
Review for Exam 2.

I 5 problems.

I No multiple choice questions.

I No notes, no books, no calculators.

I Problems similar to homeworks.
I Exam covers:

I Regular-singular points (5.5).
I Euler differential equation (5.4).
I Power series solutions (5.2).
I Variation of parameters (3.6).
I Undetermined coefficients (3.5)
I Constant coefficients, homogeneous, (3.1)-(3.4).



Regular-singular points (5.5).

Summary:

I Look for solutions y(x) =
∞∑

n=0

an(x − x0)
(n+r).

I Recall: Since r 6= 0, holds

y ′ =
∞∑

n=0

(n+r)an(x−x0)
(n+r−1) 6=

∞∑
n=1

(n+r)an(x−x0)
(n+r−1),

I Find the indicial equation for r , the recurrence relation for an.

I Introduce the larger root r+ of the indicial polynomial into the
recurrence relation and solve for an.

(a) If (r+ − r−) is not an integer, then each r+ and r− define
linearly independent solutions.

(b) If (r+ − r−) is an integer, then both r+ and r− define
proportional solutions.
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Regular-singular points (5.5).

Example

Consider the equation x2 y ′′ +
(
x2 + 1

4

)
y = 0. Use a power series

centered at the regular-singular point x0 = 0 to find the three first
terms of the solution corresponding to the larger root of the
indicial polynomial.

Solution: y =
∞∑

n=0

anx
(n+r), y ′′ =

∞∑
n=0

(n + r)(n + r − 1)anx
(n+r−2),

x2y ′′ =
∞∑

n=0

(n + r)(n + r − 1)anx
(n+r)

We also need to compute(
x2 +

1

4

)
y =

∞∑
n=0

anx
(n+r+2) +

∞∑
n=0

1

4
anx

(n+r),
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[
r(r − 1) +

1

4

]
a0 x r +

[
(r + 1)r +

1

4

]
a1 x (r+1)+

∞∑
n=2

[
(n + r)(n + r − 1)an + a(n−2) +

1

4
an

]
x (n+r) = 0.
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1

2
. That implies a0 arbitrary and a1 = 0.
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,

a4 = − a2

16
=

a0

64
.



Regular-singular points (5.5).

Example

Consider the equation x2 y ′′ +
(
x2 + 1

4

)
y = 0. Use a power series

centered at the regular-singular point x0 = 0 to find the three first
terms of the solution corresponding to the larger root of the
indicial polynomial.

Solution: r =
1

2
, a1 = 0,

[
(n + r)(n + r − 1) +

1

4

]
an = −a(n−2).[(

n+
1

2

)(
n− 1

2

)
+

1

4

]
an = −a(n−2)

⇒
[
n2− 1

4
+

1

4

]
an = −a(n−2)

n2an = −a(n−2) ⇒ an = −
a(n−2)

n2
⇒

 a2 = −a0

4
,

a4 = − a2

16
=

a0

64
.



Regular-singular points (5.5).

Example

Consider the equation x2 y ′′ +
(
x2 + 1

4

)
y = 0. Use a power series

centered at the regular-singular point x0 = 0 to find the three first
terms of the solution corresponding to the larger root of the
indicial polynomial.

Solution: r =
1

2
, a1 = 0,

[
(n + r)(n + r − 1) +

1

4

]
an = −a(n−2).[(

n+
1

2

)(
n− 1

2

)
+

1

4

]
an = −a(n−2) ⇒

[
n2− 1

4
+

1

4

]
an = −a(n−2)

n2an = −a(n−2) ⇒ an = −
a(n−2)

n2
⇒

 a2 = −a0

4
,

a4 = − a2

16
=

a0

64
.



Regular-singular points (5.5).

Example

Consider the equation x2 y ′′ +
(
x2 + 1

4

)
y = 0. Use a power series

centered at the regular-singular point x0 = 0 to find the three first
terms of the solution corresponding to the larger root of the
indicial polynomial.

Solution: r =
1

2
, a1 = 0,

[
(n + r)(n + r − 1) +

1

4

]
an = −a(n−2).[(

n+
1

2

)(
n− 1

2

)
+

1

4

]
an = −a(n−2) ⇒

[
n2− 1

4
+

1

4

]
an = −a(n−2)

n2an = −a(n−2)

⇒ an = −
a(n−2)

n2
⇒

 a2 = −a0

4
,

a4 = − a2

16
=

a0

64
.



