Review Exam 3.

- Sections 6.1-6.6, 7.1-7.6, 7.8.
- 5 problems.
- 50 minutes.
- Laplace Transform table included.

Exam: November 12, 2008. Problem 4.

Example
Find the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$, where $A=\left[\begin{array}{ll}-3 & \sqrt{2} \\ \sqrt{2} & -2\end{array}\right]$.

Exam: November 12, 2008. Problem 4.

Example

Find the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$, where $A=\left[\begin{array}{cc}-3 & \sqrt{2} \\ \sqrt{2} & -2\end{array}\right]$.
Solution: Eigenvalues of A :

Exam: November 12, 2008. Problem 4.

Example
Find the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$, where $A=\left[\begin{array}{cc}-3 & \sqrt{2} \\ \sqrt{2} & -2\end{array}\right]$.
Solution: Eigenvalues of A :

$$
p(\lambda)=\left|\begin{array}{cc}
(-3-\lambda) & \sqrt{2} \\
\sqrt{2} & (-2-\lambda)
\end{array}\right|
$$

Exam: November 12, 2008. Problem 4.

Example

Find the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$, where $A=\left[\begin{array}{cc}-3 & \sqrt{2} \\ \sqrt{2} & -2\end{array}\right]$.
Solution: Eigenvalues of A :

$$
p(\lambda)=\left|\begin{array}{cc}
(-3-\lambda) & \sqrt{2} \\
\sqrt{2} & (-2-\lambda)
\end{array}\right|=(\lambda+2)(\lambda+3)-2=0
$$

Exam: November 12, 2008. Problem 4.

Example

Find the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$, where $A=\left[\begin{array}{cc}-3 & \sqrt{2} \\ \sqrt{2} & -2\end{array}\right]$.
Solution: Eigenvalues of A :

$$
\begin{aligned}
& \quad p(\lambda)=\left|\begin{array}{cc}
(-3-\lambda) & \sqrt{2} \\
\sqrt{2} & (-2-\lambda)
\end{array}\right|=(\lambda+2)(\lambda+3)-2=0 \\
& \lambda^{2}+5 \lambda+4=0
\end{aligned}
$$

Exam: November 12, 2008. Problem 4.

Example
Find the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$, where $A=\left[\begin{array}{ll}-3 & \sqrt{2} \\ \sqrt{2} & -2\end{array}\right]$. Solution: Eigenvalues of A :

$$
\begin{aligned}
& p(\lambda)=\left|\begin{array}{cc}
(-3-\lambda) & \sqrt{2} \\
\sqrt{2} & (-2-\lambda)
\end{array}\right|=(\lambda+2)(\lambda+3)-2=0 \\
& \lambda^{2}+5 \lambda+4=0 \quad \Rightarrow \quad \lambda_{ \pm}=\frac{1}{2}[-5 \pm \sqrt{25-16}]
\end{aligned}
$$

Exam: November 12, 2008. Problem 4.

Example
Find the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$, where $A=\left[\begin{array}{cc}-3 & \sqrt{2} \\ \sqrt{2} & -2\end{array}\right]$.
Solution: Eigenvalues of A :

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(-3-\lambda) & \sqrt{2} \\
\sqrt{2} & (-2-\lambda)
\end{array}\right|=(\lambda+2)(\lambda+3)-2=0 \\
\lambda^{2}+5 \lambda+4=0 \quad \Rightarrow \quad \lambda_{ \pm}=\frac{1}{2}[-5 \pm \sqrt{25-16}]=\frac{1}{2}[-5 \pm 3]
\end{gathered}
$$

Exam: November 12, 2008. Problem 4.

Example
Find the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$, where $A=\left[\begin{array}{cc}-3 & \sqrt{2} \\ \sqrt{2} & -2\end{array}\right]$.
Solution: Eigenvalues of A :

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(-3-\lambda) & \sqrt{2} \\
\sqrt{2} & (-2-\lambda)
\end{array}\right|=(\lambda+2)(\lambda+3)-2=0 \\
\lambda^{2}+5 \lambda+4=0 \quad \Rightarrow \quad \lambda_{ \pm}=\frac{1}{2}[-5 \pm \sqrt{25-16}]=\frac{1}{2}[-5 \pm 3]
\end{gathered}
$$

Hence $\lambda_{+}=-1$,

Exam: November 12, 2008. Problem 4.

Example
Find the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$, where $A=\left[\begin{array}{cc}-3 & \sqrt{2} \\ \sqrt{2} & -2\end{array}\right]$.
Solution: Eigenvalues of A :

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(-3-\lambda) & \sqrt{2} \\
\sqrt{2} & (-2-\lambda)
\end{array}\right|=(\lambda+2)(\lambda+3)-2=0 \\
\lambda^{2}+5 \lambda+4=0 \quad \Rightarrow \quad \lambda_{ \pm}=\frac{1}{2}[-5 \pm \sqrt{25-16}]=\frac{1}{2}[-5 \pm 3]
\end{gathered}
$$

Hence $\lambda_{+}=-1, \quad \lambda_{-}=-4$.

Exam: November 12, 2008. Problem 4.

Example
Find the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$, where $A=\left[\begin{array}{cc}-3 & \sqrt{2} \\ \sqrt{2} & -2\end{array}\right]$.
Solution: Eigenvalues of A :

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(-3-\lambda) & \sqrt{2} \\
\sqrt{2} & (-2-\lambda)
\end{array}\right|=(\lambda+2)(\lambda+3)-2=0 \\
\lambda^{2}+5 \lambda+4=0 \quad \Rightarrow \quad \lambda_{ \pm}=\frac{1}{2}[-5 \pm \sqrt{25-16}]=\frac{1}{2}[-5 \pm 3]
\end{gathered}
$$

Hence $\lambda_{+}=-1, \lambda_{-}=-4$. Eigenvector for λ_{+}.

$$
(A+I)=\left[\begin{array}{ll}
-2 & \sqrt{2} \\
\sqrt{2} & -1
\end{array}\right]
$$

Exam: November 12, 2008. Problem 4.

Example
Find the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$, where $A=\left[\begin{array}{cc}-3 & \sqrt{2} \\ \sqrt{2} & -2\end{array}\right]$.
Solution: Eigenvalues of A :

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(-3-\lambda) & \sqrt{2} \\
\sqrt{2} & (-2-\lambda)
\end{array}\right|=(\lambda+2)(\lambda+3)-2=0 \\
\lambda^{2}+5 \lambda+4=0 \Rightarrow \quad \lambda_{ \pm}=\frac{1}{2}[-5 \pm \sqrt{25-16}]=\frac{1}{2}[-5 \pm 3]
\end{gathered}
$$

Hence $\lambda_{+}=-1, \lambda_{-}=-4$. Eigenvector for λ_{+}.

$$
(A+I)=\left[\begin{array}{cc}
-2 & \sqrt{2} \\
\sqrt{2} & -1
\end{array}\right] \rightarrow\left[\begin{array}{ll}
2 & -\sqrt{2} \\
2 & -\sqrt{2}
\end{array}\right]
$$

Exam: November 12, 2008. Problem 4.

Example
Find the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$, where $A=\left[\begin{array}{cc}-3 & \sqrt{2} \\ \sqrt{2} & -2\end{array}\right]$.
Solution: Eigenvalues of A :

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(-3-\lambda) & \sqrt{2} \\
\sqrt{2} & (-2-\lambda)
\end{array}\right|=(\lambda+2)(\lambda+3)-2=0 \\
\lambda^{2}+5 \lambda+4=0 \Rightarrow \quad \lambda_{ \pm}=\frac{1}{2}[-5 \pm \sqrt{25-16}]=\frac{1}{2}[-5 \pm 3]
\end{gathered}
$$

Hence $\lambda_{+}=-1, \lambda_{-}=-4$. Eigenvector for λ_{+}.

$$
(A+I)=\left[\begin{array}{cc}
-2 & \sqrt{2} \\
\sqrt{2} & -1
\end{array}\right] \rightarrow\left[\begin{array}{cc}
2 & -\sqrt{2} \\
2 & -\sqrt{2}
\end{array}\right] \rightarrow\left[\begin{array}{cc}
2 & -\sqrt{2} \\
0 & 0
\end{array}\right] .
$$

Exam: November 12, 2008. Problem 4.

Example
Find the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$, where $A=\left[\begin{array}{cc}-3 & \sqrt{2} \\ \sqrt{2} & -2\end{array}\right]$. Solution: Eigenvalues of A :

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(-3-\lambda) & \sqrt{2} \\
\sqrt{2} & (-2-\lambda)
\end{array}\right|=(\lambda+2)(\lambda+3)-2=0 \\
\lambda^{2}+5 \lambda+4=0 \Rightarrow \quad \lambda_{ \pm}=\frac{1}{2}[-5 \pm \sqrt{25-16}]=\frac{1}{2}[-5 \pm 3]
\end{gathered}
$$

Hence $\lambda_{+}=-1, \lambda_{-}=-4$. Eigenvector for λ_{+}.

$$
(A+I)=\left[\begin{array}{cc}
-2 & \sqrt{2} \\
\sqrt{2} & -1
\end{array}\right] \rightarrow\left[\begin{array}{cc}
2 & -\sqrt{2} \\
2 & -\sqrt{2}
\end{array}\right] \rightarrow\left[\begin{array}{cc}
2 & -\sqrt{2} \\
0 & 0
\end{array}\right] .
$$

$2 v_{1}=\sqrt{2} v_{2}$.

Exam: November 12, 2008. Problem 4.

Example
Find the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$, where $A=\left[\begin{array}{cc}-3 & \sqrt{2} \\ \sqrt{2} & -2\end{array}\right]$. Solution: Eigenvalues of A :

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(-3-\lambda) & \sqrt{2} \\
\sqrt{2} & (-2-\lambda)
\end{array}\right|=(\lambda+2)(\lambda+3)-2=0 \\
\lambda^{2}+5 \lambda+4=0 \Rightarrow \quad \lambda_{ \pm}=\frac{1}{2}[-5 \pm \sqrt{25-16}]=\frac{1}{2}[-5 \pm 3]
\end{gathered}
$$

Hence $\lambda_{+}=-1, \lambda_{-}=-4$. Eigenvector for λ_{+}.

$$
(A+I)=\left[\begin{array}{cc}
-2 & \sqrt{2} \\
\sqrt{2} & -1
\end{array}\right] \rightarrow\left[\begin{array}{cc}
2 & -\sqrt{2} \\
2 & -\sqrt{2}
\end{array}\right] \rightarrow\left[\begin{array}{cc}
2 & -\sqrt{2} \\
0 & 0
\end{array}\right] .
$$

$2 v_{1}=\sqrt{2} v_{2}$. Choosing $v_{1}=\sqrt{2}$

Exam: November 12, 2008. Problem 4.

Example
Find the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$, where $A=\left[\begin{array}{cc}-3 & \sqrt{2} \\ \sqrt{2} & -2\end{array}\right]$. Solution: Eigenvalues of A :

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(-3-\lambda) & \sqrt{2} \\
\sqrt{2} & (-2-\lambda)
\end{array}\right|=(\lambda+2)(\lambda+3)-2=0 \\
\lambda^{2}+5 \lambda+4=0 \Rightarrow \quad \lambda_{ \pm}=\frac{1}{2}[-5 \pm \sqrt{25-16}]=\frac{1}{2}[-5 \pm 3]
\end{gathered}
$$

Hence $\lambda_{+}=-1, \lambda_{-}=-4$. Eigenvector for λ_{+}.

$$
(A+I)=\left[\begin{array}{cc}
-2 & \sqrt{2} \\
\sqrt{2} & -1
\end{array}\right] \rightarrow\left[\begin{array}{cc}
2 & -\sqrt{2} \\
2 & -\sqrt{2}
\end{array}\right] \rightarrow\left[\begin{array}{cc}
2 & -\sqrt{2} \\
0 & 0
\end{array}\right] .
$$

$2 v_{1}=\sqrt{2} v_{2}$. Choosing $v_{1}=\sqrt{2}$ and $v_{2}=2$,

Exam: November 12, 2008. Problem 4.

Example
Find the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$, where $A=\left[\begin{array}{cc}-3 & \sqrt{2} \\ \sqrt{2} & -2\end{array}\right]$. Solution: Eigenvalues of A :

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(-3-\lambda) & \sqrt{2} \\
\sqrt{2} & (-2-\lambda)
\end{array}\right|=(\lambda+2)(\lambda+3)-2=0 \\
\lambda^{2}+5 \lambda+4=0 \Rightarrow \quad \lambda_{ \pm}=\frac{1}{2}[-5 \pm \sqrt{25-16}]=\frac{1}{2}[-5 \pm 3]
\end{gathered}
$$

Hence $\lambda_{+}=-1, \lambda_{-}=-4$. Eigenvector for λ_{+}.

$$
(A+I)=\left[\begin{array}{cc}
-2 & \sqrt{2} \\
\sqrt{2} & -1
\end{array}\right] \rightarrow\left[\begin{array}{cc}
2 & -\sqrt{2} \\
2 & -\sqrt{2}
\end{array}\right] \rightarrow\left[\begin{array}{cc}
2 & -\sqrt{2} \\
0 & 0
\end{array}\right] .
$$

$2 v_{1}=\sqrt{2} v_{2}$. Choosing $v_{1}=\sqrt{2}$ and $v_{2}=2$, we get $v^{(+)}=\left[\begin{array}{c}\sqrt{2} \\ 2\end{array}\right]$.

Exam: November 12, 2008. Problem 4.

Example
Find the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$, where $A=\left[\begin{array}{cc}-3 & \sqrt{2} \\ \sqrt{2} & -2\end{array}\right]$.

Exam: November 12, 2008. Problem 4.

Example
Find the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$, where $A=\left[\begin{array}{cc}-3 & \sqrt{2} \\ \sqrt{2} & -2\end{array}\right]$.
Solution: Recall: $\lambda_{+}=-1, \quad \lambda_{-}=-4$, and $\mathbf{v}^{(+)}=\left[\begin{array}{c}\sqrt{2} \\ 2\end{array}\right]$.

Exam: November 12, 2008. Problem 4.

Example
Find the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$, where $A=\left[\begin{array}{cc}-3 & \sqrt{2} \\ \sqrt{2} & -2\end{array}\right]$.
 Eigenvector for λ_{-}.

$$
(A+4 I)=\left[\begin{array}{cc}
1 & \sqrt{2} \\
\sqrt{2} & 2
\end{array}\right]
$$

Exam: November 12, 2008. Problem 4.

Example
Find the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$, where $A=\left[\begin{array}{cc}-3 & \sqrt{2} \\ \sqrt{2} & -2\end{array}\right]$.
Solution: Recall: $\lambda_{+}=-1, \lambda_{-}=-4$, and $\mathbf{v}^{(+)}=\left[\begin{array}{c}\sqrt{2} \\ 2 \\ \text { Eigenvector for } \lambda_{-} \text {. }\end{array}\right.$.

$$
(A+4 I)=\left[\begin{array}{cc}
1 & \sqrt{2} \\
\sqrt{2} & 2
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & \sqrt{2} \\
1 & \sqrt{2}
\end{array}\right]
$$

Exam: November 12, 2008. Problem 4.

