Review 2 for Exam 1.

- 5 or 6 problems.
- No multiple choice questions.
- No notes, no books, no calculators.
- Problems similar to homeworks.
- Exam covers:
 - Linear equations (2.1).
 - Separable equations (2.2).
 - Homogeneous equations (2.2).
 - Modeling using differential equations (2.3).
 - Non-linear equations (2.4).
 - Bernoulli equation (2.4).
 - Autonomous systems (2.5).
 - Exact equations (2.6).
 - Exact equations with integrating factors (2.6).
Example

Find the integrating factor that converts the equation below into an exact equation, where

\[(x^3 e^y + \frac{x}{y}) y' + (2x^2 e^y + 1) = 0. \]
Example
Find the integrating factor that converts the equation below into an exact equation, where

\[
\left(x^3 e^y + \frac{x}{y} \right) y' + (2x^2 e^y + 1) = 0.
\]

Solution: We first verify if the equation is not exact.

\[
N = \left(x^3 e^y + \frac{x}{y} \right)
\]
Example
Find the integrating factor that converts the equation below into an exact equation, where

\[\left(x^3 e^y + \frac{x}{y} \right) y' + (2x^2 e^y + 1) = 0. \]

Solution: We first verify if the equation is not exact.

\[N = \left(x^3 e^y + \frac{x}{y} \right) \Rightarrow \partial_x N = 3x^2 e^y + \frac{1}{y}. \]
Example

Find the integrating factor that converts the equation below into an exact equation, where

\[
\left(x^3 e^y + \frac{x}{y}\right) y' + (2x^2 e^y + 1) = 0.
\]

Solution: We first verify if the equation is not exact.

\[
N = \left(x^3 e^y + \frac{x}{y}\right) \Rightarrow \partial_x N = 3x^2 e^y + \frac{1}{y}.
\]

\[
M = (2x^2 e^y + 1) = 0
\]
Example
Find the integrating factor that converts the equation below into an exact equation, where
\[
\left(x^3 e^y + \frac{x}{y} \right) y' + (2x^2 e^y + 1) = 0.
\]

Solution: We first verify if the equation is not exact.

\[
N = \left(x^3 e^y + \frac{x}{y} \right) \Rightarrow \partial_x N = 3x^2 e^y + \frac{1}{y}.
\]

\[
M = (2x^2 e^y + 1) = 0 \Rightarrow \partial_y M = 2x^2 e^y.
\]
Example
Find the integrating factor that converts the equation below into an exact equation, where
\[
\left(x^3 e^y + \frac{x}{y} \right) y' + (2x^2 e^y + 1) = 0.
\]

Solution: We first verify if the equation is not exact.

\[
N = \left(x^3 e^y + \frac{x}{y} \right) \Rightarrow \partial_x N = 3x^2 e^y + \frac{1}{y}.
\]

\[
M = (2x^2 e^y + 1) = 0 \Rightarrow \partial_y M = 2x^2 e^y.
\]

So the equation is not exact.
Example
Find the integrating factor that converts the equation below into an exact equation, where
\[
\left(x^3 e^y + \frac{x}{y} \right) y' + (2x^2 e^y + 1) = 0.
\]

Solution: We first verify if the equation is not exact.

\[
N = \left(x^3 e^y + \frac{x}{y} \right) \quad \Rightarrow \quad \partial_x N = 3x^2 e^y + \frac{1}{y}.
\]

\[
M = (2x^2 e^y + 1) = 0 \quad \Rightarrow \quad \partial_y M = 2x^2 e^y.
\]

So the equation is not exact. We now compute

\[
\frac{\partial_y M - \partial_x N}{N}
\]
Example

Find the integrating factor that converts the equation below into an exact equation, where

\[(x^3e^y + \frac{x}{y}) \frac{dy}{dx} + (2x^2e^y + 1) = 0. \]

Solution: We first verify if the equation is not exact.

\[N = \left(x^3e^y + \frac{x}{y} \right) \] \[\Rightarrow \] \[\partial_x N = 3x^2e^y + \frac{1}{y}. \]

\[M = (2x^2e^y + 1) = 0 \] \[\Rightarrow \] \[\partial_y M = 2x^2e^y. \]

So the equation is not exact. We now compute

\[\frac{\partial_y M - \partial_x N}{N} = \frac{2x^2e^y - \left(3x^2e^y + \frac{1}{y} \right)}{\left(x^3e^y + \frac{x}{y} \right)} \]
Example

Find the integrating factor that converts the equation below into an exact equation, where

\((x^3e^y + \frac{x}{y}) y' + (2x^2e^y + 1) = 0. \)

Solution: We first verify if the equation is not exact.

\[
\begin{align*}
N &= (x^3e^y + \frac{x}{y}) \quad \Rightarrow \quad \partial_x N = 3x^2e^y + \frac{1}{y}.
\end{align*}
\]

\[
M = (2x^2e^y + 1) = 0 \quad \Rightarrow \quad \partial_y M = 2x^2e^y.
\]

So the equation is not exact. We now compute

\[
\frac{\partial_y M - \partial_x N}{N} = \frac{2x^2e^y - \left(3x^2e^y + \frac{1}{y}\right)}{\left(x^3e^y + \frac{x}{y}\right)} = \frac{-x^2e^y - \frac{1}{y}}{x \left(x^2e^y + \frac{1}{y}\right)}
\]
Review 2 Exam 1.

Example

Find the integrating factor that converts the equation below into an exact equation, where

\[
\left(x^3 e^y + \frac{x}{y} \right) y' + (2x^2 e^y + 1) = 0.
\]

Solution: We first verify if the equation is not exact.

\[
N = \left(x^3 e^y + \frac{x}{y} \right) \Rightarrow \partial_x N = 3x^2 e^y + \frac{1}{y}.
\]

\[
M = (2x^2 e^y + 1) = 0 \Rightarrow \partial_y M = 2x^2 e^y.
\]

So the equation is not exact. We now compute

\[
\frac{\partial_y M - \partial_x N}{N} = \frac{2x^2 e^y - \left(3x^2 e^y + \frac{1}{y}\right)}{\left(x^3 e^y + \frac{x}{y}\right)} = \frac{-x^2 e^y - \frac{1}{y}}{x \left(x^2 e^y + \frac{1}{y}\right)} = -\frac{1}{x}.
\]
Example

Find the integrating factor that converts the equation below into an exact equation, where

\[
\left(x^3e^y + \frac{x}{y}\right)y' + (2x^2e^y + 1) = 0.
\]

Solution: Recall: \[
\frac{\partial_y M - \partial_x N}{N} = -\frac{1}{x}.
\]
Example
Find the integrating factor that converts the equation below into an exact equation, where

\[
(x^3 e^y + \frac{x}{y}) y' + (2x^2 e^y + 1) = 0.
\]

Solution: Recall: \(\frac{\partial_y M - \partial_x N}{N} = -\frac{1}{x} \). Therefore,

\[
\frac{\mu'(x)}{\mu(x)} = -\frac{1}{x}
\]
Example

Find the integrating factor that converts the equation below into an exact equation, where

\[
\left(x^3 e^y + \frac{x}{y}\right)y' + (2x^2 e^y + 1) = 0.
\]

Solution: Recall: \[
\frac{\partial_y M - \partial_x N}{N} = -\frac{1}{x}.
\] Therefore,

\[
\frac{\mu'(x)}{\mu(x)} = -\frac{1}{x} \quad \Rightarrow \quad \ln(\mu) = -\ln(x)
\]
Example

Find the integrating factor that converts the equation below into an exact equation, where

\[
\left(x^3 e^y + \frac{x}{y}\right)y' + (2x^2 e^y + 1) = 0.
\]

Solution: Recall: \[
\frac{\partial_y M - \partial_x N}{N} = -\frac{1}{x}.
\] Therefore,

\[
\frac{\mu'(x)}{\mu(x)} = -\frac{1}{x} \quad \Rightarrow \quad \ln(\mu) = -\ln(x) = \ln\left(\frac{1}{x}\right)
\]
Example

Find the integrating factor that converts the equation below into an exact equation, where

\[(x^3 e^y + \frac{x}{y}) y' + (2x^2 e^y + 1) = 0. \]

Solution: Recall: \(\frac{\partial_y M - \partial_x N}{N} = -\frac{1}{x} \). Therefore,

\[\frac{\mu'(x)}{\mu(x)} = -\frac{1}{x} \quad \Rightarrow \quad \ln(\mu) = -\ln(x) = \ln\left(\frac{1}{x}\right) \quad \Rightarrow \quad \mu(x) = \frac{1}{x}. \]
Example
Find the integrating factor that converts the equation below into an exact equation, where

\[
\left(x^3e^y + \frac{x}{y}\right)y' + (2x^2e^y + 1) = 0.
\]

Solution: Recall: \(\frac{\partial_y M - \partial_x N}{N} = -\frac{1}{x}\). Therefore,

\[
\frac{\mu'(x)}{\mu(x)} = -\frac{1}{x} \quad \Rightarrow \quad \ln(\mu) = -\ln(x) = \ln\left(\frac{1}{x}\right) \quad \Rightarrow \quad \mu(x) = \frac{1}{x}.
\]

So the equation \(\left(x^2e^y + \frac{1}{y}\right)y' + \left(2xe^y + \frac{1}{x}\right) = 0\) is exact.
Example

Find the integrating factor that converts the equation below into an exact equation, where

\[
\left(x^3 e^y + \frac{x}{y} \right) y' + (2x^2 e^y + 1) = 0.
\]

Solution: Recall: \(\frac{\partial_y M - \partial_x N}{N} = -\frac{1}{x} \). Therefore,

\[
\frac{\mu'(x)}{\mu(x)} = -\frac{1}{x} \quad \Rightarrow \quad \ln(\mu) = -\ln(x) = \ln\left(\frac{1}{x}\right) \quad \Rightarrow \quad \mu(x) = \frac{1}{x}.
\]

So the equation \(\left(x^2 e^y + \frac{1}{y} \right) y' + \left(2xe^y + \frac{1}{x} \right) = 0 \) is exact. Indeed,

\[
\tilde{N} = \left(x^2 e^y + \frac{1}{y} \right)
\]
Example

Find the integrating factor that converts the equation below into an exact equation, where

\[(x^3e^y + \frac{x}{y})y' + (2x^2e^y + 1) = 0.\]

Solution: Recall: \[\frac{\partial_y M - \partial_x N}{N} = -\frac{1}{x}.\] Therefore,

\[\frac{\mu'(x)}{\mu(x)} = -\frac{1}{x} \quad \Rightarrow \quad \ln(\mu) = -\ln(x) = \ln\left(\frac{1}{x}\right) \quad \Rightarrow \quad \mu(x) = \frac{1}{x}.\]

So the equation \[(x^2e^y + \frac{1}{y})y' + \left(2xe^y + \frac{1}{x}\right) = 0\] is exact. Indeed,

\[\tilde{N} = \left(x^2e^y + \frac{1}{y}\right) \quad \Rightarrow \quad \partial_x \tilde{N} = 2xe^y,\]
Example

Find the integrating factor that converts the equation below into an exact equation, where

\[
\left(x^3e^y + \frac{x}{y}\right) y' + (2x^2e^y + 1) = 0.
\]

Solution: Recall: \(\frac{\partial_y M - \partial_x N}{N} = -\frac{1}{x} \). Therefore,

\[
\frac{\mu'(x)}{\mu(x)} = -\frac{1}{x} \quad \Rightarrow \quad \ln(\mu) = -\ln(x) = \ln\left(\frac{1}{x}\right) \quad \Rightarrow \quad \mu(x) = \frac{1}{x}.
\]

So the equation \(\left(x^2e^y + \frac{1}{y}\right) y' + \left(2xe^y + \frac{1}{x}\right) = 0 \) is exact. Indeed,

\[
\tilde{N} = \left(x^2e^y + \frac{1}{y}\right) \quad \Rightarrow \quad \partial_x \tilde{N} = 2xe^y,
\]

\[
\tilde{M} = \left(2xe^y + \frac{1}{x}\right)
\]
Example
Find the integrating factor that converts the equation below into an exact equation, where

\[
\left(x^3 e^y + \frac{x}{y} \right) y' + (2x^2 e^y + 1) = 0.
\]

Solution: Recall: \(\frac{\partial_y M - \partial_x N}{N} = -\frac{1}{x} \). Therefore,

\[
\frac{\mu'(x)}{\mu(x)} = -\frac{1}{x} \quad \Rightarrow \quad \ln(\mu) = -\ln(x) = \ln \left(\frac{1}{x} \right) \quad \Rightarrow \quad \mu(x) = \frac{1}{x}.
\]

So the equation \(\left(x^2 e^y + \frac{1}{y} \right) y' + \left(2xe^y + \frac{1}{x} \right) = 0 \) is exact. Indeed,

\[
\tilde{N} = \left(x^2 e^y + \frac{1}{y} \right) \quad \Rightarrow \quad \partial_x \tilde{N} = 2xe^y,
\]

\[
\tilde{M} = \left(2xe^y + \frac{1}{x} \right) \quad \Rightarrow \quad \partial_y \tilde{M} = 2xe^y,
\]
Example

Find the integrating factor that converts the equation below into an exact equation, where

\[(x^3e^y + \frac{x}{y})y' + (2x^2e^y + 1) = 0. \]

Solution: Recall: \(\frac{\partial_y M - \partial_x N}{N} = -\frac{1}{x} \). Therefore,

\[\frac{\mu'(x)}{\mu(x)} = -\frac{1}{x} \quad \Rightarrow \quad \ln(\mu) = -\ln(x) = \ln\left(\frac{1}{x}\right) \quad \Rightarrow \quad \mu(x) = \frac{1}{x}. \]

So the equation \((x^2e^y + \frac{1}{y})y' + (2xe^y + \frac{1}{x}) = 0 \) is exact. Indeed,

\[
\begin{align*}
\tilde{N} &= \left(x^2e^y + \frac{1}{y} \right) \quad \Rightarrow \quad \partial_x \tilde{N} = 2xe^y, \\
\tilde{M} &= \left(2xe^y + \frac{1}{x} \right) \quad \Rightarrow \quad \partial_y \tilde{M} = 2xe^y,
\end{align*}
\]

\[\Rightarrow \quad \partial_x \tilde{N} = \partial_y \tilde{M}. \]
Example

Find every solution y of the equation

$$
\left(x^2 e^y + \frac{1}{y} \right) y' + \left(2x e^y + \frac{1}{x} \right) = 0.
$$
Example
Find every solution y of the equation
\[
\left(x^2 e^y + \frac{1}{y} \right) y' + \left(2x e^y + \frac{1}{x} \right) = 0.
\]

Solution: The equation is exact.
Example

Find every solution \(y \) of the equation

\[
\left(x^2 e^y + \frac{1}{y} \right) y' + \left(2x e^y + \frac{1}{x} \right) = 0.
\]

Solution: The equation is exact. We need to find the potential function \(\psi \).
Example
Find every solution \(y \) of the equation
\[
\left(x^2 e^y + \frac{1}{y} \right) y' + \left(2x e^y + \frac{1}{x} \right) = 0.
\]

Solution: The equation is exact. We need to find the potential function \(\psi \).
\[
\partial_y \psi = N, \quad \partial_x \psi = M.
\]
Example

Find every solution y of the equation

$$
\left(x^2 e^y + \frac{1}{y}\right) y' + \left(2x e^y + \frac{1}{x}\right) = 0.
$$

Solution: The equation is exact. We need to find the potential function ψ.

$$
\partial_y \psi = N, \quad \partial_x \psi = M.
$$

From the first equation we get:

$$
\partial_y \psi = x^2 e^y + \frac{1}{y}
$$
Example
Find every solution y of the equation
\[
\left(x^2 e^y + \frac{1}{y} \right) y' + \left(2x e^y + \frac{1}{x} \right) = 0.
\]

Solution: The equation is exact. We need to find the potential function ψ.

\[
\partial_y \psi = N, \quad \partial_x \psi = M.
\]

From the first equation we get:

\[
\partial_y \psi = x^2 e^y + \frac{1}{y} \quad \Rightarrow \quad \psi = x^2 e^y + \ln(y) + g(x).
\]
Example
Find every solution y of the equation

$$\left(x^2 e^y + \frac{1}{y} \right) y' + \left(2x e^y + \frac{1}{x} \right) = 0.$$

Solution: The equation is exact. We need to find the potential function ψ.

$$\partial_y \psi = N, \quad \partial_x \psi = M.$$

From the first equation we get:

$$\partial_y \psi = x^2 e^y + \frac{1}{y}, \quad \Rightarrow \quad \psi = x^2 e^y + \ln(y) + g(x).$$

Introduce the expression for ψ in the equation $\partial_x \psi = M$,

Example

Find every solution \(y \) of the equation

\[
\left(x^2 e^y + \frac{1}{y} \right) y' + \left(2x e^y + \frac{1}{x} \right) = 0.
\]

Solution: The equation is exact. We need to find the potential function \(\psi \).

\[
\partial_y \psi = N, \quad \partial_x \psi = M.
\]

From the first equation we get:

\[
\partial_y \psi = x^2 e^y + \frac{1}{y} \quad \Rightarrow \quad \psi = x^2 e^y + \ln(y) + g(x).
\]

Introduce the expression for \(\psi \) in the equation \(\partial_x \psi = M \), that is,

\[
2xe^y + g'(x) = \partial_x \psi
\]
Example

Find every solution y of the equation

$$
\left(x^2 e^y + \frac{1}{y} \right) y' + \left(2x e^y + \frac{1}{x} \right) = 0.
$$

Solution: The equation is exact. We need to find the potential function ψ.

$$
\partial_y \psi = N, \quad \partial_x \psi = M.
$$

From the first equation we get:

$$
\partial_y \psi = x^2 e^y + \frac{1}{y} \quad \Rightarrow \quad \psi = x^2 e^y + \ln(y) + g(x).
$$

Introduce the expression for ψ in the equation $\partial_x \psi = M$, that is,

$$
2xe^y + g'(x) = \partial_x \psi = M
$$
Example

Find every solution \(y \) of the equation

\[
\left(x^2 e^y + \frac{1}{y}\right) y' + \left(2x e^y + \frac{1}{x}\right) = 0.
\]

Solution: The equation is exact. We need to find the potential function \(\psi \).

\[
\partial_y \psi = N, \quad \partial_x \psi = M.
\]

From the first equation we get:

\[
\partial_y \psi = x^2 e^y + \frac{1}{y} \quad \Rightarrow \quad \psi = x^2 e^y + \ln(y) + g(x).
\]

Introduce the expression for \(\psi \) in the equation \(\partial_x \psi = M \), that is,

\[
2xe^y + g'(x) = \partial_x \psi = M = 2x e^y + \frac{1}{x}.
\]
Example
Find every solution y of the equation
\[
\left(x^2 e^y + \frac{1}{y} \right) y' + \left(2x e^y + \frac{1}{x} \right) = 0.
\]

Solution: The equation is exact. We need to find the potential function ψ.
\[
\partial_y \psi = N, \quad \partial_x \psi = M.
\]
From the first equation we get:
\[
\partial_y \psi = x^2 e^y + \frac{1}{y} \quad \Rightarrow \quad \psi = x^2 e^y + \ln(y) + g(x).
\]
Introduce the expression for ψ in the equation $\partial_x \psi = M$, that is,
\[
2xe^y + g'(x) = \partial_x \psi = M = 2x e^y + \frac{1}{x} \quad \Rightarrow \quad g'(x) = \frac{1}{x}.
\]
Example

Find every solution y of the equation

$$(x^2 e^y + \frac{1}{y}) y' + (2x e^y + \frac{1}{x}) = 0.$$

Solution: Recall: $g'(x) = \frac{1}{x}$.

Verification: Compute the implicit derivative in the equation above, and you should get the original differential equation.
Example

Find every solution y of the equation

$$\left(x^2 e^y + \frac{1}{y}\right) y' + \left(2x e^y + \frac{1}{x}\right) = 0.$$

Solution: Recall: $g'(x) = \frac{1}{x}$. Therefore $g(x) = \ln(x)$.

\[
\begin{align*}
\end{align*}
\]
Example

Find every solution y of the equation

$$\left(x^2 e^y + \frac{1}{y}\right) y' + \left(2x e^y + \frac{1}{x}\right) = 0.$$

Solution: Recall: $g'(x) = \frac{1}{x}$. Therefore $g(x) = \ln(x)$.

The potential function is $\psi = x^2 e^y + \ln(y) + \ln(x)$.

\begin{align*}
\end{align*}
Example

Find every solution \(y \) of the equation

\[
\left(x^2 e^y + \frac{1}{y} \right) y' + \left(2x e^y + \frac{1}{x} \right) = 0.
\]

Solution: Recall: \(g'(x) = \frac{1}{x} \). Therefore \(g(x) = \ln(x) \).

The potential function is \(\psi = x^2 e^y + \ln(y) + \ln(x) \).

The solution \(y \) satisfies \(x^2 e^{y(x)} + \ln(y(x)) + \ln(x) = c \). \(\triangleright \)
Example

Find every solution y of the equation

$$\left(x^2 e^y + \frac{1}{y} \right) y' + \left(2x e^y + \frac{1}{x} \right) = 0. $$

Solution: Recall: $g'(x) = \frac{1}{x}$. Therefore $g(x) = \ln(x)$.

The potential function is $\psi = x^2 e^y + \ln(y) + \ln(x)$.

The solution y satisfies $x^2 e^{y(x)} + \ln(y(x)) + \ln(x) = c.$ △

Verification:
Example

Find every solution y of the equation

$$
\left(x^2 e^y + \frac{1}{y}\right) y' + \left(2x e^y + \frac{1}{x}\right) = 0.
$$

Solution: Recall: $g'(x) = \frac{1}{x}$. Therefore $g(x) = \ln(x)$.

The potential function is $\psi = x^2 e^y + \ln(y) + \ln(x)$.

The solution y satisfies $x^2 e^{y(x)} + \ln(y(x)) + \ln(x) = c$. ◀

Verification: Compute the implicit derivative in the equation above, and you should get the original differential equation.
Example
Find every solution \(y \) of the equation
\[
\left(x^2 e^y + \frac{1}{y} \right) y' + \left(2x e^y + \frac{1}{x} \right) = 0.
\]

Solution: Recall: \(g'(x) = \frac{1}{x} \). Therefore \(g(x) = \ln(x) \).

The potential function is \(\psi = x^2 e^y + \ln(y) + \ln(x) \).

The solution \(y \) satisfies \(x^2 e^{y(x)} + \ln(y(x)) + \ln(x) = c \). \(\triangle \)

Verification: Compute the implicit derivative in the equation above, and you should get the original differential equation.

\[
2xe^y + x^2 e^y y' + \frac{1}{y} y' + \frac{1}{x} = 0.
\]
Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]
Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: The equation is: Not linear.
Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: The equation is: Not linear.
It is a Bernoulli equation:
Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: The equation is: Not linear.
It is a Bernoulli equation: \[y' - 4x y = 4x y^n, \text{ with } n = 1/2. \]
Example
Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: The equation is: Not linear.
It is a Bernoulli equation: \(y' - 4x y = 4x y^n \), with \(n = 1/2 \).
It is separable: \(\frac{y'}{y + \sqrt{y}} = 4x \).
Example
Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: The equation is: Not linear.
It is a Bernoulli equation: \(y' - 4x y = 4x y^n \), with \(n = 1/2 \).
It is separable: \(\frac{y'}{y + \sqrt{y}} = 4x \).
The equation is not homogeneous.
Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: The equation is: Not linear.

It is a Bernoulli equation: \(y' - 4xy = 4xy^n \), with \(n = 1/2 \).

It is separable: \[\frac{y'}{y + \sqrt{y}} = 4x. \]

The equation is not homogeneous. It is not exact.
Example
Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: The equation is: Not linear.
It is a Bernoulli equation: \(y' - 4xy = 4xy^n \), with \(n = 1/2 \).
It is separable: \(\frac{y'}{y + \sqrt{y}} = 4x. \)
The equation is not homogeneous. It is not exact.

Although the equation is both separable and Bernoulli, it is not simple to integrate using the separable equation method.
Example
Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: The equation is: Not linear.
It is a Bernoulli equation: \(y' - 4xy = 4xy^n \), with \(n = 1/2 \).
It is separable: \(\frac{y'}{y + \sqrt{y}} = 4x \).
The equation is not homogeneous. It is not exact.

Although the equation is both separable and Bernoulli, it is not simple to integrate using the separable equation method. Indeed

\[
\int \frac{y'}{y + \sqrt{y}} \, dt = \int 4x \, dx + c
\]
Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: The equation is: Not linear.
It is a Bernoulli equation: \(y' - 4x y = 4x y^{n}, \) with \(n = 1/2. \)
It is separable: \(\frac{y'}{y + \sqrt{y}} = 4x. \)
The equation is not homogeneous. It is not exact.

