
Review Exam 3.

I Sections 6.1-6.6, 7.1-7.6, 7.8.

I 5 problems.

I 50 minutes.

I Laplace Transform table included.



Exam: November 12, 2008. Problem 4.

Example

Find the general solution of x′ = A x, where A =

[
−3

√
2√

2 −2

]
.

Solution: Eigenvalues of A:

p(λ) =

∣∣∣∣(−3− λ)
√

2√
2 (−2− λ)

∣∣∣∣ = (λ + 2)(λ + 3)− 2 = 0

λ2 + 5λ + 4 = 0 ⇒ λ± =
1

2

[
−5±

√
25− 16

]
=

1

2

[
−5± 3

]
Hence λ+ = −1, λ− = −4. Eigenvector for λ+.

(A + I ) =

[
−2

√
2√

2 −1

]
→

[
2 −

√
2

2 −
√

2

]
→

[
2 −

√
2

0 0

]
.

2v1 =
√

2 v2. Choosing v1 =
√

2 and v2 = 2, we get v(+) =

[√
2

2

]
.
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Extra problem.

Example

Find x solution of the IVP

x′ = A x, x(0) =

[
1
3

]
, A =

[
−3 4
−1 1

]
.

Solution: Eigenvalues of A:

p(λ) =

∣∣∣∣(−3− λ) 4
−1 (1− λ)

∣∣∣∣ = (λ− 1)(λ + 3) + 4 = 0

λ2 + 2λ + 1 = 0 ⇒ λ± =
1

2

[
−2±

√
4− 4

]
= −1.

Hence λ+ = λ− = −1. Eigenvector for λ±.

(A + I ) =

[
−2 4
−1 2

]
→

[
1 −2
1 −2

]
→

[
1 −2
0 0

]
.

v1 = 2 v2. Choosing v1 = 2 and v2 = 1, we get v(+) =

[
2
1

]
.
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x(1) =
[
a cos(βt)− b sin(βt)

]
eαt , x(2) =

[
a sin(βt) + b cos(βt)

]
eαt .

for the cases α = 0, and α > 0, where β > 0.

Solution:

(2)

x
2

x1

a
b

x
x

(1)

(2)x
2

x1

a
b

x (1)

x

C



Extra problem.

Example
Given any vectors a and b, sketch qualitative phase portraits of

x(1) =
[
a cos(βt)− b sin(βt)

]
eαt , x(2) =

[
a sin(βt) + b cos(βt)

]
eαt .

for the cases α = 0, and α > 0, where β > 0.

Solution:

(2)

x
2

x1

a
b

x
x

(1)

(2)x
2

x1

a
b

x (1)

x

C



Extra problem.

Example
Given any vectors a and b, sketch qualitative phase portraits of

x(1) =
[
a cos(βt)− b sin(βt)

]
eαt , x(2) =

[
a sin(βt) + b cos(βt)

]
eαt .

for the cases α = 0, and α > 0, where β > 0.

Solution:

(2)

x
2

x1

a
b

x
x

(1)

(2)x
2

x1

a
b

x (1)

x

C



Extra problem.

Example
Given any vectors a and b, sketch qualitative phase portraits of

x(1) =
[
a cos(βt)− b sin(βt)

]
eαt , x(2) =

[
a sin(βt) + b cos(βt)

]
eαt .

for the cases α = 0, and α < 0, where β > 0.
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Overview of Fourier Series (Sect. 10.2).

I Origins of the Fourier Series.

I Periodic functions.

I Orthogonality of Sines and Cosines.

I Main result on Fourier Series.



Origins of the Fourier Series.

Summary:
Daniel Bernoulli (∼ 1750) found
solutions to the equation that
describes waves propagating on a
vibrating string.

x

u(t,x)

x

y

0

The function u, measuring the vertical displacement of the string,
is the solution to the wave equation,

∂2
t u(t, x) = v2 ∂2

xu(t, x), v ∈ R, x ∈ [0, L], t ∈ [0,∞),

with initial conditions,

u(0, x) = f (x), ∂tu(0, x) = 0,

and boundary conditions,

u(t, 0) = 0, u(t, L) = 0.
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Origins of the Fourier Series.

Summary:
Bernoulli found particular solutions to the wave equation.

If the initial condition is fn(x) = sin
(nπx

L

)
,

then the solution is un(t, x) = sin
(nπx

L

)
cos

(vnπt

L

)
.

Bernoulli also realized that

UN(t, x) =
N∑

n=1

an sin
(nπx

L

)
cos

(vnπt

L

)
, an ∈ R

is also solution of the wave equation with initial condition

FN(x) =
N∑

n=1

an sin
(nπx

L

)
.

Remark: The wave equation and its solutions provide a
mathematical description of music.
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Origins of the Fourier Series.