Example
Find the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$, where $A=\left[\begin{array}{cc}-3 & \sqrt{2} \\ \sqrt{2} & -2\end{array}\right]$.
Solution: Recall: $\lambda_{+}=-1, \lambda_{-}=-4$, and $\mathbf{v}^{(+)}=\left[\begin{array}{c}\sqrt{2} \\ 2 \\ \text { Eigenvector for } \lambda_{-} \text {. }\end{array}\right.$.

$$
(A+4 I)=\left[\begin{array}{cc}
1 & \sqrt{2} \\
\sqrt{2} & 2
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & \sqrt{2} \\
1 & \sqrt{2}
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & \sqrt{2} \\
0 & 0
\end{array}\right] .
$$

Exam: November 12, 2008. Problem 4.

Example
Find the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$, where $A=\left[\begin{array}{cc}-3 & \sqrt{2} \\ \sqrt{2} & -2\end{array}\right]$.
Solution: Recall: $\lambda_{+}=-1, \lambda_{-}=-4$, and $\mathbf{v}^{(+)}=\left[\begin{array}{c}\sqrt{2} \\ 2\end{array}\right]$. Eigenvector for λ_{-}.

$$
(A+4 I)=\left[\begin{array}{cc}
1 & \sqrt{2} \\
\sqrt{2} & 2
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & \sqrt{2} \\
1 & \sqrt{2}
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & \sqrt{2} \\
0 & 0
\end{array}\right] .
$$

$v_{1}=-\sqrt{2} v_{2}$.

Exam: November 12, 2008. Problem 4.

Example
Find the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$, where $A=\left[\begin{array}{cc}-3 & \sqrt{2} \\ \sqrt{2} & -2\end{array}\right]$.
Solution: Recall: $\lambda_{+}=-1, \lambda_{-}=-4$, and $\mathbf{v}^{(+)}=\left[\begin{array}{c}\sqrt{2} \\ 2\end{array}\right]$. Eigenvector for λ_{-}.

$$
(A+4 I)=\left[\begin{array}{cc}
1 & \sqrt{2} \\
\sqrt{2} & 2
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & \sqrt{2} \\
1 & \sqrt{2}
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & \sqrt{2} \\
0 & 0
\end{array}\right] .
$$

$v_{1}=-\sqrt{2} v_{2}$. Choosing $v_{1}=-\sqrt{2}$

Exam: November 12, 2008. Problem 4.

Example
Find the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$, where $A=\left[\begin{array}{cc}-3 & \sqrt{2} \\ \sqrt{2} & -2\end{array}\right]$.
 Eigenvector for λ_{-}.

$$
(A+4 I)=\left[\begin{array}{cc}
1 & \sqrt{2} \\
\sqrt{2} & 2
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & \sqrt{2} \\
1 & \sqrt{2}
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & \sqrt{2} \\
0 & 0
\end{array}\right] .
$$

$v_{1}=-\sqrt{2} v_{2}$. Choosing $v_{1}=-\sqrt{2}$ and $v_{2}=1$,

Exam: November 12, 2008. Problem 4.

Example
Find the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$, where $A=\left[\begin{array}{cc}-3 & \sqrt{2} \\ \sqrt{2} & -2\end{array}\right]$.
Solution: Recall: $\lambda_{+}=-1, \lambda_{-}=-4$, and $v^{(+)}=\left[\begin{array}{c}\sqrt{2} \\ 2\end{array}\right]$.. . Eigenvector for λ^{2}. Eigenvector for λ_{-}.

$$
(A+4 I)=\left[\begin{array}{cc}
1 & \sqrt{2} \\
\sqrt{2} & 2
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & \sqrt{2} \\
1 & \sqrt{2}
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & \sqrt{2} \\
0 & 0
\end{array}\right] .
$$

$v_{1}=-\sqrt{2} v_{2}$. Choosing $v_{1}=-\sqrt{2}$ and $v_{2}=1$, so, $v^{(-)}=\left[\begin{array}{c}-\sqrt{2} \\ 1\end{array}\right]$.

Exam: November 12, 2008. Problem 4.

Example
Find the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$, where $A=\left[\begin{array}{cc}-3 & \sqrt{2} \\ \sqrt{2} & -2\end{array}\right]$.
Solution: Recall: $\lambda_{+}=-1, \lambda_{-}=-4$, and $v^{(+)}=\left[\begin{array}{c}\sqrt{2} \\ 2\end{array}\right]$. Eigenvector for λ_{-}.

$$
(A+4 I)=\left[\begin{array}{cc}
1 & \sqrt{2} \\
\sqrt{2} & 2
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & \sqrt{2} \\
1 & \sqrt{2}
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & \sqrt{2} \\
0 & 0
\end{array}\right] .
$$

$v_{1}=-\sqrt{2} v_{2}$. Choosing $v_{1}=-\sqrt{2}$ and $v_{2}=1$, so, $v^{(-)}=\left[\begin{array}{c}-\sqrt{2} \\ 1\end{array}\right]$.
Fundamental solutions: $\mathbf{x}^{(+)}=\left[\begin{array}{c}\sqrt{2} \\ 2\end{array}\right] e^{-t}$,

Exam: November 12, 2008. Problem 4.

Example
Find the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$, where $A=\left[\begin{array}{cc}-3 & \sqrt{2} \\ \sqrt{2} & -2\end{array}\right]$.
Solution: Recall: $\lambda_{+}=-1, \lambda_{-}=-4$, and $v^{(+)}=\left[\begin{array}{c}\sqrt{2} \\ 2\end{array}\right]$. Eigenvector for λ_{-}.

$$
(A+4 I)=\left[\begin{array}{cc}
1 & \sqrt{2} \\
\sqrt{2} & 2
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & \sqrt{2} \\
1 & \sqrt{2}
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & \sqrt{2} \\
0 & 0
\end{array}\right] .
$$

$v_{1}=-\sqrt{2} v_{2}$. Choosing $v_{1}=-\sqrt{2}$ and $v_{2}=1$, so, $v^{(-)}=\left[\begin{array}{c}-\sqrt{2} \\ 1\end{array}\right]$.
Fundamental solutions: $\mathbf{x}^{(+)}=\left[\begin{array}{c}\sqrt{2} \\ 2\end{array}\right] e^{-t}, \mathbf{x}^{(-)}=\left[\begin{array}{c}-\sqrt{2} \\ 1\end{array}\right] e^{-4 t}$.

Exam: November 12, 2008. Problem 4.

Example
Find the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$, where $A=\left[\begin{array}{cc}-3 & \sqrt{2} \\ \sqrt{2} & -2\end{array}\right]$.
Solution: Recall: $\lambda_{+}=-1, \lambda_{-}=-4$, and $\mathbf{v}^{(+)}=\left[\begin{array}{c}\sqrt{2} \\ 2\end{array}\right]$. Eigenvector for λ_{-}.

$$
(A+4 I)=\left[\begin{array}{cc}
1 & \sqrt{2} \\
\sqrt{2} & 2
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & \sqrt{2} \\
1 & \sqrt{2}
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & \sqrt{2} \\
0 & 0
\end{array}\right] .
$$

$v_{1}=-\sqrt{2} v_{2}$. Choosing $v_{1}=-\sqrt{2}$ and $v_{2}=1$, so, $v^{(-)}=\left[\begin{array}{c}-\sqrt{2} \\ 1\end{array}\right]$.
Fundamental solutions: $\mathbf{x}^{(+)}=\left[\begin{array}{c}\sqrt{2} \\ 2\end{array}\right] e^{-t}, \quad \mathbf{x}^{(-)}=\left[\begin{array}{c}-\sqrt{2} \\ 1\end{array}\right] e^{-4 t}$. General solution: $\mathbf{x}=c_{1}\left[\begin{array}{c}\sqrt{2} \\ 2\end{array}\right] e^{-t}+c_{2}\left[\begin{array}{c}-\sqrt{2} \\ 1\end{array}\right] e^{-4 t}$.

Exam: November 12, 2008. Problem 4.

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$
\mathbf{x}^{(+)}=\left[\begin{array}{c}
\sqrt{2} \\
2
\end{array}\right] e^{-t}, \quad \mathbf{x}^{(-)}=\left[\begin{array}{c}
-\sqrt{2} \\
1
\end{array}\right] e^{-4 t}
$$

Exam: November 12, 2008. Problem 4.

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$
\mathbf{x}^{(+)}=\left[\begin{array}{c}
\sqrt{2} \\
2
\end{array}\right] e^{-t}, \quad \mathbf{x}^{(-)}=\left[\begin{array}{c}
-\sqrt{2} \\
1
\end{array}\right] e^{-4 t} .
$$

Solution:
We start plotting the vectors

$$
\begin{gathered}
\mathbf{v}^{(+)}=\left[\begin{array}{c}
\sqrt{2} \\
2
\end{array}\right], \\
\mathbf{v}^{(-)}=\left[\begin{array}{c}
-\sqrt{2} \\
1
\end{array}\right] .
\end{gathered}
$$

Exam: November 12, 2008. Problem 4.

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$
\mathbf{x}^{(+)}=\left[\begin{array}{c}
\sqrt{2} \\
2
\end{array}\right] e^{-t}, \quad \mathbf{x}^{(-)}=\left[\begin{array}{c}
-\sqrt{2} \\
1
\end{array}\right] e^{-4 t} .
$$

Solution:
We start plotting the vectors

$$
\begin{gathered}
\mathbf{v}^{(+)}=\left[\begin{array}{c}
\sqrt{2} \\
2
\end{array}\right], \\
\mathbf{v}^{(-)}=\left[\begin{array}{c}
-\sqrt{2} \\
1
\end{array}\right] .
\end{gathered}
$$

Exam: November 12, 2008. Problem 4.

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$
\mathbf{x}^{(+)}=\left[\begin{array}{c}
\sqrt{2} \\
2
\end{array}\right] e^{-t}, \quad \mathbf{x}^{(-)}=\left[\begin{array}{c}
-\sqrt{2} \\
1
\end{array}\right] e^{-4 t} .
$$

Solution:
We plot the solutions

$$
\begin{array}{ll}
\mathbf{x}^{(+)}, & -\mathbf{x}^{(+)}, \\
\mathbf{x}^{(-)}, & -\mathbf{x}^{(-)}
\end{array}
$$

Exam: November 12, 2008. Problem 4.

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$
\mathbf{x}^{(+)}=\left[\begin{array}{c}
\sqrt{2} \\
2
\end{array}\right] e^{-t}, \quad \mathbf{x}^{(-)}=\left[\begin{array}{c}
-\sqrt{2} \\
1
\end{array}\right] e^{-4 t} .
$$

Solution:
We plot the solutions

$$
\begin{array}{ll}
\mathbf{x}^{(+)}, & -\mathbf{x}^{(+)}, \\
\mathbf{x}^{(-)}, & -\mathbf{x}^{(-)} .
\end{array}
$$

Exam: November 12, 2008. Problem 4.

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$
\mathbf{x}^{(+)}=\left[\begin{array}{c}
\sqrt{2} \\
2
\end{array}\right] e^{-t}, \quad \mathbf{x}^{(-)}=\left[\begin{array}{c}
-\sqrt{2} \\
1
\end{array}\right] e^{-4 t}
$$

Solution:
Recall: $\lambda_{-}<\lambda_{+}<0$. We plot the solutions

$$
\mathbf{x}=\mathbf{x}^{(+)}+\mathbf{x}^{(-)},
$$

that is,

$$
\mathbf{x}=\mathbf{v}^{(+)} e^{-t}+\mathbf{v}^{(-)} e^{-4 t}
$$

Exam: November 12, 2008. Problem 4.

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$
\mathbf{x}^{(+)}=\left[\begin{array}{c}
\sqrt{2} \\
2
\end{array}\right] e^{-t}, \quad \mathbf{x}^{(-)}=\left[\begin{array}{c}
-\sqrt{2} \\
1
\end{array}\right] e^{-4 t} .
$$

Solution:
Recall: $\lambda_{-}<\lambda_{+}<0$. We plot the solutions

$$
\mathbf{x}=\mathbf{x}^{(+)}+\mathbf{x}^{(-)},
$$

that is,

$$
\mathbf{x}=\mathbf{v}^{(+)} e^{-t}+\mathbf{v}^{(-)} e^{-4 t}
$$

Exam: November 12, 2008. Problem 4.

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$
\mathbf{x}^{(+)}=\left[\begin{array}{c}
\sqrt{2} \\
2
\end{array}\right] e^{-t}, \quad \mathbf{x}^{(-)}=\left[\begin{array}{c}
-\sqrt{2} \\
1
\end{array}\right] e^{-4 t} .
$$

Solution:
We plot the solutions

$$
\mathbf{x}=c_{1} \mathbf{x}^{(+)}+c_{2} \mathbf{x}^{(-)},
$$

for different values of c_{1} and c_{2}.

Exam: November 12, 2008. Problem 4.

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$
\mathbf{x}^{(+)}=\left[\begin{array}{c}
\sqrt{2} \\
2
\end{array}\right] e^{-t}, \quad \mathbf{x}^{(-)}=\left[\begin{array}{c}
-\sqrt{2} \\
1
\end{array}\right] e^{-4 t} .
$$

Solution:
We plot the solutions

$$
\mathbf{x}=c_{1} \mathbf{x}^{(+)}+c_{2} \mathbf{x}^{(-)},
$$

for different values of c_{1} and c_{2}.

Exam: November 12, 2008. Variation of Problem 4.

Example
Let $\lambda_{+}=4, \quad \lambda_{-}=1, \quad \mathbf{v}^{(+)}=\left[\begin{array}{c}\sqrt{2} \\ 2\end{array}\right]$, and $\mathbf{v}^{(-)}=\left[\begin{array}{c}-\sqrt{2} \\ 1\end{array}\right]$.
Plot the phase portrait of several linear combinations of the fundamental solutions $\mathbf{x}^{(+)}=v^{(+)} e^{\lambda+t}, \mathbf{x}^{(-)}=v^{(-)} e^{\lambda-t}$,

Exam: November 12, 2008. Variation of Problem 4.

Example
Let $\lambda_{+}=4, \quad \lambda_{-}=1, \mathbf{v}^{(+)}=\left[\begin{array}{c}\sqrt{2} \\ 2\end{array}\right]$, and $\mathbf{v}^{(-)}=\left[\begin{array}{c}-\sqrt{2} \\ 1\end{array}\right]$.
Plot the phase portrait of several linear combinations of the fundamental solutions $\mathbf{x}^{(+)}=v^{(+)} e^{\lambda+t}, \mathbf{x}^{(-)}=v^{(-)} e^{\lambda-t}$,

Solution:
Here $\lambda_{+}>\lambda_{-}>0$. We
plot the solutions

$$
\begin{array}{ll}
\mathbf{x}^{(+)}, & -\mathbf{x}^{(+)}, \\
\mathbf{x}^{(-)}, & -\mathbf{x}^{(-)} .
\end{array}
$$

Exam: November 12, 2008. Variation of Problem 4.

