Review for Exam 2.

▶ 5 problems.
▶ No multiple choice questions.
▶ No notes, no books, no calculators.
▶ Problems similar to homeworks.
▶ Exam covers:
 ▶ Regular-singular points (5.5).
 ▶ Euler differential equation (5.4).
 ▶ Power series solutions (5.2).
 ▶ Variation of parameters (3.6).
 ▶ Undetermined coefficients (3.5)
 ▶ Constant coefficients, homogeneous, (3.1)-(3.4).
Regular-singular points (5.5).

Summary:
Regular-singular points (5.5).

Summary:

- Look for solutions $y(x) = \sum_{n=0}^{\infty} a_n(x - x_0)^{(n+r)}$.
Regular-singular points (5.5).

Summary:

- Look for solutions \(y(x) = \sum_{n=0}^{\infty} a_n(x - x_0)^{(n+r)} \).
- Recall: Since \(r \neq 0 \), holds
 \[
y' = \sum_{n=0}^{\infty} (n+r)a_n(x - x_0)^{(n+r-1)} \neq \sum_{n=1}^{\infty} (n+r)a_n(x - x_0)^{(n+r-1)},
 \]
Regular-singular points (5.5).

Summary:

► Look for solutions $y(x) = \sum_{n=0}^{\infty} a_n(x - x_0)^{(n+r)}$.

► Recall: Since $r \neq 0$, holds

$$y' = \sum_{n=0}^{\infty} (n+r)a_n(x - x_0)^{(n+r-1)} \neq \sum_{n=1}^{\infty} (n+r)a_n(x - x_0)^{(n+r-1)},$$

► Find the indicial equation for r, the recurrence relation for a_n.

(a) If $(r + r - r - 1)$ is not an integer, then each $r + r$ and $r - r$ define linearly independent solutions.

(b) If $(r + r - r - 1)$ is an integer, then both $r + r$ and $r - r$ define proportional solutions.
Regular-singular points (5.5).

Summary:

- Look for solutions \(y(x) = \sum_{n=0}^{\infty} a_n(x - x_0)^{(n+r)} \).
- Recall: Since \(r \neq 0 \), holds
 \[
 y' = \sum_{n=0}^{\infty} (n+r)a_n(x-x_0)^{(n+r-1)} \neq \sum_{n=1}^{\infty} (n+r)a_n(x-x_0)^{(n+r-1)},
 \]
- Find the indicial equation for \(r \), the recurrence relation for \(a_n \).
- Introduce the larger root \(r_+ \) of the indicial polynomial into the recurrence relation and solve for \(a_n \).
Regular-singular points (5.5).

Summary:

► Look for solutions \(y(x) = \sum_{n=0}^{\infty} a_n(x - x_0)^{(n+r)} \).

► Recall: Since \(r \neq 0 \), holds

\[
y' = \sum_{n=0}^{\infty} (n+r)a_n(x-x_0)^{(n+r-1)} \neq \sum_{n=1}^{\infty} (n+r)a_n(x-x_0)^{(n+r-1)},
\]

► Find the indicial equation for \(r \), the recurrence relation for \(a_n \).

► Introduce the larger root \(r_+ \) of the indicial polynomial into the recurrence relation and solve for \(a_n \).

(a) If \((r_+ - r_-) \) is not an integer, then each \(r_+ \) and \(r_- \) define linearly independent solutions.
Summary:

- Look for solutions \(y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^{(n+r)} \).
- Recall: Since \(r \neq 0 \), holds
 \[
y' = \sum_{n=0}^{\infty} (n+r)a_n (x - x_0)^{(n+r-1)} \neq \sum_{n=1}^{\infty} (n+r)a_n (x - x_0)^{(n+r-1)},
 \]
- Find the indicial equation for \(r \), the recurrence relation for \(a_n \).
- Introduce the larger root \(r_+ \) of the indicial polynomial into the recurrence relation and solve for \(a_n \).

 (a) If \((r_+ - r_-)\) is not an integer, then each \(r_+ \) and \(r_- \) define linearly independent solutions.

 (b) If \((r_+ - r_-)\) is an integer, then both \(r_+ \) and \(r_- \) define proportional solutions.
Regular-singular points (5.5).

Example
Consider the equation \(x^2 y'' + \left(x^2 + \frac{1}{4} \right) y = 0 \). Use a power series centered at the regular-singular point \(x_0 = 0 \) to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.
Regular-singular points (5.5).

Example
Consider the equation \(x^2 y'' + \left(x^2 + \frac{1}{4} \right) y = 0 \). Use a power series centered at the regular-singular point \(x_0 = 0 \) to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution: \(y = \sum_{n=0}^{\infty} a_n x^{(n+r)} \),
Regular-singular points (5.5).

Example
Consider the equation $x^2 y'' + \left(x^2 + \frac{1}{4}\right)y = 0$. Use a power series centered at the regular-singular point $x_0 = 0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution: $y = \sum_{n=0}^{\infty} a_n x^{(n+r)}$, $y'' = \sum_{n=0}^{\infty} (n + r)(n + r - 1)a_n x^{(n+r-2)}$, $x^2 y'' = \sum_{n=0}^{\infty} (n + r)(n + r - 1)a_n x^{(n+r-2)}$, $\left(x^2 + \frac{1}{4}\right)y = \sum_{n=0}^{\infty} a_n x^{(n+r)+2} + \sum_{n=0}^{\infty} \frac{1}{4} a_n x^{(n+r)}$.
Regular-singular points (5.5).

Example
Consider the equation \(x^2 y'' + \left(x^2 + \frac{1}{4} \right) y = 0 \). Use a power series centered at the regular-singular point \(x_0 = 0 \) to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution: \(y = \sum_{n=0}^{\infty} a_n x^{(n+r)}, \ y'' = \sum_{n=0}^{\infty} (n + r)(n + r - 1) a_n x^{(n+r-2)}, \ x^2 y'' = \sum_{n=0}^{\infty} (n + r)(n + r - 1) a_n x^{(n+r)} \)
Regular-singular points (5.5).

Example
Consider the equation \(x^2 y'' + \left(x^2 + \frac{1}{4} \right) y = 0 \). Use a power series centered at the regular-singular point \(x_0 = 0 \) to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution:
\[
y = \sum_{n=0}^{\infty} a_n x^{(n+r)}, \quad y'' = \sum_{n=0}^{\infty} (n + r)(n + r - 1)a_n x^{(n+r-2)},
\]

\[
x^2 y'' = \sum_{n=0}^{\infty} (n + r)(n + r - 1)a_n x^{(n+r)}
\]

We also need to compute
\[
\left(x^2 + \frac{1}{4} \right) y = \sum_{n=0}^{\infty} a_n x^{(n+r+2)} + \sum_{n=0}^{\infty} \frac{1}{4} a_n x^{(n+r)},
\]

Regular-singular points (5.5).

Example
Consider the equation $x^2 y'' + \left(x^2 + \frac{1}{4}\right) y = 0$. Use a power series centered at the regular-singular point $x_0 = 0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution: \(\left(x^2 + \frac{1}{4}\right)y = \sum_{n=0}^{\infty} a_n x^{n+r+2} + \sum_{n=0}^{\infty} \frac{1}{4} a_n x^{n+r}. \)
Regular-singular points (5.5).

Example
Consider the equation $x^2 y'' + \left(x^2 + \frac{1}{4}\right) y = 0$. Use a power series centered at the regular-singular point $x_0 = 0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution: $\left(x^2 + \frac{1}{4}\right) y = \sum_{n=0}^{\infty} a_n x^{n+r+2} + \sum_{n=0}^{\infty} \frac{1}{4} a_n x^{n+r}$.

Re-label $m = n + 2$ in the first term and then switch back to $n,$
Regular-singular points (5.5).

Example
Consider the equation $x^2 y'' + \left(x^2 + \frac{1}{4}\right) y = 0$. Use a power series centered at the regular-singular point $x_0 = 0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution: \[
\left(x^2 + \frac{1}{4}\right) y = \sum_{n=0}^{\infty} a_n x^{(n+r+2)} + \sum_{n=0}^{\infty} \frac{1}{4} a_n x^{(n+r)}.
\]

Re-label $m = n + 2$ in the first term and then switch back to n,

\[
\left(x^2 + \frac{1}{4}\right) y = \sum_{n=2}^{\infty} a_{(n-2)} x^{(n+r)} + \sum_{n=0}^{\infty} \frac{1}{4} a_n x^{(n+r)},
\]
Regular-singular points (5.5).

Example
Consider the equation $x^2 y'' + \left(x^2 + \frac{1}{4}\right) y = 0$. Use a power series centered at the regular-singular point $x_0 = 0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution: $\left(x^2 + \frac{1}{4}\right) y = \sum_{n=0}^{\infty} a_n x^{(n+r+2)} + \sum_{n=0}^{\infty} \frac{1}{4} a_n x^{(n+r)}$.

Re-label $m = n + 2$ in the first term and then switch back to n,

$$\left(x^2 + \frac{1}{4}\right) y = \sum_{n=2}^{\infty} a_{(n-2)} x^{(n+r)} + \sum_{n=0}^{\infty} \frac{1}{4} a_n x^{(n+r)},$$

The equation is

$$\sum_{n=0}^{\infty} (n+r)(n+r-1) a_n x^{(n+r)} + \sum_{n=2}^{\infty} a_{(n-2)} x^{(n+r)} + \sum_{n=0}^{\infty} \frac{1}{4} a_n x^{(n+r)} = 0.$$
Regular-singular points (5.5).

Example
Consider the equation $x^2 y'' + \left(x^2 + \frac{1}{4} \right) y = 0$. Use a power series centered at the regular-singular point $x_0 = 0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution:
\[
\sum_{n=0}^{\infty} (n+r)(n+r-1)a_n x^{(n+r)} + \sum_{n=2}^{\infty} a_{(n-2)} x^{(n+r)} + \sum_{n=0}^{\infty} \frac{1}{4} a_n x^{(n+r)} = 0.
\]
Regular-singular points (5.5).

Example
Consider the equation $x^2 y'' + \left(x^2 + \frac{1}{4}\right) y = 0$. Use a power series centered at the regular-singular point $x_0 = 0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution:
$$\sum_{n=0}^{\infty} (n+r)(n+r-1) a_n x^{(n+r)} + \sum_{n=2}^{\infty} a_{(n-2)} x^{(n+r)} + \sum_{n=0}^{\infty} \frac{1}{4} a_n x^{(n+r)} = 0.$$

$$\left[r(r-1) + \frac{1}{4}\right] a_0 x^r + \left[(r + 1)r + \frac{1}{4}\right] a_1 x^{(r+1)} +$$

$$\sum_{n=2}^{\infty} \left[(n + r)(n + r - 1) a_n + a_{(n-2)} + \frac{1}{4} a_n\right] x^{(n+r)} = 0.$$
Example
Consider the equation $x^2 y'' + \left(x^2 + \frac{1}{4} \right) y = 0$. Use a power series centered at the regular-singular point $x_0 = 0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution:
\[
\begin{align*}
[r(r - 1) + \frac{1}{4}] a_0 &= 0,
[(r + 1)r + \frac{1}{4}] a_1 &= 0,
[(n + r)(n + r - 1) + \frac{1}{4}] a_n + a_{(n-2)} &= 0.
\end{align*}
\]
Regular-singular points (5.5).

Example
Consider the equation \(x^2 y'' + \left(x^2 + \frac{1}{4} \right) y = 0 \). Use a power series centered at the regular-singular point \(x_0 = 0 \) to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution:
\[
\begin{align*}
[r(r - 1) + \frac{1}{4}] a_0 &= 0, \\
[(r + 1)r + \frac{1}{4}] a_1 &= 0, \\
[(n + r)(n + r - 1) + \frac{1}{4}] a_n + a_{(n-2)} &= 0.
\end{align*}
\]

The indicial equation \(r^2 - r + \frac{1}{4} = 0 \) implies \(r_\pm = \frac{1}{2} \).
Regular-singular points (5.5).

Example
Consider the equation \(x^2 y'' + \left(x^2 + \frac{1}{4} \right) y = 0 \). Use a power series centered at the regular-singular point \(x_0 = 0 \) to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution:
\[
\begin{align*}
[r(r-1) + \frac{1}{4}] a_0 &= 0, \\
[(r+1)r + \frac{1}{4}] a_1 &= 0, \\
[(n+r)(n+r-1) + \frac{1}{4}] a_n + a_{(n-2)} &= 0.
\end{align*}
\]

The indicial equation \(r^2 - r + \frac{1}{4} = 0 \) implies \(r_\pm = \frac{1}{2} \).

The indicial equation \(r^2 + r + \frac{1}{4} = 0 \) implies \(r_\pm = -\frac{1}{2} \).
Example
Consider the equation $x^2 y'' + \left(x^2 + \frac{1}{4}\right) y = 0$. Use a power series centered at the regular-singular point $x_0 = 0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution:
\[r(r - 1) + \frac{1}{4} a_0 = 0, \quad (r + 1) r + \frac{1}{4} a_1 = 0, \]
\[(n + r)(n + r - 1) + \frac{1}{4} a_n + a_{(n-2)} = 0. \]

The indicial equation $r^2 - r + \frac{1}{4} = 0$ implies $r_\pm = \frac{1}{2}$.

The indicial equation $r^2 + r + \frac{1}{4} = 0$ implies $r_\pm = -\frac{1}{2}$.

Choose $r = \frac{1}{2}$.

Regular-singular points (5.5).
Regular-singular points (5.5).

Example
Consider the equation \(x^2 y'' + \left(x^2 + \frac{1}{4} \right) y = 0 \). Use a power series centered at the regular-singular point \(x_0 = 0 \) to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution:
\[
\begin{align*}
\left[r(r - 1) + \frac{1}{4} \right] a_0 &= 0, \\
\left[(r + 1)r + \frac{1}{4} \right] a_1 &= 0, \\
\left[(n + r)(n + r - 1) + \frac{1}{4} \right] a_n + a_{n-2} &= 0.
\end{align*}
\]

The indicial equation \(r^2 - r + \frac{1}{4} = 0 \) implies \(r_{\pm} = \frac{1}{2} \).

The indicial equation \(r^2 + r + \frac{1}{4} = 0 \) implies \(r_{\pm} = -\frac{1}{2} \).

Choose \(r = \frac{1}{2} \). That implies \(a_0 \) arbitrary.
Example
Consider the equation $x^2 y'' + \left(x^2 + \frac{1}{4}\right) y = 0$. Use a power series centered at the regular-singular point $x_0 = 0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution:

\[
\begin{align*}
[r(r-1) + \frac{1}{4}] a_0 &= 0, \\
[(r+1)r + \frac{1}{4}] a_1 &= 0, \\
[(n+r)(n+r-1) + \frac{1}{4}] a_n + a_{(n-2)} &= 0.
\end{align*}
\]

The indicial equation $r^2 - r + \frac{1}{4} = 0$ implies $r_\pm = \frac{1}{2}$.

The indicial equation $r^2 + r + \frac{1}{4} = 0$ implies $r_\pm = -\frac{1}{2}$.

Choose $r = \frac{1}{2}$. That implies a_0 arbitrary and $a_1 = 0$.

Regular-singular points (5.5).
Regular-singular points (5.5).

Example
Consider the equation \(x^2 y'' + \left(x^2 + \frac{1}{4} \right) y = 0 \). Use a power series centered at the regular-singular point \(x_0 = 0 \) to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution: \(r = \frac{1}{2}, \ a_1 = 0, \ (n + r)(n + r - 1) + \frac{1}{4} a_n = -a_{(n-2)}. \)
Regular-singular points (5.5).

Example
Consider the equation \(x^2 y'' + \left(x^2 + \frac{1}{4} \right) y = 0 \). Use a power series centered at the regular-singular point \(x_0 = 0 \) to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution: \(r = \frac{1}{2}, \ a_1 = 0, \ \left[(n + r)(n + r - 1) + \frac{1}{4} \right] a_n = -a_{(n-2)} \).

\[
\left[\left(n + \frac{1}{2} \right) \left(n - \frac{1}{2} \right) + \frac{1}{4} \right] a_n = -a_{(n-2)}
\]
Regular-singular points (5.5).

Example
Consider the equation \(x^2 y'' + \left(x^2 + \frac{1}{4} \right) y = 0 \). Use a power series centered at the regular-singular point \(x_0 = 0 \) to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution: \(r = \frac{1}{2}, \quad a_1 = 0, \quad \left[(n + r)(n + r - 1) + \frac{1}{4} \right] a_n = -a_{(n-2)}. \)

\[
\left[\left(n + \frac{1}{2} \right) \left(n - \frac{1}{2} \right) + \frac{1}{4} \right] a_n = -a_{(n-2)} \Rightarrow \left[n^2 - \frac{1}{4} + \frac{1}{4} \right] a_n = -a_{(n-2)}
\]
Regular-singular points (5.5).

Example
Consider the equation \(x^2 y'' + \left(x^2 + \frac{1}{4} \right) y = 0 \). Use a power series centered at the regular-singular point \(x_0 = 0 \) to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution: \(r = \frac{1}{2}, \ a_1 = 0, \ \left[(n + r)(n + r - 1) + \frac{1}{4} \right] a_n = -a_{(n-2)}. \)

\[
\left[\left(n+\frac{1}{2} \right) \left(n-\frac{1}{2} \right) + \frac{1}{4} \right] a_n = -a_{(n-2)} \quad \Rightarrow \quad \left[n^2 - \frac{1}{4} + \frac{1}{4} \right] a_n = -a_{(n-2)}
\]

\[n^2 a_n = -a_{(n-2)} \]
Regular-singular points (5.5).

Example
Consider the equation \(x^2 y'' + \left(x^2 + \frac{1}{4} \right) y = 0 \). Use a power series centered at the regular-singular point \(x_0 = 0 \) to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution: \(r = \frac{1}{2}, \ a_1 = 0, \ \left[(n + r)(n + r - 1) + \frac{1}{4} \right] a_n = -a_{(n-2)}. \)

\[
\left[\left(n + \frac{1}{2} \right) \left(n - \frac{1}{2} \right) + \frac{1}{4} \right] a_n = -a_{(n-2)} \Rightarrow \left[n^2 - \frac{1}{4} + \frac{1}{4} \right] a_n = -a_{(n-2)}
\]

\[
n^2 a_n = -a_{(n-2)} \Rightarrow a_n = -\frac{a_{(n-2)}}{n^2}
\]
Example
Consider the equation \(x^2 y'' + \left(x^2 + \frac{1}{4} \right) y = 0 \). Use a power series centered at the regular-singular point \(x_0 = 0 \) to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution: \(r = \frac{1}{2}, \ a_1 = 0, \ \left[(n + r)(n + r - 1) + \frac{1}{4} \right] a_n = -a_{(n-2)} \).

\[
\left[\left(n + \frac{1}{2} \right) \left(n - \frac{1}{2} \right) + \frac{1}{4} \right] a_n = -a_{(n-2)} \Rightarrow \left[n^2 - \frac{1}{4} + \frac{1}{4} \right] a_n = -a_{(n-2)}
\]

\[n^2 a_n = -a_{(n-2)} \Rightarrow a_n = -\frac{a_{(n-2)}}{n^2} \Rightarrow \begin{cases} a_2 = -\frac{a_0}{4}, \\ a_4 = -\frac{a_2}{16} \end{cases} \]
Regular-singular points (5.5).

Example
Consider the equation $x^2 y'' + \left(x^2 + \frac{1}{4}\right) y = 0$. Use a power series centered at the regular-singular point $x_0 = 0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution: $r = \frac{1}{2}, \quad a_1 = 0, \quad \left[(n + r)(n + r - 1) + \frac{1}{4}\right]a_n = -a_{(n-2)}$.

\[
\left[\left(n + \frac{1}{2}\right)\left(n - \frac{1}{2}\right) + \frac{1}{4}\right]a_n = -a_{(n-2)} \Rightarrow \left[n^2 - \frac{1}{4} + \frac{1}{4}\right]a_n = -a_{(n-2)}
\]

\[
n^2 a_n = -a_{(n-2)} \Rightarrow a_n = -\frac{a_{(n-2)}}{n^2} \Rightarrow \begin{cases} a_2 = -\frac{a_0}{4}, \\ a_4 = -\frac{a_2}{16} = \frac{a_0}{64}. \end{cases}
\]
Regular-singular points (5.5).

Example
Consider the equation \(x^2 y'' + \left(x^2 + \frac{1}{4} \right) y = 0 \). Use a power series centered at the regular-singular point \(x_0 = 0 \) to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution: \(r = \frac{1}{2}, \ a_1 = 0, \ a_2 = -\frac{a_0}{4}, \ \text{and} \ a_4 = \frac{a_0}{64} \).
Regular-singular points (5.5).

Example
Consider the equation \(x^2 y'' + \left(x^2 + \frac{1}{4} \right) y = 0 \). Use a power series centered at the regular-singular point \(x_0 = 0 \) to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution: \(r = \frac{1}{2}, \ a_1 = 0, \ a_2 = -\frac{a_0}{4}, \) and \(a_4 = \frac{a_0}{64} \). Then,

\[
y(x) = x^r \left(a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + \cdots \right).
\]
Regular-singular points (5.5).

Example
Consider the equation $x^2 y'' + \left(x^2 + \frac{1}{4}\right) y = 0$. Use a power series centered at the regular-singular point $x_0 = 0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution: $r = \frac{1}{2}$, $a_1 = 0$, $a_2 = -\frac{a_0}{4}$, and $a_4 = \frac{a_0}{64}$. Then,

$$y(x) = x^r \left(a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + \cdots \right).$$

Recall: $a_1 = 0$ and the recurrence relation imply $a_n = 0$ for n odd.
Example
Consider the equation \(x^2 y'' + \left(x^2 + \frac{1}{4} \right) y = 0 \). Use a power series centered at the regular-singular point \(x_0 = 0 \) to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution: \(r = \frac{1}{2} \), \(a_1 = 0 \), \(a_2 = -\frac{a_0}{4} \), and \(a_4 = \frac{a_0}{64} \). Then,

\[
y(x) = x^r \left(a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + \cdots \right).
\]

Recall: \(a_1 = 0 \) and the recurrence relation imply \(a_n = 0 \) for \(n \) odd. Therefore,

\[
y(x) = a_0 x^{1/2} \left(1 - \frac{1}{4} x^2 + \frac{1}{64} x^4 + \cdots \right). \quad \triangleleft
\]
Review for Exam 2.

