

$$\frac{(x - 1) Q(x)}{P(x)} = \frac{2x}{1 + x}, \quad \frac{(x - 1)^2 R(x)}{P(x)} = \frac{(x - 1)[\alpha (\alpha + 1)]}{1 + x}.$$

Furthermore, the following limits are finite,

$$\lim_{x \to 1} \frac{(x - 1) Q(x)}{P(x)} = 1, \quad \lim_{x \to 1} \frac{(x - 1)^2 R(x)}{P(x)}.$$
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation
\[(1 - x^2) y'' - 2x y' + \alpha(\alpha + 1) y = 0,\]
where \(\alpha\) is a real constant.

Solution: Recall:
\[
\frac{(x - 1) Q(x)}{P(x)} = \frac{2x}{1 + x}, \quad \frac{(x - 1)^2 R(x)}{P(x)} = \frac{(x - 1)[\alpha(\alpha + 1)]}{1 + x}.
\]

Furthermore, the following limits are finite,
\[
\lim_{x \to 1} \frac{(x - 1) Q(x)}{P(x)} = 1, \quad \lim_{x \to 1} \frac{(x - 1)^2 R(x)}{P(x)} = 0.
\]
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

\[(1 - x^2) y'' - 2x y' + \alpha(\alpha + 1) y = 0,\]

where \(\alpha\) is a real constant.

Solution: Recall:

\[
\frac{(x - 1) Q(x)}{P(x)} = \frac{2x}{1 + x}, \quad \frac{(x - 1)^2 R(x)}{P(x)} = \frac{(x - 1)[\alpha(\alpha + 1)]}{1 + x}.
\]

Furthermore, the following limits are finite,

\[
\lim_{x \to 1} \frac{(x - 1) Q(x)}{P(x)} = 1, \quad \lim_{x \to 1} \frac{(x - 1)^2 R(x)}{P(x)} = 0.
\]

We conclude that \(x_0 = 1\) is a regular-singular point.
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

\[(1 - x^2) y'' - 2x y' + \alpha(\alpha + 1) y = 0,\]

where \(\alpha\) is a real constant.

Solution:
Case \(x_1 = -1:\)
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

\[(1 - x^2) y'' - 2x y' + \alpha(\alpha + 1) y = 0,\]

where \(\alpha\) is a real constant.

Solution:
Case \(x_1 = -1\):

\[
\frac{(x + 1) Q(x)}{P(x)}
\]
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

\[(1 - x^2) y'' - 2x y' + \alpha(\alpha + 1) y = 0,\]

where \(\alpha\) is a real constant.

Solution:
Case \(x_1 = -1\):

\[
\frac{(x + 1) Q(x)}{P(x)} = \frac{(x + 1)(-2x)}{(1 - x)(1 + x)}
\]
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation
\[(1 - x^2) y'' - 2x y' + \alpha(\alpha + 1) y = 0,\]
where α is a real constant.

Solution:
Case $x_1 = -1$:

\[
\frac{(x + 1) Q(x)}{P(x)} = \frac{(x + 1)(-2x)}{(1 - x)(1 + x)} = -\frac{2x}{1 - x},
\]
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

\[(1 - x^2) y'' - 2x y' + \alpha(\alpha + 1) y = 0,\]

where \(\alpha\) is a real constant.

Solution:
Case \(x_1 = -1\):

\[
\frac{(x + 1) Q(x)}{P(x)} = \frac{(x + 1)(-2x)}{(1 - x)(1 + x)} = -\frac{2x}{1 - x},
\]

\[
\frac{(x + 1)^2 R(x)}{P(x)}
\]
Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation

\[(1 - x^2) y'' - 2x y' + \alpha(\alpha + 1) y = 0,\]

where \(\alpha\) is a real constant.

Solution:

Case \(x_1 = -1\):

\[
\frac{(x + 1) Q(x)}{P(x)} = \frac{(x + 1)(-2x)}{(1 - x)(1 + x)} = -\frac{2x}{1 - x},
\]

\[
\frac{(x + 1)^2 R(x)}{P(x)} = \frac{(x + 1)^2 [\alpha(\alpha + 1)]}{(1 - x)(1 + x)}
\]
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

\[(1 - x^2) y'' - 2x y' + \alpha(\alpha + 1) y = 0,\]

where \(\alpha\) is a real constant.

Solution:
Case \(x_1 = -1\):

\[
\frac{(x + 1) Q(x)}{P(x)} = \frac{(x + 1)(-2x)}{(1 - x)(1 + x)} = -\frac{2x}{1 - x},
\]

\[
\frac{(x + 1)^2 R(x)}{P(x)} = \frac{(x + 1)^2 [\alpha(\alpha + 1)]}{(1 - x)(1 + x)} = \frac{(x + 1)[\alpha(\alpha + 1)]}{1 - x}.
\]
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation
\[(1 - x^2) y'' - 2x y' + \alpha(\alpha + 1) y = 0,\]
where \(\alpha\) is a real constant.

Solution:
Case \(x_1 = -1\):

\[
\frac{(x + 1) Q(x)}{P(x)} = \frac{(x + 1)(-2x)}{(1 - x)(1 + x)} = -\frac{2x}{1 - x},
\]

\[
\frac{(x + 1)^2 R(x)}{P(x)} = \frac{(x + 1)^2 [\alpha(\alpha + 1)]}{(1 - x)(1 + x)} = \frac{(x + 1)[\alpha(\alpha + 1)]}{1 - x}.
\]

Both functions above have Taylor series \(x_1 = -1\).
Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation

\[(1 - x^2) y'' - 2x y' + \alpha (\alpha + 1) y = 0,\]

where \(\alpha\) is a real constant.

Solution: Recall:

\[
\frac{(x + 1) Q(x)}{P(x)} = -\frac{2x}{1 - x}, \quad \frac{(x + 1)^2 R(x)}{P(x)} = \frac{(x + 1) [\alpha (\alpha + 1)]}{1 - x}.
\]
Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation

\[(1 - x^2) y'' - 2x y' + \alpha(\alpha + 1) y = 0,\]

where \(\alpha\) is a real constant.

Solution: Recall:

\[
\frac{(x + 1) Q(x)}{P(x)} = -\frac{2x}{1 - x}, \quad \frac{(x + 1)^2 R(x)}{P(x)} = \frac{(x + 1)[\alpha(\alpha + 1)]}{1 - x}.
\]

Furthermore, the following limits are finite,

\[
\lim_{x \to -1} \frac{(x + 1) Q(x)}{P(x)}
\]
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

\[(1 - x^2) y'' - 2x y' + \alpha(\alpha + 1) y = 0,\]

where \(\alpha\) is a real constant.

Solution: Recall:

\[
\frac{(x + 1) Q(x)}{P(x)} = -\frac{2x}{1 - x}, \quad \frac{(x + 1)^2 R(x)}{P(x)} = \frac{(x + 1)[\alpha(\alpha + 1)]}{1 - x}.
\]

Furthermore, the following limits are finite,

\[
\lim_{x \to -1} \frac{(x + 1) Q(x)}{P(x)} = 1,
\]
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

\[(1 - x^2) y'' - 2x y' + \alpha (\alpha + 1) y = 0,\]

where \(\alpha\) is a real constant.

Solution: Recall:

\[
\frac{(x + 1) Q(x)}{P(x)} = -\frac{2x}{1 - x}, \quad \frac{(x + 1)^2 R(x)}{P(x)} = \frac{(x + 1)[\alpha (\alpha + 1)]}{1 - x}.
\]

Furthermore, the following limits are finite,

\[
\lim_{x \to -1} \frac{(x + 1) Q(x)}{P(x)} = 1, \quad \lim_{x \to -1} \frac{(x + 1)^2 R(x)}{P(x)}.
\]
Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation

\[(1 - x^2) y'' - 2x y' + \alpha(\alpha + 1) y = 0,\]

where \(\alpha\) is a real constant.