Example
Let $\lambda_{+}=4, \quad \lambda_{-}=1, \mathbf{v}^{(+)}=\left[\begin{array}{c}\sqrt{2} \\ 2\end{array}\right]$, and $\mathbf{v}^{(-)}=\left[\begin{array}{c}-\sqrt{2} \\ 1\end{array}\right]$.
Plot the phase portrait of several linear combinations of the fundamental solutions $\mathbf{x}^{(+)}=v^{(+)} e^{\lambda+t}, \mathbf{x}^{(-)}=v^{(-)} e^{\lambda-t}$,

Solution:
Here $\lambda_{+}>\lambda_{-}>0$. We plot the solutions

$$
\begin{array}{ll}
\mathbf{x}^{(+)}, & -\mathbf{x}^{(+)}, \\
\mathbf{x}^{(-)}, & -\mathbf{x}^{(-)} .
\end{array}
$$

Exam: November 12, 2008. Variation of Problem 4.

Example
Let $\lambda_{+}=4, \quad \lambda_{-}=1, \quad \mathbf{v}^{(+)}=\left[\begin{array}{c}\sqrt{2} \\ 2\end{array}\right]$, and $\mathbf{v}^{(-)}=\left[\begin{array}{c}-\sqrt{2} \\ 1\end{array}\right]$.
Plot the phase portrait of several linear combinations of the fundamental solutions $\mathbf{x}^{(+)}=v^{(+)} e^{\lambda+t}, \mathbf{x}^{(-)}=v^{(-)} e^{\lambda-t}$,

Solution:
Recall: $\lambda_{+}>\lambda_{-}>0$. We plot the solutions

$$
x=x^{(+)}+x^{(-)},
$$

that is,

$$
\mathbf{x}=\mathbf{v}^{(+)} e^{4 t}+\mathbf{v}^{(-)} e^{t}
$$

Exam: November 12, 2008. Variation of Problem 4.

Example
Let $\lambda_{+}=4, \quad \lambda_{-}=1, \quad \mathbf{v}^{(+)}=\left[\begin{array}{c}\sqrt{2} \\ 2\end{array}\right]$, and $\mathbf{v}^{(-)}=\left[\begin{array}{c}-\sqrt{2} \\ 1\end{array}\right]$.
Plot the phase portrait of several linear combinations of the fundamental solutions $\mathbf{x}^{(+)}=v^{(+)} e^{\lambda+t}, \mathbf{x}^{(-)}=v^{(-)} e^{\lambda-t}$,

Solution:
Recall: $\lambda_{+}>\lambda_{-}>0$. We plot the solutions

$$
x=x^{(+)}+x^{(-)},
$$

that is,

$$
\mathbf{x}=\mathbf{v}^{(+)} e^{4 t}+\mathbf{v}^{(-)} e^{t}
$$

Exam: November 12, 2008. Variation of Problem 4.

Example
Let $\quad \lambda_{+}=4, \quad \lambda_{-}=1, \quad \mathbf{v}^{(+)}=\left[\begin{array}{c}\sqrt{2} \\ 2\end{array}\right]$, and $\mathbf{v}^{(-)}=\left[\begin{array}{c}-\sqrt{2} \\ 1\end{array}\right]$.
Plot the phase portrait of several linear combinations of the fundamental solutions $\mathbf{x}^{(+)}=v^{(+)} e^{\lambda_{+} t}, \mathbf{x}^{(-)}=v^{(-)} e^{\lambda_{-} t}$,

Solution:
Recall: $\lambda_{+}>\lambda_{-}>0$. We plot the solutions

$$
\mathbf{x}=c_{1} \mathbf{x}^{(+)}+c_{2} \mathbf{x}^{(-)},
$$

for different values of c_{1} and c_{2}.

Exam: November 12, 2008. Variation of Problem 4.

Example
Let $\lambda_{+}=4, \quad \lambda_{-}=1, \quad \mathbf{v}^{(+)}=\left[\begin{array}{c}\sqrt{2} \\ 2\end{array}\right]$, and $\mathbf{v}^{(-)}=\left[\begin{array}{c}-\sqrt{2} \\ 1\end{array}\right]$.
Plot the phase portrait of several linear combinations of the fundamental solutions $\mathbf{x}^{(+)}=v^{(+)} e^{\lambda_{+} t}, \mathbf{x}^{(-)}=v^{(-)} e^{\lambda_{-} t}$,

Solution:
Recall: $\lambda_{+}>\lambda_{-}>0$. We plot the solutions

$$
\mathbf{x}=c_{1} \mathbf{x}^{(+)}+c_{2} \mathbf{x}^{(-)},
$$

for different values of c_{1} and c_{2}.

Exam: November 12, 2008. Variation of Problem 4.

Example
Let $\lambda_{+}=4, \quad \lambda_{-}=-1, \quad \mathbf{v}^{(+)}=\left[\begin{array}{c}\sqrt{2} \\ 2\end{array}\right]$, and $\mathbf{v}^{(-)}=\left[\begin{array}{c}-\sqrt{2} \\ 1\end{array}\right]$.
Plot the phase portrait of several linear combinations of the fundamental solutions $\mathbf{x}^{(+)}=v^{(+)} e^{\lambda+t}, \mathbf{x}^{(-)}=v^{(-)} e^{\lambda-t}$,

Exam: November 12, 2008. Variation of Problem 4.

Example
Let $\lambda_{+}=4, \quad \lambda_{-}=-1, \quad \mathbf{v}^{(+)}=\left[\begin{array}{c}\sqrt{2} \\ 2\end{array}\right]$, and $\mathbf{v}^{(-)}=\left[\begin{array}{c}-\sqrt{2} \\ 1\end{array}\right]$.
Plot the phase portrait of several linear combinations of the fundamental solutions $\mathbf{x}^{(+)}=v^{(+)} e^{\lambda+t}, \mathbf{x}^{(-)}=v^{(-)} e^{\lambda-t}$,

Solution:
Here $\lambda_{+}>0>\lambda_{-}$. We
plot the solutions

$$
\begin{array}{ll}
\mathbf{x}^{(+)}, & -\mathbf{x}^{(+)}, \\
\mathbf{x}^{(-)}, & -\mathbf{x}^{(-)} .
\end{array}
$$

Exam: November 12, 2008. Variation of Problem 4.

Example
Let $\lambda_{+}=4, \quad \lambda_{-}=-1, \quad \mathbf{v}^{(+)}=\left[\begin{array}{c}\sqrt{2} \\ 2\end{array}\right]$, and $\mathbf{v}^{(-)}=\left[\begin{array}{c}-\sqrt{2} \\ 1\end{array}\right]$.
Plot the phase portrait of several linear combinations of the fundamental solutions $\mathbf{x}^{(+)}=v^{(+)} e^{\lambda+t}, \mathbf{x}^{(-)}=v^{(-)} e^{\lambda-t}$,

Solution:
Here $\lambda_{+}>0>\lambda_{-}$. We plot the solutions

$$
\begin{array}{ll}
\mathbf{x}^{(+)}, & -\mathbf{x}^{(+)}, \\
\mathbf{x}^{(-)}, & -\mathbf{x}^{(-)} .
\end{array}
$$

Exam: November 12, 2008. Variation of Problem 4.

Example

Let $\lambda_{+}=4, \quad \lambda_{-}=-1, \quad \mathbf{v}^{(+)}=\left[\begin{array}{c}\sqrt{2} \\ 2\end{array}\right]$, and $\mathbf{v}^{(-)}=\left[\begin{array}{c}-\sqrt{2} \\ 1\end{array}\right]$.
Plot the phase portrait of several linear combinations of the fundamental solutions $\mathbf{x}^{(+)}=v^{(+)} e^{\lambda_{+} t}, \mathbf{x}^{(-)}=v^{(-)} e^{\lambda^{-t}}$,

Solution:
Recall: $\lambda_{+}>0>\lambda_{-}$. We plot the solutions

$$
x=x^{(+)}+x^{(-)},
$$

that is,

$$
\mathbf{x}=\mathbf{v}^{(+)} e^{4 t}+\mathbf{v}^{(-)} e^{-t}
$$

Exam: November 12, 2008. Variation of Problem 4.

Example

Let $\lambda_{+}=4, \quad \lambda_{-}=-1, \quad \mathbf{v}^{(+)}=\left[\begin{array}{c}\sqrt{2} \\ 2\end{array}\right]$, and $\mathbf{v}^{(-)}=\left[\begin{array}{c}-\sqrt{2} \\ 1\end{array}\right]$.
Plot the phase portrait of several linear combinations of the fundamental solutions $\mathbf{x}^{(+)}=v^{(+)} e^{\lambda^{\lambda} t}, \mathbf{x}^{(-)}=v^{(-)} e^{\lambda-t}$,

Solution:
Recall: $\lambda_{+}>0>\lambda_{-}$. We plot the solutions

$$
\mathbf{x}=\mathbf{x}^{(+)}+\mathbf{x}^{(-)}
$$

that is,

$$
\mathbf{x}=\mathbf{v}^{(+)} e^{4 t}+\mathbf{v}^{(-)} e^{-t}
$$

Exam: November 12, 2008. Variation of Problem 4.

Example
Let $\lambda_{+}=4, \quad \lambda_{-}=-1, \quad \mathbf{v}^{(+)}=\left[\begin{array}{c}\sqrt{2} \\ 2\end{array}\right]$, and $\mathbf{v}^{(-)}=\left[\begin{array}{c}-\sqrt{2} \\ 1\end{array}\right]$.
Plot the phase portrait of several linear combinations of the fundamental solutions $\mathbf{x}^{(+)}=v^{(+)} e^{\lambda+t}, \mathbf{x}^{(-)}=v^{(-)} e^{\lambda-t}$,

Solution:
Recall: $\lambda_{+}>0>\lambda_{-}$. We plot the solutions

$$
\mathbf{x}=c_{1} \mathbf{x}^{(+)}+c_{2} \mathbf{x}^{(-)},
$$

for different values of c_{1} and c_{2}.

Exam: November 12, 2008. Variation of Problem 4.

Example
Let $\lambda_{+}=4, \quad \lambda_{-}=-1, \quad \mathbf{v}^{(+)}=\left[\begin{array}{c}\sqrt{2} \\ 2\end{array}\right]$, and $\mathbf{v}^{(-)}=\left[\begin{array}{c}-\sqrt{2} \\ 1\end{array}\right]$.
Plot the phase portrait of several linear combinations of the fundamental solutions $\mathbf{x}^{(+)}=v^{(+)} e^{\lambda+t}, \mathbf{x}^{(-)}=v^{(-)} e^{\lambda-t}$,

Solution:
Recall: $\lambda_{+}>0>\lambda_{-}$. We plot the solutions

$$
\mathbf{x}=c_{1} \mathbf{x}^{(+)}+c_{2} \mathbf{x}^{(-)},
$$

for different values of c_{1} and c_{2}.

Extra problem.

Example

Find \mathbf{x} solution of the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad A=\left[\begin{array}{ll}
-3 & 4 \\
-1 & 1
\end{array}\right]
$$

Extra problem.

Example

Find \mathbf{x} solution of the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad A=\left[\begin{array}{ll}
-3 & 4 \\
-1 & 1
\end{array}\right]
$$

Solution: Eigenvalues of A :

Extra problem.

Example

Find \mathbf{x} solution of the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad A=\left[\begin{array}{ll}
-3 & 4 \\
-1 & 1
\end{array}\right]
$$

Solution: Eigenvalues of A :

$$
p(\lambda)=\left|\begin{array}{cc}
(-3-\lambda) & 4 \\
-1 & (1-\lambda)
\end{array}\right|
$$

Extra problem.

Example

Find \mathbf{x} solution of the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad A=\left[\begin{array}{ll}
-3 & 4 \\
-1 & 1
\end{array}\right]
$$

Solution: Eigenvalues of A :

$$
p(\lambda)=\left|\begin{array}{cc}
(-3-\lambda) & 4 \\
-1 & (1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+3)+4=0
$$

Extra problem.

Example

Find \mathbf{x} solution of the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad A=\left[\begin{array}{cc}
-3 & 4 \\
-1 & 1
\end{array}\right]
$$

Solution: Eigenvalues of A :

$$
\begin{aligned}
& p(\lambda)=\left|\begin{array}{cc}
(-3-\lambda) & 4 \\
-1 & (1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+3)+4=0 \\
& \lambda^{2}+2 \lambda+1=0
\end{aligned}
$$

Extra problem.

Example

Find \mathbf{x} solution of the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad A=\left[\begin{array}{ll}
-3 & 4 \\
-1 & 1
\end{array}\right]
$$

Solution: Eigenvalues of A :

$$
\begin{aligned}
& p(\lambda)=\left|\begin{array}{cc}
(-3-\lambda) & 4 \\
-1 & (1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+3)+4=0 \\
& \lambda^{2}+2 \lambda+1=0 \quad \Rightarrow \quad \lambda_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4-4}]
\end{aligned}
$$

Extra problem.

Example

Find \mathbf{x} solution of the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad A=\left[\begin{array}{ll}
-3 & 4 \\
-1 & 1
\end{array}\right]
$$

Solution: Eigenvalues of A :

$$
\begin{aligned}
& p(\lambda)=\left|\begin{array}{cc}
(-3-\lambda) & 4 \\
-1 & (1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+3)+4=0 \\
& \lambda^{2}+2 \lambda+1=0 \quad \Rightarrow \quad \lambda_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4-4}]=-1 .
\end{aligned}
$$

Extra problem.

Example

Find \mathbf{x} solution of the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad A=\left[\begin{array}{ll}
-3 & 4 \\
-1 & 1
\end{array}\right]
$$

Solution: Eigenvalues of A :

$$
\begin{aligned}
& p(\lambda)=\left|\begin{array}{cc}
(-3-\lambda) & 4 \\
-1 & (1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+3)+4=0 \\
& \lambda^{2}+2 \lambda+1=0 \quad \Rightarrow \quad \lambda_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4-4}]=-1 .
\end{aligned}
$$

Hence $\lambda_{+}=\lambda_{-}=-1$.

Extra problem.

Example

Find \mathbf{x} solution of the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad A=\left[\begin{array}{ll}
-3 & 4 \\
-1 & 1
\end{array}\right]
$$

Solution: Eigenvalues of A :

$$
\begin{aligned}
& p(\lambda)=\left|\begin{array}{cc}
(-3-\lambda) & 4 \\
-1 & (1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+3)+4=0 \\
& \lambda^{2}+2 \lambda+1=0
\end{aligned} \Rightarrow \quad \lambda_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4-4}]=-1 .
$$

Hence $\lambda_{+}=\lambda_{-}=-1$. Eigenvector for $\lambda_{ \pm}$.

$$
(A+I)=\left[\begin{array}{ll}
-2 & 4 \\
-1 & 2
\end{array}\right]
$$

Extra problem.

Example

Find \mathbf{x} solution of the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad A=\left[\begin{array}{ll}
-3 & 4 \\
-1 & 1
\end{array}\right]
$$

Solution: Eigenvalues of A :

$$
\begin{aligned}
& p(\lambda)=\left|\begin{array}{cc}
(-3-\lambda) & 4 \\
-1 & (1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+3)+4=0 \\
& \lambda^{2}+2 \lambda+1=0 \quad \Rightarrow \quad \lambda_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4-4}]=-1 .
\end{aligned}
$$

Hence $\lambda_{+}=\lambda_{-}=-1$. Eigenvector for $\lambda_{ \pm}$.

$$
(A+I)=\left[\begin{array}{ll}
-2 & 4 \\
-1 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & -2 \\
1 & -2
\end{array}\right]
$$

Extra problem.

