Review for Exam 2.

- 5 problems.
- No multiple choice questions.
- No notes, no books, no calculators.
- Problems similar to homeworks.
- Exam covers:
- Regular-singular points (5.5).
- Euler differential equation (5.4).
- Power series solutions (5.2).
- Variation of parameters (3.6).
- Undetermined coefficients (3.5)
- Constant coefficients, homogeneous, (3.1)-(3.4).

Regular-singular points (5.5).
Summary:

Regular-singular points (5.5).

Summary:

- Look for solutions $y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{(n+r)}$.

Regular-singular points (5.5).

Summary:

- Look for solutions $y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{(n+r)}$.
- Recall: Since $r \neq 0$, holds

$$
y^{\prime}=\sum_{n=0}^{\infty}(n+r) a_{n}\left(x-x_{0}\right)^{(n+r-1)} \neq \sum_{n=1}^{\infty}(n+r) a_{n}\left(x-x_{0}\right)^{(n+r-1)},
$$

Regular-singular points (5.5).

Summary:

- Look for solutions $y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{(n+r)}$.
- Recall: Since $r \neq 0$, holds

$$
y^{\prime}=\sum_{n=0}^{\infty}(n+r) a_{n}\left(x-x_{0}\right)^{(n+r-1)} \neq \sum_{n=1}^{\infty}(n+r) a_{n}\left(x-x_{0}\right)^{(n+r-1)},
$$

- Find the indicial equation for r, the recurrence relation for a_{n}.

Regular-singular points (5.5).

Summary:

- Look for solutions $y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{(n+r)}$.
- Recall: Since $r \neq 0$, holds

$$
y^{\prime}=\sum_{n=0}^{\infty}(n+r) a_{n}\left(x-x_{0}\right)^{(n+r-1)} \neq \sum_{n=1}^{\infty}(n+r) a_{n}\left(x-x_{0}\right)^{(n+r-1)},
$$

- Find the indicial equation for r, the recurrence relation for a_{n}.
- Introduce the larger root r_{+}of the indicial polynomial into the recurrence relation and solve for a_{n}.

Regular-singular points (5.5).

Summary:

- Look for solutions $y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{(n+r)}$.
- Recall: Since $r \neq 0$, holds

$$
y^{\prime}=\sum_{n=0}^{\infty}(n+r) a_{n}\left(x-x_{0}\right)^{(n+r-1)} \neq \sum_{n=1}^{\infty}(n+r) a_{n}\left(x-x_{0}\right)^{(n+r-1)},
$$

- Find the indicial equation for r, the recurrence relation for a_{n}.
- Introduce the larger root r_{+}of the indicial polynomial into the recurrence relation and solve for a_{n}.
(a) If ($r_{+}-r_{-}$) is not an integer, then each r_{+}and r_{-}define linearly independent solutions.

Regular-singular points (5.5).

Summary:

- Look for solutions $y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{(n+r)}$.
- Recall: Since $r \neq 0$, holds

$$
y^{\prime}=\sum_{n=0}^{\infty}(n+r) a_{n}\left(x-x_{0}\right)^{(n+r-1)} \neq \sum_{n=1}^{\infty}(n+r) a_{n}\left(x-x_{0}\right)^{(n+r-1)},
$$

- Find the indicial equation for r, the recurrence relation for a_{n}.
- Introduce the larger root r_{+}of the indicial polynomial into the recurrence relation and solve for a_{n}.
(a) If ($r_{+}-r_{-}$) is not an integer, then each r_{+}and r_{-}define linearly independent solutions.
(b) If ($r_{+}-r_{-}$) is an integer, then both r_{+}and r_{-}define proportional solutions.

Regular-singular points (5.5).

Example

Consider the equation $x^{2} y^{\prime \prime}+\left(x^{2}+\frac{1}{4}\right) y=0$. Use a power series centered at the regular-singular point $x_{0}=0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Regular-singular points (5.5).

Example

Consider the equation $x^{2} y^{\prime \prime}+\left(x^{2}+\frac{1}{4}\right) y=0$. Use a power series centered at the regular-singular point $x_{0}=0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.
Solution: $y=\sum_{n=0}^{\infty} a_{n} x^{(n+r)}$,

Regular-singular points (5.5).

Example

Consider the equation $x^{2} y^{\prime \prime}+\left(x^{2}+\frac{1}{4}\right) y=0$. Use a power series centered at the regular-singular point $x_{0}=0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.
Solution: $y=\sum_{n=0}^{\infty} a_{n} x^{(n+r)}, y^{\prime \prime}=\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{(n+r-2)}$,

Regular-singular points (5.5).

Example

Consider the equation $x^{2} y^{\prime \prime}+\left(x^{2}+\frac{1}{4}\right) y=0$. Use a power series centered at the regular-singular point $x_{0}=0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.
Solution: $y=\sum_{n=0}^{\infty} a_{n} x^{(n+r)}, y^{\prime \prime}=\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{(n+r-2)}$,

$$
x^{2} y^{\prime \prime}=\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{(n+r)}
$$

Regular-singular points (5.5).

Example

Consider the equation $x^{2} y^{\prime \prime}+\left(x^{2}+\frac{1}{4}\right) y=0$. Use a power series centered at the regular-singular point $x_{0}=0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.
Solution: $y=\sum_{n=0}^{\infty} a_{n} x^{(n+r)}, y^{\prime \prime}=\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{(n+r-2)}$,

$$
x^{2} y^{\prime \prime}=\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{(n+r)}
$$

We also need to compute

$$
\left(x^{2}+\frac{1}{4}\right) y=\sum_{n=0}^{\infty} a_{n} x^{(n+r+2)}+\sum_{n=0}^{\infty} \frac{1}{4} a_{n} x^{(n+r)}
$$

Regular-singular points (5.5).

Example

Consider the equation $x^{2} y^{\prime \prime}+\left(x^{2}+\frac{1}{4}\right) y=0$. Use a power series centered at the regular-singular point $x_{0}=0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.
Solution: $\left(x^{2}+\frac{1}{4}\right) y=\sum_{n=0}^{\infty} a_{n} x^{(n+r+2)}+\sum_{n=0}^{\infty} \frac{1}{4} a_{n} x^{(n+r)}$.

Regular-singular points (5.5).

Example

Consider the equation $x^{2} y^{\prime \prime}+\left(x^{2}+\frac{1}{4}\right) y=0$. Use a power series centered at the regular-singular point $x_{0}=0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.
Solution: $\left(x^{2}+\frac{1}{4}\right) y=\sum_{n=0}^{\infty} a_{n} x^{(n+r+2)}+\sum_{n=0}^{\infty} \frac{1}{4} a_{n} x^{(n+r)}$.
Re-label $m=n+2$ in the first term and then switch back to n,

Regular-singular points (5.5).

Example

Consider the equation $x^{2} y^{\prime \prime}+\left(x^{2}+\frac{1}{4}\right) y=0$. Use a power series centered at the regular-singular point $x_{0}=0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.
Solution: $\left(x^{2}+\frac{1}{4}\right) y=\sum_{n=0}^{\infty} a_{n} x^{(n+r+2)}+\sum_{n=0}^{\infty} \frac{1}{4} a_{n} x^{(n+r)}$.
Re-label $m=n+2$ in the first term and then switch back to n,

$$
\left(x^{2}+\frac{1}{4}\right) y=\sum_{n=2}^{\infty} a_{(n-2)} x^{(n+r)}+\sum_{n=0}^{\infty} \frac{1}{4} a_{n} x^{(n+r)}
$$

Regular-singular points (5.5).

Example

Consider the equation $x^{2} y^{\prime \prime}+\left(x^{2}+\frac{1}{4}\right) y=0$. Use a power series centered at the regular-singular point $x_{0}=0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.
Solution: $\left(x^{2}+\frac{1}{4}\right) y=\sum_{n=0}^{\infty} a_{n} x^{(n+r+2)}+\sum_{n=0}^{\infty} \frac{1}{4} a_{n} x^{(n+r)}$.
Re-label $m=n+2$ in the first term and then switch back to n,

$$
\left(x^{2}+\frac{1}{4}\right) y=\sum_{n=2}^{\infty} a_{(n-2)} x^{(n+r)}+\sum_{n=0}^{\infty} \frac{1}{4} a_{n} x^{(n+r)}
$$

The equation is
$\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{(n+r)}+\sum_{n=2}^{\infty} a_{(n-2)} x^{(n+r)}+\sum_{n=0}^{\infty} \frac{1}{4} a_{n} x^{(n+r)}=0$.

Regular-singular points (5.5).

Example

Consider the equation $x^{2} y^{\prime \prime}+\left(x^{2}+\frac{1}{4}\right) y=0$. Use a power series centered at the regular-singular point $x_{0}=0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.
Solution:
$\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{(n+r)}+\sum_{n=2}^{\infty} a_{(n-2)} x^{(n+r)}+\sum_{n=0}^{\infty} \frac{1}{4} a_{n} x^{(n+r)}=0$.

Regular-singular points (5.5).

Example

Consider the equation $x^{2} y^{\prime \prime}+\left(x^{2}+\frac{1}{4}\right) y=0$. Use a power series centered at the regular-singular point $x_{0}=0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.
Solution:

$$
\begin{gathered}
\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{(n+r)}+\sum_{n=2}^{\infty} a_{(n-2)} x^{(n+r)}+\sum_{n=0}^{\infty} \frac{1}{4} a_{n} x^{(n+r)}=0 . \\
{\left[r(r-1)+\frac{1}{4}\right] a_{0} x^{r}+\left[(r+1) r+\frac{1}{4}\right] a_{1} x^{(r+1)}+} \\
\sum_{n=2}^{\infty}\left[(n+r)(n+r-1) a_{n}+a_{(n-2)}+\frac{1}{4} a_{n}\right] x^{(n+r)}=0 .
\end{gathered}
$$

Regular-singular points (5.5).

Example

Consider the equation $x^{2} y^{\prime \prime}+\left(x^{2}+\frac{1}{4}\right) y=0$. Use a power series centered at the regular-singular point $x_{0}=0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.
Solution: $\left[r(r-1)+\frac{1}{4}\right] a_{0}=0, \quad\left[(r+1) r+\frac{1}{4}\right] a_{1}=0$,

$$
\left[(n+r)(n+r-1)+\frac{1}{4}\right] a_{n}+a_{(n-2)}=0 .
$$

Regular-singular points (5.5).

Example

Consider the equation $x^{2} y^{\prime \prime}+\left(x^{2}+\frac{1}{4}\right) y=0$. Use a power series centered at the regular-singular point $x_{0}=0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.
Solution: $\left[r(r-1)+\frac{1}{4}\right] a_{0}=0, \quad\left[(r+1) r+\frac{1}{4}\right] a_{1}=0$,

$$
\left[(n+r)(n+r-1)+\frac{1}{4}\right] a_{n}+a_{(n-2)}=0 .
$$

The indicial equation $r^{2}-r+\frac{1}{4}=0$ implies $r_{ \pm}=\frac{1}{2}$.

Regular-singular points (5.5).

Example

Consider the equation $x^{2} y^{\prime \prime}+\left(x^{2}+\frac{1}{4}\right) y=0$. Use a power series centered at the regular-singular point $x_{0}=0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.
Solution: $\left[r(r-1)+\frac{1}{4}\right] a_{0}=0, \quad\left[(r+1) r+\frac{1}{4}\right] a_{1}=0$,

$$
\left[(n+r)(n+r-1)+\frac{1}{4}\right] a_{n}+a_{(n-2)}=0 .
$$

The indicial equation $r^{2}-r+\frac{1}{4}=0$ implies $r_{ \pm}=\frac{1}{2}$.
The indicial equation $r^{2}+r+\frac{1}{4}=0$ implies $r_{ \pm}=-\frac{1}{2}$.

Regular-singular points (5.5).

Example

Consider the equation $x^{2} y^{\prime \prime}+\left(x^{2}+\frac{1}{4}\right) y=0$. Use a power series centered at the regular-singular point $x_{0}=0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.
Solution: $\left[r(r-1)+\frac{1}{4}\right] a_{0}=0, \quad\left[(r+1) r+\frac{1}{4}\right] a_{1}=0$,

$$
\left[(n+r)(n+r-1)+\frac{1}{4}\right] a_{n}+a_{(n-2)}=0 .
$$

The indicial equation $r^{2}-r+\frac{1}{4}=0$ implies $r_{ \pm}=\frac{1}{2}$.
The indicial equation $r^{2}+r+\frac{1}{4}=0$ implies $r_{ \pm}=-\frac{1}{2}$.
Choose $r=\frac{1}{2}$.

Regular-singular points (5.5).

Example

Consider the equation $x^{2} y^{\prime \prime}+\left(x^{2}+\frac{1}{4}\right) y=0$. Use a power series centered at the regular-singular point $x_{0}=0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.
Solution: $\left[r(r-1)+\frac{1}{4}\right] a_{0}=0, \quad\left[(r+1) r+\frac{1}{4}\right] a_{1}=0$,

$$
\left[(n+r)(n+r-1)+\frac{1}{4}\right] a_{n}+a_{(n-2)}=0 .
$$

The indicial equation $r^{2}-r+\frac{1}{4}=0$ implies $r_{ \pm}=\frac{1}{2}$.
The indicial equation $r^{2}+r+\frac{1}{4}=0$ implies $r_{ \pm}=-\frac{1}{2}$.
Choose $r=\frac{1}{2}$. That implies a_{0} arbitrary

Regular-singular points (5.5).

Example

Consider the equation $x^{2} y^{\prime \prime}+\left(x^{2}+\frac{1}{4}\right) y=0$. Use a power series centered at the regular-singular point $x_{0}=0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.
Solution: $\left[r(r-1)+\frac{1}{4}\right] a_{0}=0, \quad\left[(r+1) r+\frac{1}{4}\right] a_{1}=0$,

$$
\left[(n+r)(n+r-1)+\frac{1}{4}\right] a_{n}+a_{(n-2)}=0 .
$$

The indicial equation $r^{2}-r+\frac{1}{4}=0$ implies $r_{ \pm}=\frac{1}{2}$.
The indicial equation $r^{2}+r+\frac{1}{4}=0$ implies $r_{ \pm}=-\frac{1}{2}$.
Choose $r=\frac{1}{2}$. That implies a_{0} arbitrary and $a_{1}=0$.

Regular-singular points (5.5).

Example

Consider the equation $x^{2} y^{\prime \prime}+\left(x^{2}+\frac{1}{4}\right) y=0$. Use a power series centered at the regular-singular point $x_{0}=0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.
Solution: $r=\frac{1}{2}, \quad a_{1}=0,\left[(n+r)(n+r-1)+\frac{1}{4}\right] a_{n}=-a_{(n-2)}$.

Regular-singular points (5.5).

Example

Consider the equation $x^{2} y^{\prime \prime}+\left(x^{2}+\frac{1}{4}\right) y=0$. Use a power series centered at the regular-singular point $x_{0}=0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.
Solution: $r=\frac{1}{2}, \quad a_{1}=0,\left[(n+r)(n+r-1)+\frac{1}{4}\right] a_{n}=-a_{(n-2)}$.

$$
\left[\left(n+\frac{1}{2}\right)\left(n-\frac{1}{2}\right)+\frac{1}{4}\right] a_{n}=-a_{(n-2)}
$$

Regular-singular points (5.5).

Example

Consider the equation $x^{2} y^{\prime \prime}+\left(x^{2}+\frac{1}{4}\right) y=0$. Use a power series centered at the regular-singular point $x_{0}=0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.
Solution: $r=\frac{1}{2}, \quad a_{1}=0,\left[(n+r)(n+r-1)+\frac{1}{4}\right] a_{n}=-a_{(n-2)}$.

$$
\left[\left(n+\frac{1}{2}\right)\left(n-\frac{1}{2}\right)+\frac{1}{4}\right] a_{n}=-a_{(n-2)} \Rightarrow\left[n^{2}-\frac{1}{4}+\frac{1}{4}\right] a_{n}=-a_{(n-2)}
$$

Regular-singular points (5.5).

Example

Consider the equation $x^{2} y^{\prime \prime}+\left(x^{2}+\frac{1}{4}\right) y=0$. Use a power series centered at the regular-singular point $x_{0}=0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.
Solution: $r=\frac{1}{2}, \quad a_{1}=0,\left[(n+r)(n+r-1)+\frac{1}{4}\right] a_{n}=-a_{(n-2)}$.

$$
\left[\left(n+\frac{1}{2}\right)\left(n-\frac{1}{2}\right)+\frac{1}{4}\right] a_{n}=-a_{(n-2)} \Rightarrow\left[n^{2}-\frac{1}{4}+\frac{1}{4}\right] a_{n}=-a_{(n-2)}
$$

$$
n^{2} a_{n}=-a_{(n-2)}
$$

Regular-singular points (5.5).

Example

Consider the equation $x^{2} y^{\prime \prime}+\left(x^{2}+\frac{1}{4}\right) y=0$. Use a power series centered at the regular-singular point $x_{0}=0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.
Solution: $r=\frac{1}{2}, \quad a_{1}=0,\left[(n+r)(n+r-1)+\frac{1}{4}\right] a_{n}=-a_{(n-2)}$.

$$
\left[\left(n+\frac{1}{2}\right)\left(n-\frac{1}{2}\right)+\frac{1}{4}\right] a_{n}=-a_{(n-2)} \Rightarrow\left[n^{2}-\frac{1}{4}+\frac{1}{4}\right] a_{n}=-a_{(n-2)}
$$

$$
n^{2} a_{n}=-a_{(n-2)} \Rightarrow a_{n}=-\frac{a_{(n-2)}}{n^{2}}
$$

Regular-singular points (5.5).

Example

Consider the equation $x^{2} y^{\prime \prime}+\left(x^{2}+\frac{1}{4}\right) y=0$. Use a power series centered at the regular-singular point $x_{0}=0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.
Solution: $r=\frac{1}{2}, \quad a_{1}=0,\left[(n+r)(n+r-1)+\frac{1}{4}\right] a_{n}=-a_{(n-2)}$.

$$
\left[\left(n+\frac{1}{2}\right)\left(n-\frac{1}{2}\right)+\frac{1}{4}\right] a_{n}=-a_{(n-2)} \Rightarrow\left[n^{2}-\frac{1}{4}+\frac{1}{4}\right] a_{n}=-a_{(n-2)}
$$

$$
n^{2} a_{n}=-a_{(n-2)} \Rightarrow a_{n}=-\frac{a_{(n-2)}}{n^{2}} \Rightarrow\left\{\begin{array}{l}
a_{2}=-\frac{a_{0}}{4} \\
a_{4}=-\frac{a_{2}}{16}
\end{array}\right.
$$

Regular-singular points (5.5).

Example

Consider the equation $x^{2} y^{\prime \prime}+\left(x^{2}+\frac{1}{4}\right) y=0$. Use a power series centered at the regular-singular point $x_{0}=0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.
Solution: $r=\frac{1}{2}, \quad a_{1}=0,\left[(n+r)(n+r-1)+\frac{1}{4}\right] a_{n}=-a_{(n-2)}$.

$$
\left[\left(n+\frac{1}{2}\right)\left(n-\frac{1}{2}\right)+\frac{1}{4}\right] a_{n}=-a_{(n-2)} \Rightarrow\left[n^{2}-\frac{1}{4}+\frac{1}{4}\right] a_{n}=-a_{(n-2)}
$$

$$
n^{2} a_{n}=-a_{(n-2)} \Rightarrow a_{n}=-\frac{a_{(n-2)}}{n^{2}} \Rightarrow\left\{\begin{array}{l}
a_{2}=-\frac{a_{0}}{4} \\
a_{4}=-\frac{a_{2}}{16}=\frac{a_{0}}{64}
\end{array}\right.
$$

Regular-singular points (5.5).