Solution: Recall:

\[
\frac{(x + 1) Q(x)}{P(x)} = -\frac{2x}{1 - x}, \quad \frac{(x + 1)^2 R(x)}{P(x)} = \frac{(x + 1)[\alpha(\alpha + 1)]}{1 - x}.
\]

Furthermore, the following limits are finite,

\[
\lim_{x \to -1} \frac{(x + 1) Q(x)}{P(x)} = 1, \quad \lim_{x \to -1} \frac{(x + 1)^2 R(x)}{P(x)} = 0.
\]
Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation

\[(1 - x^2) y'' - 2x y' + \alpha(\alpha + 1) y = 0,\]

where \(\alpha\) is a real constant.

Solution: Recall:

\[
\begin{align*}
\frac{(x + 1) Q(x)}{P(x)} &= -\frac{2x}{1-x}, \\
\frac{(x + 1)^2 R(x)}{P(x)} &= \frac{(x + 1)[\alpha(\alpha + 1)]}{1-x}.
\end{align*}
\]

Furthermore, the following limits are finite,

\[
\lim_{x \to -1} \frac{(x + 1) Q(x)}{P(x)} = 1, \quad \lim_{x \to -1} \frac{(x + 1)^2 R(x)}{P(x)} = 0.
\]

Therefore, the point \(x_1 = -1\) is a regular-singular point. \(\triangleright\)
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

$$(x + 2)^2(x - 1) y'' + 3(x - 1) y' + 2 y = 0.$$
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation
\[(x + 2)^2(x - 1) y'' + 3(x - 1) y' + 2 y = 0.\]

Solution: Find the singular points:
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

\[(x + 2)^2(x - 1) y'' + 3(x - 1) y' + 2 y = 0.\]

Solution: Find the singular points: \(x_0 = -2\) and \(x_1 = 1\).
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation
\[(x + 2)^2(x - 1) y'' + 3(x - 1) y' + 2 y = 0.\]

Solution: Find the singular points: \(x_0 = -2\) and \(x_1 = 1\).
Case \(x_0 = -2\):
Example
Find the regular-singular points of the differential equation
\[(x + 2)^2(x - 1) y'' + 3(x - 1) y' + 2 y = 0.\]

Solution: Find the singular points: \(x_0 = -2\) and \(x_1 = 1\).
Case \(x_0 = -2\):
\[
\lim_{x \to -2} \frac{(x + 2)Q(x)}{P(x)}
\]
Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation

\[(x + 2)^2(x - 1) y'' + 3(x - 1) y' + 2 y = 0.\]

Solution: Find the singular points: \(x_0 = -2\) and \(x_1 = 1\).

Case \(x_0 = -2\):

\[
\lim_{x \to -2} \frac{(x + 2)Q(x)}{P(x)} = \lim_{x \to -2} \frac{(x + 2)3(x - 1)}{(x + 2)^2(x - 1)}
\]
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation
\[(x + 2)^2(x - 1) y'' + 3(x - 1) y' + 2 y = 0.\]

Solution: Find the singular points: \(x_0 = -2\) and \(x_1 = 1\).
Case \(x_0 = -2\):
\[
\lim_{x \to -2} \frac{(x + 2)Q(x)}{P(x)} = \lim_{x \to -2} \frac{(x + 2)3(x - 1)}{(x + 2)^2(x - 1)} = \lim_{x \to -2} \frac{3}{(x + 2)} = \pm\infty.
\]
So \(x_0 = -2\) is not a regular-singular point.

Case \(x_1 = 1\):
\[
\left(\frac{(x - 1)}{P(x)}\right) = \frac{3}{(x + 2)^2}, \quad \left(\frac{(x - 1)}{P(x)}\right) = \frac{2}{(x + 2)^2};
\]
Both functions have Taylor series around \(x_1 = 1\).
Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation

$$(x + 2)^2(x - 1) y'' + 3(x - 1) y' + 2 y = 0.$$

Solution: Find the singular points: $x_0 = -2$ and $x_1 = 1$.

Case $x_0 = -2$:

$$
\lim_{x \to -2} \frac{(x + 2)Q(x)}{P(x)} = \lim_{x \to -2} \frac{(x + 2)3(x - 1)}{(x + 2)^2(x - 1)} = \lim_{x \to -2} \frac{3}{(x + 2)} = \pm \infty.
$$
Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation

\[(x + 2)^2(x - 1) y'' + 3(x - 1) y' + 2 y = 0.\]

Solution: Find the singular points: \(x_0 = -2\) and \(x_1 = 1\).

Case \(x_0 = -2\):

\[\lim_{x \to -2} \frac{(x + 2)Q(x)}{P(x)} = \lim_{x \to -2} \frac{(x + 2)3(x - 1)}{(x + 2)^2(x - 1)} = \lim_{x \to -2} \frac{3}{(x + 2)} = \pm \infty.\]

So \(x_0 = -2\) is not a regular-singular point.
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation
\[(x + 2)^2(x - 1)y'' + 3(x - 1)y' + 2y = 0.\]

Solution: Find the singular points: \(x_0 = -2\) and \(x_1 = 1\).
Case \(x_0 = -2\):
\[
\lim_{{x \to -2}} \frac{(x + 2)Q(x)}{P(x)} = \lim_{{x \to -2}} \frac{(x + 2)3(x - 1)}{(x + 2)^2(x - 1)} = \lim_{{x \to -2}} \frac{3}{(x + 2)} = \pm \infty.
\]
So \(x_0 = -2\) is not a regular-singular point. Case \(x_1 = 1\):
\[
\frac{(x - 1)Q(x)}{P(x)}
\]
Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation

\[(x + 2)^2 (x - 1) y'' + 3(x - 1) y' + 2 y = 0.\]

Solution: Find the singular points: \(x_0 = -2\) and \(x_1 = 1\).

Case \(x_0 = -2\):

\[
\lim_{x \to -2} \frac{(x + 2)Q(x)}{P(x)} = \lim_{x \to -2} \frac{(x + 2)3(x - 1)}{(x + 2)^2(x - 1)} = \lim_{x \to -2} \frac{3}{(x + 2)} = \pm \infty.
\]

So \(x_0 = -2\) is not a regular-singular point. Case \(x_1 = 1\):

\[
\frac{(x - 1)Q(x)}{P(x)} = \frac{(x - 1)[3(x - 1)]}{(x + 2)(x - 1)}
\]
Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation

\[(x + 2)^2(x - 1) y'' + 3(x - 1) y' + 2 y = 0.\]

Solution: Find the singular points: \(x_0 = -2\) and \(x_1 = 1\).

Case \(x_0 = -2\):

\[
\lim_{x\to-2} \frac{(x + 2)Q(x)}{P(x)} = \lim_{x\to-2} \frac{(x + 2)3(x - 1)}{(x + 2)^2(x - 1)} = \lim_{x\to-2} \frac{3}{(x + 2)} = \pm\infty.
\]

So \(x_0 = -2\) is not a regular-singular point.

Case \(x_1 = 1\):

\[
\frac{(x - 1)Q(x)}{P(x)} = \frac{(x - 1)[3(x - 1)]}{(x + 2)(x - 1)} = \frac{-3(x - 1)}{(x + 2)^2},
\]
Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation

\[(x + 2)^2(x - 1) y'' + 3(x - 1) y' + 2 y = 0.\]

Solution: Find the singular points: \(x_0 = -2\) and \(x_1 = 1\).