Although the equation is both separable and Bernoulli, it is not simple to integrate using the separable equation method. Indeed

\[
\int \frac{y'}{y + \sqrt{y}} \, dt = \int 4x \, dx + c \quad \Rightarrow \quad \int \frac{dy}{y + \sqrt{y}} = 2x^2 + c.
\]
Example
Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: The equation is: Not linear.
It is a Bernoulli equation: \(y' - 4x \, y = 4x \, y^n \), with \(n = 1/2 \).
It is separable: \(\frac{y'}{y + \sqrt{y}} = 4x \).
The equation is not homogeneous. It is not exact.

Although the equation is both separable and Bernoulli, it is not simple to integrate using the separable equation method. Indeed

\[
\int \frac{y'}{y + \sqrt{y}} \, dt = \int 4x \, dx + c \quad \Rightarrow \quad \int \frac{dy}{y + \sqrt{y}} = 2x^2 + c.
\]

The integral on the left-hand side requires an integration table.
Example
Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: We find solutions using the Bernoulli method.
Example
Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: We find solutions using the Bernoulli method.

\[y' - 4x \, y = 4x \, y^{1/2} \]
Example
Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: We find solutions using the Bernoulli method.

\[y' - 4x y = 4x y^{1/2} \quad \Rightarrow \quad \frac{y'}{y^{1/2}} - 4x y^{1/2} = 4x. \]
Example
Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: We find solutions using the Bernoulli method.

\[y' - 4x y = 4x y^{1/2} \quad \Rightarrow \quad \frac{y'}{y^{1/2}} - 4x y^{1/2} = 4x. \]

Change the unknowns: \(v = 1/y^{n-1} \), with \(n = 1/2 \).
Review 2 for Exam 1.

Example
Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: We find solutions using the Bernoulli method.

\[y' - 4xy = 4x y^{1/2} \quad \Rightarrow \quad \frac{y'}{y^{1/2}} - 4x y^{1/2} = 4x. \]

Change the unknowns: \(v = 1/y^{n-1} \), with \(n = 1/2 \). That is,

\[v = \frac{1}{y^{-1/2}} \]
Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: We find solutions using the Bernoulli method.

\[y' - 4x y = 4x y^{1/2} \quad \Rightarrow \quad \frac{y'}{y^{1/2}} - 4x y^{1/2} = 4x. \]

Change the unknowns: \(v = \frac{1}{y^{n-1}} \), with \(n = 1/2 \). That is,

\[v = \frac{1}{y^{-1/2}} \quad \Rightarrow \quad v = y^{1/2}, \]
Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: We find solutions using the Bernoulli method.

\[y' - 4x y = 4x y^{1/2} \quad \Rightarrow \quad \frac{y'}{y^{1/2}} - 4x y^{1/2} = 4x. \]

Change the unknowns: \(v = 1/y^{n-1}, \) with \(n = 1/2. \) That is,

\[v = \frac{1}{y^{-1/2}} \quad \Rightarrow \quad v = y^{1/2}, \quad \Rightarrow \quad v' = \frac{1}{2} \frac{y'}{y^{1/2}}. \]
Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: We find solutions using the Bernoulli method.

\[y' - 4x\,y = 4x\,y^{1/2} \quad \Rightarrow \quad \frac{y'}{y^{1/2}} - 4x\,y^{1/2} = 4x. \]

Change the unknowns: \(v = 1/y^{n-1}, \) with \(n = 1/2. \) That is,

\[v = \frac{1}{y^{-1/2}} \quad \Rightarrow \quad v = y^{1/2}, \quad \Rightarrow \quad v' = \frac{1}{2} \frac{y'}{y^{1/2}}. \]

\[2v' - 4xv = 4x \]
Review 2 for Exam 1.

Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: We find solutions using the Bernoulli method.

\[y' - 4x y = 4x y^{1/2} \Rightarrow \frac{y'}{y^{1/2}} - 4x y^{1/2} = 4x. \]

Change the unknowns: \(v = 1/y^{n-1}, \) with \(n = 1/2. \) That is,

\[v = \frac{1}{y^{-1/2}} \Rightarrow v = y^{1/2}, \Rightarrow v' = \frac{1}{2} \frac{y'}{y^{1/2}}. \]

\[2v' - 4xv = 4x \Rightarrow v' - 2xv = 2x. \]
Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: We find solutions using the Bernoulli method.

\[y' - 4xy = 4xy^{1/2} \quad \Rightarrow \quad \frac{y'}{y^{1/2}} - 4x y^{1/2} = 4x. \]

Change the unknowns: \(v = 1/y^{n-1}, \) with \(n = 1/2. \) That is,

\[v = \frac{1}{y^{-1/2}} \quad \Rightarrow \quad v = y^{1/2}, \quad \Rightarrow \quad v' = \frac{1}{2} \frac{y'}{y^{1/2}}. \]

\[2v' - 4xv = 4x \quad \Rightarrow \quad v' - 2xv = 2x. \]

The coefficient function is \(a(x) = -2x, \)
Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: We find solutions using the Bernoulli method.

\[y' - 4x y = 4x y^{1/2} \quad \Rightarrow \quad \frac{y'}{y^{1/2}} - 4x y^{1/2} = 4x. \]

Change the unknowns: \(v = 1/y^{n-1} \), with \(n = 1/2 \). That is,

\[v = \frac{1}{y^{-1/2}} \quad \Rightarrow \quad v = y^{1/2}, \quad \Rightarrow \quad v' = \frac{1}{2} \frac{y'}{y^{1/2}}. \]

\[2v' - 4xv = 4x \quad \Rightarrow \quad v' - 2xv = 2x. \]

The coefficient function is \(a(x) = -2x \), so \(A(x) = -x^2 \),
Review 2 for Exam 1.

Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: We find solutions using the Bernoulli method.

\[y' - 4x y = 4x y^{1/2} \implies \frac{y'}{y^{1/2}} - 4x y^{1/2} = 4x. \]

Change the unknowns: \(v = 1/y^{n-1} \), with \(n = 1/2 \). That is,

\[v = \frac{1}{y^{-1/2}} \implies v = y^{1/2}, \implies v' = \frac{1}{2} \frac{y'}{y^{1/2}}. \]

\[2v' - 4xv = 4x \implies v' - 2xv = 2x. \]

The coefficient function is \(a(x) = -2x \), so \(A(x) = -x^2 \), and the integrating factor is \(\mu(x) = e^{-x^2} \).
Example
Find every solution of the initial value problem
\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: Recall: \(v' - 2xv = 2x \) and \(\mu(x) = e^{-x^2} \).
Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: Recall: \(v' - 2xv = 2x \) and \(\mu(x) = e^{-x^2} \).

\[e^{-x^2}v' - 2xe^{-x^2}v = 2x e^{-x^2} \]
Example
Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: Recall: \(v' - 2xv = 2x \) and \(\mu(x) = e^{-x^2} \).

\[
e^{-x^2} v' - 2xe^{-x^2} v = 2x e^{-x^2} \quad \text{Verify!} \quad (e^{-x^2} v)' = 2xe^{-x^2}.
\]
Example
Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: Recall: \(v' - 2xv = 2x \) and \(\mu(x) = e^{-x^2}. \)

\[
e^{-x^2} v' - 2xe^{-x^2} v = 2x e^{-x^2} \quad \text{Verify!} \quad (e^{-x^2} v)' = 2xe^{-x^2}. \]

\[
e^{-x^2} v = \int 2xe^{-x^2} \, dx + c
\]
Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}) , \quad y(0) = 4. \]

Solution: Recall: \(v' - 2xv = 2x \) and \(\mu(x) = e^{-x^2} \).

\[
e^{-x^2} v' - 2xe^{-x^2} v = 2x e^{-x^2} \quad \overset{\text{Verify!}}{\Rightarrow} \quad (e^{-x^2} v)' = 2xe^{-x^2}.
\]

\[
e^{-x^2} v = \int 2xe^{-x^2} \, dx + c \quad \Rightarrow \quad e^{-x^2} v = -e^{-x^2} + c.
\]
Example
Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: Recall: \(v' - 2xv = 2x \) and \(\mu(x) = e^{-x^2}. \)

\[
e^{-x^2}v' - 2xe^{-x^2}v = 2xe^{-x^2} \quad \underset{\text{Verify!}}{\Rightarrow} \quad (e^{-x^2}v)' = 2xe^{-x^2}.
\]

\[
e^{-x^2}v = \int 2xe^{-x^2} \, dx + c \quad \Rightarrow \quad e^{-x^2}v = -e^{-x^2} + c.
\]

We conclude that \(v = c e^{x^2} - 1. \)
Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: Recall: \(v' - 2xv = 2x \) and \(\mu(x) = e^{-x^2} \).

\[
e^{-x^2} v' - 2x e^{-x^2} v = 2x e^{-x^2} \quad \overset{\text{Verify!}}{\implies} \quad (e^{-x^2} v)' = 2x e^{-x^2}.\]

\[
e^{-x^2} v = \int 2x e^{-x^2} \, dx + c \quad \Rightarrow \quad e^{-x^2} v = -e^{-x^2} + c.\]

We conclude that \(v = c e^{x^2} - 1 \). The initial condition for \(y \) implies the initial condition for \(v \),
Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: Recall: \(v' - 2xv = 2x \) and \(\mu(x) = e^{-x^2} \).

\[
e^{-x^2} v' - 2xe^{-x^2} v = 2x e^{-x^2} \implies (e^{-x^2} v)' = 2xe^{-x^2}.
\]

\[
e^{-x^2} v = \int 2xe^{-x^2} \, dx + c \quad \implies \quad e^{-x^2} v = -e^{-x^2} + c.
\]

We conclude that \(v = c e^{x^2} - 1 \). The initial condition for \(y \) implies the initial condition for \(v \), that is, \(v(x) = \sqrt{y(x)} \) implies \(v(0) = 2 \).
Review 2 for Exam 1.

Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: Recall: \(v' - 2xv = 2x \) and \(\mu(x) = e^{-x^2} \).

\[
e^{-x^2} v' - 2xe^{-x^2} v = 2x e^{-x^2} \quad \text{Verify!} \quad (e^{-x^2} v)' = 2xe^{-x^2}.
\]

\[
e^{-x^2} v = \int 2xe^{-x^2} \, dx + c \quad \Rightarrow \quad e^{-x^2} v = -e^{-x^2} + c.
\]

We conclude that \(v = c e^{x^2} - 1 \). The initial condition for \(y \) implies the initial condition for \(v \), that is, \(v(x) = \sqrt{y(x)} \) implies \(v(0) = 2 \).

\[2 = v(0) \]
Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: Recall: \(v' - 2xv = 2x \) and \(\mu(x) = e^{-x^2}. \)

\[e^{-x^2} v' - 2xe^{-x^2} v = 2xe^{-x^2} \quad \text{Verify!} \quad (e^{-x^2} v)' = 2xe^{-x^2}. \]

\[e^{-x^2} v = \int 2xe^{-x^2} \, dx + c \quad \Rightarrow \quad e^{-x^2} v = -e^{-x^2} + c. \]

We conclude that \(v = c e^{x^2} - 1. \) The initial condition for \(y \) implies the initial condition for \(v, \) that is, \(v(x) = \sqrt{y(x)} \) implies \(v(0) = 2. \)

\[2 = v(0) = c - 1 \]
Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: Recall: \(v' - 2xv = 2x \) and \(\mu(x) = e^{-x^2} \).

\[
e^{-x^2} v' - 2xe^{-x^2} v = 2x e^{-x^2} \quad \overset{\text{Verify!}}{\Rightarrow} \quad (e^{-x^2} v)' = 2xe^{-x^2}.
\]

\[
e^{-x^2} v = \int 2xe^{-x^2} \, dx + c \quad \Rightarrow \quad e^{-x^2} v = -e^{-x^2} + c.
\]

We conclude that \(v = c e^{x^2} - 1 \). The initial condition for \(y \) implies the initial condition for \(v \), that is, \(v(x) = \sqrt{y(x)} \) implies \(v(0) = 2 \).

\[
2 = v(0) = c - 1 \quad \Rightarrow \quad c = 3
\]
Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: Recall: \(v' - 2xv = 2x \) and \(\mu(x) = e^{-x^2} \).

\[
e^{-x^2} v' - 2xe^{-x^2} v = 2x e^{-x^2} \quad \text{Verify!} \quad (e^{-x^2} v)' = 2xe^{-x^2}. \]

\[
e^{-x^2} v = \int 2xe^{-x^2} \, dx + c \quad \Rightarrow \quad e^{-x^2} v = -e^{-x^2} + c.
\]

We conclude that \(v = c e^{x^2} - 1 \). The initial condition for \(y \) implies the initial condition for \(v \), that is, \(v(x) = \sqrt{y(x)} \) implies \(v(0) = 2 \).

\[
2 = v(0) = c - 1 \quad \Rightarrow \quad c = 3 \quad \Rightarrow \quad v(x) = 3e^{x^2} - 1.
\]
Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: Recall: \(v' - 2xv = 2x \) and \(\mu(x) = e^{-x^2} \).

\[
e^{-x^2} v' - 2xe^{-x^2} v = 2x e^{-x^2} \quad \text{Verify!} \quad (e^{-x^2} v)' = 2xe^{-x^2}.
\]

\[
e^{-x^2} v = \int 2xe^{-x^2} \, dx + c \quad \Rightarrow \quad e^{-x^2} v = -e^{-x^2} + c.
\]

We conclude that \(v = c e^{x^2} - 1 \). The initial condition for \(y \) implies the initial condition for \(v \), that is, \(v(x) = \sqrt{y(x)} \) implies \(v(0) = 2 \).

\[
2 = v(0) = c - 1 \quad \Rightarrow \quad c = 3 \quad \Rightarrow \quad v(x) = 3e^{x^2} - 1.
\]

We finally find \(y = v^2 \),
Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: Recall: \(v' - 2xv = 2x \) and \(\mu(x) = e^{-x^2} \).

\[e^{-x^2} v' - 2xe^{-x^2} v = 2xe^{-x^2} \quad \Rightarrow \quad (e^{-x^2} v)' = 2xe^{-x^2}. \]

\[e^{-x^2} v = \int 2xe^{-x^2} \, dx + c \quad \Rightarrow \quad e^{-x^2} v = -e^{-x^2} + c. \]

We conclude that \(v = c e^{x^2} - 1 \). The initial condition for \(y \) implies the initial condition for \(v \), that is, \(v(x) = \sqrt{y(x)} \) implies \(v(0) = 2 \).

\[2 = v(0) = c - 1 \quad \Rightarrow \quad c = 3 \quad \Rightarrow \quad v(x) = 3e^{x^2} - 1. \]

We finally find \(y = v^2 \), that is, \(y(x) = (3e^{x^2} - 1)^2. \)
Review 2 for Exam 1.

Example

Find the domain of the function y solution of the IVP

$$y' = -\frac{2t}{y}, \quad y(1) = 2.$$
Example
Find the domain of the function y solution of the IVP

$$y' = -\frac{2t}{y}, \quad y(1) = 2.$$

Solution: We first need to find the solution y.

The equation is separable.

$$\int y' \, dt = \int -\frac{2t}{y} \, dt + c \Rightarrow y^2 = -t^2 + c.$$

At $t=1$,

$$y^2(1) = -1 + c \Rightarrow c = 3.$$

Therefore,

$$y(t) = \sqrt{2(3-t^2)}.$$

The domain of the solution y is

$$D = (-\sqrt{3}, \sqrt{3}).$$

The points $\pm \sqrt{3}$ do not belong to the domain of y, since y' and the differential equation are not defined there.
Example
Find the domain of the function y solution of the IVP

$$y' = -\frac{2t}{y}, \quad y(1) = 2.$$

Solution: We first need to find the solution y.
The equation is separable.
Example
Find the domain of the function \(y \) solution of the IVP

\[
y' = -\frac{2t}{y}, \quad y(1) = 2.
\]

Solution: We first need to find the solution \(y \).
The equation is separable.

\[
y y' = -2t
\]
Example
Find the domain of the function y solution of the IVP

$$y' = -\frac{2t}{y}, \quad y(1) = 2.$$

Solution: We first need to find the solution y. The equation is separable.

$$y \ y' = -2t \quad \Rightarrow \quad \int y \ y' \ dt = \int -2t \ dt + c$$

The domain of the solution y is $D = (-\sqrt{3}, \sqrt{3})$. The points $\pm \sqrt{3}$ do not belong to the domain of y, since y' and the differential equation are not defined there.
Example

Find the domain of the function y solution of the IVP

$$y' = -\frac{2t}{y}, \quad y(1) = 2.$$

Solution: We first need to find the solution y. The equation is separable.

$$y y' = -2t \quad \Rightarrow \quad \int y y' \, dt = \int -2t \, dt + c \quad \Rightarrow \quad \frac{y^2}{2} = -t^2 + c$$
Example
Find the domain of the function y solution of the IVP

$$y' = -\frac{2t}{y}, \quad y(1) = 2.$$

Solution: We first need to find the solution y. The equation is separable.

$$y \ y' = -2t \quad \Rightarrow \quad \int y \ y' \ dt = \int -2t \ dt + c \quad \Rightarrow \quad \frac{y^2}{2} = -t^2 + c$$

$$\frac{4}{2} = \frac{y^2(1)}{2} = -1 + c$$
Example
Find the domain of the function y solution of the IVP

$$y' = -\frac{2t}{y}, \quad y(1) = 2.$$

Solution: We first need to find the solution y.

The equation is separable.

$$y \ y' = -2t \quad \Rightarrow \quad \int y \ y' \ dt = \int -2t \ dt + c \quad \Rightarrow \quad \frac{y^2}{2} = -t^2 + c$$

$$\frac{4}{2} = \frac{y^2(1)}{2} = -1 + c \quad \Rightarrow \quad c = 3$$

Therefore, the domain of the solution y is $D = (-\sqrt{3}, \sqrt{3})$. The points $\pm \sqrt{3}$ do not belong to the domain of y, since y' and the differential equation are not defined there.
Example

Find the domain of the function y solution of the IVP

$$y' = -\frac{2t}{y}, \quad y(1) = 2.$$

Solution: We first need to find the solution y.

The equation is separable.

$$y y' = -2t \quad \Rightarrow \quad \int y y' \, dt = \int -2t \, dt + c \quad \Rightarrow \quad \frac{y^2}{2} = -t^2 + c$$

$$\frac{4}{2} = \frac{y^2(1)}{2} = -1 + c \quad \Rightarrow \quad c = 3 \quad \Rightarrow \quad y(t) = \sqrt{2(3 - t^2)}.$$
Example

Find the domain of the function y solution of the IVP

$$y' = -\frac{2t}{y}, \quad y(1) = 2.$$

Solution: We first need to find the solution y.

The equation is separable.

$$y \, y' = -2t \quad \Rightarrow \quad \int y \, y' \, dt = \int -2t \, dt + c \quad \Rightarrow \quad \frac{y^2}{2} = -t^2 + c$$

$$\frac{4}{2} = \frac{y^2(1)}{2} = -1 + c \quad \Rightarrow \quad c = 3 \quad \Rightarrow \quad y(t) = \sqrt{2(3 - t^2)}.$$

The domain of the solution y is $D = (-\sqrt{3}, \sqrt{3})$.
Example

Find the domain of the function y solution of the IVP

$$y' = -\frac{2t}{y}, \quad y(1) = 2.$$

Solution: We first need to find the solution y.

The equation is separable.

$$y y' = -2t \quad \Rightarrow \quad \int y y' \, dt = \int -2t \, dt + c \quad \Rightarrow \quad \frac{y^2}{2} = -t^2 + c$$

$$\frac{4}{2} = \frac{y^2(1)}{2} = -1 + c \quad \Rightarrow \quad c = 3 \quad \Rightarrow \quad y(t) = \sqrt{2(3 - t^2)}.$$

The domain of the solution y is $D = (-\sqrt{3}, \sqrt{3})$.

The points $\pm \sqrt{3}$ do not belong to the domain of y, since y' and the differential equation are not defined there.
Example
Find the domain of the function y solution of the IVP

$$y' = -\frac{2t}{y}, \quad y(t_0) = y_0 > 0.$$
Example

Find the domain of the function y solution of the IVP

$$y' = -\frac{2t}{y}, \quad y(t_0) = y_0 > 0.$$

Solution: The solution y is given as above, $\frac{y^2}{2} = -t^2 + c$.

\triangleright
Example

Find the domain of the function y solution of the IVP

$$y' = -\frac{2t}{y}, \quad y(t_0) = y_0 > 0.$$

Solution: The solution y is given as above, $\frac{y^2}{2} = -t^2 + c$. The initial condition implies

$$\frac{y_0^2}{2} = \frac{y^2(t_0)}{2}.$$
Example
Find the domain of the function y solution of the IVP

$$y' = -\frac{2t}{y}, \quad y(t_0) = y_0 > 0.$$

Solution: The solution y is given as above, $\frac{y^2}{2} = -t^2 + c$. The initial condition implies

$$\frac{y_0^2}{2} = \frac{y^2(t_0)}{2} = -t_0^2 + c.$$
Review 2 for Exam 1.

Example
Find the domain of the function y solution of the IVP

\[y' = -\frac{2t}{y}, \quad y(t_0) = y_0 > 0. \]

Solution: The solution y is given as above, $\frac{y^2}{2} = -t^2 + c$. The initial condition implies

\[\frac{y_0^2}{2} = \frac{y^2(t_0)}{2} = -t_0^2 + c \Rightarrow c = \frac{y_0^2}{2} + t_0^2 \]
Review 2 for Exam 1.

Example

Find the domain of the function y solution of the IVP

$$y' = -\frac{2t}{y}, \quad y(t_0) = y_0 > 0.$$

Solution: The solution y is given as above, $\frac{y^2}{2} = -t^2 + c$.

The initial condition implies

$$\frac{y_0^2}{2} = \frac{y^2(t_0)}{2} = -t_0^2 + c \quad \Rightarrow \quad c = \frac{y_0^2}{2} + t_0^2 \quad \Rightarrow \quad \frac{y^2}{2} = -t^2 + t_0^2 + \frac{y_0^2}{2}.$$
Example
Find the domain of the function y solution of the IVP

$$y' = -\frac{2t}{y}, \quad y(t_0) = y_0 > 0.$$

Solution: The solution y is given as above, $\frac{y^2}{2} = -t^2 + c$. The initial condition implies

$$\frac{y_0^2}{2} = \frac{y^2(t_0)}{2} = -t_0^2 + c \Rightarrow c = \frac{y_0^2}{2} + t_0^2 \Rightarrow \frac{y^2}{2} = -t^2 + t_0^2 + \frac{y_0^2}{2}.$$

The solution to the IVP is $y(t) = \sqrt{2(t_0^2 - t^2) + y_0^2}$.

D = $\left(-\sqrt{t_0^2 + y_0^2}, +\sqrt{t_0^2 + y_0^2}\right)$.

◁
Example
Find the domain of the function y solution of the IVP

\[
y' = -\frac{2t}{y}, \quad y(t_0) = y_0 > 0.
\]

Solution: The solution y is given as above, \(\frac{y^2}{2} = -t^2 + c \).

The initial condition implies

\[
\frac{y_0^2}{2} = \frac{y^2(t_0)}{2} = -t_0^2 + c \quad \Rightarrow \quad c = \frac{y_0^2}{2} + t_0^2 \quad \Rightarrow \quad \frac{y^2}{2} = -t^2 + t_0^2 + \frac{y_0^2}{2}.
\]

The solution to the IVP is

\[y(t) = \sqrt{2(t_0^2 - t^2) + y_0^2}.
\]

The domain of the solution depends on the initial condition t_0, y_0:

\[D = (-\sqrt{-t_0^2 + y_0^2}, +\sqrt{-t_0^2 + y_0^2}).\]
Example

Find the domain of the function y solution of the IVP

$$y' = -\frac{2t}{y}, \quad y(t_0) = y_0 > 0.$$

Solution: The solution y is given as above, $\frac{y^2}{2} = -t^2 + c$. The initial condition implies

$$\frac{y_0^2}{2} = \frac{y_0^2(t_0)}{2} = -t_0^2 + c \Rightarrow c = \frac{y_0^2}{2} + t_0^2 \Rightarrow \frac{y^2}{2} = -t^2 + t_0^2 + \frac{y_0^2}{2}.$$

The solution to the IVP is $y(t) = \sqrt{2(t_0^2 - t^2) + y_0^2}$.

The domain of the solution depends on the initial condition t_0, y_0:

$$D = \left(-\sqrt{t_0^2 + \frac{y_0^2}{2}}, +\sqrt{t_0^2 + \frac{y_0^2}{2}} \right). \quad \triangle$$
Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.
Example
Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: The equation is not linear,
Example
Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: The equation is not linear, not Bernoulli,
Review 2 for Exam 1.

Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: The equation is not linear, not Bernoulli, not separable.
Example

Find every solution \(y \) to the equation \(y' = -\frac{2x + 3y}{3x + 4y} \).

Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by \((1/x)\).)
Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by $(1/x)$.)

Is it exact?
Review 2 for Exam 1.

Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by $\frac{1}{x}$.)

Is it exact? $(3x + 4y)y' + (2x + 3y) = 0$
Review 2 for Exam 1.

Example

Find every solution \(y \) to the equation \(y' = -\frac{2x + 3y}{3x + 4y} \).

Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by \((1/x)\).)

Is it exact? \((3x + 4y)\ y' + (2x + 3y) = 0\) implies \(\partial_x N = 3 = \partial_y M\).
Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by $(1/x)$.)

Is it exact? $(3x + 4y)y' + (2x + 3y) = 0$ implies $\partial_x N = 3 = \partial_y M$. So the equation is exact.
Review 2 for Exam 1.

Example
Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by $(1/x)$.)
Is it exact? $(3x + 4y)y' + (2x + 3y) = 0$ implies $\partial_x N = 3 = \partial_y M$. So the equation is exact.

We choose here the exact equation method.
Review 2 for Exam 1.

Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by $(1/x)$.)

Is it exact? $(3x + 4y)y' + (2x + 3y) = 0$ implies $\partial_x N = 3 = \partial_y M$.

So the equation is exact.

We choose here the exact equation method. (Finding the potential function is sometimes simpler that solving homogeneous Eqs.)
Review 2 for Exam 1.

Example
Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by $(1/x)$.)

Is it exact? $(3x + 4y)y' + (2x + 3y) = 0$ implies $\partial_x N = 3 = \partial_y M$.
So the equation is exact.

We choose here the exact equation method. (Finding the potential function is sometimes simpler that solving homogeneous Eqs.)

We need to find the potential function ψ:

\begin{align*}
\partial_y \psi &= N \\
\partial_x \psi &= M
\end{align*}

\begin{align*}
\partial_y \psi &= 3x + 4y \\
\partial_x \psi &= 2x + 3y
\end{align*}

We conclude:
$\psi(x, y) = 3xy + 2y^2 + x^2,$
and $\psi(x, y(x)) = c$.\]
Review 2 for Exam 1.

Example

Find every solution \(y \) to the equation \(y' = -\frac{2x + 3y}{3x + 4y} \).

Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by \(\frac{1}{x} \).)

Is it exact? \((3x + 4y) y' + (2x + 3y) = 0 \) implies \(\partial_x N = 3 = \partial_y M \). So the equation is exact.

We choose here the exact equation method. (Finding the potential function is sometimes simpler that solving homogeneous Eqs.)

We need to find the potential function \(\psi \):

\[
\partial_y \psi = N
\]
Review 2 for Exam 1.

Example

Find every solution \(y \) to the equation \(y' = -\frac{2x + 3y}{3x + 4y} \).

Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by \(1/x\).)

Is it exact? \((3x + 4y)y' + (2x + 3y) = 0\) implies \(\partial_x N = 3 = \partial_y M\). So the equation is exact.

We choose here the exact equation method. (Finding the potential function is sometimes simpler that solving homogeneous Eqs.)

We need to find the potential function \(\psi\):

\[
\partial_y \psi = N \quad \Rightarrow \quad \psi = 3xy + 2y^2 + g(x).
\]
Review 2 for Exam 1.

Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by $(1/x)$.)

Is it exact? $(3x + 4y)y' + (2x + 3y) = 0$ implies $\partial_x N = 3 = \partial_y M$. So the equation is exact.

We choose here the exact equation method. (Finding the potential function is sometimes simpler that solving homogeneous Eqs.)

We need to find the potential function ψ:

$$\partial_y \psi = N \implies \psi = 3xy + 2y^2 + g(x).$$

$$\partial_x \psi = M$$
Example
Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by $(1/x)$.) Is it exact? $(3x + 4y)y' + (2x + 3y) = 0$ implies $\partial_x N = 3 = \partial_y M$. So the equation is exact.

We choose here the exact equation method. (Finding the potential function is sometimes simpler that solving homogeneous Eqs.)

We need to find the potential function ψ:

$$\partial_y \psi = N \quad \Rightarrow \quad \psi = 3xy + 2y^2 + g(x).$$

$$\partial_x \psi = M \quad \Rightarrow \quad 3y + g'(x) = 2x + 3y$$
Review 2 for Exam 1.

Example

Find every solution \(y \) to the equation \(y' = -\frac{2x + 3y}{3x + 4y} \).

Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by \(1/x \).)
Is it exact? \((3x + 4y)y' + (2x + 3y) = 0\) implies \(\partial_x N = 3 = \partial_y M \). So the equation is exact.

We choose here the exact equation method. (Finding the potential function is sometimes simpler that solving homogeneous Eqs.)

We need to find the potential function \(\psi \):

\[
\partial_y \psi = N \implies \psi = 3xy + 2y^2 + g(x).
\]

\[
\partial_x \psi = M \implies 3y + g'(x) = 2x + 3y \implies g(x) = x^2.
\]
Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by $(1/x)$.)

Is it exact? $(3x + 4y)y' + (2x + 3y) = 0$ implies $\partial_x N = 3 = \partial_y M$. So the equation is exact.

We choose here the exact equation method. (Finding the potential function is sometimes simpler that solving homogeneous Eqs.)

We need to find the potential function ψ:

$$\partial_y \psi = N \quad \Rightarrow \quad \psi = 3xy + 2y^2 + g(x).$$

$$\partial_x \psi = M \quad \Rightarrow \quad 3y + g'(x) = 2x + 3y \quad \Rightarrow \quad g(x) = x^2.$$

We conclude: $\psi(x, y) = 3xy + 2y^2 + x^2$.

\[
\begin{align*}
 \psi(x, y) &= 3xy + 2y^2 + x^2, \\
 \partial_x \psi &= 3y + g'(x) = 2x + 3y, \\
 \partial_y \psi &= 3xy + 2y^2 + g(x).
\end{align*}
\]
Example

Find every solution \(y \) to the equation \(y' = -\frac{2x + 3y}{3x + 4y} \).

Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by \((1/x)\).)

Is it exact? \((3x + 4y)y' + (2x + 3y) = 0\) implies \(\partial_x N = 3 = \partial_y M \). So the equation is exact.

We choose here the exact equation method. (Finding the potential function is sometimes simpler that solving homogeneous Eqs.)

We need to find the potential function \(\psi \):

\[
\partial_y \psi = N \quad \Rightarrow \quad \psi = 3xy + 2y^2 + g(x).
\]

\[
\partial_x \psi = M \quad \Rightarrow \quad 3y + g'(x) = 2x + 3y \quad \Rightarrow \quad g(x) = x^2.
\]

We conclude: \(\psi(x, y) = 3xy + 2y^2 + x^2 \), and \(\psi(x, y(x)) = c \).\(\triangleleft \)
Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.
Review 2 for Exam 1.

Example

Find every solution \(y \) to the equation \(y' = -\frac{2x + 3y}{3x + 4y} \).

Solution: If we solve the problem using that the equation is homogeneous, it is more complicated than the previous calculation.
Review 2 for Exam 1.

Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: If we solve the problem using that the equation is homogeneous, it is more complicated than the previous calculation. We just start the calculation to see the difficulty:
Review 2 for Exam 1.

Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: If we solve the problem using that the equation is homogeneous, it is more complicated than the previous calculation. We just start the calculation to see the difficulty:

$$y' = -\frac{(2x + 3y)}{(3x + 4y)} \frac{\left(\frac{1}{x}\right)}{\left(\frac{1}{x}\right)}$$
Example

Find every solution y to the equation \(y' = -\frac{2x + 3y}{3x + 4y} \).

Solution: If we solve the problem using that the equation is homogeneous, it is more complicated than the previous calculation. We just start the calculation to see the difficulty:

\[
y' = -\frac{(2x + 3y)}{(3x + 4y)} \left(\frac{1}{x} \right) = -\frac{2 + 3\left(\frac{y}{x} \right)}{3 + 4\left(\frac{y}{x} \right)}.
\]
Review 2 for Exam 1.

Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: If we solve the problem using that the equation is homogeneous, it is more complicated than the previous calculation. We just start the calculation to see the difficulty:

$$y' = -\frac{(2x + 3y)}{(3x + 4y)} \left(\frac{1}{x}\right) = -\frac{2 + 3\left(\frac{y}{x}\right)}{3 + 4\left(\frac{y}{x}\right)}.$$

The change $v = y/x$ implies $y = xv$ and $y' = v + x v'$.
Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: If we solve the problem using that the equation is homogeneous, it is more complicated than the previous calculation. We just start the calculation to see the difficulty:

$$y' = -\frac{(2x + 3y)}{(3x + 4y)} \left(\frac{1}{x}\right) = -\frac{2 + 3\left(\frac{y}{x}\right)}{3 + 4\left(\frac{y}{x}\right)}.$$

The change $v = y/x$ implies $y = xv$ and $y' = v + x \cdot v'$. Hence

$$v + x \cdot v' = \frac{2 + 3v}{3 + 4v}.$$
Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: If we solve the problem using that the equation is homogeneous, it is more complicated than the previous calculation. We just start the calculation to see the difficulty:

$$y' = -\frac{(2x + 3y)}{(3x + 4y)} \cdot \left(\frac{1}{x}\right) = -\frac{2 + 3\left(\frac{y}{x}\right)}{3 + 4\left(\frac{y}{x}\right)}.$$

The change $v = y/x$ implies $y = xv$ and $y' = v + xv'$. Hence

$$v + x v' = \frac{2 + 3v}{3 + 4v} \Rightarrow x v' = \frac{2 + 3v}{3 + 4v} - v.$$
Review 2 for Exam 1.

Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: If we solve the problem using that the equation is homogeneous, it is more complicated than the previous calculation. We just start the calculation to see the difficulty:

$$y' = -\frac{(2x + 3y)}{(3x + 4y)} \frac{1}{x} = -\frac{2 + 3\left(\frac{y}{x}\right)}{3 + 4\left(\frac{y}{x}\right)}.$$

The change $v = y/x$ implies $y = xv$ and $y' = v + x v'$. Hence

$$v + x v' = \frac{2 + 3v}{3 + 4v} \Rightarrow x v' = \frac{2 + 3v}{3 + 4v} - v = \frac{2 + 3v - 3v + 4v^2}{3 + 4v}.$$
Review 2 for Exam 1.

Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: If we solve the problem using that the equation is homogeneous, it is more complicated than the previous calculation. We just start the calculation to see the difficulty:

$$y' = -\frac{(2x + 3y)}{(3x + 4y)} \frac{1}{\frac{1}{x}} = -\frac{2 + 3\left(\frac{y}{x}\right)}{3 + 4\left(\frac{y}{x}\right)}.$$

The change $v = \frac{y}{x}$ implies $y = xv$ and $y' = v + xv'$. Hence

$$v + xv' = \frac{2 + 3v}{3 + 4v} \quad \Rightarrow \quad xv' = \frac{2 + 3v}{3 + 4v} - v = \frac{2 + 3v - 3v + 4v^2}{3 + 4v}.$$

We conclude that v satisfies $\frac{3 + 4v}{2 - 4v^2} \cdot v' = \frac{1}{x}$.
Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: Recall:

$$\frac{3 + 4v}{2 - 4v^2} v' = \frac{1}{x}.$$
Review 2 for Exam 1.

Example

Find every solution \(y \) to the equation \(y' = -\frac{2x + 3y}{3x + 4y} \).

Solution: Recall: \(\frac{3 + 4v}{2 - 4v^2} v' = \frac{1}{x} \).

This equation is complicated to integrate.

\[
\int \frac{3 v'}{2 - 4v^2} \, dx + \int \frac{4v v'}{2 - 4v^2} \, dx = \int \frac{1}{x} \, dx + c
\]
Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: Recall:

$$\frac{3 + 4v}{2 - 4v^2} v' = \frac{1}{x}.$$

This equation is complicated to integrate.

$$\int \frac{3 v'}{2 - 4v^2} \, dx + \int \frac{4v v'}{2 - 4v^2} \, dx = \int \frac{1}{x} \, dx + c = \ln(x) + c.$$
Review 2 for Exam 1.

Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: Recall: \[
\frac{3 + 4v}{2 - 4v^2} \cdot v' = \frac{1}{x}.
\]

This equation is complicated to integrate.

\[
\int \frac{3 \, v'}{2 - 4v^2} \, dx + \int \frac{4v \, v'}{2 - 4v^2} \, dx = \int \frac{1}{x} \, dx + c = \ln(x) + c.
\]

The usual substitution $u = v(x)$ implies $du = v' \, dx$,

\[
\int \frac{3 \, v'}{2 - 4v^2} \, dx + \int \frac{4v \, v'}{2 - 4v^2} \, dx = \int \frac{1}{x} \, dx + c = \ln(x) + c.
\]
Example

Find every solution \(y \) to the equation \(y' = -\frac{2x + 3y}{3x + 4y} \).

Solution: Recall: \(\frac{3 + 4v}{2 - 4v^2} \frac{dv}{v} = \frac{1}{x} \).

This equation is complicated to integrate.

\[
\int \frac{3 v'}{2 - 4v^2} \, dx + \int \frac{4v \, v'}{2 - 4v^2} \, dx = \int \frac{1}{x} \, dx + c = \ln(x) + c.
\]

The usual substitution \(u = v(x) \) implies \(du = \frac{dv}{v} \, dx \), so

\[
\int \frac{3 \, du}{2 - 4u^2} + \int \frac{4u \, du}{2 - 4u^2} = \ln(x) + c.
\]
Review 2 for Exam 1.

Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: Recall: $\frac{3 + 4v}{2 - 4v^2} v' = \frac{1}{x}$.

This equation is complicated to integrate.

$$\int \frac{3 v'}{2 - 4v^2} \, dx + \int \frac{4v v'}{2 - 4v^2} \, dx = \int \frac{1}{x} \, dx + c = \ln(x) + c.$$

The usual substitution $u = v(x)$ implies $du = v' \, dx$, so

$$\int \frac{3 \, du}{2 - 4u^2} + \int \frac{4u \, du}{2 - 4u^2} = \ln(x) + c.$$

The first integral on the left-hand side requires integration tables.
Review 2 for Exam 1.

Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: Recall: $\frac{3 + 4v}{2 - 4v^2} v' = \frac{1}{x}$.

This equation is complicated to integrate.

$$\int \frac{3 v'}{2 - 4v^2} \, dx + \int \frac{4v \, v'}{2 - 4v^2} \, dx = \int \frac{1}{x} \, dx + c = \ln(x) + c.$$

The usual substitution $u = v(x)$ implies $du = v' \, dx$, so

$$\int \frac{3 \, du}{2 - 4u^2} + \int \frac{4u \, du}{2 - 4u^2} = \ln(x) + c.$$

The first integral on the left-hand side requires integration tables. This is why the exact method is simpler to use in this case.
Example

Sketch the graph of the function y solution of $y' = -(y - 2)^2$ for initial data $y(0) = y_0 \in \mathbb{R}$.
Example

Sketch the graph of the function y solution of $y' = -(y - 2)^2$ for initial data $y(0) = y_0 \in \mathbb{R}$.

Solution: We first plot the function $f(y) = -(y - 2)^2$.
Example
Sketch the graph of the function y solution of $y' = -(y - 2)^2$ for initial data $y(0) = y_0 \in \mathbb{R}$.

Solution: We first plot the function $f(y) = -(y - 2)^2$. Find the equilibrium solutions, $f(y) = 0$.

Semistable equilibrium

$y' < 0$

$y'' = f'(y) f(y)$

$y'' > 0$

$2y$
Review 2 for Exam 1.

Example
Sketch the graph of the function y solution of $y' = -(y - 2)^2$ for initial data $y(0) = y_0 \in \mathbb{R}$.

Solution: We first plot the function $f(y) = -(y - 2)^2$. Find the equilibrium solutions, $f(y) = 0$. Determine the increasing-decreasing intervals for y.
Review 2 for Exam 1.

Example

Sketch the graph of the function y solution of $y' = -(y - 2)^2$ for initial data $y(0) = y_0 \in \mathbb{R}$.

Solution: We first plot the function $f(y) = -(y - 2)^2$.
Find the equilibrium solutions, $f(y) = 0$.
Determine the increasing-decreasing intervals for y. (Sign of y'.)

Semistable

$y' < 0$
$y'' = f'(y) f(y)$
$y'' > 0$

Semi−stable equilibrium

y_0
y_0
t
t
2

Semistable equilibrium
Example

Sketch the graph of the function y solution of $y' = -(y - 2)^2$ for initial data $y(0) = y_0 \in \mathbb{R}$.

Solution: We first plot the function $f(y) = -(y - 2)^2$. Find the equilibrium solutions, $f(y) = 0$. Determine the increasing-decreasing intervals for y. (Sign of y'.) Determine the curvature of y.
Review 2 for Exam 1.

Example

Sketch the graph of the function y solution of $y' = -(y - 2)^2$ for initial data $y(0) = y_0 \in \mathbb{R}$.

Solution: We first plot the function $f(y) = -(y - 2)^2$. Find the equilibrium solutions, $f(y) = 0$. Determine the increasing-decreasing intervals for y. (Sign of y'.) Determine the curvature of y. (Sign of y''.)
Example

Sketch the graph of the function y solution of $y' = -(y - 2)^2$ for initial data $y(0) = y_0 \in \mathbb{R}$.

Solution: We first plot the function $f(y) = -(y - 2)^2$.
Find the equilibrium solutions, $f(y) = 0$.
Determine the increasing-decreasing intervals for y. (Sign of y'.)
Determine the curvature of y. (Sign of y''.)

\[
\begin{aligned}
f(y) &= -(y - 2)^2 \\
y' &= f(y) \quad y'' = f'(y) f(y) \\
y' < 0 & \quad y' < 0 \\
y'' < 0 & \quad y'' > 0 \\
\end{aligned}
\]
Example

Sketch the graph of the function y solution of $y' = -(y - 2)^2$ for initial data $y(0) = y_0 \in \mathbb{R}$.

Solution: We first plot the function $f(y) = -(y - 2)^2$. Find the equilibrium solutions, $f(y) = 0$. Determine the increasing-decreasing intervals for y. (Sign of y'.) Determine the curvature of y. (Sign of y''.)

\begin{align*}
f(y) &= -(y - 2)^2 \\
y' &= f(y) \\
y'' &= f'(y) f(y) \\
y' &< 0 \\
y'' &< 0 \\
y' &< 0 \\
y'' &> 0
\end{align*}
Example

Assume that $r_i = r_o = r$ and q_i are constants.
If $r = 2$ liters/min, $q_i = 0$, $V_0 = 200$ liters, $Q_0/V_0 = 1$ grams/liter,
find t_1 such that $q(t_1) = Q(t_1)/V(t_1)$ is 1% the initial value.
Example
Assume that \(r_i = r_o = r \) and \(q_i \) are constants.
If \(r = 2 \) liters/min, \(q_i = 0 \), \(V_0 = 200 \) liters, \(Q_0/V_0 = 1 \) grams/liter,
find \(t_1 \) such that \(q(t_1) = Q(t_1)/V(t_1) \) is 1% the initial value.

Solution: Since \(r_i = r_o \),
Example

Assume that $r_i = r_o = r$ and q_i are constants.
If $r = 2$ liters/min, $q_i = 0$, $V_0 = 200$ liters, $Q_0/V_0 = 1$ grams/liter,
find t_1 such that $q(t_1) = Q(t_1)/V(t_1)$ is 1% the initial value.

Solution: Since $r_i = r_o$, we get $V'(t) = 0$,

\[V(t) = V_0, \]
\[Q(t) = Q_0 e^{-rt/V_0}, \]
\[q(t) = r - \frac{Q(t)}{V(t)} = r - \frac{Q_0 e^{-rt/V_0}}{V_0} = r - \frac{Q_0}{V_0} e^{-rt/V_0}. \]
\[q(t_1) = \frac{Q_0}{V_0} e^{-rt_1/V_0}. \]

Since $q(t_1)$ is 1% of Q_0/V_0, we have
\[e^{-rt_1/V_0} = \frac{1}{100}. \]

Therefore,
\[rt_1/V_0 = \ln(100), \]
\[t_1 = \frac{V_0 r \ln(100)}{Q_0}. \]
Review 2 for Exam 1.

Example

Assume that $r_i = r_o = r$ and q_i are constants.
If $r = 2$ liters/min, $q_i = 0$, $V_0 = 200$ liters, $Q_0/V_0 = 1$ grams/liter, find t_1 such that $q(t_1) = Q(t_1)/V(t_1)$ is 1% the initial value.

Solution: Since $r_i = r_o$, we get $V'(t) = 0$, so $V(t) = V_0$.
Example
Assume that \(r_i = r_o = r \) and \(q_i \) are constants.
If \(r = 2 \) liters/min, \(q_i = 0 \), \(V_0 = 200 \) liters, \(Q_0/V_0 = 1 \) grams/liter, find \(t_1 \) such that \(q(t_1) = Q(t_1)/V(t_1) \) is 1\% the initial value.

Solution: Since \(r_i = r_o \), we get \(V'(t) = 0 \), so \(V(t) = V_0 \).
The equation for \(Q \) is \(Q' = rq_i - (r/V_0) Q \).
Example

Assume that $r_i = r_o = r$ and q_i are constants.

If $r = 2$ liters/min, $q_i = 0$, $V_0 = 200$ liters, $Q_0/V_0 = 1$ grams/liter, find t_1 such that $q(t_1) = Q(t_1)/V(t_1)$ is 1% the initial value.

Solution: Since $r_i = r_o$, we get $V'(t) = 0$, so $V(t) = V_0$.

The equation for Q is $Q' = rq_i - (r/V_0)Q$.

Since $q_i = 0$,
Review 2 for Exam 1.

Example
Assume that $r_i = r_o = r$ and q_i are constants.
If $r = 2$ liters/min, $q_i = 0$, $V_0 = 200$ liters, $Q_0/V_0 = 1$ grams/liter, find t_1 such that $q(t_1) = Q(t_1)/V(t_1)$ is 1% the initial value.

Solution: Since $r_i = r_o$, we get $V'(t) = 0$, so $V(t) = V_0$.
The equation for Q is $Q' = rq_i - (r/V_0) Q$.
Since $q_i = 0$, $Q' = -(r/V_0) Q$.
Example

Assume that $r_i = r_o = r$ and q_i are constants.

If $r = 2$ liters/min, $q_i = 0$, $V_0 = 200$ liters, $Q_0/V_0 = 1$ grams/liter, find t_1 such that $q(t_1) = Q(t_1)/V(t_1)$ is 1% the initial value.

Solution: Since $r_i = r_o$, we get $V'(t) = 0$, so $V(t) = V_0$.

The equation for Q is $Q' = rq_i - (r/V_0)Q$.

Since $q_i = 0$, $Q' = -(r/V_0)Q$. The solution is $Q(t) = Q_0 e^{-rt/V_0}$.
Example

Assume that \(r_i = r_o = r \) and \(q_i \) are constants.
If \(r = 2 \) liters/min, \(q_i = 0 \), \(V_0 = 200 \) liters, \(Q_0/V_0 = 1 \) grams/liter, find \(t_1 \) such that \(q(t_1) = Q(t_1)/V(t_1) \) is 1% the initial value.

Solution: Since \(r_i = r_o \), we get \(V'(t) = 0 \), so \(V(t) = V_0 \).

The equation for \(Q \) is \(Q' = rq_i - (r/V_0) Q \).

Since \(q_i = 0 \), \(Q' = -(r/V_0) Q \). The solution is \(Q(t) = Q_0 e^{-rt/V_0} \).

We now look for \(t_1 \) solution of

\[
\frac{Q_0}{V_0} e^{-rt_1/V_0} = \frac{1}{100}.
\]
Example
Assume that $r_i = r_o = r$ and q_i are constants.
If $r = 2$ liters/min, $q_i = 0$, $V_0 = 200$ liters, $Q_0/V_0 = 1$ grams/liter, find t_1 such that $q(t_1) = Q(t_1)/V(t_1)$ is 1% the initial value.

Solution: Since $r_i = r_o$, we get $V'(t) = 0$, so $V(t) = V_0$.
The equation for Q is $Q' = rq_i - (r/V_0)Q$.
Since $q_i = 0$, $Q' = -(r/V_0)Q$. The solution is $Q(t) = Q_0 e^{-rt/V_0}$.