Example

Consider the equation $x^{2} y^{\prime \prime}+\left(x^{2}+\frac{1}{4}\right) y=0$. Use a power series centered at the regular-singular point $x_{0}=0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.
Solution: $r=\frac{1}{2}, \quad a_{1}=0, \quad a_{2}=-\frac{a_{0}}{4}$, and $a_{4}=\frac{a_{0}}{64}$.

Regular-singular points (5.5).

Example

Consider the equation $x^{2} y^{\prime \prime}+\left(x^{2}+\frac{1}{4}\right) y=0$. Use a power series centered at the regular-singular point $x_{0}=0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.
Solution: $r=\frac{1}{2}, \quad a_{1}=0, \quad a_{2}=-\frac{a_{0}}{4}$, and $a_{4}=\frac{a_{0}}{64}$. Then,

$$
y(x)=x^{r}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\cdots\right)
$$

Regular-singular points (5.5).

Example

Consider the equation $x^{2} y^{\prime \prime}+\left(x^{2}+\frac{1}{4}\right) y=0$. Use a power series centered at the regular-singular point $x_{0}=0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.
Solution: $r=\frac{1}{2}, \quad a_{1}=0, \quad a_{2}=-\frac{a_{0}}{4}$, and $a_{4}=\frac{a_{0}}{64}$. Then,

$$
y(x)=x^{r}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\cdots\right)
$$

Recall: $a_{1}=0$ and the recurrence relation imply $a_{n}=0$ for n odd.

Regular-singular points (5.5).

Example

Consider the equation $x^{2} y^{\prime \prime}+\left(x^{2}+\frac{1}{4}\right) y=0$. Use a power series centered at the regular-singular point $x_{0}=0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.
Solution: $r=\frac{1}{2}, \quad a_{1}=0, \quad a_{2}=-\frac{a_{0}}{4}$, and $a_{4}=\frac{a_{0}}{64}$. Then,

$$
y(x)=x^{r}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\cdots\right)
$$

Recall: $a_{1}=0$ and the recurrence relation imply $a_{n}=0$ for n odd. Therefore,

$$
y(x)=a_{0} x^{1 / 2}\left(1-\frac{1}{4} x^{2}+\frac{1}{64} x^{4}+\cdots\right) .
$$

Review for Exam 2.

- 5 problems.
- No multiple choice questions.
- No notes, no books, no calculators.
- Problems similar to homeworks.
- Exam covers:
- Regular-singular points (5.5).
- Euler differential equation (5.4).
- Power series solutions (5.2).
- Variation of parameters (3.6).
- Undetermined coefficients (3.5)
- Constant coefficients, homogeneous, (3.1)-(3.4).

Euler differential equation (5.4).

Summary:

Euler differential equation (5.4).

Summary:

- $\left(x-x_{0}\right)^{2} y^{\prime \prime}+\left(x-x_{0}\right) p_{0} y^{\prime}+q_{0} y=0$.

Euler differential equation (5.4).

Summary:

- $\left(x-x_{0}\right)^{2} y^{\prime \prime}+\left(x-x_{0}\right) p_{0} y^{\prime}+q_{0} y=0$.
- Find $r_{ \pm}$solutions of $r(r-1)+p_{0} r+q_{0}=0$.

Euler differential equation (5.4).

Summary:

- $\left(x-x_{0}\right)^{2} y^{\prime \prime}+\left(x-x_{0}\right) p_{0} y^{\prime}+q_{0} y=0$.
- Find $r_{ \pm}$solutions of $r(r-1)+p_{0} r+q_{0}=0$.
- If $r_{+} \neq r_{-}$and both are real, then fundamental solutions are

$$
y_{+}=\left|x-x_{0}\right|^{r_{+}}, \quad y_{-}=\left|x-x_{0}\right|^{r_{-}} .
$$

Euler differential equation (5.4).

Summary:

- $\left(x-x_{0}\right)^{2} y^{\prime \prime}+\left(x-x_{0}\right) p_{0} y^{\prime}+q_{0} y=0$.
- Find $r_{ \pm}$solutions of $r(r-1)+p_{0} r+q_{0}=0$.
- If $r_{+} \neq r_{-}$and both are real, then fundamental solutions are

$$
y_{+}=\left|x-x_{0}\right|^{r_{+}}, \quad y_{-}=\left|x-x_{0}\right|^{r_{-}} .
$$

- If $r_{ \pm}=\alpha \pm i \beta$, then real-valued fundamental solutions are

$$
y_{+}=\left|x-x_{0}\right|^{\alpha} \cos \left(\beta \ln \left|x-x_{0}\right|\right), y_{-}=\left|x-x_{0}\right|^{\alpha} \sin \left(\beta \ln \left|x-x_{0}\right|\right) .
$$

Euler differential equation (5.4).

Summary:

- $\left(x-x_{0}\right)^{2} y^{\prime \prime}+\left(x-x_{0}\right) p_{0} y^{\prime}+q_{0} y=0$.
- Find $r_{ \pm}$solutions of $r(r-1)+p_{0} r+q_{0}=0$.
- If $r_{+} \neq r_{-}$and both are real, then fundamental solutions are

$$
y_{+}=\left|x-x_{0}\right|^{r_{+}}, \quad y_{-}=\left|x-x_{0}\right|^{r_{-}} .
$$

- If $r_{ \pm}=\alpha \pm i \beta$, then real-valued fundamental solutions are

$$
y_{+}=\left|x-x_{0}\right|^{\alpha} \cos \left(\beta \ln \left|x-x_{0}\right|\right), y_{-}=\left|x-x_{0}\right|^{\alpha} \sin \left(\beta \ln \left|x-x_{0}\right|\right) .
$$

- If $r_{+}=r_{-}$and both are real, then fundamental solutions are

$$
y_{+}=\left|x-x_{0}\right|^{r_{+}}, \quad y_{-}=\left|x-x_{0}\right|^{r_{+}} \ln \left|x-x_{0}\right| .
$$

Euler differential equation (5.4).

Example

Find real-valued fundamental solutions of

$$
(x-2)^{2} y^{\prime \prime}+5(x-2) y^{\prime}+8 y=0
$$

Euler differential equation (5.4).

Example

Find real-valued fundamental solutions of

$$
(x-2)^{2} y^{\prime \prime}+5(x-2) y^{\prime}+8 y=0
$$

Solution: This is an Euler equation.

Euler differential equation (5.4).

Example

Find real-valued fundamental solutions of

$$
(x-2)^{2} y^{\prime \prime}+5(x-2) y^{\prime}+8 y=0
$$

Solution: This is an Euler equation. Find r solution of $r(r-1)+5 r+8=0$,

Euler differential equation (5.4).

Example

Find real-valued fundamental solutions of

$$
(x-2)^{2} y^{\prime \prime}+5(x-2) y^{\prime}+8 y=0
$$

Solution: This is an Euler equation. Find r solution of $r(r-1)+5 r+8=0$, that is, $r^{2}+4 r+8=0$,

Euler differential equation (5.4).

Example

Find real-valued fundamental solutions of

$$
(x-2)^{2} y^{\prime \prime}+5(x-2) y^{\prime}+8 y=0 .
$$

Solution: This is an Euler equation. Find r solution of $r(r-1)+5 r+8=0$, that is, $r^{2}+4 r+8=0$,

$$
r_{ \pm}=\frac{1}{2}[-4 \pm \sqrt{16-32}]
$$

Euler differential equation (5.4).

Example

Find real-valued fundamental solutions of

$$
(x-2)^{2} y^{\prime \prime}+5(x-2) y^{\prime}+8 y=0 .
$$

Solution: This is an Euler equation. Find r solution of $r(r-1)+5 r+8=0$, that is, $r^{2}+4 r+8=0$,

$$
r_{ \pm}=\frac{1}{2}[-4 \pm \sqrt{16-32}] \quad \Rightarrow \quad r_{ \pm}=-2 \pm 2 i .
$$

Euler differential equation (5.4).

Example

Find real-valued fundamental solutions of

$$
(x-2)^{2} y^{\prime \prime}+5(x-2) y^{\prime}+8 y=0 .
$$

Solution: This is an Euler equation. Find r solution of $r(r-1)+5 r+8=0$, that is, $r^{2}+4 r+8=0$,

$$
r_{ \pm}=\frac{1}{2}[-4 \pm \sqrt{16-32}] \quad \Rightarrow \quad r_{ \pm}=-2 \pm 2 i .
$$

Real valued fundamental solutions are

$$
\begin{aligned}
& y_{+}(x)=|x-2|^{-2} \cos (2 \ln |x-2|), \\
& y_{-}(x)=|x-2|^{-2} \sin (2 \ln |x-2|) .
\end{aligned}
$$

Review for Exam 2.

- 5 problems.
- No multiple choice questions.
- No notes, no books, no calculators.
- Problems similar to homeworks.
- Exam covers:
- Regular-singular points (5.5).
- Euler differential equation (5.4).
- Power series solutions (5.2).
- Variation of parameters (3.6).
- Undetermined coefficients (3.5)
- Constant coefficients, homogeneous, (3.1)-(3.4).

Power series solutions (5.2).

Example

Using a power series centered at $x_{0}=0$ find the three first terms of the general solution of $\left(4-x^{2}\right) y^{\prime \prime}+2 y=0$.

Power series solutions (5.2).

Example

Using a power series centered at $x_{0}=0$ find the three first terms of the general solution of $\left(4-x^{2}\right) y^{\prime \prime}+2 y=0$.

Solution: We look for solutions $y=\sum_{n=0}^{\infty} a_{n} x^{n}$.

Power series solutions (5.2).

Example

Using a power series centered at $x_{0}=0$ find the three first terms of the general solution of $\left(4-x^{2}\right) y^{\prime \prime}+2 y=0$.

Solution: We look for solutions $y=\sum_{n=0}^{\infty} a_{n} x^{n}$. Therefore,

$$
y^{\prime \prime}=\sum_{n=0}^{\infty} n(n-1) a_{n} x^{(n-2)}
$$

Power series solutions (5.2).

Example

Using a power series centered at $x_{0}=0$ find the three first terms of the general solution of $\left(4-x^{2}\right) y^{\prime \prime}+2 y=0$.
Solution: We look for solutions $y=\sum_{n=0}^{\infty} a_{n} x^{n}$. Therefore,

$$
y^{\prime \prime}=\sum_{n=0}^{\infty} n(n-1) a_{n} x^{(n-2)}
$$

The differential equation is then given by

$$
\left(4-x^{2}\right) \sum_{n=0}^{\infty} n(n-1) a_{n} x^{(n-2)}+2 \sum_{n=0}^{\infty} a_{n} x^{n}=0,
$$

Power series solutions (5.2).

Example

Using a power series centered at $x_{0}=0$ find the three first terms of the general solution of $\left(4-x^{2}\right) y^{\prime \prime}+2 y=0$.
Solution: We look for solutions $y=\sum_{n=0}^{\infty} a_{n} x^{n}$. Therefore,

$$
y^{\prime \prime}=\sum_{n=0}^{\infty} n(n-1) a_{n} x^{(n-2)}
$$

The differential equation is then given by

$$
\begin{gathered}
\left(4-x^{2}\right) \sum_{n=0}^{\infty} n(n-1) a_{n} x^{(n-2)}+2 \sum_{n=0}^{\infty} a_{n} x^{n}=0, \\
\sum_{n=0}^{\infty} 4 n(n-1) a_{n} x^{(n-2)}-\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n}+\sum_{n=0}^{\infty} 2 a_{n} x^{n}=0 .
\end{gathered}
$$

Power series solutions (5.2).

Example

Using a power series centered at $x_{0}=0$ find the three first terms of the general solution of $\left(4-x^{2}\right) y^{\prime \prime}+2 y=0$.

Solution:

$$
\sum_{n=2}^{\infty} 4 n(n-1) a_{n} x^{(n-2)}-\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n}+\sum_{n=0}^{\infty} 2 a_{n} x^{n}=0
$$

Power series solutions (5.2).

Example

Using a power series centered at $x_{0}=0$ find the three first terms of the general solution of $\left(4-x^{2}\right) y^{\prime \prime}+2 y=0$.

Solution:
$\sum_{n=2}^{\infty} 4 n(n-1) a_{n} x^{(n-2)}-\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n}+\sum_{n=0}^{\infty} 2 a_{n} x^{n}=0$.
Re-label the first sum, $m=n-2$ and then switch back to n

Power series solutions (5.2).

Example

Using a power series centered at $x_{0}=0$ find the three first terms of the general solution of $\left(4-x^{2}\right) y^{\prime \prime}+2 y=0$.

Solution:

$$
\sum_{n=2}^{\infty} 4 n(n-1) a_{n} x^{(n-2)}-\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n}+\sum_{n=0}^{\infty} 2 a_{n} x^{n}=0 .
$$

Re-label the first sum, $m=n-2$ and then switch back to n

$$
\sum_{n=0}^{\infty} 4(n+2)(n+1) a_{n+2} x^{n}-\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n}+\sum_{n=0}^{\infty} 2 a_{n} x^{n}=0
$$

Power series solutions (5.2).

Example

Using a power series centered at $x_{0}=0$ find the three first terms of the general solution of $\left(4-x^{2}\right) y^{\prime \prime}+2 y=0$.

Solution:

$$
\sum_{n=2}^{\infty} 4 n(n-1) a_{n} x^{(n-2)}-\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n}+\sum_{n=0}^{\infty} 2 a_{n} x^{n}=0
$$

Re-label the first sum, $m=n-2$ and then switch back to n

$$
\begin{gathered}
\sum_{n=0}^{\infty} 4(n+2)(n+1) a_{n+2} x^{n}-\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n}+\sum_{n=0}^{\infty} 2 a_{n} x^{n}=0 \\
\sum_{n=0}^{\infty}\left[4(n+2)(n+1) a_{n+2}-n(n-1) a_{n}+2 a_{n}\right] x^{n}=0
\end{gathered}
$$

Power series solutions (5.2).

Example

Using a power series centered at $x_{0}=0$ find the three first terms of the general solution of $\left(4-x^{2}\right) y^{\prime \prime}+2 y=0$.

Solution:

$$
\sum_{n=2}^{\infty} 4 n(n-1) a_{n} x^{(n-2)}-\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n}+\sum_{n=0}^{\infty} 2 a_{n} x^{n}=0
$$

Re-label the first sum, $m=n-2$ and then switch back to n

$$
\begin{gathered}
\sum_{n=0}^{\infty} 4(n+2)(n+1) a_{n+2} x^{n}-\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n}+\sum_{n=0}^{\infty} 2 a_{n} x^{n}=0 \\
\sum_{n=0}^{\infty}\left[4(n+2)(n+1) a_{n+2}-n(n-1) a_{n}+2 a_{n}\right] x^{n}=0 \\
4(n+2)(n+1) a_{n+2}+\left(-n^{2}+n+2\right) a_{n}=0
\end{gathered}
$$

Power series solutions (5.2).

Example

Using a power series centered at $x_{0}=0$ find the three first terms of the general solution of $\left(4-x^{2}\right) y^{\prime \prime}+2 y=0$.

Solution: $4(n+2)(n+1) a_{n+2}+\left(-n^{2}+n+2\right) a_{n}=0$.

Power series solutions (5.2).

Example

Using a power series centered at $x_{0}=0$ find the three first terms of the general solution of $\left(4-x^{2}\right) y^{\prime \prime}+2 y=0$.

Solution: $4(n+2)(n+1) a_{n+2}+\left(-n^{2}+n+2\right) a_{n}=0$.
Notice: $-n^{2}+n+2=-(n-2)(n+1)$,

Power series solutions (5.2).

Example

Using a power series centered at $x_{0}=0$ find the three first terms of the general solution of $\left(4-x^{2}\right) y^{\prime \prime}+2 y=0$.

Solution: $4(n+2)(n+1) a_{n+2}+\left(-n^{2}+n+2\right) a_{n}=0$.
Notice: $-n^{2}+n+2=-(n-2)(n+1)$, hence
$4(n+2)(n+1) a_{n+2}-(n-2)(n+1) a_{n}=0$

Power series solutions (5.2).

Example

Using a power series centered at $x_{0}=0$ find the three first terms of the general solution of $\left(4-x^{2}\right) y^{\prime \prime}+2 y=0$.

Solution: $4(n+2)(n+1) a_{n+2}+\left(-n^{2}+n+2\right) a_{n}=0$.
Notice: $-n^{2}+n+2=-(n-2)(n+1)$, hence
$4(n+2)(n+1) a_{n+2}-(n-2)(n+1) a_{n}=0 \quad \Rightarrow \quad a_{n+2}=\frac{(n-2) a_{n}}{4(n+2)}$.

Power series solutions (5.2).

Example

Using a power series centered at $x_{0}=0$ find the three first terms of the general solution of $\left(4-x^{2}\right) y^{\prime \prime}+2 y=0$.

Solution: $4(n+2)(n+1) a_{n+2}+\left(-n^{2}+n+2\right) a_{n}=0$.
Notice: $-n^{2}+n+2=-(n-2)(n+1)$, hence
$4(n+2)(n+1) a_{n+2}-(n-2)(n+1) a_{n}=0 \quad \Rightarrow \quad a_{n+2}=\frac{(n-2) a_{n}}{4(n+2)}$.
For n even the power series terminates at $n=2$,

Power series solutions (5.2).

Example

Using a power series centered at $x_{0}=0$ find the three first terms of the general solution of $\left(4-x^{2}\right) y^{\prime \prime}+2 y=0$.

Solution: $4(n+2)(n+1) a_{n+2}+\left(-n^{2}+n+2\right) a_{n}=0$.
Notice: $-n^{2}+n+2=-(n-2)(n+1)$, hence
$4(n+2)(n+1) a_{n+2}-(n-2)(n+1) a_{n}=0 \quad \Rightarrow \quad a_{n+2}=\frac{(n-2) a_{n}}{4(n+2)}$.
For n even the power series terminates at $n=2$, since

$$
a_{2}=\frac{-2 a_{0}}{8}
$$

Power series solutions (5.2).

Example

Using a power series centered at $x_{0}=0$ find the three first terms of the general solution of $\left(4-x^{2}\right) y^{\prime \prime}+2 y=0$.

Solution: $4(n+2)(n+1) a_{n+2}+\left(-n^{2}+n+2\right) a_{n}=0$.
Notice: $-n^{2}+n+2=-(n-2)(n+1)$, hence
$4(n+2)(n+1) a_{n+2}-(n-2)(n+1) a_{n}=0 \quad \Rightarrow \quad a_{n+2}=\frac{(n-2) a_{n}}{4(n+2)}$.
For n even the power series terminates at $n=2$, since

$$
a_{2}=\frac{-2 a_{0}}{8}, \quad a_{4}=0
$$

Power series solutions (5.2).

Example

Using a power series centered at $x_{0}=0$ find the three first terms of the general solution of $\left(4-x^{2}\right) y^{\prime \prime}+2 y=0$.

Solution: $4(n+2)(n+1) a_{n+2}+\left(-n^{2}+n+2\right) a_{n}=0$.
Notice: $-n^{2}+n+2=-(n-2)(n+1)$, hence
$4(n+2)(n+1) a_{n+2}-(n-2)(n+1) a_{n}=0 \quad \Rightarrow \quad a_{n+2}=\frac{(n-2) a_{n}}{4(n+2)}$.
For n even the power series terminates at $n=2$, since

$$
a_{2}=\frac{-2 a_{0}}{8}, \quad a_{4}=0, \quad a_{6}=0, \cdots
$$

Power series solutions (5.2).

Example

Using a power series centered at $x_{0}=0$ find the three first terms of the general solution of $\left(4-x^{2}\right) y^{\prime \prime}+2 y=0$.

Solution: $4(n+2)(n+1) a_{n+2}+\left(-n^{2}+n+2\right) a_{n}=0$.
Notice: $-n^{2}+n+2=-(n-2)(n+1)$, hence
$4(n+2)(n+1) a_{n+2}-(n-2)(n+1) a_{n}=0 \quad \Rightarrow \quad a_{n+2}=\frac{(n-2) a_{n}}{4(n+2)}$.
For n even the power series terminates at $n=2$, since

$$
a_{2}=\frac{-2 a_{0}}{8}, \quad a_{4}=0, \quad a_{6}=0, \cdots
$$

For n odd: $a_{3}=\frac{-a_{1}}{12}$,

Power series solutions (5.2).