Case \(x_0 = -2\):

\[
\lim_{x \to -2} \frac{(x + 2) Q(x)}{P(x)} = \lim_{x \to -2} \frac{(x + 2)3(x - 1)}{(x + 2)^2(x - 1)} = \lim_{x \to -2} \frac{3}{(x + 2)} = \pm \infty.
\]

So \(x_0 = -2\) is not a regular-singular point. Case \(x_1 = 1\):

\[
\frac{(x - 1) Q(x)}{P(x)} = \frac{(x - 1)[3(x - 1)]}{(x + 2)(x - 1)} = -\frac{3(x - 1)}{(x + 2)^2},
\]

\[
\frac{(x - 1)^2 R(x)}{P(x)}
\]
Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation

\[(x + 2)^2(x - 1) y'' + 3(x - 1) y' + 2 y = 0.\]

Solution: Find the singular points: \(x_0 = -2\) and \(x_1 = 1\).

Case \(x_0 = -2\):

\[
\lim_{x \to -2} \frac{(x + 2)Q(x)}{P(x)} = \lim_{x \to -2} \frac{(x + 2)3(x - 1)}{(x + 2)^2(x - 1)} = \lim_{x \to -2} \frac{3}{(x + 2)} = \pm\infty.
\]

So \(x_0 = -2\) is not a regular-singular point. Case \(x_1 = 1\):

\[
\frac{(x - 1)Q(x)}{P(x)} = \frac{(x - 1)[3(x - 1)]}{(x + 2)(x - 1)} = -\frac{3(x - 1)}{(x + 2)^2},
\]

\[
\frac{(x - 1)^2R(x)}{P(x)} = \frac{2(x - 1)^2}{(x + 2)^2(x - 1)}.
\]
Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation

\[(x + 2)^2(x - 1) y'' + 3(x - 1) y' + 2 y = 0.\]

Solution: Find the singular points: \(x_0 = -2\) and \(x_1 = 1\).

Case \(x_0 = -2\):

\[
\lim_{x \to -2} \frac{(x + 2)Q(x)}{P(x)} = \lim_{x \to -2} \frac{(x + 2)3(x - 1)}{(x + 2)^2(x - 1)} = \lim_{x \to -2} \frac{3}{(x + 2)} = \pm \infty.
\]

So \(x_0 = -2\) is not a regular-singular point. Case \(x_1 = 1\):

\[
\frac{(x - 1)Q(x)}{P(x)} = \frac{(x - 1)[3(x - 1)]}{(x + 2)(x - 1)} = -\frac{3(x - 1)}{(x + 2)^2},
\]
\[
\frac{(x - 1)^2R(x)}{P(x)} = \frac{2(x - 1)^2}{(x + 2)^2(x - 1)} = \frac{2(x - 1)}{(x + 2)^2};
\]
Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation

$$(x + 2)^2(x - 1) y'' + 3(x - 1) y' + 2 y = 0.$$

Solution: Find the singular points: $x_0 = -2$ and $x_1 = 1$.

Case $x_0 = -2$:

$$\lim_{x \to -2} \frac{(x + 2)Q(x)}{P(x)} = \lim_{x \to -2} \frac{(x + 2)3(x - 1)}{(x + 2)^2(x - 1)} = \lim_{x \to -2} \frac{3}{(x + 2)} = \pm\infty.$$

So $x_0 = -2$ is not a regular-singular point. Case $x_1 = 1$:

$$\frac{(x - 1) Q(x)}{P(x)} = \frac{(x - 1)[3(x - 1)]}{(x + 2)(x - 1)} = -\frac{3(x - 1)}{(x + 2)^2},$$

$$\frac{(x - 1)^2 R(x)}{P(x)} = \frac{2(x - 1)^2}{(x + 2)^2(x - 1)} = \frac{2(x - 1)}{(x + 2)^2};$$

Both functions have Taylor series around $x_1 = 1$.
Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation

$$(x + 2)^2(x - 1)y'' + 3(x - 1)y' + 2y = 0.$$
Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation

\[(x + 2)^2(x - 1)y'' + 3(x - 1)y' + 2y = 0.\]

Solution: Recall:

\[\frac{(x - 1) Q(x)}{P(x)} = -\frac{3(x - 1)}{(x + 2)^2},\]

\[\frac{(x - 1)^2 R(x)}{P(x)} = \frac{2(x - 1)}{(x + 2)^2}.\]
Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation

\[(x + 2)^2(x - 1)y'' + 3(x - 1)y' + 2y = 0.\]

Solution: Recall:

\[\frac{(x - 1)Q(x)}{P(x)} = -\frac{3(x - 1)}{(x + 2)^2}, \quad \frac{(x - 1)^2R(x)}{P(x)} = \frac{2(x - 1)}{(x + 2)^2}.\]

Furthermore, the following limits are finite,
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation
\[(x + 2)^2(x - 1) y'' + 3(x - 1) y' + 2 y = 0.\]

Solution: Recall:
\[
\frac{(x - 1) Q(x)}{P(x)} = -\frac{3(x - 1)}{(x + 2)^2}, \quad \frac{(x - 1)^2 R(x)}{P(x)} = \frac{2(x - 1)}{(x + 2)^2}.
\]

Furthermore, the following limits are finite,
\[
\lim_{x \to 1} \frac{(x - 1) Q(x)}{P(x)}
\]
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

\[(x + 2)^2(x - 1)y'' + 3(x - 1)y' + 2y = 0. \]

Solution: Recall:

\[
\frac{(x - 1)Q(x)}{P(x)} = -\frac{3(x - 1)}{(x + 2)^2}, \quad \frac{(x - 1)^2R(x)}{P(x)} = \frac{2(x - 1)}{(x + 2)^2}.
\]

Furthermore, the following limits are finite,

\[
\lim_{x \to 1} \frac{(x - 1)Q(x)}{P(x)} = 0;
\]
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

\[(x + 2)^2(x - 1) y'' + 3(x - 1) y' + 2 y = 0.\]

Solution: Recall:

\[
\frac{(x - 1) Q(x)}{P(x)} = -\frac{3(x - 1)}{(x + 2)^2}, \quad \frac{(x - 1)^2 R(x)}{P(x)} = \frac{2(x - 1)}{(x + 2)^2}.
\]

Furthermore, the following limits are finite,

\[
\lim_{x \to 1} \frac{(x - 1) Q(x)}{P(x)} = 0; \quad \lim_{x \to 1} \frac{(x - 1)^2 R(x)}{P(x)} = 0.
\]
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

\[(x + 2)^2(x - 1) y'' + 3(x - 1) y' + 2 y = 0.\]

Solution: Recall:

\[
\frac{(x - 1) Q(x)}{P(x)} = -\frac{3(x - 1)}{(x + 2)^2}, \quad \frac{(x - 1)^2 R(x)}{P(x)} = \frac{2(x - 1)}{(x + 2)^2}.
\]

Furthermore, the following limits are finite,

\[
\lim_{x \to 1} \frac{(x - 1) Q(x)}{P(x)} = 0; \quad \lim_{x \to 1} \frac{(x - 1)^2 R(x)}{P(x)} = 0.
\]

Therefore, the point \(x = 1\) is a regular-singular point.
Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation

\[(x + 2)^2 (x - 1) y'' + 3(x - 1) y' + 2 y = 0.\]

Solution: Recall:

\[
\frac{(x - 1) Q(x)}{P(x)} = -\frac{3(x - 1)}{(x + 2)^2}, \quad \frac{(x - 1)^2 R(x)}{P(x)} = \frac{2(x - 1)}{(x + 2)^2}.
\]

Furthermore, the following limits are finite,

\[
\lim_{x \to 1} \frac{(x - 1) Q(x)}{P(x)} = 0; \quad \lim_{x \to 1} \frac{(x - 1)^2 R(x)}{P(x)} = 0.
\]