- 5 problems.
- No multiple choice questions.
- No notes, no books, no calculators.
- Problems similar to homeworks.
- Exam covers:
 - Regular-singular points (5.5).
 - **Euler differential equation (5.4).**
 - Power series solutions (5.2).
 - Variation of parameters (3.6).
 - Undetermined coefficients (3.5)
 - Constant coefficients, homogeneous, (3.1)-(3.4).
Euler differential equation (5.4).

Summary:
Euler differential equation (5.4).

Summary:

\[(x - x_0)^2 y'' + (x - x_0) p_0 y' + q_0 y = 0. \]
Euler differential equation (5.4).

Summary:

- $(x - x_0)^2 y'' + (x - x_0)p_0 y' + q_0 y = 0$.
- Find r_{\pm} solutions of $r(r - 1) + p_0 r + q_0 = 0$.
Euler differential equation (5.4).

Summary:
- $(x - x_0)^2 y'' + (x - x_0)p_0 y' + q_0 y = 0$.
- Find r_{\pm} solutions of $r(r - 1) + p_0 r + q_0 = 0$.
- If $r_+ \neq r_-$ and both are real, then fundamental solutions are
 \[y_+ = |x - x_0|^{r_+}, \quad y_- = |x - x_0|^{r_-}. \]
Euler differential equation (5.4).

Summary:

- \((x - x_0)^2 y'' + (x - x_0)p_0 y' + q_0 y = 0\).
- Find \(r_\pm\) solutions of \(r(r - 1) + p_0 r + q_0 = 0\).
- If \(r_+ \neq r_-\) and both are real, then fundamental solutions are
 \[y_+ = |x - x_0|^{r_+}, \quad y_- = |x - x_0|^{r_-}. \]
- If \(r_\pm = \alpha \pm i\beta\), then real-valued fundamental solutions are
 \[y_+ = |x - x_0|^\alpha \cos(\beta \ln |x - x_0|), \quad y_- = |x - x_0|^\alpha \sin(\beta \ln |x - x_0|). \]
Euler differential equation (5.4).

Summary:
- \((x - x_0)^2 y'' + (x - x_0)p_0 \, y' + q_0 \, y = 0\).
- Find \(r_{\pm}\) solutions of \(r(r - 1) + p_0 \, r + q_0 = 0\).
- If \(r_+ \neq r_-\) and both are real, then fundamental solutions are
 \[y_+ = |x - x_0|^{r_+}, \quad y_- = |x - x_0|^{r_-}. \]
- If \(r_{\pm} = \alpha \pm i\beta\), then real-valued fundamental solutions are
 \[y_+ = |x-x_0|^\alpha \cos(\beta \ln |x-x_0|), \quad y_- = |x-x_0|^\alpha \sin(\beta \ln |x-x_0|). \]
- If \(r_+ = r_-\) and both are real, then fundamental solutions are
 \[y_+ = |x - x_0|^{r_+}, \quad y_- = |x - x_0|^{r_+} \ln |x - x_0|. \]
Euler differential equation (5.4).

Example
Find real-valued fundamental solutions of

$$(x - 2)^2 y'' + 5(x - 2) y' + 8 y = 0.$$
Example
Find real-valued fundamental solutions of

\[(x - 2)^2 y'' + 5(x - 2)y' + 8y = 0.\]

Solution: This is an Euler equation.
Example
Find real-valued fundamental solutions of
\[(x - 2)^2 y'' + 5(x - 2)y' + 8y = 0.\]

Solution: This is an Euler equation. Find \(r \) solution of
\[r(r - 1) + 5r + 8 = 0,\]
Euler differential equation (5.4).

Example
Find real-valued fundamental solutions of

\[(x - 2)^2 y'' + 5(x - 2) y' + 8 y = 0.\]

Solution: This is an Euler equation. Find \(r\) solution of \(r(r - 1) + 5r + 8 = 0\), that is, \(r^2 + 4r + 8 = 0\),
Euler differential equation (5.4).

Example
Find real-valued fundamental solutions of

\[(x - 2)^2 y'' + 5(x - 2) y' + 8 y = 0.\]

Solution: This is an Euler equation. Find \(r \) solution of

\[r(r - 1) + 5r + 8 = 0, \text{ that is, } r^2 + 4r + 8 = 0,\]

\[r_{\pm} = \frac{1}{2} \left[-4 \pm \sqrt{16 - 32}\right]\]
Example

Find real-valued fundamental solutions of

\[(x - 2)^2 y'' + 5(x - 2) y' + 8y = 0.\]

Solution: This is an Euler equation. Find \(r \) solution of \(r(r - 1) + 5r + 8 = 0 \), that is, \(r^2 + 4r + 8 = 0 \),

\[
\begin{align*}
r_{\pm} &= \frac{1}{2} \left[-4 \pm \sqrt{16 - 32} \right] \\
&= -2 \pm 2i.
\end{align*}
\]
Euler differential equation (5.4).

Example
Find real-valued fundamental solutions of
\[(x - 2)^2 y'' + 5(x - 2) y' + 8y = 0.\]

Solution: This is an Euler equation. Find \(r \) solution of \(r(r - 1) + 5r + 8 = 0 \), that is, \(r^2 + 4r + 8 = 0 \),
\[r_{\pm} = \frac{1}{2} \left[-4 \pm \sqrt{16 - 32} \right] \Rightarrow r_{\pm} = -2 \pm 2i.\]

Real valued fundamental solutions are
\[y_+(x) = |x - 2|^{-2} \cos(2 \ln |x - 2|),\]
\[y_-(x) = |x - 2|^{-2} \sin(2 \ln |x - 2|).\]
Review for Exam 2.

- 5 problems.
- No multiple choice questions.
- No notes, no books, no calculators.
- Problems similar to homeworks.
- Exam covers:
 - Regular-singular points (5.5).
 - Euler differential equation (5.4).
 - **Power series solutions (5.2).**
 - Variation of parameters (3.6).
 - Undetermined coefficients (3.5)
 - Constant coefficients, homogeneous, (3.1)-(3.4).
Power series solutions (5.2).

Example
Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $(4 - x^2) y'' + 2y = 0$.

Solution:
We look for solutions $y = \sum_{n=0}^{\infty} a_n x^n$. Therefore, $y'' = \sum_{n=0}^{\infty} n(n-1) a_n x^{n-2}$. The differential equation is then given by $(4 - x^2) \sum_{n=0}^{\infty} n(n-1) a_n x^{n-2} + 2 \sum_{n=0}^{\infty} a_n x^n = 0$,
Power series solutions (5.2).

Example
Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $(4 - x^2)y'' + 2y = 0$.

Solution: We look for solutions $y = \sum_{n=0}^{\infty} a_n x^n$.

[Equations]

[Equations]
Power series solutions (5.2).

Example
Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $(4 - x^2) y'' + 2y = 0$.

Solution: We look for solutions $y = \sum_{n=0}^{\infty} a_n x^n$. Therefore,

$$y'' = \sum_{n=0}^{\infty} n(n-1) a_n x^{n-2}$$
Power series solutions (5.2).

Example
Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $(4 - x^2) y'' + 2y = 0$.

Solution: We look for solutions $y = \sum_{n=0}^{\infty} a_n x^n$. Therefore,

$$y'' = \sum_{n=0}^{\infty} n(n-1)a_n x^{(n-2)}$$

The differential equation is then given by

$$(4 - x^2) \sum_{n=0}^{\infty} n(n-1)a_n x^{(n-2)} + 2 \sum_{n=0}^{\infty} a_n x^n = 0,$$
Power series solutions (5.2).

Example

Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $(4 - x^2) y'' + 2y = 0$.

Solution: We look for solutions $y = \sum_{n=0}^{\infty} a_n x^n$. Therefore,

$$y'' = \sum_{n=0}^{\infty} n(n-1)a_n x^{n-2}$$

The differential equation is then given by

$$(4 - x^2) \sum_{n=0}^{\infty} n(n-1)a_n x^{n-2} + 2 \sum_{n=0}^{\infty} a_n x^n = 0,$$

$$\sum_{n=0}^{\infty} 4n(n-1)a_n x^{n-2} - \sum_{n=0}^{\infty} n(n-1)a_n x^n + \sum_{n=0}^{\infty} 2a_n x^n = 0.$$
Power series solutions (5.2).

Example
Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $(4 - x^2) y'' + 2y = 0$.

Solution:
\[
\sum_{n=2}^{\infty} 4n(n-1)a_n x^{n-2} - \sum_{n=0}^{\infty} n(n-1)a_n x^n + \sum_{n=0}^{\infty} 2a_n x^n = 0.
\]
Power series solutions (5.2).

Example
Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $(4 - x^2) y'' + 2y = 0$.

Solution:
\[
\sum_{n=2}^{\infty} 4n(n-1)a_n x^{n-2} - \sum_{n=0}^{\infty} n(n-1)a_n x^n + \sum_{n=0}^{\infty} 2a_n x^n = 0.
\]

Re-label the first sum, $m = n - 2$ and then switch back to n
Power series solutions (5.2).

Example
Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $(4 - x^2)y'' + 2y = 0$.

Solution:
\[
\sum_{n=2}^{\infty} 4n(n - 1)a_n x^{n-2} - \sum_{n=0}^{\infty} n(n - 1)a_n x^n + \sum_{n=0}^{\infty} 2a_n x^n = 0.
\]

Re-label the first sum, $m = n - 2$ and then switch back to n
\[
\sum_{n=0}^{\infty} 4(n + 2)(n + 1)a_{n+2} x^n - \sum_{n=0}^{\infty} n(n - 1)a_n x^n + \sum_{n=0}^{\infty} 2a_n x^n = 0.
\]
Power series solutions (5.2).

Example

Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $(4 - x^2) y'' + 2y = 0$.

Solution:

$$
\sum_{n=2}^{\infty} 4n(n-1)a_n x^{(n-2)} - \sum_{n=0}^{\infty} n(n-1)a_n x^n + \sum_{n=0}^{\infty} 2a_n x^n = 0.
$$

Re-label the first sum, $m = n - 2$ and then switch back to n

$$
\sum_{n=0}^{\infty} 4(n+2)(n+1)a_{n+2} x^n - \sum_{n=0}^{\infty} n(n-1)a_n x^n + \sum_{n=0}^{\infty} 2a_n x^n = 0.
$$

$$
\sum_{n=0}^{\infty} \left[4(n+2)(n+1)a_{n+2} - n(n-1)a_n + 2a_n \right] x^n = 0.
$$
Power series solutions (5.2).

Example

Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of \((4 - x^2) y'' + 2y = 0\).

Solution:

\[
\sum_{n=2}^{\infty} 4n(n - 1)a_n x^{(n-2)} - \sum_{n=0}^{\infty} n(n - 1)a_n x^n + \sum_{n=0}^{\infty} 2a_n x^n = 0.
\]

Re-label the first sum, \(m = n - 2\) and then switch back to \(n\)

\[
\sum_{n=0}^{\infty} 4(n + 2)(n + 1)a_{n+2} x^n - \sum_{n=0}^{\infty} n(n - 1)a_n x^n + \sum_{n=0}^{\infty} 2a_n x^n = 0.
\]

\[
\sum_{n=0}^{\infty} \left[4(n + 2)(n + 1)a_{n+2} - n(n - 1)a_n + 2a_n \right] x^n = 0.
\]

\[4(n + 2)(n + 1)a_{n+2} + (-n^2 + n + 2)a_n = 0.\]
Power series solutions (5.2).

Example
Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $(4 - x^2) y'' + 2y = 0$.

Solution: $4(n + 2)(n + 1)a_{n+2} + (-n^2 + n + 2)a_n = 0$.
Power series solutions (5.2).

Example
Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $(4 - x^2) y'' + 2y = 0$.

Solution: $4(n + 2)(n + 1)a_{n+2} + (-n^2 + n + 2)a_n = 0$.

Notice: $-n^2 + n + 2 = -(n - 2)(n + 1)$,
Example
Using a power series centered at \(x_0 = 0 \) find the three first terms of the general solution of \((4 - x^2)y'' + 2y = 0 \).

Solution: \(4(n + 2)(n + 1)a_{n+2} + (-n^2 + n + 2)a_n = 0 \).

Notice: \(-n^2 + n + 2 = -(n - 2)(n + 1) \), hence

\[
4(n+2)(n+1)a_{n+2} - (n-2)(n+1)a_n = 0
\]
Power series solutions (5.2).

Example
Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $(4 - x^2) y'' + 2y = 0$.

Solution: $4(n + 2)(n + 1)a_{n+2} + (-n^2 + n + 2)a_n = 0$.

Notice: $-n^2 + n + 2 = -(n - 2)(n + 1)$, hence

$4(n+2)(n+1)a_{n+2}-(n-2)(n+1)a_n = 0 \implies a_{n+2} = \frac{(n-2)a_n}{4(n+2)}$.

$y = a_0 \left[1 - \frac{1}{4}x^2 \right] + a_1 \left[x - \frac{1}{12}x^3 - \frac{1}{(12)(20)}x^5 \right] + \cdots$.
Power series solutions (5.2).

Example
Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $(4 - x^2)y'' + 2y = 0$.

Solution: $4(n + 2)(n + 1)a_{n+2} + (-n^2 + n + 2)a_n = 0$.

Notice: $-n^2 + n + 2 = -(n - 2)(n + 1)$, hence

$$4(n+2)(n+1)a_{n+2} - (n-2)(n+1)a_n = 0 \Rightarrow a_{n+2} = \frac{(n - 2)a_n}{4(n + 2)}.$$

For n even the power series terminates at $n = 2$,

...
Power series solutions (5.2).

Example
Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $(4 - x^2) y'' + 2y = 0$.

Solution: $4(n + 2)(n + 1)a_{n+2} + (-n^2 + n + 2)a_n = 0$.

Notice: $-n^2 + n + 2 = -(n - 2)(n + 1)$, hence

$$4(n+2)(n+1)a_{n+2} - (n-2)(n+1)a_n = 0 \implies a_{n+2} = \frac{(n - 2)a_n}{4(n + 2)}.$$

For n even the power series terminates at $n = 2$, since

$$a_2 = \frac{-2a_0}{8},$$
Example
Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $\ (4 - x^2) y'' + 2y = 0$.

Solution: $4(n + 2)(n + 1)a_{n+2} + (-n^2 + n + 2)a_n = 0$.

Notice: $-n^2 + n + 2 = -(n - 2)(n + 1)$, hence

$$4(n+2)(n+1)a_{n+2} - (n-2)(n+1)a_n = 0 \quad \Rightarrow \quad a_{n+2} = \frac{(n - 2)a_n}{4(n + 2)}.$$

For n even the power series terminates at $n = 2$, since

$$a_2 = \frac{-2a_0}{8}, \quad a_4 = 0,$$
Example
Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $(4 - x^2) y'' + 2y = 0$.

Solution: $4(n + 2)(n + 1)a_{n+2} + (-n^2 + n + 2)a_n = 0$.

Notice: $-n^2 + n + 2 = -(n - 2)(n + 1)$, hence

$$4(n+2)(n+1)a_{n+2}-(n-2)(n+1)a_n = 0 \quad \Rightarrow \quad a_{n+2} = \frac{(n - 2)a_n}{4(n + 2)}.$$

For n even the power series terminates at $n = 2$, since

$$a_2 = \frac{-2a_0}{8}, \quad a_4 = 0, \quad a_6 = 0, \ldots$$
Power series solutions (5.2).

Example
Using a power series centered at \(x_0 = 0 \) find the three first terms of the general solution of \((4 - x^2) y'' + 2y = 0 \).

Solution: \(4(n + 2)(n + 1)a_{n+2} + (-n^2 + n + 2)a_n = 0 \).

Notice: \(-n^2 + n + 2 = -(n - 2)(n + 1)\), hence

\[
4(n+2)(n+1)a_{n+2}-(n-2)(n+1)a_n = 0 \implies a_{n+2} = \frac{(n-2)a_n}{4(n+2)}.
\]

For \(n \) even the power series terminates at \(n = 2 \), since

\[
a_2 = \frac{-2a_0}{8}, \quad a_4 = 0, \quad a_6 = 0, \ldots
\]

For \(n \) odd: \(a_3 = \frac{-a_1}{12}, \ldots \)
Power series solutions (5.2).

Example
Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $(4 - x^2)y'' + 2y = 0$.

Solution: $4(n + 2)(n + 1)a_{n+2} + (-n^2 + n + 2)a_n = 0$.

Notice: $-n^2 + n + 2 = -(n - 2)(n + 1)$, hence

$$4(n+2)(n+1)a_{n+2} - (n-2)(n+1)a_n = 0 \implies a_{n+2} = \frac{(n - 2)a_n}{4(n + 2)}.$$

For n even the power series terminates at $n = 2$, since

$$a_2 = \frac{-2a_0}{8}, \quad a_4 = 0, \quad a_6 = 0, \cdots$$

For n odd: $a_3 = \frac{-a_1}{12}, \quad a_5 = \frac{a_3}{20}$.
Power series solutions (5.2).

Example

Using a power series centered at \(x_0 = 0 \) find the three first terms of the general solution of \((4 - x^2) y'' + 2y = 0\).

Solution: \(4(n + 2)(n + 1)a_{n+2} + (-n^2 + n + 2)a_n = 0 \).

Notice: \(-n^2 + n + 2 = -(n - 2)(n + 1)\), hence

\[
4(n+2)(n+1)a_{n+2} - (n-2)(n+1)a_n = 0 \quad \Rightarrow \quad a_{n+2} = \frac{(n - 2)a_n}{4(n + 2)}.
\]

For \(n \) even the power series terminates at \(n = 2 \), since

\[
a_2 = \frac{-2a_0}{8}, \quad a_4 = 0, \quad a_6 = 0, \ldots
\]

For \(n \) odd: \(a_3 = \frac{-a_1}{12}, \quad a_5 = \frac{a_3}{20} = -\frac{a_1}{(12)(20)}, \ldots \)
Power series solutions (5.2).

Example
Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $(4 - x^2) y'' + 2y = 0$.

Solution: $4(n + 2)(n + 1)a_{n+2} + (-n^2 + n + 2)a_n = 0$.

Notice: $-n^2 + n + 2 = -(n - 2)(n + 1)$, hence

$$4(n+2)(n+1)a_{n+2} - (n-2)(n+1)a_n = 0 \Rightarrow a_{n+2} = \frac{(n - 2)a_n}{4(n + 2)}.$$

For n even the power series terminates at $n = 2$, since

$$a_2 = \frac{-2a_0}{8}, \quad a_4 = 0, \quad a_6 = 0, \ldots$$

For n odd: $a_3 = \frac{-a_1}{12}, \quad a_5 = \frac{a_3}{20} = -\frac{a_1}{(12)(20)}, \ldots$

$$y = a_0\left[1 - \frac{1}{4}x^2\right] + a_1\left[x - \frac{1}{12}x^3 - \frac{1}{(12)(20)}x^5 + \cdots\right]. \quad \triangleq$$
Review for Exam 2.

- 5 problems.
- No multiple choice questions.
- No notes, no books, no calculators.
- Problems similar to homeworks.
- Exam covers:
 - Regular-singular points (5.5).
 - Euler differential equation (5.4).
 - Power series solutions (5.2).
 - **Variation of parameters (3.6).**
 - Undetermined coefficients (3.5)
 - Constant coefficients, homogeneous, (3.1)-(3.4).
Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

\[y'' + 4y' + 4y = x^{-2} e^{-2x}. \]
Variation of parameters (3.6).

Example
Use the variation of parameters to find the general solution of
\[y'' + 4y' + 4y = x^{-2} e^{-2x}. \]

Solution: We find the solutions of the homogeneous equation,
Variation of parameters (3.6).

Example
Use the variation of parameters to find the general solution of

\[y'' + 4y' + 4y = x^{-2} e^{-2x}. \]

Solution: We find the solutions of the homogeneous equation,

\[r^2 + 4r + 4 = 0 \]
Example

Use the variation of parameters to find the general solution of

\[y'' + 4y' + 4y = x^{-2} e^{-2x}. \]

Solution: We find the solutions of the homogeneous equation,

\[r^2 + 4r + 4 = 0 \quad \Rightarrow \quad r_{\pm} = \frac{1}{2} \left[-4 \pm \sqrt{16 - 16} \right] \]
Variation of parameters (3.6).

Example
Use the variation of parameters to find the general solution of
\[y'' + 4y' + 4y = x^{-2} e^{-2x}. \]

Solution: We find the solutions of the homogeneous equation,
\[r^2 + 4r + 4 = 0 \quad \Rightarrow \quad r_{\pm} = \frac{1}{2} \left[-4 \pm \sqrt{16 - 16} \right] \quad \Rightarrow \quad r_{\pm} = -2. \]
Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

\[y'' + 4y' + 4y = x^{-2} e^{-2x}. \]

Solution: We find the solutions of the homogeneous equation,

\[r^2 + 4r + 4 = 0 \quad \Rightarrow \quad r_{\pm} = \frac{1}{2} [-4 \pm \sqrt{16 - 16}] \quad \Rightarrow \quad r_{\pm} = -2. \]

Fundamental solutions of the homogeneous equations are

\[y_1 = e^{-2x}, \quad y_2 = xe^{-2x}. \]
Variation of parameters (3.6).

Example
Use the variation of parameters to find the general solution of

$$y'' + 4y' + 4y = x^{-2} e^{-2x}.$$

Solution: We find the solutions of the homogeneous equation,

$$r^2 + 4r + 4 = 0 \quad \Rightarrow \quad r_\pm = \frac{1}{2} [-4 \pm \sqrt{16 - 16}] \quad \Rightarrow \quad r_\pm = -2.$$

Fundamental solutions of the homogeneous equations are

$$y_1 = e^{-2x}, \quad y_2 = x e^{-2x}.$$

We now compute their Wronskian,

$$W = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix}$$
Variation of parameters (3.6).

