Review for Exam 2.

- 5 or 6 problems.
- No multiple choice questions.
- No notes, no books, no calculators.
- Problems similar to homeworks.
- Exam covers: 7.4, 7.6, 7.7, 8-IT, 8.1, 8.2.
 - Solving differential equations (7.4).
 - Inverse trigonometric functions (7.6).
 - Hyperbolic functions (7.7).
 - Integration techniques (8-IT).
 - Integration by parts (8.1).
 - Trigonometric integrals (8.2).
- Section not covered:
 - Trigonometric substitutions (8.3).
Review for Exam 2.

- 5 or 6 problems.
- No multiple choice questions.
- No notes, no books, no calculators.
- Problems similar to homeworks.
- Exam covers: 7.4, 7.6, 7.7, 8-IT, 8.1, 8.2.
 - **Solving differential equations (7.4).**
 - Inverse trigonometric functions (7.6).
 - Hyperbolic functions (7.7).
 - Integration techniques (8-IT).
 - Integration by parts (8.1).
 - Trigonometric integrals (8.2).
- Section not covered:
 - Trigonometric substitutions (8.3).
Remark: Typical problems in this section:

(1) Find the function y solution of $y' = \frac{\sin(x)}{4y}$ and $y(0) = -\sqrt{2}$.
Remark: Typical problems in this section:

(1) Find the function y solution of $y' = \frac{\sin(x)}{4y}$ and $y(0) = -\sqrt{2}$.

(2) The intensity $L(x)$ of light x feet beneath the surface of the ocean satisfies the equation $L' = -kL$, for some $k > 0$. If diving at 15 ft cuts the light intensity in half, how deep the light intensity falls below $1/8$ the intensity at the surface?
Example

Find the function y solution of $y' = \frac{\sin(x)}{4y}$ and $y(0) = -\sqrt{2}$.

Solution:

$$4y y' = \sin(x) \Rightarrow \int 4y \, dy = \int \sin(x) \, dx.$$

The substitution $u = y(x)$, with $du = y'(x) \, dx$, implies

$$2u^2 = -\cos(x) + c.$$

Therefore, $y(x) = \frac{-\cos(x) + c}{\sqrt{2}}$.

The condition $y(0) < 0$, implies $y(x) = -\sqrt{5} - \cos(x) / \sqrt{2}$.

Furthermore, $-\sqrt{2} = -\sqrt{5 - 1} \sqrt{2} \Rightarrow 2 = \sqrt{5 - 1} \Rightarrow c = 5$.

We conclude that $y = -\sqrt{5} - \cos(x) / \sqrt{2}$. \(\triangleq\)
Example
Find the function \(y \) solution of \(y' = \frac{\sin(x)}{4y} \) and \(y(0) = -\sqrt{2} \).

Solution:

\[
4y \, y' = \sin(x)
\]
Example

Find the function y solution of $y' = \frac{\sin(x)}{4y}$ and $y(0) = -\sqrt{2}$.

Solution:

$$4y \, y' = \sin(x) \quad \Rightarrow \quad \int 4y(x) \, y'(x) \, dx = \int \sin(x) \, dx.$$
Example

Find the function y solution of $y' = \frac{\sin(x)}{4y}$ and $y(0) = -\sqrt{2}$.

Solution:

$$4y \ y' = \sin(x) \quad \Rightarrow \quad \int 4y(x) \ y'(x) \, dx = \int \sin(x) \, dx.$$

The substitution $u = y(x)$,
Example

Find the function \(y \) solution of \(y' = \frac{\sin(x)}{4y} \) and \(y(0) = -\sqrt{2} \).

Solution:

\[
4y \ y' = \sin(x) \quad \Rightarrow \quad \int 4y(x) \ y'(x) \, dx = \int \sin(x) \, dx.
\]

The substitution \(u = y(x) \), with \(du = y'(x) \, dx \),
Example

Find the function y solution of $y' = \frac{\sin(x)}{4y}$ and $y(0) = -\sqrt{2}$.

Solution:

$$4y \ y' = \sin(x) \quad \Rightarrow \quad \int 4y(x) \ y'(x) \ dx = \int \sin(x) \ dx.$$

The substitution $u = y(x)$, with $du = y'(x) \ dx$, implies

$$4 \int u \ du = \int \sin(x) \ dx$$
Example

Find the function y solution of $y' = \frac{\sin(x)}{4y}$ and $y(0) = -\sqrt{2}$.

Solution:

$$4y \ y' = \sin(x) \quad \Rightarrow \quad \int 4y(x) \ y'(x) \, dx = \int \sin(x) \, dx.$$

The substitution $u = y(x)$, with $du = y'(x) \, dx$, implies

$$4 \int u \, du = \int \sin(x) \, dx \quad \Rightarrow \quad 2u^2 = -\cos(x) + c,$$
Example
Find the function y solution of $y' = \frac{\sin(x)}{4y}$ and $y(0) = -\sqrt{2}$.

Solution:

\[4y y' = \sin(x) \quad \Rightarrow \quad \int 4y(x) y'(x) \, dx = \int \sin(x) \, dx. \]

The substitution $u = y(x)$, with $du = y'(x) \, dx$, implies

\[4 \int u \, du = \int \sin(x) \, dx \quad \Rightarrow \quad 2u^2 = -\cos(x) + c, \]

Therefore, $y^2(x) = (-\cos(x) + c)/2$.

\[\text{\textcopyright} \]
Solving differential equations (7.4)

Example
Find the function y solution of $y' = \frac{\sin(x)}{4y}$ and $y(0) = -\sqrt{2}$.

Solution:

\[4y \, y' = \sin(x) \quad \Rightarrow \quad \int 4y(x) \, y'(x) \, dx = \int \sin(x) \, dx. \]

The substitution $u = y(x)$, with $du = y'(x) \, dx$, implies

\[4 \int u \, du = \int \sin(x) \, dx \quad \Rightarrow \quad 2u^2 = -\cos(x) + c, \]

Therefore, $y^2(x) = (-\cos(x) + c)/2$. The condition $y(0) < 0$,
Example

Find the function y solution of $y' = \frac{\sin(x)}{4y}$ and $y(0) = -\sqrt{2}$.

Solution:

$$4y \ y' = \sin(x) \ \Rightarrow \ \int 4y(x) \ y'(x) \, dx = \int \sin(x) \, dx.$$

The substitution $u = y(x)$, with $du = y'(x) \, dx$, implies

$$4 \int u \, du = \int \sin(x) \, dx \ \Rightarrow \ 2u^2 = -\cos(x) + c,$$

Therefore, $y^2(x) = (-\cos(x) + c)/2$. The condition $y(0) < 0$, implies $y(x) = -\sqrt{c - \cos(x)}/\sqrt{2}$.

◁
Example
Find the function \(y \) solution of \(y' = \frac{\sin(x)}{4y} \) and \(y(0) = -\sqrt{2} \).

Solution:
\[
4y y' = \sin(x) \quad \Rightarrow \quad \int 4y(x) y'(x) \, dx = \int \sin(x) \, dx.
\]
The substitution \(u = y(x) \), with \(du = y'(x) \, dx \), implies
\[
4 \int u \, du = \int \sin(x) \, dx \quad \Rightarrow \quad 2u^2 = -\cos(x) + c,
\]
Therefore, \(y^2(x) = (\frac{-\cos(x) + c}{2})/2 \). The condition \(y(0) < 0 \), implies \(y(x) = -\sqrt{c - \cos(x)}/\sqrt{2} \). Furthermore,
\[
-\sqrt{2} = -\frac{\sqrt{c - 1}}{\sqrt{2}}
\]
Solving differential equations (7.4)

Example

Find the function y solution of $y' = \frac{\sin(x)}{4y}$ and $y(0) = -\sqrt{2}$.

Solution:

$$4y \, y' = \sin(x) \quad \Rightarrow \quad \int 4y(x) \, y'(x) \, dx = \int \sin(x) \, dx.$$

The substitution $u = y(x)$, with $du = y'(x) \, dx$, implies

$$4 \int u \, du = \int \sin(x) \, dx \quad \Rightarrow \quad 2u^2 = -\cos(x) + c,$$

Therefore, $y^2(x) = (-\cos(x) + c)/2$. The condition $y(0) < 0$, implies $y(x) = -\sqrt{c - \cos(x)}/\sqrt{2}$. Furthermore,

$$-\sqrt{2} = -\frac{\sqrt{c - 1}}{\sqrt{2}} \quad \Rightarrow \quad 2 = \sqrt{c - 1}$$
Example

Find the function y solution of $y' = \frac{\sin(x)}{4y}$ and $y(0) = -\sqrt{2}$.

Solution:

$$4y\, y' = \sin(x) \quad \Rightarrow \quad \int 4y(x)\, y'(x) \, dx = \int \sin(x) \, dx.$$

The substitution $u = y(x)$, with $du = y'(x) \, dx$, implies

$$4 \int u \, du = \int \sin(x) \, dx \quad \Rightarrow \quad 2u^2 = -\cos(x) + c,$$

Therefore, $y^2(x) = (-\cos(x) + c)/2$. The condition $y(0) < 0$, implies $y(x) = -\sqrt{c - \cos(x)}/\sqrt{2}$. Furthermore,

$$-\sqrt{2} = -\frac{\sqrt{c - 1}}{\sqrt{2}} \quad \Rightarrow \quad 2 = \sqrt{c - 1} \quad \Rightarrow \quad c = 5.$$
Example
Find the function y solution of $y' = \frac{\sin(x)}{4y}$ and $y(0) = -\sqrt{2}$.

Solution:

$$ 4y \cdot y' = \sin(x) \quad \Rightarrow \quad \int 4y(x) \cdot y'(x) \, dx = \int \sin(x) \, dx. $$

The substitution $u = y(x)$, with $du = y'(x) \, dx$, implies

$$ 4 \int u \, du = \int \sin(x) \, dx \quad \Rightarrow \quad 2u^2 = -\cos(x) + c, $$

Therefore, $y^2(x) = (\cos(x) + c)/2$. The condition $y(0) < 0$, implies $y(x) = -\sqrt{c - \cos(x)}/\sqrt{2}$. Furthermore,

$$ -\sqrt{2} = -\frac{\sqrt{c - 1}}{\sqrt{2}} \quad \Rightarrow \quad 2 = \sqrt{c - 1} \quad \Rightarrow \quad c = 5. $$

We conclude that $y = -\sqrt{5 - \cos(x)}/\sqrt{2}$. △
Example

The intensity $L(x)$ of light x feet beneath the surface of the ocean satisfies the equation $L' = -kL$, for some $k > 0$. If diving at 15 ft cuts the light intensity in half, how deep the light intensity falls below $1/8$ the intensity at the surface?
Example

The intensity $L(x)$ of light x feet beneath the surface of the ocean satisfies the equation $L' = -kL$, for some $k > 0$. If diving at 15 ft cuts the light intensity in half, how deep the light intensity falls below 1/8 the intensity at the surface?

Solution: Integrate the differential equation,
Example

The intensity $L(x)$ of light x feet beneath the surface of the ocean satisfies the equation $L' = -kL$, for some $k > 0$. If diving at 15 ft cuts the light intensity in half, how deep the light intensity falls below $1/8$ the intensity at the surface?

Solution: Integrate the differential equation,

$$\int \frac{L'(x)}{L(x)} \, dx = -k \int dx,$$
Solving differential equations (7.4)

Example

The intensity $L(x)$ of light x feet beneath the surface of the ocean satisfies the equation $L' = -kL$, for some $k > 0$. If diving at 15 ft cuts the light intensity in half, how deep the light intensity falls below $1/8$ the intensity at the surface?

Solution: Integrate the differential equation,

$$\int \frac{L'(x)}{L(x)} \, dx = -k \int dx, \quad u = L(x), \quad du = L'(x) \, dx$$
Example
The intensity $L(x)$ of light x feet beneath the surface of the ocean satisfies the equation $L' = -kL$, for some $k > 0$. If diving at 15 ft cuts the light intensity in half, how deep the light intensity falls below $1/8$ the intensity at the surface?

Solution: Integrate the differential equation,

$$\int \frac{L'(x)}{L(x)} \, dx = -k \int dx, \quad u = L(x), \quad du = L'(x) \, dx$$

$$\int \frac{du}{u} = -k \int dx$$
Solving differential equations (7.4)

Example

The intensity $L(x)$ of light x feet beneath the surface of the ocean satisfies the equation $L' = -kL$, for some $k > 0$. If diving at 15 ft cuts the light intensity in half, how deep the light intensity falls below $1/8$ the intensity at the surface?

Solution: Integrate the differential equation,

$$\int \frac{L'(x)}{L(x)} \, dx = -k \int \, dx, \quad u = L(x), \quad du = L'(x) \, dx$$

$$\int \frac{du}{u} = -k \int \, dx \quad \Rightarrow \quad \ln(u) = -kx + c$$
Example

The intensity \(L(x) \) of light \(x \) feet beneath the surface of the ocean satisfies the equation \(L' = -kL \), for some \(k > 0 \). If diving at 15 ft cuts the light intensity in half, how deep the light intensity falls below \(1/8 \) the intensity at the surface?

Solution: Integrate the differential equation,

\[
\int \frac{L'(x)}{L(x)} \, dx = -k \int dx, \quad u = L(x), \quad du = L'(x) \, dx
\]

\[
\int \frac{du}{u} = -k \int dx \quad \Rightarrow \quad \ln(u) = -kx + c \quad \Rightarrow \quad L(x) = e^{-kx+c}.
\]
Solving differential equations (7.4)

Example

The intensity $L(x)$ of light x feet beneath the surface of the ocean satisfies the equation $L' = -kL$, for some $k > 0$. If diving at 15 ft cuts the light intensity in half, how deep the light intensity falls below $1/8$ the intensity at the surface?

Solution: Integrate the differential equation,

$$
\int \frac{L'(x)}{L(x)} \, dx = -k \int \, dx, \quad u = L(x), \quad du = L'(x) \, dx
$$

$$
\int \frac{du}{u} = -k \int \, dx \Rightarrow \ln(u) = -kx + c \Rightarrow L(x) = e^{-kx+c}.
$$

Since $L(x) = e^{-kx}e^c$,
Example

The intensity $L(x)$ of light x feet beneath the surface of the ocean satisfies the equation $L' = -kL$, for some $k > 0$. If diving at 15 ft cuts the light intensity in half, how deep the light intensity falls below $1/8$ the intensity at the surface?

Solution: Integrate the differential equation,

$$\int \frac{L'(x)}{L(x)} \, dx = -k \int \, dx, \quad u = L(x), \quad du = L'(x) \, dx$$

$$\int \frac{du}{u} = -k \int \, dx \Rightarrow \ln(u) = -kx + c \Rightarrow L(x) = e^{-kx+c}.$$

Since $L(x) = e^{-kx}e^c$, calling $L_0 = e^c$,

Solving differential equations (7.4)

Example
The intensity $L(x)$ of light x feet beneath the surface of the ocean satisfies the equation $L' = -kL$, for some $k > 0$. If diving at 15 ft cuts the light intensity in half, how deep the light intensity falls below $1/8$ the intensity at the surface?

Solution: Integrate the differential equation,

$$\int \frac{L'(x)}{L(x)} \, dx = -k \int dx, \quad u = L(x), \quad du = L'(x) \, dx$$

$$\int \frac{du}{u} = -k \int dx \quad \Rightarrow \quad \ln(u) = -kx + c \quad \Rightarrow \quad L(x) = e^{-kx+c}.$$

Since $L(x) = e^{-kx} e^c$, calling $L_0 = e^c$, we get the solution

$$L(x) = L_0 e^{-kx}.$$
Example

The intensity $L(x)$ of light x feet beneath the surface of the ocean satisfies the equation $L' = -kL$, for some $k > 0$. If diving at 15 ft cuts the light intensity in half, how deep the light intensity falls below $1/8$ the intensity at the surface?

Solution: Recall: $L(x) = L_0 e^{-kx}$.
Example

The intensity \(L(x) \) of light \(x \) feet beneath the surface of the ocean satisfies the equation \(L' = -kL \), for some \(k > 0 \). If diving at 15 ft cuts the light intensity in half, how deep the light intensity falls below \(1/8 \) the intensity at the surface?

Solution: Recall: \(L(x) = L_0 e^{-kx} \). Now the first condition implies

\[
\frac{L_0}{2} = L(15)
\]
Example
The intensity $L(x)$ of light x feet beneath the surface of the ocean satisfies the equation $L' = -kL$, for some $k > 0$. If diving at 15 ft cuts the light intensity in half, how deep the light intensity falls below $1/8$ the intensity at the surface?

Solution: Recall: $L(x) = L_0 e^{-kx}$. Now the first condition implies

$$\frac{L_0}{2} = L(15) = L_0 e^{-15k}$$
Example
The intensity $L(x)$ of light x feet beneath the surface of the ocean satisfies the equation $L' = -kL$, for some $k > 0$. If diving at 15 ft cuts the light intensity in half, how deep the light intensity falls below $1/8$ the intensity at the surface?

Solution: Recall: $L(x) = L_0 e^{-kx}$. Now the first condition implies

$$\frac{L_0}{2} = L(15) = L_0 e^{-15k} \implies e^{-15k} = \frac{1}{2}$$
Example

The intensity $L(x)$ of light x feet beneath the surface of the ocean satisfies the equation $L' = -kL$, for some $k > 0$. If diving at 15 ft cuts the light intensity in half, how deep the light intensity falls below $1/8$ the intensity at the surface?

Solution: Recall: $L(x) = L_0 e^{-kx}$. Now the first condition implies

$$\frac{L_0}{2} = L(15) = L_0 e^{-15k} \Rightarrow e^{-15k} = \frac{1}{2} \Rightarrow -15k = -\ln(2)$$
Example
The intensity $L(x)$ of light x feet beneath the surface of the ocean satisfies the equation $L' = -kL$, for some $k > 0$. If diving at 15 ft cuts the light intensity in half, how deep the light intensity falls below $1/8$ the intensity at the surface?

Solution: Recall: $L(x) = L_0 e^{-kx}$. Now the first condition implies

$$\frac{L_0}{2} = L(15) = L_0 e^{-15k} \Rightarrow e^{-15k} = \frac{1}{2} \Rightarrow -15k = -\ln(2)$$

so we conclude that $k = \ln(2)/15$.

\[\]
Example

The intensity $L(x)$ of light x feet beneath the surface of the ocean satisfies the equation $L' = -kL$, for some $k > 0$. If diving at 15 ft cuts the light intensity in half, how deep the light intensity falls below $1/8$ the intensity at the surface?

Solution: Recall: $L(x) = L_0 e^{-kx}$. Now the first condition implies

$$\frac{L_0}{2} = L(15) = L_0 e^{-15k} \Rightarrow e^{-15k} = \frac{1}{2} \Rightarrow -15k = -\ln(2)$$

so we conclude that $k = \ln(2)/15$. The second condition implies

$$\frac{L_0}{8} = L_0 e^{-kx_1}$$
Solving differential equations (7.4)

Example

The intensity \(L(x) \) of light \(x \) feet beneath the surface of the ocean satisfies the equation \(L' = -kL \), for some \(k > 0 \). If diving at 15 ft cuts the light intensity in half, how deep the light intensity falls below \(1/8 \) the intensity at the surface?

Solution: Recall: \(L(x) = L_0 e^{-kx} \). Now the first condition implies

\[
\frac{L_0}{2} = L(15) = L_0 e^{-15k} \implies e^{-15k} = \frac{1}{2} \implies -15k = -\ln(2)
\]

so we conclude that \(k = \ln(2)/15 \). The second condition implies

\[
\frac{L_0}{8} = L_0 e^{-kx_1} \implies e^{-kx_1} = \frac{1}{8}
\]
Example

The intensity $L(x)$ of light x feet beneath the surface of the ocean satisfies the equation $L' = -kL$, for some $k > 0$. If diving at 15 ft cuts the light intensity in half, how deep the light intensity falls below $1/8$ the intensity at the surface?