Example

Using a power series centered at $x_{0}=0$ find the three first terms of the general solution of $\left(4-x^{2}\right) y^{\prime \prime}+2 y=0$.

Solution: $4(n+2)(n+1) a_{n+2}+\left(-n^{2}+n+2\right) a_{n}=0$.
Notice: $-n^{2}+n+2=-(n-2)(n+1)$, hence
$4(n+2)(n+1) a_{n+2}-(n-2)(n+1) a_{n}=0 \quad \Rightarrow \quad a_{n+2}=\frac{(n-2) a_{n}}{4(n+2)}$.
For n even the power series terminates at $n=2$, since

$$
a_{2}=\frac{-2 a_{0}}{8}, \quad a_{4}=0, \quad a_{6}=0, \cdots
$$

For n odd: $a_{3}=\frac{-a_{1}}{12}, \quad a_{5}=\frac{a_{3}}{20}$

Power series solutions (5.2).

Example

Using a power series centered at $x_{0}=0$ find the three first terms of the general solution of $\left(4-x^{2}\right) y^{\prime \prime}+2 y=0$.

Solution: $4(n+2)(n+1) a_{n+2}+\left(-n^{2}+n+2\right) a_{n}=0$.
Notice: $-n^{2}+n+2=-(n-2)(n+1)$, hence
$4(n+2)(n+1) a_{n+2}-(n-2)(n+1) a_{n}=0 \quad \Rightarrow \quad a_{n+2}=\frac{(n-2) a_{n}}{4(n+2)}$.
For n even the power series terminates at $n=2$, since

$$
a_{2}=\frac{-2 a_{0}}{8}, \quad a_{4}=0, \quad a_{6}=0, \cdots
$$

For n odd: $a_{3}=\frac{-a_{1}}{12}, \quad a_{5}=\frac{a_{3}}{20}=-\frac{a_{1}}{(12)(20)}, \cdots$

Power series solutions (5.2).

Example
Using a power series centered at $x_{0}=0$ find the three first terms of the general solution of $\left(4-x^{2}\right) y^{\prime \prime}+2 y=0$.

Solution: $4(n+2)(n+1) a_{n+2}+\left(-n^{2}+n+2\right) a_{n}=0$.
Notice: $-n^{2}+n+2=-(n-2)(n+1)$, hence
$4(n+2)(n+1) a_{n+2}-(n-2)(n+1) a_{n}=0 \quad \Rightarrow \quad a_{n+2}=\frac{(n-2) a_{n}}{4(n+2)}$.
For n even the power series terminates at $n=2$, since

$$
a_{2}=\frac{-2 a_{0}}{8}, \quad a_{4}=0, \quad a_{6}=0, \cdots
$$

For n odd: $a_{3}=\frac{-a_{1}}{12}, \quad a_{5}=\frac{a_{3}}{20}=-\frac{a_{1}}{(12)(20)}, \cdots$

$$
y=a_{0}\left[1-\frac{1}{4} x^{2}\right]+a_{1}\left[x-\frac{1}{12} x^{3}-\frac{1}{(12)(20)} x^{5}+\cdots\right]
$$

Review for Exam 2.

- 5 problems.
- No multiple choice questions.
- No notes, no books, no calculators.
- Problems similar to homeworks.
- Exam covers:
- Regular-singular points (5.5).
- Euler differential equation (5.4).
- Power series solutions (5.2).
- Variation of parameters (3.6).
- Undetermined coefficients (3.5)
- Constant coefficients, homogeneous, (3.1)-(3.4).

Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: We find the solutions of the homogeneous equation,

Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: We find the solutions of the homogeneous equation,

$$
r^{2}+4 r+4=0
$$

Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x} .
$$

Solution: We find the solutions of the homogeneous equation,

$$
r^{2}+4 r+4=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}[-4 \pm \sqrt{16-16}]
$$

Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x} .
$$

Solution: We find the solutions of the homogeneous equation,

$$
r^{2}+4 r+4=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}[-4 \pm \sqrt{16-16}] \quad \Rightarrow \quad r_{ \pm}=-2
$$

Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x} .
$$

Solution: We find the solutions of the homogeneous equation,
$r^{2}+4 r+4=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}[-4 \pm \sqrt{16-16}] \quad \Rightarrow \quad r_{ \pm}=-2$.
Fundamental solutions of the homogeneous equations are

$$
y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x} .
$$

Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x} .
$$

Solution: We find the solutions of the homogeneous equation,

$$
r^{2}+4 r+4=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}[-4 \pm \sqrt{16-16}] \quad \Rightarrow \quad r_{ \pm}=-2
$$

Fundamental solutions of the homogeneous equations are

$$
y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x} .
$$

We now compute their Wronskian,

$$
W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|
$$

Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x} .
$$

Solution: We find the solutions of the homogeneous equation,

$$
r^{2}+4 r+4=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}[-4 \pm \sqrt{16-16}] \quad \Rightarrow \quad r_{ \pm}=-2
$$

Fundamental solutions of the homogeneous equations are

$$
y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}
$$

We now compute their Wronskian,

$$
W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
e^{-2 x} & x e^{-2 x} \\
-2 e^{-2 x} & (1-2 x) e^{-2 x}
\end{array}\right|
$$

Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x} .
$$

Solution: We find the solutions of the homogeneous equation,

$$
r^{2}+4 r+4=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}[-4 \pm \sqrt{16-16}] \quad \Rightarrow \quad r_{ \pm}=-2
$$

Fundamental solutions of the homogeneous equations are

$$
y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x} .
$$

We now compute their Wronskian,

$$
W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
e^{-2 x} & x e^{-2 x} \\
-2 e^{-2 x} & (1-2 x) e^{-2 x}
\end{array}\right|=(1-2 x) e^{-4 x}+2 x e^{-4 x} .
$$

Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x} .
$$

Solution: We find the solutions of the homogeneous equation,

$$
r^{2}+4 r+4=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}[-4 \pm \sqrt{16-16}] \quad \Rightarrow \quad r_{ \pm}=-2
$$

Fundamental solutions of the homogeneous equations are

$$
y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x} .
$$

We now compute their Wronskian,

$$
W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
e^{-2 x} & x e^{-2 x} \\
-2 e^{-2 x} & (1-2 x) e^{-2 x}
\end{array}\right|=(1-2 x) e^{-4 x}+2 x e^{-4 x} .
$$

Hence $W=e^{-4 x}$.

Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.

Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
u_{1}^{\prime}=-\frac{y_{2} g}{W}
$$

Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x} .
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
u_{1}^{\prime}=-\frac{y_{2} g}{W}=-\frac{x e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}
$$

Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
u_{1}^{\prime}=-\frac{y_{2} g}{W}=-\frac{x e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=-\frac{1}{x}
$$

Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
u_{1}^{\prime}=-\frac{y_{2} g}{W}=-\frac{x e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=-\frac{1}{x} \quad \Rightarrow \quad u_{1}=-\ln |x| .
$$

Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
\begin{aligned}
& u_{1}^{\prime}=-\frac{y_{2} g}{W}=-\frac{x e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=-\frac{1}{x} \Rightarrow u_{1}=-\ln |x| . \\
& u_{2}^{\prime}=\frac{y_{1} g}{W}
\end{aligned}
$$

Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{y_{2} g}{W}=-\frac{x e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=-\frac{1}{x} \Rightarrow u_{1}=-\ln |x| . \\
u_{2}^{\prime}=\frac{y_{1} g}{W}=\frac{e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}
\end{gathered}
$$

Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{y_{2} g}{W}=-\frac{x e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=-\frac{1}{x} \Rightarrow u_{1}=-\ln |x| . \\
u_{2}^{\prime}=\frac{y_{1} g}{W}=\frac{e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=x^{-2}
\end{gathered}
$$

Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{y_{2} g}{W}=-\frac{x e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=-\frac{1}{x} \quad \Rightarrow \quad u_{1}=-\ln |x| . \\
u_{2}^{\prime}=\frac{y_{1} g}{W}=\frac{e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=x^{-2} \quad \Rightarrow \quad u_{2}=-\frac{1}{x} .
\end{gathered}
$$

Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x} .
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{y_{2} g}{W}=-\frac{x e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=-\frac{1}{x} \quad \Rightarrow \quad u_{1}=-\ln |x| . \\
u_{2}^{\prime}=\frac{y_{1} g}{W}=\frac{e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=x^{-2} \quad \Rightarrow \quad u_{2}=-\frac{1}{x} .
\end{gathered}
$$

$$
y_{p}=u_{1} y_{1}+u_{2} y_{2}
$$

Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x} .
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{y_{2} g}{W}=-\frac{x e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=-\frac{1}{x} \quad \Rightarrow \quad u_{1}=-\ln |x| . \\
u_{2}^{\prime}=\frac{y_{1} g}{W}=\frac{e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=x^{-2} \quad \Rightarrow \quad u_{2}=-\frac{1}{x} . \\
y_{p}=u_{1} y_{1}+u_{2} y_{2}=-\ln |x| e^{-2 x}-\frac{1}{x} x e^{-2 x}
\end{gathered}
$$

Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x} .
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{y_{2} g}{W}=-\frac{x e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=-\frac{1}{x} \quad \Rightarrow \quad u_{1}=-\ln |x| \\
u_{2}^{\prime}=\frac{y_{1} g}{W}=\frac{e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=x^{-2} \Rightarrow u_{2}=-\frac{1}{x} \\
y_{p}=u_{1} y_{1}+u_{2} y_{2}=-\ln |x| e^{-2 x}-\frac{1}{x} x e^{-2 x}=-(1+\ln |x|) e^{-2 x} .
\end{gathered}
$$

Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{y_{2} g}{W}=-\frac{x e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=-\frac{1}{x} \Rightarrow u_{1}=-\ln |x| \\
u_{2}^{\prime}=\frac{y_{1} g}{W}=\frac{e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=x^{-2} \Rightarrow u_{2}=-\frac{1}{x} \\
y_{p}=u_{1} y_{1}+u_{2} y_{2}=-\ln |x| e^{-2 x}-\frac{1}{x} x e^{-2 x}=-(1+\ln |x|) e^{-2 x} .
\end{gathered}
$$

Since $\tilde{y}_{p}=-\ln |x| e^{-2 x}$ is solution,

Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{y_{2} g}{W}=-\frac{x e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=-\frac{1}{x} \Rightarrow u_{1}=-\ln |x| \\
u_{2}^{\prime}=\frac{y_{1} g}{W}=\frac{e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=x^{-2} \Rightarrow u_{2}=-\frac{1}{x} \\
y_{p}=u_{1} y_{1}+u_{2} y_{2}=-\ln |x| e^{-2 x}-\frac{1}{x} x e^{-2 x}=-(1+\ln |x|) e^{-2 x}
\end{gathered}
$$

Since $\tilde{y}_{p}=-\ln |x| e^{-2 x}$ is solution, $y=\left(c_{1}+c_{2} x-\ln |x|\right) e^{-2 x} . \triangleleft$

Review for Exam 2.

- 5 problems.
- No multiple choice questions.
- No notes, no books, no calculators.
- Problems similar to homeworks.
- Exam covers:
- Regular-singular points (5.5).
- Euler differential equation (5.4).
- Power series solutions (5.2).
- Variation of parameters (3.6).
- Undetermined coefficients (3.5)
- Constant coefficients, homogeneous, (3.1)-(3.4).

Undetermined coefficients (3.5)

Example
Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)
$$

Undetermined coefficients (3.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)
$$

Solution: Find the solutions of the homogeneous problem,

Undetermined coefficients (3.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)
$$

Solution: Find the solutions of the homogeneous problem,

$$
r^{2}+4=0
$$

Undetermined coefficients (3.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)
$$

Solution: Find the solutions of the homogeneous problem,

$$
r^{2}+4=0 \quad \Rightarrow \quad r_{ \pm}= \pm 2 i
$$

Undetermined coefficients (3.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)
$$

Solution: Find the solutions of the homogeneous problem,

$$
\begin{aligned}
& r^{2}+4=0 \quad \Rightarrow \quad r_{ \pm}= \pm 2 i \\
& y_{1}=\cos (2 x), \quad y_{2}=\sin (2 x)
\end{aligned}
$$

Undetermined coefficients (3.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)
$$

Solution: Find the solutions of the homogeneous problem,

$$
\begin{aligned}
& r^{2}+4=0 \quad \Rightarrow \quad r_{ \pm}= \pm 2 i \\
& y_{1}=\cos (2 x), \quad y_{2}=\sin (2 x)
\end{aligned}
$$

The function $\tilde{y}_{p}=k_{1} \sin (2 x)+k_{2} \cos (2 x)$ is the wrong guess,

Undetermined coefficients (3.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)
$$

Solution: Find the solutions of the homogeneous problem,

$$
\begin{aligned}
& r^{2}+4=0 \quad \Rightarrow \quad r_{ \pm}= \pm 2 i \\
& y_{1}=\cos (2 x), \quad y_{2}=\sin (2 x)
\end{aligned}
$$

The function $\tilde{y}_{p}=k_{1} \sin (2 x)+k_{2} \cos (2 x)$ is the wrong guess, since it is solution of the homogeneous equation.

Undetermined coefficients (3.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)
$$

Solution: Find the solutions of the homogeneous problem,

$$
\begin{aligned}
& r^{2}+4=0 \quad \Rightarrow \quad r_{ \pm}= \pm 2 i \\
& y_{1}=\cos (2 x), \quad y_{2}=\sin (2 x)
\end{aligned}
$$

The function $\tilde{y}_{p}=k_{1} \sin (2 x)+k_{2} \cos (2 x)$ is the wrong guess, since it is solution of the homogeneous equation. We guess:

$$
y_{p}=x\left[k_{1} \sin (2 x)+k_{2} \cos (2 x)\right] .
$$

Undetermined coefficients (3.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)
$$

Solution: Find the solutions of the homogeneous problem,

$$
\begin{aligned}
& r^{2}+4=0 \quad \Rightarrow \quad r_{ \pm}= \pm 2 i \\
& y_{1}=\cos (2 x), \quad y_{2}=\sin (2 x)
\end{aligned}
$$

The function $\tilde{y}_{p}=k_{1} \sin (2 x)+k_{2} \cos (2 x)$ is the wrong guess, since it is solution of the homogeneous equation. We guess:

$$
y_{p}=x\left[k_{1} \sin (2 x)+k_{2} \cos (2 x)\right] .
$$

$$
y_{p}^{\prime}=\left[k_{1} \sin (2 x)+k_{2} \cos (2 x)\right]+2 x\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right] .
$$

Undetermined coefficients (3.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)
$$

Solution: Find the solutions of the homogeneous problem,

$$
\begin{aligned}
& r^{2}+4=0 \quad \Rightarrow \quad r_{ \pm}= \pm 2 i \\
& y_{1}=\cos (2 x), \quad y_{2}=\sin (2 x)
\end{aligned}
$$

The function $\tilde{y}_{p}=k_{1} \sin (2 x)+k_{2} \cos (2 x)$ is the wrong guess, since it is solution of the homogeneous equation. We guess:

$$
\begin{gathered}
y_{p}=x\left[k_{1} \sin (2 x)+k_{2} \cos (2 x)\right] . \\
y_{p}^{\prime}=\left[k_{1} \sin (2 x)+k_{2} \cos (2 x)\right]+2 x\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right] . \\
y_{p}^{\prime \prime}=4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]+4 x\left[-k_{1} \sin (2 x)-k_{2} \cos (2 x)\right] .
\end{gathered}
$$

Undetermined coefficients (3.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)
$$

Solution: Recall: $y_{1}=\sin (2 x)$, and $y_{2}=\cos (2 x)$.

Undetermined coefficients (3.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)
$$

Solution: Recall: $y_{1}=\sin (2 x)$, and $y_{2}=\cos (2 x)$.

$$
\begin{gathered}
4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]+4 x\left[-k_{1} \sin (2 x)-k_{2} \cos (2 x)\right]+ \\
4 x\left[k_{1} \sin (2 x)+k_{2} \cos (2 x)\right]=3 \sin (2 x),
\end{gathered}
$$

Undetermined coefficients (3.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)
$$

Solution: Recall: $y_{1}=\sin (2 x)$, and $y_{2}=\cos (2 x)$.

$$
\begin{gathered}
4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]+4 x\left[-k_{1} \sin (2 x)-k_{2} \cos (2 x)\right]+ \\
4 x\left[k_{1} \sin (2 x)+k_{2} \cos (2 x)\right]=3 \sin (2 x),
\end{gathered}
$$

Therefore, $4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]=3 \sin (2 x)$.

Undetermined coefficients (3.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)
$$

Solution: Recall: $y_{1}=\sin (2 x)$, and $y_{2}=\cos (2 x)$.

$$
\begin{gathered}
4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]+4 x\left[-k_{1} \sin (2 x)-k_{2} \cos (2 x)\right]+ \\
4 x\left[k_{1} \sin (2 x)+k_{2} \cos (2 x)\right]=3 \sin (2 x),
\end{gathered}
$$

Therefore, $4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]=3 \sin (2 x)$.
Evaluating at $x=0$ and $x=\pi / 4$

Undetermined coefficients (3.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)
$$

Solution: Recall: $y_{1}=\sin (2 x)$, and $y_{2}=\cos (2 x)$.

$$
\begin{gathered}
4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]+4 x\left[-k_{1} \sin (2 x)-k_{2} \cos (2 x)\right]+ \\
4 x\left[k_{1} \sin (2 x)+k_{2} \cos (2 x)\right]=3 \sin (2 x),
\end{gathered}
$$

Therefore, $4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]=3 \sin (2 x)$.
Evaluating at $x=0$ and $x=\pi / 4$ we get

$$
4 k_{1}=0, \quad-4 k_{2}=3
$$

Undetermined coefficients (3.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)
$$

Solution: Recall: $y_{1}=\sin (2 x)$, and $y_{2}=\cos (2 x)$.

$$
\begin{gathered}
4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]+4 x\left[-k_{1} \sin (2 x)-k_{2} \cos (2 x)\right]+ \\
4 x\left[k_{1} \sin (2 x)+k_{2} \cos (2 x)\right]=3 \sin (2 x),
\end{gathered}
$$

Therefore, $4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]=3 \sin (2 x)$.
Evaluating at $x=0$ and $x=\pi / 4$ we get

$$
4 k_{1}=0, \quad-4 k_{2}=3 \quad \Rightarrow \quad k_{1}=0, \quad k_{2}=-\frac{3}{4} .
$$

Undetermined coefficients (3.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)
$$

Solution: Recall: $y_{1}=\sin (2 x)$, and $y_{2}=\cos (2 x)$.

$$
\begin{gathered}
4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]+4 x\left[-k_{1} \sin (2 x)-k_{2} \cos (2 x)\right]+ \\
4 x\left[k_{1} \sin (2 x)+k_{2} \cos (2 x)\right]=3 \sin (2 x),
\end{gathered}
$$

Therefore, $4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]=3 \sin (2 x)$.
Evaluating at $x=0$ and $x=\pi / 4$ we get

$$
4 k_{1}=0, \quad-4 k_{2}=3 \Rightarrow k_{1}=0, \quad k_{2}=-\frac{3}{4}
$$

Therefore, $y_{p}=-\frac{3}{4} x \cos (2 x)$.