Example

Find \mathbf{x} solution of the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad A=\left[\begin{array}{ll}
-3 & 4 \\
-1 & 1
\end{array}\right]
$$

Solution: Eigenvalues of A :

$$
\begin{aligned}
& p(\lambda)=\left|\begin{array}{cc}
(-3-\lambda) & 4 \\
-1 & (1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+3)+4=0 \\
& \lambda^{2}+2 \lambda+1=0 \quad \Rightarrow \quad \lambda_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4-4}]=-1 .
\end{aligned}
$$

Hence $\lambda_{+}=\lambda_{-}=-1$. Eigenvector for $\lambda_{ \pm}$.

$$
(A+I)=\left[\begin{array}{ll}
-2 & 4 \\
-1 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & -2 \\
1 & -2
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right]
$$

Extra problem.

Example

Find \mathbf{x} solution of the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad A=\left[\begin{array}{ll}
-3 & 4 \\
-1 & 1
\end{array}\right]
$$

Solution: Eigenvalues of A :

$$
\begin{aligned}
& p(\lambda)=\left|\begin{array}{cc}
(-3-\lambda) & 4 \\
-1 & (1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+3)+4=0 \\
& \lambda^{2}+2 \lambda+1=0 \quad \Rightarrow \quad \lambda_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4-4}]=-1 .
\end{aligned}
$$

Hence $\lambda_{+}=\lambda_{-}=-1$. Eigenvector for $\lambda_{ \pm}$.

$$
(A+I)=\left[\begin{array}{ll}
-2 & 4 \\
-1 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & -2 \\
1 & -2
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right]
$$

$v_{1}=2 v_{2}$.

Extra problem.

Example

Find \mathbf{x} solution of the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad A=\left[\begin{array}{ll}
-3 & 4 \\
-1 & 1
\end{array}\right]
$$

Solution: Eigenvalues of A :

$$
\begin{aligned}
& p(\lambda)=\left|\begin{array}{cc}
(-3-\lambda) & 4 \\
-1 & (1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+3)+4=0 \\
& \lambda^{2}+2 \lambda+1=0 \quad \Rightarrow \quad \lambda_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4-4}]=-1 .
\end{aligned}
$$

Hence $\lambda_{+}=\lambda_{-}=-1$. Eigenvector for $\lambda_{ \pm}$.

$$
(A+I)=\left[\begin{array}{ll}
-2 & 4 \\
-1 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & -2 \\
1 & -2
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right]
$$

$v_{1}=2 v_{2}$. Choosing $v_{1}=2$

Extra problem.

Example

Find \mathbf{x} solution of the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad A=\left[\begin{array}{ll}
-3 & 4 \\
-1 & 1
\end{array}\right]
$$

Solution: Eigenvalues of A :

$$
\begin{aligned}
& p(\lambda)=\left|\begin{array}{cc}
(-3-\lambda) & 4 \\
-1 & (1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+3)+4=0 \\
& \lambda^{2}+2 \lambda+1=0 \quad \Rightarrow \quad \lambda_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4-4}]=-1 .
\end{aligned}
$$

Hence $\lambda_{+}=\lambda_{-}=-1$. Eigenvector for $\lambda_{ \pm}$.

$$
(A+I)=\left[\begin{array}{ll}
-2 & 4 \\
-1 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & -2 \\
1 & -2
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right]
$$

$v_{1}=2 v_{2}$. Choosing $v_{1}=2$ and $v_{2}=1$,

Extra problem.

Example

Find \mathbf{x} solution of the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad A=\left[\begin{array}{ll}
-3 & 4 \\
-1 & 1
\end{array}\right]
$$

Solution: Eigenvalues of A :

$$
\begin{aligned}
& p(\lambda)=\left|\begin{array}{cc}
(-3-\lambda) & 4 \\
-1 & (1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+3)+4=0 \\
& \lambda^{2}+2 \lambda+1=0 \quad \Rightarrow \quad \lambda_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4-4}]=-1 .
\end{aligned}
$$

Hence $\lambda_{+}=\lambda_{-}=-1$. Eigenvector for $\lambda_{ \pm}$.

$$
(A+I)=\left[\begin{array}{ll}
-2 & 4 \\
-1 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & -2 \\
1 & -2
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right]
$$

$v_{1}=2 v_{2}$. Choosing $v_{1}=2$ and $v_{2}=1$, we get $v^{(+)}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.

Extra problem.

Example
Find \mathbf{x} solution of the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad A=\left[\begin{array}{ll}
-3 & 4 \\
-1 & 1
\end{array}\right]
$$

Solution: Recall: $\lambda_{ \pm}=-1$, and $\mathbf{v}^{(+)}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.

Extra problem.

Example

Find x solution of the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad A=\left[\begin{array}{ll}
-3 & 4 \\
-1 & 1
\end{array}\right]
$$

Solution: Recall: $\lambda_{ \pm}=-1$, and $\mathbf{v}^{(+)}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.
Find \mathbf{w} solution of $(A+I) \mathbf{w}=\mathbf{v}$.

$$
\left[\begin{array}{ll}
-2 & 4 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Extra problem.

Example
Find x solution of the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad A=\left[\begin{array}{ll}
-3 & 4 \\
-1 & 1
\end{array}\right]
$$

Solution: Recall: $\lambda_{ \pm}=-1$, and $\mathbf{v}^{(+)}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.
Find \mathbf{w} solution of $(A+I) \mathbf{w}=\mathbf{v}$.

$$
\left[\begin{array}{ll}
-2 & 4 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{ll|l}
-2 & 4 & 2 \\
-1 & 2 & 1
\end{array}\right]
$$

Extra problem.

Example
Find \mathbf{x} solution of the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad A=\left[\begin{array}{ll}
-3 & 4 \\
-1 & 1
\end{array}\right]
$$

Solution: Recall: $\lambda_{ \pm}=-1$, and $\mathbf{v}^{(+)}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.
Find \mathbf{w} solution of $(A+I) \mathbf{w}=\mathbf{v}$.

$$
\left[\begin{array}{ll}
-2 & 4 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{ll|l}
-2 & 4 & 2 \\
-1 & 2 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
1 & -2 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

Extra problem.

Example
Find \mathbf{x} solution of the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad A=\left[\begin{array}{ll}
-3 & 4 \\
-1 & 1
\end{array}\right]
$$

Solution: Recall: $\lambda_{ \pm}=-1$, and $\mathbf{v}^{(+)}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.
Find \mathbf{w} solution of $(A+I) \mathbf{w}=\mathbf{v}$.

$$
\left[\begin{array}{ll}
-2 & 4 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{ll|l}
-2 & 4 & 2 \\
-1 & 2 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
1 & -2 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

Hence $w_{1}=2 w_{2}-1$,

Extra problem.

Example
Find \mathbf{x} solution of the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad A=\left[\begin{array}{ll}
-3 & 4 \\
-1 & 1
\end{array}\right]
$$

Solution: Recall: $\lambda_{ \pm}=-1$, and $\mathbf{v}^{(+)}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.
Find \mathbf{w} solution of $(A+I) \mathbf{w}=\mathbf{v}$.

$$
\left[\begin{array}{ll}
-2 & 4 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{ll|l}
-2 & 4 & 2 \\
-1 & 2 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
1 & -2 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

Hence $w_{1}=2 w_{2}-1$, that is, $\mathbf{w}=\left[\begin{array}{l}2 \\ 1\end{array}\right] w_{2}+\left[\begin{array}{c}-1 \\ 0\end{array}\right]$.

Extra problem.

Example
Find x solution of the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad A=\left[\begin{array}{ll}
-3 & 4 \\
-1 & 1
\end{array}\right]
$$

Solution: Recall: $\lambda_{ \pm}=-1$, and $\mathbf{v}^{(+)}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.
Find \mathbf{w} solution of $(A+I) \mathbf{w}=\mathbf{v}$.

$$
\left[\begin{array}{ll}
-2 & 4 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{ll|l}
-2 & 4 & 2 \\
-1 & 2 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
1 & -2 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

Hence $w_{1}=2 w_{2}-1$, that is, $\mathbf{w}=\left[\begin{array}{l}2 \\ 1\end{array}\right] w_{2}+\left[\begin{array}{c}-1 \\ 0\end{array}\right]$.
Choose $w_{2}=0$, so $\mathbf{w}=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$.

Extra problem.

Example

Find \mathbf{x} solution of the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad A=\left[\begin{array}{ll}
-3 & 4 \\
-1 & 1
\end{array}\right]
$$

Solution: Recall: $\lambda_{ \pm}=-1, \quad \mathbf{v}^{(+)}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$.

Extra problem.

Example

Find \mathbf{x} solution of the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad A=\left[\begin{array}{ll}
-3 & 4 \\
-1 & 1
\end{array}\right]
$$

Solution: Recall: $\quad \lambda_{ \pm}=-1, \quad \mathbf{v}^{(+)}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$.
Fundamental sol: $\mathbf{x}^{(1)}=\left[\begin{array}{l}2 \\ 1\end{array}\right] e^{-t}$,

Extra problem.

Example

Find \mathbf{x} solution of the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad A=\left[\begin{array}{ll}
-3 & 4 \\
-1 & 1
\end{array}\right]
$$

Solution: Recall: $\quad \lambda_{ \pm}=-1, \quad \mathbf{v}^{(+)}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$.
Fundamental sol: $\mathbf{x}^{(1)}=\left[\begin{array}{l}2 \\ 1\end{array}\right] e^{-t}, \mathbf{x}^{(2)}=\left(\left[\begin{array}{l}2 \\ 1\end{array}\right] t+\left[\begin{array}{c}-1 \\ 0\end{array}\right]\right) e^{-t}$.

Extra problem.

Example

Find \mathbf{x} solution of the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad A=\left[\begin{array}{cc}
-3 & 4 \\
-1 & 1
\end{array}\right]
$$

Solution: Recall: $\lambda_{ \pm}=-1, \quad \mathbf{v}^{(+)}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$.
Fundamental sol: $\mathbf{x}^{(1)}=\left[\begin{array}{l}2 \\ 1\end{array}\right] e^{-t}, \mathbf{x}^{(2)}=\left(\left[\begin{array}{l}2 \\ 1\end{array}\right] t+\left[\begin{array}{c}-1 \\ 0\end{array}\right]\right) e^{-t}$.
General sol: $\mathbf{x}=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right] e^{-t}+c_{2}\left(\left[\begin{array}{l}2 \\ 1\end{array}\right] t+\left[\begin{array}{c}-1 \\ 0\end{array}\right]\right) e^{-t}$.

Extra problem.

Example

Find \mathbf{x} solution of the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad A=\left[\begin{array}{ll}
-3 & 4 \\
-1 & 1
\end{array}\right]
$$

Solution: Recall: $\mathbf{x}=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right] e^{-t}+c_{2}\left(\left[\begin{array}{l}2 \\ 1\end{array}\right] t+\left[\begin{array}{c}-1 \\ 0\end{array}\right]\right) e^{-t}$.

Extra problem.

Example

Find \mathbf{x} solution of the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad A=\left[\begin{array}{ll}
-3 & 4 \\
-1 & 1
\end{array}\right]
$$

Solution: Recall: $\mathbf{x}=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right] e^{-t}+c_{2}\left(\left[\begin{array}{l}2 \\ 1\end{array}\right] t+\left[\begin{array}{c}-1 \\ 0\end{array}\right]\right) e^{-t}$.
Initial condition: $\left[\begin{array}{l}1 \\ 3\end{array}\right]=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{c}-1 \\ 0\end{array}\right]$,

Extra problem.

Example

Find \mathbf{x} solution of the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad A=\left[\begin{array}{ll}
-3 & 4 \\
-1 & 1
\end{array}\right]
$$

Solution: Recall: $\mathbf{x}=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right] e^{-t}+c_{2}\left(\left[\begin{array}{l}2 \\ 1\end{array}\right] t+\left[\begin{array}{c}-1 \\ 0\end{array}\right]\right) e^{-t}$.
Initial condition: $\left[\begin{array}{l}1 \\ 3\end{array}\right]=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{c}-1 \\ 0\end{array}\right]$,
that is, $\left[\begin{array}{cc}2 & -1 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}1 \\ 3\end{array}\right]$,

Extra problem.

Example

Find \mathbf{x} solution of the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad A=\left[\begin{array}{ll}
-3 & 4 \\
-1 & 1
\end{array}\right]
$$

Solution: Recall: $\mathbf{x}=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right] e^{-t}+c_{2}\left(\left[\begin{array}{l}2 \\ 1\end{array}\right] t+\left[\begin{array}{c}-1 \\ 0\end{array}\right]\right) e^{-t}$.
Initial condition: $\left[\begin{array}{l}1 \\ 3\end{array}\right]=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{c}-1 \\ 0\end{array}\right]$,
that is, $\left[\begin{array}{cc}2 & -1 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}l_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}1 \\ 3\end{array}\right]$, also, $\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{cc}0 & 1 \\ -1 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 3\end{array}\right]$

Extra problem.

Example

Find \mathbf{x} solution of the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad A=\left[\begin{array}{ll}
-3 & 4 \\
-1 & 1
\end{array}\right]
$$

Solution: Recall: $\mathbf{x}=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right] e^{-t}+c_{2}\left(\left[\begin{array}{l}2 \\ 1\end{array}\right] t+\left[\begin{array}{c}-1 \\ 0\end{array}\right]\right) e^{-t}$.
Initial condition: $\left[\begin{array}{l}1 \\ 3\end{array}\right]=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{c}-1 \\ 0\end{array}\right]$,
that is, $\left[\begin{array}{cc}2 & -1 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}1 \\ 3\end{array}\right]$, also, $\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{cc}0 & 1 \\ -1 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 3\end{array}\right]=\left[\begin{array}{l}3 \\ 5\end{array}\right]$.

Extra problem.

Example

Find \mathbf{x} solution of the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad A=\left[\begin{array}{ll}
-3 & 4 \\
-1 & 1
\end{array}\right]
$$

Solution: Recall: $\mathbf{x}=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right] e^{-t}+c_{2}\left(\left[\begin{array}{l}2 \\ 1\end{array}\right] t+\left[\begin{array}{c}-1 \\ 0\end{array}\right]\right) e^{-t}$.
Initial condition: $\left[\begin{array}{l}1 \\ 3\end{array}\right]=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{c}-1 \\ 0\end{array}\right]$,
that is, $\left[\begin{array}{cc}2 & -1 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}1 \\ 3\end{array}\right]$, also, $\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{cc}0 & 1 \\ -1 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 3\end{array}\right]=\left[\begin{array}{l}3 \\ 5\end{array}\right]$.
The solution is $\mathbf{x}=3\left[\begin{array}{l}2 \\ 1\end{array}\right] e^{-t}+5\left(\left[\begin{array}{l}2 \\ 1\end{array}\right] t+\left[\begin{array}{c}-1 \\ 0\end{array}\right]\right) e^{-t}$.

Extra problem.

Example

Let $\lambda=-1$ with $\mathbf{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$.
Plot $\pm \mathbf{x}^{(1)}= \pm \mathbf{v} e^{-t}$ and $\pm \mathbf{x}^{(2)}= \pm(\mathbf{v} t+\mathbf{w}) e^{-t}$.

Extra problem.