Regular-singular points (5.5).

Example

Consider the equation x2 y ′′ +
(
x2 + 1

4

)
y = 0. Use a power series

centered at the regular-singular point x0 = 0 to find the three first
terms of the solution corresponding to the larger root of the
indicial polynomial.

Solution: r =
1

2
, a1 = 0,

[
(n + r)(n + r − 1) +

1

4

]
an = −a(n−2).[(

n+
1

2

)(
n− 1

2

)
+

1

4

]
an = −a(n−2) ⇒

[
n2− 1

4
+

1

4

]
an = −a(n−2)

n2an = −a(n−2) ⇒ an = −
a(n−2)

n2

⇒

 a2 = −a0

4
,

a4 = − a2

16
=

a0

64
.



Regular-singular points (5.5).

Example

Consider the equation x2 y ′′ +
(
x2 + 1

4

)
y = 0. Use a power series

centered at the regular-singular point x0 = 0 to find the three first
terms of the solution corresponding to the larger root of the
indicial polynomial.

Solution: r =
1

2
, a1 = 0,

[
(n + r)(n + r − 1) +

1

4

]
an = −a(n−2).[(

n+
1

2

)(
n− 1

2

)
+

1

4

]
an = −a(n−2) ⇒

[
n2− 1

4
+

1

4

]
an = −a(n−2)

n2an = −a(n−2) ⇒ an = −
a(n−2)

n2
⇒

 a2 = −a0

4
,

a4 = − a2

16

=
a0

64
.



Regular-singular points (5.5).

Example

Consider the equation x2 y ′′ +
(
x2 + 1

4

)
y = 0. Use a power series

centered at the regular-singular point x0 = 0 to find the three first
terms of the solution corresponding to the larger root of the
indicial polynomial.

Solution: r =
1

2
, a1 = 0,

[
(n + r)(n + r − 1) +

1

4

]
an = −a(n−2).[(

n+
1

2

)(
n− 1

2

)
+

1

4

]
an = −a(n−2) ⇒

[
n2− 1

4
+

1

4

]
an = −a(n−2)

n2an = −a(n−2) ⇒ an = −
a(n−2)

n2
⇒

 a2 = −a0

4
,

a4 = − a2

16
=

a0

64
.



Regular-singular points (5.5).

Example

Consider the equation x2 y ′′ +
(
x2 + 1

4

)
y = 0. Use a power series

centered at the regular-singular point x0 = 0 to find the three first
terms of the solution corresponding to the larger root of the
indicial polynomial.

Solution: r =
1

2
, a1 = 0, a2 = −a0

4
, and a4 =

a0

64
.

Then,

y(x) = x r
(
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.
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Review for Exam 2.

I 5 problems.

I No multiple choice questions.

I No notes, no books, no calculators.

I Problems similar to homeworks.
I Exam covers:

I Regular-singular points (5.5).
I Euler differential equation (5.4).
I Power series solutions (5.2).
I Variation of parameters (3.6).
I Undetermined coefficients (3.5)
I Constant coefficients, homogeneous, (3.1)-(3.4).



Euler differential equation (5.4).

Summary:

I (x − x0)
2 y ′′ + (x − x0)p0 y ′ + q0 y = 0.

I Find r± solutions of r(r − 1) + p0r + q0 = 0.

I If r+ 6= r− and both are real, then fundamental solutions are

y+ = |x − x0|r+ , y− = |x − x0|r− .

I If r± = α± iβ, then real-valued fundamental solutions are

y+ = |x−x0|α cos
(
β ln |x−x0|

)
, y− = |x−x0|α sin

(
β ln |x−x0|

)
.

I If r+ = r− and both are real, then fundamental solutions are

y+ = |x − x0|r+ , y− = |x − x0|r+ ln |x − x0|.
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Euler differential equation (5.4).

Example

Find real-valued fundamental solutions of

(x − 2)2 y ′′ + 5(x − 2) y ′ + 8 y = 0.