Solution: Recall: $L(x) = L_0 e^{-kx}$. Now the first condition implies

$$\frac{L_0}{2} = L(15) = L_0 e^{-15k} \Rightarrow e^{-15k} = \frac{1}{2} \Rightarrow -15k = -\ln(2)$$

so we conclude that $k = \ln(2)/15$. The second condition implies

$$\frac{L_0}{8} = L_0 e^{-kx_1} \Rightarrow e^{-kx_1} = \frac{1}{8} \Rightarrow -kx_1 = -\ln(8).$$
Example
The intensity $L(x)$ of light x feet beneath the surface of the ocean satisfies the equation $L' = -kL$, for some $k > 0$. If diving at 15 ft cuts the light intensity in half, how deep the light intensity falls below 1/8 the intensity at the surface?

Solution: Recall: $L(x) = L_0 e^{-kx}$. Now the first condition implies

$$\frac{L_0}{2} = L(15) = L_0 e^{-15k} \Rightarrow e^{-15k} = \frac{1}{2} \Rightarrow -15k = -\ln(2)$$

so we conclude that $k = \ln(2)/15$. The second condition implies

$$\frac{L_0}{8} = L_0 e^{-kx_1} \Rightarrow e^{-kx_1} = \frac{1}{8} \Rightarrow -kx_1 = -\ln(8).$$

Using the value $k = \ln(2)/15$,
Solving differential equations (7.4)

Example

The intensity $L(x)$ of light x feet beneath the surface of the ocean satisfies the equation $L' = -kL$, for some $k > 0$. If diving at 15 ft cuts the light intensity in half, how deep the light intensity falls below $1/8$ the intensity at the surface?

Solution: Recall: $L(x) = L_0 e^{-kx}$. Now the first condition implies

$$\frac{L_0}{2} = L(15) = L_0 e^{-15k} \implies e^{-15k} = \frac{1}{2} \implies -15k = -\ln(2)$$

so we conclude that $k = \ln(2)/15$. The second condition implies

$$\frac{L_0}{8} = L_0 e^{-kx_1} \implies e^{-kx_1} = \frac{1}{8} \implies -kx_1 = -\ln(8).$$

Using the value $k = \ln(2)/15$, we get

$$x_1 = \ln(8) \frac{15}{\ln(2)}.$$
Example
The intensity $L(x)$ of light x feet beneath the surface of the ocean satisfies the equation $L' = -kL$, for some $k > 0$. If diving at 15 ft cuts the light intensity in half, how deep the light intensity falls below $1/8$ the intensity at the surface?

Solution: Recall: $L(x) = L_0 e^{-kx}$. Now the first condition implies

$$\frac{L_0}{2} = L(15) = L_0 e^{-15k} \Rightarrow e^{-15k} = \frac{1}{2} \Rightarrow -15k = -\ln(2)$$

so we conclude that $k = \ln(2)/15$. The second condition implies

$$\frac{L_0}{8} = L_0 e^{-kx_1} \Rightarrow e^{-kx_1} = \frac{1}{8} \Rightarrow -kx_1 = -\ln(8).$$

Using the value $k = \ln(2)/15$, we get

$$x_1 = \ln(8) \frac{15}{\ln(2)} \Rightarrow x_1 = 3(15).$$
Example

The intensity $L(x)$ of light x feet beneath the surface of the ocean satisfies the equation $L' = -kL$, for some $k > 0$. If diving at 15 ft cuts the light intensity in half, how deep the light intensity falls below $1/8$ the intensity at the surface?

Solution: Recall: $L(x) = L_0 e^{-kx}$. Now the first condition implies

$$\frac{L_0}{2} = L(15) = L_0 e^{-15k} \Rightarrow e^{-15k} = \frac{1}{2} \Rightarrow -15k = -\ln(2)$$

so we conclude that $k = \ln(2)/15$. The second condition implies

$$\frac{L_0}{8} = L_0 e^{-kx_1} \Rightarrow e^{-kx_1} = \frac{1}{8} \Rightarrow -kx_1 = -\ln(8).$$

Using the value $k = \ln(2)/15$, we get

$$x_1 = \ln(8) \frac{15}{\ln(2)} \Rightarrow x_1 = 3(15) \Rightarrow x_1 = 45.$$
Review for Exam 2.

Exam covers: 7.4, 7.6, 7.7, 8-IT, 8.1, 8.2.

- Solving differential equations (7.4).
- **Inverse trigonometric functions (7.6).**
- Hyperbolic functions (7.7).
- Integration techniques (8-IT).
- Integration by parts (8.1).
- Trigonometric integrals (8.2).

Section not covered:

- Trigonometric substitutions (8.3).
Inverse trigonometric functions (7.6)

Notation: In the literature is common the notation \(\sin^{-1} = \text{arcsin} \), and similar for the rest of the trigonometric functions.

Do not confuse \(\frac{1}{\sin(x)} \neq \sin^{-1}(x) = \text{arcsin}(x) \).

Remark: \(\sin, \cos \) have simple values at particular angles.

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(\sin(\theta))</th>
<th>(\cos(\theta))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(\pi/6)</td>
<td>1/2</td>
<td>(\sqrt{3}/2)</td>
</tr>
<tr>
<td>(\pi/4)</td>
<td>(\sqrt{2}/2)</td>
<td>(\sqrt{2}/2)</td>
</tr>
<tr>
<td>(\pi/3)</td>
<td>(\sqrt{3}/2)</td>
<td>1/2</td>
</tr>
<tr>
<td>(\pi/2)</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Inverse trigonometric functions (7.6)

Remark: On certain domains the trigonometric functions are invertible.
Inverse trigonometric functions (7.6)

Remark: The graph of the inverse function is a reflection of the original function graph about the \(y = x \) axis.

\[
\begin{align*}
 y &= \arcsin(x) \\
 y &= \arccos(x) \\
 y &= \arctan(x) \\
 y &= \text{arccsc}(x) \\
 y &= \text{arcsec}(x) \\
 y &= \text{arccot}(x)
\end{align*}
\]
Inverse trigonometric functions (7.6)

Theorem

The derivative of inverse trigonometric functions are:

\[
\begin{align*}
\text{arcsin}'(x) &= \frac{1}{\sqrt{1 - x^2}}, \\
\text{arccos}'(x) &= -\frac{1}{\sqrt{1 - x^2}}, \quad |x| \leq 1, \\
\text{arctan}'(x) &= \frac{1}{1 + x^2}, \\
\text{arccot}'(x) &= -\frac{1}{1 + x^2}, \quad x \in \mathbb{R}, \\
\text{arcsec}'(x) &= \frac{1}{|x|\sqrt{x^2 - 1}}, \\
\text{arccsc}'(x) &= -\frac{1}{|x|\sqrt{x^2 - 1}}, \quad |x| \geq 1.
\end{align*}
\]
Inverse trigonometric functions (7.6)

Theorem

The derivative of inverse trigonometric functions are:

\[
\begin{align*}
\arcsin'(x) &= \frac{1}{\sqrt{1 - x^2}}, \\
\arccos'(x) &= -\frac{1}{\sqrt{1 - x^2}}, \quad |x| \leq 1, \\
\arctan'(x) &= \frac{1}{1 + x^2}, \\
\arccot'(x) &= -\frac{1}{1 + x^2}, \quad x \in \mathbb{R}, \\
\text{arcsec}'(x) &= \frac{1}{|x|\sqrt{x^2 - 1}}, \\
\text{arccsc}'(x) &= -\frac{1}{|x|\sqrt{x^2 - 1}}, \quad |x| \geq 1.
\end{align*}
\]

Recall \(\arctan'(x) = \frac{1}{\tan'(\arctan(x))} \),
Inverse trigonometric functions (7.6)

Theorem

The derivative of inverse trigonometric functions are:

\[\text{arcsin}'(x) = \frac{1}{\sqrt{1 - x^2}}, \quad \text{arccos}'(x) = -\frac{1}{\sqrt{1 - x^2}}, \quad |x| \leq 1, \]

\[\text{arctan}'(x) = \frac{1}{1 + x^2}, \quad \text{arccot}'(x) = -\frac{1}{1 + x^2}, \quad x \in \mathbb{R}, \]

\[\text{arcsec}'(x) = \frac{1}{|x|\sqrt{x^2 - 1}}, \quad \text{arccsc}'(x) = -\frac{1}{|x|\sqrt{x^2 - 1}}, \quad |x| \geq 1. \]

Recall \(\text{arctan}'(x) = \frac{1}{\tan'(\text{arctan}(x))}, \quad \tan'(y) = \frac{\cos^2(y) + \sin^2(y)}{\cos^2(y)} \).
Inverse trigonometric functions (7.6)

Theorem

The derivative of inverse trigonometric functions are:

\[\arcsin'(x) = \frac{1}{\sqrt{1 - x^2}}, \quad \arccos'(x) = -\frac{1}{\sqrt{1 - x^2}}, \quad |x| \leq 1, \]
\[\arctan'(x) = \frac{1}{1 + x^2}, \quad \arccot'(x) = -\frac{1}{1 + x^2}, \quad x \in \mathbb{R}, \]
\[\text{arcsec}'(x) = \frac{1}{|x|\sqrt{x^2 - 1}}, \quad \text{arccsc}'(x) = -\frac{1}{|x|\sqrt{x^2 - 1}}, \quad |x| \geq 1. \]

Recall \(\arctan'(x) = \frac{1}{\tan'(\arctan(x))} \), \(\tan'(y) = \frac{\cos^2(y) + \sin^2(y)}{\cos^2(y)} \)

\[\tan'(y) = 1 + \tan^2(y), \]
Inverse trigonometric functions (7.6)

Theorem

The derivative of inverse trigonometric functions are:

\[
\begin{align*}
\arcsin'(x) &= \frac{1}{\sqrt{1-x^2}}, & \arccos'(x) &= -\frac{1}{\sqrt{1-x^2}}, & |x| \leq 1, \\
\arctan'(x) &= \frac{1}{1+x^2}, & \arccot'(x) &= -\frac{1}{1+x^2}, & x \in \mathbb{R}, \\
\text{arcsec}'(x) &= \frac{1}{|x|\sqrt{x^2-1}}, & \text{arccsc}'(x) &= -\frac{1}{|x|\sqrt{x^2-1}}, & |x| \geq 1.
\end{align*}
\]

Recall \(\arctan'(x) = \frac{1}{\tan'(\arctan(x))} \), \(\tan'(y) = \frac{\cos^2(y) + \sin^2(y)}{\cos^2(y)} \)

\(\tan'(y) = 1 + \tan^2(y) \), \(y = \arctan(x) \),
Inverse trigonometric functions (7.6)

Theorem

The derivative of inverse trigonometric functions are:

\[
\begin{align*}
arcsin'(x) &= \frac{1}{\sqrt{1 - x^2}}, & \text{arccos}'(x) &= -\frac{1}{\sqrt{1 - x^2}}, & x \leq 1, \\
arctan'(x) &= \frac{1}{1 + x^2}, & \text{arccot}'(x) &= -\frac{1}{1 + x^2}, & x \in \mathbb{R}, \\
arcsec'(x) &= \frac{1}{|x|\sqrt{x^2 - 1}}, & \text{arccsc}'(x) &= -\frac{1}{|x|\sqrt{x^2 - 1}}, & |x| \geq 1.
\end{align*}
\]

Recall \(\arctan'(x) = \frac{1}{\tan'(\arctan(x))} \), \(\tan'(y) = \frac{\cos^2(y) + \sin^2(y)}{\cos^2(y)} \), \(\tan'(y) = 1 + \tan^2(y) \), \(y = \arctan(x) \), \(\Rightarrow \arctan'(x) = \frac{1}{1 + x^2} \).
Remark: Typical problems in this section:

(1) Sketch the graphs of

\[y(x) = \sec(x), \quad z(x) = \text{arcsec}(x). \]

State the respective domains and ranges.

(2) Evaluate \(\cos(\arcsin(1/\sqrt{2})) \).

(3) Evaluate \(\sec(\arctan(-2/3)) \).

(4) Find \(y' \) for \(y(x) = \arctan(3x^2) \).

(5) Find \(I = \int \frac{dx}{\sqrt{2 - x^2}} \).
Inverse trigonometric functions (7.6)

Example
Evaluate \(\sec(\arctan(-2/3)) \).

Solution:
We only need the relation between \(\sec \) and \(\tan \),
\[
\sec^2(\theta) = \tan^2(\theta) + 1.
\]
Then holds \(\sec(\theta) = \pm \sqrt{\tan^2(\theta) + 1} \).

We need to find the correct sign:
\(\theta = \arctan(-2/3) \in (-\pi/2, 0) \).
Since \(\sec(\theta) = 1/\cos(\theta) \),
we conclude that \(\sec(\theta) > 0 \).
Hence
\[
\sec(\arctan(-2/3)) = \sqrt{\tan^2(\arctan(-2/3)) + 1} = \sqrt{4/9 + 1} = \sqrt{13/9}.
\]
We conclude that
\[
\sec(\arctan(-2/3)) = \sqrt{13}/3.
\]
\(\triangleright \)
Inverse trigonometric functions (7.6)

Example
Evaluate \(\sec(\arctan(-2/3)) \).

Solution: We only need the relation between sec and tan,

\[
\sec^2(\theta) = \tan^2(\theta) + 1
\]

Then holds \(\sec(\theta) = \pm \sqrt{\tan^2(\theta) + 1} \).

We need to find the correct sign:
\(\theta = \arctan(-2/3) \in (-\pi/2, 0) \).
Since \(\sec(\theta) = 1/\cos(\theta) \), we conclude that \(\sec(\theta) > 0 \).
Hence \(\sec(\arctan(-2/3)) = \sqrt{\frac{-4}{9} + 1} = \sqrt{\frac{13}{9}} \).

We conclude that
\(\sec(\arctan(-2/3)) = \sqrt{\frac{13}{3}} \).
Example
Evaluate \(\sec(\arctan(-2/3)) \).

Solution: We only need the relation between \(\sec \) and \(\tan \),

\[
\sec^2(\theta) = \tan^2(\theta) + 1.
\]
Inverse trigonometric functions (7.6)

Example
Evaluate $\sec(\arctan(-2/3))$.

Solution: We only need the relation between sec and tan,

$$\sec^2(\theta) = \tan^2(\theta) + 1.$$

Then holds $\sec(\theta) = \pm \sqrt{\tan^2(\theta) + 1}$.

We conclude that $\sec(\arctan(-2/3)) = \sqrt{13}/3$.

◁
Example
Evaluate \(\sec(\arctan(-2/3)) \).

Solution: We only need the relation between \(\sec \) and \(\tan \),

\[
\sec^2(\theta) = \tan^2(\theta) + 1.
\]

Then holds \(\sec(\theta) = \pm \sqrt{\tan^2(\theta) + 1} \). We need to find the correct sign:
Example
Evaluate \(\sec(\arctan(-2/3)) \).

Solution: We only need the relation between sec and tan,

\[
\sec^2(\theta) = \tan^2(\theta) + 1.
\]

Then holds \(\sec(\theta) = \pm \sqrt{\tan^2(\theta) + 1} \). We need to find the correct sign: \(\theta = \arctan(-2/3) \in (-\pi/2, 0) \).
Inverse trigonometric functions (7.6)

Example
Evaluate \(\sec(\arctan(-2/3)) \).

Solution: We only need the relation between \(\sec \) and \(\tan \),

\[
\sec^2(\theta) = \tan^2(\theta) + 1.
\]

Then holds \(\sec(\theta) = \pm \sqrt{\tan^2(\theta) + 1} \). We need to find the correct sign: \(\theta = \arctan(-2/3) \in (-\pi/2, 0) \). Since \(\sec(\theta) = 1/\cos(\theta) \),
Inverse trigonometric functions (7.6)

Example
Evaluate $\sec(\arctan(-2/3))$.

Solution: We only need the relation between sec and tan,

$$\sec^2(\theta) = \tan^2(\theta) + 1.$$

Then holds $\sec(\theta) = \pm \sqrt{\tan^2(\theta) + 1}$. We need to find the correct sign: $\theta = \arctan(-2/3) \in (-\pi/2, 0)$. Since $\sec(\theta) = 1/\cos(\theta)$, we conclude that $\sec(\theta) > 0$.

\therefore
Inverse trigonometric functions (7.6)

Example
Evaluate \(\sec(\arctan(-2/3)) \).

Solution: We only need the relation between sec and tan,

\[
\sec^2(\theta) = \tan^2(\theta) + 1.
\]

Then holds \(\sec(\theta) = \pm \sqrt{\tan^2(\theta) + 1} \). We need to find the correct sign: \(\theta = \arctan(-2/3) \in (-\pi/2, 0) \). Since \(\sec(\theta) = 1/\cos(\theta) \), we conclude that \(\sec(\theta) > 0 \). Hence

\[
\sec(\arctan\left(-\frac{2}{3}\right)) = \sqrt{\tan^2(\arctan\left(-\frac{2}{3}\right)) + 1}
\]

\(\triangleq \)
Example
Evaluate \(\sec(\arctan(-2/3)) \).

Solution: We only need the relation between \(\sec \) and \(\tan \),

\[
\sec^2(\theta) = \tan^2(\theta) + 1.
\]

Then holds \(\sec(\theta) = \pm \sqrt{\tan^2(\theta) + 1} \). We need to find the correct sign: \(\theta = \arctan(-2/3) \in (-\pi/2, 0) \). Since \(\sec(\theta) = 1/\cos(\theta) \), we conclude that \(\sec(\theta) > 0 \). Hence

\[
\sec(\arctan\left(-\frac{2}{3}\right)) = \sqrt{\tan^2(\arctan\left(-\frac{2}{3}\right)) + 1} = \sqrt{\frac{4}{9} + 1}
\]
Inverse trigonometric functions (7.6)

Example
Evaluate \(\sec(\arctan(-2/3)) \).

Solution: We only need the relation between sec and tan,

\[
\sec^2(\theta) = \tan^2(\theta) + 1.
\]

Then holds \(\sec(\theta) = \pm \sqrt{\tan^2(\theta) + 1} \). We need to find the correct sign: \(\theta = \arctan(-2/3) \in (-\pi/2, 0) \). Since \(\sec(\theta) = 1/\cos(\theta) \), we conclude that \(\sec(\theta) > 0 \). Hence

\[
\sec(\arctan(-\frac{2}{3})) = \sqrt{\tan^2(\arctan(-\frac{2}{3})) + 1} = \sqrt{\frac{4}{9} + 1} = \sqrt{\frac{13}{9}}.
\]
Inverse trigonometric functions (7.6)

Example
Evaluate \(\sec(\arctan(-2/3)) \).

Solution: We only need the relation between sec and tan,

\[
\sec^2(\theta) = \tan^2(\theta) + 1.
\]

Then holds \(\sec(\theta) = \pm \sqrt{\tan^2(\theta) + 1} \). We need to find the correct sign: \(\theta = \arctan(-2/3) \in (-\pi/2, 0) \). Since \(\sec(\theta) = 1/\cos(\theta) \), we conclude that \(\sec(\theta) > 0 \). Hence

\[
\sec(\arctan\left(-\frac{2}{3}\right)) = \sqrt{\tan^2(\arctan\left(-\frac{2}{3}\right)) + 1} = \sqrt{\frac{4}{9} + 1} = \sqrt{\frac{13}{9}}.
\]

We conclude that \(\sec(\arctan(-2/3)) = \sqrt{13}/3 \). \(\triangleleft \)
Review for Exam 2.

Exam covers: 7.4, 7.6, 7.7, 8-IT, 8.1, 8.2.
 ▶ Solving differential equations (7.4).
 ▶ Inverse trigonometric functions (7.6).
 ▶ **Hyperbolic functions (7.7).**
 ▶ Integration techniques (8-IT).
 ▶ Integration by parts (8.1).
 ▶ Trigonometric integrals (8.2).