Remarks:
I Bernoulli claimed he had obtained all solutions to the problem

above for the wave equation.

I However, he did not prove that claim.

I A proof is: Given a function F with F (0) = F (L) = 0, but
otherwise arbitrary, find N and the coefficients an such that F
is approximated by an expansion FN given in the previous slide.

I Joseph Fourier (∼ 1800) provided such formula for the
coefficients an, while studying a different problem:
The heat transport in a solid material.

I Find the temperature function u solution of the heat equation

∂tu(t, x) = k ∂2
xu(t, x), k > 0, x ∈ [0, L], t ∈ [0,∞),

I.C. u(0, x) = f (x),

B.C. u(t, 0) = 0, u(t, L) = 0.
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Origins of the Fourier Series.

Remarks:
Fourier found particular solutions to the heat equation.

If the initial condition is fn(x) = sin
(nπx

L

)
,

then the solution is un(t, x) = sin
(nπx

L

)
e−k( nπ

L
)2t .

Fourier also realized that

UN(t, x) =
N∑

n=1

an sin
(nπx

L

)
e−k( nπ

L
)2t , an ∈ R

is also solution of the heat equation with initial condition

FN(x) =
N∑

n=1

an sin
(nπx

L

)
.

Remark: The heat equation and its solutions provide a
mathematical description of heat transport in a solid material.
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Origins of the Fourier Series.

Remarks:

I However, Fourier went farther than Bernoulli.

Fourier found a
formula for the coefficients an in terms of the function F .

I Given an initial data function F , satisfying F (0) = F (L) = 0,
but otherwise arbitrary, Fourier proved that one can construct
an expansion FN as follows,

FN(x) =
N∑

n=1

an sin
(nπx

L

)
,

for N any positive integer, where the an are given by

an =
2

L

∫ L

0
F (x) sin

(nπx

L

)
dx .

I To find all solutions to the heat equation problem above one
must prove one more thing: That FN approximates F for large
enough N. That is, limN→∞ FN = F . Fourier didn’t show this.
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Origins of the Fourier Series.

Remarks:

I Based on Bernoulli and Fourier works, people have been able
to prove that.

Every continuous, τ -periodic function can be
expressed as an infinite linear combination of sine and cosine
functions.

I More precisely: Every continuous, τ -periodic function F , there
exist constants a0, an, bn, for n = 1, 2, · · · such that

FN(x) =
a0

2
+

N∑
n=1

[
an cos

(2nπx

τ

)
+ bn sin

(2nπx

τ

)]
,

satisfies lim
N→∞

FN(x) = F (x) for every x ∈ R.

Notation: F (x) =
a0

2
+

∞∑
n=1

[
an cos

(2nπx

τ

)
+ bn sin

(2nπx

τ

)]
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Origins of the Fourier Series.

The main problem in our class:
Given a continuous, τ -periodic function f , find the formulas for an

and bn such that

f (x) =
a0

2
+

∞∑
n=1

[
an cos

(2nπx

τ

)
+ bn sin

(2nπx

τ

)]
.

Remarks: We need to review two main concepts:

I The notion of periodic functions.

I The notion of orthogonal functions, in particular the
orthogonality of Sines and Cosines.
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Fourier Series (Sect. 10.2).

I Origins of the Fourier Series.

I Periodic functions.

I Orthogonality of Sines and Cosines.

I Main result on Fourier Series.



Periodic functions.

Definition
A function f : R → R is called periodic iff there exists τ > 0 such
that for all x ∈ R holds

f (x + τ) = f (x).

Remark: f is invariant under translations by τ .

Definition
A period T of a periodic function f is the smallest value of τ such
that f (x + τ) = f (x) holds.

Notation:
A periodic function with period T is also called T -periodic.
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Periodic functions.

Example

The following functions are periodic, with period T ,

f (x) = sin(x), T = 2π.

f (x) = cos(x), T = 2π.

f (x) = tan(x), T = π.

f (x) = sin(ax), T =
2π

a
.

The proof of the latter statement is the following:

f
(
x +

2π

a

)
= sin

(
ax + a

2π

a

)
= sin(ax + 2π) = sin(ax) = f (x).

C
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Periodic functions.

Example

Show that the function below is periodic, and find its period,

f (x) = ex , x ∈ [0, 2), f (x − 2) = f (x).

Solution: We just graph the function,

0

f

1 x

So the function is periodic with period T = 2. C
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Periodic functions.

Theorem
A linear combination of T -periodic functions is also T-periodic.

Proof: If f (x + T ) = f (x) and g(x + T ) = g(x), then

af (x + T ) + bg(x + T ) = af (x) + bg(x),

so (af + bg) is also T -periodic.