Solution: This is an Euler equation. Find r solution of
r(r − 1) + 5r + 8 = 0, that is, r2 + 4r + 8 = 0,

r± =
1

2

[
−4±

√
16− 32

]
⇒ r± = −2± 2i .

Real valued fundamental solutions are

y+(x) = |x − 2|−2 cos
(
2 ln |x − 2|

)
,

y−(x) = |x − 2|−2 sin
(
2 ln |x − 2|

)
. C
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Review for Exam 2.

I 5 problems.

I No multiple choice questions.

I No notes, no books, no calculators.

I Problems similar to homeworks.
I Exam covers:

I Regular-singular points (5.5).
I Euler differential equation (5.4).
I Power series solutions (5.2).
I Variation of parameters (3.6).
I Undetermined coefficients (3.5)
I Constant coefficients, homogeneous, (3.1)-(3.4).



Power series solutions (5.2).

Example

Using a power series centered at x0 = 0 find the three first terms of
the general solution of (4− x2) y ′′ + 2y = 0.

Solution: We look for solutions y =
∞∑

n=0

an xn. Therefore,

y ′′ =
∞∑

n=0

n(n − 1)an x (n−2)

The differential equation is then given by

(4− x2)
∞∑

n=0

n(n − 1)an x (n−2) + 2
∞∑

n=0

an xn = 0,

∞∑
n=0

4n(n − 1)an x (n−2) −
∞∑

n=0

n(n − 1)an xn +
∞∑

n=0

2an xn = 0.
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the general solution of (4− x2) y ′′ + 2y = 0.

Solution: 4(n + 2)(n + 1)an+2 + (−n2 + n + 2)an = 0.

Notice: −n2 + n + 2 = −(n − 2)(n + 1), hence

4(n+2)(n+1)an+2−(n−2)(n+1)an = 0 ⇒ an+2 =
(n − 2)an

4(n + 2)
.

For n even the power series terminates at n = 2, since

a2 =
−2a0

8
, a4 = 0, a6 = 0, · · ·

For n odd: a3 =
−a1

12
, a5 =

a3

20
= − a1

(12)(20)
, · · ·

y = a0

[
1− 1

4
x2

]
+ a1

[
x − 1

12
x3 − 1

(12)(20)
x5 + · · ·

]
. C
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Review for Exam 2.

I 5 problems.

I No multiple choice questions.

I No notes, no books, no calculators.

I Problems similar to homeworks.
I Exam covers:

I Regular-singular points (5.5).
I Euler differential equation (5.4).
I Power series solutions (5.2).
I Variation of parameters (3.6).
I Undetermined coefficients (3.5)
I Constant coefficients, homogeneous, (3.1)-(3.4).



Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

y ′′ + 4y ′ + 4y = x−2 e−2x .

Solution: We find the solutions of the homogeneous equation,

r2 + 4r + 4 = 0 ⇒ r± =
1

2

[
−4±

√
16− 16

]
⇒ r± = −2.

Fundamental solutions of the homogeneous equations are

y1 = e−2x , y2 = x e−2x .

We now compute their Wronskian,

W =

∣∣∣∣y1 y2

y ′1 y ′2

∣∣∣∣ =

∣∣∣∣ e−2x x e−2x

−2e−2x (1− 2x) e−2x

∣∣∣∣ = (1− 2x) e−4x + 2x e−4x .

Hence W = e−4x .
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x
.

yp = u1y1 + u2y2 = − ln |x | e−2x − 1

x
xe−2x = −(1 + ln |x |) e−2x .

Since ỹp = − ln |x | e−2x is solution, y = (c1 + c2x − ln |x |) e−2x . C
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Since ỹp = − ln |x | e−2x is solution, y = (c1 + c2x − ln |x |) e−2x . C



Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

y ′′ + 4y ′ + 4y = x−2 e−2x .

Solution: y1 = e−2x , y2 = x e−2x , g = x−2 e−2x , W = e−4x .

Now we find the functions u1 and u2,

u′1 = −y2g

W
= −x e−2x x−2 e−2x

e−4x
= −1

x
⇒ u1 = − ln |x |.

u′2 =
y1g

W
=

e−2x x−2 e−2x

e−4x
= x−2 ⇒ u2 = −1

x
.

yp = u1y1 + u2y2 = − ln |x | e−2x − 1

x
xe−2x = −(1 + ln |x |) e−2x .
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Review for Exam 2.