Undetermined coefficients (3.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)
$$

Solution: Recall: $y_{1}=\sin (2 x)$, and $y_{2}=\cos (2 x)$.

$$
\begin{gathered}
4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]+4 x\left[-k_{1} \sin (2 x)-k_{2} \cos (2 x)\right]+ \\
4 x\left[k_{1} \sin (2 x)+k_{2} \cos (2 x)\right]=3 \sin (2 x),
\end{gathered}
$$

Therefore, $4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]=3 \sin (2 x)$.
Evaluating at $x=0$ and $x=\pi / 4$ we get

$$
4 k_{1}=0, \quad-4 k_{2}=3 \quad \Rightarrow \quad k_{1}=0, \quad k_{2}=-\frac{3}{4} .
$$

Therefore, $y_{p}=-\frac{3}{4} x \cos (2 x)$. The general solution is

$$
y(x)=c_{1} \sin (2 x)+\left(c_{2}-\frac{3}{4} x\right) \cos (2 x) .
$$

The Laplace Transform of step functions (Sect. 6.3).

- Overview and notation.
- The definition of a step function.
- Piecewise discontinuous functions.
- The Laplace Transform of discontinuous functions.
- Properties of the Laplace Transform.

Overview and notation.

Overview: The Laplace Transform method can be used to solve constant coefficients differential equations with discontinuous source functions.

Overview and notation.

Overview: The Laplace Transform method can be used to solve constant coefficients differential equations with discontinuous source functions.

Notation:
If $\mathcal{L}[f(t)]=F(s)$, then we denote $\mathcal{L}^{-1}[F(s)]=f(t)$.

Overview and notation.

Overview: The Laplace Transform method can be used to solve constant coefficients differential equations with discontinuous source functions.

Notation:
If $\mathcal{L}[f(t)]=F(s)$, then we denote $\mathcal{L}^{-1}[F(s)]=f(t)$.
Remark: One can show that for a particular type of functions f, that includes all functions we work with in this Section, the notation above is well-defined.

Overview and notation.

Overview: The Laplace Transform method can be used to solve constant coefficients differential equations with discontinuous source functions.

Notation:
If $\mathcal{L}[f(t)]=F(s)$, then we denote $\mathcal{L}^{-1}[F(s)]=f(t)$.
Remark: One can show that for a particular type of functions f, that includes all functions we work with in this Section, the notation above is well-defined.

Example

From the Laplace Transform table we know that $\mathcal{L}\left[e^{a t}\right]=\frac{1}{s-a}$.

Overview and notation.

Overview: The Laplace Transform method can be used to solve constant coefficients differential equations with discontinuous source functions.

Notation:
If $\mathcal{L}[f(t)]=F(s)$, then we denote $\mathcal{L}^{-1}[F(s)]=f(t)$.
Remark: One can show that for a particular type of functions f, that includes all functions we work with in this Section, the notation above is well-defined.

Example

From the Laplace Transform table we know that $\mathcal{L}\left[e^{a t}\right]=\frac{1}{s-a}$.
Then also holds that $\mathcal{L}^{-1}\left[\frac{1}{s-a}\right]=e^{a t}$.

The Laplace Transform of step functions (Sect. 6.3).

- Overview and notation.
- The definition of a step function.
- Piecewise discontinuous functions.
- The Laplace Transform of discontinuous functions.
- Properties of the Laplace Transform.

The definition of a step function.

Definition
A function u is called a step function at $t=0$ iff holds

$$
u(t)= \begin{cases}0 & \text { for } t<0 \\ 1 & \text { for } t \geqslant 0\end{cases}
$$

The definition of a step function.

Definition
A function u is called a step function at $t=0$ iff holds

$$
u(t)= \begin{cases}0 & \text { for } t<0 \\ 1 & \text { for } t \geqslant 0\end{cases}
$$

Example

Graph the step function values $u(t)$ above, and the translations $u(t-c)$ and $u(t+c)$ with $c>0$.

The definition of a step function.

Definition
A function u is called a step function at $t=0$ iff holds

$$
u(t)= \begin{cases}0 & \text { for } t<0 \\ 1 & \text { for } t \geqslant 0\end{cases}
$$

Example

Graph the step function values $u(t)$ above, and the translations $u(t-c)$ and $u(t+c)$ with $c>0$.

Solution:

The definition of a step function.

Definition

A function u is called a step function at $t=0$ iff holds

$$
u(t)= \begin{cases}0 & \text { for } t<0 \\ 1 & \text { for } t \geqslant 0\end{cases}
$$

Example

Graph the step function values $u(t)$ above, and the translations $u(t-c)$ and $u(t+c)$ with $c>0$.

Solution:

The definition of a step function.

Definition

A function u is called a step function at $t=0$ iff holds

$$
u(t)= \begin{cases}0 & \text { for } t<0 \\ 1 & \text { for } t \geqslant 0\end{cases}
$$

Example

Graph the step function values $u(t)$ above, and the translations $u(t-c)$ and $u(t+c)$ with $c>0$.

Solution:

The definition of a step function.

Remark: Given any function values $f(t)$ and $c>0$, then $f(t-c)$ is a right translation of f and $f(t+c)$ is a left translation of f.

The definition of a step function.

Remark: Given any function values $f(t)$ and $c>0$, then $f(t-c)$ is a right translation of f and $f(t+c)$ is a left translation of f.

Example

The definition of a step function.

Remark: Given any function values $f(t)$ and $c>0$, then $f(t-c)$ is a right translation of f and $f(t+c)$ is a left translation of f.

Example

The definition of a step function.

Remark: Given any function values $f(t)$ and $c>0$, then $f(t-c)$ is a right translation of f and $f(t+c)$ is a left translation of f.

Example

The definition of a step function.

Remark: Given any function values $f(t)$ and $c>0$, then $f(t-c)$ is a right translation of f and $f(t+c)$ is a left translation of f.

Example

The Laplace Transform of step functions (Sect. 6.3).

- Overview and notation.
- The definition of a step function.
- Piecewise discontinuous functions.
- The Laplace Transform of discontinuous functions.
- Properties of the Laplace Transform.

Piecewise discontinuous functions.

Example

Graph of the function $b(t)=u(t-a)-u(t-b)$, with $0<a<b$.

Piecewise discontinuous functions.

Example

Graph of the function $b(t)=u(t-a)-u(t-b)$, with $0<a<b$.
Solution: The bump function b can be graphed as follows:

Piecewise discontinuous functions.

Example

Graph of the function $b(t)=u(t-a)-u(t-b)$, with $0<a<b$.
Solution: The bump function b can be graphed as follows:

Piecewise discontinuous functions.

Example
Graph of the function $b(t)=u(t-a)-u(t-b)$, with $0<a<b$.
Solution: The bump function b can be graphed as follows:

Piecewise discontinuous functions.

Example

Graph of the function $f(t)=e^{a t}[u(t-1)-u(t-2)]$.

Piecewise discontinuous functions.

Example
Graph of the function $f(t)=e^{a t}[u(t-1)-u(t-2)]$.
Solution:

Piecewise discontinuous functions.

Example
Graph of the function $f(t)=e^{a t}[u(t-1)-u(t-2)]$.
Solution:

Notation: The function values $u(t-c)$ are denoted in the textbook as $u_{c}(t)$.

The Laplace Transform of step functions (Sect. 6.3).

- Overview and notation.
- The definition of a step function.
- Piecewise discontinuous functions.
- The Laplace Transform of discontinuous functions.
- Properties of the Laplace Transform.

The Laplace Transform of discontinuous functions.

Theorem
Given any real number c, the following equation holds,

$$
\mathcal{L}[u(t-c)]=\frac{e^{-c s}}{s}, \quad s>0
$$

The Laplace Transform of discontinuous functions.

Theorem
Given any real number c, the following equation holds,

$$
\mathcal{L}[u(t-c)]=\frac{e^{-c s}}{s}, \quad s>0
$$

Proof:

$$
\mathcal{L}[u(t-c)]=\int_{0}^{\infty} e^{-s t} u(t-c) d t
$$

The Laplace Transform of discontinuous functions.

Theorem
Given any real number c, the following equation holds,

$$
\mathcal{L}[u(t-c)]=\frac{e^{-c s}}{s}, \quad s>0 .
$$

Proof:

$$
\mathcal{L}[u(t-c)]=\int_{0}^{\infty} e^{-s t} u(t-c) d t=\int_{c}^{\infty} e^{-s t} d t,
$$

The Laplace Transform of discontinuous functions.

Theorem
Given any real number c, the following equation holds,

$$
\mathcal{L}[u(t-c)]=\frac{e^{-c s}}{s}, \quad s>0
$$

Proof:

$$
\begin{gathered}
\mathcal{L}[u(t-c)]=\int_{0}^{\infty} e^{-s t} u(t-c) d t=\int_{c}^{\infty} e^{-s t} d t \\
\mathcal{L}[u(t-c)]=\lim _{N \rightarrow \infty}-\frac{1}{s}\left(e^{-N s}-e^{-c s}\right)
\end{gathered}
$$

The Laplace Transform of discontinuous functions.

Theorem

Given any real number c, the following equation holds,

$$
\mathcal{L}[u(t-c)]=\frac{e^{-c s}}{s}, \quad s>0 .
$$

Proof:

$$
\begin{gathered}
\mathcal{L}[u(t-c)]=\int_{0}^{\infty} e^{-s t} u(t-c) d t=\int_{c}^{\infty} e^{-s t} d t, \\
\mathcal{L}[u(t-c)]=\lim _{N \rightarrow \infty}-\frac{1}{s}\left(e^{-N s}-e^{-c s}\right)=\frac{e^{-c s}}{s}, \quad s>0 .
\end{gathered}
$$

We conclude that $\mathcal{L}[u(t-c)]=\frac{e^{-c s}}{s}$.

The Laplace Transform of discontinuous functions.
Example
Compute $\mathcal{L}[3 u(t-2)]$.

The Laplace Transform of discontinuous functions.
Example
Compute $\mathcal{L}[3 u(t-2)]$.
Solution: $\quad \mathcal{L}[3 u(t-2)]=3 \mathcal{L}[u(t-2)]$

The Laplace Transform of discontinuous functions.
Example
Compute $\mathcal{L}[3 u(t-2)]$.
Solution: $\quad \mathcal{L}[3 u(t-2)]=3 \mathcal{L}[u(t-2)]=3 \frac{e^{-2 s}}{s}$.

The Laplace Transform of discontinuous functions.
Example
Compute $\mathcal{L}[3 u(t-2)]$.
Solution: $\quad \mathcal{L}[3 u(t-2)]=3 \mathcal{L}[u(t-2)]=3 \frac{e^{-2 s}}{s}$.
We conclude: $\quad \mathcal{L}[3 u(t-2)]=\frac{3 e^{-2 s}}{s}$.

The Laplace Transform of discontinuous functions.

Example
Compute $\mathcal{L}[3 u(t-2)]$.
Solution: $\quad \mathcal{L}[3 u(t-2)]=3 \mathcal{L}[u(t-2)]=3 \frac{e^{-2 s}}{s}$.
We conclude: $\quad \mathcal{L}[3 u(t-2)]=\frac{3 e^{-2 s}}{s}$.
Example
Compute $\mathcal{L}^{-1}\left[\frac{e^{3 s}}{s}\right]$.

The Laplace Transform of discontinuous functions.

Example
Compute $\mathcal{L}[3 u(t-2)]$.
Solution: $\quad \mathcal{L}[3 u(t-2)]=3 \mathcal{L}[u(t-2)]=3 \frac{e^{-2 s}}{s}$.
We conclude: $\quad \mathcal{L}[3 u(t-2)]=\frac{3 e^{-2 s}}{s}$.
Example
Compute $\mathcal{L}^{-1}\left[\frac{e^{3 s}}{s}\right]$.
Solution: $\quad \mathcal{L}^{-1}\left[\frac{e^{3 s}}{s}\right]=\mathcal{L}^{-1}\left[\frac{e^{-(-3) s}}{s}\right]$

The Laplace Transform of discontinuous functions.

Example
Compute $\mathcal{L}[3 u(t-2)]$.
Solution: $\quad \mathcal{L}[3 u(t-2)]=3 \mathcal{L}[u(t-2)]=3 \frac{e^{-2 s}}{s}$.
We conclude: $\quad \mathcal{L}[3 u(t-2)]=\frac{3 e^{-2 s}}{s}$.
Example
Compute $\mathcal{L}^{-1}\left[\frac{e^{3 s}}{s}\right]$.
Solution: $\quad \mathcal{L}^{-1}\left[\frac{e^{3 s}}{s}\right]=\mathcal{L}^{-1}\left[\frac{e^{-(-3) s}}{s}\right]=u(t-(-3))$.

The Laplace Transform of discontinuous functions.

Example
Compute $\mathcal{L}[3 u(t-2)]$.
Solution: $\quad \mathcal{L}[3 u(t-2)]=3 \mathcal{L}[u(t-2)]=3 \frac{e^{-2 s}}{s}$.
We conclude: $\quad \mathcal{L}[3 u(t-2)]=\frac{3 e^{-2 s}}{s}$.
Example
Compute $\mathcal{L}^{-1}\left[\frac{e^{3 s}}{s}\right]$.
Solution: $\quad \mathcal{L}^{-1}\left[\frac{e^{3 s}}{s}\right]=\mathcal{L}^{-1}\left[\frac{e^{-(-3) s}}{s}\right]=u(t-(-3))$.
We conclude: $\mathcal{L}^{-1}\left[\frac{e^{3 s}}{s}\right]=u(t+3)$.

The Laplace Transform of step functions (Sect. 6.3).

- Overview and notation.
- The definition of a step function.
- Piecewise discontinuous functions.
- The Laplace Transform of discontinuous functions.
- Properties of the Laplace Transform.

Properties of the Laplace Transform.

Theorem (Translations)
If $F(s)=\mathcal{L}[f(t)]$ exists for $s>a \geqslant 0$ and $c>0$, then holds

$$
\mathcal{L}[u(t-c) f(t-c)]=e^{-c s} F(s), \quad s>a .
$$

Furthermore,

$$
\mathcal{L}\left[e^{c t} f(t)\right]=F(s-c), \quad s>a+c .
$$

Properties of the Laplace Transform.

Theorem (Translations)
If $F(s)=\mathcal{L}[f(t)]$ exists for $s>a \geqslant 0$ and $c>0$, then holds

$$
\mathcal{L}[u(t-c) f(t-c)]=e^{-c s} F(s), \quad s>a .
$$

Furthermore,

$$
\mathcal{L}\left[e^{c t} f(t)\right]=F(s-c), \quad s>a+c .
$$

Remark:

- $\mathcal{L}[$ translation $(u f)]=(\exp)(\mathcal{L}[f])$.

Properties of the Laplace Transform.

Theorem (Translations)
If $F(s)=\mathcal{L}[f(t)]$ exists for $s>a \geqslant 0$ and $c>0$, then holds

$$
\mathcal{L}[u(t-c) f(t-c)]=e^{-c s} F(s), \quad s>a .
$$

Furthermore,

$$
\mathcal{L}\left[e^{c t} f(t)\right]=F(s-c), \quad s>a+c
$$

Remark:

- $\mathcal{L}[$ translation $(u f)]=(\exp)(\mathcal{L}[f])$.
- $\mathcal{L}[(\exp)(f)]=$ translation $(\mathcal{L}[f])$.

Properties of the Laplace Transform.

Theorem (Translations)
If $F(s)=\mathcal{L}[f(t)]$ exists for $s>a \geqslant 0$ and $c>0$, then holds

$$
\mathcal{L}[u(t-c) f(t-c)]=e^{-c s} F(s), \quad s>a .
$$

Furthermore,

$$
\mathcal{L}\left[e^{c t} f(t)\right]=F(s-c), \quad s>a+c .
$$

Remark:

- $\mathcal{L}[$ translation $(u f)]=(\exp)(\mathcal{L}[f])$.
- $\mathcal{L}[(\exp)(f)]=$ translation $(\mathcal{L}[f])$.

Equivalent notation:

- $\mathcal{L}[u(t-c) f(t-c)]=e^{-c s} \mathcal{L}[f(t)]$,

Properties of the Laplace Transform.

Theorem (Translations)
If $F(s)=\mathcal{L}[f(t)]$ exists for $s>a \geqslant 0$ and $c>0$, then holds

$$
\mathcal{L}[u(t-c) f(t-c)]=e^{-c s} F(s), \quad s>a .
$$

Furthermore,

$$
\mathcal{L}\left[e^{c t} f(t)\right]=F(s-c), \quad s>a+c .
$$

Remark:

- $\mathcal{L}[$ translation $(u f)]=(\exp)(\mathcal{L}[f])$.
- $\mathcal{L}[(\exp)(f)]=$ translation $(\mathcal{L}[f])$.

Equivalent notation:

- $\mathcal{L}[u(t-c) f(t-c)]=e^{-c s} \mathcal{L}[f(t)]$,
- $\mathcal{L}\left[e^{c t} f(t)\right]=\mathcal{L}[f](s-c)$.

Properties of the Laplace Transform.

Example
Compute $\mathcal{L}[u(t-2) \sin (a(t-2))]$.

Properties of the Laplace Transform.

Example
Compute $\mathcal{L}[u(t-2) \sin (a(t-2))]$.
Solution: $\mathcal{L}[\sin (a t)]=\frac{a}{s^{2}+a^{2}}$,

Properties of the Laplace Transform.

Example
Compute $\mathcal{L}[u(t-2) \sin (a(t-2))]$.
Solution: $\mathcal{L}[\sin (a t)]=\frac{a}{s^{2}+a^{2}}, \mathcal{L}[u(t-c) f(t-c)]=e^{-c s} \mathcal{L}[f(t)]$.

Properties of the Laplace Transform.

Example
Compute $\mathcal{L}[u(t-2) \sin (a(t-2))]$.
Solution: $\mathcal{L}[\sin (a t)]=\frac{a}{s^{2}+a^{2}}, \mathcal{L}[u(t-c) f(t-c)]=e^{-c s} \mathcal{L}[f(t)]$.

$$
\mathcal{L}[u(t-2) \sin (a(t-2))]=e^{-2 s} \mathcal{L}[\sin (a t)]
$$

Properties of the Laplace Transform.

Example
Compute $\mathcal{L}[u(t-2) \sin (a(t-2))]$.
Solution: $\mathcal{L}[\sin (a t)]=\frac{a}{s^{2}+a^{2}}, \mathcal{L}[u(t-c) f(t-c)]=e^{-c s} \mathcal{L}[f(t)]$.

$$
\mathcal{L}[u(t-2) \sin (a(t-2))]=e^{-2 s} \mathcal{L}[\sin (a t)]=e^{-2 s} \frac{a}{s^{2}+a^{2}} .
$$

Properties of the Laplace Transform.

Example
Compute $\mathcal{L}[u(t-2) \sin (a(t-2))]$.
Solution: $\mathcal{L}[\sin (a t)]=\frac{a}{s^{2}+a^{2}}, \mathcal{L}[u(t-c) f(t-c)]=e^{-c s} \mathcal{L}[f(t)]$.

$$
\mathcal{L}[u(t-2) \sin (a(t-2))]=e^{-2 s} \mathcal{L}[\sin (a t)]=e^{-2 s} \frac{a}{s^{2}+a^{2}} .
$$

We conclude: $\mathcal{L}[u(t-2) \sin (a(t-2))]=e^{-2 s} \frac{a}{s^{2}+a^{2}}$.

Properties of the Laplace Transform.

Example
Compute $\mathcal{L}[u(t-2) \sin (a(t-2))]$.
Solution: $\mathcal{L}[\sin (a t)]=\frac{a}{s^{2}+a^{2}}, \mathcal{L}[u(t-c) f(t-c)]=e^{-c s} \mathcal{L}[f(t)]$.

$$
\mathcal{L}[u(t-2) \sin (a(t-2))]=e^{-2 s} \mathcal{L}[\sin (a t)]=e^{-2 s} \frac{a}{s^{2}+a^{2}} .
$$

We conclude: $\mathcal{L}[u(t-2) \sin (a(t-2))]=e^{-2 s} \frac{a}{s^{2}+a^{2}}$.
Example
Compute $\mathcal{L}\left[e^{3 t} \sin (a t)\right]$.

Properties of the Laplace Transform.

