Review 2 for Exam 1.

- 5 or 6 problems.
- No multiple choice questions.
- No notes, no books, no calculators.
- Problems similar to homeworks, webwork.
- Exam covers:
 - Linear equations (2.1).
 - Separable equations (2.2).
 - Homogeneous equations (2.2).
 - Modeling (2.3).
 - Non-linear equations (2.4).
 - Bernoulli equation (2.4).
 - Exact equations (2.6).
 - Exact equations with integrating factors (2.6).
Example

Find the integrating factor that converts the equation below into an exact equation, where

\[
\left(x^3 e^y + \frac{x}{y} \right)y' + (2x^2 e^y + 1) = 0.
\]
Example
Find the integrating factor that converts the equation below into an exact equation, where
\[(x^3e^y + \frac{x}{y}) y' + (2x^2e^y + 1) = 0.\]

Solution: We first verify if the equation is not exact.
\[N = \left(x^3e^y + \frac{x}{y}\right)\]
Example
Find the integrating factor that converts the equation below into an exact equation, where
\[
\left(x^3 e^y + \frac{x}{y}\right)y' + (2x^2 e^y + 1) = 0.
\]

Solution: We first verify if the equation is not exact.

\[
N = \left(x^3 e^y + \frac{x}{y}\right) \Rightarrow \partial_x N = 3x^2 e^y + \frac{1}{y}.
\]
Example
Find the integrating factor that converts the equation below into an exact equation, where
\[
\left(x^3e^y + \frac{x}{y} \right) y' + (2x^2e^y + 1) = 0.
\]

Solution: We first verify if the equation is not exact.
\[
N = \left(x^3e^y + \frac{x}{y} \right) \Rightarrow \partial_x N = 3x^2e^y + \frac{1}{y}.
\]
\[
M = (2x^2e^y + 1) = 0
\]
Example
Find the integrating factor that converts the equation below into an exact equation, where
\[
\left(x^3 e^y + \frac{x}{y}\right)y' + (2x^2 e^y + 1) = 0.
\]

Solution: We first verify if the equation is not exact.
\[
N = \left(x^3 e^y + \frac{x}{y}\right) \Rightarrow \partial_x N = 3x^2 e^y + \frac{1}{y}.
\]
\[
M = (2x^2 e^y + 1) = 0 \Rightarrow \partial_y M = 2x^2 e^y.
\]
Example
Find the integrating factor that converts the equation below into an exact equation, where

\[
\left(x^3e^y + \frac{x}{y} \right) y' + (2x^2e^y + 1) = 0.
\]

Solution: We first verify if the equation is not exact.

\[
N = \left(x^3e^y + \frac{x}{y} \right) \quad \Rightarrow \quad \partial_x N = 3x^2e^y + \frac{1}{y}.
\]

\[
M = (2x^2e^y + 1) = 0 \quad \Rightarrow \quad \partial_y M = 2x^2e^y.
\]

So the equation is not exact.
Example

Find the integrating factor that converts the equation below into an exact equation, where

\[
\left(x^3 e^y + \frac{x}{y} \right) y' + (2x^2 e^y + 1) = 0.
\]

Solution: We first verify if the equation is not exact.

\[
N = \left(x^3 e^y + \frac{x}{y} \right) \Rightarrow \partial_x N = 3x^2 e^y + \frac{1}{y}.
\]

\[
M = (2x^2 e^y + 1) = 0 \Rightarrow \partial_y M = 2x^2 e^y.
\]

So the equation is not exact. We now compute

\[
\frac{\partial_y M - \partial_x N}{N}
\]
Example
Find the integrating factor that converts the equation below into an exact equation, where
\[
\left(x^3 e^y + \frac{x}{y}\right) y' + (2x^2 e^y + 1) = 0.
\]

Solution: We first verify if the equation is not exact.

\[
N = \left(x^3 e^y + \frac{x}{y}\right) \Rightarrow \partial_x N = 3x^2 e^y + \frac{1}{y}.
\]

\[
M = (2x^2 e^y + 1) = 0 \Rightarrow \partial_y M = 2x^2 e^y.
\]

So the equation is not exact. We now compute
\[
\frac{\partial_y M - \partial_x N}{N} = \frac{2x^2 e^y - \left(3x^2 e^y + \frac{1}{y}\right)}{\left(x^3 e^y + \frac{x}{y}\right)}
\]
Example

Find the integrating factor that converts the equation below into an exact equation, where

\[
\left(x^3 e^y + \frac{x}{y} \right) y' + (2x^2 e^y + 1) = 0.
\]

Solution: We first verify if the equation is not exact.

\[
N = \left(x^3 e^y + \frac{x}{y} \right) \implies \partial_x N = 3x^2 e^y + \frac{1}{y}.
\]

\[
M = (2x^2 e^y + 1) = 0 \implies \partial_y M = 2x^2 e^y.
\]

So the equation is **not exact**. We now compute

\[
\frac{\partial_y M - \partial_x N}{N} = \frac{2x^2 e^y - \left(3x^2 e^y + \frac{1}{y} \right)}{x^3 e^y + \frac{x}{y}} = \frac{-x^2 e^y - \frac{1}{y}}{x \left(x^2 e^y + \frac{1}{y} \right)}.
\]
Example
Find the integrating factor that converts the equation below into an exact equation, where

\[
\left(x^3e^y + \frac{x}{y}\right)y' + (2x^2e^y + 1) = 0.
\]

Solution: We first verify if the equation is not exact.

\[
N = \left(x^3e^y + \frac{x}{y}\right) \quad \Rightarrow \quad \partial_x N = 3x^2e^y + \frac{1}{y}.
\]

\[
M = (2x^2e^y + 1) = 0 \quad \Rightarrow \quad \partial_y M = 2x^2e^y.
\]

So the equation is not exact. We now compute

\[
\frac{\partial_y M - \partial_x N}{N} = \frac{2x^2e^y - \left(3x^2e^y + \frac{1}{y}\right)}{\left(x^3e^y + \frac{x}{y}\right)} = \frac{-x^2e^y - \frac{1}{y}}{x \left(x^2e^y + \frac{1}{y}\right)} = -\frac{1}{x}.
\]
Example
Find the integrating factor that converts the equation below into an exact equation, where

\[
\left(x^3e^y + \frac{x}{y}\right)y' + (2x^2e^y + 1) = 0.
\]

Solution: Recall: \(\frac{\partial_y M - \partial_x N}{N} = -\frac{1}{x}\).
Example

Find the integrating factor that converts the equation below into an exact equation, where

\[
\left(x^3 e^y + \frac{x}{y}\right) y' + (2x^2 e^y + 1) = 0.
\]

Solution: Recall: \(\frac{\partial_y M - \partial_x N}{N} = -\frac{1}{x} \). Therefore,

\[
\frac{\mu'(x)}{\mu(x)} = -\frac{1}{x}
\]
Example
Find the integrating factor that converts the equation below into an exact equation, where

\[
\left(x^3 e^y + \frac{x}{y} \right) y' + (2x^2 e^y + 1) = 0.
\]