Section not covered:
 ▶ Trigonometric substitutions (8.3).
Hyperbolic functions (7.7)

Definition
The complete set of *hyperbolic trigonometric functions* is given by

\[
\begin{align*}
\cosh(x) &= \frac{e^x + e^{-x}}{2}, \\
\sinh(x) &= \frac{e^x - e^{-x}}{2}, \\
\tanh(x) &= \frac{\sinh(x)}{\cosh(x)}, \\
\coth(x) &= \frac{\cosh(x)}{\sinh(x)}, \\
\csch(x) &= \frac{1}{\sinh(x)}, \\
\sech(x) &= \frac{1}{\cosh(x)}.
\end{align*}
\]

Theorem
The following identities hold,

\[
\begin{align*}
\cosh^2(x) - \sinh^2(x) &= 1, \\
\sinh(2x) &= 2\sinh(x)\cosh(x), \\
\cosh(2x) &= \cosh^2(x) + \sinh^2(x), \\
\cosh^2(x) &= \frac{1}{2}[1 + \cosh(2x)], \\
\sinh^2(x) &= \frac{1}{2}[-1 + \cosh(2x)].
\end{align*}
\]
Remark: Typical problems in this section:

(1) Prove the identities: \(\cosh^2(x) - \sinh^2(x) = 1 \), and

\[
\cosh(2x) = \cosh^2(x) + \sinh^2(x), \quad \sinh(2x) = 2 \sinh(x) \cosh(x),
\]

\[
\cosh^2(x) = \frac{1}{2} (1 + \cosh(2x)), \quad \sinh^2(x) = \frac{1}{2} (-1 + \cosh(2x)).
\]

(2) Know the derivatives and integrals of hyperbolic functions.
Review for Exam 2.

Exam covers: 7.4, 7.6, 7.7, 8-IT, 8.1, 8.2.

- Solving differential equations (7.4).
- Inverse trigonometric functions (7.6).
- Hyperbolic functions (7.7).
- Integration techniques (8-IT).
- Integration by parts (8.1).
- Trigonometric integrals (8.2).

Section not covered:

- Trigonometric substitutions (8.3).
Remark: Evaluate the following integrals:

(1) \[\int \frac{(1 + x) \, dx}{\sqrt{1 - 2x^2}}. \]
(2) \[\int_{1}^{8} \frac{dx}{x^2 - 2x + 50}. \]
(3) \[\int x^3 \ln(x) \, dx. \]
(4) \[\int x^2 \, e^{2x} \, dx. \]
(5) \[\int \frac{dx}{\sqrt{8x - x^2}}. \]
(6) \[\int \frac{dx}{\sqrt{25 - x^2}}, \quad |x| < 5. \]
(7) \[\int \cot^3(x) \, dx. \]
(8) \[\int \sin^4(x) \, dx. \]
(9) \[\int x^3 \cos(x) \, dx. \]
(10) \[\int_{-\pi/2}^{\pi/2} \sqrt{1 - \cos(2x)} \, dx. \]
(11) \[\int_{\pi/4}^{\pi/3} \frac{\sec^2(x)}{\tan(x)} \, dx. \]
(12) \[\int \frac{2\ln(x)}{x} \, dx. \]
Sections 8-IT, 8.1, 8.2

Remark: Evaluate the following integrals:

(1) \[\int \frac{(1 + x) \, dx}{\sqrt{1 - 2x^2}}. \]
Remark: Evaluate the following integrals:

(1) $\int \frac{(1 + x) \, dx}{\sqrt{1 - 2x^2}}$. Split the integral
Remark: Evaluate the following integrals:

\((1) \quad \int \frac{(1 + x) \, dx}{\sqrt{1 - 2x^2}} \). Split the integral and do two substitutions.
Remark: Evaluate the following integrals:

(1) \[\int \frac{(1 + x) \; dx}{\sqrt{1 - 2x^2}}. \] Split the integral and do two substitutions.

(2) \[\int_{1}^{8} \frac{dx}{x^2 - 2x + 50}. \]
Remark: Evaluate the following integrals:

(1) \[\int \frac{(1 + x) \, dx}{\sqrt{1 - 2x^2}}. \] Split the integral and do two substitutions.

(2) \[\int_{1}^{8} \frac{dx}{x^2 - 2x + 50}. \] Complete the square

(3) \[\int x^3 \ln(x) \, dx. \] Three integrations by parts.

(4) \[\int x^2 e^{2x} \, dx. \] Two integrations by parts.

(5) \[\int dx \sqrt{8x - x^2}. \] Complete the square and recall arcsin.

(6) \[\int dx \sqrt{25 - x^2}, \ |x| < 5. \] Substitution and recall arcsin.
Remark: Evaluate the following integrals:

(1) \[\int \frac{(1 + x) \, dx}{\sqrt{1 - 2x^2}}. \] Split the integral and do two substitutions.

(2) \[\int_{1}^{8} \frac{dx}{x^2 - 2x + 50}. \] Complete the square and recall the arctan’.
Remark: Evaluate the following integrals:

(1) $\int \frac{(1 + x) \, dx}{\sqrt{1 - 2x^2}}$. Split the integral and do two substitutions.

(2) $\int_{1}^{8} \frac{dx}{x^2 - 2x + 50}$. Complete the square and recall the arctan'.

(3) $\int x^3 \ln(x) \, dx$. Three integrations by parts.

(4) $\int x^2 e^{2x} \, dx$. Two integrations by parts.

(5) $\int \frac{dx}{\sqrt{8x - x^2}}$. Complete the square and recall arcsin'.

(6) $\int \frac{dx}{\sqrt{25 - x^2}}$, $|x| < 5$. Substitution and recall arcsin'.
Remark: Evaluate the following integrals:

(1) \[\int \frac{(1 + x) \, dx}{\sqrt{1 - 2x^2}} \] Split the integral and do two substitutions.

(2) \[\int_{1}^{8} \frac{dx}{x^2 - 2x + 50} \] Complete the square and recall the arctan′.

(3) \[\int x^3 \ln(x) \, dx \] Three integrations by parts.

(4) \[\int x^2 e^{2x} \, dx \] Two integrations by parts.

(5) \[\int dx \sqrt{8x - x^2} \] Complete the square and recall arcsin.

(6) \[\int dx \sqrt{25 - x^2} \] Substitution and recall arcsin.
Remark: Evaluate the following integrals:

(1) \[\int \frac{(1 + x) \, dx}{\sqrt{1 - 2x^2}}. \] Split the integral and do two substitutions.

(2) \[\int_1^8 \frac{dx}{x^2 - 2x + 50}. \] Complete the square and recall the arctan'.

(3) \[\int x^3 \ln(x) \, dx. \] Three integrations by parts.

(4) \[\int x^2 e^{2x} \, dx. \]
Remark: Evaluate the following integrals:

(1) \[\int \frac{(1 + x) \, dx}{\sqrt{1 - 2x^2}} \]. Split the integral and do two substitutions.

(2) \[\int_{1}^{8} \frac{dx}{x^2 - 2x + 50} \]. Complete the square and recall the arctan'.

(3) \[\int x^3 \ln(x) \, dx \]. Three integrations by parts.

(4) \[\int x^2 e^{2x} \, dx \]. Two integrations by parts.
Remark: Evaluate the following integrals:

(1) \(\int \frac{(1 + x) \, dx}{\sqrt{1 - 2x^2}} \). Split the integral and do two substitutions.

(2) \(\int_{1}^{8} \frac{dx}{x^2 - 2x + 50} \). Complete the square and recall the arctan’.

(3) \(\int x^3 \ln(x) \, dx \). Three integrations by parts.

(4) \(\int x^2 e^{2x} \, dx \). Two integrations by parts.

(5) \(\int \frac{dx}{\sqrt{8x - x^2}} \). Complete the square and recall arcsin’.
Remark: Evaluate the following integrals:

(1) \(\int \frac{1 + x}{\sqrt{1 - 2x^2}} dx \). Split the integral and do two substitutions.

(2) \(\int_{1}^{8} \frac{dx}{x^2 - 2x + 50} \). Complete the square and recall the arctan'.

(3) \(\int x^3 \ln(x) dx \). Three integrations by parts.

(4) \(\int x^2 e^{2x} dx \). Two integrations by parts.

(5) \(\int \frac{dx}{\sqrt{8x - x^2}} \). Complete the square
Remark: Evaluate the following integrals:

(1) \[\int \frac{(1 + x) \, dx}{\sqrt{1 - 2x^2}} \]. Split the integral and do two substitutions.

(2) \[\int_1^8 \frac{dx}{x^2 - 2x + 50} \]. Complete the square and recall the arctan’.

(3) \[\int x^3 \ln(x) \, dx \]. Three integrations by parts.

(4) \[\int x^2 e^{2x} \, dx \]. Two integrations by parts.

(5) \[\int \frac{dx}{\sqrt{8x - x^2}} \]. Complete the square and recall arcsin’.
Remark: Evaluate the following integrals:

(1) \(\int \frac{(1 + x) \, dx}{\sqrt{1 - 2x^2}} \). Split the integral and do two substitutions.

(2) \(\int_{1}^{8} \frac{dx}{x^2 - 2x + 50} \). Complete the square and recall the arctan'.

(3) \(\int x^3 \ln(x) \, dx \). Three integrations by parts.

(4) \(\int x^2 \, e^{2x} \, dx \). Two integrations by parts.

(5) \(\int \frac{dx}{\sqrt{8x - x^2}} \). Complete the square and recall arcsin'.

(6) \(\int \frac{dx}{\sqrt{25 - x^2}}, \quad |x| < 5. \).
Remark: Evaluate the following integrals:

(1) \[\int \frac{(1 + x)}{\sqrt{1 - 2x^2}} \, dx \] Split the integral and do two substitutions.

(2) \[\int_1^8 \frac{dx}{x^2 - 2x + 50} \] Complete the square and recall the arctan'.

(3) \[\int x^3 \ln(x) \, dx \] Three integrations by parts.

(4) \[\int x^2 e^{2x} \, dx \] Two integrations by parts.

(5) \[\int \frac{dx}{\sqrt{8x - x^2}} \] Complete the square and recall arcsin'.

(6) \[\int \frac{dx}{\sqrt{25 - x^2}}, \ |x| < 5 \] Substitution
Remark: Evaluate the following integrals:

1. \[\int \frac{(1 + x) \, dx}{\sqrt{1 - 2x^2}} \] Split the integral and do two substitutions.

2. \[\int_1^8 \frac{dx}{x^2 - 2x + 50} \] Complete the square and recall the arctan'.

3. \[\int x^3 \ln(x) \, dx \] Three integrations by parts.

4. \[\int x^2 e^{2x} \, dx \] Two integrations by parts.

5. \[\int \frac{dx}{\sqrt{8x - x^2}} \] Complete the square and recall arcsin'.

6. \[\int \frac{dx}{\sqrt{25 - x^2}} \text{, } |x| < 5 \] Substitution and recall arcsin'.
Remark: Evaluate the following integrals:

(7) $\int \cot^3(x) \, dx$.

(8) $\int \sin^4(x) \, dx$.

(9) $\int x^3 \cos(x) \, dx$.

(10) $\int_{\pi/2}^{\pi/4} \sqrt{1 - \cos(2x)} \, dx$.

(11) $\int_{\pi/3}^{\pi/4} \sec^2(x) \tan(x) \, dx$.

(12) $\int 2 \ln(x) \, x \, dx$.

Write using \sin, \cos, and substitution.

Double angle formula, twice.

Integrations by parts, three times.

Double angle formula, cancel $\sqrt{}$.

Write using \sin and \cos, and substitution.

Substitution.
Remark: Evaluate the following integrals:

(7) $\int \cot^3(x) \, dx$. Write using sin, cos

(8) $\int \sin^4(x) \, dx$. Double angle formula, twice.

(9) $\int x^3 \cos(x) \, dx$. Integrations by parts, three times.

(10) $\int_{\pi/2}^{\pi/2} \sqrt{1 - \cos(2x)} \, dx$. Double angle formula, cancel $\sqrt{\cdots}$.

(11) $\int_{\pi/3}^{\pi/4} \sec^2(x) \tan(x) \, dx$. Write using sin and cos, and substitution.

(12) $\int 2 \ln(x) x \, dx$. Substitution.
Remark: Evaluate the following integrals:

(7) $\int \cot^3(x) \, dx$. Write using sin, cos and substitution.
Remark: Evaluate the following integrals:

(7) $\int \cot^3(x) \, dx$. Write using sin, cos and substitution.

(8) $\int \sin^4(x) \, dx$.

Double angle formula, twice.

(9) $\int x^3 \cos(x) \, dx$. Integrations by parts, three times.

(10) $\int_{\pi/2}^{\pi} \sqrt{1 - \cos(2x)} \, dx$. Double angle formula, cancel $\sqrt{\cdot}$.

(11) $\int_{\pi/3}^{\pi/4} \sec^2(x) \tan(x) \, dx$. Write using sin and cos, and substitution.

(12) $\int 2 \ln(x) x \, dx$. Substitution.
Sections 8-IT, 8.1, 8.2

Remark: Evaluate the following integrals:

(7) \(\int \cot^3(x) \, dx \). Write using sin, cos and substitution.

(8) \(\int \sin^4(x) \, dx \). Double angle formula,
Remark: Evaluate the following integrals:

(7) \[\int \cot^3(x) \, dx. \] Write using sin, cos and substitution.

(8) \[\int \sin^4(x) \, dx. \] Double angle formula, twice.

Sections 8-IT, 8.1, 8.2
Sections 8-IT, 8.1, 8.2

Remark: Evaluate the following integrals:

(7) $\int \cot^3(x) \, dx$. Write using sin, cos and substitution.

(8) $\int \sin^4(x) \, dx$. Double angle formula, twice.

(9) $\int x^3 \cos(x) \, dx$.
Remark: Evaluate the following integrals:

(7) $\int \cot^3(x) \, dx$. Write using sin, cos and substitution.

(8) $\int \sin^4(x) \, dx$. Double angle formula, twice.

(9) $\int x^3 \cos(x) \, dx$. Integrations by parts,
Remark: Evaluate the following integrals:

(7) \[\int \cot^3(x) \, dx \]. Write using sin, cos and substitution.

(8) \[\int \sin^4(x) \, dx \]. Double angle formula, twice.

(9) \[\int x^3 \cos(x) \, dx \]. Integrations by parts, three times.
Remark: Evaluate the following integrals:

(7) $\int \cot^3(x) \, dx$. Write using sin, cos and substitution.

(8) $\int \sin^4(x) \, dx$. Double angle formula, twice.

(9) $\int x^3 \cos(x) \, dx$. Integrations by parts, three times.

(10) $\int_{-\pi/2}^{\pi/2} \sqrt{1 - \cos(2x)} \, dx$. Double angle formula, cancel $\sqrt{}$.
Sections 8-IT, 8.1, 8.2

Remark: Evaluate the following integrals:

(7) \[\int \cot^3(x) \, dx. \] Write using sin, cos and substitution.

(8) \[\int \sin^4(x) \, dx. \] Double angle formula, twice.

(9) \[\int x^3 \cos(x) \, dx. \] Integrations by parts, three times.

(10) \[\int_{-\pi/2}^{\pi/2} \sqrt{1 - \cos(2x)} \, dx. \] Double angle formula,
Remark: Evaluate the following integrals:

(7) $\int \cot^3(x) \, dx$. Write using sin, cos and substitution.

(8) $\int \sin^4(x) \, dx$. Double angle formula, twice.

(9) $\int x^3 \cos(x) \, dx$. Integrations by parts, three times.

(10) $\int_{-\pi/2}^{\pi/2} \sqrt{1 - \cos(2x)} \, dx$. Double angle formula, cancel $\sqrt{}$.
Remark: Evaluate the following integrals:

(7) $\int \cot^3(x) \, dx$. Write using sin, cos and substitution.

(8) $\int \sin^4(x) \, dx$. Double angle formula, twice.

(9) $\int x^3 \cos(x) \, dx$. Integrations by parts, three times.

(10) $\int_{-\pi/2}^{\pi/2} \sqrt{1 - \cos(2x)} \, dx$. Double angle formula, cancel $\sqrt{\cdot}$.

(11) $\int_{\pi/4}^{\pi/3} \frac{\sec^2(x)}{\tan(x)} \, dx$. Write using sin and cos, and substitution.
Remark: Evaluate the following integrals:

(7) \[\int \cot^3(x) \, dx. \] Write using sin, cos and substitution.

(8) \[\int \sin^4(x) \, dx. \] Double angle formula, twice.

(9) \[\int x^3 \cos(x) \, dx. \] Integrations by parts, three times.

(10) \[\int_{-\pi/2}^{\pi/2} \sqrt{1 - \cos(2x)} \, dx. \] Double angle formula, cancel \(\sqrt{ } \).

(11) \[\int_{\pi/4}^{\pi/3} \frac{\sec^2(x)}{\tan(x)} \, dx. \] Write using sin and cos,
Remark: Evaluate the following integrals:

(7) \[\int \cot^3(x) \, dx \] Write using sin, cos and substitution.

(8) \[\int \sin^4(x) \, dx \] Double angle formula, twice.

(9) \[\int x^3 \cos(x) \, dx \] Integrations by parts, three times.

(10) \[\int_{-\pi/2}^{\pi/2} \sqrt{1 - \cos(2x)} \, dx \] Double angle formula, cancel \(\sqrt{\cdot} \).

(11) \[\int_{\pi/4}^{\pi/3} \frac{\sec^2(x)}{\tan(x)} \, dx \] Write using sin and cos, and substitution.
Remark: Evaluate the following integrals:

(7) \(\int \cot^3(x) \, dx \). Write using sin, cos and substitution.

(8) \(\int \sin^4(x) \, dx \). Double angle formula, twice.

(9) \(\int x^3 \cos(x) \, dx \). Integrations by parts, three times.

(10) \(\int_{-\pi/2}^{\pi/2} \sqrt{1 - \cos(2x)} \, dx \). Double angle formula, cancel \(\sqrt{ } \).

(11) \(\int_{\pi/4}^{\pi/3} \frac{\sec^2(x)}{\tan(x)} \, dx \). Write using sin and cos, and substitution.

(12) \(\int \frac{2\ln(x)}{x} \, dx \).
Remark: Evaluate the following integrals:

(7) \(\int \cot^3(x) \, dx \). Write using sin, cos and substitution.

(8) \(\int \sin^4(x) \, dx \). Double angle formula, twice.

(9) \(\int x^3 \cos(x) \, dx \). Integrations by parts, three times.

(10) \(\int_{-\pi/2}^{\pi/2} \sqrt{1 - \cos(2x)} \, dx \). Double angle formula, cancel \(\sqrt{\cdot} \).

(11) \(\int_{\pi/4}^{\pi/3} \frac{\sec^2(x)}{\tan(x)} \, dx \). Write using sin and cos, and substitution.

(12) \(\int \frac{2 \ln(x)}{x} \, dx \). Substitution.
Example

Evaluate $I = \int \frac{(1 + x) \, dx}{\sqrt{1 - 2x^2}}$.

Solution:

Split the integral:

$I = \int \frac{dx}{\sqrt{1 - 2x^2}} + \int x \, dx$.

For the first integral substitute $y = \sqrt{2x}$, then $dy = \sqrt{2} \, dx$.

$I_1 = \int \frac{dy}{\sqrt{1 - y^2}} = \frac{1}{\sqrt{2}} \arcsin(\sqrt{2}x) + C$.

For the second integral substitute $u = 1 - 2x^2$, then $du = -4x \, dx$.

$I_2 = -\frac{1}{4} \int \frac{du}{\sqrt{u}} = -\frac{1}{2} \sqrt{1 - 2x^2} + C$.

We conclude:

$I = \frac{1}{\sqrt{2}} \arcsin(\sqrt{2}x) - \frac{1}{2} \sqrt{1 - 2x^2} + C$.

\blacksquare
Example

Evaluate \(I = \int \frac{(1 + x) \, dx}{\sqrt{1 - 2x^2}} \).

Solution: Split the integral: \(I = \int \frac{dx}{\sqrt{1 - 2x^2}} + \int \frac{x \, dx}{\sqrt{1 - 2x^2}} \).
Example

Evaluate \(I = \int \frac{(1 + x) \, dx}{\sqrt{1 - 2x^2}} \).