Example
Compute $\mathcal{L}[u(t-2) \sin (a(t-2))]$.
Solution: $\mathcal{L}[\sin (a t)]=\frac{a}{s^{2}+a^{2}}, \mathcal{L}[u(t-c) f(t-c)]=e^{-c s} \mathcal{L}[f(t)]$.

$$
\mathcal{L}[u(t-2) \sin (a(t-2))]=e^{-2 s} \mathcal{L}[\sin (a t)]=e^{-2 s} \frac{a}{s^{2}+a^{2}} .
$$

We conclude: $\mathcal{L}[u(t-2) \sin (a(t-2))]=e^{-2 s} \frac{a}{s^{2}+a^{2}}$.
Example
Compute $\mathcal{L}\left[e^{3 t} \sin (a t)\right]$.
Solution: Recall: $\mathcal{L}\left[e^{c t} f(t)\right]=\mathcal{L}[f](s-c)$.

Properties of the Laplace Transform.

Example
Compute $\mathcal{L}[u(t-2) \sin (a(t-2))]$.
Solution: $\mathcal{L}[\sin (a t)]=\frac{a}{s^{2}+a^{2}}, \mathcal{L}[u(t-c) f(t-c)]=e^{-c s} \mathcal{L}[f(t)]$.

$$
\mathcal{L}[u(t-2) \sin (a(t-2))]=e^{-2 s} \mathcal{L}[\sin (a t)]=e^{-2 s} \frac{a}{s^{2}+a^{2}} .
$$

We conclude: $\mathcal{L}[u(t-2) \sin (a(t-2))]=e^{-2 s} \frac{a}{s^{2}+a^{2}}$.
Example
Compute $\mathcal{L}\left[e^{3 t} \sin (a t)\right]$.
Solution: Recall: $\mathcal{L}\left[e^{c t} f(t)\right]=\mathcal{L}[f](s-c)$.
We conclude: $\mathcal{L}\left[e^{3 t} \sin (a t)\right]=\frac{a}{(s-3)^{2}+a^{2}}$, with $s>3$.

Properties of the Laplace Transform.

Example

Find the Laplace transform of $f(t)= \begin{cases}0, & t<1, \\ \left(t^{2}-2 t+2\right), & t \geqslant 1 .\end{cases}$

Properties of the Laplace Transform.

Example

Find the Laplace transform of $f(t)= \begin{cases}0, & t<1, \\ \left(t^{2}-2 t+2\right), & t \geqslant 1 .\end{cases}$
Solution: Using step function notation,

Properties of the Laplace Transform.

Example

Find the Laplace transform of $f(t)= \begin{cases}0, & t<1, \\ \left(t^{2}-2 t+2\right), & t \geqslant 1 .\end{cases}$
Solution: Using step function notation,

$$
f(t)=u(t-1)\left(t^{2}-2 t+2\right)
$$

Properties of the Laplace Transform.

Example

Find the Laplace transform of $f(t)= \begin{cases}0, & t<1, \\ \left(t^{2}-2 t+2\right), & t \geqslant 1 .\end{cases}$
Solution: Using step function notation,

$$
f(t)=u(t-1)\left(t^{2}-2 t+2\right)
$$

Completing the square we obtain,

$$
t^{2}-2 t+2=\left(t^{2}-2 t+1\right)-1+2
$$

Properties of the Laplace Transform.

Example

Find the Laplace transform of $f(t)= \begin{cases}0, & t<1, \\ \left(t^{2}-2 t+2\right), & t \geqslant 1 .\end{cases}$
Solution: Using step function notation,

$$
f(t)=u(t-1)\left(t^{2}-2 t+2\right)
$$

Completing the square we obtain,

$$
t^{2}-2 t+2=\left(t^{2}-2 t+1\right)-1+2=(t-1)^{2}+1
$$

Properties of the Laplace Transform.

Example

Find the Laplace transform of $f(t)= \begin{cases}0, & t<1, \\ \left(t^{2}-2 t+2\right), & t \geqslant 1 .\end{cases}$
Solution: Using step function notation,

$$
f(t)=u(t-1)\left(t^{2}-2 t+2\right)
$$

Completing the square we obtain,

$$
t^{2}-2 t+2=\left(t^{2}-2 t+1\right)-1+2=(t-1)^{2}+1
$$

This is a parabola t^{2} translated to the right by 1 and up by one. This is a discontinuous function.

Properties of the Laplace Transform.

Example

Find the Laplace transform of $f(t)= \begin{cases}0, & t<1, \\ \left(t^{2}-2 t+2\right), & t \geqslant 1 .\end{cases}$
Solution: Using step function notation,

$$
f(t)=u(t-1)\left(t^{2}-2 t+2\right)
$$

Completing the square we obtain,

$$
t^{2}-2 t+2=\left(t^{2}-2 t+1\right)-1+2=(t-1)^{2}+1
$$

This is a parabola t^{2} translated to the right by 1 and up by one. This is a discontinuous function.

Properties of the Laplace Transform.

Example

Find the Laplace transform of $f(t)= \begin{cases}0, & t<1, \\ \left(t^{2}-2 t+2\right), & t \geqslant 1 .\end{cases}$
Solution: Recall: $f(t)=u(t-1)\left[(t-1)^{2}+1\right]$.

Properties of the Laplace Transform.

Example

Find the Laplace transform of $f(t)= \begin{cases}0, & t<1, \\ \left(t^{2}-2 t+2\right), & t \geqslant 1 .\end{cases}$
Solution: Recall: $f(t)=u(t-1)\left[(t-1)^{2}+1\right]$.
This is equivalent to

$$
f(t)=u(t-1)(t-1)^{2}+u(t-1) .
$$

Properties of the Laplace Transform.

Example

Find the Laplace transform of $f(t)= \begin{cases}0, & t<1, \\ \left(t^{2}-2 t+2\right), & t \geqslant 1 .\end{cases}$
Solution: Recall: $f(t)=u(t-1)\left[(t-1)^{2}+1\right]$.
This is equivalent to

$$
f(t)=u(t-1)(t-1)^{2}+u(t-1) .
$$

Since $\mathcal{L}\left[t^{2}\right]=2 / s^{3}$,

Properties of the Laplace Transform.

Example

Find the Laplace transform of $f(t)= \begin{cases}0, & t<1, \\ \left(t^{2}-2 t+2\right), & t \geqslant 1 .\end{cases}$
Solution: Recall: $f(t)=u(t-1)\left[(t-1)^{2}+1\right]$.
This is equivalent to

$$
f(t)=u(t-1)(t-1)^{2}+u(t-1)
$$

Since $\mathcal{L}\left[t^{2}\right]=2 / s^{3}$, and $\mathcal{L}[u(t-c) g(t-c)]=e^{-c s} \mathcal{L}[g(t)]$,

Properties of the Laplace Transform.

Example

Find the Laplace transform of $f(t)= \begin{cases}0, & t<1, \\ \left(t^{2}-2 t+2\right), & t \geqslant 1 .\end{cases}$
Solution: Recall: $f(t)=u(t-1)\left[(t-1)^{2}+1\right]$.
This is equivalent to

$$
f(t)=u(t-1)(t-1)^{2}+u(t-1)
$$

Since $\mathcal{L}\left[t^{2}\right]=2 / s^{3}$, and $\mathcal{L}[u(t-c) g(t-c)]=e^{-c s} \mathcal{L}[g(t)]$, then

$$
\mathcal{L}[f(t)]=\mathcal{L}\left[u(t-1)(t-1)^{2}\right]+\mathcal{L}[u(t-1)]
$$

Properties of the Laplace Transform.

Example

Find the Laplace transform of $f(t)= \begin{cases}0, & t<1, \\ \left(t^{2}-2 t+2\right), & t \geqslant 1 .\end{cases}$
Solution: Recall: $f(t)=u(t-1)\left[(t-1)^{2}+1\right]$.
This is equivalent to

$$
f(t)=u(t-1)(t-1)^{2}+u(t-1)
$$

Since $\mathcal{L}\left[t^{2}\right]=2 / s^{3}$, and $\mathcal{L}[u(t-c) g(t-c)]=e^{-c s} \mathcal{L}[g(t)]$, then

$$
\mathcal{L}[f(t)]=\mathcal{L}\left[u(t-1)(t-1)^{2}\right]+\mathcal{L}[u(t-1)]=e^{-s} \frac{2}{s^{3}}+e^{-s} \frac{1}{s}
$$

Properties of the Laplace Transform.

Example

Find the Laplace transform of $f(t)= \begin{cases}0, & t<1, \\ \left(t^{2}-2 t+2\right), & t \geqslant 1 .\end{cases}$
Solution: Recall: $f(t)=u(t-1)\left[(t-1)^{2}+1\right]$.
This is equivalent to

$$
f(t)=u(t-1)(t-1)^{2}+u(t-1)
$$

Since $\mathcal{L}\left[t^{2}\right]=2 / s^{3}$, and $\mathcal{L}[u(t-c) g(t-c)]=e^{-c s} \mathcal{L}[g(t)]$, then

$$
\mathcal{L}[f(t)]=\mathcal{L}\left[u(t-1)(t-1)^{2}\right]+\mathcal{L}[u(t-1)]=e^{-s} \frac{2}{s^{3}}+e^{-s} \frac{1}{s} .
$$

We conclude: $\quad \mathcal{L}[f(t)]=\frac{e^{-s}}{s^{3}}\left(2+s^{2}\right)$.

Properties of the Laplace Transform.

Remark: The inverse of the formulas in the Theorem above are:

$$
\mathcal{L}^{-1}\left[e^{-c s} F(s)\right]=u(t-c) f(t-c)
$$

Properties of the Laplace Transform.

Remark: The inverse of the formulas in the Theorem above are:

$$
\begin{gathered}
\mathcal{L}^{-1}\left[e^{-c s} F(s)\right]=u(t-c) f(t-c) \\
\mathcal{L}^{-1}[F(s-c)]=e^{c t} f(t)
\end{gathered}
$$

Properties of the Laplace Transform.

Remark: The inverse of the formulas in the Theorem above are:

$$
\begin{gathered}
\mathcal{L}^{-1}\left[e^{-c s} F(s)\right]=u(t-c) f(t-c) \\
\mathcal{L}^{-1}[F(s-c)]=e^{c t} f(t)
\end{gathered}
$$

Example
Find $\mathcal{L}^{-1}\left[\frac{e^{-4 s}}{s^{2}+9}\right]$.

Properties of the Laplace Transform.

Remark: The inverse of the formulas in the Theorem above are:

$$
\begin{gathered}
\mathcal{L}^{-1}\left[e^{-c s} F(s)\right]=u(t-c) f(t-c) \\
\mathcal{L}^{-1}[F(s-c)]=e^{c t} f(t)
\end{gathered}
$$

Example
Find $\mathcal{L}^{-1}\left[\frac{e^{-4 s}}{s^{2}+9}\right]$.
Solution: $\mathcal{L}^{-1}\left[\frac{e^{-4 s}}{s^{2}+9}\right]=\frac{1}{3} \mathcal{L}^{-1}\left[e^{-4 s} \frac{3}{s^{2}+9}\right]$.

Properties of the Laplace Transform.

Remark: The inverse of the formulas in the Theorem above are:

$$
\begin{gathered}
\mathcal{L}^{-1}\left[e^{-c s} F(s)\right]=u(t-c) f(t-c) \\
\mathcal{L}^{-1}[F(s-c)]=e^{c t} f(t)
\end{gathered}
$$

Example
Find $\mathcal{L}^{-1}\left[\frac{e^{-4 s}}{s^{2}+9}\right]$.
Solution: $\mathcal{L}^{-1}\left[\frac{e^{-4 s}}{s^{2}+9}\right]=\frac{1}{3} \mathcal{L}^{-1}\left[e^{-4 s} \frac{3}{s^{2}+9}\right]$.
Recall: $\mathcal{L}^{-1}\left[\frac{a}{s^{2}+a^{2}}\right]=\sin (a t)$.

Properties of the Laplace Transform.

Remark: The inverse of the formulas in the Theorem above are:

$$
\begin{gathered}
\mathcal{L}^{-1}\left[e^{-c s} F(s)\right]=u(t-c) f(t-c) \\
\mathcal{L}^{-1}[F(s-c)]=e^{c t} f(t)
\end{gathered}
$$

Example
Find $\mathcal{L}^{-1}\left[\frac{e^{-4 s}}{s^{2}+9}\right]$.
Solution: $\mathcal{L}^{-1}\left[\frac{e^{-4 s}}{s^{2}+9}\right]=\frac{1}{3} \mathcal{L}^{-1}\left[e^{-4 s} \frac{3}{s^{2}+9}\right]$.
Recall: $\mathcal{L}^{-1}\left[\frac{a}{s^{2}+a^{2}}\right]=\sin (a t)$. Then, we conclude that

$$
\mathcal{L}^{-1}\left[\frac{e^{-4 s}}{s^{2}+9}\right]=\frac{1}{3} u(t-4) \sin (3(t-4)) .
$$

Properties of the Laplace Transform.

Example
Find $\mathcal{L}^{-1}\left[\frac{(s-2)}{(s-2)^{2}+9}\right]$.

Properties of the Laplace Transform.

Example
Find $\mathcal{L}^{-1}\left[\frac{(s-2)}{(s-2)^{2}+9}\right]$.
Solution: $\mathcal{L}^{-1}\left[\frac{s}{s^{2}+a^{2}}\right]=\cos (a t)$,

Properties of the Laplace Transform.

Example
Find $\mathcal{L}^{-1}\left[\frac{(s-2)}{(s-2)^{2}+9}\right]$.
Solution: $\mathcal{L}^{-1}\left[\frac{s}{s^{2}+a^{2}}\right]=\cos (a t), \mathcal{L}^{-1}[F(s-c)]=e^{c t} f(t)$.

Properties of the Laplace Transform.

Example
Find $\mathcal{L}^{-1}\left[\frac{(s-2)}{(s-2)^{2}+9}\right]$.
Solution: $\mathcal{L}^{-1}\left[\frac{s}{s^{2}+a^{2}}\right]=\cos (a t), \mathcal{L}^{-1}[F(s-c)]=e^{c t} f(t)$.
We conclude: $\quad \mathcal{L}^{-1}\left[\frac{(s-2)}{(s-2)^{2}+9}\right]=e^{2 t} \cos (3 t)$.

Properties of the Laplace Transform.

Example
Find $\mathcal{L}^{-1}\left[\frac{(s-2)}{(s-2)^{2}+9}\right]$.
Solution: $\mathcal{L}^{-1}\left[\frac{s}{s^{2}+a^{2}}\right]=\cos (a t), \mathcal{L}^{-1}[F(s-c)]=e^{c t} f(t)$.
We conclude: $\quad \mathcal{L}^{-1}\left[\frac{(s-2)}{(s-2)^{2}+9}\right]=e^{2 t} \cos (3 t)$.
Example
Find $\mathcal{L}^{-1}\left[\frac{2 e^{-3 s}}{s^{2}-4}\right]$.

Properties of the Laplace Transform.

Example
Find $\mathcal{L}^{-1}\left[\frac{(s-2)}{(s-2)^{2}+9}\right]$.
Solution: $\mathcal{L}^{-1}\left[\frac{s}{s^{2}+a^{2}}\right]=\cos (a t), \mathcal{L}^{-1}[F(s-c)]=e^{c t} f(t)$.
We conclude: $\quad \mathcal{L}^{-1}\left[\frac{(s-2)}{(s-2)^{2}+9}\right]=e^{2 t} \cos (3 t)$.

Example
Find $\mathcal{L}^{-1}\left[\frac{2 e^{-3 s}}{s^{2}-4}\right]$.
Solution: Recall: $\mathcal{L}^{-1}\left[\frac{a}{s^{2}-a^{2}}\right]=\sinh (a t)$

Properties of the Laplace Transform.

Example
Find $\mathcal{L}^{-1}\left[\frac{(s-2)}{(s-2)^{2}+9}\right]$.
Solution: $\mathcal{L}^{-1}\left[\frac{s}{s^{2}+a^{2}}\right]=\cos (a t), \mathcal{L}^{-1}[F(s-c)]=e^{c t} f(t)$.
We conclude: $\quad \mathcal{L}^{-1}\left[\frac{(s-2)}{(s-2)^{2}+9}\right]=e^{2 t} \cos (3 t)$.
Example
Find $\mathcal{L}^{-1}\left[\frac{2 e^{-3 s}}{s^{2}-4}\right]$.
Solution: Recall: $\mathcal{L}^{-1}\left[\frac{a}{s^{2}-a^{2}}\right]=\sinh (a t)$ and $\mathcal{L}^{-1}\left[e^{-c s} F(s)\right]=u(t-c) f(t-c)$.

Properties of the Laplace Transform.

Example

Find $\mathcal{L}^{-1}\left[\frac{2 e^{-3 s}}{s^{2}-4}\right]$.
Solution: Recall:

$$
\mathcal{L}^{-1}\left[\frac{a}{s^{2}-a^{2}}\right]=\sinh (a t), \quad \mathcal{L}^{-1}\left[e^{-c s} F(s)\right]=u(t-c) f(t-c)
$$

Properties of the Laplace Transform.

Example
Find $\mathcal{L}^{-1}\left[\frac{2 e^{-3 s}}{s^{2}-4}\right]$.
Solution: Recall:

$$
\begin{gathered}
\mathcal{L}^{-1}\left[\frac{a}{s^{2}-a^{2}}\right]=\sinh (a t), \quad \mathcal{L}^{-1}\left[e^{-c s} F(s)\right]=u(t-c) f(t-c) . \\
\mathcal{L}^{-1}\left[\frac{2 e^{-3 s}}{s^{2}-4}\right]=\mathcal{L}^{-1}\left[e^{-3 s} \frac{2}{s^{2}-4}\right] .
\end{gathered}
$$

Properties of the Laplace Transform.

Example
Find $\mathcal{L}^{-1}\left[\frac{2 e^{-3 s}}{s^{2}-4}\right]$.
Solution: Recall:

$$
\begin{gathered}
\mathcal{L}^{-1}\left[\frac{a}{s^{2}-a^{2}}\right]=\sinh (a t), \quad \mathcal{L}^{-1}\left[e^{-c s} F(s)\right]=u(t-c) f(t-c) . \\
\mathcal{L}^{-1}\left[\frac{2 e^{-3 s}}{s^{2}-4}\right]=\mathcal{L}^{-1}\left[e^{-3 s} \frac{2}{s^{2}-4}\right] .
\end{gathered}
$$

We conclude: $\mathcal{L}^{-1}\left[\frac{2 e^{-3 s}}{s^{2}-4}\right]=u(t-3) \sinh (2(t-3))$.

Properties of the Laplace Transform.

Example

Find $\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]$.

Properties of the Laplace Transform.

Example

Find $\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]$.
Solution: Find the roots of the denominator:

$$
s_{ \pm}=\frac{1}{2}[-1 \pm \sqrt{1+8}]
$$

Properties of the Laplace Transform.

Example

Find $\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]$.
Solution: Find the roots of the denominator:

$$
s_{ \pm}=\frac{1}{2}[-1 \pm \sqrt{1+8}] \Rightarrow\left\{\begin{array}{l}
s_{+}=1 \\
s_{-}=-2
\end{array}\right.
$$

Properties of the Laplace Transform.

Example

Find $\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]$.
Solution: Find the roots of the denominator:

$$
s_{ \pm}=\frac{1}{2}[-1 \pm \sqrt{1+8}] \Rightarrow\left\{\begin{array}{l}
s_{+}=1 \\
s_{-}=-2
\end{array}\right.
$$

Therefore, $s^{2}+s-2=(s-1)(s+2)$.

Properties of the Laplace Transform.

Example

Find $\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]$.
Solution: Find the roots of the denominator:

$$
s_{ \pm}=\frac{1}{2}[-1 \pm \sqrt{1+8}] \Rightarrow\left\{\begin{array}{l}
s_{+}=1 \\
s_{-}=-2
\end{array}\right.
$$

Therefore, $s^{2}+s-2=(s-1)(s+2)$.
Use partial fractions to simplify the rational function:

$$
\frac{1}{s^{2}+s-2}=\frac{1}{(s-1)(s+2)}
$$

Properties of the Laplace Transform.