Solution: Recall: \(\frac{\partial_y M - \partial_x N}{N} = -\frac{1}{x} \). Therefore,

\[
\frac{\mu'(x)}{\mu(x)} = -\frac{1}{x} \quad \Rightarrow \quad \ln(\mu) = -\ln(x)
\]
Example

Find the integrating factor that converts the equation below into an exact equation, where

\[(x^3 e^y + \frac{x}{y}) y' + (2x^2 e^y + 1) = 0. \]

Solution: Recall: \(\frac{\partial_y M - \partial_x N}{N} = -\frac{1}{x} \). Therefore,

\[\frac{\mu'(x)}{\mu(x)} = -\frac{1}{x} \quad \Rightarrow \quad \ln(\mu) = -\ln(x) = \ln\left(\frac{1}{x}\right) \]
Example

Find the integrating factor that converts the equation below into an exact equation, where

\[
\left(x^3 e^y + \frac{x}{y} \right) y' + (2x^2 e^y + 1) = 0.
\]

Solution: Recall: \(\frac{\partial y M - \partial x N}{N} = -\frac{1}{x} \). Therefore,

\[
\frac{\mu'(x)}{\mu(x)} = -\frac{1}{x} \quad \Rightarrow \quad \ln(\mu) = -\ln(x) = \ln\left(\frac{1}{x} \right) \quad \Rightarrow \quad \mu(x) = \frac{1}{x}.
\]
Example

Find the integrating factor that converts the equation below into an exact equation, where

\[
\left(x^3e^y + \frac{x}{y} \right) y' + \left(2x^2e^y + 1 \right) = 0.
\]

Solution: Recall:

\[
\frac{\partial_y M - \partial_x N}{N} = -\frac{1}{x}.
\]

Therefore,

\[
\frac{\mu'(x)}{\mu(x)} = -\frac{1}{x} \implies \ln(\mu) = -\ln(x) = \ln\left(\frac{1}{x}\right) \implies \mu(x) = \frac{1}{x}.
\]

So the equation \(\left(x^2e^y + \frac{1}{y} \right) y' + \left(2xe^y + \frac{1}{x} \right) = 0 \) is exact.
Example

Find the integrating factor that converts the equation below into an exact equation, where

\[
\left(x^3 e^y + \frac{x}{y} \right) y' + (2x^2 e^y + 1) = 0.
\]

Solution: Recall: \(\frac{\partial_y M - \partial_x N}{N} = -\frac{1}{x} \). Therefore,

\[
\frac{\mu'(x)}{\mu(x)} = -\frac{1}{x} \quad \Rightarrow \quad \ln(\mu) = -\ln(x) = \ln\left(\frac{1}{x} \right) \quad \Rightarrow \quad \mu(x) = \frac{1}{x}.
\]

So the equation \(\left(x^2 e^y + \frac{1}{y} \right) y' + \left(2xe^y + \frac{1}{x} \right) = 0 \) is exact. Indeed,
Example

Find the integrating factor that converts the equation below into an exact equation, where

\[(x^3 e^y + \frac{x}{y}) y' + (2x^2 e^y + 1) = 0.\]

Solution: Recall: \(\frac{\partial_y M - \partial_x N}{N} = -\frac{1}{x}\). Therefore,

\[
\frac{\mu'(x)}{\mu(x)} = -\frac{1}{x} \quad \Rightarrow \quad \ln(\mu) = -\ln(x) = \ln\left(\frac{1}{x}\right) \quad \Rightarrow \quad \mu(x) = \frac{1}{x}.
\]

So the equation \((x^2 e^y + \frac{1}{y}) y' + (2xe^y + \frac{1}{x}) = 0\) is exact. Indeed,

\[
\tilde{N} = \left(x^2 e^y + \frac{1}{y}\right) \quad \Rightarrow \quad \partial_x \tilde{N} = 2xe^y,
\]
Example
Find the integrating factor that converts the equation below into an exact equation, where
\[
\left(x^3 e^y + \frac{x}{y}\right) y' + \left(2x^2 e^y + 1\right) = 0.
\]

Solution: Recall: \(\frac{\partial_y M - \partial_x N}{N} = -\frac{1}{x}\). Therefore,
\[
\frac{\mu'(x)}{\mu(x)} = -\frac{1}{x} \quad \Rightarrow \quad \ln(\mu) = -\ln(x) = \ln\left(\frac{1}{x}\right) \quad \Rightarrow \quad \mu(x) = \frac{1}{x}.
\]
So the equation \(\left(x^2 e^y + \frac{1}{y}\right) y' + \left(2xe^y + \frac{1}{x}\right) = 0\) is exact. Indeed,
\[
\tilde{N} = \left(x^2 e^y + \frac{1}{y}\right) \quad \Rightarrow \quad \partial_x \tilde{N} = 2xe^y,
\]
\[
\tilde{M} = \left(2xe^y + \frac{1}{x}\right)
\]
Example
Find the integrating factor that converts the equation below into an exact equation, where
\[
\left(x^3 e^y + \frac{x}{y}\right) y' + (2x^2 e^y + 1) = 0.
\]

Solution: Recall: \(\frac{\partial_y M - \partial_x N}{N} = -\frac{1}{x} \). Therefore,
\[
\frac{\mu'(x)}{\mu(x)} = -\frac{1}{x} \quad \Rightarrow \quad \ln(\mu) = -\ln(x) = \ln\left(\frac{1}{x}\right) \quad \Rightarrow \quad \mu(x) = \frac{1}{x}.
\]
So the equation \(\left(x^2 e^y + \frac{1}{y}\right) y' + \left(2xe^y + \frac{1}{x}\right) = 0 \) is exact. Indeed,
\[
\hat{N} = \left(x^2 e^y + \frac{1}{y}\right) \quad \Rightarrow \quad \partial_x \hat{N} = 2xe^y,
\]
\[
\hat{M} = \left(2xe^y + \frac{1}{x}\right) \quad \Rightarrow \quad \partial_y \hat{M} = 2xe^y,
\]
Example

Find the integrating factor that converts the equation below into an exact equation, where

\[
\left(x^3 e^y + \frac{x}{y}\right) y' + \left(2x^2 e^y + 1\right) = 0.
\]

Solution: Recall: \(\frac{\partial_y M - \partial_x N}{N} = -\frac{1}{x} \). Therefore,

\[
\frac{\mu'(x)}{\mu(x)} = -\frac{1}{x} \quad \Rightarrow \quad \ln(\mu) = -\ln(x) = \ln\left(\frac{1}{x}\right) \quad \Rightarrow \quad \mu(x) = \frac{1}{x}.
\]