Example
Use the variation of parameters to find the general solution of

$$y'' + 4y' + 4y = x^{-2} e^{-2x}.$$

Solution: We find the solutions of the homogeneous equation,

$$r^2 + 4r + 4 = 0 \implies r_{\pm} = \frac{1}{2} \left[-4 \pm \sqrt{16 - 16}\right] \implies r_{\pm} = -2.$$

Fundamental solutions of the homogeneous equations are

$$y_1 = e^{-2x}, \quad y_2 = x e^{-2x}.$$

We now compute their Wronskian,

$$W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} e^{-2x} & x e^{-2x} \\ -2e^{-2x} & (1 - 2x) e^{-2x} \end{vmatrix}$$
Variation of parameters (3.6).

Example
Use the variation of parameters to find the general solution of
\[y'' + 4y' + 4y = x^{-2} e^{-2x}. \]

Solution: We find the solutions of the homogeneous equation,
\[r^2 + 4r + 4 = 0 \quad \Rightarrow \quad r_\pm = \frac{1}{2} \left[-4 \pm \sqrt{16 - 16}\right] \quad \Rightarrow \quad r_\pm = -2. \]

Fundamental solutions of the homogeneous equations are
\[y_1 = e^{-2x}, \quad y_2 = x e^{-2x}. \]

We now compute their Wronskian,
\[W = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} e^{-2x} & xe^{-2x} \\ -2e^{-2x} & (1 - 2x)e^{-2x} \end{vmatrix} = (1 - 2x)e^{-4x} + 2x e^{-4x}. \]
Variation of parameters (3.6).

Example
Use the variation of parameters to find the general solution of
\[y'' + 4y' + 4y = x^{-2} e^{-2x}. \]

Solution: We find the solutions of the homogeneous equation,
\[r^2 + 4r + 4 = 0 \quad \Rightarrow \quad r_{\pm} = \frac{1}{2} [-4 \pm \sqrt{16 - 16}] \quad \Rightarrow \quad r_{\pm} = -2. \]

Fundamental solutions of the homogeneous equations are
\[y_1 = e^{-2x}, \quad y_2 = x e^{-2x}. \]

We now compute their Wronskian,
\[W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} e^{-2x} & x e^{-2x} \\ -2e^{-2x} & (1 - 2x) e^{-2x} \end{vmatrix} = (1 - 2x) e^{-4x} + 2x e^{-4x}. \]

Hence \(W = e^{-4x}. \)
Example
Use the variation of parameters to find the general solution of
\[y'' + 4y' + 4y = x^{-2} e^{-2x}. \]
Solution: \(y_1 = e^{-2x}, \ y_2 = x \ e^{-2x}, \ g = x^{-2} e^{-2x}, \ W = e^{-4x}. \)
Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

\[y'' + 4y' + 4y = x^{-2} e^{-2x}. \]

Solution: \[y_1 = e^{-2x}, \quad y_2 = x e^{-2x}, \quad g = x^{-2} e^{-2x}, \quad W = e^{-4x}. \]

Now we find the functions \(u_1 \) and \(u_2 \),
Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

\[y'' + 4y' + 4y = x^{-2} e^{-2x}. \]

Solution: \(y_1 = e^{-2x} \), \(y_2 = x \, e^{-2x} \), \(g = x^{-2} \, e^{-2x} \), \(W = e^{-4x} \).

Now we find the functions \(u_1 \) and \(u_2 \),

\[u'_1 = - \frac{y_2 g}{W}, \]
Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

\[y'' + 4y' + 4y = x^{-2} e^{-2x}. \]

Solution: \(y_1 = e^{-2x}, \ y_2 = xe^{-2x}, \ g = x^{-2} e^{-2x}, \ W = e^{-4x}. \)

Now we find the functions \(u_1 \) and \(u_2, \)

\[
u'_1 = - \frac{y_2 g}{W} = - \frac{x e^{-2x} x^{-2} e^{-2x}}{e^{-4x}}
\]
Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

\[y'' + 4y' + 4y = x^{-2} e^{-2x}. \]

Solution: \(y_1 = e^{-2x}, \ y_2 = x e^{-2x}, \ g = x^{-2} e^{-2x}, \ W = e^{-4x}. \)

Now we find the functions \(u_1 \) and \(u_2 \),

\[
 u'_1 = -\frac{y_2 g}{W} = -\frac{x e^{-2x} x^{-2} e^{-2x}}{e^{-4x}} = -\frac{1}{x}.
\]
Example

Use the variation of parameters to find the general solution of

\[y'' + 4y' + 4y = x^{-2} e^{-2x}. \]

Solution: \(y_1 = e^{-2x}, \ y_2 = x e^{-2x}, \ g = x^{-2} e^{-2x}, \ W = e^{-4x}. \)

Now we find the functions \(u_1 \) and \(u_2, \)

\[u'_1 = - \frac{y_2 g}{W} = - \frac{x e^{-2x} x^{-2} e^{-2x}}{e^{-4x}} = - \frac{1}{x} \quad \Rightarrow \quad u_1 = - \ln |x|. \]
Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

\[y'' + 4y' + 4y = x^{-2} e^{-2x}. \]

Solution: \(y_1 = e^{-2x}, \ y_2 = x \ e^{-2x}, \ g = x^{-2} e^{-2x}, \ W = e^{-4x}. \)

Now we find the functions \(u_1 \) and \(u_2, \)

\[
\begin{align*}
 u'_1 &= -\frac{y_2 g}{W} = -\frac{x \ e^{-2x} \ x^{-2} \ e^{-2} \ x^{-2} \ e^{-2x}}{e^{-4x}} = -\frac{1}{x} \quad \Rightarrow \quad u_1 = -\ln|x|. \\
 u'_2 &= \frac{y_1 g}{W}
\end{align*}
\]
Example

Use the variation of parameters to find the general solution of

\[y'' + 4y' + 4y = x^{-2} e^{-2x}. \]

Solution: \(y_1 = e^{-2x}, \ y_2 = x e^{-2x}, \ g = x^{-2} e^{-2x}, \ W = e^{-4x}. \)

Now we find the functions \(u_1 \) and \(u_2, \)

\[
 u_1' = - \frac{y_2 g}{W} = - \frac{x e^{-2x} x^{-2} e^{-2x}}{e^{-4x}} = - \frac{1}{x} \quad \Rightarrow \quad u_1 = - \ln |x|.
\]

\[
 u_2' = \frac{y_1 g}{W} = \frac{e^{-2x} x^{-2} e^{-2x}}{e^{-4x}}
\]
Example

Use the variation of parameters to find the general solution of

\[y'' + 4y' + 4y = x^{-2} e^{-2x}. \]

Solution: \(y_1 = e^{-2x}, \ y_2 = x \ e^{-2x}, \ g = x^{-2} \ e^{-2x}, \ W = e^{-4x}. \)

Now we find the functions \(u_1 \) and \(u_2, \)

\[
u_1' = -\frac{y_2 g}{W} = -\frac{x \ e^{-2x} \ x^{-2} \ e^{-2x}}{e^{-4x}} = -\frac{1}{x} \quad \Rightarrow \quad u_1 = -\ln|x|.
\]

\[
u_2' = \frac{y_1 g}{W} = \frac{e^{-2x} \ x^{-2} \ e^{-2x}}{e^{-4x}} = x^{-2}
\]
Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

\[y'' + 4y' + 4y = x^{-2} e^{-2x}. \]

Solution: \(y_1 = e^{-2x}, \ y_2 = x e^{-2x}, \ g = x^{-2} e^{-2x}, \ W = e^{-4x}. \)

Now we find the functions \(u_1 \) and \(u_2, \)

\[
\begin{align*}
 u'_1 &= - y_2 g \quad \frac{W}{W} = - \frac{x e^{-2x} x^{-2} e^{-2x}}{e^{-4x}} = - \frac{1}{x} \quad \Rightarrow \quad u_1 = - \ln |x|. \\
 u'_2 &= \frac{y_1 g}{W} = \frac{e^{-2x} x^{-2} e^{-2x}}{e^{-4x}} = x^{-2} \quad \Rightarrow \quad u_2 = - \frac{1}{x}.
\end{align*}
\]
Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

\[y'' + 4y' + 4y = x^{-2} e^{-2x}. \]

Solution: \(y_1 = e^{-2x}, \quad y_2 = xe^{-2x}, \quad g = x^{-2} e^{-2x}, \quad W = e^{-4x}. \)

Now we find the functions \(u_1 \) and \(u_2, \)

\[
u_1' = -\frac{y_2 g}{W} = -\frac{xe^{-2x}x^{-2}e^{-2x}}{e^{-4x}} = -\frac{1}{x} \quad \Rightarrow \quad u_1 = -\ln|x|.
\]

\[
u_2' = \frac{y_1 g}{W} = \frac{e^{-2x}x^{-2}e^{-2x}}{e^{-4x}} = x^{-2} \quad \Rightarrow \quad u_2 = -\frac{1}{x}.
\]

\[y_p = u_1 y_1 + u_2 y_2 \]
Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

\[y'' + 4y' + 4y = x^{-2} e^{-2x}. \]

Solution: \(y_1 = e^{-2x}, \ y_2 = x e^{-2x}, \ \ g = x^{-2} e^{-2x}, \ W = e^{-4x}. \)

Now we find the functions \(u_1 \) and \(u_2, \)

\[
 u_1' = -\frac{y_2 g}{W} = -\frac{x e^{-2x} x^{-2} e^{-2x}}{e^{-4x}} = -\frac{1}{x} \quad \Rightarrow \quad u_1 = -\ln |x|.
\]

\[
 u_2' = \frac{y_1 g}{W} = \frac{e^{-2x} x^{-2} e^{-2x}}{e^{-4x}} = x^{-2} \quad \Rightarrow \quad u_2 = -\frac{1}{x}.
\]

\[
y_p = u_1 y_1 + u_2 y_2 = -\ln |x| e^{-2x} - \frac{1}{x} x e^{-2x}
\]
Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

$$y'' + 4y' + 4y = x^{-2} e^{-2x}.$$

Solution: $y_1 = e^{-2x}$, $y_2 = x e^{-2x}$, $g = x^{-2} e^{-2x}$, $W = e^{-4x}$.

Now we find the functions u_1 and u_2,

$$u_1' = - \frac{y_2 g}{W} = - \frac{x e^{-2x} x^{-2} e^{-2x}}{e^{-4x}} = - \frac{1}{x} \quad \Rightarrow \quad u_1 = - \ln |x|.$$

$$u_2' = \frac{y_1 g}{W} = \frac{e^{-2x} x^{-2} e^{-2x}}{e^{-4x}} = x^{-2} \quad \Rightarrow \quad u_2 = - \frac{1}{x}.$$

$$y_p = u_1 y_1 + u_2 y_2 = - \ln |x| e^{-2x} - \frac{1}{x} x e^{-2x} = -(1 + \ln |x|) e^{-2x}.$$
Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

$$y'' + 4y' + 4y = x^{-2} e^{-2x}.$$

Solution: \(y_1 = e^{-2x}, \ y_2 = x e^{-2x}, \ g = x^{-2} e^{-2x}, \ W = e^{-4x}. \)

Now we find the functions \(u_1 \) and \(u_2, \)

\[
u'_1 = -\frac{y_2 g}{W} = -\frac{x e^{-2x} x^{-2} e^{-2x}}{e^{-4x}} = -\frac{1}{x} \Rightarrow \ u_1 = -\ln|x|.\]

\[
u'_2 = \frac{y_1 g}{W} = \frac{e^{-2x} x^{-2} e^{-2x}}{e^{-4x}} = x^{-2} \Rightarrow \ u_2 = -\frac{1}{x}.\]

\[
y_p = u_1 y_1 + u_2 y_2 = -\ln|x| e^{-2x} - \frac{1}{x} x e^{-2x} = -(1 + \ln|x|) e^{-2x}.\]

Since \(\tilde{y}_p = -\ln|x| e^{-2x} \) is solution,
Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

\[y'' + 4y' + 4y = x^{-2} e^{-2x}. \]

Solution: \(y_1 = e^{-2x}, \ y_2 = x e^{-2x}, \ g = x^{-2} e^{-2x}, \ W = e^{-4x}. \)

Now we find the functions \(u_1 \) and \(u_2, \)

\[
u_1' = -\frac{y_2 g}{W} = -\frac{x e^{-2x} x^{-2} e^{-2x}}{e^{-4x}} = -\frac{1}{x} \quad \Rightarrow \quad u_1 = -\ln |x|. \]

\[
u_2' = \frac{y_1 g}{W} = \frac{e^{-2x} x^{-2} e^{-2x}}{e^{-4x}} = x^{-2} \quad \Rightarrow \quad u_2 = -\frac{1}{x}. \]

\[y_p = u_1 y_1 + u_2 y_2 = -\ln |x| e^{-2x} - \frac{1}{x} xe^{-2x} = -(1 + \ln |x|) e^{-2x}. \]

Since \(\tilde{y}_p = -\ln |x| e^{-2x} \) is solution, \(y = (c_1 + c_2 x - \ln |x|) e^{-2x}. \) \(\triangle \)
Review for Exam 2.

- 5 problems.
- No multiple choice questions.
- No notes, no books, no calculators.
- Problems similar to homeworks.
- Exam covers:
 - Regular-singular points (5.5).
 - Euler differential equation (5.4).
 - Power series solutions (5.2).
 - Variation of parameters (3.6).
 - Undetermined coefficients (3.5)
 - Constant coefficients, homogeneous, (3.1)-(3.4).
Undetermined coefficients (3.5)

Example

Use the undetermined coefficients to find the general solution of

\[y'' + 4y = 3 \sin(2x). \]
Undetermined coefficients (3.5)

Example

Use the undetermined coefficients to find the general solution of

\[y'' + 4y = 3\sin(2x). \]

Solution: Find the solutions of the homogeneous problem,
Undetermined coefficients (3.5)

Example

Use the undetermined coefficients to find the general solution of

$$y'' + 4y = 3\sin(2x).$$

Solution: Find the solutions of the homogeneous problem,

$$r^2 + 4 = 0$$
Undetermined coefficients (3.5)

Example

Use the undetermined coefficients to find the general solution of

\[y'' + 4y = 3 \sin(2x). \]

Solution: Find the solutions of the homogeneous problem,

\[r^2 + 4 = 0 \quad \Rightarrow \quad r_{\pm} = \pm 2i. \]
Undetermined coefficients (3.5)

Example
Use the undetermined coefficients to find the general solution of
\[y'' + 4y = 3 \sin(2x). \]

Solution: Find the solutions of the homogeneous problem,
\[r^2 + 4 = 0 \quad \Rightarrow \quad r_{\pm} = \pm 2i. \]
\[y_1 = \cos(2x), \quad y_2 = \sin(2x). \]
Undetermined coefficients (3.5)

Example
Use the undetermined coefficients to find the general solution of
\[y'' + 4y = 3 \sin(2x). \]

Solution: Find the solutions of the homogeneous problem,
\[r^2 + 4 = 0 \quad \Rightarrow \quad r_{\pm} = \pm 2i. \]
\[y_1 = \cos(2x), \quad y_2 = \sin(2x). \]

The function \(\tilde{y}_p = k_1 \sin(2x) + k_2 \cos(2x) \) is the wrong guess,
Undetermined coefficients (3.5)

Example
Use the undetermined coefficients to find the general solution of
\[y'' + 4y = 3 \sin(2x). \]

Solution: Find the solutions of the homogeneous problem,
\[r^2 + 4 = 0 \quad \Rightarrow \quad r_{\pm} = \pm 2i. \]

\[y_1 = \cos(2x), \quad y_2 = \sin(2x). \]

The function \(\tilde{y}_p = k_1 \sin(2x) + k_2 \cos(2x) \) is the wrong guess, since
it is solution of the homogeneous equation.
Undetermined coefficients (3.5)

Example
Use the undetermined coefficients to find the general solution of
\[y'' + 4y = 3 \sin(2x). \]

Solution: Find the solutions of the homogeneous problem,
\[r^2 + 4 = 0 \quad \Rightarrow \quad r_{\pm} = \pm 2i. \]
\[y_1 = \cos(2x), \quad y_2 = \sin(2x). \]

The function \(\tilde{y}_p = k_1 \sin(2x) + k_2 \cos(2x) \) is the wrong guess, since it is solution of the homogeneous equation. We guess:
\[y_p = x[k_1 \sin(2x) + k_2 \cos(2x)]. \]
Undetermined coefficients (3.5)

Example

Use the undetermined coefficients to find the general solution of

\[y'' + 4y = 3 \sin(2x). \]

Solution: Find the solutions of the homogeneous problem,

\[r^2 + 4 = 0 \quad \Rightarrow \quad r_{\pm} = \pm 2i. \]

\[y_1 = \cos(2x), \quad y_2 = \sin(2x). \]

The function \(\tilde{y}_p = k_1 \sin(2x) + k_2 \cos(2x) \) is the wrong guess, since it is solution of the homogeneous equation. We guess:

\[y_p = x[k_1 \sin(2x) + k_2 \cos(2x)]. \]

\[y_p' = [k_1 \sin(2x) + k_2 \cos(2x)] + 2x[k_1 \cos(2x) - k_2 \sin(2x)]. \]
Undetermined coefficients (3.5)

Example

Use the undetermined coefficients to find the general solution of

\[y'' + 4y = 3 \sin(2x). \]

Solution: Find the solutions of the homogeneous problem,

\[r^2 + 4 = 0 \quad \Rightarrow \quad r_{\pm} = \pm 2i. \]

\[y_1 = \cos(2x), \quad y_2 = \sin(2x). \]

The function \(\tilde{y}_p = k_1 \sin(2x) + k_2 \cos(2x) \) is the wrong guess, since it is solution of the homogeneous equation. We guess:

\[y_p = x[k_1 \sin(2x) + k_2 \cos(2x)]. \]

\[y'_p = [k_1 \sin(2x) + k_2 \cos(2x)] + 2x[k_1 \cos(2x) - k_2 \sin(2x)]. \]

\[y''_p = 4[k_1 \cos(2x) - k_2 \sin(2x)] + 4x[-k_1 \sin(2x) - k_2 \cos(2x)]. \]
Undetermined coefficients (3.5)

Example
Use the undetermined coefficients to find the general solution of
\[y'' + 4y = 3 \sin(2x). \]

Solution: Recall: \(y_1 = \sin(2x), \) and \(y_2 = \cos(2x). \)
Undetermined coefficients (3.5)

Example

Use the undetermined coefficients to find the general solution of

\[y'' + 4y = 3 \sin(2x). \]

Solution: Recall: \(y_1 = \sin(2x), \) and \(y_2 = \cos(2x). \)

\[
4 \left[k_1 \cos(2x) - k_2 \sin(2x) \right] + 4x \left[-k_1 \sin(2x) - k_2 \cos(2x) \right] + 4x \left[k_1 \sin(2x) + k_2 \cos(2x) \right] = 3 \sin(2x),
\]
Example

Use the undetermined coefficients to find the general solution of

\[y'' + 4y = 3 \sin(2x). \]

Solution: Recall: \(y_1 = \sin(2x) \), and \(y_2 = \cos(2x) \).

\[
4 \left[k_1 \cos(2x) - k_2 \sin(2x) \right] + 4x \left[-k_1 \sin(2x) - k_2 \cos(2x) \right] + \\
4x \left[k_1 \sin(2x) + k_2 \cos(2x) \right] = 3 \sin(2x),
\]

Therefore, \(4 \left[k_1 \cos(2x) - k_2 \sin(2x) \right] = 3 \sin(2x). \)
Undetermined coefficients (3.5)

Example
Use the undetermined coefficients to find the general solution of
\[y'' + 4y = 3 \sin(2x). \]

Solution: Recall: \(y_1 = \sin(2x), \) and \(y_2 = \cos(2x). \)

\[
4 \left[k_1 \cos(2x) - k_2 \sin(2x) \right] + 4x \left[-k_1 \sin(2x) - k_2 \cos(2x) \right] + \\
4x \left[k_1 \sin(2x) + k_2 \cos(2x) \right] = 3 \sin(2x),
\]

Therefore, \(4 \left[k_1 \cos(2x) - k_2 \sin(2x) \right] = 3 \sin(2x). \)

Evaluating at \(x = 0 \) and \(x = \pi/4 \)
Undetermined coefficients (3.5)

Example

Use the undetermined coefficients to find the general solution of

$$y'' + 4y = 3 \sin(2x).$$

Solution: Recall: $y_1 = \sin(2x)$, and $y_2 = \cos(2x)$.

$$4\left[k_1 \cos(2x) - k_2 \sin(2x) \right] + 4x \left[-k_1 \sin(2x) - k_2 \cos(2x) \right] +$$

$$4x \left[k_1 \sin(2x) + k_2 \cos(2x) \right] = 3 \sin(2x),$$

Therefore, $4\left[k_1 \cos(2x) - k_2 \sin(2x) \right] = 3 \sin(2x)$.

Evaluating at $x = 0$ and $x = \pi/4$ we get

$$4k_1 = 0, \quad -4k_2 = 3$$
Example
Use the undetermined coefficients to find the general solution of

\[y'' + 4y = 3 \sin(2x). \]

Solution: Recall: \(y_1 = \sin(2x), \) and \(y_2 = \cos(2x). \)

\[
4 \left[k_1 \cos(2x) - k_2 \sin(2x) \right] + 4x \left[-k_1 \sin(2x) - k_2 \cos(2x) \right] + 4x \left[k_1 \sin(2x) + k_2 \cos(2x) \right] = 3 \sin(2x),
\]

Therefore, \(4 \left[k_1 \cos(2x) - k_2 \sin(2x) \right] = 3 \sin(2x). \)

Evaluating at \(x = 0 \) and \(x = \pi/4 \) we get

\[
4k_1 = 0, \quad -4k_2 = 3 \quad \Rightarrow \quad k_1 = 0, \quad k_2 = -\frac{3}{4}.
\]
Undetermined coefficients (3.5)

Example
Use the undetermined coefficients to find the general solution of

\[y'' + 4y = 3 \sin(2x) . \]

Solution: Recall: \(y_1 = \sin(2x) \), and \(y_2 = \cos(2x) \).

\[
4 \left[k_1 \cos(2x) - k_2 \sin(2x) \right] + 4x \left[-k_1 \sin(2x) - k_2 \cos(2x) \right] + 4x \left[k_1 \sin(2x) + k_2 \cos(2x) \right] = 3 \sin(2x),
\]

Therefore, \(4 \left[k_1 \cos(2x) - k_2 \sin(2x) \right] = 3 \sin(2x) \).