We now look for t_1 solution of
\[
\frac{Q_0}{V_0} \frac{1}{100}
\]
Example
Assume that \(r_i = r_o = r \) and \(q_i \) are constants.
If \(r = 2 \) liters/min, \(q_i = 0 \), \(V_0 = 200 \) liters, \(Q_0/V_0 = 1 \) grams/liter, find \(t_1 \) such that \(q(t_1) = Q(t_1)/V(t_1) \) is 1% the initial value.

Solution: Since \(r_i = r_o \), we get \(V'(t) = 0 \), so \(V(t) = V_0 \).

The equation for \(Q \) is \(Q' = rq_i - (r/V_0)Q \).
Since \(q_i = 0 \), \(Q' = -(r/V_0)Q \). The solution is \(Q(t) = Q_0 e^{-rt/V_0} \).

We now look for \(t_1 \) solution of
\[
\frac{Q_0}{V_0} \frac{1}{100} = q(t_1)
\]
Review 2 for Exam 1.

Example
Assume that $r_i = r_o = r$ and q_i are constants.
If $r = 2$ liters/min, $q_i = 0$, $V_0 = 200$ liters, $Q_0/V_0 = 1$ grams/liter, find t_1 such that $q(t_1) = Q(t_1)/V(t_1)$ is 1% the initial value.

Solution: Since $r_i = r_o$, we get $V'(t) = 0$, so $V(t) = V_0$.
The equation for Q is $Q' = rq_i - (r/V_0) Q$.
Since $q_i = 0$, $Q' = -(r/V_0) Q$. The solution is $Q(t) = Q_0 e^{-rt/V_0}$.
We now look for t_1 solution of
$$\frac{Q_0}{V_0} \frac{1}{100} = q(t_1) = \frac{Q_0}{V_0} e^{-rt_1/V_0}$$
Review 2 for Exam 1.

Example

Assume that $r_i = r_o = r$ and q_i are constants.

If $r = 2$ liters/min, $q_i = 0$, $V_0 = 200$ liters, $Q_0/V_0 = 1$ grams/liter, find t_1 such that $q(t_1) = Q(t_1)/V(t_1)$ is 1% the initial value.

Solution: Since $r_i = r_o$, we get $V'(t) = 0$, so $V(t) = V_0$.

The equation for Q is $Q' = rq_i - (r/V_0)Q$.

Since $q_i = 0$, $Q' = -(r/V_0)Q$. The solution is $Q(t) = Q_0 e^{-rt/V_0}$.

We now look for t_1 solution of

$$
\frac{Q_0}{V_0} \frac{1}{100} = q(t_1) = \frac{Q_0}{V_0} e^{-rt_1/V_0} \Rightarrow e^{-rt_1/V_0} = \frac{1}{100}.
$$
Example

Assume that \(r_i = r_o = r \) and \(q_i \) are constants.

If \(r = 2 \) liters/min, \(q_i = 0 \), \(V_0 = 200 \) liters, \(Q_0/V_0 = 1 \) grams/liter, find \(t_1 \) such that \(q(t_1) = Q(t_1)/V(t_1) \) is 1\% the initial value.

Solution: Since \(r_i = r_o \), we get \(V'(t) = 0 \), so \(V(t) = V_0 \).

The equation for \(Q \) is \(Q' = rq_i - (r/V_0) Q \).

Since \(q_i = 0 \), \(Q' = -(r/V_0) Q \). The solution is \(Q(t) = Q_0 e^{-rt/V_0} \).

We now look for \(t_1 \) solution of

\[
\frac{Q_0}{V_0} \frac{1}{100} = q(t_1) = \frac{Q_0}{V_0} e^{-rt_1/V_0} \Rightarrow e^{-rt_1/V_0} = \frac{1}{100}.
\]

\[-\frac{r}{V_0} t_1 = \ln \left(\frac{1}{100} \right)\]
Review 2 for Exam 1.

Example
Assume that \(r_i = r_o = r \) and \(q_i \) are constants. If \(r = 2 \) liters/min, \(q_i = 0 \), \(V_0 = 200 \) liters, \(Q_0/V_0 = 1 \) grams/liter, find \(t_1 \) such that \(q(t_1) = Q(t_1)/V(t_1) \) is 1% the initial value.

Solution: Since \(r_i = r_o \), we get \(V'(t) = 0 \), so \(V(t) = V_0 \).

The equation for \(Q \) is \(Q' = rq_i - (r/V_0) Q \).

Since \(q_i = 0 \), \(Q' = -(r/V_0) Q \). The solution is \(Q(t) = Q_0 e^{-rt/V_0} \).

We now look for \(t_1 \) solution of

\[
\frac{Q_0}{V_0} \frac{1}{100} = q(t_1) = \frac{Q_0}{V_0} e^{-rt_1/V_0} \implies e^{-rt_1/V_0} = \frac{1}{100}.
\]

\[- \frac{r}{V_0} t_1 = \ln \left(\frac{1}{100} \right) = -\ln(100)\]
Example
Assume that \(r_i = r_o = r \) and \(q_i \) are constants.
If \(r = 2 \) liters/min, \(q_i = 0 \), \(V_0 = 200 \) liters, \(Q_0/V_0 = 1 \) grams/liter, find \(t_1 \) such that \(q(t_1) = Q(t_1)/V(t_1) \) is 1% the initial value.

Solution: Since \(r_i = r_o \), we get \(V'(t) = 0 \), so \(V(t) = V_0 \).

The equation for \(Q \) is \(Q' = rq_i - (r/V_0) Q \).
Since \(q_i = 0 \), \(Q' = -(r/V_0) Q \). The solution is \(Q(t) = Q_0 e^{-rt/V_0} \).

We now look for \(t_1 \) solution of
\[
\frac{Q_0}{V_0} \frac{1}{100} = q(t_1) = \frac{Q_0}{V_0} e^{-rt_1/V_0} \quad \Rightarrow \quad e^{-rt_1/V_0} = \frac{1}{100}.
\]
\[
-\frac{r}{V_0} t_1 = \ln \left(\frac{1}{100} \right) = -\ln(100) \quad \Rightarrow \quad \frac{r}{V_0} t_1 = \ln(100).
\]
Review 2 for Exam 1.

Example

Assume that \(r_i = r_o = r \) and \(q_i \) are constants. If \(r = 2 \) liters/min, \(q_i = 0 \), \(V_0 = 200 \) liters, \(Q_0/V_0 = 1 \) grams/liter, find \(t_1 \) such that \(q(t_1) = Q(t_1)/V(t_1) \) is 1% the initial value.

Solution: Since \(r_i = r_o \), we get \(V'(t) = 0 \), so \(V(t) = V_0 \).

The equation for \(Q \) is \(Q' = rq_i - (r/V_0) Q \).

Since \(q_i = 0 \), \(Q' = -(r/V_0) Q \). The solution is \(Q(t) = Q_0 e^{-rt/V_0} \).

We now look for \(t_1 \) solution of

\[
\frac{Q_0}{V_0} \frac{1}{100} = q(t_1) = \frac{Q_0}{V_0} e^{-rt_1/V_0} \quad \Rightarrow \quad e^{-rt_1/V_0} = \frac{1}{100}.
\]

\[
-\frac{r}{V_0} t_1 = \ln\left(\frac{1}{100}\right) = -\ln(100) \quad \Rightarrow \quad -\frac{r}{V_0} t_1 = \ln(100) \quad \Rightarrow \quad \frac{r}{V_0} t_1 = \ln(100).
\]

We conclude that \(t_1 = \frac{V_0}{r} \ln(100) \).
Example
Assume that \(r_i = r_o = r \) and \(q_i \) are constants.
If \(r = 2 \) liters/min, \(q_i = 0 \), \(V_0 = 200 \) liters, \(Q_0/V_0 = 1 \) grams/liter, find \(t_1 \) such that \(q(t_1) = Q(t_1)/V(t_1) \) is 1% the initial value.

Solution: Since \(r_i = r_o \), we get \(V'(t) = 0 \), so \(V(t) = V_0 \).

The equation for \(Q \) is \(Q' = rq_i - (r/V_0) \) \(Q \).

Since \(q_i = 0 \), \(Q' = -(r/V_0) \) \(Q \). The solution is \(Q(t) = Q_0 e^{-rt/V_0} \).

We now look for \(t_1 \) solution of

\[
\frac{Q_0}{V_0} \frac{1}{100} = q(t_1) = \frac{Q_0}{V_0} e^{-rt_1/V_0} \quad \Rightarrow \quad e^{-rt_1/V_0} = \frac{1}{100}.
\]

\[- \frac{r}{V_0} t_1 = \ln \left(\frac{1}{100} \right) = - \ln(100) \quad \Rightarrow \quad \frac{r}{V_0} t_1 = \ln(100).\]

We conclude that \(t_1 = \frac{V_0}{r} \ln(100) \). Hence: \(t_1 = 100 \ln(100) \).
Variable coefficients second order linear ODE (Sect. 3.2).

Summary: The study the main properties of solutions to second order, linear, variable coefficients, ODE.

- Review: Second order linear ODE.
- Existence and uniqueness of solutions.
- Linearly dependent and independent functions.
- The Wronskian of two functions.
- General and fundamental solutions.
- Abel’s theorem on the Wronskian.
Review: Second order linear ODE.

Definition
Given functions $a_1, a_0, b : \mathbb{R} \to \mathbb{R}$, the differential equation in the unknown function $y : \mathbb{R} \to \mathbb{R}$ given by

$$y'' + a_1(t)y' + a_0(t)y = b(t)$$

is called a second order linear differential equation with variable coefficients.
Review: Second order linear ODE.

Definition
Given functions $a_1, a_0, b : \mathbb{R} \rightarrow \mathbb{R}$, the differential equation in the unknown function $y : \mathbb{R} \rightarrow \mathbb{R}$ given by

$$y'' + a_1(t) y' + a_0(t) y = b(t)$$

is called a second order linear differential equation with variable coefficients.

Theorem
If the functions y_1 and y_2 are solutions to the homogeneous linear equation

$$y'' + a_1(t) y' + a_0(t) y = 0,$$

then the linear combination $c_1 y_1(t) + c_2 y_2(t)$ is also a solution for any constants $c_1, c_2 \in \mathbb{R}$.
Variable coefficients second order linear ODE (Sect. 3.2).

- Review: Second order linear ODE.
- **Existence and uniqueness of solutions.**
- Linearly dependent and independent functions.
- The Wronskian of two functions.
- General and fundamental solutions.
- Abel’s theorem on the Wronskian.
Existence and uniqueness of solutions.

Theorem (Variable coefficients)

If the functions \(a, b : (t_1, t_2) \to \mathbb{R} \) are continuous, the constants \(t_0 \in (t_1, t_2) \) and \(y_0, y_1 \in \mathbb{R} \), then there exists a unique solution \(y : (t_1, t_2) \to \mathbb{R} \) to the initial value problem

\[
y'' + a_1(t) y' + a_0(t) y = b(t), \quad y(t_0) = y_0, \quad y'(t_0) = y_1.
\]

Remarks:

▶ Unlike the first order linear ODE where we have an explicit expression for the solution, there is no explicit expression for the solution of second order linear ODE.
▶ Two integrations must be done to find solutions to second order linear. Therefore, initial value problems with two initial conditions can have a unique solution.
Existence and uniqueness of solutions.

Theorem (Variable coefficients)

If the functions $a, b : (t_1, t_2) \to \mathbb{R}$ are continuous, the constants $t_0 \in (t_1, t_2)$ and $y_0, y_1 \in \mathbb{R}$, then there exists a unique solution $y : (t_1, t_2) \to \mathbb{R}$ to the initial value problem

$$y'' + a_1(t)y' + a_0(t)y = b(t), \quad y(t_0) = y_0, \quad y'(t_0) = y_1.$$

Remarks:

- Unlike the first order linear ODE where we have an explicit expression for the solution, there is no explicit expression for the solution of second order linear ODE.
Existence and uniqueness of solutions.

Theorem (Variable coefficients)

If the functions \(a, b : (t_1, t_2) \rightarrow \mathbb{R} \) are continuous, the constants \(t_0 \in (t_1, t_2) \) and \(y_0, y_1 \in \mathbb{R} \), then there exists a unique solution \(y : (t_1, t_2) \rightarrow \mathbb{R} \) to the initial value problem

\[
y'' + a_1(t)y' + a_0(t)y = b(t), \quad y(t_0) = y_0, \quad y'(t_0) = y_1.
\]

Remarks:

- Unlike the first order linear ODE where we have an explicit expression for the solution, there is no explicit expression for the solution of second order linear ODE.
- Two integrations must be done to find solutions to second order linear. Therefore, initial value problems with two initial conditions can have a unique solution.
Existence and uniqueness of solutions.

Example
Find the longest interval $I \in \mathbb{R}$ such that there exists a unique solution to the initial value problem

$$(t - 1)y'' - 3ty' + 4y = t(t - 1), \quad y(-2) = 2, \quad y'(-2) = 1.$$
Existence and uniqueness of solutions.

Example
Find the longest interval \(I \in \mathbb{R} \) such that there exists a unique solution to the initial value problem

\[
(t - 1)y'' - 3ty' + 4y = t(t - 1), \quad y(-2) = 2, \quad y'(-2) = 1.
\]

Solution: We first write the equation above in the form given in the Theorem above,
Existence and uniqueness of solutions.

Example

Find the longest interval $I \in \mathbb{R}$ such that there exists a unique solution to the initial value problem

$$(t - 1)y'' - 3ty' + 4y = t(t - 1), \quad y(-2) = 2, \quad y'(-2) = 1.$$

Solution: We first write the equation above in the form given in the Theorem above,

$$y'' - \frac{3t}{t - 1} y' + \frac{4}{t - 1} y = t.$$
Existence and uniqueness of solutions.

Example
Find the longest interval \(I \in \mathbb{R} \) such that there exists a unique solution to the initial value problem
\[
(t - 1)y'' - 3ty' + 4y = t(t - 1), \quad y(-2) = 2, \quad y'(-2) = 1.
\]

Solution: We first write the equation above in the form given in the Theorem above,
\[
y'' - \frac{3t}{t-1}y' + \frac{4}{t-1}y = t.
\]

The intervals where the hypotheses in the Theorem above are satisfied, that is, where the equation coefficients are continuous, are \(I_1 = (-\infty, 1) \) and \(I_2 = (1, \infty) \).
Existence and uniqueness of solutions.

Example
Find the longest interval \(I \in \mathbb{R} \) such that there exists a unique solution to the initial value problem

\[(t - 1)y'' - 3ty' + 4y = t(t - 1), \quad y(-2) = 2, \quad y'(-2) = 1.\]

Solution: We first write the equation above in the form given in the Theorem above,

\[y'' - \frac{3t}{t - 1} y' + \frac{4}{t - 1} y = t.\]

The intervals where the hypotheses in the Theorem above are satisfied, that is, where the equation coefficients are continuous, are \(I_1 = (-\infty, 1) \) and \(I_2 = (1, \infty) \). Since the initial condition belongs to \(I_1 \), the solution domain is

\[I_1 = (-\infty, 1).\]
Existence and uniqueness of solutions.

Remarks:

▶ Every solution of the first order linear equation

\[y' + a(t) y = 0 \]

is given by

\[y(t) = c e^{-A(t)} \]

with

\[A(t) = \int a(s) \, ds. \]

▶ All solutions above are proportional to each other:

\[y_1(t) = c_1 e^{-A(t)} \]
\[y_2(t) = c_2 e^{-A(t)} \]

\[\Rightarrow y_1(t) = c_1 c_2 y_2(t) \]

Remark:

The above statement is not true for solutions of second order, linear, homogeneous equations,

\[y'' + a_1(t) y' + a_0(t) y = 0 \]

Before we prove this statement we need few definitions:

▶ Proportional functions (linearly dependent).

▶ Wronskian of two functions.
Existence and uniqueness of solutions.

Remarks:

- Every solution of the first order linear equation
 \[y' + a(t) y = 0 \]

 is given by \(y(t) = c e^{-A(t)} \),

- All solutions above are proportional to each other:
 \[y_1(t) = c_1 e^{-A(t)} \]
 \[y_2(t) = c_2 e^{-A(t)} \]

 \(y_1(t) = c_1 c_2 y_2(t) \)

Remark:

The above statement is \[\text{not true} \] for solutions of second order, linear, homogeneous equations, \[y'' + a_1(t) y' + a_0(t) y = 0 \].

Before we prove this statement we need few definitions:

- Proportional functions (linearly dependent).
- Wronskian of two functions.
Existence and uniqueness of solutions.

Remarks:

- Every solution of the first order linear equation

\[y' + a(t)\, y = 0 \]

is given by \(y(t) = c\, e^{-A(t)} \), with \(A(t) = \int a(s) \, ds \).
Existence and uniqueness of solutions.

Remarks:

- Every solution of the first order linear equation
 \[y' + a(t) y = 0 \]
 is given by \(y(t) = c \, e^{-A(t)} \), with \(A(t) = \int a(s) \, ds \).

- All solutions above are proportional to each other:
 \[y_1(t) = c_1 \, e^{-A(t)} \],
Existence and uniqueness of solutions.

Remarks:

- Every solution of the first order linear equation

\[y' + a(t) y = 0 \]

is given by

\[y(t) = c e^{-A(t)}, \quad \text{with} \quad A(t) = \int a(s) \, ds. \]

- All solutions above are proportional to each other:

\[y_1(t) = c_1 e^{-A(t)}, \quad y_2(t) = c_2 e^{-A(t)} \]

Remark: The above statement is not true for solutions of second order, linear, homogeneous equations,

\[y'' + a_1(t) y' + a_0(t) y = 0 \]

Before we prove this statement we need few definitions:

- Proportional functions (linearly dependent).
- Wronskian of two functions.
Existence and uniqueness of solutions.

Remarks:

▶ Every solution of the first order linear equation

\[y' + a(t) y = 0 \]

is given by \(y(t) = c e^{-A(t)} \), with \(A(t) = \int a(s) \, ds \).

▶ All solutions above are proportional to each other:

\[y_1(t) = c_1 e^{-A(t)}, \quad y_2(t) = c_2 e^{-A(t)} \Rightarrow y_1(t) = \frac{c_1}{c_2} y_2(t) \]
Existence and uniqueness of solutions.

Remarks:

- Every solution of the first order linear equation
 \[y' + a(t) y = 0 \]
 is given by \(y(t) = c e^{-A(t)}, \) with \(A(t) = \int a(s) \, ds. \)

- All solutions above are proportional to each other:
 \[y_1(t) = c_1 e^{-A(t)}, \quad y_2(t) = c_2 e^{-A(t)} \Rightarrow y_1(t) = \frac{c_1}{c_2} y_2(t) \]

Remark: The above statement is \textit{not true} for solutions of second order, linear, homogeneous equations, \(y'' + a_1(t) y' + a_0(t)y = 0. \)
Existence and uniqueness of solutions.

Remarks:

▶ Every solution of the first order linear equation

\[y' + a(t) y = 0 \]

is given by \(y(t) = c e^{-A(t)} \), with \(A(t) = \int a(s) \, ds \).

▶ All solutions above are proportional to each other:

\[y_1(t) = c_1 e^{-A(t)} , \quad y_2(t) = c_2 e^{-A(t)} \Rightarrow y_1(t) = \frac{c_1}{c_2} y_2(t) \]

Remark: The above statement is not true for solutions of second order, linear, homogeneous equations, \(y'' + a_1(t) y' + a_0(t) y = 0 \). Before we prove this statement we need few definitions:

▶ Proportional functions (linearly dependent).
Existence and uniqueness of solutions.

Remarks:

▶ Every solution of the first order linear equation

\[y' + a(t) y = 0 \]

is given by \(y(t) = c \, e^{-A(t)} \), with \(A(t) = \int a(s) \, ds \).

▶ All solutions above are proportional to each other:

\[y_1(t) = c_1 \, e^{-A(t)}, \quad y_2(t) = c_2 \, e^{-A(t)} \quad \Rightarrow \quad y_1(t) = \frac{c_1}{c_2} \, y_2(t) \]

Remark: The above statement is \textit{not true} for solutions of second order, linear, homogeneous equations, \(y'' + a_1(t) \, y' + a_0(t) \, y = 0 \). Before we prove this statement we need few definitions:

▶ Proportional functions (linearly dependent).

▶ Wronskian of two functions.
Variable coefficients second order linear ODE (Sect. 3.2).

- Review: Second order linear ODE.
- Existence and uniqueness of solutions.
- **Linearly dependent and independent functions.**
- The Wronskian of two functions.
- General and fundamental solutions.
- Abel’s theorem on the Wronskian.
Definition
Two continuous functions $y_1, y_2 : (t_1, t_2) \subset \mathbb{R} \rightarrow \mathbb{R}$ are called *linearly dependent, (ld)*, on the interval (t_1, t_2) iff there exists a constant c such that for all $t \in I$ holds

$$y_1(t) = c y_2(t).$$

The two functions are called *linearly independent, (li)*, on the interval (t_1, t_2) iff they are not linearly dependent.
Linearly dependent and independent functions.

Definition
Two continuous functions $y_1, y_2 : (t_1, t_2) \subset \mathbb{R} \rightarrow \mathbb{R}$ are called \textit{linearly dependent, (ld)}, on the interval (t_1, t_2) iff there exists a constant c such that for all $t \in I$ holds

$$y_1(t) = c y_2(t).$$

The two functions are called \textit{linearly independent, (li)}, on the interval (t_1, t_2) iff they are not linearly dependent.

Remarks:

- $y_1, y_2 : (t_1, t_2) \rightarrow \mathbb{R}$ are ld \iff there exist constants c_1, c_2, not both zero, such that $c_1 y_1(t) + c_2 y_2(t) = 0$ for all $t \in (t_1, t_2)$.
Linearity dependent and independent functions.

Definition
Two continuous functions \(y_1, y_2 : (t_1, t_2) \subset \mathbb{R} \rightarrow \mathbb{R} \) are called
\textit{linearly dependent, (ld)}, on the interval \((t_1, t_2) \) iff there exists a
constant \(c \) such that for all \(t \in I \) holds

\[
y_1(t) = c \, y_2(t).
\]

The two functions are called \textit{linearly independent, (li)}, on the
interval \((t_1, t_2) \) iff they are not linearly dependent.

Remarks:
\begin{itemize}
 \item \(y_1, y_2 : (t_1, t_2) \rightarrow \mathbb{R} \) are ld \iff there exist constants \(c_1, c_2 \), not
 both zero, such that \(c_1 \, y_1(t) + c_2 \, y_2(t) = 0 \) for all \(t \in (t_1, t_2) \).
 \item \(y_1, y_2 : (t_1, t_2) \rightarrow \mathbb{R} \) are li \iff the only constants \(c_1, c_2 \), solutions
 of \(c_1 \, y_1(t) + c_2 \, y_2(t) = 0 \) for all \(t \in (t_1, t_2) \) are \(c_1 = c_2 = 0 \).
\end{itemize}
Linearly dependent and independent functions.

Definition
Two continuous functions \(y_1, y_2 : (t_1, t_2) \subset \mathbb{R} \rightarrow \mathbb{R} \) are called \textit{linearly dependent, (ld)}, on the interval \((t_1, t_2)\) iff there exists a constant \(c \) such that for all \(t \in I \) holds
\[
y_1(t) = c \, y_2(t).
\]

The two functions are called \textit{linearly independent, (li)}, on the interval \((t_1, t_2)\) iff they are not linearly dependent.

Remarks:
\begin{itemize}
 \item \(y_1, y_2 : (t_1, t_2) \rightarrow \mathbb{R} \) are ld \(\iff \) there exist constants \(c_1, c_2 \), not both zero, such that \(c_1 \, y_1(t) + c_2 \, y_2(t) = 0 \) for all \(t \in (t_1, t_2) \).
 \item \(y_1, y_2 : (t_1, t_2) \rightarrow \mathbb{R} \) are li \(\iff \) the only constants \(c_1, c_2 \), solutions of \(c_1 \, y_1(t) + c_2 \, y_2(t) = 0 \) for all \(t \in (t_1, t_2) \) are \(c_1 = c_2 = 0 \).
 \item These definitions are not given in the textbook.
\end{itemize}
Example

(a) Show that \(y_1(t) = \sin(t) \), \(y_2(t) = 2 \sin(t) \) are ld.

(b) Show that \(y_1(t) = \sin(t) \), \(y_2(t) = t \sin(t) \) are li.
Linearly dependent and independent functions.

Example

(a) Show that $y_1(t) = \sin(t)$, $y_2(t) = 2\sin(t)$ are ld.
(b) Show that $y_1(t) = \sin(t)$, $y_2(t) = t\sin(t)$ are li.

Solution:
Case (a): Trivial. $y_2 = 2y_1$.
Linearly dependent and independent functions.

Example

(a) Show that $y_1(t) = \sin(t)$, $y_2(t) = 2\sin(t)$ are ld.
(b) Show that $y_1(t) = \sin(t)$, $y_2(t) = t\sin(t)$ are li.