So the equation \(\left(x^2 e^y + \frac{1}{y}\right) y' + \left(2xe^y + \frac{1}{x}\right) = 0 \) is exact. Indeed,

\[
\tilde{N} = \left(x^2 e^y + \frac{1}{y}\right) \quad \Rightarrow \quad \partial_x \tilde{N} = 2xe^y,
\]

\[
\tilde{M} = \left(2xe^y + \frac{1}{x}\right) \quad \Rightarrow \quad \partial_y \tilde{M} = 2xe^y,
\]

\[
\Rightarrow \quad \partial_x \tilde{N} = \partial_y \tilde{M}.
\]
Example

Find every solution y of the equation

$$
\left(x^2 e^y + \frac{1}{y} \right) y' + \left(2x e^y + \frac{1}{x} \right) = 0.
$$
Example
Find every solution y of the equation
\[
\left(x^2 e^y + \frac{1}{y} \right) y' + \left(2x e^y + \frac{1}{x} \right) = 0.
\]

Solution: The equation is exact.
Example
Find every solution y of the equation
\[
(x^2 e^y + \frac{1}{y}) y' + (2x e^y + \frac{1}{x}) = 0.
\]

Solution: The equation is exact. We need to find the potential function ψ.
Example

Find every solution y of the equation

$$\left(x^2 e^y + \frac{1}{y}\right) y' + \left(2x e^y + \frac{1}{x}\right) = 0.$$

Solution: The equation is exact. We need to find the potential function ψ.

$$\partial_y \psi = N, \quad \partial_x \psi = M.$$
Example
Find every solution y of the equation

$$(x^2 e^y + \frac{1}{y}) y' + (2x e^y + \frac{1}{x}) = 0.$$

Solution: The equation is exact. We need to find the potential function ψ.

$$\partial_y \psi = N, \quad \partial_x \psi = M.$$

From the first equation we get:

$$\partial_y \psi = x^2 e^y + \frac{1}{y}.$$
Example
Find every solution y of the equation
\[\left(x^2 e^y + \frac{1}{y} \right) y' + \left(2x e^y + \frac{1}{x} \right) = 0. \]

Solution: The equation is exact. We need to find the potential function ψ.
\[\partial_y \psi = N, \quad \partial_x \psi = M. \]

From the first equation we get:
\[\partial_y \psi = x^2 e^y + \frac{1}{y} \quad \Rightarrow \quad \psi = x^2 e^y + \ln(y) + g(x). \]
Example
Find every solution y of the equation

$$
\left(x^2 e^y + \frac{1}{y} \right) y' + \left(2x e^y + \frac{1}{x} \right) = 0.
$$

Solution: The equation is exact. We need to find the potential function ψ.

$$
\partial_y \psi = N, \quad \partial_x \psi = M.
$$

From the first equation we get:

$$
\partial_y \psi = x^2 e^y + \frac{1}{y} \quad \Rightarrow \quad \psi = x^2 e^y + \ln(y) + g(x).
$$

Introduce the expression for ψ in the equation $\partial_x \psi = M$,
Example

Find every solution y of the equation

$$\left(x^2 e^y + \frac{1}{y} \right) y' + \left(2x e^y + \frac{1}{x} \right) = 0.$$

Solution: The equation is exact. We need to find the potential function ψ.

$$\partial_y \psi = N, \quad \partial_x \psi = M.$$

From the first equation we get:

$$\partial_y \psi = x^2 e^y + \frac{1}{y} \quad \Rightarrow \quad \psi = x^2 e^y + \ln(y) + g(x).$$

Introduce the expression for ψ in the equation $\partial_x \psi = M$, that is,

$$2xe^y + g'(x) = \partial_x \psi$$
Example
Find every solution y of the equation

$$\left(x^2 e^y + \frac{1}{y}\right)y' + \left(2x e^y + \frac{1}{x}\right) = 0.$$

Solution: The equation is exact. We need to find the potential function ψ.

$$\partial_y \psi = N, \quad \partial_x \psi = M.$$

From the first equation we get:

$$\partial_y \psi = x^2 e^y + \frac{1}{y} \quad \Rightarrow \quad \psi = x^2 e^y + \ln(y) + g(x).$$

Introduce the expression for ψ in the equation $\partial_x \psi = M$, that is,

$$2xe^y + g'(x) = \partial_x \psi = M$$
Example

Find every solution y of the equation

$$
\left(x^2e^y + \frac{1}{y} \right) y' + \left(2xe^y + \frac{1}{x} \right) = 0.
$$

Solution: The equation is exact. We need to find the potential function ψ.

$$
\partial_y \psi = N, \quad \partial_x \psi = M.
$$

From the first equation we get:

$$
\partial_y \psi = x^2e^y + \frac{1}{y} \quad \Rightarrow \quad \psi = x^2e^y + \ln(y) + g(x).
$$

Introduce the expression for ψ in the equation $\partial_x \psi = M$, that is,

$$
2xe^y + g'(x) = \partial_x \psi = M = 2xe^y + \frac{1}{x}
$$
Example
Find every solution \(y \) of the equation
\[
\left(x^2 e^y + \frac{1}{y} \right) y' + \left(2x e^y + \frac{1}{x} \right) = 0.
\]

Solution: The equation is exact. We need to find the potential function \(\psi \).
\[
\partial_y \psi = N, \quad \partial_x \psi = M.
\]

From the first equation we get:
\[
\partial_y \psi = x^2 e^y + \frac{1}{y} \quad \Rightarrow \quad \psi = x^2 e^y + \ln(y) + g(x).
\]

Introduce the expression for \(\psi \) in the equation \(\partial_x \psi = M \), that is,
\[
2xe^y + g'(x) = \partial_x \psi = M = 2x e^y + \frac{1}{x} \quad \Rightarrow \quad g'(x) = \frac{1}{x}.
\]
Example

Find every solution \(y \) of the equation

\[
\left(x^2e^y + \frac{1}{y} \right) y' + \left(2x e^y + \frac{1}{x} \right) = 0.
\]

Solution: Recall: \(g'(x) = \frac{1}{x} \).
Example

Find every solution y of the equation

$$\left(x^2 e^y + \frac{1}{y}\right)y' + \left(2x e^y + \frac{1}{x}\right) = 0.$$

Solution: Recall: $g'(x) = \frac{1}{x}$. Therefore $g(x) = \ln(x)$.
Example

Find every solution y of the equation

$$
\left(x^2 e^y + \frac{1}{y} \right) y' + \left(2xe^y + \frac{1}{x} \right) = 0.
$$

Solution: Recall: $g'(x) = \frac{1}{x}$. Therefore $g(x) = \ln(x)$.

The potential function is $\psi = x^2 e^y + \ln(y) + \ln(x)$.

Verification: Compute the implicit derivative in the equation above, and you should get the original differential equation.
Example

Find every solution y of the equation

$\left(x^2 e^y + \frac{1}{y} \right) y' + \left(2x e^y + \frac{1}{x} \right) = 0$.

Solution: Recall: $g'(x) = \frac{1}{x}$. Therefore $g(x) = \ln(x)$.

The potential function is $\psi = x^2 e^y + \ln(y) + \ln(x)$.

The solution y satisfies $x^2 e^{y(x)} + \ln(y(x)) + \ln(x) = c$. \triangle
Example

Find every solution y of the equation

$$(x^2e^y + \frac{1}{y})y' + (2xe^y + \frac{1}{x}) = 0.$$

Solution: Recall: $g'(x) = \frac{1}{x}$. Therefore $g(x) = \ln(x)$.