Example

f (x) = 2 sin(3x) + 7 cos(2x) is periodic with period T = 2π/3. C

Remark: The functions below are periodic with period
T

n
,

f (x) = cos
(2πnx

T

)
, g(x) = sin

(2πnx

T

)
,

Since f and g are invariant under translations by T/n, they are
also invariant under translations by T .
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Periodic functions.

Corollary

Any function f given by

f (x) =
a0

2
+

∞∑
n=1

[
an cos

(2nπx

τ

)
+ bn sin

(2nπx

τ

)]
is periodic with period T .

Remark: We will show that the converse statement is true.

Theorem
A function f is T -periodic iff holds

f (x) =
a0

2
+

∞∑
n=1

[
an cos

(2nπx

τ

)
+ bn sin

(2nπx

τ

)]
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Fourier Series (Sect. 10.2).

I Origins of the Fourier Series.

I Periodic functions.

I Orthogonality of Sines and Cosines.

I Main result on Fourier Series.



Orthogonality of Sines and Cosines.

Remark:
From now on we work on the following domain: [−L, L].

T = 2 L

sin ( pi x / L )

cos ( pi x / L )

x

y

L−L
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Orthogonality of Sines and Cosines.

Theorem (Orthogonality)

The following relations hold for all n, m ∈ N,∫ L

−L
cos

(nπx

L

)
cos

(mπx

L

)
dx =


0 n 6= m,

L n = m 6= 0,

2L n = m = 0,∫ L

−L
sin

(nπx

L

)
sin

(mπx

L

)
dx =

{
0 n 6= m,

L n = m,∫ L

−L
cos

(nπx

L

)
sin

(mπx

L

)
dx = 0.

Remark:

I The operation f · g =

∫ L

−L
f (x) g(x) dx is an inner product in

the vector space of functions. Like the dot product is in R2.

I Two functions f , g , are orthogonal iff f · g = 0.
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I Two functions f , g , are orthogonal iff f · g = 0.



Orthogonality of Sines and Cosines.

Recall: cos(θ) cos(φ) =
1

2

[
cos(θ + φ) + cos(θ − φ)

]
;

sin(θ) sin(φ) =
1

2

[
cos(θ − φ)− cos(θ + φ)

]
;

sin(θ) cos(φ) =
1

2

[
sin(θ + φ) + sin(θ − φ)

]
.

Proof: First formula: If n = m = 0, it is simple to see that∫ L

−L
cos

(nπx

L

)
cos

(mπx

L

)
dx =

∫ L

−L
dx = 2L.

In the case where one of n or m is non-zero, use the relation∫ L

−L
cos

(nπx

L

)
cos

(mπx

L

)
dx =

1

2

∫ L

−L
cos

[(n + m)πx

L

]
dx

+
1

2

∫ L

−L
cos

[(n −m)πx

L

]
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Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero,

holds

1

2

∫ L

−L
cos

[(n + m)πx

L

]
dx =

L

2(n + m)π
sin

[(n + m)πx

L

]∣∣∣L
−L

= 0.

We obtain that∫ L

−L
cos

(nπx

L

)
cos

(mπx

L

)
dx =

1

2

∫ L

−L
cos

[(n −m)πx

L

]
dx .

If we further restrict n 6= m, then

1

2

∫ L

−L
cos

[(n −m)πx

L

]
dx =

L

2(n −m)π
sin

[(n −m)πx

L

]∣∣∣L
−L

= 0.

If n = m 6= 0, we have that

1

2

∫ L

−L
cos

[(n −m)πx

L

]
dx =

1

2

∫ L

−L
dx = L.

This establishes the first equation in the Theorem. The remaining
equations are proven in a similar way.
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Overview of Fourier Series (Sect. 10.2).

I Origins of the Fourier Series.

I Periodic functions.

I Orthogonality of Sines and Cosines.

I Main result on Fourier Series.



Main result on Fourier Series.

Theorem (Fourier Series)

If the function f : [−L, L] ⊂ R → R is continuous, then f can be
expressed as an infinite series

f (x) =
a0

2
+

∞∑
n=1

[
an cos

(nπx

L

)
+ bn sin

(nπx

L

)]
(1)

with the constants an and bn given by

an =
1

L

∫ L

−L
f (x) cos

(nπx

L

)
dx , n > 0,

bn =
1

L

∫ L

−L
f (x) sin

(nπx

L

)
dx , n > 1.

Furthermore, the Fourier series in Eq. (1) provides a 2L-periodic
extension of f from the domain [−L, L] ⊂ R to R.



Examples of the Fourier Theorem (Sect. 10.3).

I The Fourier Theorem: Continuous case.

I Example: Using the Fourier Theorem.