Solution:
Case (a): Trivial. $y_2 = 2y_1$.
Case (b): Find constants c_1, c_2 such that for all $t \in \mathbb{R}$ holds

$$c_1 \sin(t) + c_2 t \sin(t) = 0$$
Linearly dependent and independent functions.

Example

(a) Show that \(y_1(t) = \sin(t) \), \(y_2(t) = 2\sin(t) \) are ld.

(b) Show that \(y_1(t) = \sin(t) \), \(y_2(t) = t\sin(t) \) are li.

Solution:
Case (a): Trivial. \(y_2 = 2y_1 \).

Case (b): Find constants \(c_1 \), \(c_2 \) such that for all \(t \in \mathbb{R} \) holds

\[
c_1 \sin(t) + c_2 t \sin(t) = 0 \iff (c_1 + c_2 t) \sin(t) = 0.
\]
Linearly dependent and independent functions.

Example

(a) Show that $y_1(t) = \sin(t)$, $y_2(t) = 2\sin(t)$ are ld.
(b) Show that $y_1(t) = \sin(t)$, $y_2(t) = t\sin(t)$ are li.

Solution:
Case (a): Trivial. $y_2 = 2y_1$.

Case (b): Find constants c_1, c_2 such that for all $t \in \mathbb{R}$ holds

$$c_1 \sin(t) + c_2 t \sin(t) = 0 \iff (c_1 + c_2 t) \sin(t) = 0.$$

Evaluating at $t = \pi/2$ and $t = 3\pi/2$ we obtain
Linearly dependent and independent functions.

Example

(a) Show that $y_1(t) = \sin(t)$, $y_2(t) = 2 \sin(t)$ are ld.
(b) Show that $y_1(t) = \sin(t)$, $y_2(t) = t \sin(t)$ are li.

Solution:
Case (a): Trivial. $y_2 = 2y_1$.

Case (b): Find constants c_1, c_2 such that for all $t \in \mathbb{R}$ holds

$$c_1 \sin(t) + c_2 t \sin(t) = 0 \iff (c_1 + c_2 t) \sin(t) = 0.$$

Evaluating at $t = \pi/2$ and $t = 3\pi/2$ we obtain

$$c_1 + \frac{\pi}{2} c_2 = 0,$$
Linearly dependent and independent functions.

Example

(a) Show that $y_1(t) = \sin(t)$, $y_2(t) = 2\sin(t)$ are ld.
(b) Show that $y_1(t) = \sin(t)$, $y_2(t) = t\sin(t)$ are li.

Solution:
Case (a): Trivial. $y_2 = 2y_1$.

Case (b): Find constants c_1, c_2 such that for all $t \in \mathbb{R}$ holds

$$ c_1 \sin(t) + c_2 t \sin(t) = 0 \iff (c_1 + c_2 t) \sin(t) = 0. $$

Evaluating at $t = \pi/2$ and $t = 3\pi/2$ we obtain

$$ c_1 + \frac{\pi}{2} c_2 = 0, \quad c_1 + \frac{3\pi}{2} c_2 = 0. $$
Linearly dependent and independent functions.

Example

(a) Show that \(y_1(t) = \sin(t), \ y_2(t) = 2\sin(t) \) are ld.
(b) Show that \(y_1(t) = \sin(t), \ y_2(t) = t\sin(t) \) are li.

Solution:

Case (a): Trivial. \(y_2 = 2y_1 \).

Case (b): Find constants \(c_1, c_2 \) such that for all \(t \in \mathbb{R} \) holds

\[
c_1 \sin(t) + c_2 t \sin(t) = 0 \iff (c_1 + c_2 t) \sin(t) = 0.
\]

Evaluating at \(t = \pi/2 \) and \(t = 3\pi/2 \) we obtain

\[
c_1 + \frac{\pi}{2} c_2 = 0, \quad c_1 + \frac{3\pi}{2} c_2 = 0 \quad \Rightarrow \quad c_1 = 0, \quad c_2 = 0.
\]
Linearly dependent and independent functions.

Example

(a) Show that $y_1(t) = \sin(t)$, $y_2(t) = 2\sin(t)$ are ld.
(b) Show that $y_1(t) = \sin(t)$, $y_2(t) = t\sin(t)$ are li.

Solution:
Case (a): Trivial. $y_2 = 2y_1$.

Case (b): Find constants c_1, c_2 such that for all $t \in \mathbb{R}$ holds
$$c_1 \sin(t) + c_2 t \sin(t) = 0 \iff (c_1 + c_2 t) \sin(t) = 0.$$
Evaluating at $t = \pi/2$ and $t = 3\pi/2$ we obtain
$$c_1 + \frac{\pi}{2} c_2 = 0, \quad c_1 + \frac{3\pi}{2} c_2 = 0 \quad \Rightarrow \quad c_1 = 0, \quad c_2 = 0.$$
We conclude: The functions y_1 and y_2 are li.
Variable coefficients second order linear ODE (Sect. 3.2).

- Review: Second order linear ODE.
- Existence and uniqueness of solutions.
- Linearly dependent and independent functions.
- The Wronskian of two functions.
- General and fundamental solutions.
- Abel’s theorem on the Wronskian.
The Wronskian of two functions.

Remark: The Wronskian is a function that determines whether two functions are ld or li.
The Wronskian of two functions.

Remark: The Wronskian is a function that determines whether two functions are ld or li.

Definition
The *Wronskian* of functions $y_1, y_2 : (t_1, t_2) \to \mathbb{R}$ is the function

$$W_{y_1y_2}(t) = y_1(t)y_2'(t) - y_1'(t)y_2(t).$$
The Wronskian of two functions.

Remark: The Wronskian is a function that determines whether two functions are ld or li.

Definition
The *Wronskian* of functions $y_1, y_2 : (t_1, t_2) \to \mathbb{R}$ is the function

$$W_{y_1y_2}(t) = y_1(t)y'_2(t) - y'_1(t)y_2(t).$$

Remark:

- If $A(t) = \begin{bmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{bmatrix}$,
The Wronskian of two functions.

Remark: The Wronskian is a function that determines whether two functions are ld or li.

Definition
The *Wronskian* of functions $y_1, y_2 : (t_1, t_2) \rightarrow \mathbb{R}$ is the function

$$W_{y_1y_2}(t) = y_1(t)y_2'(t) - y_1'(t)y_2(t).$$

Remark:
- If $A(t) = \begin{bmatrix} y_1 & y_2 \\ y_1' & y_2' \end{bmatrix}$, then $W_{y_1y_2}(t) = \text{det}(A(t))$.
The Wronskian of two functions.

Remark: The Wronskian is a function that determines whether two functions are ld or li.

Definition
The *Wronskian* of functions $y_1, y_2 : (t_1, t_2) \to \mathbb{R}$ is the function

$$W_{y_1y_2}(t) = y_1(t)y'_2(t) - y'_1(t)y_2(t).$$

Remark:

- If $A(t) = \begin{bmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{bmatrix}$, then $W_{y_1y_2}(t) = \det(A(t))$.

- An alternative notation is: $W_{y_1y_2} = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix}$.
The Wronskian of two functions.

Example
Find the Wronskian of the functions:
(a) \(y_1(t) = \sin(t) \) and \(y_2(t) = 2\sin(t) \). (Id)
(b) \(y_1(t) = \sin(t) \) and \(y_2(t) = t\sin(t) \). (li)
The Wronskian of two functions.

Example
Find the Wronskian of the functions:
(a) \(y_1(t) = \sin(t) \) and \(y_2(t) = 2\sin(t) \). (ld)
(b) \(y_1(t) = \sin(t) \) and \(y_2(t) = t\sin(t) \). (li)

Solution:
Case (a): \(W_{y_1y_2} = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} \)

\[W_{y_1y_2}(t) = \sin(t) \left[\sin(t) + t\cos(t) \right] - \cos(t) \cdot t\sin(t) \]

We obtain \(W_{y_1y_2}(t) = \sin^2(t) \). \(\sqsubset \)
The Wronskian of two functions.

Example

Find the Wronskian of the functions:

(a) \(y_1(t) = \sin(t) \) and \(y_2(t) = 2 \sin(t) \). (ld)
(b) \(y_1(t) = \sin(t) \) and \(y_2(t) = t \sin(t) \). (li)

Solution:

Case (a): \(W_{y_1y_2} = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} \sin(t) & 2 \sin(t) \\ \cos(t) & 2 \cos(t) \end{vmatrix} \).

Therefore,
\[
W_{y_1y_2}(t) = \sin(t) \cdot 2 \cos(t) - \cos(t) \cdot 2 \sin(t) = 0.
\]

We obtain
\[
W_{y_1y_2}(t) = \sin^2(t).
\]

\(\triangleq \)
The Wronskian of two functions.

Example
Find the Wronskian of the functions:
(a) \(y_1(t) = \sin(t) \) and \(y_2(t) = 2 \sin(t) \). (ld)
(b) \(y_1(t) = \sin(t) \) and \(y_2(t) = t \sin(t) \). (li)

Solution:
Case (a):
\[
W_{y_1y_2} = \begin{vmatrix}
 y_1 & y_2 \\
 y_1' & y_2'
\end{vmatrix}
= \begin{vmatrix}
 \sin(t) & 2 \sin(t) \\
 \cos(t) & 2 \cos(t)
\end{vmatrix}.
\]
Therefore,
\[
W_{y_1y_2}(t) = \sin(t)2 \cos(t) - \cos(t)2 \sin(t)
\]
The Wronskian of two functions.

Example

Find the Wronskian of the functions:

(a) \(y_1(t) = \sin(t) \) and \(y_2(t) = 2\sin(t) \). (ld)
(b) \(y_1(t) = \sin(t) \) and \(y_2(t) = t\sin(t) \). (li)

Solution:

Case (a):

\[
W_{y_1y_2} = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} \sin(t) & 2\sin(t) \\ \cos(t) & 2\cos(t) \end{vmatrix}.
\]

Therefore,

\[
W_{y_1y_2}(t) = \sin(t)2\cos(t) - \cos(t)2\sin(t) \quad \Rightarrow \quad W_{y_1y_2}(t) = 0.
\]
The Wronskian of two functions.

Example
Find the Wronskian of the functions:

(a) \(y_1(t) = \sin(t) \) and \(y_2(t) = 2\sin(t) \). (Id)

(b) \(y_1(t) = \sin(t) \) and \(y_2(t) = t\sin(t) \). (li)

Solution:

Case (a):
\[
W_{y_1y_2} = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} \sin(t) & 2\sin(t) \\ \cos(t) & 2\cos(t) \end{vmatrix}.
\]

Therefore,
\[
W_{y_1y_2}(t) = \sin(t)2\cos(t) - \cos(t)2\sin(t) \Rightarrow W_{y_1y_2}(t) = 0.
\]

Case (b):
\[
W_{y_1y_2} = \begin{vmatrix} \sin(t) & t\sin(t) \\ \cos(t) & \sin(t) + t\cos(t) \end{vmatrix}.
\]
The Wronskian of two functions.

Example

Find the Wronskian of the functions:

(a) \(y_1(t) = \sin(t) \) and \(y_2(t) = 2 \sin(t) \).
(b) \(y_1(t) = \sin(t) \) and \(y_2(t) = t \sin(t) \).

Solution:

Case (a): \(W_{y_1y_2} = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} \sin(t) & 2 \sin(t) \\ \cos(t) & 2 \cos(t) \end{vmatrix} \). Therefore,

\[
W_{y_1y_2}(t) = \sin(t)2 \cos(t) - \cos(t)2 \sin(t) \Rightarrow W_{y_1y_2}(t) = 0.
\]

Case (b): \(W_{y_1y_2} = \begin{vmatrix} \sin(t) & t \sin(t) \\ \cos(t) & \sin(t) + t \cos(t) \end{vmatrix} \). Therefore,

\[
W_{y_1y_2}(t) = \sin(t)\left[\sin(t) + t \cos(t)\right] - \cos(t)t \sin(t).
\]
The Wronskian of two functions.

Example

Find the Wronskian of the functions:
(a) \(y_1(t) = \sin(t) \) and \(y_2(t) = 2 \sin(t) \). (ld)
(b) \(y_1(t) = \sin(t) \) and \(y_2(t) = t \sin(t) \). (li)

Solution:
Case (a): \(W_{y_1y_2} = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} \sin(t) & 2 \sin(t) \\ \cos(t) & 2 \cos(t) \end{vmatrix} \). Therefore,
\[
W_{y_1y_2}(t) = \sin(t)2 \cos(t) - \cos(t)2 \sin(t) \Rightarrow W_{y_1y_2}(t) = 0.
\]

Case (b): \(W_{y_1y_2} = \begin{vmatrix} \sin(t) & t \sin(t) \\ \cos(t) & \sin(t) + t \cos(t) \end{vmatrix} \). Therefore,
\[
W_{y_1y_2}(t) = \sin(t)[\sin(t) + t \cos(t)] - \cos(t)t \sin(t).
\]
We obtain \(W_{y_1y_2}(t) = \sin^2(t) \). \(\triangle \)
The Wronskian of two functions.

Remark: The Wronskian determines whether two functions are linearly dependent or independent.

Theorem (Wronskian and linearly dependence)

The continuously differentiable functions $y_1, y_2 : (t_1, t_2) \to \mathbb{R}$ are linearly dependent iff $W_{y_1 y_2}(t) = 0$ for all $t \in (t_1, t_2)$.

Remark: Importance of the Wronskian:

▶ Sometimes it is not simple to decide whether two functions are proportional to each other.

▶ The Wronskian is useful to study properties of solutions to ODE without having the explicit expressions of these solutions. (See Abel's Theorem later on.)
The Wronskian of two functions.

Remark: The Wronskian determines whether two functions are linearly dependent or independent.

Theorem (Wronskian and linearly dependence)

The continuously differentiable functions $y_1, y_2 : (t_1, t_2) \to \mathbb{R}$ are linearly dependent iff $W_{y_1 y_2}(t) = 0$ for all $t \in (t_1, t_2)$.
The Wronskian of two functions.

Remark: The Wronskian determines whether two functions are linearly dependent or independent.

Theorem (Wronskian and linearly dependence)

The continuously differentiable functions \(y_1, y_2 : (t_1, t_2) \to \mathbb{R} \) are linearly dependent iff \(W_{y_1y_2}(t) = 0 \) for all \(t \in (t_1, t_2) \).

Remark: Importance of the Wronskian:

- Sometimes it is not simple to decide whether two functions are proportional to each other.
The Wronskian of two functions.

Remark: The Wronskian determines whether two functions are linearly dependent or independent.

Theorem (Wronskian and linearly dependence)

The continuously differentiable functions \(y_1, y_2 : (t_1, t_2) \to \mathbb{R} \) are linearly dependent iff \(W_{y_1y_2}(t) = 0 \) for all \(t \in (t_1, t_2) \).

Remark: Importance of the Wronskian:

- Sometimes it is not simple to decide whether two functions are proportional to each other.
- The Wronskian is useful to study properties of solutions to ODE without having the explicit expressions of these solutions. (See Abel’s Theorem later on.)
The Wronskian of two functions.

Example
Show whether the following two functions form a l.d. or l.i. set:

\[y_1(t) = \cos(2t) - 2\cos^2(t), \quad y_2(t) = \cos(2t) + 2\sin^2(t). \]
The Wronskian of two functions.

Example
Show whether the following two functions form a l.d. or l.i. set:

\[y_1(t) = \cos(2t) - 2 \cos^2(t), \quad y_2(t) = \cos(2t) + 2 \sin^2(t). \]

Solution: Compute their Wronskian:

\[W_{y_1y_2}(t) = y_1 y_2' - y_1' y_2. \]
The Wronskian of two functions.

Example
Show whether the following two functions form a l.d. or l.i. set:

\[y_1(t) = \cos(2t) - 2 \cos^2(t), \quad y_2(t) = \cos(2t) + 2 \sin^2(t). \]

Solution: Compute their Wronskian:

\[W_{y_1y_2}(t) = y_1 y'_2 - y'_1 y_2. \]

\[W_{y_1y_2}(t) = \left[\cos(2t) - 2 \cos^2(t) \right] \left[-2 \sin(2t) + 4 \sin(t) \cos(t) \right] \]

\[- \left[-2 \sin(2t) + 4 \sin(t) \cos(t) \right] \left[\cos(2t) + 2 \sin^2(t) \right]. \]
The Wronskian of two functions.

Example
Show whether the following two functions form a l.d. or l.i. set:

\[y_1(t) = \cos(2t) - 2 \cos^2(t), \quad y_2(t) = \cos(2t) + 2 \sin^2(t). \]

Solution: Compute their Wronskian:

\[
W_{y_1y_2}(t) = y_1 y'_2 - y'_1 y_2.
\]

\[
W_{y_1y_2}(t) = \left[\cos(2t) - 2 \cos^2(t) \right] \left[-2 \sin(2t) + 4 \sin(t) \cos(t) \right]
- \left[-2 \sin(2t) + 4 \sin(t) \cos(t) \right] \left[\cos(2t) + 2 \sin^2(t) \right].
\]

\[\sin(2t) = 2 \sin(t) \cos(t) \]
The Wronskian of two functions.

Example
Show whether the following two functions form a l.d. or l.i. set:

\[y_1(t) = \cos(2t) - 2 \cos^2(t), \quad y_2(t) = \cos(2t) + 2 \sin^2(t). \]

Solution: Compute their Wronskian:

\[W_{y_1 y_2}(t) = y_1 y_2' - y_1' y_2. \]

\[W_{y_1 y_2}(t) = \left[\cos(2t) - 2 \cos^2(t) \right] \left[-2 \sin(2t) + 4 \sin(t) \cos(t) \right] \]
\[- \left[-2 \sin(2t) + 4 \sin(t) \cos(t) \right] \left[\cos(2t) + 2 \sin^2(t) \right]. \]

\[\sin(2t) = 2 \sin(t) \cos(t) \Rightarrow \left[-2 \sin(2t) + 4 \sin(t) \cos(t) \right] = 0. \]
The Wronskian of two functions.

Example
Show whether the following two functions form a l.d. or l.i. set:

\[y_1(t) = \cos(2t) - 2\cos^2(t), \quad y_2(t) = \cos(2t) + 2\sin^2(t). \]

Solution: Compute their Wronskian:

\[W_{y_1y_2}(t) = y_1 y_2' - y_1' y_2. \]

\[
W_{y_1y_2}(t) = \left[\cos(2t) - 2\cos^2(t) \right] \left[-2\sin(2t) + 4\sin(t)\cos(t) \right]
- \left[-2\sin(2t) + 4\sin(t)\cos(t) \right] \left[\cos(2t) + 2\sin^2(t) \right].
\]

\[\sin(2t) = 2\sin(t)\cos(t) \Rightarrow \left[-2\sin(2t) + 4\sin(t)\cos(t) \right] = 0. \]

We conclude \(W_{y_1y_2}(t) = 0 \), so the functions \(y_1 \) and \(y_2 \) are l.d. \(\triangle \)
The Wronskian of two functions.

Theorem (Variable coefficients)

- If \(a_1, a_0, b : (t_1, t_2) \to \mathbb{R} \) are continuous, then there exist two linearly independent solutions \(y_1, y_2 : (t_1, t_2) \to \mathbb{R} \) to the equation

\[
y'' + a_1(t)y' + a_0(t)y = b(t). \tag{1}
\]
The Wronskian of two functions.

Theorem (Variable coefficients)

- If a_1, a_0, $b : (t_1, t_2) \to \mathbb{R}$ are continuous, then there exist two linearly independent solutions $y_1, y_2 : (t_1, t_2) \to \mathbb{R}$ to the equation

$$y'' + a_1(t)y' + a_0(t)y = b(t). \quad (1)$$

- Every other solution y of Eq. (1) can be decomposed as

$$y(t) = c_1 y_1(t) + c_2 y_2(t)$$

for appropriate constants c_1, c_2.
The Wronskian of two functions.

Theorem (Variable coefficients)

- If $a_1, a_0, b : (t_1, t_2) \to \mathbb{R}$ are continuous, then there exist two linearly independent solutions $y_1, y_2 : (t_1, t_2) \to \mathbb{R}$ to the equation
 \[y'' + a_1(t)y' + a_0(t)y = b(t). \]
 (1)

- Every other solution y of Eq. (1) can be decomposed as
 \[y(t) = c_1 y_1(t) + c_2 y_2(t) \]
 for appropriate constants c_1, c_2.

- For every constant $t_0 \in (t_1, t_2)$ and $y_0, y_1 \in \mathbb{R}$, there exists a unique solution $y : (t_1, t_2) \to \mathbb{R}$ to the initial value problem given by Eq. (1) with the initial conditions
 \[y(t_0) = y_0, \quad y'(t_0) = y_1. \]
Variable coefficients second order linear ODE (Sect. 3.2).

- Review: Second order linear ODE.
- Existence and uniqueness of solutions.
- Linearly dependent and independent functions.
- The Wronskian of two functions.
- **General and fundamental solutions.**
- Abel’s theorem on the Wronskian.
General and fundamental solutions.

Remark: The Theorem above justifies the following definitions.
General and fundamental solutions.

Remark: The Theorem above justifies the following definitions.

Definition
Two solutions \(y_1, y_2 \) of the homogeneous equation

\[
y'' + a_1(t)y' + a_0(t)y = 0,
\]

are called \textit{fundamental solutions} iff the functions \(y_1, y_2 \) are linearly independent, that is, iff \(W_{y_1y_2} \neq 0 \).
General and fundamental solutions.

Remark: The Theorem above justifies the following definitions.

Definition
Two solutions \(y_1, y_2 \) of the homogeneous equation

\[
y'' + a_1(t)y' + a_0(t)y = 0,
\]

are called **fundamental solutions** iff the functions \(y_1, y_2 \) are linearly independent, that is, iff \(W_{y_1y_2} \neq 0 \).

Definition
Given any two fundamental solutions \(y_1, y_2 \), and arbitrary constants \(c_1, c_2 \), the function

\[
y(t) = c_1 y_1(t) + c_2 y_2(t)
\]

is called the **general solution** of Eq. (1).
Example
Show that $y_1 = \sqrt{t}$ and $y_2 = 1/t$ are fundamental solutions of

$$2t^2 y'' + 3t y' - y = 0.$$
General and fundamental solutions.

Example
Show that \(y_1 = \sqrt{t} \) and \(y_2 = 1/t \) are fundamental solutions of

\[
2t^2 y'' + 3t y' - y = 0.
\]

Solution: First show that \(y_1 \) is a solution:

\[
y_1 = t^{1/2},
\]
Example

Show that $y_1 = \sqrt{t}$ and $y_2 = 1/t$ are fundamental solutions of

$$2 t^2 y'' + 3 t y' - y = 0.$$

Solution: First show that y_1 is a solution:

$$y_1 = t^{1/2}, \quad y'_1 = \frac{1}{2} t^{-1/2},$$
General and fundamental solutions.

Example
Show that $y_1 = \sqrt{t}$ and $y_2 = 1/t$ are fundamental solutions of

$$2t^2 y'' + 3t y' - y = 0.$$

Solution: First show that y_1 is a solution:

$$y_1 = t^{1/2}, \quad y_1' = \frac{1}{2} t^{-1/2}, \quad y_1'' = -\frac{1}{4} t^{-3/2},$$

Now show that y_2 is a solution:

$$y_2 = t^{-1}, \quad y_2' = -t^{-2}, \quad y_2'' = 2t^{-3}.$$
General and fundamental solutions.

Example
Show that $y_1 = \sqrt{t}$ and $y_2 = 1/t$ are fundamental solutions of

$$2t^2 \, y'' + 3t \, y' - y = 0.$$

Solution: First show that y_1 is a solution:

$$y_1 = t^{1/2}, \quad y_1' = \frac{1}{2} \, t^{-1/2}, \quad y_1'' = -\frac{1}{4} \, t^{-3/2},$$

$$2t^2 \left(-\frac{1}{4} \, t^{-3/2} \right) + 3t \left(\frac{1}{2} \, t^{-1/2} \right) - t^{1/2}$$
General and fundamental solutions.

Example

Show that $y_1 = \sqrt{t}$ and $y_2 = 1/t$ are fundamental solutions of

$$2t^2 y'' + 3t y' - y = 0.$$

Solution: First show that y_1 is a solution:

$$y_1 = t^{1/2}, \quad y'_1 = \frac{1}{2} t^{-1/2}, \quad y''_1 = -\frac{1}{4} t^{-3/2},$$

$$2t^2 \left(-\frac{1}{4} t^{-3/2} \right) + 3t \left(\frac{1}{2} t^{-1/2} \right) - t^{1/2} = -\frac{1}{2} t^{1/2} + \frac{3}{2} t^{1/2} - t^{1/2} = 0.$$
General and fundamental solutions.