The potential function is $\psi = x^2e^y + \ln(y) + \ln(x)$.

The solution y satisfies $x^2e^{y(x)} + \ln(y(x)) + \ln(x) = c$.

Verification: Compute the implicit derivative in the equation above, and you should get the original differential equation.

$$2xe^y + x^2e^y y' + \frac{1}{y} y' + \frac{1}{x} = 0.$$
Example
Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]
Example
Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: The equation is: Not linear.
Example
Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: The equation is: Not linear.
It is a Bernoulli equation:
Example
Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: The equation is: Not linear.
It is a Bernoulli equation: \(y' - 4xy = 4xy^n \), with \(n = 1/2 \).
Example
Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: The equation is: Not linear.
It is a Bernoulli equation: \(y' - 4xy = 4xy^n \), with \(n = 1/2 \).
It is separable: \(\frac{y'}{y + \sqrt{y}} = 4x \).
Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: The equation is: Not linear.
It is a Bernoulli equation: \(y' - 4x y = 4x y^n \), with \(n = 1/2 \).
It is separable: \(\frac{y'}{y + \sqrt{y}} = 4x \).
The equation is not homogeneous.
Example
Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: The equation is: Not linear.
It is a Bernoulli equation: \(y' - 4xy = 4xy^n \), with \(n = 1/2 \).
It is separable: \(\frac{y'}{y + \sqrt{y}} = 4x. \)
The equation is not homogeneous. It is not exact.
Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: The equation is: Not linear.
It is a Bernoulli equation: \(y' - 4x y = 4x y^n \), with \(n = 1/2 \).
It is separable: \(\frac{y'}{y + \sqrt{y}} = 4x. \)

The equation is not homogeneous. It is not exact.

Although the equation is both separable and Bernoulli, it is not simple to integrate using the separable equation method.
Example
Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \quad y(0) = 4.$$

Solution: The equation is: Not linear.
It is a Bernoulli equation: $$y' - 4x y = 4x y^n,$$ with $$n = 1/2.$$ It is separable: $$\frac{y'}{y + \sqrt{y}} = 4x.$$ The equation is not homogeneous. It is not exact.

Although the equation is both separable and Bernoulli, it is not simple to integrate using the separable equation method. Indeed

$$\int \frac{y'}{y + \sqrt{y}} \, dt = \int 4x \, dx + c$$
Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: The equation is: Not linear.
It is a Bernoulli equation: \(y' - 4x\,y = 4x\,y^n \), with \(n = 1/2 \).

It is separable: \(\frac{y'}{y + \sqrt{y}} = 4x \).

The equation is not homogeneous. It is not exact.

Although the equation is both separable and Bernoulli, it is not simple to integrate using the separable equation method. Indeed

\[
\int \frac{y'}{y + \sqrt{y}} \, dt = \int 4x \, dx + c \quad \Rightarrow \quad \int \frac{dy}{y + \sqrt{y}} = 2x^2 + c.
\]
Example
Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: The equation is: Not linear.
It is a Bernoulli equation: \(y' - 4x y = 4x y^n, \) with \(n = 1/2. \)
It is separable: \(\frac{y'}{y + \sqrt{y}} = 4x. \)
The equation is not homogeneous. It is not exact.

Although the equation is both separable and Bernoulli, it is not simple to integrate using the separable equation method. Indeed

\[\int \frac{y'}{y + \sqrt{y}} \, dt = \int 4x \, dx + c \quad \Rightarrow \quad \int \frac{dy}{y + \sqrt{y}} = 2x^2 + c. \]

The integral on the left-hand side requires an integration table.
Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: We find solutions using the Bernoulli method.
Review 2 for Exam 1.

Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: We find solutions using the Bernoulli method.

\[y' - 4x y = 4x y^{1/2} \]
Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: We find solutions using the Bernoulli method.

\[y' - 4x y = 4x y^{1/2} \quad \Rightarrow \quad \frac{y'}{y^{1/2}} - 4x y^{1/2} = 4x. \]
Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: We find solutions using the Bernoulli method.

\[y' - 4xy = 4x y^{1/2} \quad \Rightarrow \quad \frac{y'}{y^{1/2}} - 4x y^{1/2} = 4x. \]

Change the unknowns: \(v = 1/y^{n-1} \), with \(n = 1/2 \).
Example
Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: We find solutions using the Bernoulli method.

\[y' - 4x y = 4x y^{1/2} \quad \Rightarrow \quad \frac{y'}{y^{1/2}} - 4x y^{1/2} = 4x. \]

Change the unknowns: \(v = 1/y^{n-1} \), with \(n = 1/2 \). That is,

\[v = \frac{1}{y^{-1/2}} \]
Review 2 for Exam 1.

Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: We find solutions using the Bernoulli method.

\[y' - 4xy = 4xy^{1/2} \quad \Rightarrow \quad \frac{y'}{y^{1/2}} - 4x = 4x. \]

Change the unknowns: \(v = 1/y^{n-1}, \) with \(n = 1/2. \) That is,

\[v = \frac{1}{y^{-1/2}} \quad \Rightarrow \quad v = y^{1/2}, \]
Example
Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: We find solutions using the Bernoulli method.

\[y' - 4x y = 4x y^{1/2} \quad \Rightarrow \quad \frac{y'}{y^{1/2}} - 4x y^{1/2} = 4x. \]

Change the unknowns: \(v = 1/y^{n-1} \), with \(n = 1/2 \). That is,

\[v = \frac{1}{y^{-1/2}} \quad \Rightarrow \quad v = y^{1/2}, \quad \Rightarrow \quad v' = \frac{1}{2} \frac{y'}{y^{1/2}}. \]
Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: We find solutions using the Bernoulli method.

\[y' - 4x \cdot y = 4x \cdot y^{1/2} \quad \Rightarrow \quad \frac{y'}{y^{1/2}} - 4x \cdot y^{1/2} = 4x. \]

Change the unknowns: \(v = 1/y^{n-1} \), with \(n = 1/2 \). That is,

\[v = \frac{1}{y^{-1/2}} \quad \Rightarrow \quad v = y^{1/2}, \quad \Rightarrow \quad v' = \frac{1}{2} \frac{y'}{y^{1/2}}. \]

\[2v' - 4xv = 4x \]
Example
Find every solution of the initial value problem
\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: We find solutions using the Bernoulli method.

\[y' - 4x y = 4x y^{1/2} \implies \frac{y'}{y^{1/2}} - 4x y^{1/2} = 4x. \]

Change the unknowns: \(v = 1/y^{n-1} \), with \(n = 1/2 \). That is,
\[v = \frac{1}{y^{-1/2}} \implies v = y^{1/2}, \quad \Rightarrow \quad v' = \frac{1}{2} \frac{y'}{y^{1/2}}. \]

\[2v' - 4xv = 4x \implies v' - 2xv = 2x. \]
Example
Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: We find solutions using the Bernoulli method.

\[y' - 4x y = 4x y^{1/2} \quad \Rightarrow \quad \frac{y'}{y^{1/2}} - 4x y^{1/2} = 4x. \]