Solution: Split the integral: \(I = \int \frac{dx}{\sqrt{1 - 2x^2}} + \int \frac{x \, dx}{\sqrt{1 - 2x^2}} \).

For the first integral
Example

Evaluate \(I = \int \frac{(1 + x) \, dx}{\sqrt{1 - 2x^2}}. \)

Solution: Split the integral: \(I = \int \frac{dx}{\sqrt{1 - 2x^2}} + \int \frac{x \, dx}{\sqrt{1 - 2x^2}}. \)

For the first integral substitute \(y = \sqrt{2} x, \)
Example

Evaluate $I = \int \frac{(1 + x) \, dx}{\sqrt{1 - 2x^2}}$.

Solution: Split the integral: $I = \int \frac{dx}{\sqrt{1 - 2x^2}} + \int \frac{x \, dx}{\sqrt{1 - 2x^2}}$.

For the first integral substitute $y = \sqrt{2} x$, then $dy = \sqrt{2} \, dx$.

$I_1 = \int \frac{dx}{\sqrt{1 - 2x^2}}$
Example
Evaluate \[I = \int \frac{(1 + x) \, dx}{\sqrt{1 - 2x^2}}. \]

Solution: Split the integral:
\[I = \int \frac{dx}{\sqrt{1 - 2x^2}} + \int \frac{x \, dx}{\sqrt{1 - 2x^2}}. \]

For the first integral substitute \(y = \sqrt{2} x \), then \(dy = \sqrt{2} \, dx \).
\[I_1 = \int \frac{dx}{\sqrt{1 - 2x^2}} = \frac{1}{\sqrt{2}} \int \frac{dy}{\sqrt{1 - y^2}} \]
Example

Evaluate \(I = \int \frac{(1 + x) \, dx}{\sqrt{1 - 2x^2}} \).

Solution: Split the integral: \(I = \int \frac{dx}{\sqrt{1 - 2x^2}} + \int \frac{x \, dx}{\sqrt{1 - 2x^2}} \).

For the first integral substitute \(y = \sqrt{2} \, x \), then \(dy = \sqrt{2} \, dx \).

\[I_1 = \int \frac{dx}{\sqrt{1 - 2x^2}} = \frac{1}{\sqrt{2}} \int \frac{dy}{\sqrt{1 - y^2}} = \frac{1}{\sqrt{2}} \arcsin(\sqrt{2} \, x) + c. \]
Example

Evaluate \(I = \int \frac{(1 + x) \, dx}{\sqrt{1 - 2x^2}}. \)

Solution: Split the integral: \(I = \int \frac{dx}{\sqrt{1 - 2x^2}} + \int \frac{x \, dx}{\sqrt{1 - 2x^2}}. \)

For the first integral substitute \(y = \sqrt{2} x, \) then \(dy = \sqrt{2} \, dx. \)

\[
I_1 = \int \frac{dx}{\sqrt{1 - 2x^2}} = \frac{1}{\sqrt{2}} \int \frac{dy}{\sqrt{1 - y^2}} = \frac{1}{\sqrt{2}} \arcsin(\sqrt{2} x) + c.
\]

For the second integral
Example

Evaluate \(I = \int \frac{(1 + x) \, dx}{\sqrt{1 - 2x^2}} \).

Solution: Split the integral: \(I = \int \frac{dx}{\sqrt{1 - 2x^2}} + \int \frac{x \, dx}{\sqrt{1 - 2x^2}} \).

For the first integral substitute \(y = \sqrt{2} x \), then \(dy = \sqrt{2} \, dx \).

\[
I_1 = \int \frac{dx}{\sqrt{1 - 2x^2}} = \frac{1}{\sqrt{2}} \int \frac{dy}{\sqrt{1 - y^2}} = \frac{1}{\sqrt{2}} \arcsin(\sqrt{2}x) + c.
\]

For the second integral substitute \(u = 1 - 2x^2 \),
Example

Evaluate \(I = \int \frac{(1 + x) \, dx}{\sqrt{1 - 2x^2}} \).

Solution: Split the integral: \(I = \int \frac{dx}{\sqrt{1 - 2x^2}} + \int \frac{x \, dx}{\sqrt{1 - 2x^2}} \).

For the first integral substitute \(y = \sqrt{2} x \), then \(dy = \sqrt{2} \, dx \).

\[
I_1 = \int \frac{dx}{\sqrt{1 - 2x^2}} = \frac{1}{\sqrt{2}} \int \frac{dy}{\sqrt{1 - y^2}} = \frac{1}{\sqrt{2}} \arcsin(\sqrt{2} x) + c.
\]

For the second integral substitute \(u = 1 - 2x^2 \), then \(du = -4x \, dx \).

\[
I_2 = -\frac{1}{4} \int \frac{du}{\sqrt{u}}
\]
Example

Evaluate \(I = \int \frac{(1 + x) \, dx}{\sqrt{1 - 2x^2}} \).

Solution: Split the integral: \(I = \int \frac{dx}{\sqrt{1 - 2x^2}} + \int \frac{x \, dx}{\sqrt{1 - 2x^2}} \).

For the first integral substitute \(y = \sqrt{2} x \), then \(dy = \sqrt{2} \, dx \).

\[
I_1 = \int \frac{dx}{\sqrt{1 - 2x^2}} = \frac{1}{\sqrt{2}} \int \frac{dy}{\sqrt{1 - y^2}} = \frac{1}{\sqrt{2}} \arcsin(\sqrt{2} x) + c.
\]

For the second integral substitute \(u = 1 - 2x^2 \), then \(du = -4x \, dx \).

\[
I_2 = -\frac{1}{4} \int \frac{du}{\sqrt{u}} = -\frac{1}{4} (2\sqrt{u}) + c.
\]
Example

Evaluate \(I = \int \frac{(1 + x) \, dx}{\sqrt{1 - 2x^2}} \).

Solution: Split the integral: \(I = \int \frac{dx}{\sqrt{1 - 2x^2}} + \int \frac{x \, dx}{\sqrt{1 - 2x^2}} \).

For the first integral substitute \(y = \sqrt{2} x \), then \(dy = \sqrt{2} \, dx \).

\[
l_1 = \int \frac{dx}{\sqrt{1 - 2x^2}} = \frac{1}{\sqrt{2}} \int \frac{dy}{\sqrt{1 - y^2}} = \frac{1}{\sqrt{2}} \arcsin(\sqrt{2} x) + c.
\]

For the second integral substitute \(u = 1 - 2x^2 \), then \(du = -4x \, dx \).

\[
l_2 = -\frac{1}{4} \int \frac{du}{\sqrt{u}} = -\frac{1}{4} (2\sqrt{u}) + c = -\frac{1}{2} \sqrt{1 - 2x^2} + c.
\]
Example

Evaluate \[I = \int \frac{(1 + x) \, dx}{\sqrt{1 - 2x^2}}. \]

Solution: Split the integral: \[I = \int \frac{dx}{\sqrt{1 - 2x^2}} + \int \frac{x \, dx}{\sqrt{1 - 2x^2}}. \]

For the first integral substitute \(y = \sqrt{2} x \), then \(dy = \sqrt{2} \, dx \).

\[I_1 = \int \frac{dx}{\sqrt{1 - 2x^2}} = \frac{1}{\sqrt{2}} \int \frac{dy}{\sqrt{1 - y^2}} = \frac{1}{\sqrt{2}} \arcsin(\sqrt{2} \, x) + c. \]

For the second integral substitute \(u = 1 - 2x^2 \), then \(du = -4x \, dx \).

\[I_2 = -\frac{1}{4} \int \frac{du}{\sqrt{u}} = -\frac{1}{4} (2\sqrt{u}) + c = -\frac{1}{2} \sqrt{1 - 2x^2} + c. \]

We conclude: \[I = \frac{1}{\sqrt{2}} \arcsin(\sqrt{2} \, x) - \frac{1}{2} \sqrt{1 - 2x^2} + c. \]
Example

Evaluate \(I = \int \frac{dx}{\sqrt{8x - x^2}} \).
Example
Evaluate \(I = \int \frac{dx}{\sqrt{8x - x^2}}. \)

Solution: Complete the square and recall arcsin'.
Example
Evaluate \[I = \int \frac{dx}{\sqrt{8x - x^2}}. \]

Solution: Complete the square and recall \(\text{arcsin}' \).

\[I = \int \frac{dx}{\sqrt{-x^2 + 2(4x)}} \]
Example

Evaluate \(I = \int \frac{dx}{\sqrt{8x - x^2}}. \)

Solution: Complete the square and recall \(\arcsin' \).

\[
I = \int \frac{dx}{\sqrt{-x^2 + 2(4x) - 4^2 + 4^2}} = \int \frac{dx}{\sqrt{-x^2 + 2(4x) - 4^2}} = \int \frac{dx}{\sqrt{1 - \left(\frac{x - 4}{4}\right)^2}}.
\]

Substitute \(u = \frac{x - 4}{4} \), then \(du = \frac{dx}{4} \).

\[
I = \frac{1}{4} \int \frac{du}{\sqrt{1 - u^2}} = \arcsin(u) + c = \arcsin\left(\frac{x - 4}{4}\right) + c.
\]
Example
Evaluate \(I = \int \frac{dx}{\sqrt{8x - x^2}}. \)

Solution: Complete the square and recall arcsin'.

\[
I = \int \frac{dx}{\sqrt{-x^2 + 2(4x)}} = \int \frac{dx}{\sqrt{-x^2 + 2(4x) - 4^2 + 4^2}},
\]
\[
I = \int \frac{dx}{\sqrt{4^2 - (x^2 - 2(4x) + 4^2)}}.
\]
Example
Evaluate \[I = \int \frac{dx}{\sqrt{8x - x^2}}. \]

Solution: Complete the square and recall arcsin'.

\[I = \int \frac{dx}{\sqrt{-x^2 + 2(4x)}} = \int \frac{dx}{\sqrt{-x^2 + 2(4x) - 4^2 + 4^2}}, \]

\[I = \int \frac{dx}{\sqrt{4^2 - (x^2 - 2(4x) + 4^2)}} = \int \frac{dx}{\sqrt{4^2 - (x - 4)^2}}. \]
Example

Evaluate \[I = \int \frac{dx}{\sqrt{8x - x^2}}. \]

Solution: Complete the square and recall arcsin'.

\[
I = \int \frac{dx}{\sqrt{-x^2 + 2(4x)}} = \int \frac{dx}{\sqrt{-x^2 + 2(4x) - 4^2 + 4^2}},
\]

\[
I = \int \frac{dx}{\sqrt{4^2 - (x^2 - 2(4x) + 4^2)}} = \int \frac{dx}{\sqrt{4^2 - (x - 4)^2}}
\]

\[
I = \frac{1}{4} \int \frac{dx}{\sqrt{1 - [(x - 4)/4]^2}}.
\]
Example

Evaluate \(I = \int \frac{dx}{\sqrt{8x - x^2}} \).

Solution: Complete the square and recall arcsin'.

\[
I = \int \frac{dx}{\sqrt{-x^2 + 2(4x)}} = \int \frac{dx}{\sqrt{-x^2 + 2(4x) - 4^2 + 4^2}},
\]

\[
I = \int \frac{dx}{\sqrt{4^2 - (x^2 - 2(4x) + 4^2)}} = \int \frac{dx}{\sqrt{4^2 - (x - 4)^2}}
\]

\[
I = \frac{1}{4} \int \frac{dx}{\sqrt{1 - [(x - 4)/4]^2}}.
\]

Substitute \(u = (x - 4)/4 \),
Sections 8-IT, 8.1, 8.2

Example

Evaluate $I = \int \frac{dx}{\sqrt{8x - x^2}}$.

Solution: Complete the square and recall arcsin'.

$$I = \int \frac{dx}{\sqrt{-x^2 + 2(4x)}} = \int \frac{dx}{\sqrt{-x^2 + 2(4x) - 4^2 + 4^2}},$$

$$I = \int \frac{dx}{\sqrt{4^2 - (x^2 - 2(4x) + 4^2)}} = \int \frac{dx}{\sqrt{4^2 - (x - 4)^2}}$$

$$I = \frac{1}{4} \int \frac{dx}{\sqrt{1 - [(x - 4)/4]^2}}.$$

Substitute $u = (x - 4)/4$, then $du = dx/4$.
Example
Evaluate \(I = \int \frac{dx}{\sqrt{8x - x^2}} \).

Solution: Complete the square and recall arcsin'.

\[
I = \int \frac{dx}{\sqrt{-x^2 + 2(4x)}} = \int \frac{dx}{\sqrt{-x^2 + 2(4x) - 4^2 + 4^2}},
\]

\[
I = \int \frac{dx}{\sqrt{4^2 - (x^2 - 2(4x) + 4^2)}} = \int \frac{dx}{\sqrt{4^2 - (x - 4)^2}}.
\]

\[
I = \frac{1}{4} \int \frac{du}{\sqrt{1 - [(x - 4)/4]^2}}.
\]

Substitute \(u = (x - 4)/4 \), then \(du = dx/4 \).

\[
I = I \int \frac{du}{\sqrt{1 - u^2}}
\]
Example

Evaluate \(I = \int \frac{dx}{\sqrt{8x - x^2}} \).

Solution: Complete the square and recall \(\arcsin' \).

\[
I = \int \frac{dx}{\sqrt{-x^2 + 2(4x)}} = \int \frac{dx}{\sqrt{-x^2 + 2(4x) - 4^2 + 4^2}},
\]
\[
I = \int \frac{dx}{\sqrt{4^2 - (x^2 - 2(4x) + 4^2)}} = \int \frac{dx}{\sqrt{4^2 - (x - 4)^2}}
\]
\[
I = \frac{1}{4} \int \frac{dx}{\sqrt{1 - [(x - 4)/4]^2}}.
\]

Substitute \(u = (x - 4)/4 \), then \(du = dx/4 \).

\[
I = I \int \frac{du}{\sqrt{1 - u^2}} = \arcsin(u) + c
\]
Example
Evaluate \(I = \int \frac{dx}{\sqrt{8x - x^2}} \).

Solution: Complete the square and recall arcsin'.

\[
I = \int \frac{dx}{\sqrt{-x^2 + 2(4x)}} = \int \frac{dx}{\sqrt{-x^2 + 2(4x) - 4^2 + 4^2}},
\]

\[
I = \int \frac{dx}{\sqrt{4^2 - (x^2 - 2(4x) + 4^2)}} = \int \frac{dx}{\sqrt{4^2 - (x - 4)^2}}
\]

\[
I = \frac{1}{4} \int \frac{du}{\sqrt{1 - [(x - 4)/4]^2}}.
\]

Substitute \(u = (x - 4)/4 \), then \(du = dx/4 \).

\[
I = \frac{1}{4} \int \frac{du}{\sqrt{1 - u^2}} = \arcsin(u) + c \Rightarrow I = \arcsin\left(\frac{x - 4}{4}\right) + c.
\]
Example

Evaluate \(I = \int_{-\pi/2}^{\pi/2} \sqrt{1 - \cos(2x)} \, dx \).
Example

Evaluate \(I = \int_{-\pi/2}^{\pi/2} \sqrt{1 - \cos(2x)} \, dx \).

Solution: Double angle formula, cancel \(\sqrt{\cdots} \).
Sections 8-IT, 8.1, 8.2

Example

Evaluate \(I = \int_{-\pi/2}^{\pi/2} \sqrt{1 - \cos(2x)} \, dx \).

Solution: Double angle formula, cancel \(\sqrt{} \).

Recall: \(\sin^2(\theta) = [1 - \cos(2\theta)]/2 \).
Example

Evaluate \(I = \int_{-\pi/2}^{\pi/2} \sqrt{1 - \cos(2x)} \, dx \).

Solution: Double angle formula, cancel \(\sqrt{\cdot} \).
Recall: \(\sin^2(\theta) = \frac{1 - \cos(2\theta)}{2} \). Hence,

\[
I = \int_{-\pi/2}^{\pi/2} \sqrt{2 \sin^2(x)} \, dx
\]
Example

Evaluate \(I = \int_{-\pi/2}^{\pi/2} \sqrt{1 - \cos(2x)} \, dx \).

Solution: Double angle formula, cancel \(\sqrt{\cdot} \).
Recall: \(\sin^2(\theta) = \frac{1 - \cos(2\theta)}{2} \). Hence,

\[
I = \int_{-\pi/2}^{\pi/2} \sqrt{2 \sin^2(x)} \, dx = \sqrt{2} \int_{-\pi/2}^{\pi/2} |\sin(x)| \, dx.
\]
Example

Evaluate \(I = \int_{-\pi/2}^{\pi/2} \sqrt{1 - \cos(2x)} \, dx \).

Solution: Double angle formula, cancel \(\sqrt{\cdot} \).
Recall: \(\sin^2(\theta) = \frac{1 - \cos(2\theta)}{2} \). Hence,

\[
I = \int_{-\pi/2}^{\pi/2} \sqrt{2 \sin^2(x)} \, dx = \sqrt{2} \int_{-\pi/2}^{\pi/2} |\sin(x)| \, dx.
\]

Since \(\sin(x) < 0 \) for \(x \in (-\pi/2, 0) \),
Example

Evaluate \(I = \int_{-\pi/2}^{\pi/2} \sqrt{1 - \cos(2x)} \, dx \).

Solution: Double angle formula, cancel \(\sqrt{\cdot} \).
Recall: \(\sin^2(\theta) = \frac{[1 - \cos(2\theta)]}{2} \). Hence,

\[
I = \int_{-\pi/2}^{\pi/2} \sqrt{2 \sin^2(x)} \, dx = \sqrt{2} \int_{-\pi/2}^{\pi/2} |\sin(x)| \, dx.
\]

Since \(\sin(x) < 0 \) for \(x \in (-\pi/2, 0) \),

\[
I = -\sqrt{2} \int_{-\pi/2}^{0} \sin(x) \, dx + \sqrt{2} \int_{0}^{\pi/2} \sin(x) \, dx.
\]
Example

Evaluate \(I = \int_{-\pi/2}^{\pi/2} \sqrt{1 - \cos(2x)} \, dx \).

Solution: Double angle formula, cancel \(\sqrt{ \cdot } \).

Recall: \(\sin^2(\theta) = \frac{[1 - \cos(2\theta)]}{2} \). Hence,

\[
I = \int_{-\pi/2}^{\pi/2} \sqrt{2 \sin^2(x)} \, dx = \sqrt{2} \int_{-\pi/2}^{\pi/2} |\sin(x)| \, dx.
\]

Since \(\sin(x) < 0 \) for \(x \in (-\pi/2, 0) \),

\[
I = -\sqrt{2} \int_{-\pi/2}^{0} \sin(x) \, dx + \sqrt{2} \int_{0}^{\pi/2} \sin(x) \, dx.
\]

\[
I = \sqrt{2} \cos(x) \bigg|_{-\pi/2}^{0} - \sqrt{2} \cos(x) \bigg|_{0}^{\pi/2}
\]
Example

Evaluate \(I = \int_{-\pi/2}^{\pi/2} \sqrt{1 - \cos(2x)} \, dx \).

Solution: Double angle formula, cancel \(\sqrt{\cdot} \).
Recall: \(\sin^2(\theta) = \frac{[1 - \cos(2\theta)]}{2} \). Hence,

\[
I = \int_{-\pi/2}^{\pi/2} \sqrt{2 \sin^2(x)} \, dx = \sqrt{2} \int_{-\pi/2}^{\pi/2} |\sin(x)| \, dx.
\]
Since \(\sin(x) < 0 \) for \(x \in (-\pi/2, 0) \),

\[
I = -\sqrt{2} \int_{-\pi/2}^{0} \sin(x) \, dx + \sqrt{2} \int_{0}^{\pi/2} \sin(x) \, dx.
\]

\[
I = \sqrt{2} \cos(x) \bigg|_{-\pi/2}^{0} - \sqrt{2} \cos(x) \bigg|_{0}^{\pi/2} = \sqrt{2}(1-0) - \sqrt{2}(0-1)
\]
Example

Evaluate \(I = \int_{-\pi/2}^{\pi/2} \sqrt{1 - \cos(2x)} \, dx \).

Solution: Double angle formula, cancel \(\sqrt{} \).