Therefore, the point \(x_1 = -1\) is a regular-singular point. \(\ trianguleleft\)
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

\[x y'' - x \ln(|x|) y' + 3x y = 0. \]
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

\[x y'' - x \ln(|x|) y' + 3xy = 0. \]

Solution: The singular point is \(x_0 = 0 \).
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation
\[x y'' - x \ln(|x|) y' + 3x y = 0. \]

Solution: The singular point is \(x_0 = 0 \). We compute the limit
\[\lim_{x \to 0} \frac{xQ(x)}{P(x)} \]
Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation

\[x y'' - x \ln(|x|) y' + 3x y = 0. \]

Solution: The singular point is \(x_0 = 0 \). We compute the limit

\[\lim_{x \to 0} \frac{xQ(x)}{P(x)} = \lim_{x \to 0} \frac{x \left[-x \ln(|x|) \right]}{x} \]
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

$$x y'' - x \ln(|x|) y' + 3x y = 0.$$

Solution: The singular point is $x_0 = 0$. We compute the limit

$$\lim_{x \to 0} \frac{xQ(x)}{P(x)} = \lim_{x \to 0} \frac{x \left[-x \ln(|x|) \right]}{x} = \lim_{x \to 0} - \frac{\ln(|x|)}{\frac{1}{x}}.$$
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

\[x y'' - x \ln(|x|) y' + 3xy = 0. \]

Solution: The singular point is \(x_0 = 0 \). We compute the limit

\[
\lim_{x \to 0} \frac{xQ(x)}{P(x)} = \lim_{x \to 0} \frac{x \left[-x \ln(|x|) \right]}{x} = \lim_{x \to 0} - \frac{\ln(|x|)}{\frac{1}{x}}.
\]

Use L’Hôpital’s rule: \(\lim_{x \to 0} \frac{xQ(x)}{P(x)} \)
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

\[x y'' - x \ln(|x|) y' + 3xy = 0. \]

Solution: The singular point is \(x_0 = 0 \). We compute the limit

\[
\lim_{x \to 0} \frac{xQ(x)}{P(x)} = \lim_{x \to 0} \frac{x[-x \ln(|x|)]}{x} = \lim_{x \to 0} -\frac{\ln(|x|)}{\frac{1}{x}}.
\]

Use L'Hôpital’s rule: \(\lim_{x \to 0} \frac{xQ(x)}{P(x)} = \lim_{x \to 0} -\frac{1}{x} - \frac{1}{x^2} \).
Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation

\[x y'' - x \ln(|x|) y' + 3x y = 0. \]

Solution: The singular point is \(x_0 = 0 \). We compute the limit

\[
\lim_{x \to 0} \frac{xQ(x)}{P(x)} = \lim_{x \to 0} \frac{x[-x \ln(|x|)]}{x} = \lim_{x \to 0} - \frac{\ln(|x|)}{\frac{1}{x}}.
\]

Use L’Hôpital’s rule:

\[
\lim_{x \to 0} \frac{xQ(x)}{P(x)} = \lim_{x \to 0} - \frac{\frac{1}{x}}{x^2} = \lim_{x \to 0} x.
\]
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

\[x y'' - x \ln(|x|) y' + 3x y = 0. \]

Solution: The singular point is \(x_0 = 0 \). We compute the limit

\[
\lim_{x \to 0} \frac{xQ(x)}{P(x)} = \lim_{x \to 0} \frac{x \left[-x \ln(|x|) \right]}{x} = \lim_{x \to 0} -\frac{\ln(|x|)}{x}.
\]

Use L'Hôpital’s rule: \(\lim_{x \to 0} \frac{xQ(x)}{P(x)} = \lim_{x \to 0} -\frac{1}{x^2} = \lim_{x \to 0} x = 0. \)
Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation

\[x y'' - x \ln(|x|) y' + 3x y = 0. \]

Solution: The singular point is \(x_0 = 0 \). We compute the limit

\[\lim_{x \to 0} \frac{xQ(x)}{P(x)} = \lim_{x \to 0} \frac{x[-x \ln(|x|)]}{x} = \lim_{x \to 0} - \frac{\ln(|x|)}{\frac{1}{x}}. \]

Use L’Hôpital’s rule:

\[\lim_{x \to 0} \frac{xQ(x)}{P(x)} = \lim_{x \to 0} - \frac{1}{x} = \lim_{x \to 0} x = 0. \]

The other limit is:

\[\lim_{x \to 0} \frac{x^2 R(x)}{P(x)} \]
Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation

\[x y'' - x \ln(|x|) y' + 3x y = 0. \]

Solution: The singular point is \(x_0 = 0 \). We compute the limit

\[\lim_{x \to 0} \frac{xQ(x)}{P(x)} = \lim_{x \to 0} \frac{x \left[-x \ln(|x|) \right]}{x} = \lim_{x \to 0} - \frac{\ln(|x|)}{1/x}. \]

Use L’Hôpital’s rule: \(\lim_{x \to 0} \frac{xQ(x)}{P(x)} = \lim_{x \to 0} \frac{-1/x}{-1/x^2} = \lim_{x \to 0} x = 0. \)

The other limit is: \(\lim_{x \to 0} \frac{x^2 R(x)}{P(x)} = \lim_{x \to 0} \frac{x^2(3x)}{x} \).
Example: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

\[x y'' - x \ln(|x|) y' + 3x y = 0. \]

Solution: The singular point is \(x_0 = 0 \). We compute the limit

\[\lim_{x \to 0} \frac{x Q(x)}{P(x)} = \lim_{x \to 0} \frac{x \left[-x \ln(|x|) \right]}{x} = \lim_{x \to 0} -\frac{\ln(|x|)}{x}. \]

Use L'Hôpital's rule: \(\lim_{x \to 0} \frac{x Q(x)}{P(x)} = \lim_{x \to 0} -\frac{1}{x} = \lim_{x \to 0} x = 0. \)

The other limit is: \(\lim_{x \to 0} \frac{x^2 R(x)}{P(x)} = \lim_{x \to 0} \frac{x^2 (3x)}{x} = \lim_{x \to 0} 3x^2 \).
Example

Find the regular-singular points of the differential equation

\[x y'' - x \ln(|x|) y' + 3x y = 0. \]

Solution: The singular point is \(x_0 = 0 \). We compute the limit

\[
\lim_{x \to 0} \frac{xQ(x)}{P(x)} = \lim_{x \to 0} \frac{x[-x \ln(|x|)]}{x} = \lim_{x \to 0} -\frac{\ln(|x|)}{x}.
\]

Use L’Hôpital’s rule: \(\lim_{x \to 0} \frac{xQ(x)}{P(x)} = \lim_{x \to 0} -\frac{1}{x^2} = \lim_{x \to 0} x = 0. \)

The other limit is: \(\lim_{x \to 0} \frac{x^2R(x)}{P(x)} = \lim_{x \to 0} \frac{x^2(3x)}{x} = \lim_{x \to 0} 3x^2 = 0. \)
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation
\[x y'' - x \ln(|x|) y' + 3x y = 0. \]

Solution: Recall: \(\lim_{x \to 0} \frac{xQ(x)}{P(x)} = 0 \) and \(\lim_{x \to 0} \frac{x^2R(x)}{P(x)} = 0. \)
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

\[x y'' - x \ln(|x|) y' + 3x y = 0. \]

Solution: Recall: \(\lim_{x \to 0} \frac{xQ(x)}{P(x)} = 0 \) and \(\lim_{x \to 0} \frac{x^2R(x)}{P(x)} = 0 \).