Example

Show that $y_1 = \sqrt{t}$ and $y_2 = 1/t$ are fundamental solutions of

$$2t^2 y'' + 3t y' - y = 0.$$

Solution: First show that y_1 is a solution:

$$y_1 = t^{1/2}, \quad y_1' = \frac{1}{2} t^{-1/2}, \quad y_1'' = -\frac{1}{4} t^{-3/2},$$

$$2t^2 \left(-\frac{1}{4} t^{-3/2} \right) + 3t \left(\frac{1}{2} t^{-1/2} \right) - t^{1/2} = -\frac{1}{2} t^{1/2} + 3 \cdot \frac{1}{2} t^{1/2} - t^{1/2} = 0.$$

Now show that y_2 is a solution:

$$y_2 = t^{-1},$$
General and fundamental solutions.

Example

Show that \(y_1 = \sqrt{t} \) and \(y_2 = 1/t \) are fundamental solutions of

\[
2t^2 y'' + 3t y' - y = 0.
\]

Solution: First show that \(y_1 \) is a solution:

\[
y_1 = t^{1/2}, \quad y_1' = \frac{1}{2} t^{-1/2}, \quad y_1'' = -\frac{1}{4} t^{-3/2},
\]

\[
2t^2 \left(-\frac{1}{4} t^{-3/2}\right) + 3t \left(\frac{1}{2} t^{-1/2}\right) - t^{1/2} = -\frac{1}{2} t^{1/2} + \frac{3}{2} t^{1/2} - t^{1/2} = 0.
\]

Now show that \(y_2 \) is a solution:

\[
y_2 = t^{-1}, \quad y_2' = -t^{-2},
\]
General and fundamental solutions.

Example
Show that $y_1 = \sqrt{t}$ and $y_2 = 1/t$ are fundamental solutions of

$$2t^2 y'' + 3t y' - y = 0.$$

Solution: First show that y_1 is a solution:

$$y_1 = t^{1/2}, \quad y_1' = \frac{1}{2} t^{-1/2}, \quad y_1'' = -\frac{1}{4} t^{-3/2},$$

$$2t^2 \left(-\frac{1}{4} t^{-3/2}\right) + 3t \left(\frac{1}{2} t^{-1/2}\right) - t^{1/2} = -\frac{1}{2} t^{1/2} + \frac{3}{2} t^{1/2} - t^{1/2} = 0.$$

Now show that y_2 is a solution:

$$y_2 = t^{-1}, \quad y_2' = -t^{-2}, \quad y_2'' = 2t^{-3},$$
General and fundamental solutions.

Example

Show that $y_1 = \sqrt{t}$ and $y_2 = 1/t$ are fundamental solutions of

$$2t^2 y'' + 3t y' - y = 0.$$

Solution: First show that y_1 is a solution:

$$y_1 = t^{1/2}, \quad y_1' = \frac{1}{2} t^{-1/2}, \quad y_1'' = -\frac{1}{4} t^{-3/2},$$

$$2t^2 \left(-\frac{1}{4} t^{-3/2}\right) + 3t \left(\frac{1}{2} t^{-1/2}\right) - t^{1/2} = -\frac{1}{2} t^{1/2} + \frac{3}{2} t^{1/2} - t^{1/2} = 0.$$

Now show that y_2 is a solution:

$$y_2 = t^{-1}, \quad y_2' = -t^{-2}, \quad y_2'' = 2t^{-3},$$

$$2t^2 \left(2t^{-3}\right) + 3t \left(-t^{-2}\right) - t^{-1}$$
General and fundamental solutions.

Example
Show that $y_1 = \sqrt{t}$ and $y_2 = 1/t$ are fundamental solutions of

$$2t^2 y'' + 3t y' - y = 0.$$

Solution: First show that y_1 is a solution:

$$y_1 = t^{1/2}, \quad y'_1 = \frac{1}{2} t^{-1/2}, \quad y''_1 = -\frac{1}{4} t^{-3/2},$$

$$2t^2 \left(-\frac{1}{4} t^{-3/2} \right) + 3t \left(\frac{1}{2} t^{-1/2} \right) - t^{1/2} = -\frac{1}{2} t^{1/2} + \frac{3}{2} t^{1/2} - t^{1/2} = 0.$$

Now show that y_2 is a solution:

$$y_2 = t^{-1}, \quad y'_2 = -t^{-2}, \quad y''_2 = 2t^{-3},$$

$$2t^2 \left(2t^{-3} \right) + 3t \left(-t^{-2} \right) - t^{-1} = 4t^{-1} - 3t^{-1} - t^{-1} = 0.$$
General and fundamental solutions.

Example
Show that $y_1 = \sqrt{t}$ and $y_2 = 1/t$ are fundamental solutions of

$$2t^2 y'' + 3t y' - y = 0.$$

Solution: We show that y_1, y_2 are linearly independent.
General and fundamental solutions.

Example
Show that \(y_1 = \sqrt{t} \) and \(y_2 = 1/t \) are fundamental solutions of

\[
2t^2 y'' + 3t y' - y = 0.
\]

Solution: We show that \(y_1, y_2 \) are linearly independent.

\[
\mathcal{W}_{y_1y_2}(t) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix}
\]
Example
Show that \(y_1 = \sqrt{t} \) and \(y_2 = 1/t \) are fundamental solutions of

\[
2t^2 y'' + 3t y' - y = 0.
\]

Solution: We show that \(y_1, y_2 \) are linearly independent.

\[
W_{y_1y_2}(t) = \begin{vmatrix}
 y_1 & y_2 \\
 y_1' & y_2'
\end{vmatrix} = \begin{vmatrix}
 t^{1/2} & t^{-1} \\
 \frac{1}{2} t^{-1/2} & -t^{-2}
\end{vmatrix}.
\]
General and fundamental solutions.

Example
Show that \(y_1 = \sqrt{t} \) and \(y_2 = 1/t \) are fundamental solutions of

\[
2t^2 y'' + 3t y' - y = 0.
\]

Solution: We show that \(y_1, y_2 \) are linearly independent.

\[
W_{y_1y_2}(t) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} t^{1/2} & t^{-1} \\ \frac{1}{2} t^{-1/2} & -t^{-2} \end{vmatrix}.
\]

\[
W_{y_1y_2}(t) = -t^{1/2} t^{-2} - \frac{1}{2} t^{-1/2} t^{-1}
\]
General and fundamental solutions.

Example
Show that \(y_1 = \sqrt{t} \) and \(y_2 = 1/t \) are fundamental solutions of
\[
2t^2 y'' + 3t y' - y = 0.
\]

Solution: We show that \(y_1, y_2 \) are linearly independent.

\[
W_{y_1y_2}(t) = \begin{vmatrix}
 y_1 & y_2 \\
 y'_1 & y'_2 \\
\end{vmatrix}
= \begin{vmatrix}
 t^{1/2} & t^{-1} \\
 \frac{1}{2} t^{-1/2} & -t^{-2} \\
\end{vmatrix}.
\]

\[
W_{y_1y_2}(t) = -t^{1/2} t^{-2} - \frac{1}{2} t^{-1/2} t^{-1} = -t^{-3/2} - \frac{1}{2} t^{-3/2}.
\]
General and fundamental solutions.

Example
Show that \(y_1 = \sqrt{t} \) and \(y_2 = 1/t \) are fundamental solutions of

\[
2t^2 y'' + 3t y' - y = 0.
\]

Solution: We show that \(y_1, y_2 \) are linearly independent.

\[
W_{y_1y_2}(t) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} t^{1/2} & t^{-1} \\ \frac{1}{2} t^{-1/2} & -t^{-2} \end{vmatrix}.
\]

\[
W_{y_1y_2}(t) = -t^{1/2} t^{-2} - \frac{1}{2} t^{-1/2} t^{-1} = -t^{-3/2} - \frac{1}{2} t^{-3/2}.
\]

\[
W_{y_1y_2}(t) = -\frac{3}{3} t^{-3/2}.
\]
General and fundamental solutions.

Example
Show that $y_1 = \sqrt{t}$ and $y_2 = 1/t$ are fundamental solutions of

$$2t^2 y'' + 3t y' - y = 0.$$

Solution: We show that y_1, y_2 are linearly independent.

$$W_{y_1y_2}(t) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} t^{1/2} & t^{-1} \\ \frac{1}{2} t^{-1/2} & -t^{-2} \end{vmatrix}.$$

$$W_{y_1y_2}(t) = -t^{1/2} t^{-2} - \frac{1}{2} t^{-1/2} t^{-1} = -t^{-3/2} - \frac{1}{2} t^{-3/2}$$

$$W_{y_1y_2}(t) = -\frac{3}{3} t^{-3/2} \Rightarrow y_1, y_2 \text{ li.} \triangle$$
Variable coefficients second order linear ODE (Sect. 3.2).

- Review: Second order linear ODE.
- Existence and uniqueness of solutions.
- Linearly dependent and independent functions.
- The Wronskian of two functions.
- General and fundamental solutions.
- **Abel’s theorem on the Wronskian.**
Abel’s theorem on the Wronskian.

Theorem (Abel)

If \(a_1, a_0 : (t_1, t_2) \rightarrow \mathbb{R} \) are continuous functions and \(y_1, y_2 \) are continuously differentiable solutions of the equation

\[
y'' + a_1(t) y' + a_0(t) y = 0,
\]

then the Wronskian \(W_{y_1 y_2} \) is a solution of the equation

\[
W'_{y_1 y_2}(t) + a_1(t) W_{y_1 y_2}(t) = 0.
\]

Therefore, for any \(t_0 \in (t_1, t_2) \), the Wronskian \(W_{y_1 y_2} \) is given by

\[
W_{y_1 y_2}(t) = W_{y_1 y_2}(t_0) e^{A(t)} \quad A(t) = \int_{t_0}^{t} a_1(s) \, ds.
\]
Abel’s theorem on the Wronskian.

Theorem (Abel)

If \(a_1, a_0 : (t_1, t_2) \rightarrow \mathbb{R} \) are continuous functions and \(y_1, y_2 \) are continuously differentiable solutions of the equation

\[
y'' + a_1(t) y' + a_0(t) y = 0,
\]

then the Wronskian \(W_{y_1y_2} \) is a solution of the equation

\[
W'_{y_1y_2}(t) + a_1(t) W_{y_1y_2}(t) = 0.
\]

Therefore, for any \(t_0 \in (t_1, t_2) \), the Wronskian \(W_{y_1y_2} \) is given by

\[
W_{y_1y_2}(t) = W_{y_1y_2}(t_0) e^{A(t)} \quad A(t) = \int_{t_0}^{t} a_1(s) \, ds.
\]

Remarks: If the Wronskian of two solutions vanishes at the initial time, then it vanishes at all times.
Abel’s theorem on the Wronskian.

Example

Find the Wronskian of two solutions of the equation

\[t^2 y'' - t(t + 2) y' + (t + 2) y = 0, \quad t > 0. \]
Abel’s theorem on the Wronskian.

Example
Find the Wronskian of two solutions of the equation
\[t^2 y'' - t(t + 2) y' + (t + 2) y = 0, \quad t > 0. \]

Solution: Write the equation as in Abel’s Theorem,
\[y'' - \left(\frac{2}{t} + 1 \right) y' + \left(\frac{2}{t^2} + \frac{1}{t} \right) y = 0. \]
Abel’s theorem on the Wronskian.

Example

Find the Wronskian of two solutions of the equation

\[t^2 y'' - t(t + 2) y' + (t + 2) y = 0, \quad t > 0. \]

Solution: Write the equation as in Abel’s Theorem,

\[y'' - \left(\frac{2}{t} + 1 \right) y' + \left(\frac{2}{t^2} + \frac{1}{t} \right) y = 0. \]

Abel’s Theorem says that the Wronskian satisfies the equation

\[W'_{y_1y_2}(t) - \left(\frac{2}{t} + 1 \right) W_{y_1y_2}(t) = 0. \]
Abel’s theorem on the Wronskian.

Example
Find the Wronskian of two solutions of the equation

\[t^2 y'' - t(t + 2)y' + (t + 2)y = 0, \quad t > 0. \]

Solution: Write the equation as in Abel’s Theorem,

\[y'' - \left(\frac{2}{t} + 1 \right) y' + \left(\frac{2}{t^2} + \frac{1}{t} \right) y = 0. \]

Abel’s Theorem says that the Wronskian satisfies the equation

\[W'_{y_1y_2}(t) - \left(\frac{2}{t} + 1 \right) W_{y_1y_2}(t) = 0. \]

This is a first order, linear equation for \(W_{y_1y_2} \).
Abel’s theorem on the Wronskian.

Example

Find the Wronskian of two solutions of the equation
\[t^2 y'' - t(t + 2) y' + (t + 2) y = 0, \quad t > 0. \]

Solution: Write the equation as in Abel’s Theorem,
\[y'' - \left(\frac{2}{t} + 1 \right) y' + \left(\frac{2}{t^2} + \frac{1}{t} \right) y = 0. \]

Abel’s Theorem says that the Wronskian satisfies the equation
\[W'_{y_1y_2}(t) - \left(\frac{2}{t} + 1 \right) W_{y_1y_2}(t) = 0. \]

This is a first order, linear equation for \(W_{y_1y_2} \). The integrating factor method implies
\[A(t) = -\int_{t_0}^{t} \left(\frac{2}{s} + 1 \right) ds \]
Abel’s theorem on the Wronskian.

Example
Find the Wronskian of two solutions of the equation
\[t^2 y'' - t(t + 2)y' + (t + 2)y = 0, \quad t > 0. \]

Solution: Write the equation as in Abel’s Theorem,
\[y'' - \left(\frac{2}{t} + 1 \right) y' + \left(\frac{2}{t^2} + \frac{1}{t} \right) y = 0. \]
Abel’s Theorem says that the Wronskian satisfies the equation
\[W'_{y_1y_2}(t) - \left(\frac{2}{t} + 1 \right) W_{y_1y_2}(t) = 0. \]
This is a first order, linear equation for \(W_{y_1y_2} \). The integrating factor method implies
\[A(t) = -\int_{t_0}^{t} \left(\frac{2}{s} + 1 \right) ds = -2 \ln \left(\frac{t}{t_0} \right) - (t - t_0) \]
Abel’s theorem on the Wronskian.

Example
Find the Wronskian of two solutions of the equation

$$t^2 y'' - t(t + 2) y' + (t + 2) y = 0, \quad t > 0.$$

Solution: $A(t) = -2 \ln \left(\frac{t}{t_0} \right) - (t - t_0)$
Abel’s theorem on the Wronskian.

Example

Find the Wronskian of two solutions of the equation

$$t^2 y'' - t(t + 2) y' + (t + 2) y = 0, \quad t > 0.$$

Solution: $A(t) = -2 \ln \left(\frac{t}{t_0} \right) - (t - t_0) = \ln \left(\frac{t_0^2}{t^2} \right) - (t - t_0)$.
Abel’s theorem on the Wronskian.

Example

Find the Wronskian of two solutions of the equation

\[t^2 y'' - t(t + 2) y' + (t + 2) y = 0, \quad t > 0. \]

Solution: \(A(t) = -2 \ln\left(\frac{t}{t_0}\right) - (t - t_0) = \ln\left(\frac{t_0^2}{t^2}\right) - (t - t_0). \)

The integrating factor is \(\mu = \frac{t_0^2}{t^2} e^{-(t-t_0)}. \)
Abel’s theorem on the Wronskian.

Example
Find the Wronskian of two solutions of the equation

\[t^2 y'' - t(t + 2) y' + (t + 2) y = 0, \quad t > 0. \]

Solution: \(A(t) = -2 \ln \left(\frac{t}{t_0} \right) - (t - t_0) = \ln \left(\frac{t_0^2}{t^2} \right) - (t - t_0). \)

The integrating factor is \(\mu = \frac{t_0^2}{t^2} e^{-(t-t_0)}. \) Therefore,

\[
\left[\mu(t) W_{y_1y_2}(t) \right]' = 0
\]
Abel’s theorem on the Wronskian.

Example
Find the Wronskian of two solutions of the equation
\[t^2 y'' - t(t + 2)y' + (t + 2)y = 0, \quad t > 0. \]

Solution: \[A(t) = -2 \ln\left(\frac{t}{t_0}\right) - (t - t_0) = \ln\left(\frac{t_0^2}{t^2}\right) - (t - t_0). \]

The integrating factor is \[\mu = \frac{t_0^2}{t^2} e^{-(t-t_0)}. \] Therefore,

\[
\left[\mu(t) W_{y_1y_2}(t) \right]' = 0 \quad \Rightarrow \quad \mu(t) W_{y_1y_2}(t) - \mu(t_0) W_{y_1y_2}(t_0) = 0
\]
Abel’s theorem on the Wronskian.

Example

Find the Wronskian of two solutions of the equation

\[t^2 y'' - t(t + 2) y' + (t + 2) y = 0, \quad t > 0. \]

Solution: \(A(t) = -2 \ln \left(\frac{t}{t_0} \right) - (t - t_0) = \ln \left(\frac{t^2}{t_0^2} \right) - (t - t_0). \)

The integrating factor is \(\mu = \frac{t_0^2}{t^2} e^{-(t-t_0)}. \) Therefore,

\[
\left[\mu(t) W_{y_1 y_2}(t) \right]' = 0 \quad \Rightarrow \quad \mu(t) W_{y_1 y_2}(t) - \mu(t_0) W_{y_1 y_2}(t_0) = 0
\]

so, the solution is \(W_{y_1 y_2}(t) = W_{y_1 y_2}(t_0) \frac{t^2}{t_0^2} e^{(t-t_0)}. \)
Abel’s theorem on the Wronskian.

Example
Find the Wronskian of two solutions of the equation

\[t^2 y'' - t(t + 2) y' + (t + 2)y = 0, \quad t > 0. \]

Solution: \(A(t) = -2 \ln \left(\frac{t}{t_0} \right) - (t - t_0) = \ln \left(\frac{t_0^2}{t^2} \right) - (t - t_0). \)

The integrating factor is \(\mu = \frac{t_0^2}{t^2} e^{-(t-t_0)}. \) Therefore,

\[
\left[\mu(t) W_{y_1y_2}(t) \right]' = 0 \quad \Rightarrow \quad \mu(t) W_{y_1y_2}(t) - \mu(t_0) W_{y_1y_2}(t_0) = 0
\]

so, the solution is \(W_{y_1y_2}(t) = W_{y_1y_2}(t_0) \frac{t^2}{t_0^2} e^{(t-t_0)}. \)

Denoting \(c = \left(W_{y_1y_2}(t_0) / t_0^2 \right) e^{-t_0}, \)
Abel’s theorem on the Wronskian.

Example
Find the Wronskian of two solutions of the equation

\[t^2 y'' - t(t + 2) y' + (t + 2) y = 0, \quad t > 0. \]

Solution: \(A(t) = -2 \ln \left(\frac{t}{t_0} \right) - (t - t_0) = \ln \left(\frac{t_0^2}{t^2} \right) - (t - t_0). \)

The integrating factor is \(\mu = \frac{t_0^2}{t^2} e^{-(t-t_0)}. \) Therefore,

\[
\left[\mu(t) W_{y_1y_2}(t) \right]' = 0 \quad \Rightarrow \quad \mu(t) W_{y_1y_2}(t) - \mu(t_0) W_{y_1y_2}(t_0) = 0
\]

so, the solution is \(W_{y_1y_2}(t) = W_{y_1y_2}(t_0) \frac{t^2}{t_0^2} e^{(t-t_0)}. \)

Denoting \(c = \left(W_{y_1y_2}(t_0) / t_0^2 \right) e^{-t_0}, \) then \(W_{y_1y_2}(t) = c \ t^2 e^t. \) ◀
Second order linear homogeneous ODE (Sect. 3.3).

- Review: On solutions of \(y'' + a_1 y' + a_0 y = 0. \)
- Characteristic polynomial with complex roots.
 - Two main sets of fundamental solutions.
 - A real-valued fundamental and general solutions.
- Application: The RLC circuit.
Review: On solutions of \(y'' + a_1y' + a_0y = 0 \).

Definition

Any two solutions \(y_1, y_2 \) of the homogeneous equation

\[
y'' + a_1(t)y' + a_0(t)y = 0,
\]

are called *fundamental solutions* iff the functions \(y_1, y_2 \) are linearly independent, that is, iff \(W_{y_1y_2} \neq 0 \).

Remark: Fundamental solutions are not unique.

Definition

Given any two fundamental solutions \(y_1, y_2 \), and arbitrary constants \(c_1, c_2 \), the function

\[
y(t) = c_1y_1(t) + c_2y_2(t)
\]

is called the general solution of the differential equation above.
Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).

Definition
Any two solutions \(y_1, y_2 \) of the homogeneous equation

\[
y'' + a_1(t) y' + a_0(t) y = 0,
\]

are called \textit{fundamental solutions} iff the functions \(y_1, y_2 \) are linearly independent, that is, iff \(W_{y_1y_2} \neq 0 \).

Remark: Fundamental solutions are not unique.
Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).

Definition

Any two solutions \(y_1, y_2 \) of the homogeneous equation

\[
y'' + a_1(t)y' + a_0(t)y = 0,
\]

are called *fundamental solutions* iff the functions \(y_1, y_2 \) are linearly independent, that is, iff \(W_{y_1y_2} \neq 0 \).

Remark: Fundamental solutions are not unique.

Definition

Given any two fundamental solutions \(y_1, y_2 \), and arbitrary constants \(c_1, c_2 \), the function

\[
y(t) = c_1 y_1(t) + c_2 y_2(t)
\]

is called the *general solution* of the differential equation above.
Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.

Theorem (Constant coefficients)

Given real constants a_1, a_0, consider the homogeneous, linear differential equation on the unknown $y : \mathbb{R} \to \mathbb{R}$ given by

$$y'' + a_1 y' + a_0 y = 0. \quad (2)$$

Let r_+, r_- be the roots of the characteristic polynomial $p(r) = r^2 + a_1 r + a_0$, and let c_0, c_1 be arbitrary constants. Then, any solution of Eq. (2) belongs to only one of the following cases:

(a) If $r_+ \neq r_-$, the general solution is $y(t) = c_1 e^{r_+ t} + c_2 e^{r_- t}$.

(b) If $r_+ = r_- \in \mathbb{R}$, the general solution is $y(t) = (c_1 + c_2 t) e^{r_+ t}$.

Furthermore, given real constants t_0, y_1 and y_2, there is a unique solution to the initial value problem given by Eq. (2) and the initial conditions

$$y(t_0) = y_1, \quad y'(t_0) = y_2.$$
Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.

Example
Find the general solution of the equation $y'' - y' - 6y = 0$.

Solution:
Since solutions have the form e^{rt}, we need to find the roots of the characteristic polynomial $p(r) = r^2 - r - 6$, that is, $r = \frac{1 \pm \sqrt{1 + 24}}{2} = \frac{1 \pm 5}{2}$.

So, $r_1 = 3$, $r_2 = -2$.

A fundamental solution set is formed by $y_1(t) = e^{3t}$, $y_2(t) = e^{-2t}$.

The general solution of the differential equations is an arbitrary linear combination of the fundamental solutions, that is, $y(t) = c_1 e^{3t} + c_2 e^{-2t}$, $c_1, c_2 \in \mathbb{R}$.

Remark: Since $c_1, c_2 \in \mathbb{R}$, then y is real-valued.
Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.

Example
Find the general solution of the equation $y'' - y' - 6y = 0$.

Solution: Since solutions have the form e^{rt}, we need to find the roots of the characteristic polynomial $p(r) = r^2 - r - 6$,

\[p(r) = r^2 - r - 6 = (r - 3)(r + 2) \]

Thus, $r = 3$ and $r = -2$. Therefore, the general solution is

\[y(t) = c_1 e^{3t} + c_2 e^{-2t} \]

where c_1 and c_2 are arbitrary constants.
Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).

Example
Find the general solution of the equation \(y'' - y' - 6y = 0 \).

Solution: Since solutions have the form \(e^{rt} \), we need to find the roots of the characteristic polynomial \(p(r) = r^2 - r - 6 \), that is,

\[
r_{\pm} = \frac{1}{2} \left(1 \pm \sqrt{1 + 24} \right)
\]
Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).

Example
Find the general solution of the equation \(y'' - y' - 6y = 0 \).

Solution: Since solutions have the form \(e^{rt} \), we need to find the roots of the characteristic polynomial \(p(r) = r^2 - r - 6 \), that is,

\[
r_{\pm} = \frac{1}{2} \left(1 \pm \sqrt{1 + 24} \right) = \frac{1}{2} (1 \pm 5)
\]
Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.

Example
Find the general solution of the equation $y'' - y' - 6y = 0$.