Recall: \(\sin^2(\theta) = \frac{1 - \cos(2\theta)}{2} \). Hence,

\[
I = \int_{-\pi/2}^{\pi/2} \sqrt{2 \sin^2(x)} \, dx = \sqrt{2} \int_{-\pi/2}^{\pi/2} |\sin(x)| \, dx.
\]

Since \(\sin(x) < 0 \) for \(x \in (-\pi/2, 0) \),

\[
I = -\sqrt{2} \int_{-\pi/2}^{0} \sin(x) \, dx + \sqrt{2} \int_{0}^{\pi/2} \sin(x) \, dx.
\]

\[
I = \sqrt{2} \cos(x) \bigg|_{-\pi/2}^{0} - \sqrt{2} \cos(x) \bigg|_{0}^{\pi/2} = \sqrt{2}(1-0) - \sqrt{2}(0-1) = 2\sqrt{2}.
\]
Integrating rational functions (Sect. 8.4)

- Integrating rational functions, \(\frac{p_m(x)}{q_n(x)} \).

- Polynomial division: \(\frac{p_m(x)}{q_n(x)} = d_{m-n}(x) + \frac{r_k(x)}{q_n(x)}, \quad k < n. \)

- The method of partial fractions.
 - The case \(\frac{p_1(x)}{(x - r_1)(x - r_2)} \quad r_1 \neq r_2 \) (Non-repeated roots).
 - The case \(\frac{p_{(n-1)}(x)}{(x - r_1)^n} \) (Repeated roots).
 - The case \(\frac{p_{(2n-1)}(x)}{(x^2 + bx + c)^n}, \quad b^2 - 4c < 0 \) (Complex roots).
 - The general case.
Integrating rational functions

Remark:
The problem is to integrate rational functions $f(x) = \frac{p_m(x)}{q_n(x)}$, where $p_m(x), q_m(x)$ are polynomials degree m, and n.

Example
Evaluate $I = \int (5x - 3) \left(x^2 - 2x - 3 \right) dx$.

Solution:
It can be proven that $(5x - 3) \left(x^2 - 2x - 3 \right) = 2x + 1 + 3x - 3$.
Then, integration is simple:
$I = 2 \ln |x + 1| + 3 \ln |x - 3| + c$.

Remark:
We now present a method to simplify functions $f(x) = \frac{p_m(x)}{q_n(x)}$, as additions of functions simpler to integrate.
Integrating rational functions

Remark:
The problem is to integrate rational functions \(f(x) = \frac{p_m(x)}{q_n(x)} \), where \(p_m(x), q_m(x) \) are polynomials degree \(m \), and \(n \).

Example
Evaluate \(I = \int \frac{(5x - 3)}{(x^2 - 2x - 3)} \, dx \).
Integrating rational functions

Remark:
The problem is to integrate rational functions $f(x) = \frac{p_m(x)}{q_n(x)}$, where $p_m(x), q_m(x)$ are polynomials degree m, and n.

Example
Evaluate $I = \int \frac{(5x - 3)}{(x^2 - 2x - 3)} \, dx$.

Solution:
It can be proven that $\frac{(5x - 3)}{(x^2 - 2x - 3)} = \frac{2}{x + 1} + \frac{3}{x - 3}$.
Integrating rational functions

Remark:
The problem is to integrate rational functions \(f(x) = \frac{p_m(x)}{q_n(x)} \), where \(p_m(x), q_m(x) \) are polynomials degree \(m \), and \(n \).

Example
Evaluate \(I = \int \frac{(5x - 3)}{(x^2 - 2x - 3)} \, dx \).

Solution:
It can be proven that
\[
\frac{(5x - 3)}{(x^2 - 2x - 3)} = \frac{2}{x + 1} + \frac{3}{x - 3}.
\]
Then, integration is simple:
Integrating rational functions

Remark:
The problem is to integrate rational functions $f(x) = \frac{p_m(x)}{q_n(x)}$, where $p_m(x)$, $q_m(x)$ are polynomials degree m, and n.

Example
Evaluate $I = \int \frac{(5x - 3)}{(x^2 - 2x - 3)} \, dx$.

Solution:
It can be proven that $\frac{(5x - 3)}{(x^2 - 2x - 3)} = \frac{2}{x + 1} + \frac{3}{x - 3}$.
Then, integration is simple: $I = 2 \ln |x + 1| + 3 \ln |x - 3| + c$. \(\square\)
Integrating rational functions

Remark:
The problem is to integrate rational functions \(f(x) = \frac{p_m(x)}{q_n(x)} \), where \(p_m(x), q_m(x) \) are polynomials degree \(m \), and \(n \).

Example
Evaluate \(I = \int \frac{(5x - 3)}{(x^2 - 2x - 3)} \, dx \).

Solution:
It can be proven that \(\frac{(5x - 3)}{(x^2 - 2x - 3)} = \frac{2}{x + 1} + \frac{3}{x - 3} \).

Then, integration is simple: \(I = 2 \ln |x + 1| + 3 \ln |x - 3| + c. \)

Remark: We now present a method to simplify functions \(f(x) = \frac{p_m(x)}{q_n(x)} \), as additions of functions simpler to integrate.
Integrating rational functions (Sect. 8.4)

- Integrating rational functions, $\frac{p_m(x)}{q_n(x)}$.

- **Polynomial division:** $\frac{p_m(x)}{q_n(x)} = d_{m-n}(x) + \frac{r_k(x)}{q_n(x)}, \ k < n$.

- The method of partial fractions.
 - The case $\frac{p_1(x)}{(x - r_1)(x - r_2)} \ \ r_1 \neq r_2$ (Non-repeated roots).
 - The case $\frac{p_{(n-1)}(x)}{(x - r_1)^n}$. (Repeated roots).
 - The case $\frac{p_{(2n-1)}(x)}{(x^2 + bx + c)^n}, \ b^2 - 4c < 0$ (Complex roots).
 - The general case.
Polynomial division

Remark:
Before start any integration, use long division to simplify the rational function:

\[f(x) = \frac{p(x)}{q(x)} = d(x) + \frac{r(x)}{q(x)}, \quad k < n. \]
Polynomial division

Remark:
Before start any integration, use long division to simplify the rational function:

\[f(x) = \frac{p_m(x)}{q_n(x)} \]
Polynomial division

Remark:
Before start any integration, use long division to simplify the rational function:

\[f(x) = \frac{p_m(x)}{q_n(x)} = d_{m-n}(x) + \frac{r_k(x)}{q_n(x)}, \]

Example
Verify that \(4x^2 - 7 + 3 = 2x - 3 + 2x + 3 \).

Solution:
\(2x - 3 + 2x + 3 = (2x - 3)(2x + 3) + 2x + 3 \).
Polynomial division

Remark:
Before start any integration, use long division to simplify the rational function:

\[f(x) = \frac{p_m(x)}{q_n(x)} = d_{m-n}(x) + \frac{r_k(x)}{q_n(x)}, \quad k < n. \]
Polynomial division

Remark:
Before start any integration, use long division to simplify the rational function:

\[f(x) = \frac{p_m(x)}{q_n(x)} = d_{m-n}(x) + \frac{r_k(x)}{q_n(x)}, \quad k < n. \]

Remark: Here \(p_m \) and \(q_m \) are arbitrary polynomials,
Polynomial division

Remark:
Before start any integration, use long division to simplify the rational function:

\[f(x) = \frac{p_m(x)}{q_n(x)} = d_{m-n}(x) + \frac{r_k(x)}{q_n(x)}, \quad k < n. \]

Remark: Here \(p_m \) and \(q_m \) are arbitrary polynomials, while \(r_k \) is a polynomial with degree less than \(q_n \).
Polynomial division

Remark:
Before start any integration, use long division to simplify the rational function:

\[f(x) = \frac{p_m(x)}{q_n(x)} = d_{m-n}(x) + \frac{r_k(x)}{q_n(x)}, \quad k < n. \]

Remark: Here \(p_m \) and \(q_m \) are arbitrary polynomials, while \(r_k \) is a polynomial with degree less than \(q_n \).

Example
Verify that \(\frac{4x^2 - 7}{2x + 3} = 2x - 3 + \frac{2}{2x + 3} \).
Polynomial division

Remark:
Before start any integration, use long division to simplify the rational function:

\[f(x) = \frac{p_m(x)}{q_n(x)} = d_{m-n}(x) + \frac{r_k(x)}{q_n(x)}, \quad k < n. \]

Remark: Here \(p_m \) and \(q_m \) are arbitrary polynomials, while \(r_k \) is a polynomial with degree less than \(q_n \).

Example
Verify that

\[\frac{4x^2 - 7}{2x + 3} = 2x - 3 + \frac{2}{2x + 3}. \]

Solution:

\[2x - 3 + \frac{2}{2x + 3} \]
Polynomial division

Remark:
Before start any integration, use long division to simplify the rational function:

\[f(x) = \frac{p_m(x)}{q_n(x)} = d_{m-n}(x) + \frac{r_k(x)}{q_n(x)}, \quad k < n. \]

Remark: Here \(p_m \) and \(q_m \) are arbitrary polynomials, while \(r_k \) is a polynomial with degree less than \(q_n \).

Example
Verify that \(\frac{4x^2 - 7}{2x + 3} = 2x - 3 + \frac{2}{2x + 3} \).

Solution:
\[
2x - 3 + \frac{2}{2x + 3} = \frac{(2x - 3)(2x + 3) + 2}{2x + 3}
\]
Polynomial division

Remark:
Before start any integration, use long division to simplify the rational function:
\[f(x) = \frac{p_m(x)}{q_n(x)} = d_{m-n}(x) + \frac{r_k(x)}{q_n(x)}, \quad k < n. \]

Remark: Here \(p_m \) and \(q_m \) are arbitrary polynomials, while \(r_k \) is a polynomial with degree less than \(q_n \).

Example
Verify that \(\frac{4x^2 - 7}{2x + 3} = 2x - 3 + \frac{2}{2x + 3} \).

Solution:
\[2x - 3 + \frac{2}{2x + 3} = \frac{(2x - 3)(2x + 3) + 2}{2x + 3} = \frac{4x^2 - 9 + 2}{2x + 3}. \]
Polynomial division

Example

Evaluate $I = \int \frac{4x^2 - 7}{2x + 3} \, dx$.

Solution:
The degree of the polynomial in the numerator is greater or equal the degree of the polynomial in the denominator. In this case it is convenient to do the division:

$$\frac{4x^2 - 7}{2x + 3}$$

$$= \frac{2x}{2x + 3} + \frac{3}{2x + 3}$$

$$= \frac{2x}{2x + 3} + \frac{6}{2x + 3} - \frac{3}{2x + 3}$$

$$= \frac{2x}{2x + 3} + \frac{3}{2x + 3}$$

$$= \frac{4x^2 - 7}{2x + 3}$$

$$= \frac{2x}{2x + 3} + \frac{3}{2x + 3}$$

$$= \int \frac{4x^2 - 7}{2x + 3} \, dx = \int \frac{2x}{2x + 3} \, dx + \int \frac{3}{2x + 3} \, dx$$

$$= x - 3 \ln |2x + 3| + C.$$
Polynomial division

Example
Evaluate $I = \int \frac{4x^2 - 7}{2x + 3} \, dx$.

Solution: The degree of the polynomial in the numerator is greater or equal the degree of the polynomial in the denominator.
Polynomial division

Example
Evaluate \(I = \int \frac{4x^2 - 7}{2x + 3} \, dx \).

Solution: The degree of the polynomial in the numerator is greater or equal the degree of the polynomial in the denominator. In this case it is convenient to do the division:
Example

Evaluate $I = \int \frac{4x^2 - 7}{2x + 3} \, dx$.

Solution: The degree of the polynomial in the numerator is greater or equal the degree of the polynomial in the denominator. In this case it is convenient to do the division:

$$2x + 3) \overline{4x^2 - 7}$$
Polynomial division

Example

Evaluate \(I = \int \frac{4x^2 - 7}{2x + 3} \, dx \).

Solution: The degree of the polynomial in the numerator is greater or equal the degree of the polynomial in the denominator. In this case it is convenient to do the division:

\[
\begin{array}{c}
2x \\
\hline
2x + 3)
\end{array}
\begin{array}{c}
4x^2 \\
- 7
\end{array}
\Rightarrow \frac{2x}{2x + 3} \\ \int \frac{4x^2 - 7}{2x + 3} \, dx + \int \frac{2x}{2x + 3} \, dx
\Rightarrow I = x^2 - 3x + \ln(2x + 3) + c.
Example
Evaluate \(I = \int \frac{4x^2 - 7}{2x + 3} \, dx \).

Solution: The degree of the polynomial in the numerator is greater or equal the degree of the polynomial in the denominator. In this case it is convenient to do the division:

\[
2x \\
2x + 3 \overbrace{\quad 4x^2} - 7 \\
\quad - 4x^2 - 6x
\]

\(4x - 3 + 2 \ln(2x + 3) + C \).
Polynomial division

Example
Evaluate \(I = \int \frac{4x^2 - 7}{2x + 3} \, dx \).

Solution: The degree of the polynomial in the numerator is greater or equal the degree of the polynomial in the denominator. In this case it is convenient to do the division:

\[
\begin{array}{c}
2x \\
2x + 3) \quad 4x^2 - 7 \\
\quad - 4x^2 - 6x \\
\quad - 6x - 7
\end{array}
\]
Polynomial division

Example
Evaluate \(I = \int \frac{4x^2 - 7}{2x + 3} \, dx \).

Solution: The degree of the polynomial in the numerator is greater or equal the degree of the polynomial in the denominator. In this case it is convenient to do the division:

\[
\begin{array}{c|cc}
& 2x - 3 \\
\hline
2x + 3) & 4x^2 & - 7 \\
& - 4x^2 - 6x & \\
& - 6x - 7 & \\
\end{array}
\]
Example

Evaluate \(I = \int \frac{4x^2 - 7}{2x + 3} \, dx \).

Solution: The degree of the polynomial in the numerator is greater or equal the degree of the polynomial in the denominator. In this case it is convenient to do the division:

\[
\begin{array}{c|c|c|c|c|c|c}
& 2x & - & 3 \\
\hline
2x & + & 3 &) & 4x^2 & - & 7 \\
& & - & 4x^2 & - & 6x & \\
& & & - & 6x & - & 7 \\
& & & & & 6x & + & 9 \\
\end{array}
\]

\[I = \frac{2x - 3}{2x + 3} + 2 + \ln(2x + 3) + c. \]
Polynomial division

Example
Evaluate \(I = \int \frac{4x^2 - 7}{2x + 3} \, dx \).

Solution: The degree of the polynomial in the numerator is greater or equal the degree of the polynomial in the denominator. In this case it is convenient to do the division:

\[
\begin{array}{c}
2x + 3) \hspace{1cm} 4x^2 - 7 \\
\hspace{1cm} - 4x^2 - 6x \\
\hspace{1cm} \hspace{1cm} 6x - 7 \\
\hspace{1cm} \hspace{1cm} 6x + 9 \\
\hspace{1cm} \hspace{1cm} \hspace{1cm} 2
\end{array}
\]
Polynomial division

Example
Evaluate \(I = \int \frac{4x^2 - 7}{2x + 3} \, dx \).

Solution: The degree of the polynomial in the numerator is greater or equal the degree of the polynomial in the denominator.
In this case it is convenient to do the division:

\[
\begin{array}{c}
2x + 3) 4x^2 - 7 \\
\underline{2x + 3 \times 4x^2} \\
- 6x - 7 \\
- 6x - 7 \\
\underline{} \\
2
\end{array}
\]

\[\Rightarrow \frac{4x^2 - 7}{2x + 3} = 2x - 3 + \frac{2}{2x + 3}. \]
Polynomial division

Example

Evaluate \(I = \int \frac{4x^2 - 7}{2x + 3} \, dx \).

Solution: The degree of the polynomial in the numerator is greater or equal the degree of the polynomial in the denominator. In this case it is convenient to do the division:

\[
\begin{array}{c|c}
2x + 3 & 2x - 3 \\
\hline
4x^2 & - 7 \\
- 4x^2 - 6x & \\
\hline
- 6x - 7 & 6x + 9 \\
\hline
& 2 \\
\end{array}
\]

\[\Rightarrow \quad \frac{4x^2 - 7}{2x + 3} = 2x - 3 + \frac{2}{2x + 3}. \]

\[I = \int (2x - 3) \, dx + \int \frac{2 \, dx}{2x + 3} \]
Polynomial division

Example

Evaluate \(I = \int \frac{4x^2 - 7}{2x + 3} \, dx \).

Solution: The degree of the polynomial in the numerator is greater or equal the degree of the polynomial in the denominator. In this case it is convenient to do the division:

\[
\begin{array}{c}
2x + 3) 4x^2 - 7 \\
\quad - 4x^2 - 6x \\
\quad \underline{- 6x - 7} \\
\quad 6x + 9 \\
\quad \underline{2} \\
\end{array}
\]

\[
\Rightarrow \quad \frac{4x^2 - 7}{2x + 3} = 2x - 3 + \frac{2}{2x + 3}.
\]

\[
I = \int (2x - 3) \, dx + \int \frac{2 \, dx}{2x + 3} \quad \Rightarrow \quad I = x^2 - 3x + \ln(2x + 3) + c.
\]
Integrating rational functions (Sect. 8.4)

- Integrating rational functions, \(\frac{p_m(x)}{q_n(x)} \).

- Polynomial division: \(\frac{p_m(x)}{q_n(x)} = d_{m-n}(x) + \frac{r_k(x)}{q_n(x)}, \ k < n. \)

- **The method of partial fractions.**
 - The case \(\frac{p_1(x)}{(x - r_1)(x - r_2)} \) \(r_1 \neq r_2 \) (Non-repeated roots).
 - The case \(\frac{p_{(n-1)}(x)}{(x - r_1)^n} \). (Repeated roots).
 - The case \(\frac{p_{(2n-1)}(x)}{(x^2 + bx + c)^n}, \ b^2 - 4c < 0 \) (Complex roots).
 - The general case.
The method of partial fractions

Remarks:

- We study rational functions \(\frac{r_k(x)}{q_n(x)} \), with \(k < n \).
The method of partial fractions

Remarks:

- We study rational functions \(\frac{r_k(x)}{q_n(x)} \), with \(k < n \).

- Example: \(\frac{(5x - 3)}{(x + 1)(x - 3)} \)
The method of partial fractions

Remarks:

- We study rational functions \(\frac{r_k(x)}{q_n(x)} \), with \(k < n \).

- Example:
 \[
 \frac{(5x - 3)}{(x + 1)(x - 3)} = \frac{2}{(x + 1)} + \frac{3}{(x - 3)}.
 \]
The method of partial fractions

Remarks:

- We study rational functions \(\frac{r_k(x)}{q_n(x)} \), with \(k < n \).

- Example: \[\frac{(5x - 3)}{(x + 1)(x - 3)} = \frac{2}{(x + 1)} + \frac{3}{(x - 3)}. \]

- The method is called of *partial fractions*
The method of partial fractions

Remarks:

▶ We study rational functions $\frac{r_k(x)}{q_n(x)}$, with $k < n$.

▶ Example: $\frac{(5x - 3)}{(x + 1)(x - 3)} = \frac{2}{(x + 1)} + \frac{3}{(x - 3)}$.

▶ The method is called of *partial fractions* because the denominators on the right-hand side above contain only part of the denominator on the left-hand side.
The method of partial fractions

Remarks:

- We study rational functions $\frac{r_k(x)}{q_n(x)}$, with $k < n$.

- Example: $\frac{(5x - 3)}{(x + 1)(x - 3)} = \frac{2}{(x + 1)} + \frac{3}{(x - 3)}$.

- The method is called of *partial fractions* because the denominators on the right-hand side above contain only part of the denominator on the left-hand side.

- We present the method through examples.
The method of partial fractions

Remarks:

▶ We study rational functions \(\frac{r_k(x)}{q_n(x)} \), with \(k < n \).