However, at the point \(x_0 = 0 \) the function \(xQ/P \) does not have a power series expansion around zero,
Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation

\[xy'' - x \ln(|x|) y' + 3x y = 0. \]

Solution: Recall: \(\lim_{x \to 0} \frac{xQ(x)}{P(x)} = 0 \) and \(\lim_{x \to 0} \frac{x^2R(x)}{P(x)} = 0. \)

However, at the point \(x_0 = 0 \) the function \(xQ/P \) does not have a power series expansion around zero, since

\[\frac{xQ(x)}{P(x)} = -x \ln(|x|), \]
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

\[x y'' - x \ln(|x|) y' + 3x y = 0. \]

Solution: Recall: \(\lim_{x \to 0} \frac{xQ(x)}{P(x)} = 0 \) and \(\lim_{x \to 0} \frac{x^2 R(x)}{P(x)} = 0. \)

However, at the point \(x_0 = 0 \) the function \(xQ/P \) does not have a power series expansion around zero, since

\[\frac{xQ(x)}{P(x)} = -x \ln(|x|), \]

and the log function does not have a Taylor series at \(x_0 = 0. \)
Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

\[x y'' - x \ln(|x|) y' + 3x y = 0. \]

Solution: Recall: \(\lim_{x \to 0} \frac{xQ(x)}{P(x)} = 0\) and \(\lim_{x \to 0} \frac{x^2R(x)}{P(x)} = 0\).

However, at the point \(x_0 = 0\) the function \(xQ/P\) does not have a power series expansion around zero, since

\[\frac{xQ(x)}{P(x)} = -x \ln(|x|), \]

and the log function does not have a Taylor series at \(x_0 = 0\).

We conclude that \(x_0 = 0\) is not a regular-singular point. \(\triangle\)
Equations with regular-singular points (Sect. 5.5).

- Equations with regular-singular points.
- Examples: Equations with regular-singular points.
- **Method to find solutions.**
- Example: Method to find solutions.
Method to find solutions.

Recall: If \(x_0 \) is a regular-singular point of

\[
P(x) y'' + Q(x) y' + R(x) y = 0,
\]

with limits

\[
\lim_{x \to x_0} \frac{(x - x_0)Q(x)}{P(x)} = p_0 \quad \text{and} \quad \lim_{x \to x_0} \frac{(x - x_0)^2R(x)}{P(x)} = q_0,
\]

then the coefficients of the differential equation above near \(x_0 \) are close to the coefficients of the Euler equation

\[
(x - x_0)^2 y'' + p_0(x - x_0) y' + q_0 y = 0.
\]
Method to find solutions.

Recall: If x_0 is a regular-singular point of

\[P(x) y'' + Q(x) y' + R(x) y = 0, \]

with limits \(\lim_{x \to x_0} \frac{(x - x_0)Q(x)}{P(x)} = p_0 \) and \(\lim_{x \to x_0} \frac{(x - x_0)^2R(x)}{P(x)} = q_0, \)

then the coefficients of the differential equation above near x_0 are close to the coefficients of the Euler equation

\[(x - x_0)^2 y'' + p_0(x - x_0) y' + q_0 y = 0. \]

Idea: If the differential equation is close to an Euler equation, then the solutions of the differential equation might be close to the solutions of an Euler equation.
Method to find solutions.

Recall: If x_0 is a regular-singular point of

$$P(x) y'' + Q(x) y' + R(x) y = 0,$$

with limits $\lim_{x \to x_0} \frac{(x - x_0)Q(x)}{P(x)} = p_0$ and $\lim_{x \to x_0} \frac{(x - x_0)^2R(x)}{P(x)} = q_0$, then the coefficients of the differential equation above near x_0 are close to the coefficients of the Euler equation

$$(x - x_0)^2 y'' + p_0(x - x_0) y' + q_0 y = 0.$$

Idea: If the differential equation is close to an Euler equation, then the solutions of the differential equation might be close to the solutions of an Euler equation.

Recall: One solution of an Euler equation is $y(x) = (x - x_0)^r$.
Method to find solutions.

Summary: Solutions for equations with regular-singular points:

1. Look for a solution $y(x)$ of the form $\sum_{n=0}^{\infty} a_n (x-x_0)^{n+r}$;
2. Introduce this power series expansion into the differential equation and find both a the exponent r and a recurrence relation for the coefficients a_n;
3. First find the solutions for the constant r. Then, introduce this result for r into the recurrence relation for the coefficients a_n. Only then, solve this latter recurrence relation for the coefficients a_n.
Method to find solutions.

Summary: Solutions for equations with regular-singular points:

1. Look for a solution y of the form

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^{(n+r)};$$

2. Introduce this power series expansion into the differential equation and find both r and a recurrence relation for the coefficients a_n;

3. First find the solutions for the constant r. Then, introduce this result for r into the recurrence relation for the coefficients a_n. Only then, solve this latter recurrence relation for the coefficients a_n.
Method to find solutions.

Summary: Solutions for equations with regular-singular points:

(1) Look for a solution y of the form

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^{(n+r)};$$

(2) Introduce this power series expansion into the differential equation and find both r, the exponent, and a recurrence relation for the coefficients a_n.
Method to find solutions.

Summary: Solutions for equations with regular-singular points:

1. Look for a solution y of the form

 $$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^{(n+r)};$$

2. Introduce this power series expansion into the differential equation and find both a the exponent r and a recurrence relation for the coefficients a_n;

3. First find the solutions for the constant r. Then, introduce this result for r into the recurrence relation for the coefficients a_n. Only then, solve this latter recurrence relation for the coefficients a_n.
Equations with regular-singular points (Sect. 5.5).

- Equations with regular-singular points.
- Examples: Equations with regular-singular points.
- Method to find solutions.
- **Example:** Method to find solutions.
Example: Method to find solutions.

Example
Find the solution y near the regular-singular point $x_0 = 0$ of

$$x^2 y'' - x(x + 3) y' + (x + 3) y = 0.$$
Example: Method to find solutions.

Example
Find the solution y near the regular-singular point $x_0 = 0$ of

$$x^2 y'' - x(x + 3) y' + (x + 3) y = 0.$$

Solution: We look for a solution $y(x) = \sum_{n=0}^{\infty} a_n x^{(n+r)}$.
Example: Method to find solutions.

Example
Find the solution y near the regular-singular point $x_0 = 0$ of
\[
x^2 y'' - x(x + 3) y' + (x + 3) y = 0.
\]

Solution: We look for a solution $y(x) = \sum_{n=0}^{\infty} a_n x^{(n+r)}$.

The first and second derivatives are given by
\[
y' = \sum_{n=0}^{\infty} (n + r) a_n x^{(n+r-1)},
\]
\[
y'' = \sum_{n=0}^{\infty} (n + r)(n + r - 1) a_n x^{(n+r-2)}.
\]
Example: Method to find solutions.

Example

Find the solution y near the regular-singular point $x_0 = 0$ of

$$x^2 y'' - x(x + 3) y' + (x + 3) y = 0.$$

Solution: We look for a solution $y(x) = \sum_{n=0}^{\infty} a_n x^{(n+r)}$.

The first and second derivatives are given by

$$y' = \sum_{n=0}^{\infty} (n + r) a_n x^{(n+r-1)}, \quad y'' = \sum_{n=0}^{\infty} (n + r)(n + r - 1) a_n x^{(n+r-2)}.$$
Example: Method to find solutions.

Example
Find the solution y near the regular-singular point $x_0 = 0$ of

$$x^2 y'' - x(x + 3) y' + (x + 3) y = 0.$$

Solution: We look for a solution $y(x) = \sum_{n=0}^{\infty} a_n x^{(n+r)}$.

The first and second derivatives are given by

$$y' = \sum_{n=0}^{\infty} (n + r) a_n x^{(n+r-1)}, \quad y'' = \sum_{n=0}^{\infty} (n + r)(n + r - 1) a_n x^{(n+r-2)}.$$

In the case $r = 0$ we had the relation

$$\sum_{n=0}^{\infty} n a_n x^{(n-1)} = \sum_{n=1}^{\infty} n a_n x^{(n-1)},$$
Example: Method to find solutions.