I 5 problems.

I No multiple choice questions.

I No notes, no books, no calculators.

I Problems similar to homeworks.
I Exam covers:

I Regular-singular points (5.5).
I Euler differential equation (5.4).
I Power series solutions (5.2).
I Variation of parameters (3.6).
I Undetermined coefficients (3.5)
I Constant coefficients, homogeneous, (3.1)-(3.4).



Undetermined coefficients (3.5)

Example

Use the undetermined coefficients to find the general solution of

y ′′ + 4y = 3 sin(2x).

Solution: Find the solutions of the homogeneous problem,

r2 + 4 = 0 ⇒ r± = ±2i .

y1 = cos(2x), y2 = sin(2x).

The function ỹp = k1 sin(2x) + k2 cos(2x) is the wrong guess, since
it is solution of the homogeneous equation. We guess:

yp = x
[
k1 sin(2x) + k2 cos(2x)

]
.

y ′p =
[
k1 sin(2x) + k2 cos(2x)

]
+ 2x

[
k1 cos(2x)− k2 sin(2x)

]
.

y ′′p = 4
[
k1 cos(2x)− k2 sin(2x)

]
+ 4x

[
−k1 sin(2x)− k2 cos(2x)

]
.
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The function ỹp = k1 sin(2x) + k2 cos(2x) is the wrong guess, since
it is solution of the homogeneous equation. We guess:

yp = x
[
k1 sin(2x) + k2 cos(2x)

]
.

y ′p =
[
k1 sin(2x) + k2 cos(2x)

]
+ 2x

[
k1 cos(2x)− k2 sin(2x)

]
.

y ′′p = 4
[
k1 cos(2x)− k2 sin(2x)

]
+ 4x

[
−k1 sin(2x)− k2 cos(2x)

]
.



Undetermined coefficients (3.5)

Example

Use the undetermined coefficients to find the general solution of

y ′′ + 4y = 3 sin(2x).

Solution: Find the solutions of the homogeneous problem,

r2 + 4 = 0

⇒ r± = ±2i .

y1 = cos(2x), y2 = sin(2x).
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k1 cos(2x)− k2 sin(2x)

]
= 3 sin(2x).

Evaluating at x = 0 and x = π/4 we get

4k1 = 0, −4k2 = 3 ⇒ k1 = 0, k2 = −3

4
.

Therefore, yp = −3

4
x cos(2x). The general solution is

y(x) = c1 sin(2x) +
(
c2 −

3

4
x
)

cos(2x).
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The Laplace Transform of step functions (Sect. 6.3).

I Overview and notation.

I The definition of a step function.

I Piecewise discontinuous functions.

I The Laplace Transform of discontinuous functions.

I Properties of the Laplace Transform.



Overview and notation.

Overview: The Laplace Transform method can be used to solve
constant coefficients differential equations with discontinuous
source functions.

Notation:
If L[f (t)] = F (s), then we denote L−1[F (s)] = f (t).

Remark: One can show that for a particular type of functions f ,
that includes all functions we work with in this Section, the
notation above is well-defined.

Example

From the Laplace Transform table we know that L
[
eat

]
=

1

s − a
.

Then also holds that L−1
[ 1

s − a

]
= eat . C
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The Laplace Transform of step functions (Sect. 6.3).

I Overview and notation.

I The definition of a step function.

I Piecewise discontinuous functions.

I The Laplace Transform of discontinuous functions.

I Properties of the Laplace Transform.



The definition of a step function.

Definition
A function u is called a step function at t = 0 iff holds

u(t) =

{
0 for t < 0,

1 for t > 0.

Example

Graph the step function values u(t) above, and the translations
u(t − c) and u(t + c) with c > 0.

Solution:
u(t)

t

1

0

u(t − c)

t

1

0 c − c 0

1

t

u(t + c)

C
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The definition of a step function.

Remark: Given any function values f (t) and c > 0, then f (t − c)
is a right translation of f and f (t + c) is a left translation of f .