I The Fourier Theorem: Piecewise continuous case.

I Example: Using the Fourier Theorem.



The Fourier Theorem: Continuous case.

Theorem (Fourier Series)

If the function f : [−L, L] ⊂ R → R is continuous, then f can be
expressed as an infinite series
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a0

2
+
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L
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L
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(2)
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an =
1

L

∫ L

−L
f (x) cos
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L

)
dx , n > 0,

bn =
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L

∫ L

−L
f (x) sin
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dx , n > 1.

Furthermore, the Fourier series in Eq. (1) provides a 2L-periodic
extension of f from the domain [−L, L] ⊂ R to R.



The Fourier Theorem: Continuous case.

Sketch of the Proof:

I Define the partial sum functions

fN(x) =
a0

2
+

N∑
n=1

[
an cos

(nπx

L

)
+ bn sin

(nπx

L

)]

with an and bn given by

an =
1

L

∫ L

−L
f (x) cos

(nπx

L

)
dx , n > 0,

bn =
1

L

∫ L

−L
f (x) sin

(nπx

L

)
dx , n > 1.

I Express fN as a convolution of Sine, Cosine, functions and the
original function f .

I Use the convolution properties to show that

lim
N→∞

fN(x) = f (x), x ∈ [−L, L].
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Examples of the Fourier Theorem (Sect. 10.3).

I The Fourier Theorem: Continuous case.

I Example: Using the Fourier Theorem.

I The Fourier Theorem: Piecewise continuous case.

I Example: Using the Fourier Theorem.



Example: Using the Fourier Theorem.
Example

Find the Fourier series expansion of the function

f (x) =

{
1 + x x ∈ [−1, 0),

1− x x ∈ [0, 1].

Solution: In this case L = 1. The Fourier series expansion is

f (x) =
a0

2
+

∞∑
n=1

[
an cos(nπx) + bn sin(nπx)

]
,

where the an, bn are given in the Theorem. We start with a0,

a0 =

∫ 1

−1
f (x) dx =

∫ 0

−1
(1 + x) dx +

∫ 1

0
(1− x) dx .

a0 =
(
x +

x2

2

)∣∣∣0
−1

+
(
x − x2

2

)∣∣∣1
0

=
(
1− 1

2

)
+

(
1− 1

2

)
We obtain: a0 = 1.
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Example: Using the Fourier Theorem.
Example

Find the Fourier series expansion of the function

f (x) =

{
1 + x x ∈ [−1, 0),

1− x x ∈ [0, 1].

Solution: Recall: a0 = 1.

Similarly, the rest of the an are given by,

an =

∫ 1

−1
f (x) cos(nπx) dx

an =

∫ 0

−1
(1 + x) cos(nπx) dx +
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I The Fourier Theorem: Continuous case.

I Example: Using the Fourier Theorem.

I The Fourier Theorem: Piecewise continuous case.

I Example: Using the Fourier Theorem.



The Fourier Theorem: Piecewise continuous case.

Recall:

Definition
A function f : [a, b]→ R is called piecewise continuous iff holds,

(a) [a, b] can be partitioned in a finite number of sub-intervals
such that f is continuous on the interior of these sub-intervals.

(b) f has finite limits at the endpoints of all sub-intervals.



The Fourier Theorem: Piecewise continuous case.

Theorem (Fourier Series)

If f : [−L, L] ⊂ R → R is piecewise continuous, then the function

fF (x) =
a0

2
+

∞∑
n=1

[
an cos

(nπx

L

)
+ bn sin

(nπx

L

)]
where an and bn given by

an =
1

L

∫ L

−L
f (x) cos

(nπx

L

)
dx , n > 0,

bn =
1

L

∫ L

−L
f (x) sin

(nπx

L

)
dx , n > 1.

satisfies that:

(a) fF (x) = f (x) for all x where f is continuous;

(b) fF (x0) =
1

2

[
lim

x→x+
0

f (x) + lim
x→x−0

f (x)
]

for all x0 where f is

discontinuous.
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Example: Using the Fourier Theorem.

Example

Find the Fourier series of f (x) =

{
− 1 x ∈ [−1, 0),

1 x ∈ [0, 1).

and periodic with period T = 2.

Solution: We start computing the Fourier coefficients bn;

bn =
1

L

∫ L

−L
f (x) sin

(nπx

L

)
dx , L = 1,

bn =

∫ 0

−1
(−1) sin

(
nπx

)
dx +

∫ 1

0
(1) sin

(
nπx

)
dx ,

bn =
(−1)

nπ

[
− cos(nπx)

∣∣∣0
−1

]
+

1

nπ

[
− cos(nπx)

∣∣∣1
0

]
,

bn =
(−1)

nπ

[
−1 + cos(−nπ)
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