Solution: Since solutions have the form e^{rt}, we need to find the roots of the characteristic polynomial $p(r) = r^2 - r - 6$, that is,

$$r_\pm = \frac{1}{2} (1 \pm \sqrt{1 + 24}) = \frac{1}{2} (1 \pm 5) \implies r_+ = 3, \quad r_- = -2.$$
Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).

Example
Find the general solution of the equation \(y'' - y' - 6y = 0 \).

Solution: Since solutions have the form \(e^{rt} \), we need to find the roots of the characteristic polynomial \(p(r) = r^2 - r - 6 \), that is,

\[
r_{\pm} = \frac{1}{2} (1 \pm \sqrt{1 + 24}) = \frac{1}{2} (1 \pm 5) \quad \Rightarrow \quad r_+ = 3, \quad r_- = -2.
\]

So, \(r_{\pm} \) are real-valued.
Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).

Example
Find the general solution of the equation \(y'' - y' - 6y = 0 \).

Solution: Since solutions have the form \(e^{rt} \), we need to find the roots of the characteristic polynomial \(p(r) = r^2 - r - 6 \), that is,

\[
r_{\pm} = \frac{1}{2} (1 \pm \sqrt{1 + 24}) = \frac{1}{2} (1 \pm 5) \implies r_+ = 3, \quad r_- = -2.
\]

So, \(r_{\pm} \) are real-valued. A fundamental solution set is formed by

\[
y_1(t) = e^{3t}, \quad y_2(t) = e^{-2t}.
\]
Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).

Example
Find the general solution of the equation \(y'' - y' - 6y = 0 \).

Solution: Since solutions have the form \(e^{rt} \), we need to find the roots of the characteristic polynomial \(p(r) = r^2 - r - 6 \), that is,

\[
r_{\pm} = \frac{1}{2} (1 \pm \sqrt{1 + 24}) = \frac{1}{2} (1 \pm 5) \quad \Rightarrow \quad r_+ = 3, \quad r_- = -2.
\]

So, \(r_{\pm} \) are real-valued. A fundamental solution set is formed by

\[
y_1(t) = e^{3t}, \quad y_2(t) = e^{-2t}.
\]

The general solution of the differential equations is an arbitrary linear combination of the fundamental solutions,
Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.

Example
Find the general solution of the equation $y'' - y' - 6y = 0$.

Solution: Since solutions have the form e^{rt}, we need to find the roots of the characteristic polynomial $p(r) = r^2 - r - 6$, that is,

$$r_{\pm} = \frac{1}{2} (1 \pm \sqrt{1 + 24}) = \frac{1}{2} (1 \pm 5) \Rightarrow r_+ = 3, \quad r_- = -2.$$

So, r_{\pm} are real-valued. A fundamental solution set is formed by

$$y_1(t) = e^{3t}, \quad y_2(t) = e^{-2t}.$$

The general solution of the differential equations is an arbitrary linear combination of the fundamental solutions, that is,

$$y(t) = c_1 e^{3t} + c_2 e^{-2t}, \quad c_1, c_2 \in \mathbb{R}.$$
Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).

Example

Find the general solution of the equation \(y'' - y' - 6y = 0 \).

Solution: Since solutions have the form \(e^{rt} \), we need to find the roots of the characteristic polynomial \(p(r) = r^2 - r - 6 \), that is,

\[
r_{\pm} = \frac{1}{2} (1 \pm \sqrt{1 + 24}) = \frac{1}{2} (1 \pm 5) \quad \Rightarrow \quad r_+ = 3, \quad r_- = -2.
\]

So, \(r_{\pm} \) are real-valued. A fundamental solution set is formed by

\[
y_1(t) = e^{3t}, \quad y_2(t) = e^{-2t}.
\]

The general solution of the differential equations is an arbitrary linear combination of the fundamental solutions, that is,

\[
y(t) = c_1 e^{3t} + c_2 e^{-2t}, \quad c_1, c_2 \in \mathbb{R}.
\]

Remark: Since \(c_1, c_2 \in \mathbb{R} \), then \(y \) is real-valued.
Second order linear homogeneous ODE.

- Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.
- **Characteristic polynomial with complex roots.**
 - Two main sets of fundamental solutions.
 - A real-valued fundamental and general solutions.
- Application: The RLC circuit.
Two main sets of fundamental solutions.

Theorem (Complex roots)

If the constants \(a_1, a_0 \in \mathbb{R} \) satisfy that \(a_1^2 - 4a_0 < 0 \), then the characteristic polynomial \(p(r) = r^2 + a_1r + a_0 \) of the equation

\[
y'' + a_1 y' + a_0 y = 0
\]

has complex roots \(r_+ = \alpha + i\beta \) and \(r_- = \alpha - i\beta \), where

\[
\alpha = -\frac{a_1}{2}, \quad \beta = \frac{1}{2} \sqrt{4a_0 - a_1^2}.
\]

Furthermore, a fundamental set of solutions to Eq. (3) is

\[
\tilde{y}_1(t) = e^{(\alpha+i\beta)t}, \quad \tilde{y}_2(t) = e^{(\alpha-i\beta)t},
\]

while another fundamental set of solutions to Eq. (3) is

\[
y_1(t) = e^{\alpha t} \cos(\beta t), \quad y_2(t) = e^{\alpha t} \sin(\beta t).
\]
Two main sets of fundamental solutions.

Example
Find the general solution of the equation \(y'' - 2y' + 6y = 0 \).
Two main sets of fundamental solutions.

Example
Find the general solution of the equation \(y'' - 2y' + 6y = 0 \).

Solution: We first find the roots of the characteristic polynomial,

\[
r^2 - 2r + 6 = 0
\]
Two main sets of fundamental solutions.

Example
Find the general solution of the equation \(y'' - 2y' + 6y = 0 \).

Solution: We first find the roots of the characteristic polynomial,

\[
r^2 - 2r + 6 = 0 \quad \Rightarrow \quad r_{\pm} = \frac{1}{2} (2 \pm \sqrt{4 - 24})
\]
Two main sets of fundamental solutions.

Example
Find the general solution of the equation \(y'' - 2y' + 6y = 0 \).

Solution: We first find the roots of the characteristic polynomial,

\[
r^2 - 2r + 6 = 0 \quad \Rightarrow \quad r_{\pm} = \frac{1}{2} \left(2 \pm \sqrt{4 - 24} \right) \quad \Rightarrow \quad r_{\pm} = 1 \pm i\sqrt{5}.
\]
Two main sets of fundamental solutions.

Example
Find the general solution of the equation \(y'' - 2y' + 6y = 0 \).

Solution: We first find the roots of the characteristic polynomial,

\[
r^2 - 2r + 6 = 0 \quad \Rightarrow \quad r_{\pm} = \frac{1}{2} \left(2 \pm \sqrt{4 - 24} \right) \Rightarrow r_{\pm} = 1 \pm i\sqrt{5}.
\]

A fundamental solution set is

\[
\tilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \quad \tilde{y}_2(t) = e^{(1-i\sqrt{5})t}.
\]
Two main sets of fundamental solutions.

Example
Find the general solution of the equation \(y'' - 2y' + 6y = 0 \).

Solution: We first find the roots of the characteristic polynomial,

\[
r^2 - 2r + 6 = 0 \quad \Rightarrow \quad r_{\pm} = \frac{1}{2} (2 \pm \sqrt{4 - 24}) \quad \Rightarrow \quad r_{\pm} = 1 \pm i\sqrt{5}.
\]

A fundamental solution set is

\[
\tilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \quad \tilde{y}_2(t) = e^{(1-i\sqrt{5})t}.
\]

These are complex-valued functions.
Two main sets of fundamental solutions.

Example
Find the general solution of the equation \(y'' - 2y' + 6y = 0 \).

Solution: We first find the roots of the characteristic polynomial,
\[
r^2 - 2r + 6 = 0 \quad \Rightarrow \quad r_{\pm} = \frac{1}{2} (2 \pm \sqrt{4 - 24}) \quad \Rightarrow \quad r_{\pm} = 1 \pm i\sqrt{5}.
\]
A fundamental solution set is
\[
\tilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \quad \tilde{y}_2(t) = e^{(1-i\sqrt{5})t}.
\]
These are complex-valued functions. The general solution is
\[
y(t) = \tilde{c}_1 e^{(1+i\sqrt{5})t} + \tilde{c}_2 e^{(1-i\sqrt{5})t}, \quad \tilde{c}_1, \tilde{c}_2 \in \mathbb{C}.
\]
\[\triangleq\]
Two main sets of fundamental solutions.

Remark:

- The solutions found above include real-valued and complex-valued solutions.
Two main sets of fundamental solutions.

Remark:

- The solutions found above include real-valued and complex-valued solutions.
- Since the differential equation is real-valued, it is usually important in applications to obtain the most general real-valued solution. (See RLC circuit below.)
Two main sets of fundamental solutions.

Remark:

- The solutions found above include real-valued and complex-valued solutions.
- Since the differential equation is real-valued, it is usually important in applications to obtain the most general real-valued solution. (See RLC circuit below.)
- In the expression above it is difficult to take apart real-valued solutions from complex-valued solutions.
Two main sets of fundamental solutions.

Remark:

- The solutions found above include real-valued and complex-valued solutions.
- Since the differential equation is real-valued, it is usually important in applications to obtain the most general real-valued solution. (See RLC circuit below.)
- In the expression above it is difficult to take apart real-valued solutions from complex-valued solutions.
- In other words: It is not simple to see what values of \tilde{c}_1 and \tilde{c}_2 make the general solution above to be real-valued.
Two main sets of fundamental solutions.

Remark:

- The solutions found above include real-valued and complex-valued solutions.
- Since the differential equation is real-valued, it is usually important in applications to obtain the most general real-valued solution. (See RLC circuit below.)
- In the expression above it is difficult to take apart real-valued solutions from complex-valued solutions.
- In other words: It is not simple to see what values of \tilde{c}_1 and \tilde{c}_2 make the general solution above to be real-valued.
- One way to find the real-valued general solution is to find real-valued fundamental solutions.
Second order linear homogeneous ODE.

- Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).
- **Characteristic polynomial with complex roots.**
 - Two main sets of fundamental solutions.
 - A real-valued fundamental and general solutions.
- Application: The RLC circuit.
Example
Find the real-valued general solution of the equation
\[y'' - 2y' + 6y = 0. \]
A real-valued fundamental and general solutions.

Example
Find the real-valued general solution of the equation

\[y'' - 2y' + 6y = 0. \]

Solution: Recall: \(y(t) = \tilde{c}_1 e^{(1+i\sqrt{5})t} + \tilde{c}_2 e^{(1-i\sqrt{5})t}, \tilde{c}_1, \tilde{c}_2 \in \mathbb{C}. \)
A real-valued fundamental and general solutions.

Example
Find the real-valued general solution of the equation

$$y'' - 2y' + 6y = 0.$$

Solution: Recall: $y(t) = \tilde{c}_1 e^{(1+i\sqrt{5})t} + \tilde{c}_2 e^{(1-i\sqrt{5})t}$, \(\tilde{c}_1, \tilde{c}_2 \in \mathbb{C}\).

The Theorem above says that a real-valued fundamental set is

$$y_1(t) = e^t \cos(\sqrt{5}t), \quad y_2(t) = e^t \sin(\sqrt{5}t).$$
A real-valued fundamental and general solutions.

Example
Find the real-valued general solution of the equation
\[y'' - 2y' + 6y = 0. \]

Solution: Recall: \(y(t) = \tilde{c}_1 e^{(1+i\sqrt{5})t} + \tilde{c}_2 e^{(1-i\sqrt{5})t}, \tilde{c}_1, \tilde{c}_2 \in \mathbb{C}. \)

The Theorem above says that a real-valued fundamental set is
\[y_1(t) = e^t \cos(\sqrt{5} t), \quad y_2(t) = e^t \sin(\sqrt{5} t). \]

Hence, the complex-valued general solution can also be written as
\[y(t) = [c_1 \cos(\sqrt{5} t) + c_2 \sin(\sqrt{5} t)] e^t, \quad c_1, c_2 \in \mathbb{C}. \]
Example
Find the real-valued general solution of the equation
\[y'' - 2y' + 6y = 0. \]

Solution: Recall: \(y(t) = \tilde{c}_1 e^{(1+i\sqrt{5})t} + \tilde{c}_2 e^{(1-i\sqrt{5})t}, \tilde{c}_1, \tilde{c}_2 \in \mathbb{C}. \)

The Theorem above says that a real-valued fundamental set is
\[y_1(t) = e^t \cos(\sqrt{5}t), \quad y_2(t) = e^t \sin(\sqrt{5}t). \]

Hence, the complex-valued general solution can also be written as
\[y(t) = \left[c_1 \cos(\sqrt{5}t) + c_2 \sin(\sqrt{5}t) \right] e^t, \quad c_1, c_2 \in \mathbb{C}. \]

The real-valued general solution is simple to obtain:
\[y(t) = \left[c_1 \cos(\sqrt{5}t) + c_2 \sin(\sqrt{5}t) \right] e^t, \quad c_1, c_2 \in \mathbb{R}. \]
A real-valued fundamental and general solutions.

Example
Find the real-valued general solution of the equation

\[y'' - 2y' + 6y = 0. \]

Solution: Recall: \(y(t) = \tilde{c}_1 e^{(1+i\sqrt{5}) t} + \tilde{c}_2 e^{(1-i\sqrt{5}) t} , \tilde{c}_1, \tilde{c}_2 \in \mathbb{C}. \)

The Theorem above says that a real-valued fundamental set is

\[y_1(t) = e^t \cos(\sqrt{5} t), \quad y_2(t) = e^t \sin(\sqrt{5} t). \]

Hence, the complex-valued general solution can also be written as

\[y(t) = \left[c_1 \cos(\sqrt{5} t) + c_2 \sin(\sqrt{5} t) \right] e^t, \quad c_1, c_2 \in \mathbb{C}. \]

The real-valued general solution is simple to obtain:

\[y(t) = \left[c_1 \cos(\sqrt{5} t) + c_2 \sin(\sqrt{5} t) \right] e^t, \quad c_1, c_2 \in \mathbb{R}. \]

We just restricted the coefficients \(c_1, c_2 \) to be real-valued. △
A real-valued fundamental and general solutions.

Example
Show that $y_1(t) = e^t \cos(\sqrt{5} t)$ and $y_2(t) = e^t \sin(\sqrt{5} t)$ are fundamental solutions to the equation $y'' - 2y' + 6y = 0$.
A real-valued fundamental and general solutions.

Example
Show that $y_1(t) = e^t \cos(\sqrt{5} \, t)$ and $y_2(t) = e^t \sin(\sqrt{5} \, t)$ are fundamental solutions to the equation $y'' - 2y' + 6y = 0$.

Solution: We start with the complex-valued fundamental solutions,

$\tilde{y}_1(t) = e^{(1+i\sqrt{5}) \, t}, \quad \tilde{y}_2(t) = e^{(1-i\sqrt{5}) \, t}.$
A real-valued fundamental and general solutions.

Example
Show that \(y_1(t) = e^t \cos(\sqrt{5} t) \) and \(y_2(t) = e^t \sin(\sqrt{5} t) \) are fundamental solutions to the equation \(y'' - 2y' + 6y = 0 \).

Solution: We start with the complex-valued fundamental solutions,
\[
\tilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \quad \tilde{y}_2(t) = e^{(1-i\sqrt{5})t}.
\]

Any linear combination of these functions is solution of the differential equation.
A real-valued fundamental and general solutions.

Example
Show that $y_1(t) = e^t \cos(\sqrt{5} t)$ and $y_2(t) = e^t \sin(\sqrt{5} t)$ are fundamental solutions to the equation $y'' - 2y' + 6y = 0$.

Solution: We start with the complex-valued fundamental solutions,

$$
\tilde{y}_1(t) = e^{(1+i\sqrt{5}) t}, \quad \tilde{y}_2(t) = e^{(1-i\sqrt{5}) t}.
$$

Any linear combination of these functions is solution of the differential equation. In particular,

$$
y_1(t) = \frac{1}{2} [\tilde{y}_1(t) + \tilde{y}_2(t)], \quad y_2(t) = \frac{1}{2i} [\tilde{y}_1(t) - \tilde{y}_2(t)].
$$
A real-valued fundamental and general solutions.

Example
Show that \(y_1(t) = e^t \cos(\sqrt{5} t) \) and \(y_2(t) = e^t \sin(\sqrt{5} t) \) are fundamental solutions to the equation \(y'' - 2y' + 6y = 0 \).

Solution: We start with the complex-valued fundamental solutions,

\[
\tilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \quad \tilde{y}_2(t) = e^{(1-i\sqrt{5})t}.
\]

Any linear combination of these functions is solution of the differential equation. In particular,

\[
y_1(t) = \frac{1}{2} [\tilde{y}_1(t) + \tilde{y}_2(t)], \quad y_2(t) = \frac{1}{2i} [\tilde{y}_1(t) - \tilde{y}_2(t)].
\]

Now, recalling \(e^{(1\pm i\sqrt{5})t} = e^t e^{\pm i\sqrt{5} t} \)
A real-valued fundamental and general solutions.

Example
Show that \(y_1(t) = e^t \cos(\sqrt{5} t) \) and \(y_2(t) = e^t \sin(\sqrt{5} t) \) are fundamental solutions to the equation \(y'' - 2y' + 6y = 0 \).

Solution: We start with the complex-valued fundamental solutions,
\[
\tilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \quad \tilde{y}_2(t) = e^{(1-i\sqrt{5})t}.
\]

Any linear combination of these functions is solution of the differential equation. In particular,
\[
y_1(t) = \frac{1}{2} [\tilde{y}_1(t) + \tilde{y}_2(t)], \quad y_2(t) = \frac{1}{2i} [\tilde{y}_1(t) - \tilde{y}_2(t)].
\]

Now, recalling \(e^{(1\pm i\sqrt{5})t} = e^{t} e^{\pm i\sqrt{5}t} \)
\[
y_1(t) = \frac{1}{2} \left[e^{t} e^{i\sqrt{5}t} + e^{t} e^{-i\sqrt{5}t} \right], \quad y_2(t) = \frac{1}{2i} \left[e^{t} e^{i\sqrt{5}t} - e^{t} e^{-i\sqrt{5}t} \right],
\]
A real-valued fundamental and general solutions.

Example
Show that $y_1(t) = e^t \cos(\sqrt{5} t)$ and $y_2(t) = e^t \sin(\sqrt{5} t)$ are fundamental solutions to the equation $y'' - 2y' + 6y = 0$.

Solution: $y_1 = \frac{e^t}{2} [e^{i\sqrt{5}t} + e^{-i\sqrt{5}t}]$, $y_2 = \frac{e^t}{2i} [e^{i\sqrt{5}t} - e^{-i\sqrt{5}t}]$.
A real-valued fundamental and general solutions.

Example

Show that $y_1(t) = e^t \cos(\sqrt{5} t)$ and $y_2(t) = e^t \sin(\sqrt{5} t)$ are fundamental solutions to the equation $y'' - 2y' + 6y = 0$.

Solution: $y_1 = \frac{e^t}{2} \left[e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} \right], \quad y_2 = \frac{e^t}{2i} \left[e^{i\sqrt{5}t} - e^{-i\sqrt{5}t} \right]$.

The Euler formula and its complex-conjugate formula

$e^{i\sqrt{5}t} = \left[\cos(\sqrt{5} t) + i \sin(\sqrt{5} t) \right]$.
A real-valued fundamental and general solutions.

Example

Show that \(y_1(t) = e^t \cos(\sqrt{5} t) \) and \(y_2(t) = e^t \sin(\sqrt{5} t) \) are fundamental solutions to the equation \(y'' - 2y' + 6y = 0 \).

Solution:

\[
y_1 = \frac{e^t}{2} [e^{i\sqrt{5}t} + e^{-i\sqrt{5}t}] , \quad y_2 = \frac{e^t}{2i} [e^{i\sqrt{5}t} - e^{-i\sqrt{5}t}].
\]

The Euler formula and its complex-conjugate formula

\[
e^{i\sqrt{5}t} = [\cos(\sqrt{5} t) + i \sin(\sqrt{5} t)] , \quad e^{-i\sqrt{5}t} = [\cos(\sqrt{5} t) - i \sin(\sqrt{5} t)].
\]
A real-valued fundamental and general solutions.

Example

Show that $y_1(t) = e^t \cos(\sqrt{5} t)$ and $y_2(t) = e^t \sin(\sqrt{5} t)$ are fundamental solutions to the equation $y'' - 2y' + 6y = 0$.

Solution: $y_1 = \frac{e^t}{2} [e^{i\sqrt{5}t} + e^{-i\sqrt{5}t}]$, $y_2 = \frac{e^t}{2i} [e^{i\sqrt{5}t} - e^{-i\sqrt{5}t}]$.

The Euler formula and its complex-conjugate formula

$e^{i\sqrt{5}t} = [\cos(\sqrt{5} t) + i \sin(\sqrt{5} t)]$,

$e^{-i\sqrt{5}t} = [\cos(\sqrt{5} t) - i \sin(\sqrt{5} t)]$,

imply the inverse relations

$e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} = 2 \cos(\sqrt{5}t)$,
A real-valued fundamental and general solutions.

Example

Show that $y_1(t) = e^t \cos(\sqrt{5} t)$ and $y_2(t) = e^t \sin(\sqrt{5} t)$ are fundamental solutions to the equation $y'' - 2y' + 6y = 0$.

Solution: $y_1 = \frac{e^t}{2} [e^{i\sqrt{5} t} + e^{-i\sqrt{5} t}]$, $y_2 = \frac{e^t}{2i} [e^{i\sqrt{5} t} - e^{-i\sqrt{5} t}]$.

The Euler formula and its complex-conjugate formula

$e^{i\sqrt{5} t} = [\cos(\sqrt{5} t) + i \sin(\sqrt{5} t)]$,

$e^{-i\sqrt{5} t} = [\cos(\sqrt{5} t) - i \sin(\sqrt{5} t)]$,

imply the inverse relations

$e^{i\sqrt{5} t} + e^{-i\sqrt{5} t} = 2 \cos(\sqrt{5} t)$, $e^{i\sqrt{5} t} - e^{-i\sqrt{5} t} = 2i \sin(\sqrt{5} t)$.
A real-valued fundamental and general solutions.

Example
Show that $y_1(t) = e^t \cos(\sqrt{5} t)$ and $y_2(t) = e^t \sin(\sqrt{5} t)$ are fundamental solutions to the equation $y'' - 2y' + 6y = 0$.

Solution: $y_1 = \frac{e^t}{2} [e^{i\sqrt{5}t} + e^{-i\sqrt{5}t}]$, $y_2 = \frac{e^t}{2i} [e^{i\sqrt{5}t} - e^{-i\sqrt{5}t}]$.

The Euler formula and its complex-conjugate formula

$$e^{i\sqrt{5}t} = \left[\cos(\sqrt{5} t) + i \sin(\sqrt{5} t) \right],$$

$$e^{-i\sqrt{5}t} = \left[\cos(\sqrt{5} t) - i \sin(\sqrt{5} t) \right],$$

imply the inverse relations

$$e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} = 2 \cos(\sqrt{5} t), \quad e^{i\sqrt{5}t} - e^{-i\sqrt{5}t} = 2i \sin(\sqrt{5} t).$$

So functions y_1 and y_2 can be written as

$$y_1(t) = e^t \cos(\sqrt{5} t),$$
A real-valued fundamental and general solutions.

Example
Show that $y_1(t) = e^t \cos(\sqrt{5} \, t)$ and $y_2(t) = e^t \sin(\sqrt{5} \, t)$ are fundamental solutions to the equation $y'' - 2y' + 6y = 0$.

Solution: $y_1 = \frac{e^t}{2} [e^{i\sqrt{5}t} + e^{-i\sqrt{5}t}]$, $y_2 = \frac{e^t}{2i} [e^{i\sqrt{5}t} - e^{-i\sqrt{5}t}]$.

The Euler formula and its complex-conjugate formula

$$e^{i\sqrt{5}t} = [\cos(\sqrt{5} \, t) + i \sin(\sqrt{5} \, t)]$$,

$$e^{-i\sqrt{5}t} = [\cos(\sqrt{5} \, t) - i \sin(\sqrt{5} \, t)]$$,

imply the inverse relations

$$e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} = 2 \cos(\sqrt{5}t)$$, $$e^{i\sqrt{5}t} - e^{-i\sqrt{5}t} = 2i \sin(\sqrt{5}t).$$

So functions y_1 and y_2 can be written as

$$y_1(t) = e^t \cos(\sqrt{5} \, t)$$, $$y_2(t) = e^t \sin(\sqrt{5} \, t).$$
A real-valued fundamental and general solutions.