Example
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0 t

f ( t ) f ( t ) =  e 
a t a ( t − c )

0

f ( t )

t
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0 t

f ( t )

1

f ( t ) =  u ( t ) e 
a ( t − c )

0

f ( t )
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1

c

f ( t ) =  u ( t − c )  e 



The definition of a step function.

Remark: Given any function values f (t) and c > 0, then f (t − c)
is a right translation of f and f (t + c) is a left translation of f .

Example

1

0 t

f ( t ) f ( t ) =  e 
a t

a ( t − c )

0

f ( t )

t

f ( t ) =  e 

1

c

a t

0 t

f ( t )

1

f ( t ) =  u ( t ) e 
a ( t − c )

0

f ( t )

t

1

c

f ( t ) =  u ( t − c )  e 



The definition of a step function.

Remark: Given any function values f (t) and c > 0, then f (t − c)
is a right translation of f and f (t + c) is a left translation of f .

Example

1

0 t

f ( t ) f ( t ) =  e 
a t a ( t − c )

0

f ( t )

t

f ( t ) =  e 

1

c

a t

0 t

f ( t )

1

f ( t ) =  u ( t ) e 
a ( t − c )

0

f ( t )

t

1

c

f ( t ) =  u ( t − c )  e 



The definition of a step function.

Remark: Given any function values f (t) and c > 0, then f (t − c)
is a right translation of f and f (t + c) is a left translation of f .

Example

1

0 t

f ( t ) f ( t ) =  e 
a t a ( t − c )

0

f ( t )

t

f ( t ) =  e 

1

c

a t

0 t

f ( t )

1

f ( t ) =  u ( t ) e 

a ( t − c )

0

f ( t )

t

1

c

f ( t ) =  u ( t − c )  e 



The definition of a step function.

Remark: Given any function values f (t) and c > 0, then f (t − c)
is a right translation of f and f (t + c) is a left translation of f .

Example

1

0 t

f ( t ) f ( t ) =  e 
a t a ( t − c )

0

f ( t )

t

f ( t ) =  e 

1

c

a t

0 t

f ( t )

1

f ( t ) =  u ( t ) e 
a ( t − c )

0

f ( t )

t

1

c

f ( t ) =  u ( t − c )  e 



The Laplace Transform of step functions (Sect. 6.3).

I Overview and notation.

I The definition of a step function.

I Piecewise discontinuous functions.

I The Laplace Transform of discontinuous functions.

I Properties of the Laplace Transform.



Piecewise discontinuous functions.

Example

Graph of the function b(t) = u(t − a)− u(t − b), with 0 < a < b.

Solution: The bump function b can be graphed as follows:

u(t −a)

1

t0 a b

u(t −b)

1

t0 a b

b

1

b(t)

t0 a C
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Piecewise discontinuous functions.

Example

Graph of the function f (t) = eat
[
u(t − 1)− u(t − 2)

]
.

Solution:

a t

t1 2

1

y f ( t ) = e      [ u ( t −1 ) − u ( t −2 ) ]

 [ u ( t −1 ) − u ( t −2 ) ]

a t
e   

Notation: The function values u(t − c) are denoted in the
textbook as uc(t).
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The Laplace Transform of step functions (Sect. 6.3).

I Overview and notation.

I The definition of a step function.

I Piecewise discontinuous functions.
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I Properties of the Laplace Transform.



The Laplace Transform of discontinuous functions.

Theorem
Given any real number c, the following equation holds,

L[u(t − c)] =
e−cs

s
, s > 0.

Proof:

L[u(t − c)] =

∫ ∞

0

e−stu(t − c) dt =

∫ ∞

c
e−st dt,

L[u(t − c)] = lim
N→∞

−1

s

(
e−Ns − e−cs

)
=

e−cs

s
, s > 0.

We conclude that L[u(t − c)] =
e−cs

s
.
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The Laplace Transform of discontinuous functions.

Example

Compute L[3u(t − 2)].

Solution: L[3u(t − 2)] = 3L[u(t − 2)] = 3
e−2s

s
.

We conclude: L[3u(t − 2)] =
3e−2s

s
. C

Example

Compute L−1
[e3s

s

]
.