Example

Let $\lambda=-1$ with $\mathbf{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $w=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$.
Plot $\pm \mathbf{x}^{(1)}= \pm \mathbf{v} e^{-t}$ and $\pm \mathbf{x}^{(2)}= \pm(\mathbf{v} t+\mathbf{w}) e^{-t}$.
Solution:

Extra problem.

Example

Let $\lambda=1$ with $\mathbf{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$.
Plot $\pm \mathbf{x}^{(1)}= \pm \mathbf{v} e^{t}$ and $\pm \mathbf{x}^{(2)}= \pm(\mathbf{v} t+\mathbf{w}) e^{t}$.

Extra problem.

Example

Let $\lambda=1$ with $\mathbf{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$.
Plot $\pm \mathbf{x}^{(1)}= \pm \mathbf{v} e^{t}$ and $\pm \mathbf{x}^{(2)}= \pm(\mathbf{v} t+\mathbf{w}) e^{t}$.
Solution:

Extra problem.

Example

Given any vectors \mathbf{a} and \mathbf{b}, sketch qualitative phase portraits of

$$
\mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}, \mathbf{x}^{(2)}=[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t} .
$$

for the cases $\alpha=0$, and $\alpha>0$, where $\beta>0$.

Extra problem.

Example

Given any vectors \mathbf{a} and \mathbf{b}, sketch qualitative phase portraits of

$$
\mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}, \mathbf{x}^{(2)}=[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t} .
$$

for the cases $\alpha=0$, and $\alpha>0$, where $\beta>0$.
Solution:

Extra problem.

Example

Given any vectors \mathbf{a} and \mathbf{b}, sketch qualitative phase portraits of

$$
\mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}, \mathbf{x}^{(2)}=[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t} .
$$

for the cases $\alpha=0$, and $\alpha>0$, where $\beta>0$.
Solution:

Extra problem.

Example

Given any vectors \mathbf{a} and \mathbf{b}, sketch qualitative phase portraits of

$$
\mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}, \mathbf{x}^{(2)}=[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t} .
$$

for the cases $\alpha=0$, and $\alpha<0$, where $\beta>0$.

Extra problem.

Example

Given any vectors \mathbf{a} and \mathbf{b}, sketch qualitative phase portraits of

$$
\mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}, \mathbf{x}^{(2)}=[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t} .
$$

for the cases $\alpha=0$, and $\alpha<0$, where $\beta>0$.
Solution:

Extra problem.

Example

Given any vectors \mathbf{a} and \mathbf{b}, sketch qualitative phase portraits of

$$
\mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}, \mathbf{x}^{(2)}=[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t} .
$$

for the cases $\alpha=0$, and $\alpha<0$, where $\beta>0$.
Solution:

Overview of Fourier Series (Sect. 10.2).

- Origins of the Fourier Series.
- Periodic functions.
- Orthogonality of Sines and Cosines.
- Main result on Fourier Series.

Origins of the Fourier Series.

Summary:
Daniel Bernoulli (~ 1750) found solutions to the equation that describes waves propagating on a vibrating string.

Origins of the Fourier Series.

Summary:

Daniel Bernoulli (~ 1750) found solutions to the equation that describes waves propagating on a vibrating string.

Origins of the Fourier Series.

Summary:
Daniel Bernoulli (~ 1750) found solutions to the equation that describes waves propagating on a vibrating string.

The function u, measuring the vertical displacement of the string,

Origins of the Fourier Series.

Summary:
Daniel Bernoulli (~ 1750) found solutions to the equation that describes waves propagating on a vibrating string.

The function u, measuring the vertical displacement of the string, is the solution to the wave equation,

Origins of the Fourier Series.

Summary:

Daniel Bernoulli (~ 1750) found solutions to the equation that describes waves propagating on a vibrating string.

The function u, measuring the vertical displacement of the string, is the solution to the wave equation,

$$
\partial_{t}^{2} u(t, x)=v^{2} \partial_{x}^{2} u(t, x), \quad v \in \mathbb{R}, \quad x \in[0, L], \quad t \in[0, \infty),
$$

Origins of the Fourier Series.

Summary:

Daniel Bernoulli (~ 1750) found solutions to the equation that describes waves propagating on a vibrating string.

The function u, measuring the vertical displacement of the string, is the solution to the wave equation,

$$
\partial_{t}^{2} u(t, x)=v^{2} \partial_{x}^{2} u(t, x), \quad v \in \mathbb{R}, \quad x \in[0, L], \quad t \in[0, \infty)
$$

with initial conditions,

$$
u(0, x)=f(x), \quad \partial_{t} u(0, x)=0
$$

Origins of the Fourier Series.

Summary:

Daniel Bernoulli (~ 1750) found solutions to the equation that describes waves propagating on a vibrating string.

The function u, measuring the vertical displacement of the string, is the solution to the wave equation,

$$
\partial_{t}^{2} u(t, x)=v^{2} \partial_{x}^{2} u(t, x), \quad v \in \mathbb{R}, \quad x \in[0, L], \quad t \in[0, \infty)
$$

with initial conditions,

$$
u(0, x)=f(x), \quad \partial_{t} u(0, x)=0
$$

and boundary conditions,

$$
u(t, 0)=0, \quad u(t, L)=0
$$

Origins of the Fourier Series.

Summary:
Bernoulli found particular solutions to the wave equation.

Origins of the Fourier Series.

Summary:
Bernoulli found particular solutions to the wave equation.
If the initial condition is $f_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)$,

Origins of the Fourier Series.

Summary:
Bernoulli found particular solutions to the wave equation. If the initial condition is $f_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)$,
then the solution is $u_{n}(t, x)=\sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{v n \pi t}{L}\right)$.

Origins of the Fourier Series.

Summary:

Bernoulli found particular solutions to the wave equation. If the initial condition is $f_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)$,
then the solution is $u_{n}(t, x)=\sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{v n \pi t}{L}\right)$.
Bernoulli also realized that

$$
U_{N}(t, x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{v n \pi t}{L}\right), \quad a_{n} \in \mathbb{R}
$$

Origins of the Fourier Series.

Summary:

Bernoulli found particular solutions to the wave equation. If the initial condition is $f_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)$,
then the solution is $u_{n}(t, x)=\sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{v n \pi t}{L}\right)$.
Bernoulli also realized that

$$
U_{N}(t, x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{v n \pi t}{L}\right), \quad a_{n} \in \mathbb{R}
$$

is also solution of the wave equation with initial condition

$$
F_{N}(x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

Origins of the Fourier Series.

Summary:

Bernoulli found particular solutions to the wave equation. If the initial condition is $f_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)$,
then the solution is $u_{n}(t, x)=\sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{v n \pi t}{L}\right)$.
Bernoulli also realized that

$$
U_{N}(t, x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{v n \pi t}{L}\right), \quad a_{n} \in \mathbb{R}
$$

is also solution of the wave equation with initial condition

$$
F_{N}(x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

Remark: The wave equation and its solutions provide a mathematical description of music.

Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.

Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.

Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.
- A proof is: Given a function F with $F(0)=F(L)=0$, but otherwise arbitrary, find N and the coefficients a_{n} such that F is approximated by an expansion F_{N} given in the previous slide.

Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.
- A proof is: Given a function F with $F(0)=F(L)=0$, but otherwise arbitrary, find N and the coefficients a_{n} such that F is approximated by an expansion F_{N} given in the previous slide.
- Joseph Fourier (~ 1800) provided such formula for the coefficients a_{n}, while studying a different problem:

Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.
- A proof is: Given a function F with $F(0)=F(L)=0$, but otherwise arbitrary, find N and the coefficients a_{n} such that F is approximated by an expansion F_{N} given in the previous slide.
- Joseph Fourier (~ 1800) provided such formula for the coefficients a_{n}, while studying a different problem:
The heat transport in a solid material.

Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.
- A proof is: Given a function F with $F(0)=F(L)=0$, but otherwise arbitrary, find N and the coefficients a_{n} such that F is approximated by an expansion F_{N} given in the previous slide.
- Joseph Fourier (~ 1800) provided such formula for the coefficients a_{n}, while studying a different problem:
The heat transport in a solid material.
- Find the temperature function u solution of the heat equation

$$
\partial_{t} u(t, x)=k \partial_{x}^{2} u(t, x)
$$

Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.
- A proof is: Given a function F with $F(0)=F(L)=0$, but otherwise arbitrary, find N and the coefficients a_{n} such that F is approximated by an expansion F_{N} given in the previous slide.
- Joseph Fourier (~ 1800) provided such formula for the coefficients a_{n}, while studying a different problem:
The heat transport in a solid material.
- Find the temperature function u solution of the heat equation

$$
\partial_{t} u(t, x)=k \partial_{x}^{2} u(t, x), \quad k>0,
$$

Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.
- A proof is: Given a function F with $F(0)=F(L)=0$, but otherwise arbitrary, find N and the coefficients a_{n} such that F is approximated by an expansion F_{N} given in the previous slide.
- Joseph Fourier (~ 1800) provided such formula for the coefficients a_{n}, while studying a different problem:
The heat transport in a solid material.
- Find the temperature function u solution of the heat equation

$$
\partial_{t} u(t, x)=k \partial_{x}^{2} u(t, x), \quad k>0, \quad x \in[0, L],
$$

Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.
- A proof is: Given a function F with $F(0)=F(L)=0$, but otherwise arbitrary, find N and the coefficients a_{n} such that F is approximated by an expansion F_{N} given in the previous slide.
- Joseph Fourier (~ 1800) provided such formula for the coefficients a_{n}, while studying a different problem:
The heat transport in a solid material.
- Find the temperature function u solution of the heat equation

$$
\partial_{t} u(t, x)=k \partial_{x}^{2} u(t, x), \quad k>0, \quad x \in[0, L], \quad t \in[0, \infty)
$$

Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.
- A proof is: Given a function F with $F(0)=F(L)=0$, but otherwise arbitrary, find N and the coefficients a_{n} such that F is approximated by an expansion F_{N} given in the previous slide.
- Joseph Fourier (~ 1800) provided such formula for the coefficients a_{n}, while studying a different problem:
The heat transport in a solid material.
- Find the temperature function u solution of the heat equation

$$
\begin{gathered}
\partial_{t} u(t, x)=k \partial_{x}^{2} u(t, x), \quad k>0, \quad x \in[0, L], \quad t \in[0, \infty), \\
\text { I.C. } u(0, x)=f(x),
\end{gathered}
$$

Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.
- A proof is: Given a function F with $F(0)=F(L)=0$, but otherwise arbitrary, find N and the coefficients a_{n} such that F is approximated by an expansion F_{N} given in the previous slide.
- Joseph Fourier (~ 1800) provided such formula for the coefficients a_{n}, while studying a different problem:
The heat transport in a solid material.
- Find the temperature function u solution of the heat equation

$$
\begin{gathered}
\partial_{t} u(t, x)=k \partial_{x}^{2} u(t, x), \quad k>0, \quad x \in[0, L], \quad t \in[0, \infty), \\
\text { I.C. } u(0, x)=f(x) \\
\text { B.C. } u(t, 0)=0, \quad u(t, L)=0 .
\end{gathered}
$$

Origins of the Fourier Series.

Remarks:

Fourier found particular solutions to the heat equation.

Origins of the Fourier Series.

Remarks:

Fourier found particular solutions to the heat equation.
If the initial condition is $f_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)$,

Origins of the Fourier Series.

Remarks:
Fourier found particular solutions to the heat equation.
If the initial condition is $f_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)$,
then the solution is $u_{n}(t, x)=\sin \left(\frac{n \pi x}{L}\right) e^{-k\left(\frac{n \pi}{L}\right)^{2} t}$.

Origins of the Fourier Series.

Remarks:

Fourier found particular solutions to the heat equation.
If the initial condition is $f_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)$,
then the solution is $u_{n}(t, x)=\sin \left(\frac{n \pi x}{L}\right) e^{-k\left(\frac{n \pi}{L}\right)^{2} t}$.
Fourier also realized that

$$
U_{N}(t, x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right) e^{-k\left(\frac{n \pi}{L}\right)^{2} t}, \quad a_{n} \in \mathbb{R}
$$

Origins of the Fourier Series.

Remarks:

Fourier found particular solutions to the heat equation.
If the initial condition is $f_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)$,
then the solution is $u_{n}(t, x)=\sin \left(\frac{n \pi x}{L}\right) e^{-k\left(\frac{n \pi}{L}\right)^{2} t}$.
Fourier also realized that

$$
U_{N}(t, x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right) e^{-k\left(\frac{n \pi}{L}\right)^{2} t}, \quad a_{n} \in \mathbb{R}
$$

is also solution of the heat equation with initial condition

$$
F_{N}(x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

Origins of the Fourier Series.

Remarks:
Fourier found particular solutions to the heat equation.
If the initial condition is $f_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)$,
then the solution is $u_{n}(t, x)=\sin \left(\frac{n \pi x}{L}\right) e^{-k\left(\frac{n \pi}{L}\right)^{2} t}$.
Fourier also realized that

$$
U_{N}(t, x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right) e^{-k\left(\frac{n \pi}{L}\right)^{2} t}, \quad a_{n} \in \mathbb{R}
$$

is also solution of the heat equation with initial condition

$$
F_{N}(x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

Remark: The heat equation and its solutions provide a mathematical description of heat transport in a solid material.

Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli.

Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_{n} in terms of the function F.

Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_{n} in terms of the function F.
- Given an initial data function F, satisfying $F(0)=F(L)=0$, but otherwise arbitrary,

Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_{n} in terms of the function F.
- Given an initial data function F, satisfying $F(0)=F(L)=0$, but otherwise arbitrary, Fourier proved that one can construct an expansion F_{N}

Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_{n} in terms of the function F.
- Given an initial data function F, satisfying $F(0)=F(L)=0$, but otherwise arbitrary, Fourier proved that one can construct an expansion F_{N} as follows,

$$
F_{N}(x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_{n} in terms of the function F.
- Given an initial data function F, satisfying $F(0)=F(L)=0$, but otherwise arbitrary, Fourier proved that one can construct an expansion F_{N} as follows,

$$
F_{N}(x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

for N any positive integer,

Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_{n} in terms of the function F.
- Given an initial data function F, satisfying $F(0)=F(L)=0$, but otherwise arbitrary, Fourier proved that one can construct an expansion F_{N} as follows,

$$
F_{N}(x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

for N any positive integer, where the a_{n} are given by

$$
a_{n}=\frac{2}{L} \int_{0}^{L} F(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_{n} in terms of the function F.
- Given an initial data function F, satisfying $F(0)=F(L)=0$, but otherwise arbitrary, Fourier proved that one can construct an expansion F_{N} as follows,

$$
F_{N}(x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

for N any positive integer, where the a_{n} are given by

$$
a_{n}=\frac{2}{L} \int_{0}^{L} F(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

- To find all solutions to the heat equation problem above one must prove one more thing:

Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_{n} in terms of the function F.
- Given an initial data function F, satisfying $F(0)=F(L)=0$, but otherwise arbitrary, Fourier proved that one can construct an expansion F_{N} as follows,

$$
F_{N}(x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

for N any positive integer, where the a_{n} are given by

$$
a_{n}=\frac{2}{L} \int_{0}^{L} F(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

- To find all solutions to the heat equation problem above one must prove one more thing: That F_{N} approximates F for large enough N.

Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_{n} in terms of the function F.
- Given an initial data function F, satisfying $F(0)=F(L)=0$, but otherwise arbitrary, Fourier proved that one can construct an expansion F_{N} as follows,

$$
F_{N}(x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

for N any positive integer, where the a_{n} are given by

$$
a_{n}=\frac{2}{L} \int_{0}^{L} F(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

- To find all solutions to the heat equation problem above one must prove one more thing: That F_{N} approximates F for large enough N. That is, $\lim _{N \rightarrow \infty} F_{N}=F$.

Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_{n} in terms of the function F.
- Given an initial data function F, satisfying $F(0)=F(L)=0$, but otherwise arbitrary, Fourier proved that one can construct an expansion F_{N} as follows,

$$
F_{N}(x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

for N any positive integer, where the a_{n} are given by

$$
a_{n}=\frac{2}{L} \int_{0}^{L} F(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

- To find all solutions to the heat equation problem above one must prove one more thing: That F_{N} approximates F for large enough N. That is, $\lim _{N \rightarrow \infty} F_{N}=F$. Fourier didn't show this.

Origins of the Fourier Series.

Remarks:

- Based on Bernoulli and Fourier works, people have been able to prove that.

Origins of the Fourier Series.

Remarks:

- Based on Bernoulli and Fourier works, people have been able to prove that. Every continuous, τ-periodic function can be expressed as an infinite linear combination of sine and cosine functions.

Origins of the Fourier Series.

Remarks:

- Based on Bernoulli and Fourier works, people have been able to prove that. Every continuous, τ-periodic function can be expressed as an infinite linear combination of sine and cosine functions.
- More precisely: Every continuous, τ-periodic function F, there exist constants a_{0}, a_{n}, b_{n}, for $n=1,2, \cdots$ such that

$$
F_{N}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{N}\left[a_{n} \cos \left(\frac{2 n \pi x}{\tau}\right)+b_{n} \sin \left(\frac{2 n \pi x}{\tau}\right)\right]
$$

satisfies $\lim _{N \rightarrow \infty} F_{N}(x)=F(x)$ for every $x \in \mathbb{R}$.

Origins of the Fourier Series.

Remarks:

- Based on Bernoulli and Fourier works, people have been able to prove that. Every continuous, τ-periodic function can be expressed as an infinite linear combination of sine and cosine functions.
- More precisely: Every continuous, τ-periodic function F, there exist constants a_{0}, a_{n}, b_{n}, for $n=1,2, \cdots$ such that

$$
F_{N}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{N}\left[a_{n} \cos \left(\frac{2 n \pi x}{\tau}\right)+b_{n} \sin \left(\frac{2 n \pi x}{\tau}\right)\right]
$$

satisfies $\lim _{N \rightarrow \infty} F_{N}(x)=F(x)$ for every $x \in \mathbb{R}$.
Notation: $\quad F(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{2 n \pi x}{\tau}\right)+b_{n} \sin \left(\frac{2 n \pi x}{\tau}\right)\right]$.

Origins of the Fourier Series.

The main problem in our class:
Given a continuous, τ-periodic function f, find the formulas for a_{n} and b_{n} such that

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{2 n \pi x}{\tau}\right)+b_{n} \sin \left(\frac{2 n \pi x}{\tau}\right)\right] .
$$

Origins of the Fourier Series.

The main problem in our class:
Given a continuous, τ-periodic function f, find the formulas for a_{n} and b_{n} such that

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{2 n \pi x}{\tau}\right)+b_{n} \sin \left(\frac{2 n \pi x}{\tau}\right)\right] .
$$

Remarks: We need to review two main concepts:

Origins of the Fourier Series.

The main problem in our class:
Given a continuous, τ-periodic function f, find the formulas for a_{n} and b_{n} such that

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{2 n \pi x}{\tau}\right)+b_{n} \sin \left(\frac{2 n \pi x}{\tau}\right)\right] .
$$

Remarks: We need to review two main concepts:

- The notion of periodic functions.

Origins of the Fourier Series.

The main problem in our class:
Given a continuous, τ-periodic function f, find the formulas for a_{n} and b_{n} such that

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{2 n \pi x}{\tau}\right)+b_{n} \sin \left(\frac{2 n \pi x}{\tau}\right)\right] .
$$

Remarks: We need to review two main concepts:

- The notion of periodic functions.
- The notion of orthogonal functions, in particular the orthogonality of Sines and Cosines.

Fourier Series (Sect. 10.2).

- Origins of the Fourier Series.
- Periodic functions.
- Orthogonality of Sines and Cosines.
- Main result on Fourier Series.

Periodic functions.

Definition
A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called periodic iff there exists $\tau>0$ such that for all $x \in \mathbb{R}$ holds

$$
f(x+\tau)=f(x)
$$

Periodic functions.

Definition
A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called periodic iff there exists $\tau>0$ such that for all $x \in \mathbb{R}$ holds

$$
f(x+\tau)=f(x)
$$

Remark: f is invariant under translations by τ.

Periodic functions.

Definition

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called periodic iff there exists $\tau>0$ such that for all $x \in \mathbb{R}$ holds

$$
f(x+\tau)=f(x)
$$

Remark: f is invariant under translations by τ.

Definition

A period T of a periodic function f is the smallest value of τ such that $f(x+\tau)=f(x)$ holds.

Periodic functions.

Definition

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called periodic iff there exists $\tau>0$ such that for all $x \in \mathbb{R}$ holds

$$
f(x+\tau)=f(x)
$$

Remark: f is invariant under translations by τ.

Definition

A period T of a periodic function f is the smallest value of τ such that $f(x+\tau)=f(x)$ holds.

Notation:
A periodic function with period T is also called T-periodic.

Periodic functions.

Example

The following functions are periodic, with period T,

$$
\begin{aligned}
f(x)=\sin (x), & T=2 \pi \\
f(x)=\cos (x), & T=2 \pi \\
f(x)=\tan (x), & T=\pi \\
f(x)=\sin (a x), & T=\frac{2 \pi}{a}
\end{aligned}
$$

Periodic functions.

Example

The following functions are periodic, with period T,

$$
\begin{aligned}
f(x)=\sin (x), & T=2 \pi \\
f(x)=\cos (x), & T=2 \pi \\
f(x)=\tan (x), & T=\pi \\
f(x)=\sin (a x), & T=\frac{2 \pi}{a}
\end{aligned}
$$

The proof of the latter statement is the following:

Periodic functions.

Example

The following functions are periodic, with period T,

$$
\begin{aligned}
f(x)=\sin (x), & T=2 \pi \\
f(x)=\cos (x), & T=2 \pi \\
f(x)=\tan (x), & T=\pi \\
f(x)=\sin (a x), & T=\frac{2 \pi}{a}
\end{aligned}
$$

The proof of the latter statement is the following:

$$
f\left(x+\frac{2 \pi}{a}\right)
$$

Periodic functions.

Example

The following functions are periodic, with period T,

$$
\begin{aligned}
f(x)=\sin (x), & T=2 \pi \\
f(x)=\cos (x), & T=2 \pi \\
f(x)=\tan (x), & T=\pi \\
f(x)=\sin (a x), & T=\frac{2 \pi}{a}
\end{aligned}
$$

The proof of the latter statement is the following:

$$
f\left(x+\frac{2 \pi}{a}\right)=\sin \left(a x+a \frac{2 \pi}{a}\right)
$$

Periodic functions.

Example

The following functions are periodic, with period T,

$$
\begin{aligned}
f(x)=\sin (x), & T=2 \pi \\
f(x)=\cos (x), & T=2 \pi \\
f(x)=\tan (x), & T=\pi \\
f(x)=\sin (a x), & T=\frac{2 \pi}{a}
\end{aligned}
$$

The proof of the latter statement is the following:

$$
f\left(x+\frac{2 \pi}{a}\right)=\sin \left(a x+a \frac{2 \pi}{a}\right)=\sin (a x+2 \pi)
$$

Periodic functions.

Example

The following functions are periodic, with period T,

$$
\begin{aligned}
f(x)=\sin (x), & T=2 \pi \\
f(x)=\cos (x), & T=2 \pi \\
f(x)=\tan (x), & T=\pi \\
f(x)=\sin (a x), & T=\frac{2 \pi}{a}
\end{aligned}
$$

The proof of the latter statement is the following:

$$
f\left(x+\frac{2 \pi}{a}\right)=\sin \left(a x+a \frac{2 \pi}{a}\right)=\sin (a x+2 \pi)=\sin (a x)
$$

Periodic functions.

Example

The following functions are periodic, with period T,

$$
\begin{aligned}
f(x)=\sin (x), & T=2 \pi \\
f(x)=\cos (x), & T=2 \pi \\
f(x)=\tan (x), & T=\pi \\
f(x)=\sin (a x), & T=\frac{2 \pi}{a}
\end{aligned}
$$

The proof of the latter statement is the following:

$$
f\left(x+\frac{2 \pi}{a}\right)=\sin \left(a x+a \frac{2 \pi}{a}\right)=\sin (a x+2 \pi)=\sin (a x)=f(x)
$$

Periodic functions.

Example

Show that the function below is periodic, and find its period,

$$
f(x)=e^{x}, \quad x \in[0,2), \quad f(x-2)=f(x) .
$$

Periodic functions.

Example

Show that the function below is periodic, and find its period,

$$
f(x)=e^{x}, \quad x \in[0,2), \quad f(x-2)=f(x)
$$

Solution: We just graph the function,

Periodic functions.

Example
Show that the function below is periodic, and find its period,

$$
f(x)=e^{x}, \quad x \in[0,2), \quad f(x-2)=f(x) .
$$

Solution: We just graph the function,

So the function is periodic with period $T=2$.

Periodic functions.

Theorem
A linear combination of T-periodic functions is also T-periodic.

Periodic functions.

Theorem
A linear combination of T-periodic functions is also T-periodic. Proof: If $f(x+T)=f(x)$ and $g(x+T)=g(x)$, then

$$
a f(x+T)+b g(x+T)=a f(x)+b g(x)
$$

so $(a f+b g)$ is also T-periodic.

Periodic functions.

Theorem
A linear combination of T-periodic functions is also T-periodic. Proof: If $f(x+T)=f(x)$ and $g(x+T)=g(x)$, then

$$
a f(x+T)+b g(x+T)=a f(x)+b g(x)
$$

so $(a f+b g)$ is also T-periodic.
Example
$f(x)=2 \sin (3 x)+7 \cos (2 x)$ is periodic with period $T=2 \pi / 3 . \triangleleft$

Periodic functions.

Theorem

A linear combination of T-periodic functions is also T-periodic. Proof: If $f(x+T)=f(x)$ and $g(x+T)=g(x)$, then

$$
a f(x+T)+b g(x+T)=a f(x)+b g(x)
$$

so $(a f+b g)$ is also T-periodic.
Example
$f(x)=2 \sin (3 x)+7 \cos (2 x)$ is periodic with period $T=2 \pi / 3 . \triangleleft$
Remark: The functions below are periodic with period $\frac{T}{n}$,

$$
f(x)=\cos \left(\frac{2 \pi n x}{T}\right), \quad g(x)=\sin \left(\frac{2 \pi n x}{T}\right)
$$

Periodic functions.

Theorem

A linear combination of T-periodic functions is also T-periodic. Proof: If $f(x+T)=f(x)$ and $g(x+T)=g(x)$, then

$$
a f(x+T)+b g(x+T)=a f(x)+b g(x)
$$

so $(a f+b g)$ is also T-periodic.

Example

$f(x)=2 \sin (3 x)+7 \cos (2 x)$ is periodic with period $T=2 \pi / 3 . \triangleleft$
Remark: The functions below are periodic with period $\frac{T}{n}$,

$$
f(x)=\cos \left(\frac{2 \pi n x}{T}\right), \quad g(x)=\sin \left(\frac{2 \pi n x}{T}\right),
$$

Since f and g are invariant under translations by T / n, they are also invariant under translations by T.

Periodic functions.

Corollary

Any function f given by

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{2 n \pi x}{\tau}\right)+b_{n} \sin \left(\frac{2 n \pi x}{\tau}\right)\right]
$$

is periodic with period T.

Periodic functions.

Corollary
Any function f given by

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{2 n \pi x}{\tau}\right)+b_{n} \sin \left(\frac{2 n \pi x}{\tau}\right)\right]
$$

is periodic with period T.

Remark: We will show that the converse statement is true.

Periodic functions.

Corollary
Any function f given by

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{2 n \pi x}{\tau}\right)+b_{n} \sin \left(\frac{2 n \pi x}{\tau}\right)\right]
$$

is periodic with period T.
Remark: We will show that the converse statement is true.
Theorem
A function f is T-periodic iff holds

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{2 n \pi x}{\tau}\right)+b_{n} \sin \left(\frac{2 n \pi x}{\tau}\right)\right] .
$$

Fourier Series (Sect. 10.2).

- Origins of the Fourier Series.
- Periodic functions.
- Orthogonality of Sines and Cosines.
- Main result on Fourier Series.

Orthogonality of Sines and Cosines.

Remark:
From now on we work on the following domain: $[-L, L]$.

Orthogonality of Sines and Cosines.

Remark:
From now on we work on the following domain: $[-L, L]$.

Orthogonality of Sines and Cosines.

Theorem (Orthogonality)
The following relations hold for all $n, m \in \mathbb{N}$,

$$
\begin{aligned}
& \int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0 & n \neq m \\
L & n=m \neq 0 \\
2 L & n=m=0\end{cases} \\
& \int_{-L}^{L} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0 & n \neq m \\
L & n=m\end{cases} \\
& \int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x=0
\end{aligned}
$$

Orthogonality of Sines and Cosines.

Theorem (Orthogonality)

The following relations hold for all $n, m \in \mathbb{N}$,

$$
\begin{aligned}
& \int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0 & n \neq m \\
L & n=m \neq 0 \\
2 L & n=m=0\end{cases} \\
& \int_{-L}^{L} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0 & n \neq m \\
L & n=m\end{cases} \\
& \int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x=0
\end{aligned}
$$

Remark:

- The operation $f \cdot g=\int_{-L}^{L} f(x) g(x) d x$ is an inner product in the vector space of functions.

Orthogonality of Sines and Cosines.

Theorem (Orthogonality)

The following relations hold for all $n, m \in \mathbb{N}$,

$$
\begin{aligned}
& \int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0 & n \neq m \\
L & n=m \neq 0 \\
2 L & n=m=0\end{cases} \\
& \int_{-L}^{L} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0 & n \neq m \\
L & n=m\end{cases} \\
& \int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x=0
\end{aligned}
$$

Remark:

- The operation $f \cdot g=\int_{-L}^{L} f(x) g(x) d x$ is an inner product in the vector space of functions. Like the dot product is in \mathbb{R}^{2}.

Orthogonality of Sines and Cosines.

Theorem (Orthogonality)

The following relations hold for all $n, m \in \mathbb{N}$,

$$
\begin{aligned}
& \int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0 & n \neq m \\
L & n=m \neq 0 \\
2 L & n=m=0\end{cases} \\
& \int_{-L}^{L} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0 & n \neq m \\
L & n=m\end{cases} \\
& \int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x=0
\end{aligned}
$$

Remark:

- The operation $f \cdot g=\int_{-L}^{L} f(x) g(x) d x$ is an inner product in the vector space of functions. Like the dot product is in \mathbb{R}^{2}.
- Two functions f, g, are orthogonal iff $f \cdot g=0$.