Evaluating at \(x = 0 \) and \(x = \pi/4 \) we get

\[
4k_1 = 0, \quad -4k_2 = 3 \quad \Rightarrow \quad k_1 = 0, \quad k_2 = -\frac{3}{4}.
\]

Therefore, \(y_p = -\frac{3}{4} x \cos(2x) \).
Undetermined coefficients (3.5)

Example
Use the undetermined coefficients to find the general solution of
\[y'' + 4y = 3\sin(2x). \]

Solution: Recall: \(y_1 = \sin(2x), \) and \(y_2 = \cos(2x). \)

\[
4[k_1 \cos(2x) - k_2 \sin(2x)] + 4x[-k_1 \sin(2x) - k_2 \cos(2x)] + \\
4x[k_1 \sin(2x) + k_2 \cos(2x)] = 3 \sin(2x),
\]

Therefore,
\[
4[k_1 \cos(2x) - k_2 \sin(2x)] = 3 \sin(2x).
\]

Evaluating at \(x = 0 \) and \(x = \pi/4 \) we get
\[
4k_1 = 0, \quad -4k_2 = 3 \quad \Rightarrow \quad k_1 = 0, \quad k_2 = -\frac{3}{4}.
\]

Therefore, \(y_p = -\frac{3}{4}x \cos(2x). \) The general solution is
\[
y(x) = c_1 \sin(2x) + \left(c_2 - \frac{3}{4}x \right) \cos(2x).
\]
The Laplace Transform of step functions (Sect. 6.3).

- Overview and notation.
- The definition of a step function.
- Piecewise discontinuous functions.
- The Laplace Transform of discontinuous functions.
- Properties of the Laplace Transform.
Overview and notation.

Overview: The Laplace Transform method can be used to solve constant coefficients differential equations with *discontinuous source functions.*
Overview and notation.

Overview: The Laplace Transform method can be used to solve constant coefficients differential equations with discontinuous source functions.

Notation:
If $\mathcal{L}[f(t)] = F(s)$, then we denote $\mathcal{L}^{-1}[F(s)] = f(t)$.

Remark: One can show that for a particular type of functions f, that includes all functions we work with in this Section, the notation above is well-defined.
Overview and notation.

Overview: The Laplace Transform method can be used to solve constant coefficients differential equations with *discontinuous source functions*.

Notation:
If $\mathcal{L}[f(t)] = F(s)$, then we denote $\mathcal{L}^{-1}[F(s)] = f(t)$.

Remark: One can show that for a particular type of functions f, that includes all functions we work with in this Section, the notation above is well-defined.
Overview and notation.

Overview: The Laplace Transform method can be used to solve constant coefficients differential equations with discontinuous source functions.

Notation: If $\mathcal{L}[f(t)] = F(s)$, then we denote $\mathcal{L}^{-1}[F(s)] = f(t)$.

Remark: One can show that for a particular type of functions f, that includes all functions we work with in this Section, the notation above is well-defined.

Example
From the Laplace Transform table we know that $\mathcal{L}[e^{at}] = \frac{1}{s-a}$.
Overview and notation.

Overview: The Laplace Transform method can be used to solve constant coefficients differential equations with *discontinuous source functions*.

Notation:
If $\mathcal{L}[f(t)] = F(s)$, then we denote $\mathcal{L}^{-1}[F(s)] = f(t)$.

Remark: One can show that for a particular type of functions f, that includes all functions we work with in this Section, the notation above is well-defined.

Example
From the Laplace Transform table we know that $\mathcal{L}[e^{at}] = \frac{1}{s-a}$.
Then also holds that $\mathcal{L}^{-1}\left[\frac{1}{s-a}\right] = e^{at}.$
The Laplace Transform of step functions (Sect. 6.3).

- Overview and notation.
- The definition of a step function.
- Piecewise discontinuous functions.
- The Laplace Transform of discontinuous functions.
- Properties of the Laplace Transform.
The definition of a step function.

Definition
A function u is called a \textit{step function} at $t = 0$ iff holds

$$u(t) = \begin{cases}
0 & \text{for } t < 0, \\
1 & \text{for } t \geq 0.
\end{cases}$$
The definition of a step function.

Definition
A function u is called a *step function* at $t = 0$ iff holds

$$u(t) = \begin{cases}
0 & \text{for } t < 0, \\
1 & \text{for } t \geq 0.
\end{cases}$$

Example
Graph the step function values $u(t)$ above, and the translations $u(t - c)$ and $u(t + c)$ with $c > 0$.
The definition of a step function.

Definition
A function u is called a \textit{step function} at $t = 0$ iff holds

$$u(t) = \begin{cases} 0 & \text{for } t < 0, \\ 1 & \text{for } t \geq 0. \end{cases}$$

Example
Graph the step function values $u(t)$ above, and the translations $u(t - c)$ and $u(t + c)$ with $c > 0$.

Solution:
The definition of a step function.

Definition
A function u is called a *step function* at $t = 0$ iff holds

$$u(t) = \begin{cases}
0 & \text{for } t < 0, \\
1 & \text{for } t \geq 0.
\end{cases}$$

Example
Graph the step function values $u(t)$ above, and the translations $u(t - c)$ and $u(t + c)$ with $c > 0$.

Solution:
The definition of a step function.

Definition
A function u is called a *step function* at $t = 0$ iff holds

$$u(t) = \begin{cases} 0 & \text{for } t < 0, \\ 1 & \text{for } t \geq 0. \end{cases}$$

Example
Graph the step function values $u(t)$ above, and the translations $u(t - c)$ and $u(t + c)$ with $c > 0$.

Solution:
The definition of a step function.

Remark: Given any function values \(f(t) \) and \(c > 0 \), then \(f(t - c) \) is a right translation of \(f \) and \(f(t + c) \) is a left translation of \(f \).
The definition of a step function.

Remark: Given any function values $f(t)$ and $c > 0$, then $f(t - c)$ is a right translation of f and $f(t + c)$ is a left translation of f.

Example

\[f(t) = e^{at} \]
The definition of a step function.

Remark: Given any function values $f(t)$ and $c > 0$, then $f(t - c)$ is a right translation of f and $f(t + c)$ is a left translation of f.

Example
The definition of a step function.

Remark: Given any function values \(f(t) \) and \(c > 0 \), then \(f(t - c) \) is a right translation of \(f \) and \(f(t + c) \) is a left translation of \(f \).

Example

\[f(t) = e^{at} \]

\[f(t) = u(t) e^{at} \]
The definition of a step function.

Remark: Given any function values $f(t)$ and $c > 0$, then $f(t - c)$ is a right translation of f and $f(t + c)$ is a left translation of f.

Example
The Laplace Transform of step functions (Sect. 6.3).

- Overview and notation.
- The definition of a step function.
- **Piecewise discontinuous functions.**
- The Laplace Transform of discontinuous functions.
- Properties of the Laplace Transform.
Piecewise discontinuous functions.

Example
Graph of the function \(b(t) = u(t - a) - u(t - b) \), with \(0 < a < b \).
Piecewise discontinuous functions.

Example
Graph of the function $b(t) = u(t - a) - u(t - b)$, with $0 < a < b$.

Solution: The bump function b can be graphed as follows:
Piecewise discontinuous functions.

Example

Graph of the function \(b(t) = u(t - a) - u(t - b) \), with \(0 < a < b \).

Solution: The bump function \(b \) can be graphed as follows:
Piecewise discontinuous functions.

Example
Graph of the function \(b(t) = u(t - a) - u(t - b) \), with \(0 < a < b \).

Solution: The bump function \(b \) can be graphed as follows:
Piecewise discontinuous functions.

Example

Graph of the function \(f(t) = e^{at} \left[u(t - 1) - u(t - 2) \right] \).
Piecewise discontinuous functions.

Example

Graph of the function \(f(t) = e^{at} \left[u(t - 1) - u(t - 2) \right] \).

Solution:

\[y = f(t) = e^{at} \left[u(t - 1) - u(t - 2) \right] \]
Piecewise discontinuous functions.

Example
Graph of the function \(f(t) = e^{at} [u(t - 1) - u(t - 2)] \).

Solution:

Notation: The function values \(u(t - c) \) are denoted in the textbook as \(u_c(t) \).
The Laplace Transform of step functions (Sect. 6.3).

- Overview and notation.
- The definition of a step function.
- Piecewise discontinuous functions.
- The Laplace Transform of discontinuous functions.
- Properties of the Laplace Transform.
The Laplace Transform of discontinuous functions.

Theorem

Given any real number c, the following equation holds,

\[
\mathcal{L}[u(t - c)] = \frac{e^{-cs}}{s}, \quad s > 0.
\]
The Laplace Transform of discontinuous functions.

Theorem

Given any real number \(c \), *the following equation holds,*

\[
\mathcal{L}[u(t - c)] = \frac{e^{-cs}}{s}, \quad s > 0.
\]

Proof:

\[
\mathcal{L}[u(t - c)] = \int_0^\infty e^{-st} u(t - c) \, dt
\]
The Laplace Transform of discontinuous functions.

Theorem

Given any real number c, the following equation holds,

\[\mathcal{L}[u(t - c)] = \frac{e^{-cs}}{s}, \quad s > 0. \]

Proof:

\[\mathcal{L}[u(t - c)] = \int_0^\infty e^{-st} u(t - c) \, dt = \int_c^\infty e^{-st} \, dt, \]
The Laplace Transform of discontinuous functions.

Theorem

Given any real number c, the following equation holds,

\[\mathcal{L}[u(t - c)] = \frac{e^{-cs}}{s}, \quad s > 0. \]

Proof:

\[\mathcal{L}[u(t - c)] = \int_0^\infty e^{-st} u(t - c) \, dt = \int_c^\infty e^{-st} \, dt, \]

\[\mathcal{L}[u(t - c)] = \lim_{N \to \infty} -\frac{1}{s} (e^{-Ns} - e^{-cs}) \]
The Laplace Transform of discontinuous functions.

Theorem

Given any real number c, the following equation holds,

$$\mathcal{L}[u(t - c)] = \frac{e^{-cs}}{s}, \quad s > 0.$$

Proof:

$$\mathcal{L}[u(t - c)] = \int_0^\infty e^{-st} u(t - c) \, dt = \int_c^\infty e^{-st} \, dt,$$

$$\mathcal{L}[u(t - c)] = \lim_{N \to \infty} -\frac{1}{s} (e^{-Ns} - e^{-cs}) = \frac{e^{-cs}}{s}, \quad s > 0.$$

We conclude that $\mathcal{L}[u(t - c)] = \frac{e^{-cs}}{s}$. \qed
The Laplace Transform of discontinuous functions.

Example
Compute $\mathcal{L}[3u(t - 2)]$.

Solution:

$\mathcal{L}[3u(t - 2)] = 3 \mathcal{L}[u(t - 2)]$

We conclude:

$\mathcal{L}[3u(t - 2)] = 3 e^{-2s}$.
The Laplace Transform of discontinuous functions.

Example
Compute $\mathcal{L}[3u(t-2)]$.

Solution:
$\mathcal{L}[3u(t-2)] = 3 \mathcal{L}[u(t-2)]$
The Laplace Transform of discontinuous functions.

Example
Compute $\mathcal{L}[3u(t − 2)]$.

Solution: $\mathcal{L}[3u(t − 2)] = 3 \mathcal{L}[u(t − 2)] = 3 \frac{e^{-2s}}{s}$.
The Laplace Transform of discontinuous functions.

Example

Compute $\mathcal{L}[3u(t - 2)]$.

Solution:

$$\mathcal{L}[3u(t - 2)] = 3 \mathcal{L}[u(t - 2)] = 3 \frac{e^{-2s}}{s}.$$

We conclude:

$$\mathcal{L}[3u(t - 2)] = \frac{3e^{-2s}}{s}.$$ \nonumber
The Laplace Transform of discontinuous functions.

Example
Compute $\mathcal{L}[3u(t - 2)]$.

Solution: $\mathcal{L}[3u(t - 2)] = 3 \mathcal{L}[u(t - 2)] = 3 \frac{e^{-2s}}{s}$.

We conclude: $\mathcal{L}[3u(t - 2)] = \frac{3e^{-2s}}{s}$.

Example
Compute $\mathcal{L}^{-1}\left[\frac{e^{3s}}{s}\right]$.

\[\triangleq \]
The Laplace Transform of discontinuous functions.

Example
Compute \(\mathcal{L}[3u(t - 2)] \).

Solution: \(\mathcal{L}[3u(t - 2)] = 3 \mathcal{L}[u(t - 2)] = 3 \frac{e^{-2s}}{s} \).

We conclude: \(\mathcal{L}[3u(t - 2)] = \frac{3e^{-2s}}{s} \).

\(\triangle \)

Example
Compute \(\mathcal{L}^{-1}\left[\frac{e^{3s}}{s}\right] \).

Solution: \(\mathcal{L}^{-1}\left[\frac{e^{3s}}{s}\right] = \mathcal{L}^{-1}\left[\frac{e^{(-3)s}}{s}\right] \)
The Laplace Transform of discontinuous functions.

Example
Compute $\mathcal{L}[3u(t - 2)]$.

Solution: $\mathcal{L}[3u(t - 2)] = 3 \mathcal{L}[u(t - 2)] = 3 \frac{e^{-2s}}{s}$.

We conclude: $\mathcal{L}[3u(t - 2)] = \frac{3e^{-2s}}{s}$. ◄

Example
Compute $\mathcal{L}^{-1}\left[\frac{e^{3s}}{s}\right]$.

Solution: $\mathcal{L}^{-1}\left[\frac{e^{3s}}{s}\right] = \mathcal{L}^{-1}\left[\frac{e^{-(-3)s}}{s}\right] = u(t - (-3))$.
The Laplace Transform of discontinuous functions.

Example

Compute $\mathcal{L}[3u(t - 2)]$.

Solution: $\mathcal{L}[3u(t - 2)] = 3 \mathcal{L}[u(t - 2)] = 3 \frac{e^{-2s}}{s}$.

We conclude: $\mathcal{L}[3u(t - 2)] = \frac{3e^{-2s}}{s}$.

Example

Compute $\mathcal{L}^{-1}\left[\frac{e^{3s}}{s}\right]$.

Solution: $\mathcal{L}^{-1}\left[\frac{e^{3s}}{s}\right] = \mathcal{L}^{-1}\left[\frac{e^{-(3)s}}{s}\right] = u(t - (-3))$.

We conclude: $\mathcal{L}^{-1}\left[\frac{e^{3s}}{s}\right] = u(t + 3)$.
The Laplace Transform of step functions (Sect. 6.3).

- Overview and notation.
- The definition of a step function.
- Piecewise discontinuous functions.
- The Laplace Transform of discontinuous functions.
- Properties of the Laplace Transform.
Properties of the Laplace Transform.

Theorem (Translations)

If \(F(s) = \mathcal{L}[f(t)] \) exists for \(s > a \geq 0 \) and \(c > 0 \), then holds

\[
\mathcal{L}[u(t - c)f(t - c)] = e^{-cs} F(s), \quad s > a.
\]

Furthermore,

\[
\mathcal{L}[e^{ct}f(t)] = F(s - c), \quad s > a + c.
\]
Properties of the Laplace Transform.

Theorem (Translations)
If \(F(s) = \mathcal{L}[f(t)] \) exists for \(s > a \geq 0 \) and \(c > 0 \), then holds

\[
\mathcal{L}[u(t - c)f(t - c)] = e^{-cs} F(s), \quad s > a.
\]

Furthermore,

\[
\mathcal{L}[e^{ct}f(t)] = F(s - c), \quad s > a + c.
\]

Remark:
- \(\mathcal{L}[\text{translation (uf)}] = (\exp)(\mathcal{L}[f]). \)
Properties of the Laplace Transform.

Theorem (Translations)

If \(F(s) = \mathcal{L}[f(t)] \) exists for \(s > a \geq 0 \) and \(c > 0 \), then holds

\[
\mathcal{L}[u(t - c)f(t - c)] = e^{-cs} F(s), \quad s > a.
\]

Furthermore,

\[
\mathcal{L}[e^{ct}f(t)] = F(s - c), \quad s > a + c.
\]

Remark:

- \(\mathcal{L}[\text{translation (uf)}] = (\exp)(\mathcal{L}[f]). \)
- \(\mathcal{L}[\text{(exp)}(f)] = \text{translation}(\mathcal{L}[f]). \)
Properties of the Laplace Transform.

Theorem (Translations)
If \(F(s) = \mathcal{L}[f(t)] \) exists for \(s > a \geq 0 \) and \(c > 0 \), then holds

\[
\mathcal{L}[u(t - c)f(t - c)] = e^{-cs} F(s), \quad s > a.
\]

Furthermore,

\[
\mathcal{L}[e^{ct} f(t)] = F(s - c), \quad s > a + c.
\]

Remark:
- \(\mathcal{L}[\text{translation } (uf)] = (\exp) (\mathcal{L}[f]) \).
- \(\mathcal{L}[\exp (f)] = \text{translation} (\mathcal{L}[f]) \).

Equivalent notation:
- \(\mathcal{L}[u(t - c)f(t - c)] = e^{-cs} \mathcal{L}[f(t)], \)
Properties of the Laplace Transform.

Theorem (Translations)

If \(F(s) = \mathcal{L}[f(t)] \) exists for \(s > a \geq 0 \) and \(c > 0 \), then holds

\[
\mathcal{L}[u(t - c)f(t - c)] = e^{-cs} F(s), \quad s > a.
\]

Furthermore,

\[
\mathcal{L}[e^{ct} f(t)] = F(s - c), \quad s > a + c.
\]

Remark:

- \(\mathcal{L}[\text{translation} \ (uf)] = (\exp) \ (\mathcal{L}[f]). \)
- \(\mathcal{L}[\ (\exp) \ (f)] = \text{translation} \ (\mathcal{L}[f]). \)

Equivalent notation:

- \(\mathcal{L}[u(t - c)f(t - c)] = e^{-cs} \mathcal{L}[f(t)], \)
- \(\mathcal{L}[e^{ct} f(t)] = \mathcal{L}[f](s - c). \)
Properties of the Laplace Transform.

Example

Compute \(\mathcal{L}[u(t - 2) \sin(a(t - 2))] \).

\[
\begin{align*}
\mathcal{L}[\sin(at)] &= as^2 + a^2, \\
\mathcal{L}[u(t - c)f(t - c)] &= e^{-cs}\mathcal{L}[f(t)]
\end{align*}
\]

\[
\mathcal{L}[u(t - 2) \sin(a(t - 2))] = e^{-2s}a\left(s^2 + a^2\right)
\]

We conclude:

\[
\mathcal{L}[u(t - 2) \sin(a(t - 2))] = e^{-2s}a\left(s^2 + a^2\right).
\]
Properties of the Laplace Transform.

Example

Compute \(\mathcal{L}[u(t-2) \sin(a(t-2))] \).

Solution: \(\mathcal{L}[\sin(at)] = \frac{a}{s^2 + a^2} \).
Properties of the Laplace Transform.

Example
Compute $\mathcal{L}[u(t - 2) \sin(a(t - 2))].$

Solution: $\mathcal{L}[\sin(at)] = \frac{a}{s^2 + a^2}, \mathcal{L}[u(t - c)f(t - c)] = e^{-cs} \mathcal{L}[f(t)].$
Properties of the Laplace Transform.

Example
Compute \(\mathcal{L}[u(t - 2) \sin(a(t - 2))] \).

Solution: \(\mathcal{L}[\sin(at)] = \frac{a}{s^2 + a^2} \), \(\mathcal{L}[u(t - c)f(t - c)] = e^{-cs} \mathcal{L}[f(t)] \).

\[
\mathcal{L}[u(t - 2) \sin(a(t - 2))] = e^{-2s} \mathcal{L}[\sin(at)]
\]
Properties of the Laplace Transform.

Example

Compute \(\mathcal{L}[u(t - 2) \sin(a(t - 2))] \).

Solution: \(\mathcal{L}[\sin(at)] = \frac{a}{s^2 + a^2} \), \(\mathcal{L}[u(t - c)f(t - c)] = e^{-cs} \mathcal{L}[f(t)] \).

\[
\mathcal{L}[u(t - 2) \sin(a(t - 2))] = e^{-2s} \mathcal{L}[\sin(at)] = e^{-2s} \frac{a}{s^2 + a^2}.
\]
Properties of the Laplace Transform.

Example
Compute $L[u(t - 2) \sin(a(t - 2))]$.

Solution: $L[\sin(at)] = \frac{a}{s^2 + a^2}$, $L[u(t - c)f(t - c)] = e^{-cs} L[f(t)]$.

$$L[u(t - 2) \sin(a(t - 2))] = e^{-2s} L[\sin(at)] = e^{-2s} \frac{a}{s^2 + a^2}.$$

We conclude: $L[u(t - 2) \sin(a(t - 2))] = e^{-2s} \frac{a}{s^2 + a^2}$. \triangleleft
Properties of the Laplace Transform.

Example
Compute $\mathcal{L}[u(t - 2) \sin(a(t - 2))]$.

Solution: $\mathcal{L}[\sin(at)] = \frac{a}{s^2 + a^2}$, $\mathcal{L}[u(t - c)f(t - c)] = e^{-cs} \mathcal{L}[f(t)]$.

\[
\mathcal{L}[u(t - 2) \sin(a(t - 2))] = e^{-2s} \mathcal{L}[\sin(at)] = e^{-2s} \frac{a}{s^2 + a^2}.
\]

We conclude: $\mathcal{L}[u(t - 2) \sin(a(t - 2))] = e^{-2s} \frac{a}{s^2 + a^2}$.

Example
Compute $\mathcal{L}[e^{3t} \sin(at)]$.

\[
\mathcal{L}[e^{3t} \sin(at)] = \frac{a}{s^2 + a^2}.
\]
Properties of the Laplace Transform.

Example
Compute \(\mathcal{L}[u(t - 2) \sin(a(t - 2))] \).

Solution: \(\mathcal{L}[\sin(at)] = \frac{a}{s^2 + a^2}, \mathcal{L}[u(t - c)f(t - c)] = e^{-cs} \mathcal{L}[f(t)] \).

\[
\mathcal{L}[u(t - 2) \sin(a(t - 2))] = e^{-2s} \mathcal{L}[\sin(at)] = e^{-2s} \frac{a}{s^2 + a^2}.
\]

We conclude: \(\mathcal{L}[u(t - 2) \sin(a(t - 2))] = e^{-2s} \frac{a}{s^2 + a^2} \). \(\checkmark \)

Example
Compute \(\mathcal{L}[e^{3t} \sin(at)] \).