▶ Example: \(\frac{(5x - 3)}{(x + 1)(x - 3)} = \frac{2}{(x + 1)} + \frac{3}{(x - 3)}. \)

▶ The method is called of \textit{partial fractions} because the denominators on the right-hand side above contain only part of the denominator on the left-hand side.

▶ We present the method through examples.

▶ We go from simpler to more complicated situations.
Integrating rational functions (Sect. 8.4)

- Integrating rational functions, \(\frac{p_m(x)}{q_n(x)} \).

- Polynomial division: \(\frac{p_m(x)}{q_n(x)} = d_{m-n}(x) + \frac{r_k(x)}{q_n(x)}, \ k < n. \)

- The method of partial fractions.
 - The case \(\frac{p_1(x)}{(x - r_1)(x - r_2)} \), \(r_1 \neq r_2 \) (Non-repeated roots).
 - The case \(\frac{p_{(n-1)}(x)}{(x - r_1)^n} \). (Repeated roots).
 - The case \(\frac{p_{(2n-1)}(x)}{(x^2 + bx + c)^n}, \ b^2 - 4c < 0 \) (Complex roots).
 - The general case.
The method of partial fractions (Non-repeated roots)

Example

Evaluate

\[I = \int \frac{1}{(x - 1)(x + 2)} \, dx. \]
The method of partial fractions (Non-repeated roots)

Example

Evaluate $I = \int \frac{1}{(x - 1)(x + 2)} \, dx$.

Solution: Denote $r_1 = 1$, $r_2 = -2$.

The method of partial fractions (Non-repeated roots)

Example
Evaluate \(I = \int \frac{1}{(x - 1)(x + 2)} \, dx \).

Solution: Denote \(r_1 = 1, \ r_2 = -2 \). Find \(a_1 \) and \(a_2 \) such that

\[
\frac{1}{(x - 1)(x + 2)} = \frac{a_1}{(x - 1)} + \frac{a_2}{(x + 2)}
\]
The method of partial fractions (Non-repeated roots)

Example
Evaluate \(I = \int \frac{1}{(x - 1)(x + 2)} \, dx \).

Solution: Denote \(r_1 = 1 \), \(r_2 = -2 \). Find \(a_1 \) and \(a_2 \) such that

\[
\frac{1}{(x - 1)(x + 2)} = \frac{a_1}{(x - 1)} + \frac{a_2}{(x + 2)} = \frac{a(x + 2) + b(x - 1)}{(x - 1)(x + 2)}.
\]
The method of partial fractions (Non-repeated roots)

Example

Evaluate \(I = \int \frac{1}{(x - 1)(x + 2)} \, dx \).

Solution: Denote \(r_1 = 1 \), \(r_2 = -2 \). Find \(a_1 \) and \(a_2 \) such that

\[
\frac{1}{(x - 1)(x + 2)} = \frac{a_1}{(x - 1)} + \frac{a_2}{(x + 2)} = \frac{a(x + 2) + b(x - 1)}{(x - 1)(x + 2)}.
\]

\[1 = a_1(x + 2) + a_2(x - 1).\]
The method of partial fractions (Non-repeated roots)

Example
Evaluate \(I = \int \frac{1}{(x - 1)(x + 2)} \, dx \).

Solution: Denote \(r_1 = 1, \ r_2 = -2 \). Find \(a_1 \) and \(a_2 \) such that
\[
\frac{1}{(x - 1)(x + 2)} = \frac{a_1}{(x - 1)} + \frac{a_2}{(x + 2)} = \frac{a(x + 2) + b(x - 1)}{(x - 1)(x + 2)}.
\]

\[1 = a_1(x + 2) + a_2(x - 1). \]

To find \(a_1 \) evaluate the equation above at the root \(r_1 = 1 \),
The method of partial fractions (Non-repeated roots)

Example
Evaluate \[I = \int \frac{1}{(x - 1)(x + 2)} \, dx. \]

Solution: Denote \(r_1 = 1, \ r_2 = -2. \) Find \(a_1 \) and \(a_2 \) such that
\[
\frac{1}{(x - 1)(x + 2)} = \frac{a_1}{x - 1} + \frac{a_2}{x + 2} = \frac{a(x + 2) + b(x - 1)}{(x - 1)(x + 2)}.
\]

\[1 = a_1(x + 2) + a_2(x - 1). \]

To find \(a_1 \) evaluate the equation above at the root \(r_1 = 1, \)
\[1 = a_1(3) \]
The method of partial fractions (Non-repeated roots)

Example
Evaluate \(I = \int \frac{1}{(x - 1)(x + 2)} \, dx \).

Solution: Denote \(r_1 = 1 \), \(r_2 = -2 \). Find \(a_1 \) and \(a_2 \) such that

\[
\frac{1}{(x - 1)(x + 2)} = \frac{a_1}{(x - 1)} + \frac{a_2}{(x + 2)} = \frac{a(x + 2) + b(x - 1)}{(x - 1)(x + 2)}.
\]

1 = \(a_1(x + 2) + a_2(x - 1) \).

To find \(a_1 \) evaluate the equation above at the root \(r_1 = 1 \),

\[
1 = a_1(3) \quad \Rightarrow \quad a_1 = \frac{1}{3}.
\]
The method of partial fractions (Non-repeated roots)

Example

Evaluate \(I = \int \frac{1}{(x - 1)(x + 2)} \, dx \).

Solution: Denote \(r_1 = 1, \ r_2 = -2 \). Find \(a_1 \) and \(a_2 \) such that

\[
\frac{1}{(x - 1)(x + 2)} = \frac{a_1}{(x - 1)} + \frac{a_2}{(x + 2)} = \frac{a(x + 2) + b(x - 1)}{(x - 1)(x + 2)}.
\]

\[1 = a_1(x + 2) + a_2(x - 1). \]

To find \(a_1 \) evaluate the equation above at the root \(r_1 = 1 \),

\[1 = a_1(3) \quad \Rightarrow \quad a_1 = \frac{1}{3}. \]

To find \(a_2 \) evaluate the equation above at the root \(r_2 = -2 \),
The method of partial fractions (Non-repeated roots)

Example
Evaluate \(I = \int \frac{1}{(x - 1)(x + 2)} \, dx \).

Solution: Denote \(r_1 = 1, \ r_2 = -2 \). Find \(a_1 \) and \(a_2 \) such that

\[
\frac{1}{(x - 1)(x + 2)} = \frac{a_1}{(x - 1)} + \frac{a_2}{(x + 2)} = \frac{a(x + 2) + b(x - 1)}{(x - 1)(x + 2)}.
\]

1 = \(a_1\)(x + 2) + \(a_2\)(x − 1).

To find \(a_1 \) evaluate the equation above at the root \(r_1 = 1, \)

\[1 = a_1(3) \Rightarrow a_1 = \frac{1}{3}.\]

To find \(a_2 \) evaluate the equation above at the root \(r_2 = -2, \)

\[1 = a_2(-3).\]
The method of partial fractions (Non-repeated roots)

Example

Evaluate $I = \int \frac{1}{(x - 1)(x + 2)} \, dx$.

Solution: Denote $r_1 = 1$, $r_2 = -2$. Find a_1 and a_2 such that

$$\frac{1}{(x - 1)(x + 2)} = \frac{a_1}{(x - 1)} + \frac{a_2}{(x + 2)} = \frac{a(x + 2) + b(x - 1)}{(x - 1)(x + 2)}.$$

$$1 = a_1(x + 2) + a_2(x - 1).$$

To find a_1 evaluate the equation above at the root $r_1 = 1$,

$$1 = a_1(3) \quad \Rightarrow \quad a_1 = \frac{1}{3}.$$

To find a_2 evaluate the equation above at the root $r_2 = -2$,

$$1 = a_2(-3) \quad \Rightarrow \quad a_2 = -\frac{1}{3}.$$
Example

Evaluate $I = \int \frac{1}{(x - 1)(x + 2)} \, dx$.

Solution: Recall:

$$\frac{1}{(x - 1)(x + 2)} = \frac{a_1}{x - 1} + \frac{a_2}{x + 2},$$

with $a_1 = \frac{1}{3}$, $a_2 = -\frac{1}{3}$.

The method of partial fractions (Non-repeated roots)

Example
Evaluate \(I = \int \frac{1}{(x - 1)(x + 2)} \, dx \).

Solution: Recall: \(\frac{1}{(x - 1)(x + 2)} = \frac{a_1}{x - 1} + \frac{a_2}{x + 2} \),

with \(a_1 = \frac{1}{3}, \ a_2 = -\frac{1}{3} \). The integral is now simple to evaluate,
The method of partial fractions (Non-repeated roots)

Example

Evaluate \(I = \int \frac{1}{(x - 1)(x + 2)} \, dx \).

Solution: Recall: \(\frac{1}{(x - 1)(x + 2)} = \frac{a_1}{x - 1} + \frac{a_2}{x + 2} \),

with \(a_1 = \frac{1}{3}, \ a_2 = -\frac{1}{3} \). The integral is now simple to evaluate,

\[
I = \int \frac{1}{(x - 1)(x - 2)} \, dx = \int \frac{1}{3} \frac{1}{x - 1} \, dx - \int \frac{1}{3} \frac{1}{x + 2} \, dx
\]
The method of partial fractions (Non-repeated roots)

Example

Evaluate \(I = \int \frac{1}{(x - 1)(x + 2)} \, dx \).

Solution: Recall:

\[
\frac{1}{(x - 1)(x + 2)} = \frac{a_1}{(x - 1)} + \frac{a_2}{(x + 2)},
\]

with \(a_1 = \frac{1}{3}, \ a_2 = -\frac{1}{3} \). The integral is now simple to evaluate,

\[
I = \int \frac{1}{(x - 1)(x - 2)} \, dx = \int \frac{1}{3} \frac{1}{(x - 1)} \, dx - \int \frac{1}{3} \frac{1}{(x + 2)} \, dx
\]

We conclude that

\[
I = \frac{1}{3} \ln |x - 1| - \frac{1}{3} \ln |x + 2| + c.
\]
The method of partial fractions (Non-repeated roots)

Example
Evaluate \[I = \int \frac{(x - 1)}{(x^2 - x - 2)} \, dx. \]
The method of partial fractions (Non-repeated roots)

Example

Evaluate \[I = \int \frac{(x - 1)}{(x^2 - x - 2)} \, dx. \]

Solution: First, find the zeros of the denominator,
The method of partial fractions (Non-repeated roots)

Example
Evaluate \(I = \int \frac{(x - 1)}{(x^2 - x - 2)} \, dx \).

Solution: First, find the zeros of the denominator,

\[x^2 - x - 2 = 0 \]
The method of partial fractions (Non-repeated roots)

Example
Evaluate \(I = \int \frac{(x - 1)}{(x^2 - x - 2)} \, dx \).

Solution: First, find the zeros of the denominator,

\[x^2 - x - 2 = 0 \implies x_{\pm} = \frac{1}{2} \left[1 \pm \sqrt{1 + 8} \right] \]
The method of partial fractions (Non-repeated roots)

Example
Evaluate
\[I = \int \frac{(x - 1)}{(x^2 - x - 2)} \, dx. \]

Solution: First, find the zeros of the denominator,
\[x^2 - x - 2 = 0 \quad \Rightarrow \quad x_{\pm} = \frac{1}{2} [1 \pm \sqrt{1 + 8}] \quad \Rightarrow \quad \begin{cases} x_+ = 2, \\ x_- = -1, \end{cases} \]
The method of partial fractions (Non-repeated roots)

Example

Evaluate \[I = \int \frac{(x - 1)}{(x^2 - x - 2)} \, dx. \]

Solution: First, find the zeros of the denominator,

\[x^2 - x - 2 = 0 \quad \Rightarrow \quad x_{\pm} = \frac{1}{2} [1 \pm \sqrt{1 + 8}] \quad \Rightarrow \quad \begin{cases} x_+ = 2, \\ x_- = -1, \end{cases} \]

Therefore, we rewrite: \[I = \int \frac{(x - 1)}{(x - 2)(x + 1)} \, dx. \]
The method of partial fractions (Non-repeated roots)

Example
Evaluate \[I = \int \frac{(x - 1)}{(x^2 - x - 2)} \, dx. \]

Solution: First, find the zeros of the denominator,
\[x^2 - x - 2 = 0 \Rightarrow x_{\pm} = \frac{1}{2} \left[1 \pm \sqrt{1 + 8} \right] \Rightarrow \begin{cases} \ x_+ = 2, \\ \ x_- = -1, \end{cases} \]
Therefore, we rewrite: \[I = \int \frac{(x - 1)}{(x - 2)(x + 1)} \, dx. \]
Partial fraction problem: Find constants \(a_1 \) and \(a_2 \) such that
\[\frac{(x - 1)}{(x - 2)(x + 1)} = \frac{a_1}{(x - 2)} + \frac{a_2}{(x + 1)}, \quad r_1 = 2, \quad r_2 = -1. \]
The method of partial fractions (Non-repeated roots)

Example

Evaluate \[I = \int \frac{(x - 1)}{(x^2 - x - 2)} \, dx. \]

Solution: First, find the zeros of the denominator,

\[x^2 - x - 2 = 0 \quad \Rightarrow \quad x_\pm = \frac{1}{2} [1 \pm \sqrt{1 + 8}] \quad \Rightarrow \quad \begin{cases}
 x_+ = 2, \\
 x_- = -1,
\end{cases} \]

Therefore, we rewrite: \[I = \int \frac{(x - 1)}{(x - 2)(x + 1)} \, dx. \]

Partial fraction problem: Find constants \(a_1 \) and \(a_2 \) such that

\[\frac{(x - 1)}{(x - 2)(x + 1)} = \frac{a_1}{(x - 2)} + \frac{a_2}{(x + 1)}, \quad r_1 = 2, \quad r_2 = -1. \]

Do the addition on the right-hand side above:

\[\frac{(x - 1)}{(x - 2)(x + 1)} = \frac{a_1(x + 1) + a_2(x - 2)}{(x - 2)(x + 1)}. \]
The method of partial fractions (Non-repeated roots)

Example

Evaluate $I = \int \frac{(x - 1)}{(x^2 - x - 2)} \, dx$.

Solution: Recall:

$$\frac{(x - 1)}{(x - 2)(x + 1)} = \frac{a_1(x + 1) + a_2(x - 2)}{(x - 2)(x + 1)}.$$
The method of partial fractions (Non-repeated roots)

Example

Evaluate \(\int \frac{(x - 1)}{(x^2 - x - 2)} \, dx \).

Solution: Recall: \(\frac{(x - 1)}{(x - 2)(x + 1)} = \frac{a_1(x + 1) + a_2(x - 2)}{(x - 2)(x + 1)} \).

The equation above implies:

\(x - 1 = a_1(x + 1) + a_2(x - 2) \)
The method of partial fractions (Non-repeated roots)

Example
Evaluate \(I = \int \frac{x - 1}{x^2 - x - 2} \, dx \).

Solution: Recall: \(\frac{x - 1}{(x - 2)(x + 1)} = \frac{a_1(x + 1) + a_2(x - 2)}{(x - 2)(x + 1)} \).

The equation above implies:
\(x - 1 = a_1(x + 1) + a_2(x - 2) \)
To find \(a_1 \) evaluate the equation above at the root \(r_1 = 2 \),
The method of partial fractions (Non-repeated roots)

Example

Evaluate \[I = \int \frac{(x - 1)}{(x^2 - x - 2)} \, dx. \]

Solution: Recall: \[\frac{(x - 1)}{(x - 2)(x + 1)} = \frac{a_1(x + 1) + a_2(x - 2)}{(x - 2)(x + 1)}. \]

The equation above implies:

\[x - 1 = a_1(x + 1) + a_2(x - 2) \]

To find \(a_1 \) evaluate the equation above at the root \(r_1 = 2 \),

\[1 = a_1(3) \]
The method of partial fractions (Non-repeated roots)

Example

Evaluate \(I = \int \frac{(x - 1)}{(x^2 - x - 2)} \, dx \).

Solution: Recall: \(\frac{(x - 1)}{(x - 2)(x + 1)} = \frac{a_1(x + 1) + a_2(x - 2)}{(x - 2)(x + 1)} \).

The equation above implies:

\[x - 1 = a_1(x + 1) + a_2(x - 2) \]

To find \(a_1 \) evaluate the equation above at the root \(r_1 = 2 \),

\[1 = a_1(3) \quad \Rightarrow \quad a_1 = \frac{1}{3}. \]
The method of partial fractions (Non-repeated roots)

Example
Evaluate \(I = \int \frac{(x - 1)}{(x^2 - x - 2)} \, dx \).

Solution: Recall: \(\frac{(x - 1)}{(x - 2)(x + 1)} = \frac{a_1(x + 1) + a_2(x - 2)}{(x - 2)(x + 1)} \).

The equation above implies:
\[
x - 1 = a_1(x + 1) + a_2(x - 2)
\]
To find \(a_1 \) evaluate the equation above at the root \(r_1 = 2 \),
\[
1 = a_1(3) \quad \Rightarrow \quad a_1 = \frac{1}{3}.
\]
To find \(a_2 \) evaluate the equation above at the root \(r_2 = -1 \),
The method of partial fractions (Non-repeated roots)

Example

Evaluate \(I = \int \frac{x - 1}{(x^2 - x - 2)} \, dx \).

Solution: Recall:

\[
\frac{x - 1}{(x - 2)(x + 1)} = \frac{a_1(x + 1) + a_2(x - 2)}{(x - 2)(x + 1)}.
\]

The equation above implies:

\[x - 1 = a_1(x + 1) + a_2(x - 2)\]

To find \(a_1 \) evaluate the equation above at the root \(r_1 = 2 \),

\[1 = a_1(3) \quad \Rightarrow \quad a_1 = \frac{1}{3}\]

To find \(a_2 \) evaluate the equation above at the root \(r_2 = -1 \),

\[-2 = a_2(-3)\]
The method of partial fractions (Non-repeated roots)

Example
Evaluate \(I = \int \frac{(x - 1)}{(x^2 - x - 2)} \, dx \).

Solution: Recall: \(\frac{(x - 1)}{(x - 2)(x + 1)} = \frac{a_1(x + 1) + a_2(x - 2)}{(x - 2)(x + 1)} \).

The equation above implies:

\[x - 1 = a_1(x + 1) + a_2(x - 2) \]

To find \(a_1 \) evaluate the equation above at the root \(r_1 = 2 \),

\[1 = a_1(3) \quad \Rightarrow \quad a_1 = \frac{1}{3}. \]

To find \(a_2 \) evaluate the equation above at the root \(r_2 = -1 \),

\[-2 = a_2(-3) \quad \Rightarrow \quad a_2 = \frac{2}{3}. \]
The method of partial fractions (Non-repeated roots)

Example

Evaluate \[I = \int \frac{x - 1}{x^2 - x - 2} \, dx. \]

Solution: Recall: \[\frac{x - 1}{(x - 2)(x + 1)} = \frac{a_1(x + 1) + a_2(x - 2)}{(x - 2)(x + 1)}. \]

The equation above implies:
\[x - 1 = a_1(x + 1) + a_2(x - 2) \]

To find \(a_1 \) evaluate the equation above at the root \(r_1 = 2 \),
\[1 = a_1(3) \Rightarrow a_1 = \frac{1}{3}. \]

To find \(a_2 \) evaluate the equation above at the root \(r_2 = -1 \),
\[-2 = a_2(-3) \Rightarrow a_2 = \frac{2}{3}. \]

We obtain \[\frac{x - 1}{(x - 2)(x + 1)} = \frac{1}{3} \frac{1}{x - 2} + \frac{2}{3} \frac{1}{x + 1}. \]
The method of partial fractions (Non-repeated roots)

Example

Evaluate \[I = \int \frac{(x - 1)}{(x^2 - x - 2)} \, dx. \]

Solution: Recall: \[
\frac{(x - 1)}{(x - 2)(x + 1)} = \frac{1}{3} \frac{1}{x - 2} + \frac{2}{3} \frac{1}{x + 1}.
\]
The method of partial fractions (Non-repeated roots)

Example

Evaluate \(I = \int \frac{(x - 1)}{(x^2 - x - 2)} \, dx \).