Example
Find the solution y near the regular-singular point $x_0 = 0$ of

$$x^2 y'' - x(x + 3) y' + (x + 3) y = 0.$$

Solution: We look for a solution $y(x) = \sum_{n=0}^{\infty} a_n x^{(n+r)}$.

The first and second derivatives are given by

$$y' = \sum_{n=0}^{\infty} (n + r) a_n x^{(n+r-1)}, \quad y'' = \sum_{n=0}^{\infty} (n + r)(n + r - 1) a_n x^{(n+r-2)}.$$

In the case $r = 0$ we had the relation

$$\sum_{n=0}^{\infty} n a_n x^{(n-1)} = \sum_{n=1}^{\infty} n a_n x^{(n-1)},$$

but for $r \neq 0$ this relation is not true.
Example: Method to find solutions.

Example
Find the solution y near the regular-singular point $x_0 = 0$ of

$$x^2 y'' - x(x + 3) y' + (x + 3) y = 0.$$

Solution: We now compute the term $(x + 3)y$,

Example: Method to find solutions.

Example
Find the solution y near the regular-singular point $x_0 = 0$ of

$$x^2 y'' - x(x + 3) y' + (x + 3) y = 0.$$

Solution: We now compute the term $(x + 3)y$,

$$(x + 3) y = (x + 3) \sum_{n=0}^{\infty} a_n x^{(n+r)}$$
Example: Method to find solutions.

Example
Find the solution y near the regular-singular point $x_0 = 0$ of

$$x^2 y'' - x(x + 3) y' + (x + 3) y = 0.$$

Solution: We now compute the term $(x + 3)y$,

$$(x + 3) y = (x + 3) \sum_{n=0}^{\infty} a_n x^{(n+r)}$$

$$(x + 3) y = \sum_{n=0}^{\infty} a_n x^{(n+r+1)} + \sum_{n=0}^{\infty} 3a_n x^{(n+r)}$$
Example: Method to find solutions.

Example

Find the solution y near the regular-singular point $x_0 = 0$ of

$$x^2 y'' - x(x + 3) y' + (x + 3) y = 0.$$

Solution: We now compute the term $(x + 3)y$,

$$(x + 3)y = (x + 3) \sum_{n=0}^{\infty} a_n x^{(n+r)}$$

$$= \sum_{n=0}^{\infty} a_n x^{(n+r+1)} + \sum_{n=0}^{\infty} 3a_n x^{(n+r)}$$

$$= \sum_{n=1}^{\infty} a_{(n-1)} x^{(n+r)} + \sum_{n=0}^{\infty} 3a_n x^{(n+r)}.$$
Example: Method to find solutions.

Example

Find the solution y near the regular-singular point $x_0 = 0$ of

$$x^2 y'' - x(x + 3) y' + (x + 3) y = 0.$$

Solution: We now compute the term $-x(x + 3) y'$,
Example: Method to find solutions.

Example
Find the solution y near the regular-singular point $x_0 = 0$ of

$$x^2 y'' - x(x + 3) y' + (x + 3) y = 0.$$

Solution: We now compute the term $-x(x + 3) y'$,

$$-x(x + 3) y' = -(x^2 + 3x) \sum_{n=0}^{\infty} (n + r) a_n x^{(n+r-1)}.$$
Example: Method to find solutions.

Example
Find the solution y near the regular-singular point $x_0 = 0$ of

$$x^2 y'' - x(x + 3) y' + (x + 3) y = 0.$$

Solution: We now compute the term $-x(x + 3) y'$,

$$-x(x + 3) y' = -(x^2 + 3x) \sum_{n=0}^{\infty} (n + r) a_n x^{(n+r-1)}$$

$$= - \sum_{n=0}^{\infty} (n + r) a_n x^{(n+r+1)} - \sum_{n=0}^{\infty} 3(n + r) a_n x^{(n+r)},$$
Example: Method to find solutions.

Example
Find the solution y near the regular-singular point $x_0 = 0$ of

$$x^2 y'' - x(x + 3) y' + (x + 3) y = 0.$$

Solution: We now compute the term $-x(x + 3) y'$,

$$-x(x + 3) y' = -(x^2 + 3x) \sum_{n=0}^{\infty} (n + r) a_n x^{(n+r-1)}$$

$$-x(x + 3) y' = -\sum_{n=0}^{\infty} (n + r) a_n x^{(n+r+1)} - \sum_{n=0}^{\infty} 3(n + r) a_n x^{(n+r)},$$

$$-x(x+3) y' = -\sum_{n=1}^{\infty} (n + r - 1) a_{n-1} x^{(n+r)} - \sum_{n=0}^{\infty} 3(n + r) a_n x^{(n+r)}.$$
Example: Method to find solutions.

Example

Find the solution y near the regular-singular point $x_0 = 0$ of

$$x^2 y'' - x(x + 3) y' + (x + 3) y = 0.$$

Solution: We compute the term $x^2 y''$,

Example: Method to find solutions.

Example
Find the solution y near the regular-singular point $x_0 = 0$ of

$$x^2 y'' - x(x + 3) y' + (x + 3) y = 0.$$

Solution: We compute the term $x^2 y''$,

$$x^2 y'' = x^2 \sum_{n=0}^{\infty} (n + r)(n + r - 1)a_n x^{(n+r-2)}$$
Example: Method to find solutions.

Example

Find the solution y near the regular-singular point $x_0 = 0$ of

$$x^2 y'' - x(x + 3) y' + (x + 3) y = 0.$$

Solution: We compute the term $x^2 y''$,

$$x^2 y'' = x^2 \sum_{n=0}^{\infty} (n + r)(n + r - 1) a_n x^{(n+r-2)}$$

$$x^2 y'' = \sum_{n=0}^{\infty} (n + r)(n + r - 1) a_n x^{(n+r)}.$$
Example: Method to find solutions.

Example

Find the solution y near the regular-singular point $x_0 = 0$ of

$$x^2 y'' - x(x + 3) y' + (x + 3) y = 0.$$

Solution: We compute the term $x^2 y''$,

$$x^2 y'' = x^2 \sum_{n=0}^{\infty} (n + r)(n + r - 1)a_n x^{(n+r-2)}$$

$$x^2 y'' = \sum_{n=0}^{\infty} (n + r)(n + r - 1)a_n x^{(n+r)}.$$

The guiding principle to rewrite each term is to have the power

function $x^{(n+r)}$ labeled in the same way on every term.
Example: Method to find solutions.

Example
Find the solution y near the regular-singular point $x_0 = 0$ of
\[x^2 y'' - x(x + 3) y' + (x + 3) y = 0. \]

Solution: The differential equation is given by
Example: Method to find solutions.

Example
Find the solution \(y \) near the regular-singular point \(x_0 = 0 \) of
\[
x^2 y'' - x(x + 3) y' + (x + 3) y = 0.
\]

Solution: The differential equation is given by
\[
\sum_{n=0}^{\infty} (n + r)(n + r - 1)a_n x^{(n+r)} - \sum_{n=1}^{\infty} (n + r - 1)a_{(n-1)} x^{(n+r)}
\]
\[
- \sum_{n=0}^{\infty} 3(n + r)a_n x^{(n+r)} + \sum_{n=1}^{\infty} a_{(n-1)} x^{(n+r)} + \sum_{n=0}^{\infty} 3a_n x^{(n+r)} = 0.
\]
Example: Method to find solutions.