Example

Find $\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]$.
Solution: Find the roots of the denominator:

$$
s_{ \pm}=\frac{1}{2}[-1 \pm \sqrt{1+8}] \Rightarrow\left\{\begin{array}{l}
s_{+}=1 \\
s_{-}=-2
\end{array}\right.
$$

Therefore, $s^{2}+s-2=(s-1)(s+2)$.
Use partial fractions to simplify the rational function:

$$
\frac{1}{s^{2}+s-2}=\frac{1}{(s-1)(s+2)}=\frac{a}{(s-1)}+\frac{b}{(s+2)}
$$

Properties of the Laplace Transform.

Example

Find $\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]$.
Solution: Find the roots of the denominator:

$$
s_{ \pm}=\frac{1}{2}[-1 \pm \sqrt{1+8}] \Rightarrow\left\{\begin{array}{l}
s_{+}=1 \\
s_{-}=-2
\end{array}\right.
$$

Therefore, $s^{2}+s-2=(s-1)(s+2)$.
Use partial fractions to simplify the rational function:

$$
\begin{aligned}
& \frac{1}{s^{2}+s-2}=\frac{1}{(s-1)(s+2)}=\frac{a}{(s-1)}+\frac{b}{(s+2)}, \\
& \frac{1}{s^{2}+s-2}=a(s+2)+b(s-1)
\end{aligned}
$$

Properties of the Laplace Transform.

Example

Find $\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]$.
Solution: Find the roots of the denominator:

$$
s_{ \pm}=\frac{1}{2}[-1 \pm \sqrt{1+8}] \Rightarrow\left\{\begin{array}{l}
s_{+}=1 \\
s_{-}=-2
\end{array}\right.
$$

Therefore, $s^{2}+s-2=(s-1)(s+2)$.
Use partial fractions to simplify the rational function:

$$
\begin{gathered}
\frac{1}{s^{2}+s-2}=\frac{1}{(s-1)(s+2)}=\frac{a}{(s-1)}+\frac{b}{(s+2)}, \\
\frac{1}{s^{2}+s-2}=a(s+2)+b(s-1)=\frac{(a+b) s+(2 a-b)}{(s-1)(s+2)} .
\end{gathered}
$$

Properties of the Laplace Transform.

Example

Find $\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]$.
Solution: Recall: $\frac{1}{s^{2}+s-2}=\frac{(a+b) s+(2 a-b)}{(s-1)(s+2)}$

Properties of the Laplace Transform.

Example

Find $\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]$.
Solution: Recall: $\frac{1}{s^{2}+s-2}=\frac{(a+b) s+(2 a-b)}{(s-1)(s+2)}$

$$
a+b=0,
$$

Properties of the Laplace Transform.

Example

Find $\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]$.
Solution: Recall: $\frac{1}{s^{2}+s-2}=\frac{(a+b) s+(2 a-b)}{(s-1)(s+2)}$

$$
a+b=0, \quad 2 a-b=1,
$$

Properties of the Laplace Transform.

Example

Find $\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]$.
Solution: Recall: $\frac{1}{s^{2}+s-2}=\frac{(a+b) s+(2 a-b)}{(s-1)(s+2)}$

$$
a+b=0, \quad 2 a-b=1, \quad \Rightarrow \quad a=\frac{1}{3}, \quad b=-\frac{1}{3} .
$$

Properties of the Laplace Transform.

Example
Find $\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]$.
Solution: Recall: $\frac{1}{s^{2}+s-2}=\frac{(a+b) s+(2 a-b)}{(s-1)(s+2)}$

$$
\begin{gathered}
a+b=0, \quad 2 a-b=1, \quad \Rightarrow \quad a=\frac{1}{3}, \quad b=-\frac{1}{3} . \\
\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]=\frac{1}{3} \mathcal{L}^{-1}\left[e^{-2 s} \frac{1}{s-1}\right]-\frac{1}{3} \mathcal{L}^{-1}\left[e^{-2 s} \frac{1}{s+2}\right] .
\end{gathered}
$$

Properties of the Laplace Transform.

Example
Find $\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]$.
Solution: Recall: $\frac{1}{s^{2}+s-2}=\frac{(a+b) s+(2 a-b)}{(s-1)(s+2)}$

$$
\begin{gathered}
a+b=0, \quad 2 a-b=1, \quad \Rightarrow \quad a=\frac{1}{3}, \quad b=-\frac{1}{3} . \\
\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]=\frac{1}{3} \mathcal{L}^{-1}\left[e^{-2 s} \frac{1}{s-1}\right]-\frac{1}{3} \mathcal{L}^{-1}\left[e^{-2 s} \frac{1}{s+2}\right] .
\end{gathered}
$$

Recall: $\mathcal{L}^{-1}\left[\frac{1}{s-a}\right]=e^{a t}$,

Properties of the Laplace Transform.

Example
Find $\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]$.
Solution: Recall: $\frac{1}{s^{2}+s-2}=\frac{(a+b) s+(2 a-b)}{(s-1)(s+2)}$

$$
\begin{gathered}
a+b=0, \quad 2 a-b=1, \quad \Rightarrow \quad a=\frac{1}{3}, \quad b=-\frac{1}{3} . \\
\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]=\frac{1}{3} \mathcal{L}^{-1}\left[e^{-2 s} \frac{1}{s-1}\right]-\frac{1}{3} \mathcal{L}^{-1}\left[e^{-2 s} \frac{1}{s+2}\right] .
\end{gathered}
$$

Recall: $\mathcal{L}^{-1}\left[\frac{1}{s-a}\right]=e^{a t}, \quad \mathcal{L}^{-1}\left[e^{-c s} F(s)\right]=u(t-c) f(t-c)$,

Properties of the Laplace Transform.

Example
Find $\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]$.
Solution: Recall: $\frac{1}{s^{2}+s-2}=\frac{(a+b) s+(2 a-b)}{(s-1)(s+2)}$

$$
\begin{gathered}
a+b=0, \quad 2 a-b=1, \quad \Rightarrow \quad a=\frac{1}{3}, \quad b=-\frac{1}{3} \\
\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]=\frac{1}{3} \mathcal{L}^{-1}\left[e^{-2 s} \frac{1}{s-1}\right]-\frac{1}{3} \mathcal{L}^{-1}\left[e^{-2 s} \frac{1}{s+2}\right] .
\end{gathered}
$$

Recall: $\mathcal{L}^{-1}\left[\frac{1}{s-a}\right]=e^{a t}, \quad \mathcal{L}^{-1}\left[e^{-c s} F(s)\right]=u(t-c) f(t-c)$,

$$
\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]=\frac{1}{3} u(t-2) e^{(t-2)}-\frac{1}{3} u(t-2) e^{-2(t-2)} .
$$

Properties of the Laplace Transform.

Example
Find $\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]$.
Solution: Recall: $\frac{1}{s^{2}+s-2}=\frac{(a+b) s+(2 a-b)}{(s-1)(s+2)}$

$$
\begin{gathered}
a+b=0, \quad 2 a-b=1, \quad \Rightarrow \quad a=\frac{1}{3}, \quad b=-\frac{1}{3} \\
\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]=\frac{1}{3} \mathcal{L}^{-1}\left[e^{-2 s} \frac{1}{s-1}\right]-\frac{1}{3} \mathcal{L}^{-1}\left[e^{-2 s} \frac{1}{s+2}\right] .
\end{gathered}
$$

Recall: $\mathcal{L}^{-1}\left[\frac{1}{s-a}\right]=e^{a t}, \quad \mathcal{L}^{-1}\left[e^{-c s} F(s)\right]=u(t-c) f(t-c)$,

$$
\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]=\frac{1}{3} u(t-2) e^{(t-2)}-\frac{1}{3} u(t-2) e^{-2(t-2)} .
$$

Hence: $\quad \mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]=\frac{1}{3} u(t-2)\left[e^{(t-2)}-e^{-2(t-2)}\right]$.

Equations with discontinuous sources (Sect. 6.4).

- Differential equations with discontinuous sources.
- We solve the IVPs:
(a) Example 1:

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

(b) Example 2:

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

(c) Example 3:

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} g(t)= \begin{cases}\sin (t), & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Compute the Laplace transform of the whole equation,

$$
\mathcal{L}\left[y^{\prime}\right]+2 \mathcal{L}[y]=\mathcal{L}[u(t-4)]
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Compute the Laplace transform of the whole equation,

$$
\mathcal{L}\left[y^{\prime}\right]+2 \mathcal{L}[y]=\mathcal{L}[u(t-4)]=\frac{e^{-4 s}}{s}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Compute the Laplace transform of the whole equation,

$$
\mathcal{L}\left[y^{\prime}\right]+2 \mathcal{L}[y]=\mathcal{L}[u(t-4)]=\frac{e^{-4 s}}{s}
$$

From the previous Section we know that
$[s \mathcal{L}[y]-y(0)]+2 \mathcal{L}[y]=\frac{e^{-4 s}}{s}$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Compute the Laplace transform of the whole equation,

$$
\mathcal{L}\left[y^{\prime}\right]+2 \mathcal{L}[y]=\mathcal{L}[u(t-4)]=\frac{e^{-4 s}}{s}
$$

From the previous Section we know that

$$
[s \mathcal{L}[y]-y(0)]+2 \mathcal{L}[y]=\frac{e^{-4 s}}{s} \Rightarrow(s+2) \mathcal{L}[y]=y(0)+\frac{e^{-4 s}}{s}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Compute the Laplace transform of the whole equation,

$$
\mathcal{L}\left[y^{\prime}\right]+2 \mathcal{L}[y]=\mathcal{L}[u(t-4)]=\frac{e^{-4 s}}{s}
$$

From the previous Section we know that

$$
[s \mathcal{L}[y]-y(0)]+2 \mathcal{L}[y]=\frac{e^{-4 s}}{s} \Rightarrow(s+2) \mathcal{L}[y]=y(0)+\frac{e^{-4 s}}{s}
$$

Introduce the initial condition,

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Compute the Laplace transform of the whole equation,

$$
\mathcal{L}\left[y^{\prime}\right]+2 \mathcal{L}[y]=\mathcal{L}[u(t-4)]=\frac{e^{-4 s}}{s}
$$

From the previous Section we know that
$[s \mathcal{L}[y]-y(0)]+2 \mathcal{L}[y]=\frac{e^{-4 s}}{s} \Rightarrow(s+2) \mathcal{L}[y]=y(0)+\frac{e^{-4 s}}{s}$.
Introduce the initial condition, $\mathcal{L}[y]=\frac{3}{(s+2)}+e^{-4 s} \frac{1}{s(s+2)}$,

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Compute the Laplace transform of the whole equation,

$$
\mathcal{L}\left[y^{\prime}\right]+2 \mathcal{L}[y]=\mathcal{L}[u(t-4)]=\frac{e^{-4 s}}{s}
$$

From the previous Section we know that
$[s \mathcal{L}[y]-y(0)]+2 \mathcal{L}[y]=\frac{e^{-4 s}}{s} \Rightarrow(s+2) \mathcal{L}[y]=y(0)+\frac{e^{-4 s}}{s}$.
Introduce the initial condition, $\mathcal{L}[y]=\frac{3}{(s+2)}+e^{-4 s} \frac{1}{s(s+2)}$,
Use the table: $\mathcal{L}[y]=3 \mathcal{L}\left[e^{-2 t}\right]+e^{-4 s} \frac{1}{s(s+2)}$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Recall: $\mathcal{L}[y]=3 \mathcal{L}\left[e^{-2 t}\right]+e^{-4 s} \frac{1}{s(s+2)}$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Recall: $\mathcal{L}[y]=3 \mathcal{L}\left[e^{-2 t}\right]+e^{-4 s} \frac{1}{s(s+2)}$.
We need to invert the Laplace transform on the last term.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Recall: $\mathcal{L}[y]=3 \mathcal{L}\left[e^{-2 t}\right]+e^{-4 s} \frac{1}{s(s+2)}$.
We need to invert the Laplace transform on the last term. Partial fractions:

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Recall: $\mathcal{L}[y]=3 \mathcal{L}\left[e^{-2 t}\right]+e^{-4 s} \frac{1}{s(s+2)}$.
We need to invert the Laplace transform on the last term. Partial fractions:

$$
\frac{1}{s(s+2)}=\frac{a}{s}+\frac{b}{(s+2)}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Recall: $\mathcal{L}[y]=3 \mathcal{L}\left[e^{-2 t}\right]+e^{-4 s} \frac{1}{s(s+2)}$.
We need to invert the Laplace transform on the last term. Partial fractions:

$$
\frac{1}{s(s+2)}=\frac{a}{s}+\frac{b}{(s+2)}=\frac{a(s+2)+b s}{s(s+2)}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Recall: $\mathcal{L}[y]=3 \mathcal{L}\left[e^{-2 t}\right]+e^{-4 s} \frac{1}{s(s+2)}$.
We need to invert the Laplace transform on the last term. Partial fractions:

$$
\frac{1}{s(s+2)}=\frac{a}{s}+\frac{b}{(s+2)}=\frac{a(s+2)+b s}{s(s+2)}=\frac{(a+b) s+(2 a)}{s(s+2)}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Recall: $\mathcal{L}[y]=3 \mathcal{L}\left[e^{-2 t}\right]+e^{-4 s} \frac{1}{s(s+2)}$.
We need to invert the Laplace transform on the last term. Partial fractions:

$$
\frac{1}{s(s+2)}=\frac{a}{s}+\frac{b}{(s+2)}=\frac{a(s+2)+b s}{s(s+2)}=\frac{(a+b) s+(2 a)}{s(s+2)}
$$

We get, $a+b=0, \quad 2 a=1$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Recall: $\mathcal{L}[y]=3 \mathcal{L}\left[e^{-2 t}\right]+e^{-4 s} \frac{1}{s(s+2)}$.
We need to invert the Laplace transform on the last term. Partial fractions:

$$
\frac{1}{s(s+2)}=\frac{a}{s}+\frac{b}{(s+2)}=\frac{a(s+2)+b s}{s(s+2)}=\frac{(a+b) s+(2 a)}{s(s+2)}
$$

We get, $a+b=0,2 a=1$. We obtain: $a=\frac{1}{2}, \quad b=-\frac{1}{2}$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Recall: $\mathcal{L}[y]=3 \mathcal{L}\left[e^{-2 t}\right]+e^{-4 s} \frac{1}{s(s+2)}$.
We need to invert the Laplace transform on the last term. Partial fractions:

$$
\frac{1}{s(s+2)}=\frac{a}{s}+\frac{b}{(s+2)}=\frac{a(s+2)+b s}{s(s+2)}=\frac{(a+b) s+(2 a)}{s(s+2)}
$$

We get, $a+b=0,2 a=1$. We obtain: $a=\frac{1}{2}, b=-\frac{1}{2}$. Hence,

$$
\frac{1}{s(s+2)}=\frac{1}{2}\left[\frac{1}{s}-\frac{1}{(s+2)}\right]
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Recall: $\frac{1}{s(s+2)}=\frac{1}{2}\left[\frac{1}{s}-\frac{1}{(s+2)}\right]$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Recall: $\frac{1}{s(s+2)}=\frac{1}{2}\left[\frac{1}{s}-\frac{1}{(s+2)}\right]$.
The algebraic equation for $\mathcal{L}[y]$ has the form,

$$
\mathcal{L}[y]=3 \mathcal{L}\left[e^{-2 t}\right]+\frac{1}{2}\left[e^{-4 s} \frac{1}{s}-e^{-4 s} \frac{1}{(s+2)}\right] .
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Recall: $\frac{1}{s(s+2)}=\frac{1}{2}\left[\frac{1}{s}-\frac{1}{(s+2)}\right]$.
The algebraic equation for $\mathcal{L}[y]$ has the form,

$$
\begin{aligned}
& \mathcal{L}[y]=3 \mathcal{L}\left[e^{-2 t}\right]+\frac{1}{2}\left[e^{-4 s} \frac{1}{s}-e^{-4 s} \frac{1}{(s+2)}\right] \\
& \mathcal{L}[y]= 3 \mathcal{L}\left[e^{-2 t}\right]
\end{aligned}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Recall: $\frac{1}{s(s+2)}=\frac{1}{2}\left[\frac{1}{s}-\frac{1}{(s+2)}\right]$.
The algebraic equation for $\mathcal{L}[y]$ has the form,

$$
\begin{aligned}
& \mathcal{L}[y]=3 \mathcal{L}\left[e^{-2 t}\right]+\frac{1}{2}\left[e^{-4 s} \frac{1}{s}-e^{-4 s} \frac{1}{(s+2)}\right] . \\
& \mathcal{L}[y]= 3 \mathcal{L}\left[e^{-2 t}\right]+\frac{1}{2}(\mathcal{L}[u(t-4)]
\end{aligned}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Recall: $\frac{1}{s(s+2)}=\frac{1}{2}\left[\frac{1}{s}-\frac{1}{(s+2)}\right]$.
The algebraic equation for $\mathcal{L}[y]$ has the form,

$$
\begin{gathered}
\mathcal{L}[y]=3 \mathcal{L}\left[e^{-2 t}\right]+\frac{1}{2}\left[e^{-4 s} \frac{1}{s}-e^{-4 s} \frac{1}{(s+2)}\right] \\
\mathcal{L}[y]=3 \mathcal{L}\left[e^{-2 t}\right]+\frac{1}{2}\left(\mathcal{L}[u(t-4)]-\mathcal{L}\left[u(t-4) e^{-2(t-4)}\right]\right) .
\end{gathered}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Recall: $\frac{1}{s(s+2)}=\frac{1}{2}\left[\frac{1}{s}-\frac{1}{(s+2)}\right]$.
The algebraic equation for $\mathcal{L}[y]$ has the form,

$$
\begin{gathered}
\mathcal{L}[y]=3 \mathcal{L}\left[e^{-2 t}\right]+\frac{1}{2}\left[e^{-4 s} \frac{1}{s}-e^{-4 s} \frac{1}{(s+2)}\right] . \\
\mathcal{L}[y]=3 \mathcal{L}\left[e^{-2 t}\right]+\frac{1}{2}\left(\mathcal{L}[u(t-4)]-\mathcal{L}\left[u(t-4) e^{-2(t-4)}\right]\right) .
\end{gathered}
$$

We conclude that

$$
y(t)=3 e^{-2 t}+\frac{1}{2} u(t-4)\left[1-e^{-2(t-4)}\right] .
$$

Equations with discontinuous sources (Sect. 6.4).