Solution: Recall: \(\frac{(x - 1)}{(x - 2)(x + 1)} = \frac{1}{3} \frac{1}{(x - 2)} + \frac{2}{3} \frac{1}{(x + 1)}. \)

The integral is now simple to evaluate,
The method of partial fractions (Non-repeated roots)

Example

Evaluate \(I = \int \frac{(x - 1)}{(x^2 - x - 2)} \, dx \).

Solution: Recall: \(\frac{(x - 1)}{(x - 2)(x + 1)} = \frac{1}{3} \frac{1}{x - 2} + \frac{2}{3} \frac{1}{x + 1} \).

The integral is now simple to evaluate,

\[
I = \int \frac{(x - 1)}{(x^2 - x - 2)} \, dx = \int \frac{1}{3} \frac{1}{x - 2} \, dx + \int \frac{2}{3} \frac{1}{x + 1} \, dx.
\]
The method of partial fractions (Non-repeated roots)

Example
Evaluate \(I = \int \frac{(x - 1)}{(x^2 - x - 2)} \, dx \).

Solution: Recall:
\[
\frac{(x - 1)}{(x - 2)(x + 1)} = \frac{1}{3} \frac{1}{(x - 2)} + \frac{2}{3} \frac{1}{(x + 1)}.
\]
The integral is now simple to evaluate,
\[
I = \int \frac{(x - 1)}{(x^2 - x - 2)} \, dx = \int \frac{1}{3} \frac{1}{(x - 2)} \, dx + \int \frac{2}{3} \frac{1}{(x + 1)} \, dx
\]
We conclude that
\[
I = \frac{1}{3} \ln |x - 2| + \frac{2}{3} \ln |x + 1| + c.
\]
The method of partial fractions (Non-repeated roots)

Theorem (Non-repeated roots - Heaviside cover method)

The rational function \(\frac{p_k(x)}{(x - r_1) \cdots (x - r_n)} \), with \(n > k \) and all roots \(r_1, \cdots, r_n \) different, can be written as

\[
\frac{p_k(x)}{(x - r_1) \cdots (x - r_n)} = \frac{a_1}{(x - r_1)} + \cdots + \frac{a_n}{(x - r_n)},
\]

where the constants \(a_1, \cdots, a_n \) are given by

\[
a_1 = \frac{p_k(r_1)}{\prod_{j \neq 1}(r_1 - r_j)}, \quad \cdots \quad a_n = \frac{p_k(r_n)}{\prod_{j \neq n}(r_n - r_j)}.
\]
The method of partial fractions (Non-repeated roots)

Theorem (Non-repeated roots - Heaviside cover method)

The rational function \[\frac{p_k(x)}{(x - r_1) \cdots (x - r_n)} \], with \(n > k \) and all roots \(r_1, \ldots, r_n \) different, can be written as

\[\frac{p_k(x)}{(x - r_1) \cdots (x - r_n)} = \frac{a_1}{(x - r_1)} + \cdots + \frac{a_n}{(x - r_n)}, \]

where the constants \(a_1, \ldots, a_n \) are given by

\[a_1 = \frac{p_k(r_1)}{\prod_{j \neq 1} (r_1 - r_j)}, \quad \ldots \quad a_n = \frac{p_k(r_n)}{\prod_{j \neq n} (r_n - r_j)}. \]

Proof: \(p_k(x) = a_1 \left[\prod_{j \neq 1} (x - r_j) \right] + \cdots + a_n \left[\prod_{j \neq n} (x - r_j) \right]. \) \(\square \)
Integrating rational functions (Sect. 8.4)

- Integrating rational functions, \(\frac{p_m(x)}{q_n(x)} \).

- Polynomial division: \(\frac{p_m(x)}{q_n(x)} = d_{m-n}(x) + \frac{r_k(x)}{q_n(x)}, \ k < n. \)

- **The method of partial fractions.**
 - The case \(\frac{p_1(x)}{(x - r_1)(x - r_2)} \) \(r_1 \neq r_2 \) (Non-repeated roots).
 - **The case** \(\frac{p_{(n-1)}(x)}{(x - r_1)^n} \) (Repeated roots).
 - The case \(\frac{p_{(2n-1)}(x)}{(x^2 + bx + c)^n}, \ b^2 - 4c < 0 \) (Complex roots).
 - The general case.
The method of partial fractions (Repeated roots)

Example

Evaluate \[I = \int \frac{(2x - 1)}{(x^2 - 6x + 9)} \, dx. \]
The method of partial fractions (Repeated roots)

Example

Evaluate \[I = \int \frac{(2x - 1)}{(x^2 - 6x + 9)} \, dx. \]

Solution: First, find the zeros of the denominator,
The method of partial fractions (Repeated roots)

Example

Evaluate \[I = \int \frac{(2x - 1)}{(x^2 - 6x + 9)} \, dx. \]

Solution: First, find the zeros of the denominator,

\[x^2 - 6x + 9 = 0 \]
The method of partial fractions (Repeated roots)

Example
Evaluate \(I = \int \frac{(2x - 1)}{(x^2 - 6x + 9)} \, dx \).

Solution: First, find the zeros of the denominator,

\[x^2 - 6x + 9 = 0 \quad \Rightarrow \quad x_{\pm} = \frac{1}{2} [6 \pm \sqrt{36 - 36}] \]
The method of partial fractions (Repeated roots)

Example

Evaluate \(I = \int \frac{(2x - 1)}{(x^2 - 6x + 9)} \, dx \).

Solution: First, find the zeros of the denominator,

\[x^2 - 6x + 9 = 0 \quad \Rightarrow \quad x_{\pm} = \frac{1}{2} [6 \pm \sqrt{36 - 36}] \quad \Rightarrow \quad x_{\pm} = 3. \]
The method of partial fractions (Repeated roots)

Example

Evaluate \(I = \int \frac{(2x - 1)}{(x^2 - 6x + 9)} \, dx \).

Solution: First, find the zeros of the denominator,

\[x^2 - 6x + 9 = 0 \quad \Rightarrow \quad x_{\pm} = \frac{1}{2} \left[6 \pm \sqrt{36 - 36} \right] \quad \Rightarrow \quad x_{\pm} = 3. \]

Partial fraction problem: Find constants \(a_1 \) and \(a_2 \) such that

\[\frac{(2x - 1)}{(x - 3)^2} = \frac{a_1}{x - 3} + \frac{a_2}{(x - 3)^2}. \]
The method of partial fractions (Repeated roots)

Example

Evaluate \(I = \int \frac{(2x - 1)}{(x^2 - 6x + 9)} \, dx \).

Solution: First, find the zeros of the denominator,

\[
x^2 - 6x + 9 = 0 \implies x_\pm = \frac{1}{2} [6 \pm \sqrt{36 - 36}] \implies x_\pm = 3.
\]

Partial fraction problem: Find constants \(a_1 \) and \(a_2 \) such that

\[
\frac{(2x - 1)}{(x - 3)^2} = \frac{a_1}{(x - 3)} + \frac{a_2}{(x - 3)^2}.
\]

Do the addition on the right-hand side above:

\[
\frac{(2x - 1)}{(x - 3)^2} = \frac{a_1(x - 3) + a_2}{(x - 3)^2}.
\]
The method of partial fractions (Repeated roots)

Example

Evaluate \(I = \int \frac{(2x - 1)}{(x^2 - 6x + 9)} \, dx \).

Solution: Recall: \(\frac{(2x - 1)}{(x - 3)^2} = \frac{a_1(x - 3) + a_2}{(x - 3)^2} \).
The method of partial fractions (Repeated roots)

Example
Evaluate \(I = \int \frac{(2x - 1)}{(x^2 - 6x + 9)} \, dx \).

Solution: Recall: \(\frac{(2x - 1)}{(x - 3)^2} = \frac{a_1(x - 3) + a_2}{(x - 3)^2} \). Then,

\[
2x - 1 = a_1(x - 3) + a_2.
\]
The method of partial fractions (Repeated roots)

Example

Evaluate \[I = \int \frac{(2x - 1)}{(x^2 - 6x + 9)} \, dx. \]

Solution: Recall: \[\frac{(2x - 1)}{(x - 3)^2} = \frac{a_1(x - 3) + a_2}{(x - 3)^2}. \] Then,

\[2x - 1 = a_1(x - 3) + a_2. \]

To compute \(a_2 \) evaluate the expression above at \(r = 3 \),

\[5 = a_2. \]
The method of partial fractions (Repeated roots)

Example

Evaluate \(I = \int \frac{(2x - 1)}{(x^2 - 6x + 9)} \, dx \).

Solution: Recall: \(\frac{(2x - 1)}{(x - 3)^2} = \frac{a_1(x - 3) + a_2}{(x - 3)^2} \). Then,

\[2x - 1 = a_1(x - 3) + a_2. \]

To compute \(a_2 \) evaluate the expression above at \(r = 3 \),

\[5 = a_2. \]

To compute \(a_1 \) derivate the expression above,
The method of partial fractions (Repeated roots)

Example

Evaluate \(I = \int \frac{(2x - 1)}{(x^2 - 6x + 9)} \, dx \).

Solution: Recall: \(\frac{(2x - 1)}{(x - 3)^2} = \frac{a_1(x - 3) + a_2}{(x - 3)^2} \). Then,

\[
2x - 1 = a_1(x - 3) + a_2.
\]

To compute \(a_2 \) evaluate the expression above at \(r = 3 \),

\[
5 = a_2.
\]

To compute \(a_1 \) derivate the expression above, then evaluate at \(r = 3 \),
The method of partial fractions (Repeated roots)

Example

Evaluate \[I = \int \frac{(2x - 1)}{(x^2 - 6x + 9)} \, dx. \]

Solution: Recall: \[\frac{(2x - 1)}{(x - 3)^2} = \frac{a_1(x - 3) + a_2}{(x - 3)^2}. \] Then,

\[2x - 1 = a_1(x - 3) + a_2. \]

To compute \(a_2 \) evaluate the expression above at \(r = 3 \),

\[5 = a_2. \]

To compute \(a_1 \) derivate the expression above, then evaluate at \(r = 3 \), (the evaluation at \(r = 3 \) is not needed in this case),

\[2 = a_1. \]
The method of partial fractions (Repeated roots)

Example
Evaluate \(I = \int \frac{(2x - 1)}{(x^2 - 6x + 9)} \, dx \).

Solution: Recall: \(\frac{(2x - 1)}{(x - 3)^2} = \frac{a_1(x - 3) + a_2}{(x - 3)^2} \). Then,

\[2x - 1 = a_1(x - 3) + a_2. \]

To compute \(a_2 \) evaluate the expression above at \(r = 3 \),

\[5 = a_2. \]

To compute \(a_1 \) derivate the expression above, then evaluate at \(r = 3 \), (the evaluation at \(r = 3 \) is not needed in this case),

\[2 = a_1. \]

We conclude: \(\frac{(2x - 1)}{(x - 3)^2} = \frac{2}{(x - 3)} + \frac{5}{(x - 3)^2} \).
The method of partial fractions (Repeated roots)

Example

Evaluate \[I = \int \frac{(2x - 1)}{(x^2 - 6x + 9)} \, dx. \]

Solution: Recall: \[\frac{(2x - 1)}{(x - 3)^2} = \frac{2}{(x - 3)} + \frac{5}{(x - 3)^2}. \]
The method of partial fractions (Repeated roots)

Example
Evaluate \(I = \int \frac{2x - 1}{x^2 - 6x + 9} \, dx \).

Solution: Recall: \(\frac{2x - 1}{(x - 3)^2} = \frac{2}{x - 3} + \frac{5}{(x - 3)^2} \).

The integral is now simple to evaluate,
The method of partial fractions (Repeated roots)

Example

Evaluate \[I = \int \frac{(2x - 1)}{(x^2 - 6x + 9)} \, dx. \]

Solution: Recall: \[\frac{(2x - 1)}{(x - 3)^2} = \frac{2}{x - 3} + \frac{5}{(x - 3)^2}. \]

The integral is now simple to evaluate,

\[I = \int \frac{(2x - 1)}{(x^2 - 6x + 9)} \, dx = \int \frac{2}{x - 3} \, dx + \int \frac{5}{(x - 3)^2} \, dx \]
The method of partial fractions (Repeated roots)

Example
Evaluate \(I = \int \frac{(2x - 1)}{(x^2 - 6x + 9)} \, dx \).

Solution: Recall: \(\frac{(2x - 1)}{(x - 3)^2} \cdot (x - 3)^2 = \frac{2}{x - 3} + \frac{5}{(x - 3)^2} \).

The integral is now simple to evaluate,

\[
I = \int \frac{(2x - 1)}{(x^2 - 6x + 9)} \, dx = \int \frac{2}{x - 3} \, dx + \int \frac{5}{(x - 3)^2} \, dx
\]

We conclude that

\[
I = 2 \ln|x - 3| - \frac{5}{(x - 3)} + c.
\]
The method of partial fractions (Repeated roots)

Theorem (Repeated roots)

The rational function \(\frac{p_k(x)}{(x - r)^n} \), with \(n > k \), can be written as

\[
\frac{p_k(x)}{(x - r)^n} = \frac{a_1}{(x - r)} + \cdots + \frac{a_n}{(x - r)^n},
\]

where \(a_i, \) for \(i = 1, \cdots, n \), is given by \(a_i = \frac{p_k^{(n-i)}(r)}{(n-i)!} \),
The method of partial fractions (Repeated roots)

Theorem (Repeated roots)

The rational function \(\frac{p_k(x)}{(x - r)^n} \), with \(n > k \), can be written as

\[
\frac{p_k(x)}{(x - r)^n} = \frac{a_1}{(x - r)} + \cdots + \frac{a_n}{(x - r)^n},
\]

where \(a_i \), for \(i = 1, \cdots, n \), is given by \(a_i = \frac{p_k^{(n-i)}(r)}{(n-i)!} \).

Proof: Taking common denominator on the right-hand side above,

\[
p_k(x) = a_1 (x - r)^{(n-1)} + a_2(x - r)^{(n-2)} + \cdots a_{(n-1)}(x - r) + a_n,
\]
The method of partial fractions (Repeated roots)

Theorem (Repeated roots)

The rational function \(\frac{p_k(x)}{(x - r)^n} \), with \(n > k \), can be written as

\[
\frac{p_k(x)}{(x - r)^n} = \frac{a_1}{(x - r)} + \cdots + \frac{a_n}{(x - r)^n},
\]

where \(a_i \), for \(i = 1, \ldots, n \), is given by \(a_i = \frac{p_k^{(n-i)}(r)}{(n - i)!} \),

Proof: Taking common denominator on the right-hand side above,

\[
p_k(x) = a_1 (x - r)^{(n-1)} + a_2(x - r)^{(n-2)} + \cdots a_{(n-1)}(x - r) + a_n,
\]

\(a_n = p_k(r) \),
The method of partial fractions (Repeated roots)

Theorem (Repeated roots)

The rational function \(\frac{p_k(x)}{(x - r)^n} \), with \(n > k \), can be written as

\[
\frac{p_k(x)}{(x - r)^n} = \frac{a_1}{(x - r)} + \cdots + \frac{a_n}{(x - r)^n},
\]

where \(a_i \), for \(i = 1, \cdots, n \), is given by \(a_i = \frac{p_k^{(n-i)}(r)}{(n-i)!} \).

Proof: Taking common denominator on the right-hand side above,

\[
p_k(x) = a_1 (x - r)^{(n-1)} + a_2(x - r)^{(n-2)} + \cdots a_{(n-1)}(x - r) + a_n,
\]

\(a_n = p_k(r) \), \(a_{(n-1)} = p'(r) \),
The method of partial fractions (Repeated roots)

Theorem (Repeated roots)

The rational function \(\frac{p_k(x)}{(x - r)^n} \), with \(n > k \), can be written as

\[
\frac{p_k(x)}{(x - r)^n} = \frac{a_1}{(x - r)} + \cdots + \frac{a_n}{(x - r)^n},
\]

where \(a_i \), for \(i = 1, \cdots, n \), is given by \(a_i = \frac{p_k^{(n-i)}(r)}{(n - i)!} \),

Proof: Taking common denominator on the right-hand side above,

\[
p_k(x) = a_1 (x - r)^{(n-1)} + a_2(x - r)^{(n-2)} + \cdots + a_{(n-1)}(x - r) + a_n,
\]

\[
a_n = p_k(r), \quad a_{(n-1)} = p'(r), \quad \cdots \quad a_2 = \frac{p^{(n-2)}(r)}{(n - 2)!}.
\]
The method of partial fractions (Repeated roots)

Theorem (Repeated roots)

The rational function \(\frac{p_k(x)}{(x - r)^n} \), with \(n > k \), can be written as

\[
\frac{p_k(x)}{(x - r)^n} = \frac{a_1}{(x - r)} + \cdots + \frac{a_n}{(x - r)^n},
\]

where \(a_i \), for \(i = 1, \cdots, n \), is given by \(a_i = \frac{p_k^{(n-i)}(r)}{(n-i)!} \).

Proof: Taking common denominator on the right-hand side above,

\[
p_k(x) = a_1 (x - r)^{(n-1)} + a_2 (x - r)^{(n-2)} + \cdots + a_{(n-1)}(x - r) + a_n,
\]

\[
a_n = p_k(r), \quad a_{(n-1)} = p'(r), \quad \cdots \quad a_2 = \frac{p^{(n-2)}(r)}{(n-2)!}, \quad a_1 = \frac{p^{(n-1)}(r)}{(n-1)!}.
\]
Integrating rational functions (Sect. 8.4)

- Integrating rational functions, \(\frac{p_m(x)}{q_n(x)} \).

- Polynomial division: \(\frac{p_m(x)}{q_n(x)} = d_{m-n}(x) + \frac{r_k(x)}{q_n(x)} \), \(k < n \).

- **The method of partial fractions.**
 - The case \(\frac{p_1(x)}{(x - r_1)(x - r_2)} \) \(r_1 \neq r_2 \) (Non-repeated roots).
 - The case \(\frac{p_{(n-1)}(x)}{(x - r_1)^n} \). (Repeated roots).
 - **The case** \(\frac{p_{(2n-1)}(x)}{(x^2 + bx + c)^n} \), \(b^2 - 4c < 0 \) (Complex roots).
 - The general case.
The method of partial fractions (Complex roots)

Example

Evaluate \(I = \int \frac{(x + 1)^2}{(x^2 + 1)^2} \, dx \).
The method of partial fractions (Complex roots)

Example

Evaluate \(I = \int \frac{(x + 1)^2}{(x^2 + 1)^2} \, dx \).

Solution: Find constants \(a_1, b_1 \) and \(a_2, b_2 \) such that

\[
\frac{(x + 1)^2}{(x^2 + 1)^2} = \frac{(a_1 x + b_1)}{(x^2 + 1)} + \frac{(a_2 x + b_2)}{(x^2 + 1)^2}.
\]
The method of partial fractions (Complex roots)

Example

Evaluate \[I = \int \frac{(x + 1)^2}{(x^2 + 1)^2} \, dx. \]

Solution: Find constants \(a_1, b_1 \) and \(a_2, b_2 \) such that

\[
\frac{(x + 1)^2}{(x^2 + 1)^2} = \frac{a_1 x + b_1}{x^2 + 1} + \frac{a_2 x + b_2}{(x^2 + 1)^2}.
\]

\[
\frac{(x + 1)^2}{(x^2 + 1)^2} = \frac{(a_1 x + b_1)(x^2 + 1) + (a_2 x + b_2)}{(x^2 + 1)^2},
\]
The method of partial fractions (Complex roots)

Example

Evaluate \(I = \int \frac{(x + 1)^2}{(x^2 + 1)^2} \, dx \).

Solution: Find constants \(a_1, b_1 \) and \(a_2, b_2 \) such that

\[
\frac{(x + 1)^2}{(x^2 + 1)^2} = \frac{a_1 x + b_1}{x^2 + 1} + \frac{a_2 x + b_2}{(x^2 + 1)^2}.
\]

\[
\frac{(x + 1)^2}{(x^2 + 1)^2} = \frac{(a_1 x + b_1)(x^2 + 1) + (a_2 x + b_2)}{(x^2 + 1)^2},
\]

\[
(x + 1)^2 = (a_1 x + b_1)(x^2 + 1) + (a_2 x + b_2).
\]
Example

Evaluate \(I = \int \frac{(x + 1)^2}{(x^2 + 1)^2} \, dx \).