Solution: Recall: \(\mathcal{L}[e^{ct}f(t)] = \mathcal{L}[f](s - c) \).
Properties of the Laplace Transform.

Example
Compute \(\mathcal{L}[u(t - 2) \sin(a(t - 2))] \).

Solution: \(\mathcal{L}[\sin(at)] = \frac{a}{s^2 + a^2} \), \(\mathcal{L}[u(t - c)f(t - c)] = e^{-cs} \mathcal{L}[f(t)] \).

\[
\mathcal{L}[u(t - 2) \sin(a(t - 2))] = e^{-2s} \mathcal{L}[\sin(at)] = e^{-2s} \frac{a}{s^2 + a^2}.
\]

We conclude: \(\mathcal{L}[u(t - 2) \sin(a(t - 2))] = e^{-2s} \frac{a}{s^2 + a^2} \). \(\triangleright \)

Example
Compute \(\mathcal{L}[e^{3t} \sin(at)] \).

Solution: Recall: \(\mathcal{L}[e^{ct}f(t)] = \mathcal{L}[f](s - c) \).

We conclude: \(\mathcal{L}[e^{3t} \sin(at)] = \frac{a}{(s - 3)^2 + a^2} \), with \(s > 3 \). \(\triangleright \)
Properties of the Laplace Transform.

Example

Find the Laplace transform of \(f(t) = \begin{cases}
0, & t < 1, \\
(t^2 - 2t + 2), & t \geq 1.
\end{cases} \)
Properties of the Laplace Transform.

Example

Find the Laplace transform of \(f(t) = \begin{cases} 0, & t < 1, \\ (t^2 - 2t + 2), & t \geq 1. \end{cases} \)

Solution: Using step function notation,
Properties of the Laplace Transform.

Example

Find the Laplace transform of \(f(t) = \begin{cases} 0, & t < 1, \\ (t^2 - 2t + 2), & t \geq 1. \end{cases} \)

Solution: Using step function notation,

\[
 f(t) = u(t - 1)(t^2 - 2t + 2).
\]
Properties of the Laplace Transform.

Example

Find the Laplace transform of

\[f(t) = \begin{cases}
0, & t < 1, \\
(t^2 - 2t + 2), & t \geq 1.
\end{cases} \]

Solution: Using step function notation,

\[f(t) = u(t - 1)(t^2 - 2t + 2). \]

Completing the square we obtain,

\[t^2 - 2t + 2 = (t^2 - 2t + 1) - 1 + 2 \]
Properties of the Laplace Transform.

Example

Find the Laplace transform of

\[f(t) = \begin{cases}
0, & t < 1, \\
(t^2 - 2t + 2), & t \geq 1.
\end{cases} \]

Solution: Using step function notation,

\[f(t) = u(t - 1)(t^2 - 2t + 2). \]

Completing the square we obtain,

\[t^2 - 2t + 2 = (t^2 - 2t + 1) - 1 + 2 = (t - 1)^2 + 1. \]
Properties of the Laplace Transform.

Example

Find the Laplace transform of \(f(t) = \begin{cases} 0, & t < 1, \\ (t^2 - 2t + 2), & t \geq 1. \end{cases} \)

Solution: Using step function notation,

\[f(t) = u(t - 1)(t^2 - 2t + 2). \]

Completing the square we obtain,

\[t^2 - 2t + 2 = (t^2 - 2t + 1) - 1 + 2 = (t - 1)^2 + 1. \]

This is a parabola \(t^2 \) translated to the right by 1 and up by one. This is a discontinuous function.
Properties of the Laplace Transform.

Example

Find the Laplace transform of \(f(t) = \begin{cases} 0, & t < 1, \\ (t^2 - 2t + 2), & t \geq 1. \end{cases} \)

Solution: Using step function notation,

\[f(t) = u(t - 1)(t^2 - 2t + 2). \]

Completing the square we obtain,

\[t^2 - 2t + 2 = (t^2 - 2t + 1) - 1 + 2 = (t - 1)^2 + 1. \]

This is a parabola \(t^2 \) translated to the right by 1 and up by one. This is a discontinuous function.
Properties of the Laplace Transform.

Example

Find the Laplace transform of

\[f(t) = \begin{cases} 0, & t < 1, \\ (t^2 - 2t + 2), & t \geq 1. \end{cases} \]

Solution: Recall:

\[f(t) = u(t - 1) [(t - 1)^2 + 1]. \]
Properties of the Laplace Transform.

Example

Find the Laplace transform of \(f(t) = \begin{cases} 0, & t < 1, \\ (t^2 - 2t + 2), & t \geq 1. \end{cases} \)

Solution: Recall: \(f(t) = u(t - 1) [(t - 1)^2 + 1] \).

This is equivalent to

\[f(t) = u(t - 1)(t - 1)^2 + u(t - 1). \]
Properties of the Laplace Transform.

Example

Find the Laplace transform of

\[f(t) = \begin{cases}
0, & t < 1, \\
(t^2 - 2t + 2), & t \geq 1.
\end{cases} \]

Solution: Recall:

\[f(t) = u(t - 1) [(t - 1)^2 + 1]. \]

This is equivalent to

\[f(t) = u(t - 1) (t - 1)^2 + u(t - 1). \]

Since \(\mathcal{L}[t^2] = 2/s^3, \)
Properties of the Laplace Transform.

Example

Find the Laplace transform of $f(t) = \begin{cases} 0, & t < 1, \\ (t^2 - 2t + 2), & t \geq 1. \end{cases}$

Solution: Recall: $f(t) = u(t - 1) [(t - 1)^2 + 1]$.

This is equivalent to

$$f(t) = u(t - 1) (t - 1)^2 + u(t - 1).$$

Since $\mathcal{L}[t^2] = 2/s^3$, and $\mathcal{L}[u(t - c)g(t - c)] = e^{-cs} \mathcal{L}[g(t)],$
Properties of the Laplace Transform.

Example

Find the Laplace transform of $f(t) = \begin{cases} 0, & t < 1, \\ (t^2 - 2t + 2), & t \geq 1. \end{cases}$

Solution: Recall: $f(t) = u(t - 1) [(t - 1)^2 + 1]$.

This is equivalent to $f(t) = u(t - 1) (t - 1)^2 + u(t - 1)$.

Since $\mathcal{L}[t^2] = 2/s^3$, and $\mathcal{L}[u(t - c)g(t - c)] = e^{-cs} \mathcal{L}[g(t)]$, then

$$\mathcal{L}[f(t)] = \mathcal{L}[u(t - 1) (t - 1)^2] + \mathcal{L}[u(t - 1)]$$
Properties of the Laplace Transform.

Example
Find the Laplace transform of \(f(t) = \begin{cases} 0, & t < 1, \\ (t^2 - 2t + 2), & t \geq 1. \end{cases} \)

Solution: Recall: \(f(t) = u(t - 1) [(t - 1)^2 + 1] \).
This is equivalent to
\[f(t) = u(t - 1) (t - 1)^2 + u(t - 1). \]
Since \(\mathcal{L}[t^2] = \frac{2}{s^3} \), and \(\mathcal{L}[u(t - c)g(t - c)] = e^{-cs} \mathcal{L}[g(t)] \), then
\[\mathcal{L}[f(t)] = \mathcal{L}[u(t - 1) (t - 1)^2] + \mathcal{L}[u(t - 1)] = e^{-s} \frac{2}{s^3} + e^{-s} \frac{1}{s}. \]
Properties of the Laplace Transform.

Example

Find the Laplace transform of \(f(t) = \begin{cases} 0, & t < 1, \\ (t^2 - 2t + 2), & t \geq 1. \end{cases} \)

Solution: Recall: \(f(t) = u(t - 1) [(t - 1)^2 + 1] \).

This is equivalent to

\[
f(t) = u(t - 1)(t - 1)^2 + u(t - 1).
\]

Since \(\mathcal{L}[t^2] = 2/s^3 \), and \(\mathcal{L}[u(t - c)g(t - c)] = e^{-cs} \mathcal{L}[g(t)] \), then

\[
\mathcal{L}[f(t)] = \mathcal{L}[u(t - 1)(t - 1)^2] + \mathcal{L}[u(t - 1)] = e^{-s} \frac{2}{s^3} + e^{-s} \frac{1}{s}.
\]

We conclude: \(\mathcal{L}[f(t)] = \frac{e^{-s}}{s^3} (2 + s^2). \) \(\triangle \)
Properties of the Laplace Transform.

Remark: The inverse of the formulas in the Theorem above are:

\[\mathcal{L}^{-1}[e^{-cs} F(s)] = u(t - c) f(t - c), \]

Example

Find \(\mathcal{L}^{-1}[e^{-4s} s^2 + 9] \).

Solution:

\[\mathcal{L}^{-1}[e^{-4s} s^2 + 9] = \frac{1}{3} \mathcal{L}^{-1}[e^{-4s} s^2 + 9]. \]

Recall:

\[\mathcal{L}^{-1}[a s^2 + a^2] = \sin(at). \]

Then, we conclude that

\[\mathcal{L}^{-1}[e^{-4s} s^2 + 9] = \frac{1}{3} u(t - 4) \sin(3(t - 4)). \]
Properties of the Laplace Transform.

Remark: The inverse of the formulas in the Theorem above are:

\[
\mathcal{L}^{-1}[e^{-cs}F(s)] = u(t - c) f(t - c),
\]

\[
\mathcal{L}^{-1}[F(s - c)] = e^{ct} f(t).
\]
Properties of the Laplace Transform.

Remark: The inverse of the formulas in the Theorem above are:

\[\mathcal{L}^{-1}[e^{-cs} F(s)] = u(t - c) f(t - c), \]

\[\mathcal{L}^{-1}[F(s - c)] = e^{ct} f(t). \]

Example

Find \(\mathcal{L}^{-1}\left[\frac{e^{-4s}}{s^2 + 9} \right] \).
Properties of the Laplace Transform.

Remark: The inverse of the formulas in the Theorem above are:

\[\mathcal{L}^{-1}[e^{-cs} F(s)] = u(t - c) f(t - c), \]

\[\mathcal{L}^{-1}[F(s - c)] = e^{ct} f(t). \]

Example

Find \(\mathcal{L}^{-1}\left[\frac{e^{-4s}}{s^2 + 9} \right] \).

Solution: \(\mathcal{L}^{-1}\left[\frac{e^{-4s}}{s^2 + 9} \right] = \frac{1}{3} \mathcal{L}^{-1}\left[\frac{3}{s^2 + 9} \right] \).
Properties of the Laplace Transform.

Remark: The inverse of the formulas in the Theorem above are:

\[
\mathcal{L}^{-1}[e^{-cs} F(s)] = u(t - c) f(t - c),
\]

\[
\mathcal{L}^{-1}[F(s - c)] = e^{ct} f(t).
\]

Example

Find \(\mathcal{L}^{-1}\left[\frac{e^{-4s}}{s^2 + 9}\right]\).

Solution: \(\mathcal{L}^{-1}\left[\frac{e^{-4s}}{s^2 + 9}\right] = \frac{1}{3} \mathcal{L}^{-1}\left[\frac{e^{-4s}}{s^2 + 9}\right].\)

Recall: \(\mathcal{L}^{-1}\left[\frac{a}{s^2 + a^2}\right] = \sin(at).\)
Properties of the Laplace Transform.

Remark: The inverse of the formulas in the Theorem above are:

\[\mathcal{L}^{-1}[e^{-cs} F(s)] = u(t - c) f(t - c), \]

\[\mathcal{L}^{-1}[F(s - c)] = e^{ct} f(t). \]

Example

Find \(\mathcal{L}^{-1}\left[\frac{e^{-4s}}{s^2 + 9} \right] \).

Solution:

\[\mathcal{L}^{-1}\left[\frac{e^{-4s}}{s^2 + 9} \right] = \frac{1}{3} \mathcal{L}^{-1}\left[\frac{3}{s^2 + 9} \right]. \]

Recall: \(\mathcal{L}^{-1}\left[\frac{a}{s^2 + a^2} \right] = \sin(at) \). Then, we conclude that

\[\mathcal{L}^{-1}\left[\frac{e^{-4s}}{s^2 + 9} \right] = \frac{1}{3} u(t - 4) \sin(3(t - 4)). \]
Properties of the Laplace Transform.

Example
Find \(\mathcal{L}^{-1}\left[\frac{(s - 2)}{(s - 2)^2 + 9} \right] \).
Properties of the Laplace Transform.

Example

Find $\mathcal{L}^{-1}\left[\frac{(s - 2)}{(s - 2)^2 + 9}\right]$.

Solution: $\mathcal{L}^{-1}\left[\frac{s}{s^2 + a^2}\right] = \cos(at)$,
Properties of the Laplace Transform.

Example

Find $\mathcal{L}^{-1}\left[\frac{(s - 2)}{(s - 2)^2 + 9}\right]$.

Solution: $\mathcal{L}^{-1}\left[\frac{s}{s^2 + a^2}\right] = \cos(at)$, $\mathcal{L}^{-1}\left[F(s - c)\right] = e^{ct} f(t)$.
Properties of the Laplace Transform.

Example

Find \(\mathcal{L}^{-1}\left[\frac{(s - 2)}{(s - 2)^2 + 9} \right] \).

Solution: \(\mathcal{L}^{-1}\left[\frac{s}{s^2 + a^2} \right] = \cos(at) \), \(\mathcal{L}^{-1}\left[F(s - c) \right] = e^{ct} f(t) \).

We conclude: \(\mathcal{L}^{-1}\left[\frac{(s - 2)}{(s - 2)^2 + 9} \right] = e^{2t} \cos(3t) \). \(\triangle \)
Properties of the Laplace Transform.

Example
Find \(\mathcal{L}^{-1} \left[\frac{(s - 2)}{(s - 2)^2 + 9} \right] \).

Solution: \(\mathcal{L}^{-1} \left[\frac{s}{s^2 + a^2} \right] = \cos(at) \), \(\mathcal{L}^{-1} [F(s - c)] = e^{ct} f(t) \).

We conclude: \(\mathcal{L}^{-1} \left[\frac{(s - 2)}{(s - 2)^2 + 9} \right] = e^{2t} \cos(3t) \). △

Example
Find \(\mathcal{L}^{-1} \left[\frac{2e^{-3s}}{s^2 - 4} \right] \).
Properties of the Laplace Transform.

Example

Find \(\mathcal{L}^{-1} \left[\frac{(s - 2)}{(s - 2)^2 + 9} \right] \).

Solution: \(\mathcal{L}^{-1} \left[\frac{s}{s^2 + a^2} \right] = \cos(at), \mathcal{L}^{-1} [F(s - c)] = e^{ct} f(t). \)

We conclude: \(\mathcal{L}^{-1} \left[\frac{(s - 2)}{(s - 2)^2 + 9} \right] = e^{2t} \cos(3t). \)

Example

Find \(\mathcal{L}^{-1} \left[\frac{2e^{-3s}}{s^2 - 4} \right] \).

Solution: Recall: \(\mathcal{L}^{-1} \left[\frac{a}{s^2 - a^2} \right] = \sinh(at) \)
Properties of the Laplace Transform.

Example
Find \(\mathcal{L}^{-1}\left[\frac{(s - 2)}{(s - 2)^2 + 9}\right] \).

Solution: \(\mathcal{L}^{-1}\left[\frac{s}{s^2 + a^2}\right] = \cos(at), \mathcal{L}^{-1}[F(s - c)] = e^{ct} f(t) \).

We conclude: \(\mathcal{L}^{-1}\left[\frac{(s - 2)}{(s - 2)^2 + 9}\right] = e^{2t} \cos(3t) \).

Example
Find \(\mathcal{L}^{-1}\left[\frac{2e^{-3s}}{s^2 - 4}\right] \).

Solution: Recall: \(\mathcal{L}^{-1}\left[\frac{a}{s^2 - a^2}\right] = \sinh(at) \)

and \(\mathcal{L}^{-1}\left[e^{-cs} F(s)\right] = u(t - c) f(t - c) \).
Properties of the Laplace Transform.

Example

Find $\mathcal{L}^{-1}\left[\frac{2e^{-3s}}{s^2 - 4}\right]$.

Solution: Recall:

$$\mathcal{L}^{-1}\left[\frac{a}{s^2 - a^2}\right] = \sinh(at), \quad \mathcal{L}^{-1}[e^{-cs} F(s)] = u(t - c) f(t - c).$$
Properties of the Laplace Transform.

Example
Find $\mathcal{L}^{-1}\left[\frac{2e^{-3s}}{s^2 - 4} \right]$.

Solution: Recall:

\[
\mathcal{L}^{-1}\left[\frac{a}{s^2 - a^2} \right] = \sinh(at), \quad \mathcal{L}^{-1}\left[e^{-cs} F(s) \right] = u(t - c) f(t - c).
\]

\[
\mathcal{L}^{-1}\left[\frac{2e^{-3s}}{s^2 - 4} \right] = \mathcal{L}^{-1}\left[e^{-3s} \frac{2}{s^2 - 4} \right].
\]

\[
\text{We conclude: } \mathcal{L}^{-1}\left[\frac{2e^{-3s}}{s^2 - 4} \right] = u(t - 3) \sinh(2(t - 3)).
\]
Properties of the Laplace Transform.

Example

Find $\mathcal{L}^{-1}\left[\frac{2e^{-3s}}{s^2 - 4} \right]$.

Solution: Recall:

$$\mathcal{L}^{-1}\left[\frac{a}{s^2 - a^2} \right] = \sinh(at), \quad \mathcal{L}^{-1}\left[e^{-cs} F(s) \right] = u(t - c) f(t - c).$$

$$\mathcal{L}^{-1}\left[\frac{2e^{-3s}}{s^2 - 4} \right] = \mathcal{L}^{-1}\left[e^{-3s} \frac{2}{s^2 - 4} \right].$$

We conclude: $$\mathcal{L}^{-1}\left[\frac{2e^{-3s}}{s^2 - 4} \right] = u(t - 3) \sinh(2(t - 3)).$$
Properties of the Laplace Transform.

Example

Find $\mathcal{L}^{-1}\left[\frac{e^{-2s}}{s^2 + s - 2} \right]$.

Solution:
Find the roots of the denominator:

$s \pm \sqrt{1 + 8} = 1, -2$.

Therefore,

$s^2 + s - 2 = (s - 1)(s + 2)$.

Use partial fractions to simplify the rational function:

$\frac{1}{s^2 + s - 2} = \frac{a}{s - 1} + \frac{b}{s + 2}$.

$1 = a(s + 2) + b(s - 1)$.
Properties of the Laplace Transform.

Example
Find $\mathcal{L}^{-1}\left[\frac{e^{-2s}}{s^2 + s - 2} \right]$.

Solution: Find the roots of the denominator:

$$s_{\pm} = \frac{1}{2} \left[-1 \pm \sqrt{1 + 8} \right]$$
Example
Find \(\mathcal{L}^{-1} \left[\frac{e^{-2s}}{s^2 + s - 2} \right] \).

Solution: Find the roots of the denominator:

\[
s_{\pm} = \frac{1}{2} \left[-1 \pm \sqrt{1 + 8} \right] \quad \Rightarrow \quad \begin{cases} s_+ = 1, \\ s_- = -2. \end{cases}
\]
Properties of the Laplace Transform.

Example

Find $\mathcal{L}^{-1}\left[\frac{e^{-2s}}{s^2 + s - 2}\right]$.

Solution: Find the roots of the denominator:

$$s_{\pm} = \frac{1}{2}[-1 \pm \sqrt{1 + 8}] \quad \Rightarrow \quad \begin{cases} s_+ = 1, \\ s_- = -2. \end{cases}$$

Therefore, $s^2 + s - 2 = (s - 1)(s + 2)$.
Properties of the Laplace Transform.

Example
Find \(\mathcal{L}^{-1} \left[\frac{e^{-2s}}{s^2 + s - 2} \right] \).

Solution: Find the roots of the denominator:

\[
s_{\pm} = \frac{1}{2} \left[-1 \pm \sqrt{1 + 8} \right] \quad \Rightarrow \quad \begin{cases}
s_+ = 1, \\
s_- = -2.
\end{cases}
\]

Therefore, \(s^2 + s - 2 = (s - 1)(s + 2) \).

Use partial fractions to simplify the rational function:

\[
\frac{1}{s^2 + s - 2} = \frac{1}{(s - 1)(s + 2)}
\]
Properties of the Laplace Transform.

Example

Find \(\mathcal{L}^{-1}\left[\frac{e^{-2s}}{s^2 + s - 2} \right] \).

Solution: Find the roots of the denominator:

\[
s_{\pm} = \frac{1}{2} \left[-1 \pm \sqrt{1 + 8}\right] \quad \Rightarrow \quad \begin{cases}
s_+ = 1, \\
s_- = -2. \end{cases}
\]

Therefore, \(s^2 + s - 2 = (s - 1)(s + 2) \).

Use partial fractions to simplify the rational function:

\[
\frac{1}{s^2 + s - 2} = \frac{1}{(s - 1)(s + 2)} = \frac{a}{s - 1} + \frac{b}{s + 2},
\]
Properties of the Laplace Transform.

Example

Find \(\mathcal{L}^{-1}\left[\frac{e^{-2s}}{s^2 + s - 2} \right] \).

Solution: Find the roots of the denominator:

\[
s_{\pm} = \frac{1}{2} [-1 \pm \sqrt{1 + 8}] \quad \Rightarrow \quad \begin{cases}
 s_+ = 1, \\
 s_- = -2.
\end{cases}
\]

Therefore, \(s^2 + s - 2 = (s - 1)(s + 2) \).

Use partial fractions to simplify the rational function:

\[
\frac{1}{s^2 + s - 2} = \frac{1}{(s - 1)(s + 2)} = \frac{a}{s - 1} + \frac{b}{s + 2},
\]

\[
\frac{1}{s^2 + s - 2} = a(s + 2) + b(s - 1)
\]
Properties of the Laplace Transform.

Example

Find \(\mathcal{L}^{-1} \left[\frac{e^{-2s}}{s^2 + s - 2} \right] \).