- Differential equations with discontinuous sources.
- We solve the IVPs:
(a) Example 1:

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

(b) Example 2:

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

(c) Example 3:

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} g(t)= \begin{cases}\sin (t), & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty)\end{cases}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution:
Rewrite the source function using step functions.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution:
Rewrite the source function using step functions.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution:
Rewrite the source function using step functions.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution:
Rewrite the source function using step functions.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty)\end{cases}
$$

Solution: The graphs imply: $b(t)=u(t)-u(t-\pi)$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty)\end{cases}
$$

Solution: The graphs imply: $b(t)=u(t)-u(t-\pi)$
Now is simple to find $\mathcal{L}[b]$,

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty)\end{cases}
$$

Solution: The graphs imply: $b(t)=u(t)-u(t-\pi)$
Now is simple to find $\mathcal{L}[b]$, since

$$
\mathcal{L}[b(t)]=\mathcal{L}[u(t)]-\mathcal{L}[u(t-\pi)]
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty)\end{cases}
$$

Solution: The graphs imply: $b(t)=u(t)-u(t-\pi)$
Now is simple to find $\mathcal{L}[b]$, since

$$
\mathcal{L}[b(t)]=\mathcal{L}[u(t)]-\mathcal{L}[u(t-\pi)]=\frac{1}{s}-\frac{e^{-\pi s}}{s} .
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{array}{r}
y(0)=0, \\
y^{\prime}(0)=0,
\end{array} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: The graphs imply: $b(t)=u(t)-u(t-\pi)$
Now is simple to find $\mathcal{L}[b]$, since

$$
\mathcal{L}[b(t)]=\mathcal{L}[u(t)]-\mathcal{L}[u(t-\pi)]=\frac{1}{s}-\frac{e^{-\pi s}}{s} .
$$

So, the source is $\mathcal{L}[b(t)]=\left(1-e^{-\pi s}\right) \frac{1}{s}$,

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: The graphs imply: $b(t)=u(t)-u(t-\pi)$
Now is simple to find $\mathcal{L}[b]$, since

$$
\mathcal{L}[b(t)]=\mathcal{L}[u(t)]-\mathcal{L}[u(t-\pi)]=\frac{1}{s}-\frac{e^{-\pi s}}{s} .
$$

So, the source is $\mathcal{L}[b(t)]=\left(1-e^{-\pi s}\right) \frac{1}{s}$, and the equation is

$$
\mathcal{L}\left[y^{\prime \prime}\right]+\mathcal{L}\left[y^{\prime}\right]+\frac{5}{4} \mathcal{L}[y]=\left(1-e^{-\pi s}\right) \frac{1}{s} .
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: So: $\mathcal{L}\left[y^{\prime \prime}\right]+\mathcal{L}\left[y^{\prime}\right]+\frac{5}{4} \mathcal{L}[y]=\left(1-e^{-\pi s}\right) \frac{1}{s}$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: So: $\mathcal{L}\left[y^{\prime \prime}\right]+\mathcal{L}\left[y^{\prime}\right]+\frac{5}{4} \mathcal{L}[y]=\left(1-e^{-\pi s}\right) \frac{1}{s}$.
The initial conditions imply:

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: So: $\mathcal{L}\left[y^{\prime \prime}\right]+\mathcal{L}\left[y^{\prime}\right]+\frac{5}{4} \mathcal{L}[y]=\left(1-e^{-\pi s}\right) \frac{1}{s}$.
The initial conditions imply: $\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad y(0)=0, \quad y^{\prime}(0)=0, \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\ 0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: So: $\mathcal{L}\left[y^{\prime \prime}\right]+\mathcal{L}\left[y^{\prime}\right]+\frac{5}{4} \mathcal{L}[y]=\left(1-e^{-\pi s}\right) \frac{1}{s}$.
The initial conditions imply: $\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]$ and $\mathcal{L}\left[y^{\prime}\right]=s \mathcal{L}[y]$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: So: $\mathcal{L}\left[y^{\prime \prime}\right]+\mathcal{L}\left[y^{\prime}\right]+\frac{5}{4} \mathcal{L}[y]=\left(1-e^{-\pi s}\right) \frac{1}{s}$.
The initial conditions imply: $\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]$ and $\mathcal{L}\left[y^{\prime}\right]=s \mathcal{L}[y]$.
Therefore, $\left(s^{2}+s+\frac{5}{4}\right) \mathcal{L}[y]=\left(1-e^{-\pi s}\right) \frac{1}{s}$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: So: $\mathcal{L}\left[y^{\prime \prime}\right]+\mathcal{L}\left[y^{\prime}\right]+\frac{5}{4} \mathcal{L}[y]=\left(1-e^{-\pi s}\right) \frac{1}{s}$.
The initial conditions imply: $\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]$ and $\mathcal{L}\left[y^{\prime}\right]=s \mathcal{L}[y]$.
Therefore, $\left(s^{2}+s+\frac{5}{4}\right) \mathcal{L}[y]=\left(1-e^{-\pi s}\right) \frac{1}{s}$.
We arrive at the expression: $\mathcal{L}[y]=\left(1-e^{-\pi s}\right) \frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $\mathcal{L}[y]=\left(1-e^{-\pi s}\right) \frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $\mathcal{L}[y]=\left(1-e^{-\pi s}\right) \frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}$.
Denoting: $H(s)=\frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}$,

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $\mathcal{L}[y]=\left(1-e^{-\pi s}\right) \frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}$.
Denoting: $H(s)=\frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}$,
we obtain, $\mathcal{L}[y]=\left(1-e^{-\pi s}\right) H(s)$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $\mathcal{L}[y]=\left(1-e^{-\pi s}\right) \frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}$.
Denoting: $H(s)=\frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}$,
we obtain, $\mathcal{L}[y]=\left(1-e^{-\pi s}\right) H(s)$.
In other words: $y(t)=\mathcal{L}^{-1}[H(s)]-\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty)\end{cases}
$$

Solution: Recall: $y(t)=\mathcal{L}^{-1}[H(s)]-\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $y(t)=\mathcal{L}^{-1}[H(s)]-\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]$.
Denoting: $h(t)=\mathcal{L}^{-1}[H(s)]$,

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $y(t)=\mathcal{L}^{-1}[H(s)]-\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]$.
Denoting: $h(t)=\mathcal{L}^{-1}[H(s)]$, the $\mathcal{L}[]$ properties imply

$$
\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]=u(t-\pi) h(t-\pi)
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $y(t)=\mathcal{L}^{-1}[H(s)]-\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]$.
Denoting: $h(t)=\mathcal{L}^{-1}[H(s)]$, the $\mathcal{L}[]$ properties imply

$$
\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]=u(t-\pi) h(t-\pi) .
$$

Therefore, the solution has the form

$$
y(t)=h(t)-u(t-\pi) h(t-\pi)
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $y(t)=\mathcal{L}^{-1}[H(s)]-\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]$.
Denoting: $h(t)=\mathcal{L}^{-1}[H(s)]$, the $\mathcal{L}[]$ properties imply

$$
\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]=u(t-\pi) h(t-\pi) .
$$

Therefore, the solution has the form

$$
y(t)=h(t)-u(t-\pi) h(t-\pi)
$$

We only need to find $h(t)=\mathcal{L}^{-1}\left[\frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}\right]$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad y(0)=0, \quad y^{\prime}(0)=0, \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\ 0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $\quad h(t)=\mathcal{L}^{-1}\left[\frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}\right]$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad y(0)=0, \quad y^{\prime}(0)=0, \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\ 0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $h(t)=\mathcal{L}^{-1}\left[\frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}\right]$.
Partial fractions:

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $\quad h(t)=\mathcal{L}^{-1}\left[\frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}\right]$.
Partial fractions: Find the zeros of the denominator,

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $h(t)=\mathcal{L}^{-1}\left[\frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}\right]$.
Partial fractions: Find the zeros of the denominator,

$$
s_{ \pm}=\frac{1}{2}[-1 \pm \sqrt{1-5}]
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $h(t)=\mathcal{L}^{-1}\left[\frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}\right]$.
Partial fractions: Find the zeros of the denominator,

$$
s_{ \pm}=\frac{1}{2}[-1 \pm \sqrt{1-5}] \quad \Rightarrow \quad \text { Complex roots. }
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $\quad h(t)=\mathcal{L}^{-1}\left[\frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}\right]$.
Partial fractions: Find the zeros of the denominator,

$$
s_{ \pm}=\frac{1}{2}[-1 \pm \sqrt{1-5}] \quad \Rightarrow \quad \text { Complex roots. }
$$

The partial fraction decomposition is:

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $\quad h(t)=\mathcal{L}^{-1}\left[\frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}\right]$.
Partial fractions: Find the zeros of the denominator,

$$
s_{ \pm}=\frac{1}{2}[-1 \pm \sqrt{1-5}] \quad \Rightarrow \quad \text { Complex roots. }
$$

The partial fraction decomposition is:

$$
H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right) s}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $\quad h(t)=\mathcal{L}^{-1}\left[\frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}\right]$.
Partial fractions: Find the zeros of the denominator,

$$
s_{ \pm}=\frac{1}{2}[-1 \pm \sqrt{1-5}] \quad \Rightarrow \quad \text { Complex roots. }
$$

The partial fraction decomposition is:

$$
H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right) s}=\frac{a}{s}+\frac{(b s+c)}{\left(s^{2}+s+\frac{5}{4}\right)}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right) s}=\frac{a}{s}+\frac{(b s+c)}{\left(s^{2}+s+\frac{5}{4}\right)}$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{array}{r}
y(0)=0, \\
y^{\prime}(0)=0,
\end{array} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right) s}=\frac{a}{s}+\frac{(b s+c)}{\left(s^{2}+s+\frac{5}{4}\right)}$.
The partial fraction decomposition is:

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{array}{r}
y(0)=0, \\
y^{\prime}(0)=0,
\end{array} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right) s}=\frac{a}{s}+\frac{(b s+c)}{\left(s^{2}+s+\frac{5}{4}\right)}$.
The partial fraction decomposition is:

$$
1=a\left(s^{2}+s+\frac{5}{4}\right)+s(b s+c)
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{array}{r}
y(0)=0, \\
y^{\prime}(0)=0,
\end{array} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right) s}=\frac{a}{s}+\frac{(b s+c)}{\left(s^{2}+s+\frac{5}{4}\right)}$.
The partial fraction decomposition is:

$$
1=a\left(s^{2}+s+\frac{5}{4}\right)+s(b s+c)=(a+b) s^{2}+(a+c) s+\frac{5}{4} a .
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{array}{r}
y(0)=0, \\
y^{\prime}(0)=0,
\end{array} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right) s}=\frac{a}{s}+\frac{(b s+c)}{\left(s^{2}+s+\frac{5}{4}\right)}$.
The partial fraction decomposition is:

$$
1=a\left(s^{2}+s+\frac{5}{4}\right)+s(b s+c)=(a+b) s^{2}+(a+c) s+\frac{5}{4} a .
$$

This equation implies that a, b, and c, are solutions of

$$
a+b=0, \quad a+c=0, \quad \frac{5}{4} a=1
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: So: $a=\frac{4}{5}, \quad b=-\frac{4}{5}, \quad c=-\frac{4}{5}$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: So: $a=\frac{4}{5}, \quad b=-\frac{4}{5}, \quad c=-\frac{4}{5}$.
Hence, we have found that,

$$
H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right) s}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad y(0)=0, \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\ 0, & t \in[\pi, \infty)\end{cases}
$$

Solution: So: $a=\frac{4}{5}, \quad b=-\frac{4}{5}, \quad c=-\frac{4}{5}$.
Hence, we have found that,

$$
H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right) s}=\frac{4}{5}\left[\frac{1}{s}-\frac{(s+1)}{\left(s^{2}+s+\frac{5}{4}\right)}\right]
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: So: $a=\frac{4}{5}, \quad b=-\frac{4}{5}, \quad c=-\frac{4}{5}$.
Hence, we have found that,

$$
H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right) s}=\frac{4}{5}\left[\frac{1}{s}-\frac{(s+1)}{\left(s^{2}+s+\frac{5}{4}\right)}\right]
$$

We have to compute the inverse Laplace Transform

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty)\end{cases}
$$

Solution: So: $a=\frac{4}{5}, \quad b=-\frac{4}{5}, c=-\frac{4}{5}$.
Hence, we have found that,

$$
H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right) s}=\frac{4}{5}\left[\frac{1}{s}-\frac{(s+1)}{\left(s^{2}+s+\frac{5}{4}\right)}\right]
$$

We have to compute the inverse Laplace Transform

$$
h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}-\frac{(s+1)}{\left(s^{2}+s+\frac{5}{4}\right)}\right]
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $\quad h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}-\frac{(s+1)}{\left(s^{2}+s+\frac{5}{4}\right)}\right]$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $\quad h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}-\frac{(s+1)}{\left(s^{2}+s+\frac{5}{4}\right)}\right]$.
In this case we complete the square in the denominator,

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}-\frac{(s+1)}{\left(s^{2}+s+\frac{5}{4}\right)}\right]$.
In this case we complete the square in the denominator,

$$
s^{2}+s+\frac{5}{4}=\left[s^{2}+2\left(\frac{1}{2}\right) s+\frac{1}{4}\right]-\frac{1}{4}+\frac{5}{4}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $\quad h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}-\frac{(s+1)}{\left(s^{2}+s+\frac{5}{4}\right)}\right]$.
In this case we complete the square in the denominator,

$$
s^{2}+s+\frac{5}{4}=\left[s^{2}+2\left(\frac{1}{2}\right) s+\frac{1}{4}\right]-\frac{1}{4}+\frac{5}{4}=\left(s+\frac{1}{2}\right)^{2}+1 .
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}-\frac{(s+1)}{\left(s^{2}+s+\frac{5}{4}\right)}\right]$.
In this case we complete the square in the denominator,

$$
s^{2}+s+\frac{5}{4}=\left[s^{2}+2\left(\frac{1}{2}\right) s+\frac{1}{4}\right]-\frac{1}{4}+\frac{5}{4}=\left(s+\frac{1}{2}\right)^{2}+1 .
$$

So: $\quad h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}-\frac{(s+1)}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}\right]$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}-\frac{(s+1)}{\left(s^{2}+s+\frac{5}{4}\right)}\right]$.
In this case we complete the square in the denominator,

$$
s^{2}+s+\frac{5}{4}=\left[s^{2}+2\left(\frac{1}{2}\right) s+\frac{1}{4}\right]-\frac{1}{4}+\frac{5}{4}=\left(s+\frac{1}{2}\right)^{2}+1 .
$$

So: $\quad h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}-\frac{(s+1)}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}\right]$.
That is, $h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}\right]-\frac{4}{5} \mathcal{L}^{-1}\left[\frac{\left(s+\frac{1}{2}\right)+\frac{1}{2}}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}\right]$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty)\end{cases}
$$

Solution: Recall: $h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}\right]-\frac{4}{5} \mathcal{L}^{-1}\left[\frac{\left(s+\frac{1}{2}\right)+\frac{1}{2}}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}\right]$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty)\end{cases}
$$

Solution: Recall: $h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}\right]-\frac{4}{5} \mathcal{L}^{-1}\left[\frac{\left(s+\frac{1}{2}\right)+\frac{1}{2}}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}\right]$.

$$
h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}\right]-\frac{4}{5} \mathcal{L}^{-1}\left[\frac{\left(s+\frac{1}{2}\right)}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}\right]-\frac{2}{5} \mathcal{L}^{-1}\left[\frac{1}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}\right] .
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty)\end{cases}
$$

Solution: Recall: $h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}\right]-\frac{4}{5} \mathcal{L}^{-1}\left[\frac{\left(s+\frac{1}{2}\right)+\frac{1}{2}}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}\right]$.

$$
h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}\right]-\frac{4}{5} \mathcal{L}^{-1}\left[\frac{\left(s+\frac{1}{2}\right)}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}\right]-\frac{2}{5} \mathcal{L}^{-1}\left[\frac{1}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}\right] .
$$

Recall: $\mathcal{L}^{-1}[F(s-c)]=e^{c t} f(t)$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty)\end{cases}
$$

Solution: Recall: $h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}\right]-\frac{4}{5} \mathcal{L}^{-1}\left[\frac{\left(s+\frac{1}{2}\right)+\frac{1}{2}}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}\right]$.

$$
h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}\right]-\frac{4}{5} \mathcal{L}^{-1}\left[\frac{\left(s+\frac{1}{2}\right)}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}\right]-\frac{2}{5} \mathcal{L}^{-1}\left[\frac{1}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}\right] .
$$

Recall: $\mathcal{L}^{-1}[F(s-c)]=e^{c t} f(t)$. Hence,

$$
h(t)=\frac{4}{5}\left[1-e^{-t / 2} \cos (t)-\frac{1}{2} e^{-t / 2} \sin (t)\right] .
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty)\end{cases}
$$

Solution: Recall: $h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}\right]-\frac{4}{5} \mathcal{L}^{-1}\left[\frac{\left(s+\frac{1}{2}\right)+\frac{1}{2}}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}\right]$.

$$
h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}\right]-\frac{4}{5} \mathcal{L}^{-1}\left[\frac{\left(s+\frac{1}{2}\right)}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}\right]-\frac{2}{5} \mathcal{L}^{-1}\left[\frac{1}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}\right] .
$$

Recall: $\mathcal{L}^{-1}[F(s-c)]=e^{c t} f(t)$. Hence,

$$
h(t)=\frac{4}{5}\left[1-e^{-t / 2} \cos (t)-\frac{1}{2} e^{-t / 2} \sin (t)\right] .
$$

We conclude: $y(t)=h(t)+u(t-\pi) h(t-\pi)$.

Equations with discontinuous sources (Sect. 6.4).

- Differential equations with discontinuous sources.
- We solve the IVPs:
(a) Example 1:

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

(b) Example 2:

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

(c) Example 3:

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} g(t)= \begin{cases}\sin (t), & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty) .\end{cases}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution:
Rewrite the source function using step functions.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty) .\end{cases}
$$

Solution:
Rewrite the source function using step functions.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty) .\end{cases}
$$

Solution:
Rewrite the source function using step functions.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty) .\end{cases}
$$

Solution:
Rewrite the source function using step functions.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty) .\end{cases}
$$

Solution: The graphs imply: $g(t)=[u(t)-u(t-\pi)] \sin (t)$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution: The graphs imply: $g(t)=[u(t)-u(t-\pi)] \sin (t)$.
Recall the identity: $\sin (t)=-\sin (t-\pi)$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned} y(0) & =0, \\ y^{\prime}(0) & =0,\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: The graphs imply: $g(t)=[u(t)-u(t-\pi)] \sin (t)$.
Recall the identity: $\sin (t)=-\sin (t-\pi)$. Then,

$$
g(t)=u(t) \sin (t)-u(t-\pi) \sin (t),
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned} y(0) & =0, \\ y^{\prime}(0) & =0,\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: The graphs imply: $g(t)=[u(t)-u(t-\pi)] \sin (t)$.
Recall the identity: $\sin (t)=-\sin (t-\pi)$. Then,

$$
\begin{gathered}
g(t)=u(t) \sin (t)-u(t-\pi) \sin (t), \\
g(t)=u(t) \sin (t)+u(t-\pi) \sin (t-\pi) .
\end{gathered}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned} y(0) & =0, \\ y^{\prime}(0) & =0,\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: The graphs imply: $g(t)=[u(t)-u(t-\pi)] \sin (t)$.
Recall the identity: $\sin (t)=-\sin (t-\pi)$. Then,

$$
\begin{gathered}
g(t)=u(t) \sin (t)-u(t-\pi) \sin (t), \\
g(t)=u(t) \sin (t)+u(t-\pi) \sin (t-\pi) .
\end{gathered}
$$

Now is simple to find $\mathcal{L}[g]$,

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned} y(0) & =0, \\ y^{\prime}(0) & =0,\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: The graphs imply: $g(t)=[u(t)-u(t-\pi)] \sin (t)$.
Recall the identity: $\sin (t)=-\sin (t-\pi)$. Then,

$$
\begin{gathered}
g(t)=u(t) \sin (t)-u(t-\pi) \sin (t), \\
g(t)=u(t) \sin (t)+u(t-\pi) \sin (t-\pi) .
\end{gathered}
$$

Now is simple to find $\mathcal{L}[g]$, since

$$
\mathcal{L}[g(t)]=\mathcal{L}[u(t) \sin (t)]+\mathcal{L}[u(t-\pi) \sin (t-\pi)] .
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution: So: $\quad \mathcal{L}[g(t)]=\mathcal{L}[u(t) \sin (t)]+\mathcal{L}[u(t-\pi) \sin (t-\pi)]$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution: So: $\mathcal{L}[g(t)]=\mathcal{L}[u(t) \sin (t)]+\mathcal{L}[u(t-\pi) \sin (t-\pi)]$.

$$
\mathcal{L}[g(t)]=\frac{1}{\left(s^{2}+1\right)}+e^{-\pi s} \frac{1}{\left(s^{2}+1\right)} .
$$

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution: So: $\quad \mathcal{L}[g(t)]=\mathcal{L}[u(t) \sin (t)]+\mathcal{L}[u(t-\pi) \sin (t-\pi)]$.

$$
\mathcal{L}[g(t)]=\frac{1}{\left(s^{2}+1\right)}+e^{-\pi s} \frac{1}{\left(s^{2}+1\right)}
$$

Recall the Laplace transform of the differential equation

$$
\mathcal{L}\left[y^{\prime \prime}\right]+\mathcal{L}\left[y^{\prime}\right]+\frac{5}{4} \mathcal{L}[y]=\mathcal{L}[g]
$$

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution: So: $\quad \mathcal{L}[g(t)]=\mathcal{L}[u(t) \sin (t)]+\mathcal{L}[u(t-\pi) \sin (t-\pi)]$.

$$
\mathcal{L}[g(t)]=\frac{1}{\left(s^{2}+1\right)}+e^{-\pi s} \frac{1}{\left(s^{2}+1\right)}
$$

Recall the Laplace transform of the differential equation

$$
\mathcal{L}\left[y^{\prime \prime}\right]+\mathcal{L}\left[y^{\prime}\right]+\frac{5}{4} \mathcal{L}[y]=\mathcal{L}[g] .
$$

The initial conditions imply:

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution: So: $\quad \mathcal{L}[g(t)]=\mathcal{L}[u(t) \sin (t)]+\mathcal{L}[u(t-\pi) \sin (t-\pi)]$.

$$
\mathcal{L}[g(t)]=\frac{1}{\left(s^{2}+1\right)}+e^{-\pi s} \frac{1}{\left(s^{2}+1\right)}
$$

Recall the Laplace transform of the differential equation

$$
\mathcal{L}\left[y^{\prime \prime}\right]+\mathcal{L}\left[y^{\prime}\right]+\frac{5}{4} \mathcal{L}[y]=\mathcal{L}[g] .
$$

The initial conditions imply: $\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]$

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution: So: $\quad \mathcal{L}[g(t)]=\mathcal{L}[u(t) \sin (t)]+\mathcal{L}[u(t-\pi) \sin (t-\pi)]$.

$$
\mathcal{L}[g(t)]=\frac{1}{\left(s^{2}+1\right)}+e^{-\pi s} \frac{1}{\left(s^{2}+1\right)}
$$

Recall the Laplace transform of the differential equation

$$
\mathcal{L}\left[y^{\prime \prime}\right]+\mathcal{L}\left[y^{\prime}\right]+\frac{5}{4} \mathcal{L}[y]=\mathcal{L}[g] .
$$

The initial conditions imply: $\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]$ and $\mathcal{L}\left[y^{\prime}\right]=s \mathcal{L}[y]$.