Change the unknowns: \(v = 1/y^{n-1} \), with \(n = 1/2 \). That is,

\[v = \frac{1}{y^{-1/2}} \quad \Rightarrow \quad v = y^{1/2}, \quad \Rightarrow \quad v' = \frac{1}{2} \frac{y'}{y^{1/2}}. \]

\[2v' - 4xv = 4x \quad \Rightarrow \quad v' - 2xv = 2x. \]

The coefficient function is \(a(x) = -2x \),
Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: We find solutions using the Bernoulli method.

\[y' - 4x \ y = 4x \ y^{1/2} \quad \Rightarrow \quad \frac{y'}{y^{1/2}} - 4x \ y^{1/2} = 4x. \]

Change the unknowns: \(v = 1/y^{n-1} \), with \(n = 1/2 \). That is,

\[v = \frac{1}{y^{-1/2}} \quad \Rightarrow \quad v = y^{1/2}, \quad \Rightarrow \quad v' = \frac{1}{2} \frac{y'}{y^{1/2}}. \]

\[2v' - 4xv = 4x \quad \Rightarrow \quad v' - 2xv = 2x. \]

The coefficient function is \(a(x) = -2x \), so \(A(x) = -x^2 \),
Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \quad y(0) = 4.$$

Solution: We find solutions using the Bernoulli method.

$$y' - 4x y = 4x y^{1/2} \quad \Rightarrow \quad \frac{y'}{y^{1/2}} - 4x y^{1/2} = 4x.$$

Change the unknowns: \(v = 1/y^{n-1}\), with \(n = 1/2\). That is,

$$v = \frac{1}{y^{-1/2}} \quad \Rightarrow \quad v = y^{1/2}, \quad \Rightarrow \quad v' = \frac{1}{2} \frac{y'}{y^{1/2}}.$$

$$2v' - 4xv = 4x \quad \Rightarrow \quad v' - 2xv = 2x.$$

The coefficient function is \(a(x) = -2x\), so \(A(x) = -x^2\), and the integrating factor is \(\mu(x) = e^{-x^2}\).
Example
Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: Recall: \(v' - 2xv = 2x \) and \(\mu(x) = e^{-x^2} \).
Example
Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: Recall: \(v' - 2xv = 2x \) and \(\mu(x) = e^{-x^2} \).

\[e^{-x^2} v' - 2xe^{-x^2} v = 2x \, e^{-x^2} \]
Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: Recall: \(v' - 2xv = 2x \) and \(\mu(x) = e^{-x^2} \).

\[e^{-x^2} v' - 2xe^{-x^2} v = 2x e^{-x^2} \quad \Rightarrow \quad (e^{-x^2} v)' = 2xe^{-x^2}. \]
Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: Recall: \(v' - 2xv = 2x \) and \(\mu(x) = e^{-x^2} \).

\[
e^{-x^2}v' - 2xe^{-x^2}v = 2xe^{-x^2} \quad \Rightarrow \quad (e^{-x^2}v)' = 2xe^{-x^2}.
\]

\[
e^{-x^2}v = \int 2xe^{-x^2} \, dx + c
\]
Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: Recall: \(v' - 2xv = 2x \) and \(\mu(x) = e^{-x^2} \).

\[
e^{-x^2}v' - 2xe^{-x^2}v = 2xe^{-x^2} \quad \Rightarrow \quad (e^{-x^2}v)' = 2xe^{-x^2}.
\]

\[
e^{-x^2}v = \int 2xe^{-x^2} \, dx + c \quad \Rightarrow \quad e^{-x^2}v = -e^{-x^2} + c.
\]
Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: Recall: \(v' - 2xv = 2x \) and \(\mu(x) = e^{-x^2}. \)

\[e^{-x^2} v' - 2xe^{-x^2} v = 2xe^{-x^2} \quad \Rightarrow \quad (e^{-x^2} v)' = 2xe^{-x^2}. \]

\[e^{-x^2} v = \int 2xe^{-x^2} dx + c \quad \Rightarrow \quad e^{-x^2} v = -e^{-x^2} + c. \]

We conclude that \(v = c e^{x^2} - 1. \)
Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: Recall: \(v' - 2xv = 2x \) and \(\mu(x) = e^{-x^2} \).

\[
e^{-x^2} v' - 2xe^{-x^2} v = 2x e^{-x^2} \quad \Rightarrow \quad (e^{-x^2} v)' = 2xe^{-x^2}.
\]

\[
e^{-x^2} v = \int 2xe^{-x^2} \, dx + c \quad \Rightarrow \quad e^{-x^2} v = -e^{-x^2} + c.
\]

We conclude that \(v = c e^{x^2} - 1 \). The initial condition for \(y \) implies the initial condition for \(v \),

\[v(0) = 2 = c - 1 \quad \Rightarrow \quad c = 3. \]
Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: Recall: \(v' - 2xv = 2x \) and \(\mu(x) = e^{-x^2} \).

\[
e^{-x^2} v' - 2xe^{-x^2} v = 2x e^{-x^2} \quad \Rightarrow \quad (e^{-x^2} v)' = 2xe^{-x^2}.
\]

\[
e^{-x^2} v = \int 2xe^{-x^2} \, dx + c \quad \Rightarrow \quad e^{-x^2} v = -e^{-x^2} + c.
\]

We conclude that \(v = c e^{x^2} - 1 \). The initial condition for \(y \) implies the initial condition for \(v \), that is, \(v(x) = \sqrt{y(x)} \) implies \(v(0) = 2 \).
Review 2 for Exam 1.

Example
Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: Recall: \(v' - 2xv = 2x \) and \(\mu(x) = e^{-x^2} \).

\[
e^{-x^2} v' - 2xe^{-x^2} v = 2x e^{-x^2} \quad \Rightarrow \quad (e^{-x^2} v)' = 2xe^{-x^2}.
\]

\[
e^{-x^2} v = \int 2xe^{-x^2} \, dx + c \quad \Rightarrow \quad e^{-x^2} v = -e^{-x^2} + c.
\]

We conclude that \(v = c e^{x^2} - 1 \). The initial condition for \(y \) implies the initial condition for \(v \), that is, \(v(x) = \sqrt{y(x)} \) implies \(v(0) = 2 \).

\[2 = v(0) \]
Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: Recall: \(v' - 2xv = 2x \) and \(\mu(x) = e^{-x^2} \).

\[
e^{-x^2} v' - 2xe^{-x^2} v = 2x e^{-x^2} \quad \Rightarrow \quad (e^{-x^2} v)' = 2xe^{-x^2}.
\]

\[
e^{-x^2} v = \int 2xe^{-x^2} \, dx + c \quad \Rightarrow \quad e^{-x^2} v = -e^{-x^2} + c.
\]

We conclude that \(v = c e^{x^2} - 1 \). The initial condition for \(y \) implies the initial condition for \(v \), that is, \(v(x) = \sqrt{y(x)} \) implies \(v(0) = 2 \).