Orthogonality of Sines and Cosines.
Recall: $\quad \cos (\theta) \cos (\phi)=\frac{1}{2}[\cos (\theta+\phi)+\cos (\theta-\phi)] ;$

$$
\begin{aligned}
& \sin (\theta) \sin (\phi)=\frac{1}{2}[\cos (\theta-\phi)-\cos (\theta+\phi)] ; \\
& \sin (\theta) \cos (\phi)=\frac{1}{2}[\sin (\theta+\phi)+\sin (\theta-\phi)] .
\end{aligned}
$$

Orthogonality of Sines and Cosines.

Recall: $\quad \cos (\theta) \cos (\phi)=\frac{1}{2}[\cos (\theta+\phi)+\cos (\theta-\phi)] ;$

$$
\begin{aligned}
& \sin (\theta) \sin (\phi)=\frac{1}{2}[\cos (\theta-\phi)-\cos (\theta+\phi)] ; \\
& \sin (\theta) \cos (\phi)=\frac{1}{2}[\sin (\theta+\phi)+\sin (\theta-\phi)] .
\end{aligned}
$$

Proof: First formula:

Orthogonality of Sines and Cosines.

Recall: $\quad \cos (\theta) \cos (\phi)=\frac{1}{2}[\cos (\theta+\phi)+\cos (\theta-\phi)] ;$

$$
\begin{aligned}
& \sin (\theta) \sin (\phi)=\frac{1}{2}[\cos (\theta-\phi)-\cos (\theta+\phi)] ; \\
& \sin (\theta) \cos (\phi)=\frac{1}{2}[\sin (\theta+\phi)+\sin (\theta-\phi)] .
\end{aligned}
$$

Proof: First formula: If $n=m=0$, it is simple to see that

$$
\int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x=\int_{-L}^{L} d x=2 L .
$$

Orthogonality of Sines and Cosines.

Recall: $\quad \cos (\theta) \cos (\phi)=\frac{1}{2}[\cos (\theta+\phi)+\cos (\theta-\phi)] ;$

$$
\begin{aligned}
& \sin (\theta) \sin (\phi)=\frac{1}{2}[\cos (\theta-\phi)-\cos (\theta+\phi)] ; \\
& \sin (\theta) \cos (\phi)=\frac{1}{2}[\sin (\theta+\phi)+\sin (\theta-\phi)] .
\end{aligned}
$$

Proof: First formula: If $n=m=0$, it is simple to see that

$$
\int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x=\int_{-L}^{L} d x=2 L .
$$

In the case where one of n or m is non-zero, use the relation

$$
\begin{aligned}
\int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) & \cos \left(\frac{m \pi x}{L}\right) d x=\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n+m) \pi x}{L}\right] d x \\
& +\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x .
\end{aligned}
$$

Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero,

Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero, holds

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n+m) \pi x}{L}\right] d x=\left.\frac{L}{2(n+m) \pi} \sin \left[\frac{(n+m) \pi x}{L}\right]\right|_{-L} ^{L}=0
$$

Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero, holds

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n+m) \pi x}{L}\right] d x=\left.\frac{L}{2(n+m) \pi} \sin \left[\frac{(n+m) \pi x}{L}\right]\right|_{-L} ^{L}=0
$$

We obtain that

$$
\int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x=\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x
$$

Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero, holds

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n+m) \pi x}{L}\right] d x=\left.\frac{L}{2(n+m) \pi} \sin \left[\frac{(n+m) \pi x}{L}\right]\right|_{-L} ^{L}=0
$$

We obtain that

$$
\int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x=\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x .
$$

If we further restrict $n \neq m$, then

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x=\left.\frac{L}{2(n-m) \pi} \sin \left[\frac{(n-m) \pi x}{L}\right]\right|_{-L} ^{L}=0
$$

Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero, holds

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n+m) \pi x}{L}\right] d x=\left.\frac{L}{2(n+m) \pi} \sin \left[\frac{(n+m) \pi x}{L}\right]\right|_{-L} ^{L}=0
$$

We obtain that

$$
\int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x=\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x .
$$

If we further restrict $n \neq m$, then

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x=\left.\frac{L}{2(n-m) \pi} \sin \left[\frac{(n-m) \pi x}{L}\right]\right|_{-L} ^{L}=0
$$

If $n=m \neq 0$, we have that

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x=\frac{1}{2} \int_{-L}^{L} d x=L
$$

Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero, holds

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n+m) \pi x}{L}\right] d x=\left.\frac{L}{2(n+m) \pi} \sin \left[\frac{(n+m) \pi x}{L}\right]\right|_{-L} ^{L}=0
$$

We obtain that

$$
\int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x=\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x .
$$

If we further restrict $n \neq m$, then

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x=\left.\frac{L}{2(n-m) \pi} \sin \left[\frac{(n-m) \pi x}{L}\right]\right|_{-L} ^{L}=0
$$

If $n=m \neq 0$, we have that

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x=\frac{1}{2} \int_{-L}^{L} d x=L
$$

This establishes the first equation in the Theorem. The remaining equations are proven in a similar way.

Overview of Fourier Series (Sect. 10.2).

- Origins of the Fourier Series.
- Periodic functions.
- Orthogonality of Sines and Cosines.
- Main result on Fourier Series.

Main result on Fourier Series.

Theorem (Fourier Series)
If the function $f:[-L, L] \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous, then f can be expressed as an infinite series

$$
\begin{equation*}
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] \tag{1}
\end{equation*}
$$

with the constants a_{n} and b_{n} given by

$$
\begin{array}{ll}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 0, \\
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 1 .
\end{array}
$$

Furthermore, the Fourier series in Eq. (1) provides a $2 L$-periodic extension of f from the domain $[-L, L] \subset \mathbb{R}$ to \mathbb{R}.

Examples of the Fourier Theorem (Sect. 10.3).

- The Fourier Theorem: Continuous case.
- Example: Using the Fourier Theorem.
- The Fourier Theorem: Piecewise continuous case.
- Example: Using the Fourier Theorem.

The Fourier Theorem: Continuous case.

Theorem (Fourier Series)
If the function $f:[-L, L] \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous, then f can be expressed as an infinite series

$$
\begin{equation*}
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] \tag{2}
\end{equation*}
$$

with the constants a_{n} and b_{n} given by

$$
\begin{array}{ll}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 0, \\
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 1 .
\end{array}
$$

Furthermore, the Fourier series in Eq. (1) provides a $2 L$-periodic extension of f from the domain $[-L, L] \subset \mathbb{R}$ to \mathbb{R}.

The Fourier Theorem: Continuous case.

Sketch of the Proof:

- Define the partial sum functions

$$
f_{N}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{N}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]
$$

The Fourier Theorem: Continuous case.
Sketch of the Proof:

- Define the partial sum functions

$$
f_{N}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{N}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]
$$

with a_{n} and b_{n} given by

$$
\begin{array}{ll}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 0, \\
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 1 .
\end{array}
$$

The Fourier Theorem: Continuous case.

Sketch of the Proof:

- Define the partial sum functions

$$
f_{N}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{N}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]
$$

with a_{n} and b_{n} given by

$$
\begin{array}{ll}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 0, \\
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 1 .
\end{array}
$$

- Express f_{N} as a convolution of Sine, Cosine, functions and the original function f.

The Fourier Theorem: Continuous case.

Sketch of the Proof:

- Define the partial sum functions

$$
f_{N}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{N}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]
$$

with a_{n} and b_{n} given by

$$
\begin{array}{ll}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 0, \\
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 1 .
\end{array}
$$

- Express f_{N} as a convolution of Sine, Cosine, functions and the original function f.
- Use the convolution properties to show that

$$
\lim _{N \rightarrow \infty} f_{N}(x)=f(x), \quad x \in[-L, L]
$$

Examples of the Fourier Theorem (Sect. 10.3).

- The Fourier Theorem: Continuous case.
- Example: Using the Fourier Theorem.
- The Fourier Theorem: Piecewise continuous case.
- Example: Using the Fourier Theorem.

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: In this case $L=1$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: In this case $L=1$. The Fourier series expansion is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x)\right]
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: In this case $L=1$. The Fourier series expansion is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x)\right],
$$

where the a_{n}, b_{n} are given in the Theorem.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: In this case $L=1$. The Fourier series expansion is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x)\right],
$$

where the a_{n}, b_{n} are given in the Theorem. We start with a_{0},

$$
a_{0}=\int_{-1}^{1} f(x) d x
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: In this case $L=1$. The Fourier series expansion is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x)\right]
$$

where the a_{n}, b_{n} are given in the Theorem. We start with a_{0},

$$
a_{0}=\int_{-1}^{1} f(x) d x=\int_{-1}^{0}(1+x) d x+\int_{0}^{1}(1-x) d x
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: In this case $L=1$. The Fourier series expansion is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x)\right]
$$

where the a_{n}, b_{n} are given in the Theorem. We start with a_{0},

$$
\begin{aligned}
& a_{0}=\int_{-1}^{1} f(x) d x=\int_{-1}^{0}(1+x) d x+\int_{0}^{1}(1-x) d x \\
& a_{0}=\left.\left(x+\frac{x^{2}}{2}\right)\right|_{-1} ^{0}+\left.\left(x-\frac{x^{2}}{2}\right)\right|_{0} ^{1}
\end{aligned}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0), \\ 1-x & x \in[0,1] .\end{cases}
$$

Solution: In this case $L=1$. The Fourier series expansion is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x)\right],
$$

where the a_{n}, b_{n} are given in the Theorem. We start with a_{0},

$$
\begin{gathered}
a_{0}=\int_{-1}^{1} f(x) d x=\int_{-1}^{0}(1+x) d x+\int_{0}^{1}(1-x) d x . \\
a_{0}=\left.\left(x+\frac{x^{2}}{2}\right)\right|_{-1} ^{0}+\left.\left(x-\frac{x^{2}}{2}\right)\right|_{0} ^{1}=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{2}\right)
\end{gathered}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: In this case $L=1$. The Fourier series expansion is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x)\right]
$$

where the a_{n}, b_{n} are given in the Theorem. We start with a_{0},

$$
\begin{gathered}
a_{0}=\int_{-1}^{1} f(x) d x=\int_{-1}^{0}(1+x) d x+\int_{0}^{1}(1-x) d x \\
a_{0}=\left.\left(x+\frac{x^{2}}{2}\right)\right|_{-1} ^{0}+\left.\left(x-\frac{x^{2}}{2}\right)\right|_{0} ^{1}=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{2}\right)
\end{gathered}
$$

We obtain: $a_{0}=1$.

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $a_{0}=1$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $a_{0}=1$. Similarly, the rest of the a_{n} are given by,

$$
a_{n}=\int_{-1}^{1} f(x) \cos (n \pi x) d x
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $a_{0}=1$. Similarly, the rest of the a_{n} are given by,

$$
\begin{gathered}
a_{n}=\int_{-1}^{1} f(x) \cos (n \pi x) d x \\
a_{n}=\int_{-1}^{0}(1+x) \cos (n \pi x) d x+\int_{0}^{1}(1-x) \cos (n \pi x) d x
\end{gathered}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $a_{0}=1$. Similarly, the rest of the a_{n} are given by,

$$
\begin{gathered}
a_{n}=\int_{-1}^{1} f(x) \cos (n \pi x) d x \\
a_{n}=\int_{-1}^{0}(1+x) \cos (n \pi x) d x+\int_{0}^{1}(1-x) \cos (n \pi x) d x
\end{gathered}
$$

Recall the integrals $\int \cos (n \pi x) d x=\frac{1}{n \pi} \sin (n \pi x)$,

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $a_{0}=1$. Similarly, the rest of the a_{n} are given by,

$$
\begin{gathered}
a_{n}=\int_{-1}^{1} f(x) \cos (n \pi x) d x \\
a_{n}=\int_{-1}^{0}(1+x) \cos (n \pi x) d x+\int_{0}^{1}(1-x) \cos (n \pi x) d x
\end{gathered}
$$

Recall the integrals $\int \cos (n \pi x) d x=\frac{1}{n \pi} \sin (n \pi x)$, and

$$
\int x \cos (n \pi x) d x=\frac{x}{n \pi} \sin (n \pi x)+\frac{1}{n^{2} \pi^{2}} \cos (n \pi x)
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: It is not difficult to see that

$$
\begin{aligned}
a_{n} & =\left.\frac{1}{n \pi} \sin (n \pi x)\right|_{-1} ^{0}+\left.\left[\frac{x}{n \pi} \sin (n \pi x)+\frac{1}{n^{2} \pi^{2}} \cos (n \pi x)\right]\right|_{-1} ^{0} \\
& +\left.\frac{1}{n \pi} \sin (n \pi x)\right|_{0} ^{1}-\left.\left[\frac{x}{n \pi} \sin (n \pi x)+\frac{1}{n^{2} \pi^{2}} \cos (n \pi x)\right]\right|_{0} ^{1}
\end{aligned}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: It is not difficult to see that

$$
\begin{aligned}
a_{n} & =\left.\frac{1}{n \pi} \sin (n \pi x)\right|_{-1} ^{0}+\left.\left[\frac{x}{n \pi} \sin (n \pi x)+\frac{1}{n^{2} \pi^{2}} \cos (n \pi x)\right]\right|_{-1} ^{0} \\
& +\left.\frac{1}{n \pi} \sin (n \pi x)\right|_{0} ^{1}-\left.\left[\frac{x}{n \pi} \sin (n \pi x)+\frac{1}{n^{2} \pi^{2}} \cos (n \pi x)\right]\right|_{0} ^{1} \\
a_{n} & =\left[\frac{1}{n^{2} \pi^{2}}-\frac{1}{n^{2} \pi^{2}} \cos (-n \pi)\right]-\left[\frac{1}{n^{2} \pi^{2}} \cos (-n \pi)-\frac{1}{n^{2} \pi^{2}}\right] .
\end{aligned}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: It is not difficult to see that

$$
\begin{aligned}
a_{n} & =\left.\frac{1}{n \pi} \sin (n \pi x)\right|_{-1} ^{0}+\left.\left[\frac{x}{n \pi} \sin (n \pi x)+\frac{1}{n^{2} \pi^{2}} \cos (n \pi x)\right]\right|_{-1} ^{0} \\
& +\left.\frac{1}{n \pi} \sin (n \pi x)\right|_{0} ^{1}-\left.\left[\frac{x}{n \pi} \sin (n \pi x)+\frac{1}{n^{2} \pi^{2}} \cos (n \pi x)\right]\right|_{0} ^{1} \\
a_{n} & =\left[\frac{1}{n^{2} \pi^{2}}-\frac{1}{n^{2} \pi^{2}} \cos (-n \pi)\right]-\left[\frac{1}{n^{2} \pi^{2}} \cos (-n \pi)-\frac{1}{n^{2} \pi^{2}}\right] .
\end{aligned}
$$

We then conclude that $a_{n}=\frac{2}{n^{2} \pi^{2}}[1-\cos (-n \pi)]$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $a_{0}=1$, and $a_{n}=\frac{2}{n^{2} \pi^{2}}[1-\cos (-n \pi)]$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0), \\ 1-x & x \in[0,1] .\end{cases}
$$