Solution: Find constants \(a_1, b_1 \) and \(a_2, b_2 \) such that

\[
\frac{(x + 1)^2}{(x^2 + 1)^2} = \frac{(a_1x + b_1)}{(x^2 + 1)} + \frac{(a_2x + b_2)}{(x^2 + 1)^2}.
\]

\[
\frac{(x + 1)^2}{(x^2 + 1)^2} = \frac{(a_1x + b_1)(x^2 + 1) + (a_2x + b_2)}{(x^2 + 1)^2},
\]

\[
(x + 1)^2 = (a_1x + b_1)(x^2 + 1) + (a_2x + b_2).
\]

\[
x^2 + 2x + 1 = a_1x^3 + a_1x + b_1x^2 + b_1 + a_2x + b_2.
\]
The method of partial fractions (Complex roots)

Example

Evaluate \(I = \int \frac{(x + 1)^2}{(x^2 + 1)^2} \, dx \).

Solution: Find constants \(a_1, b_1 \) and \(a_2, b_2 \) such that

\[
\frac{(x + 1)^2}{(x^2 + 1)^2} = \frac{(a_1x + b_1)}{(x^2 + 1)} + \frac{(a_2x + b_2)}{(x^2 + 1)^2}.
\]

\[
\frac{(x + 1)^2}{(x^2 + 1)^2} = \frac{(a_1x + b_1)(x^2 + 1) + (a_2x + b_2)}{(x^2 + 1)^2},
\]

\[(x + 1)^2 = (a_1x + b_1)(x^2 + 1) + (a_2x + b_2).
\]

\[x^2 + 2x + 1 = a_1x^3 + a_1x + b_1x^2 + b_1 + a_2x + b_2.
\]

\[x^2 + 2x + 1 = a_1x^3 + b_1x^2 + (a_1 + a_2)x + (b_1 + b_2).
\]
The method of partial fractions (Complex roots)

Example

Evaluate $I = \int \frac{(x + 1)^2}{(x^2 + 1)^2} \, dx$.

Solution: Recall:

$x^2 + 2x + 1 = a_1x^3 + b_1x^2 + (a_1 + a_2)x + (b_1 + b_2)$.
The method of partial fractions (Complex roots)

Example

Evaluate \(I = \int \frac{(x + 1)^2}{(x^2 + 1)^2} \, dx \).

Solution: Recall:

\[x^2 + 2x + 1 = a_1x^3 + b_1x^2 + (a_1 + a_2)x + (b_1 + b_2). \]

We conclude: \(a_1 = 0, \)
The method of partial fractions (Complex roots)

Example
Evaluate \(I = \int \frac{(x + 1)^2}{(x^2 + 1)^2} \, dx \).

Solution: Recall:
\[
x^2 + 2x + 1 = a_1 x^3 + b_1 x^2 + (a_1 + a_2) x + (b_1 + b_2).
\]
We conclude: \(a_1 = 0, \ b_1 = 1, \)
The method of partial fractions (Complex roots)

Example
Evaluate \[I = \int \frac{(x + 1)^2}{(x^2 + 1)^2} \, dx. \]

Solution: Recall:
\[x^2 + 2x + 1 = a_1x^3 + b_1x^2 + (a_1 + a_2)x + (b_1 + b_2). \]
We conclude: \[a_1 = 0, \quad b_1 = 1, \quad a_2 = 2, \]
The method of partial fractions (Complex roots)

Example
Evaluate \[I = \int \frac{(x + 1)^2}{(x^2 + 1)^2} \, dx. \]

Solution: Recall:
\[x^2 + 2x + 1 = a_1 x^3 + b_1 x^2 + (a_1 + a_2)x + (b_1 + b_2). \]
We conclude: \(a_1 = 0, \ b_1 = 1, \ a_2 = 2, \) and \(b_2 = 0. \)
The method of partial fractions (Complex roots)

Example
Evaluate \(I = \int \frac{(x + 1)^2}{(x^2 + 1)^2} \, dx \).

Solution: Recall:

\[x^2 + 2x + 1 = a_1 x^3 + b_1 x^2 + (a_1 + a_2) x + (b_1 + b_2). \]

We conclude: \(a_1 = 0, b_1 = 1, a_2 = 2, \) and \(b_2 = 0. \) Hence,

\[I = \int \frac{(a_1 x + b_1)}{(x^2 + 1)} \, dx + \int \frac{(a_2 x + b_2)}{(x^2 + 1)^2} \, dx. \]
The method of partial fractions (Complex roots)

Example

Evaluate \[I = \int \frac{(x + 1)^2}{(x^2 + 1)^2} \, dx. \]

Solution: Recall:

\[x^2 + 2x + 1 = a_1x^3 + b_1x^2 + (a_1 + a_2)x + (b_1 + b_2). \]

We conclude: \(a_1 = 0, b_1 = 1, a_2 = 2, \) and \(b_2 = 0. \) Hence,

\[I = \int \frac{(a_1x + b_1)}{(x^2 + 1)} \, dx + \int \frac{(a_2x + b_2)}{(x^2 + 1)^2} \, dx. \]

\[I = \int \frac{dx}{x^2 + 1} + \int \frac{2x \, dx}{(x^2 + 1)^2}. \]
The method of partial fractions (Complex roots)

Example

Evaluate \(I = \int \frac{(x + 1)^2}{(x^2 + 1)^2} \, dx \).

Solution: Recall:

\[
x^2 + 2x + 1 = a_1 x^3 + b_1 x^2 + (a_1 + a_2) x + (b_1 + b_2).
\]

We conclude: \(a_1 = 0, \ b_1 = 1, \ a_2 = 2, \) and \(b_2 = 0 \). Hence,

\[
I = \int \frac{(a_1 x + b_1)}{(x^2 + 1)} \, dx + \int \frac{(a_2 x + b_2)}{(x^2 + 1)^2} \, dx.
\]

\[
I = \int \frac{dx}{x^2 + 1} + \int \frac{2x \, dx}{(x^2 + 1)^2}.
\]

We conclude that \(I = \arctan(x) - \frac{1}{(x^2 + 1)} + c \). \(\triangle \)
The method of partial fractions (Complex roots)

Theorem (Repeated roots)

The rational function \(\frac{p_{(2n-1)}(x)}{(x + bx + c)^n} \), with \(b^2 - 4c < 0 \), can be written as

\[
p_{(2n-1)}(x) = a_1 x + b_1 + \cdots + a_n x + b_n \]

for appropriate constants \(a_i, b_1 \) for \(i = 1, \cdots, n \).
The method of partial fractions (Complex roots)

Theorem (Repeated roots)

The rational function \(\frac{p_{(2n-1)}(x)}{(x + bx + c)^n} \), with \(b^2 - 4c < 0 \), can be written as

\[
\frac{p_{(2n-1)}(x)}{(x^2 + bx + c)^n} = \frac{a_1x + b_1}{(x^2 + bx + c)} + \cdots + \frac{a_nx + b_n}{(x^2 + bx + c)^n}
\]

for appropriate constants \(a_i, b_1 \) for \(i = 1, \cdots, n \).

Idea of the Proof:
Taking common denominator on the right-hand side above,

\[
p_{(2n-1)}(x) = (a_1x + b_1)(x^2 + bx + c)^{(n-1)} + \cdots + (a_nx + b_n).
\]
The method of partial fractions (Complex roots)

Theorem (Repeated roots)

The rational function \(\frac{p(2n-1)(x)}{(x + bx + c)^n} \), with \(b^2 - 4c < 0 \), can be written as

\[
p(2n-1)(x) = \frac{a_1x + b_1}{(x^2 + bx + c)^n} + \cdots + \frac{a_nx + b_n}{(x^2 + bx + c)^n}
\]

for appropriate constants \(a_i, b_1 \) for \(i = 1, \cdots, n \).

Idea of the Proof:
Taking common denominator on the right-hand side above,

\[
p(2n-1)(x) = (a_1x + b_1)(x^2 + bx + c)^{(n-1)} + \cdots + (a_nx + b_n).
\]

Expanding the equation above one can find a system of equations for the coefficients.
Integrating rational functions (Sect. 8.4)

- Integrating rational functions, \(\frac{p_m(x)}{q_n(x)} \).

- Polynomial division: \(\frac{p_m(x)}{q_n(x)} = d_{m-n}(x) + \frac{r_k(x)}{q_n(x)}, \ k < n. \)

- The method of partial fractions.
 - The case \(\frac{p_1(x)}{(x - r_1)(x - r_2)} \), \(r_1 \neq r_2 \) (Non-repeated roots).
 - The case \(\frac{p_{(n-1)}(x)}{(x - r_1)^n} \). (Repeated roots).
 - The case \(\frac{p_{(2n-1)}(x)}{(x^2 + bx + c)^n}, \ b^2 - 4c < 0 \) (Complex roots).
 - The general case.
Remarks:

- Consider a general rational function \(\frac{r_k(x)}{q_n(x)} \), with \(k < n \).
The method of partial fractions (General case)

Remarks:

- Consider a general rational function \(\frac{r_k(x)}{q_n(x)} \), with \(k < n \).

- Express the denominator, \(q \), as a product of factors \((x - r_i)^{m_i} \) and \((x^2 + b_i x + c_i)^{\ell_i} \), with \(r_i \) roots of \(q_n \), and \(b_i^2 - 4c_i < 0 \).
The method of partial fractions (General case)

Remarks:

▸ Consider a general rational function \(\frac{r_k(x)}{q_n(x)} \), with \(k < n \).

▸ Express the denominator, \(q \), as a product of factors \((x - r_i)^{m_i} \) and \((x^2 + b_i x + c_i)^{\ell_i} \), with \(r_i \) roots of \(q_n \), and \(b_i^2 - 4c_i < 0 \).

▸ The partial fraction decomposition for \(\frac{r_k}{q_n} \) is the addition of the partial fraction decomposition for each factor in \(q \).
The method of partial fractions (General case)

Example

Evaluate \[I = \int \frac{6x^3 - 8x^2 + 5x - 6}{(x^2 + 1)(x - 2)x} \, dx. \]
The method of partial fractions (General case)

Example
Evaluate \(I = \int \frac{6x^3 - 8x^2 + 5x - 6}{(x^2 + 1)(x - 2)x} \ dx. \)

Solution: The partial fraction decomposition is:

\[
\frac{6x^3 - 8x^2 + 5x - 6}{(x^2 + 1)(x - 2)x} = \frac{(ax + b)}{(x^2 + 1)} + \frac{c}{(x - 2)} + \frac{d}{x}
\]
The method of partial fractions (General case)

Example
Evaluate \(I = \int \frac{6x^3 - 8x^2 + 5x - 6}{(x^2 + 1)(x - 2)x} \, dx \).

Solution: The partial fraction decomposition is:

\[
\frac{6x^3 - 8x^2 + 5x - 6}{(x^2 + 1)(x - 2)x} = \frac{(ax + b)}{(x^2 + 1)} + \frac{c}{(x - 2)} + \frac{d}{x}
\]

\[
6x^3 - 8x^2 + 5x - 6 = (ax + b)(x - 2)x + c(x^2 + 1)x + d(x^2 + 1)(x - 2)
\]
The method of partial fractions (General case)

Example

Evaluate \(I = \int \frac{6x^3 - 8x^2 + 5x - 6}{(x^2 + 1)(x - 2)x} \, dx \).

Solution: The partial fraction decomposition is:

\[
\frac{6x^3 - 8x^2 + 5x - 6}{(x^2 + 1)(x - 2)x} = \frac{(ax + b)}{(x^2 + 1)} + \frac{c}{(x - 2)} + \frac{d}{x}
\]

\[
6x^3 - 8x^2 + 5x - 6 = (ax + b)(x - 2)x + c(x^2 + 1)x + d(x^2 + 1)(x - 2)
\]

\[
= ax^3 - 2ax^2 + bx^2 - 2bx + cx^3 + cx + dx^3 - 2dx^2 + dx - 2d
\]
The method of partial fractions (General case)

Example

Evaluate \[I = \int \frac{6x^3 - 8x^2 + 5x - 6}{(x^2 + 1)(x - 2)x} \, dx. \]

Solution: The partial fraction decomposition is:

\[\frac{6x^3 - 8x^2 + 5x - 6}{(x^2 + 1)(x - 2)x} = \frac{(ax + b)}{(x^2 + 1)} + \frac{c}{(x - 2)} + \frac{d}{x} \]

\[6x^3 - 8x^2 + 5x - 6 = (ax + b)(x - 2)x + c(x^2 + 1)x + d(x^2 + 1)(x - 2) \]

\[= ax^3 - 2ax^2 + bx^2 - 2bx + cx^3 + cx + dx^3 - 2dx^2 + dx - 2d \]

\[= (a + c + d)x^3 + (-2a + b - 2d)x^2 + (-2b + c + d)x - 2d \]
The method of partial fractions (General case)

Example

Evaluate

\[I = \int \frac{6x^3 - 8x^2 + 5x - 6}{(x^2 + 1)(x - 2)x} \, dx. \]

Solution: The partial fraction decomposition is:

\[\frac{6x^3 - 8x^2 + 5x - 6}{(x^2 + 1)(x - 2)x} = \frac{(ax + b)}{(x^2 + 1)} + \frac{c}{(x - 2)} + \frac{d}{x} \]

\[6x^3 - 8x^2 + 5x - 6 = (ax + b)(x - 2)x + c(x^2 + 1)x + d(x^2 + 1)(x - 2) \]

\[= ax^3 - 2ax^2 + bx^2 - 2bx + cx^3 + cx + dx^3 - 2dx^2 + dx - 2d \]

\[= (a + c + d)x^3 + (-2a + b - 2d)x^2 + (-2b + c + d)x - 2d \]

\[a + c + d = 6, \quad -2a + b - 2d = -8, \quad 5 = -2b + c + d \quad d = 3. \]
The method of partial fractions (General case)

Example

Evaluate

\[I = \int \frac{9x^3 - 8x^2 + 5x - 6}{(x^2 + 1)(x - 2)x} \, dx. \]

Solution: Recall:

\[a + c + d = 6, \quad -2a + b - 2d = -8, \quad 5 = -2b + c + d \quad d = 3. \]
The method of partial fractions (General case)

Example

Evaluate \(I = \int \frac{9x^3 - 8x^2 + 5x - 6}{(x^2 + 1)(x - 2)x} \, dx. \)

Solution: Recall:

\[a + c + d = 6, \quad -2a + b - 2d = -8, \quad 5 = -2b + c + d \quad d = 3. \]

\[a + c = 3, \quad 2a - b = 2, \quad -2b + c = 2. \]
The method of partial fractions (General case)

Example
Evaluate \(I = \int \frac{9x^3 - 8x^2 + 5x - 6}{(x^2 + 1)(x - 2)x} \, dx \).

Solution: Recall:
\[
\begin{align*}
 a + c + d &= 6, & -2a + b - 2d &= -8, & 5 &= -2b + c + d & d &= 3. \\
 a + c &= 3, & 2a - b &= 2, & -2b + c &= 2. \\
 c &= 3 - a
\end{align*}
\]

\(I = \frac{1}{2} \ln(x^2 + 1) + 2 \ln|x - 2| + 3 \ln|x| + c \).
The method of partial fractions (General case)

Example
Evaluate \(I = \int \frac{9x^3 - 8x^2 + 5x - 6}{(x^2 + 1)(x - 2)x} \, dx \).

Solution: Recall:

\[
\begin{align*}
 a + c + d &= 6, \\
 -2a + b - 2d &= -8, \\
 5 &= -2b + c + d \quad d = 3. \\
\end{align*}
\]

\[
\begin{align*}
 a + c &= 3, \\
 2a - b &= 2, \\
 -2b + c &= 2. \\
\end{align*}
\]

\[
c = 3 - a \quad \Rightarrow \quad -2b + 3 - a = 2
\]
The method of partial fractions (General case)

Example
Evaluate \[I = \int \frac{9x^3 - 8x^2 + 5x - 6}{(x^2 + 1)(x - 2)x} \, dx. \]

Solution: Recall:
\[a + c + d = 6, \quad -2a + b - 2d = -8, \quad 5 = -2b + c + d \quad d = 3. \]
\[a + c = 3, \quad 2a - b = 2, \quad -2b + c = 2. \]
\[c = 3 - a \quad \Rightarrow \quad -2b + 3 - a = 2 \quad \Rightarrow \quad a = 1 - 2b \]
The method of partial fractions (General case)

Example
Evaluate $I = \int \frac{9x^3 - 8x^2 + 5x - 6}{(x^2 + 1)(x - 2)x} \, dx$.

Solution: Recall:

\begin{align*}
a + c + d &= 6, \quad -2a + b - 2d = -8, \quad 5 = -2b + c + d \quad d = 3. \\
a + c &= 3, \quad 2a - b = 2, \quad -2b + c = 2. \\
c &= 3 - a \Rightarrow \quad -2b + 3 - a = 2 \Rightarrow \quad a = 1 - 2b \Rightarrow \quad 2 - 4b - b = 2.
\end{align*}
The method of partial fractions (General case)

Example

Evaluate \[I = \int \frac{9x^3 - 8x^2 + 5x - 6}{(x^2 + 1)(x - 2)x} \, dx. \]

Solution: Recall:

\[a + c + d = 6, \quad -2a + b - 2d = -8, \quad 5 = -2b + c + d \quad d = 3. \]

\[a + c = 3, \quad 2a - b = 2, \quad -2b + c = 2. \]

\[c = 3 - a \Rightarrow -2b + 3 - a = 2 \Rightarrow a = 1 - 2b \Rightarrow 2 - 4b - b = 2. \]

Hence \(b = 0 \), and then \(a = 1 \) and \(c = 2 \).
The method of partial fractions (General case)

Example

Evaluate \(I = \int \frac{9x^3 - 8x^2 + 5x - 6}{(x^2 + 1)(x - 2)x} \, dx \).

Solution: Recall:

\[
\begin{align*}
 a + c + d &= 6, & -2a + b - 2d &= -8, & 5 &= -2b + c + d & d &= 3. \\
 a + c &= 3, & 2a - b &= 2, & -2b + c &= 2. \\
 c &= 3 - a \Rightarrow & -2b + 3 - a &= 2 \Rightarrow & a &= 1 - 2b \Rightarrow & 2 - 4b - b &= 2.
\end{align*}
\]

Hence \(b = 0 \), and then \(a = 1 \) and \(c = 2 \). We conclude,

\[
I = \int \frac{6x^3 - 8x^2 + 5x - 6}{(x^2 + 1)(x - 2)x} \, dx = \int \left[\frac{x}{(x^2 + 1)} + \frac{2}{x - 2} + \frac{3}{x} \right] \, dx
\]
The method of partial fractions (General case)

Example
Evaluate \[I = \int \frac{9x^3 - 8x^2 + 5x - 6}{(x^2 + 1)(x - 2)x} \, dx. \]

Solution: Recall:
\[a + c + d = 6, \quad -2a + b - 2d = -8, \quad 5 = -2b + c + d \quad d = 3. \]
\[a + c = 3, \quad 2a - b = 2, \quad -2b + c = 2. \]
\[c = 3 - a \Rightarrow -2b + 3 - a = 2 \Rightarrow a = 1 - 2b \Rightarrow 2 - 4b - b = 2. \]

Hence \(b = 0 \), and then \(a = 1 \) and \(c = 2 \). We conclude,
\[I = \int \frac{6x^3 - 8x^2 + 5x - 6}{(x^2 + 1)(x - 2)x} \, dx = \int \left[\frac{x}{(x^2 + 1)} + \frac{2}{(x - 2)} + \frac{3}{x} \right] \, dx \]
\[I = \frac{1}{2} \ln(x^2 + 1) + 2 \ln |x - 2| + 3 \ln |x| + c. \]