Solution: Find the roots of the denominator:

\[
s_\pm = \frac{1}{2} \left[-1 \pm \sqrt{1 + 8} \right] \quad \Rightarrow \quad \begin{cases} s_+ = 1, \\ s_- = -2. \end{cases}
\]

Therefore, \(s^2 + s - 2 = (s - 1)(s + 2) \).

Use partial fractions to simplify the rational function:

\[
\frac{1}{s^2 + s - 2} = \frac{1}{(s - 1)(s + 2)} = \frac{a}{s - 1} + \frac{b}{s + 2},
\]

\[
\frac{1}{s^2 + s - 2} = a(s + 2) + b(s - 1) = \frac{(a + b)s + (2a - b)}{(s - 1)(s + 2)}.
\]
Properties of the Laplace Transform.

Example

Find \(\mathcal{L}^{-1}\left[\frac{e^{-2s}}{s^2 + s - 2} \right] \).

Solution: Recall:

\[
\frac{1}{s^2 + s - 2} = \frac{(a + b) s + (2a - b)}{(s - 1)(s + 2)}
\]
Properties of the Laplace Transform.

Example

Find \(\mathcal{L}^{-1}\left[\frac{e^{-2s}}{s^2 + s - 2} \right] \).

Solution: Recall:

\[
\frac{1}{s^2 + s - 2} = \frac{(a + b)s + (2a - b)}{(s - 1)(s + 2)}
\]

\(a + b = 0, \)
Properties of the Laplace Transform.

Example

Find \(\mathcal{L}^{-1} \left[\frac{e^{-2s}}{s^2 + s - 2} \right] \).

Solution: Recall: \(\frac{1}{s^2 + s - 2} = \frac{(a + b) s + (2a - b)}{(s - 1)(s + 2)} \)

\[
a + b = 0, \quad 2a - b = 1,
\]
Properties of the Laplace Transform.

Example

Find \(\mathcal{L}^{-1} \left[\frac{e^{-2s}}{s^2 + s - 2} \right] \).

Solution: Recall:

\[
\frac{1}{s^2 + s - 2} = \frac{(a + b)s + (2a - b)}{(s - 1)(s + 2)}
\]

\[\begin{align*}
a + b &= 0, \\
2a - b &= 1,
\end{align*}\]

\(\Rightarrow \)

\[a = \frac{1}{3}, \quad b = -\frac{1}{3}.\]
Properties of the Laplace Transform.

Example

Find $\mathcal{L}^{-1}\left[\frac{e^{-2s}}{s^2 + s - 2}\right]$.

Solution: Recall: \[
\frac{1}{s^2 + s - 2} = \frac{(a + b) s + (2a - b)}{(s - 1)(s + 2)}
\]

\[
a + b = 0, \quad 2a - b = 1, \quad \Rightarrow \quad a = \frac{1}{3}, \quad b = -\frac{1}{3}.
\]

\[
\mathcal{L}^{-1}\left[\frac{e^{-2s}}{s^2 + s - 2}\right] = \frac{1}{3} \mathcal{L}^{-1}\left[\frac{e^{-2s}}{s - 1}\right] - \frac{1}{3} \mathcal{L}^{-1}\left[\frac{e^{-2s}}{s + 2}\right].
\]
Properties of the Laplace Transform.

Example
Find \(\mathcal{L}^{-1}\left[\frac{e^{-2s}}{s^2 + s - 2} \right] \).

Solution: Recall:
\[
\frac{1}{s^2 + s - 2} = \frac{(a + b)s + (2a - b)}{(s - 1)(s + 2)}
\]

\[
a + b = 0, \quad 2a - b = 1, \quad \Rightarrow \quad a = \frac{1}{3}, \quad b = -\frac{1}{3}.
\]

\[
\mathcal{L}^{-1}\left[\frac{e^{-2s}}{s^2 + s - 2} \right] = \frac{1}{3} \mathcal{L}^{-1}\left[e^{-2s} \frac{1}{s - 1} \right] - \frac{1}{3} \mathcal{L}^{-1}\left[e^{-2s} \frac{1}{s + 2} \right].
\]

Recall: \(\mathcal{L}^{-1}\left[\frac{1}{s - a} \right] = e^{at} \),
Properties of the Laplace Transform.

Example

Find \(\mathcal{L}^{-1} \left[\frac{e^{-2s}}{s^2 + s - 2} \right] \).

Solution: Recall:

\[
\frac{1}{s^2 + s - 2} = \frac{(a + b) s + (2a - b)}{(s - 1)(s + 2)}
\]

\(a + b = 0, \quad 2a - b = 1, \quad \Rightarrow \quad a = \frac{1}{3}, \quad b = -\frac{1}{3}. \)

\[
\mathcal{L}^{-1} \left[\frac{e^{-2s}}{s^2 + s - 2} \right] = \frac{1}{3} \mathcal{L}^{-1} \left[e^{-2s} \frac{1}{s - 1} \right] - \frac{1}{3} \mathcal{L}^{-1} \left[e^{-2s} \frac{1}{s + 2} \right].
\]

Recall:

\(\mathcal{L}^{-1} \left[\frac{1}{s - a} \right] = e^{at}, \quad \mathcal{L}^{-1} \left[e^{-cs} F(s) \right] = u(t - c) f(t - c), \)
Properties of the Laplace Transform.

Example

Find \(\mathcal{L}^{-1} \left[\frac{e^{-2s}}{s^2 + s - 2} \right] \).

Solution: Recall:

\[
\frac{1}{s^2 + s - 2} = \frac{(a + b) s + (2a - b)}{(s - 1)(s + 2)}
\]

\[
a + b = 0, \quad 2a - b = 1,
\]

\[
\Rightarrow \quad a = \frac{1}{3}, \quad b = -\frac{1}{3}.
\]

\[
\mathcal{L}^{-1} \left[\frac{e^{-2s}}{s^2 + s - 2} \right] = \frac{1}{3} \mathcal{L}^{-1} \left[e^{-2s} \frac{1}{s - 1} \right] - \frac{1}{3} \mathcal{L}^{-1} \left[e^{-2s} \frac{1}{s + 2} \right].
\]

Recall: \(\mathcal{L}^{-1} \left[\frac{1}{s - a} \right] = e^{at} \), \(\mathcal{L}^{-1} \left[e^{-cs} F(s) \right] = u(t - c) f(t - c) \),

\[
\mathcal{L}^{-1} \left[\frac{e^{-2s}}{s^2 + s - 2} \right] = \frac{1}{3} u(t - 2) e^{(t-2)} - \frac{1}{3} u(t - 2) e^{-2(t-2)}.
\]
Properties of the Laplace Transform.

Example
Find \(\mathcal{L}^{-1}\left[\frac{e^{-2s}}{s^2 + s - 2}\right] \).

Solution: Recall:
\[
\frac{1}{s^2 + s - 2} = \frac{(a + b) s + (2a - b)}{(s - 1)(s + 2)}
\]
\[
a + b = 0, \quad 2a - b = 1, \quad \Rightarrow \quad a = \frac{1}{3}, \quad b = -\frac{1}{3}.
\]

\[
\mathcal{L}^{-1}\left[\frac{e^{-2s}}{s^2 + s - 2}\right] = \frac{1}{3} \mathcal{L}^{-1}\left[e^{-2s}\frac{1}{s - 1}\right] - \frac{1}{3} \mathcal{L}^{-1}\left[e^{-2s}\frac{1}{s + 2}\right].
\]

Recall:
\[
\mathcal{L}^{-1}\left[\frac{1}{s - a}\right] = e^{at}, \quad \mathcal{L}^{-1}\left[e^{-cs} F(s)\right] = u(t - c) f(t - c),
\]

\[
\mathcal{L}^{-1}\left[\frac{e^{-2s}}{s^2 + s - 2}\right] = \frac{1}{3} u(t - 2) e^{(t-2)} - \frac{1}{3} u(t - 2) e^{-2(t-2)}.
\]

Hence:
\[
\mathcal{L}^{-1}\left[\frac{e^{-2s}}{s^2 + s - 2}\right] = \frac{1}{3} u(t - 2) \left[e^{(t-2)} - e^{-2(t-2)}\right]. \quad \triangleq
\]
Equations with discontinuous sources (Sect. 6.4).

- Differential equations with discontinuous sources.
- We solve the IVPs:
 (a) Example 1:

 \[y' + 2y = u(t - 4), \quad y(0) = 3. \]

 (b) Example 2:

 \[
 y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases}
 1, & t \in [0, \pi) \\
 0, & t \in [\pi, \infty)
 \end{cases}.
 \]

 (c) Example 3:

 \[
 y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad g(t) = \begin{cases}
 \sin(t), & t \in [0, \pi) \\
 0, & t \in [\pi, \infty)
 \end{cases}.
 \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y' + 2y = u(t - 4), \quad y(0) = 3. \]
Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP
\[y' + 2y = u(t - 4), \quad y(0) = 3. \]

Solution: Compute the Laplace transform of the whole equation,
\[\mathcal{L}[y'] + 2 \mathcal{L}[y] = \mathcal{L}[u(t - 4)] \]
Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

\[y' + 2y = u(t - 4), \quad y(0) = 3. \]

Solution: Compute the Laplace transform of the whole equation,

\[\mathcal{L}[y'] + 2 \mathcal{L}[y] = \mathcal{L}[u(t - 4)] = \frac{e^{-4s}}{s}. \]
Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

\[y' + 2y = u(t - 4), \quad y(0) = 3. \]

Solution: Compute the Laplace transform of the whole equation,

\[\mathcal{L}[y'] + 2 \mathcal{L}[y] = \mathcal{L}[u(t - 4)] = \frac{e^{-4s}}{s}. \]

From the previous Section we know that

\[[s \mathcal{L}[y] - y(0)] + 2 \mathcal{L}[y] = \frac{e^{-4s}}{s} \]

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$y' + 2y = u(t - 4), \quad y(0) = 3.$$

Solution: Compute the Laplace transform of the whole equation,

$$\mathcal{L}[y'] + 2 \mathcal{L}[y] = \mathcal{L}[u(t - 4)] = \frac{e^{-4s}}{s}.$$

From the previous Section we know that

$$[s \mathcal{L}[y] - y(0)] + 2 \mathcal{L}[y] = \frac{e^{-4s}}{s} \quad \Rightarrow \quad (s + 2) \mathcal{L}[y] = y(0) + \frac{e^{-4s}}{s}.$$
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y' + 2y = u(t - 4), \quad y(0) = 3. \]

Solution: Compute the Laplace transform of the whole equation,

\[\mathcal{L}[y'] + 2 \mathcal{L}[y] = \mathcal{L}[u(t - 4)] = \frac{e^{-4s}}{s}. \]

From the previous Section we know that

\[[s \mathcal{L}[y] - y(0)] + 2 \mathcal{L}[y] = \frac{e^{-4s}}{s} \quad \Rightarrow \quad (s + 2) \mathcal{L}[y] = y(0) + \frac{e^{-4s}}{s}. \]

Introduce the initial condition,
Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

$$y' + 2y = u(t - 4), \quad y(0) = 3.$$

Solution: Compute the Laplace transform of the whole equation,

$$\mathcal{L}[y'] + 2 \mathcal{L}[y] = \mathcal{L}[u(t - 4)] = \frac{e^{-4s}}{s}.

From the previous Section we know that

$$[s \mathcal{L}[y] - y(0)] + 2 \mathcal{L}[y] = \frac{e^{-4s}}{s} \quad \Rightarrow \quad (s + 2) \mathcal{L}[y] = y(0) + \frac{e^{-4s}}{s}.

Introduce the initial condition,

$$\mathcal{L}[y] = \frac{3}{s + 2} + e^{-4s} \frac{1}{s(s + 2)},$$
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y' + 2y = u(t - 4), \quad y(0) = 3. \]

Solution: Compute the Laplace transform of the whole equation,

\[\mathcal{L}[y'] + 2 \mathcal{L}[y] = \mathcal{L}[u(t - 4)] = \frac{e^{-4s}}{s}. \]

From the previous Section we know that

\[[s \mathcal{L}[y] - y(0)] + 2 \mathcal{L}[y] = \frac{e^{-4s}}{s} \quad \Rightarrow \quad (s + 2) \mathcal{L}[y] = y(0) + \frac{e^{-4s}}{s}. \]

Introduce the initial condition, \(\mathcal{L}[y] = \frac{3}{s + 2} + e^{-4s} \frac{1}{s(s + 2)} \),

Use the table: \(\mathcal{L}[y] = 3 \mathcal{L}[e^{-2t}] + e^{-4s} \frac{1}{s(s + 2)}. \)
Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

\[y' + 2y = u(t - 4), \quad y(0) = 3. \]

Solution: Recall: \(\mathcal{L}[y] = 3 \mathcal{L}[e^{-2t}] + e^{-4s} \frac{1}{s(s + 2)}. \)
Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

\[y' + 2y = u(t - 4), \quad y(0) = 3. \]

Solution: Recall: \(\mathcal{L}[y] = 3 \mathcal{L}[e^{-2t}] + e^{-4s} \frac{1}{s(s + 2)}. \)

We need to invert the Laplace transform on the last term.
Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

\[y' + 2y = u(t - 4), \quad y(0) = 3. \]

Solution: Recall: \(\mathcal{L}[y] = 3 \mathcal{L}[e^{-2t}] + e^{-4s} \frac{1}{s(s + 2)}. \)

We need to invert the Laplace transform on the last term. Partial fractions:
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y' + 2y = u(t - 4), \quad y(0) = 3. \]

Solution: Recall: \(\mathcal{L}[y] = 3 \mathcal{L}[e^{-2t}] + e^{-4s} \frac{1}{s(s + 2)}. \)

We need to invert the Laplace transform on the last term. Partial fractions:

\[\frac{1}{s(s + 2)} = \frac{a}{s} + \frac{b}{s + 2}. \]
Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

\[y' + 2y = u(t - 4), \quad y(0) = 3. \]

Solution: Recall: \(L[y] = 3L[e^{-2t}] + e^{-4s} \frac{1}{s(s + 2)}. \)

We need to invert the Laplace transform on the last term.

Partial fractions:

\[
\frac{1}{s(s + 2)} = \frac{a}{s} + \frac{b}{s + 2} = \frac{a(s + 2) + bs}{s(s + 2)}
\]
Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

\[y' + 2y = u(t - 4), \quad y(0) = 3. \]

Solution: Recall: \(\mathcal{L}[y] = 3 \mathcal{L}[e^{-2t}] + e^{-4s} \frac{1}{s(s + 2)}. \)

We need to invert the Laplace transform on the last term. Partial fractions:

\[
\frac{1}{s(s + 2)} = \frac{a}{s} + \frac{b}{(s + 2)} = \frac{a(s + 2) + bs}{s(s + 2)} = \frac{(a + b)s + (2a)}{s(s + 2)}
\]
Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP
\[y' + 2y = u(t - 4), \quad y(0) = 3. \]

Solution: Recall: \[\mathcal{L}[y] = 3 \mathcal{L}[e^{-2t}] + e^{-4s} \frac{1}{s(s + 2)}. \]

We need to invert the Laplace transform on the last term. Partial fractions:
\[\frac{1}{s(s + 2)} = \frac{a}{s} + \frac{b}{s + 2} = \frac{a(s + 2) + bs}{s(s + 2)} = \frac{(a + b)s + (2a)}{s(s + 2)}. \]

We get, \(a + b = 0, \ 2a = 1. \)
Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

\[y' + 2y = u(t - 4), \quad y(0) = 3. \]

Solution: Recall: \(\mathcal{L}[y] = 3 \mathcal{L}[e^{-2t}] + e^{-4s} \frac{1}{s(s + 2)}. \)

We need to invert the Laplace transform on the last term.
Partial fractions:

\[
\frac{1}{s(s + 2)} = \frac{a}{s} + \frac{b}{s + 2} = \frac{a(s + 2) + bs}{s(s + 2)} = \frac{(a + b)s + (2a)}{s(s + 2)}
\]

We get, \(a + b = 0, \ 2a = 1. \) We obtain: \(a = \frac{1}{2}, \ b = -\frac{1}{2}. \)
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y' + 2y = u(t - 4), \quad y(0) = 3. \]

Solution: Recall: \[\mathcal{L}[y] = 3 \mathcal{L}[e^{-2t}] + e^{-4s} \frac{1}{s(s + 2)}. \]

We need to invert the Laplace transform on the last term. Partial fractions:

\[\frac{1}{s(s + 2)} = \frac{a}{s} + \frac{b}{s + 2} = \frac{a(s + 2) + bs}{s(s + 2)} = \frac{(a + b)s + (2a)}{s(s + 2)} \]

We get, \(a + b = 0, \ 2a = 1. \) We obtain: \(a = \frac{1}{2}, \ b = -\frac{1}{2}. \) Hence,

\[\frac{1}{s(s + 2)} = \frac{1}{2} \left[\frac{1}{s} - \frac{1}{s + 2} \right]. \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y' + 2y = u(t - 4), \quad y(0) = 3. \]

Solution: Recall:

\[
\frac{1}{s(s + 2)} = \frac{1}{2} \left[\frac{1}{s} - \frac{1}{s + 2} \right].
\]
Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

\[y' + 2y = u(t - 4), \quad y(0) = 3. \]

Solution: Recall:

\[\frac{1}{s(s + 2)} = \frac{1}{2} \left[\frac{1}{s} - \frac{1}{s + 2} \right]. \]

The algebraic equation for \(\mathcal{L}[y] \) has the form,

\[
\mathcal{L}[y] = 3 \mathcal{L}[e^{-2t}] + \frac{1}{2} \left[e^{-4s} \frac{1}{s} - e^{-4s} \frac{1}{s + 2} \right].
\]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y' + 2y = u(t - 4), \quad y(0) = 3. \]

Solution: Recall:

\[\frac{1}{s(s + 2)} = \frac{1}{2} \left[\frac{1}{s} - \frac{1}{(s + 2)} \right]. \]

The algebraic equation for \(\mathcal{L}[y] \) has the form,

\[\mathcal{L}[y] = 3 \mathcal{L}[e^{-2t}] + \frac{1}{2} \left[e^{-4s} \frac{1}{s} - e^{-4s} \frac{1}{(s + 2)} \right]. \]

\[\mathcal{L}[y] = 3 \mathcal{L}[e^{-2t}] \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y' + 2y = u(t - 4), \quad y(0) = 3. \]

Solution: Recall:

\[\frac{1}{s(s + 2)} = \frac{1}{2} \left[\frac{1}{s} - \frac{1}{(s + 2)} \right]. \]

The algebraic equation for \(\mathcal{L}[y] \) has the form,

\[\mathcal{L}[y] = 3 \mathcal{L}[e^{-2t}] + \frac{1}{2} \left[e^{-4s} \frac{1}{s} - e^{-4s} \frac{1}{(s + 2)} \right]. \]

\[\mathcal{L}[y] = 3 \mathcal{L}[e^{-2t}] + \frac{1}{2} \left(\mathcal{L}[u(t - 4)] \right) \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y' + 2y = u(t - 4), \quad y(0) = 3. \]

Solution: Recall:

\[\frac{1}{s(s + 2)} = \frac{1}{2} \left[\frac{1}{s} - \frac{1}{s + 2} \right]. \]

The algebraic equation for \(\mathcal{L}[y] \) has the form,

\[\mathcal{L}[y] = 3 \mathcal{L}[e^{-2t}] + \frac{1}{2} \left[e^{-4s} \frac{1}{s} - e^{-4s} \frac{1}{s + 2} \right]. \]

\[\mathcal{L}[y] = 3 \mathcal{L}[e^{-2t}] + \frac{1}{2} \left(\mathcal{L}[u(t - 4)] - \mathcal{L}[u(t - 4) e^{-2(t - 4)}] \right). \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y' + 2y = u(t - 4), \quad y(0) = 3. \]

Solution: Recall:

\[\frac{1}{s(s + 2)} = \frac{1}{2} \left[\frac{1}{s} - \frac{1}{s + 2} \right]. \]

The algebraic equation for \(L[y] \) has the form,

\[L[y] = 3 \cdot L[e^{-2t}] + \frac{1}{2} \left[e^{-4s} \cdot \frac{1}{s} - e^{-4s} \cdot \frac{1}{s + 2} \right]. \]

\[L[y] = 3 \cdot L[e^{-2t}] + \frac{1}{2} \left(L[u(t - 4)] - L[u(t - 4) \cdot e^{-2(t-4)}] \right). \]

We conclude that

\[y(t) = 3e^{-2t} + \frac{1}{2} u(t - 4) \left[1 - e^{-2(t-4)} \right]. \]
Equations with discontinuous sources (Sect. 6.4).