Example
Find the solution y near the regular-singular point $x_0 = 0$ of
\[x^2 y'' - x(x + 3) y' + (x + 3) y = 0. \]

Solution: The differential equation is given by
\[
\sum_{n=0}^{\infty} (n + r)(n + r - 1)a_n x^{(n+r)} - \sum_{n=1}^{\infty} (n + r - 1)a_{(n-1)} x^{(n+r)} \\
- \sum_{n=0}^{\infty} 3(n + r)a_n x^{(n+r)} + \sum_{n=1}^{\infty} a_{(n-1)} x^{(n+r)} + \sum_{n=0}^{\infty} 3a_n x^{(n+r)} = 0.
\]

We split the sums into the term $n = 0$ and a sum containing the terms with $n \geq 1$,
Example: Method to find solutions.

Example
Find the solution y near the regular-singular point $x_0 = 0$ of

$$x^2 y'' - x(x + 3) y' + (x + 3) y = 0.$$

Solution: The differential equation is given by

$$\sum_{n=0}^{\infty} (n + r)(n + r - 1)a_n x^{(n+r)} - \sum_{n=1}^{\infty} (n + r - 1)a_{(n-1)} x^{(n+r)}$$

$$- \sum_{n=0}^{\infty} 3(n + r)a_n x^{(n+r)} + \sum_{n=1}^{\infty} a_{(n-1)} x^{(n+r)} + \sum_{n=0}^{\infty} 3a_n x^{(n+r)} = 0.$$

We split the sums into the term $n = 0$ and a sum containing the terms with $n \geq 1$, that is,

$$0 = [r(r - 1) - 3r + 3]a_0 x^r +$$

$$\sum_{n=1}^{\infty} \left[(n+r)(n+r-1)a_n - (n+r-1)a_{(n-1)} - 3(n+r)a_n + a_{(n-1)} + 3a_n \right] x^{(n+r)}$$
Example: Method to find solutions.

Example

Find the solution y near the regular-singular point $x_0 = 0$ of

$$x^2 y'' - x(x + 3) y' + (x + 3) y = 0.$$

Solution: Therefore, $[r(r - 1) - 3r + 3] = 0$ and

$$[(n+r)(n+r-1)a_n-(n+r-1)a_{n-1}-3(n+r)a_n+a_{n-1}+3a_n] = 0.$$
Example: Method to find solutions.

Example
Find the solution y near the regular-singular point $x_0 = 0$ of
\[x^2 y'' - x(x + 3) y' + (x + 3) y = 0. \]

Solution: Therefore, \[r(r - 1) - 3r + 3 \] = 0 and
\[\left[(n+r)(n+r-1)a_n - (n+r-1)a_{n-1} - 3(n+r)a_n + a_{n-1} + 3a_n \right] = 0. \]
The last expression can be rewritten as follows,
\[\left[(n + r)(n + r - 1) - 3(n + r) + 3 \right] a_n - (n + r - 1 - 1) a_{n-1} = 0, \]
Example: Method to find solutions.

Example
Find the solution y near the regular-singular point $x_0 = 0$ of

$$x^2 y'' - x(x + 3) y' + (x + 3) y = 0.$$

Solution: Therefore, $[r(r - 1) - 3r + 3] = 0$ and

$$[(n+r)(n+r-1)a_n - (n+r-1)a_{n-1} - 3(n+r)a_n + a_{n-1} + 3a_n] = 0.$$

The last expression can be rewritten as follows,

$$\left[\left[(n+r)(n+r-1) - 3(n+r) + 3\right]a_n - (n+r-1-1)a_{n-1}\right] = 0,$$

$$\left[\left[(n+r)(n+r-1) - 3(n+r-1)\right]a_n - (n+r-2)a_{n-1}\right] = 0.$$
Example: Method to find solutions.

Example
Find the solution y near the regular-singular point $x_0 = 0$ of

$$x^2 y'' - x(x + 3) y' + (x + 3) y = 0.$$

Solution: Hence, the recurrence relation is given by the equations

$$r(r - 1) - 3r + 3 = 0,$$

$$(n + r - 1)(n + r - 3)a_n - (n + r - 2)a_{(n-1)} = 0.$$
Example: Method to find solutions.

Example
Find the solution y near the regular-singular point $x_0 = 0$ of
\[x^2 y'' - x(x + 3) y' + (x + 3) y = 0. \]

Solution: Hence, the recurrence relation is given by the equations
\[r(r - 1) - 3r + 3 = 0, \]
\[(n + r - 1)(n + r - 3)a_n - (n + r - 2)a_{(n-1)} = 0. \]

First: solve the first equation for r_{\pm}.
Example: Method to find solutions.

Example

Find the solution \(y \) near the regular-singular point \(x_0 = 0 \) of

\[
x^2 y'' - x(x + 3) y' + (x + 3) y = 0.
\]

Solution: Hence, the recurrence relation is given by the equations

\[
r(r - 1) - 3r + 3 = 0,
\]

\[
(n + r - 1)(n + r - 3)a_n - (n + r - 2)a_{(n-1)} = 0.
\]

First: solve the first equation for \(r_{\pm} \).

Second: Introduce the first solution \(r_+ \) into the second equation above and solve for the \(a_n \);
Example: Method to find solutions.

Example
Find the solution \(y \) near the regular-singular point \(x_0 = 0 \) of
\[
x^2 y'' - x(x + 3) y' + (x + 3) y = 0.
\]

Solution: Hence, the recurrence relation is given by the equations
\[
r(r - 1) - 3r + 3 = 0,
\]
\[
(n + r - 1)(n + r - 3)a_n - (n + r - 2)a_{(n-1)} = 0.
\]

First: solve the first equation for \(r_\pm \).

Second: Introduce the first solution \(r_+ \) into the second equation above and solve for the \(a_n \); the result is a solution \(y_+ \) of the original differential equation;
Example: Method to find solutions.

Example

Find the solution y near the regular-singular point $x_0 = 0$ of

$$x^2 y'' - x(x + 3) y' + (x + 3) y = 0.$$

Solution: Hence, the recurrence relation is given by the equations

$$r(r - 1) - 3r + 3 = 0,$$

$$(n + r - 1)(n + r - 3)a_n - (n + r - 2)a_{n-1} = 0.$$

First: solve the first equation for r_{\pm}.

Second: Introduce the first solution r_+ into the second equation above and solve for the a_n; the result is a solution y_+ of the original differential equation;

Third: Introduce the second solution r_- into the second equation above and solve for the a_n;
Example: Method to find solutions.

Example

Find the solution y near the regular-singular point $x_0 = 0$ of

$$x^2 y'' - x(x + 3) y' + (x + 3) y = 0.$$

Solution: Hence, the recurrence relation is given by the equations

$$r(r - 1) - 3r + 3 = 0,$$

$$(n + r - 1)(n + r - 3)a_n - (n + r - 2)a_{n-1} = 0.$$

First: solve the first equation for r_{\pm}.

Second: Introduce the first solution r_+ into the second equation above and solve for the a_n; the result is a solution y_+ of the original differential equation;

Third: Introduce the second solution r_- into the second equation above and solve for the a_n; the result is a solution y_- of the original differential equation;
Example: Method to find solutions.

Example
Find the solution \(y \) near the regular-singular point \(x_0 = 0 \) of
\[
x^2 y'' - x(x + 3) y' + (x + 3) y = 0.
\]

Solution: We first solve \(r(r - 1) - 3r + 3 = 0 \).
Example: Method to find solutions.

Example
Find the solution y near the regular-singular point $x_0 = 0$ of
\[x^2 y'' - x(x + 3) y' + (x + 3) y = 0. \]

Solution: We first solve $r(r - 1) - 3r + 3 = 0$.
\[r^2 - 4r + 3 = 0 \]
Example: Method to find solutions.