Solution: L−1
[e3s

s

]
= L−1

[e−(−3)s

s

]
= u(t − (−3)).

We conclude: L−1
[e3s

s

]
= u(t + 3). C
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Properties of the Laplace Transform.

Theorem (Translations)

If F (s) = L[f (t)] exists for s > a > 0 and c > 0, then holds

L[u(t − c)f (t − c)] = e−cs F (s), s > a.

Furthermore,

L[ect f (t)] = F (s − c), s > a + c .

Remark:

I L
[
translation (uf )

]
= (exp)

(
L[f ]

)
.

I L
[
(exp) (f )

]
= translation

(
L[f ]

)
.

Equivalent notation:

I L[u(t − c)f (t − c)] = e−cs L[f (t)],

I L[ect f (t)] = L[f ](s − c).
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Properties of the Laplace Transform.

Example

Compute L
[
u(t − 2) sin(a(t − 2))

]
.

Solution: L[sin(at)] =
a

s2 + a2
, L[u(t − c)f (t − c)] = e−cs L[f (t)].

L
[
u(t − 2) sin(a(t − 2))

]
= e−2s L[sin(at)] = e−2s a

s2 + a2
.

We conclude: L
[
u(t − 2) sin(a(t − 2))

]
= e−2s a

s2 + a2
. C

Example

Compute L
[
e3t sin(at)

]
.

Solution: Recall: L[ect f (t)] = L[f ](s − c).

We conclude: L
[
e3t sin(at)

]
=

a

(s − 3)2 + a2
, with s > 3. C
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Properties of the Laplace Transform.

Example

Find the Laplace transform of f (t) =

{
0, t < 1,

(t2 − 2t + 2), t > 1.

Solution: Using step function notation,

f (t) = u(t − 1)(t2 − 2t + 2).

Completing the square we obtain,

t2 − 2t + 2 = (t2 − 2t + 1)− 1 + 2 = (t − 1)2 + 1.

This is a parabola t2 translated to the
right by 1 and up by one. This is a
discontinuous function.

t10

f(t)

1
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.
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f (t) = u(t − 1) (t − 1)2 + u(t − 1).

Since L[t2] = 2/s3, and L[u(t − c)g(t − c)] = e−cs L[g(t)], then

L[f (t)] = L[u(t − 1) (t − 1)2] + L[u(t − 1)] = e−s 2

s3
+ e−s 1

s
.

We conclude: L[f (t)] =
e−s

s3

(
2 + s2

)
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Properties of the Laplace Transform.

Remark: The inverse of the formulas in the Theorem above are:

L−1
[
e−cs F (s)

]
= u(t − c) f (t − c),

L−1
[
F (s − c)

]
= ect f (t).

Example

Find L−1
[ e−4s

s2 + 9

]
.

Solution: L−1
[ e−4s

s2 + 9

]
=

1

3
L−1

[
e−4s 3

s2 + 9

]
.

Recall: L−1
[ a

s2 + a2

]
= sin(at). Then, we conclude that

L−1
[ e−4s

s2 + 9

]
=

1

3
u(t − 4) sin

(
3(t − 4)

)
. C
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Example

Find L−1
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(s − 2)2 + 9

]
.

Solution: L−1
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]
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[
F (s − c)

]
= ect f (t).

We conclude: L−1
[ (s − 2)
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]
= e2t cos(3t). C
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Find L−1
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s2 − 4

]
.

Solution: Recall: L−1
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s2 − a2

]
= sinh(at)

and L−1
[
e−cs F (s)

]
= u(t − c) f (t − c).
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Properties of the Laplace Transform.

Example

Find L−1
[ e−2s

s2 + s − 2

]
.

Solution: Find the roots of the denominator:

s± =
1

2

[
−1±

√
1 + 8

]
⇒

{
s+ = 1,

s− = −2.

Therefore, s2 + s − 2 = (s − 1) (s + 2).

Use partial fractions to simplify the rational function:

1

s2 + s − 2
=

1

(s − 1) (s + 2)
=

a

(s − 1)
+

b

(s + 2)
,

1

s2 + s − 2
= a(s + 2) + b(s − 1) =

(a + b) s + (2a− b)

(s − 1) (s + 2)
.
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Equations with discontinuous sources (Sect. 6.4).