Example
Show that $y_1(t) = e^t \cos(\sqrt{5} t)$ and $y_2(t) = e^t \sin(\sqrt{5} t)$ are fundamental solutions to the equation $y'' - 2y' + 6y = 0$.

Solution: $y_1(t) = e^t \cos(\sqrt{5} t), \ y_2(t) = e^t \sin(\sqrt{5} t)$.
A real-valued fundamental and general solutions.

Example
Show that $y_1(t) = e^t \cos(\sqrt{5} t)$ and $y_2(t) = e^t \sin(\sqrt{5} t)$ are fundamental solutions to the equation $y'' - 2y' + 6y = 0$.

Solution: $y_1(t) = e^t \cos(\sqrt{5} t), \quad y_2(t) = e^t \sin(\sqrt{5} t)$.

Summary:
- These functions are solutions of the differential equation.
A real-valued fundamental and general solutions.

Example
Show that $y_1(t) = e^t \cos(\sqrt{5} t)$ and $y_2(t) = e^t \sin(\sqrt{5} t)$ are fundamental solutions to the equation $y'' - 2y' + 6y = 0$.

Solution: $y_1(t) = e^t \cos(\sqrt{5} t)$, $y_2(t) = e^t \sin(\sqrt{5} t)$.

Summary:
- These functions are solutions of the differential equation.
- They are not proportional to each other, Hence li.
A real-valued fundamental and general solutions.

Example
Show that \(y_1(t) = e^t \cos(\sqrt{5} t) \) and \(y_2(t) = e^t \sin(\sqrt{5} t) \) are fundamental solutions to the equation \(y'' - 2y' + 6y = 0 \).

Solution: \(y_1(t) = e^t \cos(\sqrt{5} t), \ y_2(t) = e^t \sin(\sqrt{5} t) \).

Summary:

- These functions are solutions of the differential equation.
- They are not proportional to each other, Hence li.
- Therefore, \(y_1, y_2 \) form a fundamental set.
A real-valued fundamental and general solutions.

Example
Show that $y_1(t) = e^t \cos(\sqrt{5} t)$ and $y_2(t) = e^t \sin(\sqrt{5} t)$ are fundamental solutions to the equation $y'' - 2y' + 6y = 0$.

Solution: $y_1(t) = e^t \cos(\sqrt{5} t), \quad y_2(t) = e^t \sin(\sqrt{5} t)$.

Summary:
- These functions are solutions of the differential equation.
- They are not proportional to each other, Hence li.
- Therefore, y_1, y_2 form a fundamental set.
- The general solution of the equation is

$$y(t) = [c_1 \cos(\sqrt{5}t) + c_2 \sin(\sqrt{5}t)] e^t.$$
A real-valued fundamental and general solutions.

Example
Show that $y_1(t) = e^t \cos(\sqrt{5}t)$ and $y_2(t) = e^t \sin(\sqrt{5}t)$ are fundamental solutions to the equation $y'' - 2y' + 6y = 0$.

Solution: $y_1(t) = e^t \cos(\sqrt{5}t), \ y_2(t) = e^t \sin(\sqrt{5}t)$.

Summary:
- These functions are solutions of the differential equation.
- They are not proportional to each other, Hence li.
- Therefore, y_1, y_2 form a fundamental set.
- The general solution of the equation is

$$y(t) = [c_1 \cos(\sqrt{5}t) + c_2 \sin(\sqrt{5}t)] \ e^t.$$

- y is real-valued for $c_1, c_2 \in \mathbb{R}$.
A real-valued fundamental and general solutions.

Example
Show that \(y_1(t) = e^t \cos(\sqrt{5} t) \) and \(y_2(t) = e^t \sin(\sqrt{5} t) \) are fundamental solutions to the equation \(y'' - 2y' + 6y = 0 \).

Solution: \(y_1(t) = e^t \cos(\sqrt{5} t), \ y_2(t) = e^t \sin(\sqrt{5} t) \).

Summary:
- These functions are solutions of the differential equation.
- They are not proportional to each other, Hence li.
- Therefore, \(y_1, \ y_2 \) form a fundamental set.
- The general solution of the equation is

\[
y(t) = [c_1 \cos(\sqrt{5} t) + c_2 \sin(\sqrt{5} t)] \ e^t.
\]

- \(y \) is real-valued for \(c_1, c_2 \in \mathbb{R} \).
- \(y \) is complex-valued for \(c_1, c_2 \in \mathbb{C} \).
A real-valued fundamental and general solutions.

Remark:

- The proof of the Theorem follow exactly the same ideas given in the example above.

The real-valued fundamental solutions are
\[y_1(t) = e^{\alpha t} \cos(\beta t), \]
\[y_2(t) = e^{\alpha t} \sin(\beta t). \]
A real-valued fundamental and general solutions.

Remark:
- The proof of the Theorem follow exactly the same ideas given in the example above.
- One has to replace the roots of the characteristic polynomial
 \[1 + i\sqrt{5} \rightarrow \alpha + i\beta, \quad 1 - i\sqrt{5} \rightarrow \alpha - i\beta.\]
A real-valued fundamental and general solutions.

Remark:

- The proof of the Theorem follow exactly the same ideas given in the example above.
- One has to replace the roots of the characteristic polynomial

\[1 + i\sqrt{5} \rightarrow \alpha + i\beta, \quad 1 - i\sqrt{5} \rightarrow \alpha - i\beta. \]
- The real-valued fundamental solutions are

\[y_1(t) = e^{\alpha t} \cos(\beta t), \quad y_2(t) = e^{\alpha t} \sin(\beta t). \]
Example
Find real-valued fundamental solutions to the equation
\[y'' + 2y' + 6y = 0. \]
A real-valued fundamental and general solutions.

Example
Find real-valued fundamental solutions to the equation

\[y'' + 2y' + 6y = 0. \]

Solution:
The roots of the characteristic polynomial \(p(r) = r^2 + 2r + 6 \)
Example
Find real-valued fundamental solutions to the equation

\[y'' + 2y' + 6y = 0. \]

Solution:
The roots of the characteristic polynomial \(p(r) = r^2 + 2r + 6 \) are

\[
 r_{\pm} = \frac{1}{2} \left[-2 \pm \sqrt{4 - 24} \right]
\]

These are complex-valued roots, with \(\alpha = -1 \), \(\beta = \sqrt{5} \).

Real-valued fundamental solutions are

\[y_1(t) = e^{-t} \cos(\sqrt{5}t), \quad y_2(t) = e^{-t} \sin(\sqrt{5}t). \]
A real-valued fundamental and general solutions.

Example
Find real-valued fundamental solutions to the equation
\[y'' + 2y' + 6y = 0. \]

Solution:
The roots of the characteristic polynomial \(p(r) = r^2 + 2r + 6 \) are
\[r_{\pm} = \frac{1}{2} \left[-2 \pm \sqrt{4 - 24} \right] = \frac{1}{2} \left[-2 \pm \sqrt{-20} \right] \]
A real-valued fundamental and general solutions.

Example
Find real-valued fundamental solutions to the equation
\[y'' + 2y' + 6y = 0. \]

Solution:
The roots of the characteristic polynomial \(p(r) = r^2 + 2r + 6 \) are
\[
 r_{\pm} = \frac{1}{2} \left[-2 \pm \sqrt{4 - 24} \right] = \frac{1}{2} \left[-2 \pm \sqrt{-20} \right] \Rightarrow r_{\pm} = -1 \pm i\sqrt{5}.
\]
Example
Find real-valued fundamental solutions to the equation

\[y'' + 2y' + 6y = 0. \]

Solution:
The roots of the characteristic polynomial \(p(r) = r^2 + 2r + 6 \) are

\[r_{\pm} = \frac{1}{2} \left[-2 \pm \sqrt{4 - 24} \right] = \frac{1}{2} \left[-2 \pm \sqrt{-20} \right] \Rightarrow r_{\pm} = -1 \pm i\sqrt{5}. \]

These are complex-valued roots,
A real-valued fundamental and general solutions.

Example
Find real-valued fundamental solutions to the equation

$$y'' + 2y' + 6y = 0.$$

Solution:
The roots of the characteristic polynomial $p(r) = r^2 + 2r + 6$ are

$$r_\pm = \frac{1}{2} [-2 \pm \sqrt{4 - 24}] = \frac{1}{2} [-2 \pm \sqrt{-20}] \Rightarrow r_\pm = -1 \pm i\sqrt{5}.$$

These are complex-valued roots, with

$$\alpha = -1, \quad \beta = \sqrt{5}.$$
A real-valued fundamental and general solutions.

Example
Find real-valued fundamental solutions to the equation

\[y'' + 2y' + 6y = 0. \]

Solution:
The roots of the characteristic polynomial \(p(r) = r^2 + 2r + 6 \) are

\[r_{\pm} = \frac{1}{2} [-2 \pm \sqrt{4 - 24}] = \frac{1}{2} [-2 \pm \sqrt{-20}] \Rightarrow r_{\pm} = -1 \pm i\sqrt{5}. \]

These are complex-valued roots, with

\[\alpha = -1, \quad \beta = \sqrt{5}. \]

Real-valued fundamental solutions are

\[y_1(t) = e^{-t} \cos(\sqrt{5} t), \quad y_2(t) = e^{-t} \sin(\sqrt{5} t). \]
A real-valued fundamental and general solutions.

Example
Find real-valued fundamental solutions to the equation

\[y'' + 2y' + 6y = 0. \]

Solution: \(y_1(t) = e^{-t}\cos(\sqrt{5}t), \quad y_2(t) = e^{-t}\sin(\sqrt{5}t). \)

Differential equations like the one in this example describe physical processes related to damped oscillations. For example, pendulums with friction.
Example

Find the real-valued general solution of \(y'' + 5y = 0 \).

Solution:
The characteristic polynomial is \(p(r) = r^2 + 5 \).

Its roots are \(r = \pm \sqrt{5}i \). This is the case \(\alpha = 0 \), and \(\beta = \sqrt{5} \).

Real-valued fundamental solutions are \(y_1(t) = \cos(\sqrt{5}t) \), \(y_2(t) = \sin(\sqrt{5}t) \).

The real-valued general solution is \(y(t) = c_1 \cos(\sqrt{5}t) + c_2 \sin(\sqrt{5}t) \), \(c_1, c_2 \in \mathbb{R} \). \(\triangleright \)

Remark:
Equations like the one in this example describe oscillatory physical processes without dissipation.
A real-valued fundamental and general solutions.

Example
Find the real-valued general solution of $y'' + 5y = 0$.

Solution: The characteristic polynomial is $p(r) = r^2 + 5$.
A real-valued fundamental and general solutions.

Example
Find the real-valued general solution of \(y'' + 5y = 0 \).

Solution: The characteristic polynomial is \(p(r) = r^2 + 5 \).

Its roots are \(r_{\pm} = \pm \sqrt{5} i \). This is the case \(\alpha = 0 \), and \(\beta = \sqrt{5} \).
Example

Find the real-valued general solution of $y'' + 5y = 0$.

Solution: The characteristic polynomial is $p(r) = r^2 + 5$.

Its roots are $r_{\pm} = \pm \sqrt{5}i$. This is the case $\alpha = 0$, and $\beta = \sqrt{5}$.

Real-valued fundamental solutions are

$$y_1(t) = \cos(\sqrt{5} t), \quad y_2(t) = \sin(\sqrt{5} t).$$
A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of $y'' + 5y = 0$.

Solution: The characteristic polynomial is $p(r) = r^2 + 5$.

Its roots are $r_{\pm} = \pm \sqrt{5} i$. This is the case $\alpha = 0$, and $\beta = \sqrt{5}$.

Real-valued fundamental solutions are

$$y_1(t) = \cos(\sqrt{5} t), \quad y_2(t) = \sin(\sqrt{5} t).$$

The real-valued general solution is

$$y(t) = c_1 \cos(\sqrt{5} t) + c_2 \sin(\sqrt{5} t), \quad c_1, c_2 \in \mathbb{R}.$$
A real-valued fundamental and general solutions.

Example
Find the real-valued general solution of $y'' + 5y = 0$.

Solution: The characteristic polynomial is $p(r) = r^2 + 5$.

Its roots are $r_{\pm} = \pm \sqrt{5} i$. This is the case $\alpha = 0$, and $\beta = \sqrt{5}$.

Real-valued fundamental solutions are

$$y_1(t) = \cos(\sqrt{5} t), \quad y_2(t) = \sin(\sqrt{5} t).$$

The real-valued general solution is

$$y(t) = c_1 \cos(\sqrt{5} t) + c_2 \sin(\sqrt{5} t), \quad c_1, c_2 \in \mathbb{R}.$$

Remark: Equations like the one in this example describe oscillatory physical processes without dissipation.
Second order linear homogeneous ODE.

- Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).
- Characteristic polynomial with complex roots.
 - Two main sets of fundamental solutions.
 - A real-valued fundamental and general solutions.

- **Application:** The RLC circuit.
Application: The RLC circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

The electric current flowing in such circuit satisfies:

$$L \frac{d^2 I(t)}{dt^2} + R \frac{dI(t)}{dt} + \frac{1}{C} \int_0^t I(s) \, ds = 0.$$

Derivate both sides above:

$$L \frac{d^2 I(t)}{dt^2} + R \frac{dI(t)}{dt} + \frac{1}{C} I(t) = 0.$$

Divide by L:

$$\frac{d^2 I(t)}{dt^2} + 2 \left(\frac{R}{L} \right) I'(t) + \frac{1}{LC} I(t) = 0.$$

Introduce $\alpha = \frac{R}{L}$ and $\omega = \frac{1}{\sqrt{LC}}$, then

$$\frac{d^2 I(t)}{dt^2} + 2 \alpha I'(t) + \omega^2 I(t) = 0.$$
Application: The RLC circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

The electric current flowing in such circuit satisfies:

$$L I'(t) + R I(t) + \frac{1}{C} \int_{t_0}^{t} I(s) \, ds = 0.$$
Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

The electric current flowing in such circuit satisfies:

$$L I'(t) + R I(t) + \frac{1}{C} \int_{t_0}^{t} I(s) \, ds = 0.$$

Derivate both sides above:
$$L I''(t) + R I'(t) + \frac{1}{C} I(t) = 0.$$
Application: The RLC circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

The electric current flowing in such circuit satisfies:

$$L I'(t) + R I(t) + \frac{1}{C} \int_{t_0}^{t} I(s) \, ds = 0.$$

Derivate both sides above:

$$L I''(t) + R I'(t) + \frac{1}{C} I(t) = 0.$$

Divide by L:

$$I''(t) + 2\left(\frac{R}{2L}\right) I'(t) + \frac{1}{LC} I(t) = 0.$$
Application: The RLC circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

The electric current flowing in such circuit satisfies:

$$L I'(t) + R I(t) + \frac{1}{C} \int_{t_0}^{t} I(s) \, ds = 0.$$

Derivate both sides above:

$$L I''(t) + R I'(t) + \frac{1}{C} I(t) = 0.$$

Divide by L:

$$I''(t) + 2\left(\frac{R}{2L}\right) I'(t) + \frac{1}{LC} I(t) = 0.$$

Introduce $\alpha = \frac{R}{2L}$ and $\omega = \frac{1}{\sqrt{LC}},$
Application: The RLC circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

The electric current flowing in such circuit satisfies:

$$L I'(t) + R I(t) + \frac{1}{C} \int_{t_0}^{t} I(s) \, ds = 0.$$

Derivate both sides above:
$$L I''(t) + R I'(t) + \frac{1}{C} I(t) = 0.$$

Divide by L:
$$I''(t) + 2\left(\frac{R}{2L}\right) I'(t) + \frac{1}{LC} I(t) = 0.$$

Introduce $\alpha = \frac{R}{2L}$ and $\omega = \frac{1}{\sqrt{LC}}$, then
$$I'' + 2\alpha I' + \omega^2 I = 0.$$
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r) = r^2 + 2\alpha r + \omega^2$.
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to \(I'' + 2\alpha I' + \omega^2 I = 0 \), where \(\alpha = R/(2L) \), \(\omega^2 = 1/(LC) \), in the cases (a) (b) below.

Solution: The characteristic polynomial is \(p(r) = r^2 + 2\alpha r + \omega^2 \). The roots are:

\[
r_{\pm} = \frac{1}{2} \left[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2} \right]
\]
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to \(I'' + 2\alpha I' + \omega^2 I = 0 \), where \(\alpha = \frac{R}{2L} \), \(\omega^2 = \frac{1}{LC} \), in the cases (a) (b) below.

Solution: The characteristic polynomial is \(p(r) = r^2 + 2\alpha r + \omega^2 \). The roots are:

\[
r_{\pm} = \frac{1}{2} \left[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2} \right] \Rightarrow r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}.
\]
Example
Find real-valued fundamental solutions to \(l'' + 2\alpha l' + \omega^2 l = 0 \), where \(\alpha = R/(2L) \), \(\omega^2 = 1/(LC) \), in the cases (a) (b) below.

Solution: The characteristic polynomial is \(p(r) = r^2 + 2\alpha r + \omega^2 \). The roots are:

\[
 r_{\pm} = \frac{1}{2} \left[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2} \right] \Rightarrow r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}.
\]

Case (a) \(R = 0 \).
Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r) = r^2 + 2\alpha r + \omega^2$. The roots are:

$$r_\pm = \frac{1}{2} \left[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2}\right] \Rightarrow r_\pm = -\alpha \pm \sqrt{\alpha^2 - \omega^2}.$$

Case (a) $R = 0$. This implies $\alpha = 0$,

Remark: When the circuit has no resistance, the current oscillates without dissipation.
Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r) = r^2 + 2\alpha r + \omega^2$. The roots are:

$$r_\pm = \frac{1}{2} \left[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2}\right] \Rightarrow r_\pm = -\alpha \pm \sqrt{\alpha^2 - \omega^2}.$$

Case (a) $R = 0$. This implies $\alpha = 0$, so $r_\pm = \pm i\omega$.

Remark: When the circuit has no resistance, the current oscillates without dissipation.
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to $l'' + 2\alpha l' + \omega^2 l = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r) = r^2 + 2\alpha r + \omega^2$. The roots are:

$$r_{\pm} = \frac{1}{2} \left[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2} \right] \Rightarrow r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}.$$

Case (a) $R = 0$. This implies $\alpha = 0$, so $r_{\pm} = \pm i\omega$. Therefore,

$$l_1(t) = \cos(\omega t),$$
Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r) = r^2 + 2\alpha r + \omega^2$. The roots are:

$$r_{\pm} = \frac{1}{2} \left[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2}\right] \Rightarrow r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}.$$

Case (a) $R = 0$. This implies $\alpha = 0$, so $r_{\pm} = \pm i\omega$. Therefore,

$$l_1(t) = \cos(\omega t), \quad l_2(t) = \sin(\omega t).$$

Remark: When the circuit has no resistance, the current oscillates without dissipation.
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r) = r^2 + 2\alpha r + \omega^2$. The roots are:

$$r_{\pm} = \frac{1}{2}[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2}] \Rightarrow r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}.$$

Case (a) $R = 0$. This implies $\alpha = 0$, so $r_{\pm} = \pm i\omega$. Therefore,

$$l_1(t) = \cos(\omega t), \quad l_2(t) = \sin(\omega t).$$

Remark: When the circuit has no resistance, the current oscillates without dissipation.
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to \(I'' + 2\alpha I' + \omega^2 I = 0 \), where \(\alpha = R/(2L) \), \(\omega^2 = 1/(LC) \), in the cases (a) (b) below.

Solution: Recall: \(r_\pm = -\alpha \pm \sqrt{\alpha^2 - \omega^2} \).
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to \(l'' + 2\alpha l' + \omega^2 l = 0 \), where \(\alpha = R/(2L) \), \(\omega^2 = 1/(LC) \), in the cases (a) (b) below.

Solution: Recall: \(r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2} \).

Case (b) \(R < \sqrt{4L/C} \).
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: Recall: $r_\pm = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Case (b) $R < \sqrt{4L/C}$. This implies

$$R^2 < \frac{4L}{C}$$
Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: Recall: $r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Case (b) $R < \sqrt{4L/C}$. This implies

$$R^2 < \frac{4L}{C} \iff \frac{R^2}{4L^2} < \frac{1}{LC}$$
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to \(I'' + 2\alpha I' + \omega^2 I = 0, \)
where \(\alpha = R/(2L), \omega^2 = 1/(LC), \) in the cases (a) (b) below.

Solution: Recall: \(r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}. \)

Case (b) \(R < \sqrt{4L/C}. \) This implies

\[
R^2 < \frac{4L}{C} \iff \frac{R^2}{4L^2} < \frac{1}{LC} \iff \alpha^2 < \omega^2.
\]
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to \(l'' + 2\alpha l' + \omega^2 l = 0 \), where \(\alpha = R/(2L) \), \(\omega^2 = 1/(LC) \), in the cases (a) (b) below.

Solution: Recall: \(r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2} \).

Case (b) \(R < \sqrt{4L/C} \). This implies

\[
R^2 < \frac{4L}{C} \quad \Leftrightarrow \quad \frac{R^2}{4L^2} < \frac{1}{LC} \quad \Leftrightarrow \quad \alpha^2 < \omega^2.
\]

Therefore, \(r_{\pm} = -\alpha \pm i\sqrt{\omega^2 - \alpha^2} \).
Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: Recall: $r_\pm = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Case (b) $R < \sqrt{4L/C}$. This implies

$$ R^2 < \frac{4L}{C} \iff \frac{R^2}{4L^2} < \frac{1}{LC} \iff \alpha^2 < \omega^2. $$

Therefore, $r_\pm = -\alpha \pm i\sqrt{\omega^2 - \alpha^2}$. The fundamental solutions are

$$ I_1(t) = e^{-\alpha t} \cos(\sqrt{\omega^2 - \alpha^2} t), $$
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to \(I'' + 2\alpha I' + \omega^2 I = 0 \), where \(\alpha = R/(2L) \), \(\omega^2 = 1/(LC) \), in the cases (a) (b) below.

Solution: Recall: \(r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2} \).

Case (b) \(R < \sqrt{4L/C} \). This implies
\[
R^2 < \frac{4L}{C} \iff \frac{R^2}{4L^2} < \frac{1}{LC} \iff \alpha^2 < \omega^2.
\]
Therefore, \(r_{\pm} = -\alpha \pm i\sqrt{\omega^2 - \alpha^2} \). The fundamental solutions are
\[
l_1(t) = e^{-\alpha t} \cos(\sqrt{\omega^2 - \alpha^2} t), \quad l_2(t) = e^{-\alpha t} \sin(\sqrt{\omega^2 - \alpha^2} t).
\]
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: Recall: $r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Case (b) $R < \sqrt{4L/C}$. This implies

$$R^2 < \frac{4L}{C} \iff \frac{R^2}{4L^2} < \frac{1}{LC} \iff \alpha^2 < \omega^2.$$

Therefore, $r_{\pm} = -\alpha \pm i\sqrt{\omega^2 - \alpha^2}$. The fundamental solutions are

$$I_1(t) = e^{-\alpha t} \cos(\sqrt{\omega^2 - \alpha^2} t), \quad I_2(t) = e^{-\alpha t} \sin(\sqrt{\omega^2 - \alpha^2} t).$$
Application: The RLC circuit.

Example

Find real-valued fundamental solutions to \(I'' + 2\alpha I' + \omega^2 I = 0 \), where \(\alpha = R/(2L), \omega^2 = 1/(LC) \), in the cases (a) (b) below.

Solution: Recall: \(r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2} \).

Case (b) \(R < \sqrt{4L/C} \). This implies

\[
R^2 < \frac{4L}{C} \iff \frac{R^2}{4L^2} < \frac{1}{LC} \iff \alpha^2 < \omega^2.
\]

Therefore, \(r_{\pm} = -\alpha \pm i\sqrt{\omega^2 - \alpha^2} \). The fundamental solutions are

\[
I_1(t) = e^{-\alpha t} \cos(\sqrt{\omega^2 - \alpha^2} t), \quad I_2(t) = e^{-\alpha t} \sin(\sqrt{\omega^2 - \alpha^2} t).
\]
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: Recall: $r_\pm = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Case (b) $R < \sqrt{4L/C}$. This implies

$$R^2 < \frac{4L}{C} \iff \frac{R^2}{4L^2} < \frac{1}{LC} \iff \alpha^2 < \omega^2.$$

Therefore, $r_\pm = -\alpha \pm i\sqrt{\omega^2 - \alpha^2}$. The fundamental solutions are

$$I_1(t) = e^{-\alpha t} \cos(\sqrt{\omega^2 - \alpha^2} t), \quad I_2(t) = e^{-\alpha t} \sin(\sqrt{\omega^2 - \alpha^2} t).$$

The resistance R damps the current oscillations.