\[2 = v(0) = c - 1 \]
Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: Recall: \(v' - 2xv = 2x \) and \(\mu(x) = e^{-x^2}. \)

\[
e^{-x^2} v' - 2xe^{-x^2} v = 2x e^{-x^2} \quad \Rightarrow \quad (e^{-x^2} v)' = 2xe^{-x^2}.
\]

\[
e^{-x^2} v = \int 2xe^{-x^2} \, dx + c \quad \Rightarrow \quad e^{-x^2} v = -e^{-x^2} + c.
\]

We conclude that \(v = c e^{x^2} - 1. \) The initial condition for \(y \) implies the initial condition for \(v \), that is, \(v(x) = \sqrt{y(x)} \) implies \(v(0) = 2. \)

\[2 = v(0) = c - 1 \quad \Rightarrow \quad c = 3 \]
Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: Recall: \(v' - 2xv = 2x \) and \(\mu(x) = e^{-x^2} \).

\[
e^{-x^2} v' - 2xe^{-x^2} v = 2x e^{-x^2} \quad \Rightarrow \quad (e^{-x^2} v)' = 2xe^{-x^2}.
\]

\[
e^{-x^2} v = \int 2xe^{-x^2} \, dx + c \quad \Rightarrow \quad e^{-x^2} v = -e^{-x^2} + c.
\]

We conclude that \(v = c e^{x^2} - 1 \). The initial condition for \(y \) implies the initial condition for \(v \), that is, \(v(x) = \sqrt{y(x)} \) implies \(v(0) = 2 \).

\[
2 = v(0) = c - 1 \quad \Rightarrow \quad c = 3 \quad \Rightarrow \quad v(x) = 3e^{x^2} - 1.
\]
Review 2 for Exam 1.

Example
Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: Recall: \(v' - 2xv = 2x \) and \(\mu(x) = e^{-x^2} \).

\[
e^{-x^2} v' - 2xe^{-x^2} v = 2x e^{-x^2} \quad \Rightarrow \quad (e^{-x^2} v)' = 2xe^{-x^2}.
\]

\[
e^{-x^2} v = \int 2xe^{-x^2} \, dx + c \quad \Rightarrow \quad e^{-x^2} v = -e^{-x^2} + c.
\]

We conclude that \(v = c e^{x^2} - 1 \). The initial condition for \(y \) implies the initial condition for \(v \), that is, \(v(x) = \sqrt{y(x)} \) implies \(v(0) = 2 \).

\[
2 = v(0) = c - 1 \quad \Rightarrow \quad c = 3 \quad \Rightarrow \quad v(x) = 3e^{x^2} - 1.
\]

We finally find \(y = v^2 \),
Example

Find every solution of the initial value problem

\[y' = 4x(y + \sqrt{y}), \quad y(0) = 4. \]

Solution: Recall: \(v' - 2xv = 2x \) and \(\mu(x) = e^{-x^2} \).

\[
e^{-x^2} v' - 2x e^{-x^2} v = 2x e^{-x^2} \quad \Rightarrow \quad (e^{-x^2} v)' = 2x e^{-x^2}.
\]

\[
e^{-x^2} v = \int 2x e^{-x^2} \, dx + c \quad \Rightarrow \quad e^{-x^2} v = -e^{-x^2} + c.
\]

We conclude that \(v = c e^{x^2} - 1 \). The initial condition for \(y \) implies the initial condition for \(v \), that is, \(v(x) = \sqrt{y(x)} \) implies \(v(0) = 2 \).

\[
2 = v(0) = c - 1 \quad \Rightarrow \quad c = 3 \quad \Rightarrow \quad v(x) = 3e^{x^2} - 1.
\]

We finally find \(y = v^2 \), that is, \(y(x) = (3e^{x^2} - 1)^2 \). \(\triangle \)
Example
Find the domain of the function y solution of the IVP

\[\frac{dy}{dt} = -\frac{2t}{y}, \quad y(1) = 2. \]
Example
Find the domain of the function y solution of the IVP

$$y' = -\frac{2t}{y}, \quad y(1) = 2.$$

Solution: We first need to find the solution y.

\[\int y y' dt = \int -\frac{2t}{y} dt + c \]

\[y^2 = -t^2 + c \]

\[y(1) = 2 \]

\[c = 3 \]

\[y(t) = \sqrt{2(3 - t^2)} \]

The domain of the solution y is $D = (-\sqrt{3}, \sqrt{3})$. The points $\pm \sqrt{3}$ do not belong to the domain of y, since y' and the differential equation are not defined there.
Example
Find the domain of the function y solution of the IVP

$$y' = -\frac{2t}{y}, \quad y(1) = 2.$$

Solution: We first need to find the solution y.
The equation is separable.
Review 2 for Exam 1.

Example

Find the domain of the function y solution of the IVP

$$y' = -\frac{2t}{y}, \quad y(1) = 2.$$

Solution: We first need to find the solution y. The equation is separable.

$$y \, y' = -2t$$
Example
Find the domain of the function \(y \) solution of the IVP

\[
y' = -\frac{2t}{y}, \quad y(1) = 2.
\]

Solution: We first need to find the solution \(y \).
The equation is separable.

\[
y y' = -2t \quad \Rightarrow \quad \int y y' \, dt = \int -2t \, dt + c
\]
Example
Find the domain of the function y solution of the IVP

$$y' = -\frac{2t}{y}, \quad y(1) = 2.$$

Solution: We first need to find the solution y. The equation is separable.

$$y \, y' = -2t \quad \Rightarrow \quad \int y \, y' \, dt = \int -2t \, dt + c \quad \Rightarrow \quad \frac{y^2}{2} = -t^2 + c$$
Example

Find the domain of the function y solution of the IVP

$$y' = -\frac{2t}{y}, \quad y(1) = 2.$$

Solution: We first need to find the solution y. The equation is separable.

$$y \ y' = -2t \quad \Rightarrow \quad \int y \ y' \ dt = \int -2t \ dt + c \quad \Rightarrow \quad \frac{y^2}{2} = -t^2 + c$$

$$\frac{4}{2} = \frac{y^2(1)}{2} = -1 + c$$
Review 2 for Exam 1.

Example

Find the domain of the function y solution of the IVP

$$y' = -\frac{2t}{y}, \quad y(1) = 2.$$

Solution: We first need to find the solution y.

The equation is **separable**.

$$yy' = -2t \quad \Rightarrow \quad \int yy' \, dt = \int -2t \, dt + c \quad \Rightarrow \quad \frac{y^2}{2} = -t^2 + c$$

$$\frac{4}{2} = \frac{y^2(1)}{2} = -1 + c \quad \Rightarrow \quad c = 3$$
Example
Find the domain of the function y solution of the IVP

$$y' = -\frac{2t}{y}, \quad y(1) = 2.$$

Solution: We first need to find the solution y.

The equation is separable.

$$y \ y' = -2t \quad \Rightarrow \quad \int y \ y' \ dt = \int -2t \ dt + c \quad \Rightarrow \quad \frac{y^2}{2} = -t^2 + c$$

$$\frac{4}{2} = \frac{y^2(1)}{2} = -1 + c \quad \Rightarrow \quad c = 3 \quad \Rightarrow \quad y(t) = \sqrt{2(3 - t^2)}.$$
Review 2 for Exam 1.