I Differential equations with discontinuous sources.
I We solve the IVPs:

(a) Example 1:

y ′ + 2y = u(t − 4), y(0) = 3.

(b) Example 2:

y ′′ + y ′ +
5

4
y = b(t),

y(0) = 0,

y ′(0) = 0,
b(t) =

{
1, t ∈ [0, π)

0, t ∈ [π,∞).

(c) Example 3:

y ′′+y ′+
5

4
y = g(t),

y(0) = 0,

y ′(0) = 0,
g(t) =

{
sin(t), t ∈ [0, π)

0, t ∈ [π,∞).



Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

y ′ + 2y = u(t − 4), y(0) = 3.

Solution: Compute the Laplace transform of the whole equation,

L[y ′] + 2L[y ] = L[u(t − 4)] =
e−4s

s
.

From the previous Section we know that[
s L[y ]−y(0)

]
+2L[y ] =

e−4s

s
⇒ (s +2)L[y ] = y(0)+

e−4s

s
.

Introduce the initial condition, L[y ] =
3

(s + 2)
+ e−4s 1

s(s + 2)
,

Use the table: L[y ] = 3L
[
e−2t

]
+ e−4s 1

s(s + 2)
.
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We get, a + b = 0, 2a = 1. We obtain: a =
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2
. Hence,

1

s(s + 2)
=

1

2
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s
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(s + 2)

]
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Equations with discontinuous sources (Sect. 6.4).

I Differential equations with discontinuous sources.
I We solve the IVPs:

(a) Example 1:

y ′ + 2y = u(t − 4), y(0) = 3.

(b) Example 2:

y ′′ + y ′ +
5

4
y = b(t),

y(0) = 0,

y ′(0) = 0,
b(t) =

{
1, t ∈ [0, π)

0, t ∈ [π,∞).

(c) Example 3:

y ′′+y ′+
5

4
y = g(t),

y(0) = 0,

y ′(0) = 0,
g(t) =

{
sin(t), t ∈ [0, π)

0, t ∈ [π,∞).
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4
y = b(t),

y(0) = 0,

y ′(0) = 0,
b(t) =

{
1, t ∈ [0, π)

0, t ∈ [π,∞).

Solution:

Rewrite the source function using
step functions.

t
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1

0 pi
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Solution: The graphs imply: b(t) = u(t)− u(t − π)

Now is simple to find L[b], since

L[b(t)] = L[u(t)]− L[u(t − π)] =
1

s
− e−πs

s
.

So, the source is L[b(t)] =
(
1− e−πs

) 1

s
, and the equation is

L[y ′′] + L[y ′] +
5

4
L[y ] =

(
1− e−πs

) 1

s
.
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) .

Denoting: H(s) =
1

s
(
s2 + s + 5

4

) ,

we obtain, L[y ] =
(
1− e−πs

)
H(s).

In other words: y(t) = L−1
[
H(s)

]
− L−1

[
e−πs H(s)

]
.
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Equations with discontinuous sources (Sect. 6.4).

I Differential equations with discontinuous sources.
I We solve the IVPs:

(a) Example 1:

y ′ + 2y = u(t − 4), y(0) = 3.

(b) Example 2:

y ′′ + y ′ +
5

4
y = b(t),

y(0) = 0,

y ′(0) = 0,
b(t) =

{
1, t ∈ [0, π)

0, t ∈ [π,∞).

(c) Example 3:

y ′′+y ′+
5

4
y = g(t),

y(0) = 0,

y ′(0) = 0,
g(t) =

{
sin(t), t ∈ [0, π)

0, t ∈ [π,∞).
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y ′(0) = 0,
g(t) =

{
sin(t) t ∈ [0, π)

0 t ∈ [π,∞).

Solution: The graphs imply: g(t) =
[
u(t)− u(t − π)

]
sin(t).

Recall the identity: sin(t) = − sin(t − π). Then,

g(t) = u(t) sin(t)− u(t − π) sin(t),

g(t) = u(t) sin(t) + u(t − π) sin(t − π).

Now is simple to find L[g ], since

L[g(t)] = L[u(t) sin(t)] + L[u(t − π) sin(t − π)].
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