- Differential equations with discontinuous sources.
- We solve the IVPs:
 (a) Example 1:
 \[y' + 2y = u(t - 4), \quad y(0) = 3. \]

(b) Example 2:
\[y'' + y' + \frac{5}{4}y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases}
1, & t \in [0, \pi) \\
0, & t \in [\pi, \infty).
\end{cases} \]

(c) Example 3:
\[y'' + y' + \frac{5}{4}y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases}
\sin(t), & t \in [0, \pi) \\
0, & t \in [\pi, \infty).
\end{cases} \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \]

where \(b(t) = \begin{cases}
1, & t \in [0, \pi) \\
0, & t \in [\pi, \infty).
\end{cases} \)
Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution:

Rewrite the source function using step functions.
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \]

\[b(t) = \begin{cases}
1, & t \in [0, \pi) \\
0, & t \in [\pi, \infty).
\end{cases} \]

Solution:

Rewrite the source function using step functions.
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution:

Rewrite the source function using step functions.
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4}y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution:

Rewrite the source function using step functions.
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4}y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: The graphs imply: \(b(t) = u(t) - u(t - \pi) \)
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: The graphs imply: \(b(t) = u(t) - u(t - \pi) \)

Now is simple to find \(\mathcal{L}[b] \),
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4}y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \]
\[b(t) = \begin{cases}
1, & t \in [0, \pi) \\
0, & t \in [\pi, \infty).
\end{cases} \]

Solution: The graphs imply: \(b(t) = u(t) - u(t - \pi) \)

Now is simple to find \(\mathcal{L}[b] \), since

\[\mathcal{L}[b(t)] = \mathcal{L}[u(t)] - \mathcal{L}[u(t - \pi)] \]
Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: The graphs imply: \[b(t) = u(t) - u(t - \pi) \]

Now it is simple to find \(\mathcal{L}[b] \), since

\[\mathcal{L}[b(t)] = \mathcal{L}[u(t)] - \mathcal{L}[u(t - \pi)] = \frac{1}{s} - \frac{e^{-\pi s}}{s}. \]
Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4}y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: The graphs imply: \(b(t) = u(t) - u(t - \pi) \)

Now is simple to find \(\mathcal{L}[b] \), since

\[\mathcal{L}[b(t)] = \mathcal{L}[u(t)] - \mathcal{L}[u(t - \pi)] = \frac{1}{s} - \frac{e^{-\pi s}}{s}. \]

So, the source is \(\mathcal{L}[b(t)] = (1 - e^{-\pi s}) \frac{1}{s} \),
Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4}y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: The graphs imply: \(b(t) = u(t) - u(t - \pi) \)

Now is simple to find \(\mathcal{L}[b] \), since

\[\mathcal{L}[b(t)] = \mathcal{L}[u(t)] - \mathcal{L}[u(t - \pi)] = \frac{1}{s} - \frac{e^{-\pi s}}{s}. \]

So, the source is \(\mathcal{L}[b(t)] = (1 - e^{-\pi s}) \frac{1}{s} \), and the equation is

\[\mathcal{L}[y''] + \mathcal{L}[y'] + \frac{5}{4} \mathcal{L}[y] = (1 - e^{-\pi s}) \frac{1}{s}. \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: So:

\[\mathcal{L}[y''] + \mathcal{L}[y'] + \frac{5}{4} \mathcal{L}[y] = (1 - e^{-\pi s}) \frac{1}{s}. \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: So:

\[\mathcal{L}[y''] + \mathcal{L}[y'] + \frac{5}{4} \mathcal{L}[y] = (1 - e^{-\pi s}) \frac{1}{s}. \]

The initial conditions imply:
Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: So:\[\mathcal{L}[y''] + \mathcal{L}[y'] + \frac{5}{4} \mathcal{L}[y] = (1 - e^{-\pi s}) \frac{1}{s}. \]

The initial conditions imply:\[\mathcal{L}[y''] = s^2 \mathcal{L}[y] \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: So:

\[\mathcal{L}[y''] + \mathcal{L}[y'] + \frac{5}{4} \mathcal{L}[y] = (1 - e^{-\pi s}) \frac{1}{s}. \]

The initial conditions imply: \(\mathcal{L}[y''] = s^2 \mathcal{L}[y] \) and \(\mathcal{L}[y'] = s \mathcal{L}[y] \).
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}, \quad y'(0) = 0, \]

Solution: So:

\[\mathcal{L}[y''] + \mathcal{L}[y'] + \frac{5}{4} \mathcal{L}[y] = (1 - e^{-\pi s}) \frac{1}{s}. \]

The initial conditions imply: \(\mathcal{L}[y''] = s^2 \mathcal{L}[y] \) and \(\mathcal{L}[y'] = s \mathcal{L}[y] \).

Therefore,

\[\left(s^2 + s + \frac{5}{4} \right) \mathcal{L}[y] = (1 - e^{-\pi s}) \frac{1}{s}. \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4}y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \]
\[b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: So: \[\mathcal{L}[y''] + \mathcal{L}[y'] + \frac{5}{4} \mathcal{L}[y] = (1 - e^{-\pi s}) \frac{1}{s}. \]

The initial conditions imply: \[\mathcal{L}[y''] = s^2 \mathcal{L}[y] \text{ and } \mathcal{L}[y'] = s \mathcal{L}[y]. \]

Therefore, \[\left(s^2 + s + \frac{5}{4} \right) \mathcal{L}[y] = (1 - e^{-\pi s}) \frac{1}{s}. \]

We arrive at the expression: \[\mathcal{L}[y] = \left(1 - e^{-\pi s}\right) \frac{1}{s \left(s^2 + s + \frac{5}{4}\right)}. \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4}y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall: \(\mathcal{L}[y] = (1 - e^{-\pi s}) \frac{1}{s \left(s^2 + s + \frac{5}{4}\right)}. \)
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall: \(\mathcal{L}[y] = (1 - e^{-\pi s}) \frac{1}{s \left(s^2 + s + \frac{5}{4} \right)} \).

Denoting: \(H(s) = \frac{1}{s \left(s^2 + s + \frac{5}{4} \right)} \).
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4}y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall: \(\mathcal{L}[y] = (1 - e^{-\pi s}) \cdot \frac{1}{s \left(s^2 + s + \frac{5}{4} \right)} \).

Denoting: \(H(s) = \frac{1}{s \left(s^2 + s + \frac{5}{4} \right)} \),

we obtain, \(\mathcal{L}[y] = (1 - e^{-\pi s}) \cdot H(s) \).
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4}y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall: \(\mathcal{L}[y] = (1 - e^{-\pi s}) \frac{1}{s \left(s^2 + s + \frac{5}{4} \right)} \).

Denoting: \(H(s) = \frac{1}{s \left(s^2 + s + \frac{5}{4} \right)} \),

we obtain, \(\mathcal{L}[y] = (1 - e^{-\pi s}) H(s) \).

In other words: \(y(t) = \mathcal{L}^{-1}[H(s)] - \mathcal{L}^{-1}[e^{-\pi s} H(s)] \).
Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall: \(y(t) = \mathcal{L}^{-1}[H(s)] - \mathcal{L}^{-1}[e^{-\pi s} H(s)]. \)
Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall: \[y(t) = \mathcal{L}^{-1}[H(s)] - \mathcal{L}^{-1}[e^{-\pi s} H(s)]. \]

Denoting: \[h(t) = \mathcal{L}^{-1}[H(s)], \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases} \]

Solution: Recall: \(y(t) = \mathcal{L}^{-1} \left[H(s) \right] - \mathcal{L}^{-1} \left[e^{-\pi s} H(s) \right] \).

Denoting: \(h(t) = \mathcal{L}^{-1} \left[H(s) \right] \), the \(\mathcal{L}[\cdot] \) properties imply

\[\mathcal{L}^{-1} \left[e^{-\pi s} H(s) \right] = u(t - \pi) h(t - \pi). \]
Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall:

\[y(t) = \mathcal{L}^{-1}[H(s)] - \mathcal{L}^{-1}[e^{-\pi s} H(s)]. \]

Denoting: \(h(t) = \mathcal{L}^{-1}[H(s)] \), the \(\mathcal{L}[\cdot] \) properties imply

\[\mathcal{L}^{-1}[e^{-\pi s} H(s)] = u(t - \pi) h(t - \pi). \]

Therefore, the solution has the form

\[y(t) = h(t) - u(t - \pi) h(t - \pi). \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall: \(y(t) = \mathcal{L}^{-1}[H(s)] - \mathcal{L}^{-1}[e^{-\pi s} H(s)]. \)

Denoting: \(h(t) = \mathcal{L}^{-1}[H(s)] \), the \(\mathcal{L}[\] \) properties imply

\[\mathcal{L}^{-1}[e^{-\pi s} H(s)] = u(t - \pi) h(t - \pi). \]

Therefore, the solution has the form

\[y(t) = h(t) - u(t - \pi) h(t - \pi). \]

We only need to find \(h(t) = \mathcal{L}^{-1}\left[\frac{1}{s\left(s^2 + s + \frac{5}{4}\right)}\right]. \)
Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall: \[h(t) = \mathcal{L}^{-1} \left[\frac{1}{s \left(s^2 + s + \frac{5}{4} \right)} \right]. \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4}y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \]

\[b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases} \]

Solution: Recall: \(h(t) = \mathcal{L}^{-1}\left[\frac{1}{s\left(s^2 + s + \frac{5}{4}\right)}\right]. \)

Partial fractions:
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4}y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall: \(h(t) = \mathcal{L}^{-1}\left[\frac{1}{s \left(s^2 + s + \frac{5}{4} \right)} \right] \).

Partial fractions: Find the zeros of the denominator,
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4}y = b(t), \quad y(0) = 0, \quad b(t) = \begin{cases}
1, & t \in [0, \pi) \\
0, & t \in [\pi, \infty).
\end{cases} \]

\[y'(0) = 0, \quad b(t) = \begin{cases}
1, & t \in [0, \pi) \\
0, & t \in [\pi, \infty).
\end{cases} \]

Solution: Recall: \(h(t) = \mathcal{L}^{-1} \left[\frac{1}{s \left(s^2 + s + \frac{5}{4} \right)} \right] \).

Partial fractions: Find the zeros of the denominator,

\[s_{\pm} = \frac{1}{2} \left[-1 \pm \sqrt{1 - 5} \right] \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall: \(h(t) = \mathcal{L}^{-1}\left[\frac{1}{s \left(s^2 + s + \frac{5}{4} \right)} \right]. \)

Partial fractions: Find the zeros of the denominator,

\[s_{\pm} = \frac{1}{2} \left[-1 \pm \sqrt{1 - 5} \right] \quad \Rightarrow \quad \text{Complex roots}. \]
Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall: \(h(t) = \mathcal{L}^{-1}\left[\frac{1}{s \left(s^2 + s + \frac{5}{4} \right)} \right]. \)

Partial fractions: Find the zeros of the denominator,

\[s_{\pm} = \frac{1}{2} \left[-1 \pm \sqrt{1 - 5} \right] \Rightarrow \text{Complex roots}. \]

The partial fraction decomposition is:
Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall: \(h(t) = \mathcal{L}^{-1}\left[\frac{1}{s\left(s^2 + s + \frac{5}{4}\right)} \right]. \)

Partial fractions: Find the zeros of the denominator,

\[s_{\pm} = \frac{1}{2}\left[-1 \pm \sqrt{1 - 5}\right] \quad \Rightarrow \quad \text{Complex roots}. \]

The partial fraction decomposition is:

\[H(s) = \frac{1}{s\left(s^2 + s + \frac{5}{4}\right)}. \]
Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

\[y'' + \frac{5}{4}y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall: \(h(t) = \mathcal{L}^{-1} \left[\frac{1}{s \left(s^2 + s + \frac{5}{4} \right)} \right] \).

Partial fractions: Find the zeros of the denominator,

\[s_{\pm} = \frac{1}{2} \left[-1 \pm \sqrt{1 - 5} \right] \Rightarrow \text{Complex roots}. \]

The partial fraction decomposition is:

\[H(s) = \frac{1}{s \left(s^2 + s + \frac{5}{4} \right)} = \frac{a}{s} + \frac{(bs + c)}{\left(s^2 + s + \frac{5}{4} \right)} \]
Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall:

\[H(s) = \frac{1}{s^2 + s + \frac{5}{4}} \frac{1}{s} = \frac{a}{s} + \frac{bs + c}{s^2 + s + \frac{5}{4}}. \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall:

\[H(s) = \frac{1}{\left(s^2 + s + \frac{5}{4}\right)s} = \frac{a}{s} + \frac{(bs + c)}{\left(s^2 + s + \frac{5}{4}\right)}. \]

The partial fraction decomposition is:
Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall: \(H(s) = \frac{1}{(s^2 + s + \frac{5}{4}) s} = \frac{a}{s} + \frac{(bs + c)}{(s^2 + s + \frac{5}{4})}. \)

The partial fraction decomposition is:

\[1 = a \left(s^2 + s + \frac{5}{4} \right) + s (bs + c) \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall:

\[H(s) = \frac{1}{(s^2 + s + \frac{5}{4}) s} = \frac{a}{s} + \frac{(bs + c)}{(s^2 + s + \frac{5}{4})}. \]

The partial fraction decomposition is:

\[1 = a \left(s^2 + s + \frac{5}{4} \right) + s (bs + c) = (a + b) s^2 + (a + c) s + \frac{5}{4}a. \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$ y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases} $$

Solution: Recall: $H(s) = \frac{1}{s^2 + s + \frac{5}{4}} = \frac{a}{s} + \frac{b s + c}{s^2 + s + \frac{5}{4}}$.

The partial fraction decomposition is:

$$ 1 = a \left(s^2 + s + \frac{5}{4} \right) + s (b s + c) = (a + b) s^2 + (a + c) s + \frac{5}{4} a. $$

This equation implies that a, b, and c, are solutions of

$$ a + b = 0, \quad a + c = 0, \quad \frac{5}{4} a = 1. $$
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: So: \(a = \frac{4}{5}, \quad b = -\frac{4}{5}, \quad c = -\frac{4}{5}. \)
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: So:

\[a = \frac{4}{5}, \quad b = -\frac{4}{5}, \quad c = -\frac{4}{5}. \]

Hence, we have found that,

\[H(s) = \frac{1}{s^2 + s + \frac{5}{4}} \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: So: \(a = \frac{4}{5}, \quad b = -\frac{4}{5}, \quad c = -\frac{4}{5}. \)

Hence, we have found that,

\[H(s) = \frac{1}{\left(s^2 + s + \frac{5}{4}\right)} = \frac{4}{5} \left[\frac{1}{s} - \frac{(s + 1)}{\left(s^2 + s + \frac{5}{4}\right)} \right] \]
Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: So: \(a = \frac{4}{5}, \quad b = -\frac{4}{5}, \quad c = -\frac{4}{5}. \)

Hence, we have found that,

\[H(s) = \frac{1}{(s^2 + s + \frac{5}{4})s} = \frac{4}{5} \left[\frac{1}{s} - \frac{(s + 1)}{(s^2 + s + \frac{5}{4})} \right]. \]

We have to compute the inverse Laplace Transform.
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \]

\[b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: So: \(a = \frac{4}{5}, \quad b = -\frac{4}{5}, \quad c = -\frac{4}{5}. \)

Hence, we have found that,

\[H(s) = \frac{1}{\left(s^2 + s + \frac{5}{4} \right) s} = \frac{4}{5} \left[\frac{1}{s} - \frac{(s + 1)}{\left(s^2 + s + \frac{5}{4} \right)} \right] \]

We have to compute the inverse Laplace Transform

\[h(t) = \frac{4}{5} \mathcal{L}^{-1} \left[\frac{1}{s} - \frac{(s + 1)}{\left(s^2 + s + \frac{5}{4} \right)} \right] \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall:

\[h(t) = \frac{4}{5} \mathcal{L}^{-1} \left[\frac{1}{s} - \frac{(s + 1)}{(s^2 + s + \frac{5}{4})} \right]. \]
Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases} \]

\[y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall:

\[h(t) = \frac{4}{5} \mathcal{L}^{-1} \left[\frac{1}{s} - \frac{(s + 1)}{(s^2 + s + \frac{5}{4})} \right]. \]

In this case we complete the square in the denominator,
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases}
1, & t \in [0, \pi) \\
0, & t \in [\pi, \infty).
\end{cases} \]

Solution: Recall: \(h(t) = \frac{4}{5} \mathcal{L}^{-1} \left[\frac{1}{s} - \frac{(s + 1)}{(s^2 + s + \frac{5}{4})} \right]. \)

In this case we complete the square in the denominator,

\[s^2 + s + \frac{5}{4} = \left[s^2 + 2 \left(\frac{1}{2} \right) s + \frac{1}{4} \right] - \frac{1}{4} + \frac{5}{4} \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4}y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall: \(h(t) = \frac{4}{5} \mathcal{L}^{-1} \left[\frac{1}{s} - \frac{(s + 1)}{(s^2 + s + \frac{5}{4})} \right] \).

In this case we complete the square in the denominator,

\[s^2 + s + \frac{5}{4} = \left[s^2 + 2 \left(\frac{1}{2} \right) s + \frac{1}{4} \right] - \frac{1}{4} + \frac{5}{4} = \left(s + \frac{1}{2} \right)^2 + 1. \]
Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4}y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases}
1, & t \in [0, \pi) \\
0, & t \in [\pi, \infty).
\end{cases} \]

Solution: Recall: \(h(t) = \frac{4}{5} \mathcal{L}^{-1} \left[\frac{1}{s} - \frac{(s + 1)}{(s^2 + s + \frac{5}{4})} \right]. \)

In this case we complete the square in the denominator,

\[s^2 + s + \frac{5}{4} = \left[s^2 + 2 \left(\frac{1}{2} \right) s + \frac{1}{4} \right] - \frac{1}{4} + \frac{5}{4} = \left(s + \frac{1}{2} \right)^2 + 1. \]

So: \(h(t) = \frac{4}{5} \mathcal{L}^{-1} \left[\frac{1}{s} - \frac{(s + 1)}{\left((s + \frac{1}{2})^2 + 1 \right)} \right]. \)
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4}y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall:

\[h(t) = \frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s} - \frac{(s + 1)}{(s^2 + s + \frac{5}{4})} \right]. \]

In this case we complete the square in the denominator,

\[s^2 + s + \frac{5}{4} = \left[s^2 + 2\left(\frac{1}{2}\right)s + \frac{1}{4} \right] - \frac{1}{4} + \frac{5}{4} = \left(s + \frac{1}{2} \right)^2 + 1. \]

So:

\[h(t) = \frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s} - \frac{(s + 1)}{\left((s + \frac{1}{2})^2 + 1 \right)} \right]. \]

That is,

\[h(t) = \frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s} \right] - \frac{4}{5} \mathcal{L}^{-1}\left[\frac{\left(s + \frac{1}{2} \right) + \frac{1}{2}}{\left((s + \frac{1}{2})^2 + 1 \right)} \right]. \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall:

\[h(t) = \frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}\right] - \frac{4}{5} \mathcal{L}^{-1}\left[\frac{s + \frac{1}{2}}{(s + \frac{1}{2})^2 + 1}\right]. \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall:

\[h(t) = \frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s} \right] - \frac{4}{5} \mathcal{L}^{-1}\left[\frac{(s + \frac{1}{2}) + \frac{1}{2}}{(s + \frac{1}{2})^2 + 1} \right]. \]

\[h(t) = \frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s} \right] - \frac{4}{5} \mathcal{L}^{-1}\left[\frac{(s + \frac{1}{2})}{(s + \frac{1}{2})^2 + 1} \right] - \frac{2}{5} \mathcal{L}^{-1}\left[\frac{1}{(s + \frac{1}{2})^2 + 1} \right]. \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4}y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases}
1, & t \in [0, \pi) \\
0, & t \in [\pi, \infty).
\end{cases} \]

Solution: Recall:

\[h(t) = \frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}\right] - \frac{4}{5} \mathcal{L}^{-1}\left[\frac{(s + \frac{1}{2}) + \frac{1}{2}}{((s + \frac{1}{2})^2 + 1)}\right]. \]

Recall:

\[\mathcal{L}^{-1}\left[F(s - c)\right] = e^{ct} f(t). \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall:

\[
 h(t) = \frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}\right] - \frac{4}{5} \mathcal{L}^{-1}\left[\frac{(s + \frac{1}{2}) + \frac{1}{2}}{(s + \frac{1}{2})^2 + 1}\right].
\]

Recall: \(\mathcal{L}^{-1}[F(s - c)] = e^{ct} f(t) \). Hence,

\[
 h(t) = \frac{4}{5} \left[1 - e^{-t/2} \cos(t) - \frac{1}{2} e^{-t/2} \sin(t)\right].
\]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall:

\[h(t) = \frac{4}{5} \mathcal{L}^{-1} \left[\frac{1}{s} \right] - \frac{4}{5} \mathcal{L}^{-1} \left[\frac{\left(s + \frac{1}{2} \right) + \frac{1}{2}}{\left(s + \frac{1}{2} \right)^2 + 1} \right]. \]

\[h(t) = \frac{4}{5} \mathcal{L}^{-1} \left[\frac{1}{s} \right] - \frac{4}{5} \mathcal{L}^{-1} \left[\frac{\left(s + \frac{1}{2} \right)}{\left(s + \frac{1}{2} \right)^2 + 1} \right] - \frac{2}{5} \mathcal{L}^{-1} \left[\frac{1}{\left(s + \frac{1}{2} \right)^2 + 1} \right]. \]

Recall: \(\mathcal{L}^{-1} [F(s - c)] = e^{ct} f(t) \). Hence,

\[h(t) = \frac{4}{5} \left[1 - e^{-t/2} \cos(t) - \frac{1}{2} e^{-t/2} \sin(t) \right]. \]

We conclude:

\[y(t) = h(t) + u(t - \pi) h(t - \pi). \]
Equations with discontinuous sources (Sect. 6.4).

- Differential equations with discontinuous sources.
- We solve the IVPs:

 (a) Example 1:

 \[
 y' + 2y = u(t - 4), \quad y(0) = 3.
 \]

 (b) Example 2:

 \[
 y'' + y' + \frac{5}{4}y = b(t), \quad y(0) = 0, \quad y'(0) = 0, \quad b(t) = \begin{cases}
 1, & t \in [0, \pi) \\
 0, & t \in [\pi, \infty)
 \end{cases}
 \]

 (c) Example 3:

 \[
 y'' + y' + \frac{5}{4}y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases}
 \sin(t), & t \in [0, \pi) \\
 0, & t \in [\pi, \infty)
 \end{cases}
 \]
Example
Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases} \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution:

Rewrite the source function using step functions.
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases} \]

Solution:

Rewrite the source function using step functions.
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[
y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases}
\sin(t) & t \in [0, \pi) \\
0 & t \in [\pi, \infty).
\end{cases}
\]

Solution:

Rewrite the source function using step functions.
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution:

Rewrite the source function using step functions.
Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution: The graphs imply: \(g(t) = [u(t) - u(t - \pi)] \sin(t). \)
Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4}y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution: The graphs imply: \(g(t) = [u(t) - u(t - \pi)] \sin(t). \)

Recall the identity: \(\sin(t) = -\sin(t - \pi). \)
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution: The graphs imply: \(g(t) = [u(t) - u(t - \pi)] \sin(t). \)

Recall the identity: \(\sin(t) = -\sin(t - \pi). \) Then,

\[g(t) = u(t) \sin(t) - u(t - \pi) \sin(t), \]
Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases} \]

\[y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution: The graphs imply: \(g(t) = [u(t) - u(t - \pi)] \sin(t) \).

Recall the identity: \(\sin(t) = -\sin(t - \pi) \). Then,

\[g(t) = u(t) \sin(t) - u(t - \pi) \sin(t), \]

\[g(t) = u(t) \sin(t) + u(t - \pi) \sin(t - \pi). \]
Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}, \quad y'(0) = 0, \]

Solution: The graphs imply: \(g(t) = [u(t) - u(t - \pi)] \sin(t) \).