Example

Find the solution y near the regular-singular point $x_0 = 0$ of

$$x^2 y'' - x(x + 3) y' + (x + 3) y = 0.$$

Solution: We first solve $r(r - 1) - 3r + 3 = 0$.

$$r^2 - 4r + 3 = 0 \quad \Rightarrow \quad r_{\pm} = \frac{1}{2} [4 \pm \sqrt{16 - 12}]$$
Example: Method to find solutions.

Example

Find the solution y near the regular-singular point $x_0 = 0$ of

$$x^2 y'' - x(x + 3) y' + (x + 3) y = 0.$$

Solution: We first solve $r(r - 1) - 3r + 3 = 0$.

$$r^2 - 4r + 3 = 0 \quad \Rightarrow \quad r_{\pm} = \frac{1}{2} [4 \pm \sqrt{16 - 12}] \quad \Rightarrow \quad \{ r_+ = 3, \quad r_- = 1. \}$$
Example: Method to find solutions.

Example
Find the solution y near the regular-singular point $x_0 = 0$ of

$$x^2 y'' - x(x + 3) y' + (x + 3) y = 0.$$

Solution: We first solve $r(r - 1) - 3r + 3 = 0$.

$$r^2 - 4r + 3 = 0 \quad \Rightarrow \quad r_{\pm} = \frac{1}{2} [4 \pm \sqrt{16 - 12}] \quad \Rightarrow \quad \left\{ \begin{array}{l} r_+ = 3, \\ r_- = 1. \end{array} \right.$$

Introduce $r_+ = 3$ into the equation for a_n:

$$(n + 2)n a_n - (n + 1)a_{n-1} = 0.$$
Example: Method to find solutions.

Example

Find the solution y near the regular-singular point $x_0 = 0$ of

$$x^2 y'' - x(x + 3) y' + (x + 3) y = 0.$$

Solution: We first solve $r(r - 1) - 3r + 3 = 0$.

$$r^2 - 4r + 3 = 0 \implies r_{\pm} = \frac{1}{2} [4 \pm \sqrt{16 - 12}] \implies \begin{cases} r_+ = 3, \\ r_- = 1. \end{cases}$$

Introduce $r_+ = 3$ into the equation for a_n:

$$(n + 2)n a_n - (n + 1)a_{n-1} = 0.$$

One can check that the solution y_+ is

$$y_+ = a_0 x^3 \left[1 + \frac{2}{3} x + \frac{1}{4} x^2 + \frac{1}{15} x^3 + \cdots \right].$$
Example: Method to find solutions.

Example
Find the solution y near the regular-singular point $x_0 = 0$ of

$$x^2 y'' - x(x + 3) y' + (x + 3) y = 0.$$

Solution: Introduce $r_+ = 1$ into the equation for a_n:

$$n(n - 2)a_n - (n - 1)a_{n-1} = 0.$$
Example: Method to find solutions.

Example
Find the solution y near the regular-singular point $x_0 = 0$ of
$$x^2 y'' - x(x + 3) y' + (x + 3) y = 0.$$

Solution: Introduce $r_- = 1$ into the equation for a_n:
$$n(n - 2)a_n - (n - 1)a_{n-1} = 0.$$

One can also check that the solution y_- is
$$y_- = a_2 x \left[x^2 + \frac{2}{3} x^3 + \frac{1}{4} x^4 + \frac{1}{15} x^5 + \cdots \right].$$
Example: Method to find solutions.

Example
Find the solution \(y \) near the regular-singular point \(x_0 = 0 \) of
\[
x^2 y'' - x(x + 3) y' + (x + 3) y = 0.
\]

Solution: Introduce \(r_- = 1 \) into the equation for \(a_n \):
\[
n(n - 2)a_n - (n - 1)a_{n-1} = 0.
\]

One can also check that the solution \(y_- \) is
\[
y_- = a_2 x \left[x^2 + \frac{2}{3} x^3 + \frac{1}{4} x^4 + \frac{1}{15} x^5 + \cdots \right].
\]

Notice:
\[
y_- = a_2 x^3 \left[1 + \frac{2}{3} x + \frac{1}{4} x^2 + \frac{1}{15} x^3 + \cdots \right]
\]
Example: Method to find solutions.

Example

Find the solution \(y \) near the regular-singular point \(x_0 = 0 \) of

\[
x^2 y'' - x(x + 3) y' + (x + 3) y = 0.
\]

Solution: Introduce \(r_- = 1 \) into the equation for \(a_n \):

\[
n(n - 2)a_n - (n - 1)a_{n-1} = 0.
\]

One can also check that the solution \(y_- \) is

\[
y_- = a_2 x \left[x^2 + \frac{2}{3} x^3 + \frac{1}{4} x^4 + \frac{1}{15} x^5 + \cdots \right].
\]

Notice:

\[
y_- = a_2 x^3 \left[1 + \frac{2}{3} x + \frac{1}{4} x^2 + \frac{1}{15} x^3 + \cdots \right] \implies y_- = \frac{a_2}{a_1} y_+.
\]
Example: Method to find solutions.

Example
Find the solution \(y \) near the regular-singular point \(x_0 = 0 \) of

\[
x^2 y'' - x(x + 3) y' + (x + 3) y = 0.
\]

Solution: The solutions \(y_+ \) and \(y_- \) are not linearly independent.
Example: Method to find solutions.

Example
Find the solution y near the regular-singular point $x_0 = 0$ of
\[x^2 y'' - x(x + 3) y' + (x + 3) y = 0. \]

Solution: The solutions y_+ and y_- are not linearly independent.
This Example shows that the method does not provide all solutions of a differential equation near a regular-singular point,
Example: Method to find solutions.

Example
Find the solution \(y \) near the regular-singular point \(x_0 = 0 \) of
\[
x^2 y'' - x(x + 3) y' + (x + 3) y = 0.
\]

Solution: The solutions \(y_+ \) and \(y_- \) are not linearly independent.

This Example shows that the method does not provide all solutions
of a differential equation near a regular-singular point, it only
provides at least one solution near a regular-singular point.
Example: Method to find solutions.

Example
Find the solution y near the regular-singular point $x_0 = 0$ of

$$x^2 y'' - x(x + 3) y' + (x + 3) y = 0.$$

Solution: The solutions y_+ and y_- are not linearly independent.

This Example shows that the method does not provide all solutions
of a differential equation near a regular-singular point, it only
provides at least one solution near a regular-singular point.

Remark: It can be shown the following result:
If the roots of the Euler characteristic polynomial r_+, r_- differ by
an integer, then the second solution y_-, the solution corresponding
to the smaller root, is not given by the method above.
Example: Method to find solutions.

Example
Find the solution y near the regular-singular point $x_0 = 0$ of
$$x^2 y'' - x(x + 3) y' + (x + 3) y = 0.$$

Solution: The solutions y_+ and y_- are not linearly independent.

This Example shows that the method does not provide all solutions of a differential equation near a regular-singular point, it only provides at least one solution near a regular-singular point.

Remark: It can be shown the following result:
If the roots of the Euler characteristic polynomial r_+, r_- differ by an integer, then the second solution y_-, the solution corresponding to the smaller root, is not given by the method above. This solution involves logarithmic terms.
Example: Method to find solutions.

Example
Find the solution y near the regular-singular point $x_0 = 0$ of

$$x^2 y'' - x(x + 3) y' + (x + 3) y = 0.$$

Solution: The solutions y_+ and y_- are not linearly independent.

This Example shows that the method does not provide all solutions of a differential equation near a regular-singular point, it only provides at least one solution near a regular-singular point.

Remark: It can be shown the following result:
If the roots of the Euler characteristic polynomial r_+, r_- differ by an integer, then the second solution y_-, the solution corresponding to the smaller root, is not given by the method above. This solution involves logarithmic terms.
We do not study this type of solutions in these notes.