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty) .\end{cases}
$$

Solution: So: $\mathcal{L}[g(t)]=\mathcal{L}[u(t) \sin (t)]+\mathcal{L}[u(t-\pi) \sin (t-\pi)]$.

$$
\mathcal{L}[g(t)]=\frac{1}{\left(s^{2}+1\right)}+e^{-\pi s} \frac{1}{\left(s^{2}+1\right)}
$$

Recall the Laplace transform of the differential equation

$$
\mathcal{L}\left[y^{\prime \prime}\right]+\mathcal{L}\left[y^{\prime}\right]+\frac{5}{4} \mathcal{L}[y]=\mathcal{L}[g] .
$$

The initial conditions imply: $\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]$ and $\mathcal{L}\left[y^{\prime}\right]=s \mathcal{L}[y]$.
Therefore, $\left(s^{2}+s+\frac{5}{4}\right) \mathcal{L}[y]=\left(1+e^{-\pi s}\right) \frac{1}{\left(s^{2}+1\right)}$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution: Recall: $\left(s^{2}+s+\frac{5}{4}\right) \mathcal{L}[y]=\left(1+e^{-\pi s}\right) \frac{1}{\left(s^{2}+1\right)}$.

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned} y(0) & =0, \\ y^{\prime}(0) & =0,\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: Recall: $\left(s^{2}+s+\frac{5}{4}\right) \mathcal{L}[y]=\left(1+e^{-\pi s}\right) \frac{1}{\left(s^{2}+1\right)}$.

$$
\mathcal{L}[y]=\left(1+e^{-\pi s}\right) \frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)} .
$$

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned} y(0) & =0, \\ y^{\prime}(0) & =0,\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: Recall: $\left(s^{2}+s+\frac{5}{4}\right) \mathcal{L}[y]=\left(1+e^{-\pi s}\right) \frac{1}{\left(s^{2}+1\right)}$.

$$
\mathcal{L}[y]=\left(1+e^{-\pi s}\right) \frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)}
$$

Introduce the function $H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)}$.

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned} y(0) & =0, \\ y^{\prime}(0) & =0,\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: Recall: $\left(s^{2}+s+\frac{5}{4}\right) \mathcal{L}[y]=\left(1+e^{-\pi s}\right) \frac{1}{\left(s^{2}+1\right)}$.

$$
\mathcal{L}[y]=\left(1+e^{-\pi s}\right) \frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)}
$$

Introduce the function $H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)}$.
Then, $y(t)=\mathcal{L}^{-1}[H(s)]+\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]$.

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution: Recall: $y(t)=\mathcal{L}^{-1}[H(s)]+\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]$, and

$$
H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)}
$$

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

$$
\begin{aligned}
& y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution: Recall: $y(t)=\mathcal{L}^{-1}[H(s)]+\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]$, and

$$
H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)}
$$

Partial fractions:

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned} y(0) & =0, \\ y^{\prime}(0) & =0,\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: Recall: $y(t)=\mathcal{L}^{-1}[H(s)]+\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]$, and

$$
H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)} .
$$

Partial fractions: Find the zeros of the denominator,

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned} y(0) & =0, \\ y^{\prime}(0) & =0,\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: Recall: $y(t)=\mathcal{L}^{-1}[H(s)]+\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]$, and

$$
H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)} .
$$

Partial fractions: Find the zeros of the denominator,

$$
s_{ \pm}=\frac{1}{2}[-1 \pm \sqrt{1-5}]
$$

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned} y(0) & =0, \\ y^{\prime}(0) & =0,\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: Recall: $y(t)=\mathcal{L}^{-1}[H(s)]+\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]$, and

$$
H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)} .
$$

Partial fractions: Find the zeros of the denominator,

$$
s_{ \pm}=\frac{1}{2}[-1 \pm \sqrt{1-5}] \Rightarrow \text { Complex roots. }
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned} y(0) & =0, \\ y^{\prime}(0) & =0,\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: Recall: $y(t)=\mathcal{L}^{-1}[H(s)]+\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]$, and

$$
H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)} .
$$

Partial fractions: Find the zeros of the denominator,

$$
s_{ \pm}=\frac{1}{2}[-1 \pm \sqrt{1-5}] \Rightarrow \text { Complex roots. }
$$

The partial fraction decomposition is:

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned} y(0) & =0, \\ y^{\prime}(0) & =0,\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: Recall: $y(t)=\mathcal{L}^{-1}[H(s)]+\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]$, and

$$
H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)} .
$$

Partial fractions: Find the zeros of the denominator,

$$
s_{ \pm}=\frac{1}{2}[-1 \pm \sqrt{1-5}] \Rightarrow \text { Complex roots. }
$$

The partial fraction decomposition is:

$$
\frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)}=\frac{(a s+b)}{\left(s^{2}+s+\frac{5}{4}\right)}+\frac{(c s+d)}{\left(s^{2}+1\right)} .
$$

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned} y(0) & =0, \\ y^{\prime}(0) & =0,\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: So: $\frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)}=\frac{(a s+b)}{\left(s^{2}+s+\frac{5}{4}\right)}+\frac{(c s+d)}{\left(s^{2}+1\right)}$.

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned} y(0) & =0, \\ y^{\prime}(0) & =0,\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: So: $\frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)}=\frac{(a s+b)}{\left(s^{2}+s+\frac{5}{4}\right)}+\frac{(c s+d)}{\left(s^{2}+1\right)}$.
Therefore, we get

$$
1=(a s+b)\left(s^{2}+1\right)+(c s+d)\left(s^{2}+s+\frac{5}{4}\right)
$$

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned} y(0) & =0, \\ y^{\prime}(0) & =0,\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: So: $\frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)}=\frac{(a s+b)}{\left(s^{2}+s+\frac{5}{4}\right)}+\frac{(c s+d)}{\left(s^{2}+1\right)}$.
Therefore, we get

$$
\begin{gathered}
1=(a s+b)\left(s^{2}+1\right)+(c s+d)\left(s^{2}+s+\frac{5}{4}\right) \\
1=(a+c) s^{3}+(b+c+d) s^{2}+\left(a+\frac{5}{4} c+d\right) s+\left(b+\frac{5}{4} d\right) .
\end{gathered}
$$

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned} y(0)=0, \\ y^{\prime}(0)=0,\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: So: $\frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)}=\frac{(a s+b)}{\left(s^{2}+s+\frac{5}{4}\right)}+\frac{(c s+d)}{\left(s^{2}+1\right)}$.
Therefore, we get

$$
\begin{gathered}
1=(a s+b)\left(s^{2}+1\right)+(c s+d)\left(s^{2}+s+\frac{5}{4}\right) \\
1=(a+c) s^{3}+(b+c+d) s^{2}+\left(a+\frac{5}{4} c+d\right) s+\left(b+\frac{5}{4} d\right) .
\end{gathered}
$$

This equation implies that a, b, c, and d, are solutions of

$$
a+c=0, \quad b+c+d=0, \quad a+\frac{5}{4} c+d=0, \quad b+\frac{5}{4} d=1 .
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution: So: $a=\frac{16}{17}, \quad b=\frac{12}{17}, \quad c=-\frac{16}{17}, \quad d=\frac{4}{17}$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution: So: $a=\frac{16}{17}, \quad b=\frac{12}{17}, c=-\frac{16}{17}, \quad d=\frac{4}{17}$.
We have found: $H(s)=\frac{4}{17}\left[\frac{(4 s+3)}{\left(s^{2}+s+\frac{5}{4}\right)}+\frac{(-4 s+1)}{\left(s^{2}+1\right)}\right]$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty) .\end{cases}
$$

Solution: So: $a=\frac{16}{17}, b=\frac{12}{17}, c=-\frac{16}{17}, d=\frac{4}{17}$.
We have found: $H(s)=\frac{4}{17}\left[\frac{(4 s+3)}{\left(s^{2}+s+\frac{5}{4}\right)}+\frac{(-4 s+1)}{\left(s^{2}+1\right)}\right]$.
Complete the square in the denominator,

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution: So: $a=\frac{16}{17}, \quad b=\frac{12}{17}, c=-\frac{16}{17}, \quad d=\frac{4}{17}$.
We have found: $H(s)=\frac{4}{17}\left[\frac{(4 s+3)}{\left(s^{2}+s+\frac{5}{4}\right)}+\frac{(-4 s+1)}{\left(s^{2}+1\right)}\right]$.
Complete the square in the denominator,

$$
s^{2}+s+\frac{5}{4}=\left[s^{2}+2\left(\frac{1}{2}\right) s+\frac{1}{4}\right]-\frac{1}{4}+\frac{5}{4}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution: So: $a=\frac{16}{17}, \quad b=\frac{12}{17}, \quad c=-\frac{16}{17}, \quad d=\frac{4}{17}$.
We have found: $H(s)=\frac{4}{17}\left[\frac{(4 s+3)}{\left(s^{2}+s+\frac{5}{4}\right)}+\frac{(-4 s+1)}{\left(s^{2}+1\right)}\right]$.
Complete the square in the denominator,

$$
s^{2}+s+\frac{5}{4}=\left[s^{2}+2\left(\frac{1}{2}\right) s+\frac{1}{4}\right]-\frac{1}{4}+\frac{5}{4}=\left(s+\frac{1}{2}\right)^{2}+1 .
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned} y(0) & =0, \\ y^{\prime}(0) & =0,\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: So: $a=\frac{16}{17}, b=\frac{12}{17}, c=-\frac{16}{17}, d=\frac{4}{17}$.
We have found: $H(s)=\frac{4}{17}\left[\frac{(4 s+3)}{\left(s^{2}+s+\frac{5}{4}\right)}+\frac{(-4 s+1)}{\left(s^{2}+1\right)}\right]$.
Complete the square in the denominator,

$$
\begin{gathered}
s^{2}+s+\frac{5}{4}=\left[s^{2}+2\left(\frac{1}{2}\right) s+\frac{1}{4}\right]-\frac{1}{4}+\frac{5}{4}=\left(s+\frac{1}{2}\right)^{2}+1 . \\
H(s)=\frac{4}{17}\left[\frac{(4 s+3)}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}+\frac{(-4 s+1)}{\left(s^{2}+1\right)}\right] .
\end{gathered}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
\begin{aligned}
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), & y(0)=0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution: So: $H(s)=\frac{4}{17}\left[\frac{(4 s+3)}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}+\frac{(-4 s+1)}{\left(s^{2}+1\right)}\right]$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad y(0)=0, \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: So: $H(s)=\frac{4}{17}\left[\frac{(4 s+3)}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}+\frac{(-4 s+1)}{\left(s^{2}+1\right)}\right]$.
Rewrite the polynomial in the numerator,

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad y(0)=0, \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: So: $H(s)=\frac{4}{17}\left[\frac{(4 s+3)}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}+\frac{(-4 s+1)}{\left(s^{2}+1\right)}\right]$.
Rewrite the polynomial in the numerator,

$$
(4 s+3)=4\left(s+\frac{1}{2}-\frac{1}{2}\right)+3
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad y(0)=0, \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: So: $H(s)=\frac{4}{17}\left[\frac{(4 s+3)}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}+\frac{(-4 s+1)}{\left(s^{2}+1\right)}\right]$.
Rewrite the polynomial in the numerator,

$$
(4 s+3)=4\left(s+\frac{1}{2}-\frac{1}{2}\right)+3=4\left(s+\frac{1}{2}\right)+1
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty) .\end{cases}
$$

Solution: So: $H(s)=\frac{4}{17}\left[\frac{(4 s+3)}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}+\frac{(-4 s+1)}{\left(s^{2}+1\right)}\right]$.
Rewrite the polynomial in the numerator,

$$
\begin{gathered}
(4 s+3)=4\left(s+\frac{1}{2}-\frac{1}{2}\right)+3=4\left(s+\frac{1}{2}\right)+1, \\
H(s)=\frac{4}{17}\left[4 \frac{\left(s+\frac{1}{2}\right)}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}+\frac{1}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}-4 \frac{s}{\left(s^{2}+1\right)}+\frac{1}{\left(s^{2}+1\right)}\right],
\end{gathered}
$$

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty) .\end{cases}
$$

Solution:
$H(s)=\frac{4}{17}\left[4 \frac{\left(s+\frac{1}{2}\right)}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}+\frac{1}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}-4 \frac{s}{\left(s^{2}+1\right)}+\frac{1}{\left(s^{2}+1\right)}\right]$,

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty) .\end{cases}
$$

Solution:
$H(s)=\frac{4}{17}\left[4 \frac{\left(s+\frac{1}{2}\right)}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}+\frac{1}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}-4 \frac{s}{\left(s^{2}+1\right)}+\frac{1}{\left(s^{2}+1\right)}\right]$,
Use the Laplace Transform table to get $H(s)$ equal to
$H(s)=\frac{4}{17}\left[4 \mathcal{L}\left[e^{-t / 2} \cos (t)\right]+\mathcal{L}\left[e^{-t / 2} \sin (t)\right]-4 \mathcal{L}[\cos (t)]+\mathcal{L}[\sin (t)]\right]$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty) .\end{cases}
$$

Solution:
$H(s)=\frac{4}{17}\left[4 \frac{\left(s+\frac{1}{2}\right)}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}+\frac{1}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}-4 \frac{s}{\left(s^{2}+1\right)}+\frac{1}{\left(s^{2}+1\right)}\right]$,
Use the Laplace Transform table to get $H(s)$ equal to

$$
\begin{aligned}
& H(s)=\frac{4}{17}\left[4 \mathcal{L}\left[e^{-t / 2} \cos (t)\right]+\mathcal{L}\left[e^{-t / 2} \sin (t)\right]-4 \mathcal{L}[\cos (t)]+\mathcal{L}[\sin (t)]\right] . \\
& H(s)=\mathcal{L}\left[\frac{4}{17}\left(4 e^{-t / 2} \cos (t)+e^{-t / 2} \sin (t)-4 \cos (t)+\sin (t)\right)\right] .
\end{aligned}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution: Recall:

$$
H(s)=\mathcal{L}\left[\frac{4}{17}\left(4 e^{-t / 2} \cos (t)+e^{-t / 2} \sin (t)-4 \cos (t)+\sin (t)\right)\right]
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution: Recall:

$$
H(s)=\mathcal{L}\left[\frac{4}{17}\left(4 e^{-t / 2} \cos (t)+e^{-t / 2} \sin (t)-4 \cos (t)+\sin (t)\right)\right]
$$

Denote:

$$
h(t)=\frac{4}{17}\left[4 e^{-t / 2} \cos (t)+e^{-t / 2} \sin (t)-4 \cos (t)+\sin (t)\right] .
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution: Recall:

$$
H(s)=\mathcal{L}\left[\frac{4}{17}\left(4 e^{-t / 2} \cos (t)+e^{-t / 2} \sin (t)-4 \cos (t)+\sin (t)\right)\right]
$$

Denote:

$$
h(t)=\frac{4}{17}\left[4 e^{-t / 2} \cos (t)+e^{-t / 2} \sin (t)-4 \cos (t)+\sin (t)\right] .
$$

Then, $H(s)=\mathcal{L}[h(t)]$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall:

$$
H(s)=\mathcal{L}\left[\frac{4}{17}\left(4 e^{-t / 2} \cos (t)+e^{-t / 2} \sin (t)-4 \cos (t)+\sin (t)\right)\right] .
$$

Denote:

$$
h(t)=\frac{4}{17}\left[4 e^{-t / 2} \cos (t)+e^{-t / 2} \sin (t)-4 \cos (t)+\sin (t)\right] .
$$

Then, $H(s)=\mathcal{L}[h(t)]$. Recalling: $\mathcal{L}[y(t)]=H(s)+e^{-\pi s} H(s)$,

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall:

$$
H(s)=\mathcal{L}\left[\frac{4}{17}\left(4 e^{-t / 2} \cos (t)+e^{-t / 2} \sin (t)-4 \cos (t)+\sin (t)\right)\right] .
$$

Denote:

$$
h(t)=\frac{4}{17}\left[4 e^{-t / 2} \cos (t)+e^{-t / 2} \sin (t)-4 \cos (t)+\sin (t)\right] .
$$

Then, $H(s)=\mathcal{L}[h(t)]$. Recalling: $\mathcal{L}[y(t)]=H(s)+e^{-\pi s} H(s)$,

$$
\mathcal{L}[y(t)]=\mathcal{L}[h(t)]+e^{-\pi s} \mathcal{L}[h(t)] .
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall:

$$
H(s)=\mathcal{L}\left[\frac{4}{17}\left(4 e^{-t / 2} \cos (t)+e^{-t / 2} \sin (t)-4 \cos (t)+\sin (t)\right)\right] .
$$

Denote:

$$
h(t)=\frac{4}{17}\left[4 e^{-t / 2} \cos (t)+e^{-t / 2} \sin (t)-4 \cos (t)+\sin (t)\right] .
$$

Then, $H(s)=\mathcal{L}[h(t)]$. Recalling: $\mathcal{L}[y(t)]=H(s)+e^{-\pi s} H(s)$,

$$
\mathcal{L}[y(t)]=\mathcal{L}[h(t)]+e^{-\pi s} \mathcal{L}[h(t)] .
$$

We conclude: $y(t)=h(t)+u(t-\pi) h(t-\pi)$.