Solution: Recall: $a_{0}=1$, and $a_{n}=\frac{2}{n^{2} \pi^{2}}[1-\cos (-n \pi)]$.
Finally, we must find the coefficients b_{n}.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $a_{0}=1$, and $\quad a_{n}=\frac{2}{n^{2} \pi^{2}}[1-\cos (-n \pi)]$.
Finally, we must find the coefficients b_{n}.
A similar calculation shows that $b_{n}=0$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $a_{0}=1$, and $a_{n}=\frac{2}{n^{2} \pi^{2}}[1-\cos (-n \pi)]$.
Finally, we must find the coefficients b_{n}.
A similar calculation shows that $b_{n}=0$.
Then, the Fourier series of f is given by

$$
f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}[1-\cos (-n \pi)] \cos (n \pi x)
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}[1-\cos (-n \pi)] \cos (n \pi x)$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}[1-\cos (-n \pi)] \cos (n \pi x)$.
We can obtain a simpler expression for the Fourier coefficients a_{n}.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}[1-\cos (-n \pi)] \cos (n \pi x)$.
We can obtain a simpler expression for the Fourier coefficients a_{n}.
Recall the relations $\cos (n \pi)=(-1)^{n}$,

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}[1-\cos (-n \pi)] \cos (n \pi x)$.
We can obtain a simpler expression for the Fourier coefficients a_{n}.
Recall the relations $\cos (n \pi)=(-1)^{n}$, then

$$
f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1-(-1)^{n}\right] \cos (n \pi x) .
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}[1-\cos (-n \pi)] \cos (n \pi x)$.
We can obtain a simpler expression for the Fourier coefficients a_{n}. Recall the relations $\cos (n \pi)=(-1)^{n}$, then

$$
\begin{aligned}
& f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1-(-1)^{n}\right] \cos (n \pi x) \\
& f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)
\end{aligned}
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$,

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$, so n is even,

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$, so n is even, so $n+1=2 k+1$ is odd,

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$, so n is even, so $n+1=2 k+1$ is odd, then

$$
a_{2 k}=\frac{2}{(2 k)^{2} \pi^{2}}(1-1)
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$, so n is even, so $n+1=2 k+1$ is odd, then

$$
a_{2 k}=\frac{2}{(2 k)^{2} \pi^{2}}(1-1) \quad \Rightarrow \quad a_{2 k}=0
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$, so n is even, so $n+1=2 k+1$ is odd, then

$$
a_{2 k}=\frac{2}{(2 k)^{2} \pi^{2}}(1-1) \quad \Rightarrow \quad a_{2 k}=0
$$

If $n=2 k-1$,

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$, so n is even, so $n+1=2 k+1$ is odd, then

$$
a_{2 k}=\frac{2}{(2 k)^{2} \pi^{2}}(1-1) \quad \Rightarrow \quad a_{2 k}=0
$$

If $n=2 k-1$, so n is odd,

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$, so n is even, so $n+1=2 k+1$ is odd, then

$$
a_{2 k}=\frac{2}{(2 k)^{2} \pi^{2}}(1-1) \quad \Rightarrow \quad a_{2 k}=0
$$

If $n=2 k-1$, so n is odd, so $n+1=2 k$ is even,

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$, so n is even, so $n+1=2 k+1$ is odd, then

$$
a_{2 k}=\frac{2}{(2 k)^{2} \pi^{2}}(1-1) \quad \Rightarrow \quad a_{2 k}=0
$$

If $n=2 k-1$, so n is odd, so $n+1=2 k$ is even, then

$$
a_{2 k-1}=\frac{2}{(2 k-1)^{2} \pi^{2}}(1+1)
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$, so n is even, so $n+1=2 k+1$ is odd, then

$$
a_{2 k}=\frac{2}{(2 k)^{2} \pi^{2}}(1-1) \quad \Rightarrow \quad a_{2 k}=0
$$

If $n=2 k-1$, so n is odd, so $n+1=2 k$ is even, then

$$
a_{2 k-1}=\frac{2}{(2 k-1)^{2} \pi^{2}}(1+1) \quad \Rightarrow \quad a_{2 k-1}=\frac{4}{(2 k-1)^{2} \pi^{2}} .
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution:
Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$, and

$$
a_{2 k}=0, \quad a_{2 k-1}=\frac{4}{(2 k-1)^{2} \pi^{2}}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution:
Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$, and

$$
a_{2 k}=0, \quad a_{2 k-1}=\frac{4}{(2 k-1)^{2} \pi^{2}} .
$$

We conclude: $\quad f(x)=\frac{1}{2}+\sum_{k=1}^{\infty} \frac{4}{(2 k-1)^{2} \pi^{2}} \cos ((2 k-1) \pi x) . \quad \triangleleft$

Examples of the Fourier Theorem (Sect. 10.3).

- The Fourier Theorem: Continuous case.
- Example: Using the Fourier Theorem.
- The Fourier Theorem: Piecewise continuous case.
- Example: Using the Fourier Theorem.

The Fourier Theorem: Piecewise continuous case.

Recall:

Definition
A function $f:[a, b] \rightarrow \mathbb{R}$ is called piecewise continuous iff holds,
(a) $[a, b]$ can be partitioned in a finite number of sub-intervals such that f is continuous on the interior of these sub-intervals.
(b) f has finite limits at the endpoints of all sub-intervals.

The Fourier Theorem: Piecewise continuous case.

Theorem (Fourier Series)
If $f:[-L, L] \subset \mathbb{R} \rightarrow \mathbb{R}$ is piecewise continuous, then the function

$$
f_{F}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]
$$

where a_{n} and b_{n} given by

$$
\begin{array}{ll}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 0, \\
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 1 .
\end{array}
$$

satisfies that:
(a) $f_{F}(x)=f(x)$ for all x where f is continuous;
(b) $f_{F}\left(x_{0}\right)=\frac{1}{2}\left[\lim _{x \rightarrow x_{0}^{+}} f(x)+\lim _{x \rightarrow x_{0}^{-}} f(x)\right]$ for all x_{0} where f is discontinuous.

Examples of the Fourier Theorem (Sect. 10.3).

- The Fourier Theorem: Continuous case.
- Example: Using the Fourier Theorem.
- The Fourier Theorem: Piecewise continuous case.
- Example: Using the Fourier Theorem.

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: We start computing the Fourier coefficients b_{n};

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: We start computing the Fourier coefficients b_{n};

$$
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: We start computing the Fourier coefficients b_{n};

$$
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, \quad L=1
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: We start computing the Fourier coefficients b_{n};

$$
\begin{gathered}
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, \quad L=1, \\
b_{n}=\int_{-1}^{0}(-1) \sin (n \pi x) d x+\int_{0}^{1}(1) \sin (n \pi x) d x
\end{gathered}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: We start computing the Fourier coefficients b_{n};

$$
\begin{gathered}
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, \quad L=1, \\
b_{n}=\int_{-1}^{0}(-1) \sin (n \pi x) d x+\int_{0}^{1}(1) \sin (n \pi x) d x, \\
b_{n}=\frac{(-1)}{n \pi}\left[-\left.\cos (n \pi x)\right|_{-1} ^{0}\right]+\frac{1}{n \pi}\left[-\left.\cos (n \pi x)\right|_{0} ^{1}\right],
\end{gathered}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: We start computing the Fourier coefficients b_{n};

$$
\begin{gathered}
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, \quad L=1, \\
b_{n}=\int_{-1}^{0}(-1) \sin (n \pi x) d x+\int_{0}^{1}(1) \sin (n \pi x) d x, \\
b_{n}=\frac{(-1)}{n \pi}\left[-\left.\cos (n \pi x)\right|_{-1} ^{0}\right]+\frac{1}{n \pi}\left[-\left.\cos (n \pi x)\right|_{0} ^{1}\right], \\
b_{n}= \\
\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1] .
\end{gathered}
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

$$
b_{n}=\frac{1}{n \pi}[1-\cos (-n \pi)-\cos (n \pi)+1]
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.
Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

$$
b_{n}=\frac{1}{n \pi}[1-\cos (-n \pi)-\cos (n \pi)+1]=\frac{2}{n \pi}[1-\cos (n \pi)],
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

$$
b_{n}=\frac{1}{n \pi}[1-\cos (-n \pi)-\cos (n \pi)+1]=\frac{2}{n \pi}[1-\cos (n \pi)],
$$

We obtain: $\quad b_{n}=\frac{2}{n \pi}\left[1-(-1)^{n}\right]$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

$$
b_{n}=\frac{1}{n \pi}[1-\cos (-n \pi)-\cos (n \pi)+1]=\frac{2}{n \pi}[1-\cos (n \pi)],
$$

We obtain: $\quad b_{n}=\frac{2}{n \pi}\left[1-(-1)^{n}\right]$.
If $n=2 k$,

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

$$
b_{n}=\frac{1}{n \pi}[1-\cos (-n \pi)-\cos (n \pi)+1]=\frac{2}{n \pi}[1-\cos (n \pi)],
$$

We obtain: $\quad b_{n}=\frac{2}{n \pi}\left[1-(-1)^{n}\right]$.
If $n=2 k$, then $b_{2 k}=\frac{2}{2 k \pi}\left[1-(-1)^{2 k}\right]$,

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

$$
b_{n}=\frac{1}{n \pi}[1-\cos (-n \pi)-\cos (n \pi)+1]=\frac{2}{n \pi}[1-\cos (n \pi)],
$$

We obtain: $\quad b_{n}=\frac{2}{n \pi}\left[1-(-1)^{n}\right]$.
If $n=2 k$, then $b_{2 k}=\frac{2}{2 k \pi}\left[1-(-1)^{2 k}\right]$, hence $b_{2 k}=0$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

$$
b_{n}=\frac{1}{n \pi}[1-\cos (-n \pi)-\cos (n \pi)+1]=\frac{2}{n \pi}[1-\cos (n \pi)],
$$

We obtain: $\quad b_{n}=\frac{2}{n \pi}\left[1-(-1)^{n}\right]$.
If $n=2 k$, then $b_{2 k}=\frac{2}{2 k \pi}\left[1-(-1)^{2 k}\right]$, hence $b_{2 k}=0$.
If $n=2 k-1$,

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

$$
b_{n}=\frac{1}{n \pi}[1-\cos (-n \pi)-\cos (n \pi)+1]=\frac{2}{n \pi}[1-\cos (n \pi)],
$$

We obtain: $\quad b_{n}=\frac{2}{n \pi}\left[1-(-1)^{n}\right]$.
If $n=2 k$, then $b_{2 k}=\frac{2}{2 k \pi}\left[1-(-1)^{2 k}\right]$, hence $b_{2 k}=0$.
If $n=2 k-1$, then $b_{2 k-1}=\frac{2}{(2 k-1) \pi}\left[1-(-1)^{2 k-1}\right]$,

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

$$
b_{n}=\frac{1}{n \pi}[1-\cos (-n \pi)-\cos (n \pi)+1]=\frac{2}{n \pi}[1-\cos (n \pi)],
$$

We obtain: $\quad b_{n}=\frac{2}{n \pi}\left[1-(-1)^{n}\right]$.
If $n=2 k$, then $b_{2 k}=\frac{2}{2 k \pi}\left[1-(-1)^{2 k}\right]$, hence $b_{2 k}=0$.
If $n=2 k-1$, then $b_{2 k-1}=\frac{2}{(2 k-1) \pi}\left[1-(-1)^{2 k-1}\right]$,
hence $\quad b_{2 k}=\frac{4}{(2 k-1) \pi}$.

Example: Using the Fourier Theorem.

Example
Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: Recall: $\quad b_{2 k}=0$, and $\quad b_{2 k}=\frac{4}{(2 k-1) \pi}$.

Example: Using the Fourier Theorem.

Example
Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: Recall: $\quad b_{2 k}=0$, and $\quad b_{2 k}=\frac{4}{(2 k-1) \pi}$.

$$
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: Recall: $\quad b_{2 k}=0$, and $\quad b_{2 k}=\frac{4}{(2 k-1) \pi}$.

$$
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, \quad L=1
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: Recall: $\quad b_{2 k}=0$, and $\quad b_{2 k}=\frac{4}{(2 k-1) \pi}$.

$$
\begin{gathered}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, \quad L=1, \\
a_{n}=\int_{-1}^{0}(-1) \cos (n \pi x) d x+\int_{0}^{1}(1) \cos (n \pi x) d x
\end{gathered}
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) \text {. }\end{array}\right.$ and periodic with period $T=2$.

Solution: Recall: $\quad b_{2 k}=0$, and $\quad b_{2 k}=\frac{4}{(2 k-1) \pi}$.

$$
\begin{gathered}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, \quad L=1, \\
a_{n}=\int_{-1}^{0}(-1) \cos (n \pi x) d x+\int_{0}^{1}(1) \cos (n \pi x) d x, \\
a_{n}=\frac{(-1)}{n \pi}\left[\left.\sin (n \pi x)\right|_{-1} ^{0}\right]+\frac{1}{n \pi}\left[\left.\sin (n \pi x)\right|_{0} ^{1}\right],
\end{gathered}
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) \text {. }\end{array}\right.$ and periodic with period $T=2$.

Solution: Recall: $\quad b_{2 k}=0$, and $\quad b_{2 k}=\frac{4}{(2 k-1) \pi}$.

$$
\begin{gathered}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, \quad L=1, \\
a_{n}=\int_{-1}^{0}(-1) \cos (n \pi x) d x+\int_{0}^{1}(1) \cos (n \pi x) d x, \\
a_{n}=\frac{(-1)}{n \pi}\left[\left.\sin (n \pi x)\right|_{-1} ^{0}\right]+\frac{1}{n \pi}\left[\left.\sin (n \pi x)\right|_{0} ^{1}\right], \\
a_{n}=\frac{(-1)}{n \pi}[0-\sin (-n \pi)]+\frac{1}{n \pi}[\sin (n \pi)-0]
\end{gathered}
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) \text {. }\end{array}\right.$ and periodic with period $T=2$.

Solution: Recall: $\quad b_{2 k}=0$, and $\quad b_{2 k}=\frac{4}{(2 k-1) \pi}$.

$$
\begin{gathered}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, \quad L=1, \\
a_{n}=\int_{-1}^{0}(-1) \cos (n \pi x) d x+\int_{0}^{1}(1) \cos (n \pi x) d x, \\
a_{n}=\frac{(-1)}{n \pi}\left[\left.\sin (n \pi x)\right|_{-1} ^{0}\right]+\frac{1}{n \pi}\left[\left.\sin (n \pi x)\right|_{0} ^{1}\right], \\
a_{n}=\frac{(-1)}{n \pi}[0-\sin (-n \pi)]+\frac{1}{n \pi}[\sin (n \pi)-0] \Rightarrow a_{n}=0 .
\end{gathered}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: Recall: $\quad b_{2 k}=0, \quad b_{2 k}=\frac{4}{(2 k-1) \pi}, \quad$ and $\quad a_{n}=0$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: Recall: $\quad b_{2 k}=0, \quad b_{2 k}=\frac{4}{(2 k-1) \pi}, \quad$ and $\quad a_{n}=0$.
Therefore, we conclude that

$$
f_{F}(x)=\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{1}{(2 k-1)} \sin ((2 k-1) \pi x) .
$$