Example
Find the domain of the function \(y \) solution of the IVP

\[y' = -\frac{2t}{y}, \quad y(1) = 2. \]

Solution: We first need to find the solution \(y \).

The equation is separable.

\[y' = -2t \quad \Rightarrow \quad \int y' \, dt = \int -2t \, dt + c \quad \Rightarrow \quad \frac{y^2}{2} = -t^2 + c \]

\[\frac{4}{2} = \frac{y^2(1)}{2} = -1 + c \quad \Rightarrow \quad c = 3 \quad \Rightarrow \quad y(t) = \sqrt{2(3 - t^2)}. \]

The domain of the solution \(y \) is \(D = (-\sqrt{3}, \sqrt{3}) \).
Example
Find the domain of the function \(y \) solution of the IVP
\[
y' = \frac{-2t}{y}, \quad y(1) = 2.
\]

Solution: We first need to find the solution \(y \).
The equation is separable.
\[
y y' = -2t \quad \Rightarrow \quad \int y y' \, dt = \int -2t \, dt + c \quad \Rightarrow \quad \frac{y^2}{2} = -t^2 + c
\]
\[
\frac{4}{2} = \frac{y^2(1)}{2} = -1 + c \quad \Rightarrow \quad c = 3 \quad \Rightarrow \quad y(t) = \sqrt{2(3 - t^2)}.
\]
The domain of the solution \(y \) is \(D = (-\sqrt{3}, \sqrt{3}) \).
The points \(\pm \sqrt{3} \) do not belong to the domain of \(y \), since \(y' \) and the differential equation are not defined there.
\[\triangle\]
Example

Find the domain of the function y solution of the IVP

$$y' = -\frac{2t}{y}, \quad y(t_0) = y_0.$$
Example
Find the domain of the function \(y \) solution of the IVP

\[
y' = -\frac{2t}{y}, \quad y(t_0) = y_0.
\]

Solution: The solution \(y \) is given as above, \(\frac{y^2}{2} = -t^2 + c \).
Example

Find the domain of the function y solution of the IVP

\[y' = -\frac{2t}{y}, \quad y(t_0) = y_0. \]

Solution: The solution y is given as above, $\frac{y^2}{2} = -t^2 + c$. The initial condition implies

\[\frac{y_0^2}{2} = \frac{y^2(t_0)}{2} \]
Example

Find the domain of the function y solution of the IVP

$$y' = - \frac{2t}{y}, \quad y(t_0) = y_0.$$

Solution: The solution y is given as above, $\frac{y^2}{2} = -t^2 + c$. The initial condition implies

$$\frac{y_0^2}{2} = \frac{y^2(t_0)}{2} = -t_0^2 + c.$$
Example
Find the domain of the function \(y \) solution of the IVP

\[y' = -\frac{2t}{y}, \quad y(t_0) = y_0. \]

Solution: The solution \(y \) is given as above, \(\frac{y^2}{2} = -t^2 + c \).

The initial condition implies

\[\frac{y_0^2}{2} = \frac{y^2(t_0)}{2} = -t_0^2 + c \quad \Rightarrow \quad c = \frac{y_0^2}{2} + t_0^2 \]
Example

Find the domain of the function y solution of the IVP

$$y' = -\frac{2t}{y}, \quad y(t_0) = y_0.$$

Solution: The solution y is given as above, $\frac{y^2}{2} = -t^2 + c$.

The initial condition implies

$$\frac{y_0^2}{2} = \frac{y^2(t_0)}{2} = -t_0^2 + c \quad \Rightarrow \quad c = \frac{y_0^2}{2} + t_0^2 \quad \Rightarrow \quad \frac{y^2}{2} = -t^2 + t_0^2 + \frac{y_0^2}{2}.$$
Example
Find the domain of the function y solution of the IVP

$$y' = -\frac{2t}{y}, \quad y(t_0) = y_0.$$

Solution: The solution y is given as above, $\frac{y^2}{2} = -t^2 + c$. The initial condition implies

$$\frac{y_0^2}{2} = \frac{y^2(t_0)}{2} = -t_0^2 + c \Rightarrow c = \frac{y_0^2}{2} + t_0^2 \Rightarrow \frac{y^2}{2} = -t^2 + t_0^2 + \frac{y_0^2}{2}.$$

The solution to the IVP is $y(t) = \sqrt{2(t_0^2 - t^2)} + y_0^2.$
Example
Find the domain of the function \(y \) solution of the IVP

\[
y' = -\frac{2t}{y}, \quad y(t_0) = y_0.
\]

Solution: The solution \(y \) is given as above, \(\frac{y^2}{2} = -t^2 + c \).

The initial condition implies

\[
\frac{y_0^2}{2} = \frac{y^2(t_0)}{2} = -t_0^2 + c \quad \Rightarrow \quad c = \frac{y_0^2}{2} + t_0^2 \quad \Rightarrow \quad \frac{y^2}{2} = -t^2 + t_0^2 + \frac{y_0^2}{2}.
\]

The solution to the IVP is \(y(t) = \sqrt{2(t_0^2 - t^2) + y_0^2} \).

The domain of the solution depends on the initial condition \(t_0, y_0 \):

\[
D = \left(-\sqrt{t_0^2 + y_0^2}, +\sqrt{t_0^2 + y_0^2}\right).
\]
Example
Find the domain of the function y solution of the IVP

$$y' = -\frac{2t}{y}, \quad y(t_0) = y_0.$$

Solution: The solution y is given as above, $\frac{y^2}{2} = -t^2 + c$.
The initial condition implies

$$\frac{y_0^2}{2} = \frac{y^2(t_0)}{2} = -t_0^2 + c \quad \Rightarrow \quad c = \frac{y_0^2}{2} + t_0^2 \quad \Rightarrow \quad \frac{y^2}{2} = -t^2 + t_0^2 + \frac{y_0^2}{2}. $$

The solution to the IVP is $y(t) = \sqrt{2(t_0^2 - t^2) + y_0^2}$.

The domain of the solution depends on the initial condition t_0, y_0:

$$D = \left(-\sqrt{t_0^2 + \frac{y_0^2}{2}}, +\sqrt{t_0^2 + \frac{y_0^2}{2}} \right).$$
Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.
Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: The equation is not linear,
Example

Find every solution \(y \) to the equation \(y' = -\frac{2x + 3y}{3x + 4y} \).

Solution: The equation is not linear, not Bernoulli,
Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: The equation is not linear, not Bernoulli, not separable.
Review 2 for Exam 1.

Example
Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by $(1/x)$.)

\[
\frac{2x + 3y}{3x + 4y} = \frac{\frac{2}{x} + \frac{3y}{x}}{\frac{3x}{x} + \frac{4y}{x}}.
\]

Is it exact?

\[
(3x + 4y) y' + (2x + 3y) = 0 \implies \frac{\partial}{\partial x} N = \frac{\partial}{\partial y} M.
\]

So the equation is exact.

We choose here the exact equation method.