Recall the identity: \(\sin(t) = -\sin(t - \pi) \). Then,

\[g(t) = u(t) \sin(t) - u(t - \pi) \sin(t), \]

\[g(t) = u(t) \sin(t) + u(t - \pi) \sin(t - \pi). \]

Now is simple to find \(\mathcal{L}[g] \),
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution: The graphs imply: \(g(t) = [u(t) - u(t - \pi)] \sin(t) \).

Recall the identity: \(\sin(t) = -\sin(t - \pi) \). Then,

\[g(t) = u(t) \sin(t) - u(t - \pi) \sin(t), \]

\[g(t) = u(t) \sin(t) + u(t - \pi) \sin(t - \pi). \]

Now is simple to find \(\mathcal{L}[g] \), since

\[\mathcal{L}[g(t)] = \mathcal{L}[u(t) \sin(t)] + \mathcal{L}[u(t - \pi) \sin(t - \pi)]. \]
Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution: So: \[\mathcal{L}[g(t)] = \mathcal{L}[u(t) \sin(t)] + \mathcal{L}[u(t - \pi) \sin(t - \pi)]. \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution: So:

\[\mathcal{L}[g(t)] = \mathcal{L}[u(t) \sin(t)] + \mathcal{L}[u(t - \pi) \sin(t - \pi)]. \]

\[\mathcal{L}[g(t)] = \frac{1}{s^2 + 1} + e^{-\pi s} \frac{1}{s^2 + 1}. \]
Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \]

\[g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases} \]

Solution: So:

\[\mathcal{L}[g(t)] = \mathcal{L}[u(t) \sin(t)] + \mathcal{L}[u(t - \pi) \sin(t - \pi)]. \]

\[\mathcal{L}[g(t)] = \frac{1}{s^2 + 1} + e^{-\pi s} \frac{1}{s^2 + 1}. \]

Recall the Laplace transform of the differential equation

\[\mathcal{L}[y''] + \mathcal{L}[y'] + \frac{5}{4} \mathcal{L}[y] = \mathcal{L}[g]. \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution: So: \[\mathcal{L}[g(t)] = \mathcal{L}[u(t) \sin(t)] + \mathcal{L}[u(t - \pi) \sin(t - \pi)]. \]

Recall the Laplace transform of the differential equation

\[\mathcal{L}[y''] + \mathcal{L}[y'] + \frac{5}{4} \mathcal{L}[y] = \mathcal{L}[g]. \]

The initial conditions imply:
Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases}
\sin(t) & t \in [0, \pi) \\
0 & t \in [\pi, \infty).
\end{cases} \]

Solution: So: \(\mathcal{L}[g(t)] = \mathcal{L}[u(t) \sin(t)] + \mathcal{L}[u(t - \pi) \sin(t - \pi)]. \)

\[\mathcal{L}[g(t)] = \frac{1}{(s^2 + 1)} + e^{-\pi s} \frac{1}{(s^2 + 1)}. \]

Recall the Laplace transform of the differential equation

\[\mathcal{L}[y''] + \mathcal{L}[y'] + \frac{5}{4} \mathcal{L}[y] = \mathcal{L}[g]. \]

The initial conditions imply: \(\mathcal{L}[y''] = s^2 \mathcal{L}[y] \)
Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution: So:

\[\mathcal{L}[g(t)] = \mathcal{L}[u(t) \sin(t)] + \mathcal{L}[u(t - \pi) \sin(t - \pi)]. \]

\[\mathcal{L}[g(t)] = \frac{1}{(s^2 + 1)} + e^{-\pi s} \frac{1}{(s^2 + 1)}. \]

Recall the Laplace transform of the differential equation

\[\mathcal{L}[y''] + \mathcal{L}[y'] + \frac{5}{4} \mathcal{L}[y] = \mathcal{L}[g]. \]

The initial conditions imply: \(\mathcal{L}[y''] = s^2 \mathcal{L}[y] \) and \(\mathcal{L}[y'] = s \mathcal{L}[y] \).
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution: So:

\[\mathcal{L}[g(t)] = \mathcal{L}[u(t) \sin(t)] + \mathcal{L}[u(t - \pi) \sin(t - \pi)]. \]

\[\mathcal{L}[g(t)] = \frac{1}{(s^2 + 1)} + e^{-\pi s} \frac{1}{(s^2 + 1)}. \]

Recall the Laplace transform of the differential equation

\[\mathcal{L}[y''] + \mathcal{L}[y'] + \frac{5}{4} \mathcal{L}[y] = \mathcal{L}[g]. \]

The initial conditions imply:

\[\mathcal{L}[y''] = s^2 \mathcal{L}[y] \text{ and } \mathcal{L}[y'] = s \mathcal{L}[y]. \]

Therefore,

\[\left(s^2 + s + \frac{5}{4} \right) \mathcal{L}[y] = (1 + e^{-\pi s}) \frac{1}{(s^2 + 1)}. \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4}y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases}
\sin(t) & t \in [0, \pi) \\
0 & t \in [\pi, \infty)
\end{cases}. \]

Solution: Recall:

\[\left(s^2 + s + \frac{5}{4} \right) \mathcal{L}[y] = \left(1 + e^{-\pi s} \right) \frac{1}{(s^2 + 1)}. \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4}y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \]
\[g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall:

\[\mathcal{L}[y] = (1 + e^{-\pi s}) \frac{1}{(s^2 + 1)}. \]

\[\mathcal{L}[y] = (1 + e^{-\pi s}) \frac{1}{\left(s^2 + s + \frac{5}{4}\right)(s^2 + 1)}. \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases} \]

Solution: Recall:

\[
\mathcal{L}[y] = \left(s^2 + s + \frac{5}{4} \right) \mathcal{L}[y] = (1 + e^{-\pi s}) \frac{1}{(s^2 + 1)}.
\]

Introduce the function

\[
H(s) = \frac{1}{\left(s^2 + s + \frac{5}{4} \right) (s^2 + 1)}.
\]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall:

\[(s^2 + s + \frac{5}{4}) \mathcal{L}[y] = (1 + e^{-\pi s}) \frac{1}{(s^2 + 1)}. \]

Introduce the function \(H(s) = \frac{1}{(s^2 + s + \frac{5}{4})(s^2 + 1)} \).

Then, \(y(t) = \mathcal{L}^{-1}[H(s)] + \mathcal{L}^{-1}[e^{-\pi s} H(s)]. \)
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall: \(y(t) = \mathcal{L}^{-1}[H(s)] + \mathcal{L}^{-1}[e^{-\pi s} H(s)], \) and

\[H(s) = \frac{1}{(s^2 + s + \frac{5}{4})(s^2 + 1)}. \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \]
\[g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases} . \]

Solution: Recall: \(y(t) = \mathcal{L}^{-1}[H(s)] + \mathcal{L}^{-1}[e^{-\pi s} H(s)] \), and

\[H(s) = \frac{1}{(s^2 + s + \frac{5}{4})(s^2 + 1)} . \]

Partial fractions:
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall: \(y(t) = \mathcal{L}^{-1}[H(s)] + \mathcal{L}^{-1}[e^{-\pi s} H(s)] \), and

\[H(s) = \frac{1}{(s^2 + s + \frac{5}{4})(s^2 + 1)}. \]

Partial fractions: Find the zeros of the denominator,
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall: \(y(t) = \mathcal{L}^{-1}[H(s)] + \mathcal{L}^{-1}[e^{-\pi s} H(s)], \) and

\[H(s) = \frac{1}{(s^2 + s + \frac{5}{4})(s^2 + 1)}. \]

Partial fractions: Find the zeros of the denominator,

\[s_{\pm} = \frac{1}{2} [-1 \pm \sqrt{1 - 5}] \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall: \(y(t) = \mathcal{L}^{-1}[H(s)] + \mathcal{L}^{-1}[e^{-\pi s} H(s)], \) and

\[H(s) = \frac{1}{(s^2 + s + \frac{5}{4})(s^2 + 1)}. \]

Partial fractions: Find the zeros of the denominator,

\[s_{\pm} = \frac{1}{2} \left[-1 \pm \sqrt{1 - 5} \right] \quad \Rightarrow \quad \text{Complex roots}. \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall: \[y(t) = \mathcal{L}^{-1}[H(s)] + \mathcal{L}^{-1}[e^{-\pi s} H(s)], \quad \text{and} \]

\[H(s) = \frac{1}{(s^2 + s + \frac{5}{4})(s^2 + 1)}. \]

Partial fractions: Find the zeros of the denominator,

\[s_\pm = \frac{1}{2} \left[-1 \pm \sqrt{1 - 5} \right] \quad \Rightarrow \quad \text{Complex roots.} \]

The partial fraction decomposition is:
Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall: \(y(t) = \mathcal{L}^{-1}[H(s)] + \mathcal{L}^{-1}[e^{-\pi s} H(s)], \) and

\[H(s) = \frac{1}{(s^2 + s + \frac{5}{4})(s^2 + 1)}. \]

Partial fractions: Find the zeros of the denominator,

\[s_{\pm} = \frac{1}{2} \left[-1 \pm \sqrt{1 - 5} \right] \Rightarrow \text{Complex roots.} \]

The partial fraction decomposition is:

\[\frac{1}{(s^2 + s + \frac{5}{4})(s^2 + 1)} = \frac{(as + b)}{(s^2 + s + \frac{5}{4})} + \frac{(cs + d)}{(s^2 + 1)}. \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution: So:

\[\frac{1}{(s^2 + s + \frac{5}{4}) (s^2 + 1)} = \frac{(as + b)}{(s^2 + s + \frac{5}{4})} + \frac{(cs + d)}{(s^2 + 1)}. \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution: So:

\[
\frac{1}{(s^2 + s + \frac{5}{4})(s^2 + 1)} = \frac{(as + b)}{(s^2 + s + \frac{5}{4})} + \frac{(cs + d)}{(s^2 + 1)}.\]

Therefore, we get

\[1 = (as + b)(s^2 + 1) + (cs + d)\left(s^2 + s + \frac{5}{4}\right), \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases} \]

Solution: So:

\[
\frac{1}{(s^2 + s + \frac{5}{4})(s^2 + 1)} = \frac{(as + b)}{(s^2 + s + \frac{5}{4})} + \frac{(cs + d)}{(s^2 + 1)}.
\]

Therefore, we get

\[
1 = (as + b)(s^2 + 1) + (cs + d)\left(s^2 + s + \frac{5}{4}\right),
\]

\[
1 = (a + c) s^3 + (b + c + d) s^2 + \left(a + \frac{5}{4} c + d\right) s + \left(b + \frac{5}{4} d\right).
\]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution: So:

\[\frac{1}{(s^2 + s + \frac{5}{4}) (s^2 + 1)} = \frac{(as + b)}{(s^2 + s + \frac{5}{4})} + \frac{(cs + d)}{(s^2 + 1)}. \]

Therefore, we get

\[1 = (as + b)(s^2 + 1) + (cs + d)\left(s^2 + s + \frac{5}{4}\right), \]

\[1 = (a + c) s^3 + (b + c + d) s^2 + \left(a + \frac{5}{4} c + d\right) s + \left(b + \frac{5}{4} d\right). \]

This equation implies that \(a, b, c,\) and \(d,\) are solutions of

\[a + c = 0, \quad b + c + d = 0, \quad a + \frac{5}{4} c + d = 0, \quad b + \frac{5}{4} d = 1. \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution: So:

\[a = \frac{16}{17}, \quad b = \frac{12}{17}, \quad c = -\frac{16}{17}, \quad d = \frac{4}{17}. \]
Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \]

\[g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution: So:

\[a = \frac{16}{17}, \quad b = \frac{12}{17}, \quad c = -\frac{16}{17}, \quad d = \frac{4}{17}. \]

We have found:

\[H(s) = \frac{4}{17} \left[\frac{(4s + 3)}{(s^2 + s + \frac{5}{4})} + \frac{(-4s + 1)}{(s^2 + 1)} \right]. \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution: So: \(a = \frac{16}{17}, \quad b = \frac{12}{17}, \quad c = -\frac{16}{17}, \quad d = \frac{4}{17}. \)

We have found: \(H(s) = \frac{4}{17} \left[\frac{(4s + 3)}{(s^2 + s + \frac{5}{4})} + \frac{(-4s + 1)}{(s^2 + 1)} \right]. \)

Complete the square in the denominator,
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution: So: \(a = \frac{16}{17}, \quad b = \frac{12}{17}, \quad c = -\frac{16}{17}, \quad d = \frac{4}{17}. \)

We have found: \(H(s) = \frac{4}{17} \left[\frac{(4s + 3)}{(s^2 + s + \frac{5}{4})} + \frac{(-4s + 1)}{(s^2 + 1)} \right]. \)

Complete the square in the denominator,

\[s^2 + s + \frac{5}{4} = \left[s^2 + 2\left(\frac{1}{2}\right) s + \frac{1}{4} \right] - \frac{1}{4} + \frac{5}{4} \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0,$$

$$g(t) = \begin{cases}
\sin(t) & t \in [0, \pi) \\
0 & t \in [\pi, \infty)
\end{cases}.$$

Solution: So:

$$a = \frac{16}{17}, \quad b = \frac{12}{17}, \quad c = -\frac{16}{17}, \quad d = \frac{4}{17}.$$

We have found:

$$H(s) = \frac{4}{17} \left[\frac{(4s + 3)}{(s^2 + s + \frac{5}{4})} + \frac{(-4s + 1)}{(s^2 + 1)} \right].$$

Complete the square in the denominator,

$$s^2 + s + \frac{5}{4} = \left[s^2 + 2\left(\frac{1}{2}\right)s + \frac{1}{4} \right] - \frac{1}{4} + \frac{5}{4} = \left(s + \frac{1}{2} \right)^2 + 1.$$
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases}
\sin(t) & t \in [0, \pi) \\
0 & t \in [\pi, \infty)
\end{cases}. \]

Solution: So: \(a = \frac{16}{17}, \quad b = \frac{12}{17}, \quad c = -\frac{16}{17}, \quad d = \frac{4}{17}. \)

We have found: \(H(s) = \frac{4}{17} \left[\frac{(4s + 3)}{(s^2 + s + \frac{5}{4})} + \frac{(-4s + 1)}{(s^2 + 1)} \right]. \)

Complete the square in the denominator,

\[s^2 + s + \frac{5}{4} = \left[s^2 + 2 \left(\frac{1}{2} \right) s + \frac{1}{4} \right] - \frac{1}{4} + \frac{5}{4} = \left(s + \frac{1}{2} \right)^2 + 1. \]

\[H(s) = \frac{4}{17} \left[\frac{(4s + 3)}{\left(s + \frac{1}{2} \right)^2 + 1} + \frac{(-4s + 1)}{(s^2 + 1)} \right]. \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4}y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution: So: \[H(s) = \frac{4}{17} \left[\frac{(4s + 3)}{(s + \frac{1}{2})^2 + 1} + \frac{(-4s + 1)}{(s^2 + 1)} \right]. \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4}y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution: So:

\[H(s) = \frac{4}{17} \left[\frac{(4s + 3)}{(s + \frac{1}{2})^2 + 1} \right] + \frac{(-4s + 1)}{(s^2 + 1)}. \]

Rewrite the polynomial in the numerator,
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution: So:

\[H(s) = \frac{4}{17} \left[\frac{(4s + 3)}{(s + \frac{1}{2})^2 + 1} + \frac{(-4s + 1)}{(s^2 + 1)} \right]. \]

Rewrite the polynomial in the numerator,

\[(4s + 3) = 4\left(s + \frac{1}{2} - \frac{1}{2}\right) + 3 \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution: So:

\[H(s) = \frac{4}{17} \left[\frac{(4s + 3)}{\left((s + \frac{1}{2})^2 + 1 \right)} + \frac{(-4s + 1)}{(s^2 + 1)} \right]. \]

Rewrite the polynomial in the numerator,

\[(4s + 3) = 4 \left(s + \frac{1}{2} - \frac{1}{2} \right) + 3 = 4 \left(s + \frac{1}{2} \right) + 1,\]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4}y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution: So:

\[H(s) = \frac{4}{17} \left[\frac{(4s + 3)}{((s + \frac{1}{2})^2 + 1)} + \frac{(-4s + 1)}{(s^2 + 1)} \right]. \]

Rewrite the polynomial in the numerator,

\[(4s + 3) = 4\left(s + \frac{1}{2} - \frac{1}{2}\right) + 3 = 4\left(s + \frac{1}{2}\right) + 1, \]

\[H(s) = \frac{4}{17} \left[\frac{4\left(s + \frac{1}{2}\right)}{((s + \frac{1}{2})^2 + 1)} + \frac{1}{((s + \frac{1}{2})^2 + 1)} - 4\frac{s}{(s^2 + 1)} + \frac{1}{(s^2 + 1)} \right], \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution:

\[H(s) = \frac{4}{17} \left[4 \frac{(s + \frac{1}{2})}{(s + \frac{1}{2})^2 + 1} + \frac{1}{(s + \frac{1}{2})^2 + 1} - 4 \frac{s}{s^2 + 1} + \frac{1}{s^2 + 1} \right], \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \]
\[y(0) = 0, \quad y'(0) = 0, \]
\[g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution:

\[H(s) = \frac{4}{17} \left[4 \frac{(s + \frac{1}{2})}{((s + \frac{1}{2})^2 + 1)} + \frac{1}{((s + \frac{1}{2})^2 + 1)} - 4 \frac{s}{(s^2 + 1)} + \frac{1}{(s^2 + 1)} \right], \]

Use the Laplace Transform table to get \(H(s) \) equal to

\[H(s) = \frac{4}{17} \left[4 \mathcal{L}\left[e^{-t/2} \cos(t)\right] + \mathcal{L}\left[e^{-t/2} \sin(t)\right] - 4 \mathcal{L}[\cos(t)] + \mathcal{L}[\sin(t)] \right]. \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases} \]

Solution:

\[
H(s) = \frac{4}{17} \left[4 \frac{(s + \frac{1}{2})}{((s + \frac{1}{2})^2 + 1)} + \frac{1}{((s + \frac{1}{2})^2 + 1)} - 4 \frac{s}{(s^2 + 1)} + \frac{1}{(s^2 + 1)} \right],
\]

Use the Laplace Transform table to get \(H(s) \) equal to

\[
H(s) = \frac{4}{17} \left[4 \mathcal{L}[e^{-t/2} \cos(t)] + \mathcal{L}[e^{-t/2} \sin(t)] - 4 \mathcal{L}[\cos(t)] + \mathcal{L}[\sin(t)] \right].
\]

\[
H(s) = \mathcal{L}\left[\frac{4}{17} \left(4e^{-t/2} \cos(t) + e^{-t/2} \sin(t) - 4 \cos(t) + \sin(t) \right) \right].
\]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall:

\[H(s) = \mathcal{L} \left[\frac{4}{17} \left(4e^{-t/2} \cos(t) + e^{-t/2} \sin(t) - 4 \cos(t) + \sin(t) \right) \right]. \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall:

\[H(s) = \mathcal{L} \left[\frac{4}{17} \left(4e^{-t/2} \cos(t) + e^{-t/2} \sin(t) - 4 \cos(t) + \sin(t) \right) \right]. \]

Denote:

\[h(t) = \frac{4}{17} \left[4e^{-t/2} \cos(t) + e^{-t/2} \sin(t) - 4 \cos(t) + \sin(t) \right]. \]
Example
Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall:

\[H(s) = \mathcal{L} \left[\frac{4}{17} \left(4e^{-t/2} \cos(t) + e^{-t/2} \sin(t) - 4 \cos(t) + \sin(t) \right) \right]. \]

Denote:

\[h(t) = \frac{4}{17} \left[4e^{-t/2} \cos(t) + e^{-t/2} \sin(t) - 4 \cos(t) + \sin(t) \right]. \]

Then, \(H(s) = \mathcal{L}[h(t)]. \)
Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall:

\[H(s) = \mathcal{L} \left[\frac{4}{17} \left(4e^{-t/2} \cos(t) + e^{-t/2} \sin(t) - 4 \cos(t) + \sin(t) \right) \right]. \]

Denote:

\[h(t) = \frac{4}{17} \left(4e^{-t/2} \cos(t) + e^{-t/2} \sin(t) - 4 \cos(t) + \sin(t) \right). \]

Then, \(H(s) = \mathcal{L}[h(t)] \). Recalling: \(\mathcal{L}[y(t)] = H(s) + e^{-\pi s} H(s), \)
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4} y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall:

\[H(s) = \mathcal{L}\left[\frac{4}{17} \left(4e^{-t/2} \cos(t) + e^{-t/2} \sin(t) - 4 \cos(t) + \sin(t) \right) \right]. \]

Denote:

\[h(t) = \frac{4}{17} \left[4e^{-t/2} \cos(t) + e^{-t/2} \sin(t) - 4 \cos(t) + \sin(t) \right]. \]

Then, \(H(s) = \mathcal{L}[h(t)] \). Recalling: \(\mathcal{L}[y(t)] = H(s) + e^{-\pi s} H(s) \),

\[\mathcal{L}[y(t)] = \mathcal{L}[h(t)] + e^{-\pi s} \mathcal{L}[h(t)]. \]
Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

\[y'' + y' + \frac{5}{4}y = g(t), \quad y(0) = 0, \quad y'(0) = 0, \quad g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty) \end{cases}. \]

Solution: Recall:

\[H(s) = \mathcal{L} \left[\frac{4}{17} \left(4e^{-t/2} \cos(t) + e^{-t/2} \sin(t) - 4\cos(t) + \sin(t) \right) \right]. \]

Denote:

\[h(t) = \frac{4}{17} \left[4e^{-t/2} \cos(t) + e^{-t/2} \sin(t) - 4\cos(t) + \sin(t) \right]. \]

Then, \(H(s) = \mathcal{L}[h(t)]. \) Recalling: \(\mathcal{L}[y(t)] = H(s) + e^{-\pi s} H(s), \)

\[\mathcal{L}[y(t)] = \mathcal{L}[h(t)] + e^{-\pi s} \mathcal{L}[h(t)]. \]

We conclude: \(y(t) = h(t) + u(t - \pi)h(t - \pi). \) \(\triangle \)