(Finding the potential function is sometimes simpler that solving homogeneous Eqs.)

We need to find the potential function ψ:

\[
\frac{\partial}{\partial y} \psi = N \implies \psi = 3xy + 2y^2 + g(x).
\]

\[
\frac{\partial}{\partial x} \psi = M \implies 3y + g'(x) = 2x + 3y \implies g'(x) = x^2.
\]

We conclude:

\[
\psi(x, y) = 3xy + 2y^2 + x^2,
\]

\[
\psi(x, y(x)) = c.
\]
Example

Find every solution y to the equation $y' = \frac{-2x + 3y}{3x + 4y}$.

Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by $(1/x)$.)

Is it exact? $(3x + 4y) y' + (2x + 3y) = 0$ implies $\partial_x N = 3 = \partial_y M$.

So the equation is exact.
Review 2 for Exam 1.

Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by $(1/x)$.)

Is it exact? $(3x + 4y) y' + (2x + 3y) = 0$ implies $\partial_x N = 3 = \partial_y M$. So the equation is exact.

We choose here the exact equation method.
Example
Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by $(1/x)$.)

Is it exact? $(3x + 4y) y' + (2x + 3y) = 0$ implies $\partial_x N = 3 = \partial_y M$.

So the equation is exact.

We choose here the exact equation method. (Finding the potential function is sometimes simpler that solving homogeneous Eqs.)
Review 2 for Exam 1.

Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: The equation is not linear, not Bernoulli, not separable. **It is homogeneous.** (Multiply numerator and denominator on the right hand side by $(1/x)$.)

Is it exact? $(3x + 4y) y' + (2x + 3y) = 0$ implies $\partial_x N = 3 = \partial_y M$. So the equation is exact.

We choose here the exact equation method. (Finding the potential function is sometimes simpler that solving homogeneous Eqs.)

We need to find the potential function ψ:
Review 2 for Exam 1.

Example

Find every solution \(y \) to the equation \(y' = -\frac{2x + 3y}{3x + 4y} \).

Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by \((1/x)\).)

Is it exact? \((3x + 4y)y' + (2x + 3y) = 0\) implies \(\partial_x N = 3 = \partial_y M\). So the equation is exact.

We choose here the exact equation method. (Finding the potential function is sometimes simpler that solving homogeneous Eqs.)

We need to find the potential function \(\psi \):

\[
\partial_y \psi = N
\]
Review 2 for Exam 1.

Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by $(1/x)$.)

Is it exact? $(3x + 4y)y' + (2x + 3y) = 0$ implies $\partial_x N = 3 = \partial_y M$.
So the equation is exact.

We choose here the exact equation method. (Finding the potential function is sometimes simpler that solving homogeneous Eqs.)

We need to find the potential function ψ:

$$\partial_y \psi = N \quad \Rightarrow \quad \psi = 3xy + 2y^2 + g(x).$$
Example

Find every solution y to the equation \(y' = -\frac{2x + 3y}{3x + 4y} \).

Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by \((1/x)\).)

Is it exact? \((3x + 4y)y' + (2x + 3y) = 0\) implies \(\partial_x N = 3 = \partial_y M\). So the equation is exact.

We choose here the exact equation method. (Finding the potential function is sometimes simpler that solving homogeneous Eqs.)

We need to find the potential function ψ:

\[
\partial_y \psi = N \quad \Rightarrow \quad \psi = 3xy + 2y^2 + g(x).
\]

\[
\partial_x \psi = M
\]
Example

Find every solution \(y \) to the equation \(y' = -\frac{2x + 3y}{3x + 4y} \).

Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by \(1/x \).)

Is it exact? \((3x + 4y)y' + (2x + 3y) = 0 \) implies \(\partial_x N = 3 = \partial_y M \).

So the equation is exact.

We choose here the exact equation method. (Finding the potential function is sometimes simpler that solving homogeneous Eqs.)

We need to find the potential function \(\psi \):

\[
\partial_y \psi = N \quad \Rightarrow \quad \psi = 3xy + 2y^2 + g(x).
\]

\[
\partial_x \psi = M \quad \Rightarrow \quad 3y + g'(x) = 2x + 3y
\]
Example

Find every solution \(y \) to the equation \(y' = -\frac{2x + 3y}{3x + 4y} \).

Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by \(\frac{1}{x} \).)

Is it exact? \((3x + 4y)y' + (2x + 3y) = 0\) implies \(\partial_x N = 3 = \partial_y M \).

So the equation is exact.

We choose here the exact equation method. (Finding the potential function is sometimes simpler that solving homogeneous Eqs.)

We need to find the potential function \(\psi \):

\[
\partial_y \psi = N \quad \Rightarrow \quad \psi = 3xy + 2y^2 + g(x).
\]

\[
\partial_x \psi = M \quad \Rightarrow \quad 3y + g'(x) = 2x + 3y \quad \Rightarrow \quad g(x) = x^2.
\]
Review 2 for Exam 1.

Example
Find every solution \(y \) to the equation \(y' = -\frac{2x + 3y}{3x + 4y} \).

Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by \(\frac{1}{x} \).)

Is it exact? \((3x + 4y)y' + (2x + 3y) = 0\) implies \(\partial_x N = 3 = \partial_y M \). So the equation is exact.

We choose here the exact equation method. (Finding the potential function is sometimes simpler that solving homogeneous Eqs.)

We need to find the potential function \(\psi \):

\[
\partial_y \psi = N \quad \Rightarrow \quad \psi = 3xy + 2y^2 + g(x).
\]

\[
\partial_x \psi = M \quad \Rightarrow \quad 3y + g'(x) = 2x + 3y \quad \Rightarrow \quad g(x) = x^2.
\]

We conclude: \(\psi(x, y) = 3xy + 2y^2 + x^2 \).
Review 2 for Exam 1.

Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by $1/x$.) Is it exact? $(3x + 4y)y' + (2x + 3y) = 0$ implies $\partial_x N = 3 = \partial_y M$. So the equation is exact.

We choose here the exact equation method. (Finding the potential function is sometimes simpler that solving homogeneous Eqs.)

We need to find the potential function ψ:

$$\partial_y \psi = N \quad \Rightarrow \quad \psi = 3xy + 2y^2 + g(x).$$

$$\partial_x \psi = M \quad \Rightarrow \quad 3y + g'(x) = 2x + 3y \quad \Rightarrow \quad g(x) = x^2.$$

We conclude: $\psi(x, y) = 3xy + 2y^2 + x^2$, and $\psi(x, y(x)) = c$. \(\triangleleft\)
Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.
Example
Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: If we solve the problem using that the equation is homogeneous, it is more complicated than the previous calculation.
Example

Find every solution \(y \) to the equation \(y' = -\frac{2x + 3y}{3x + 4y} \).

Solution: If we solve the problem using that the equation is homogeneous, it is more complicated than the previous calculation. We just start the calculation to see the difficulty:
Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: If we solve the problem using that the equation is homogeneous, it is more complicated than the previous calculation. We just start the calculation to see the difficulty:

\[
y' = -\left(\frac{2x + 3y}{3x + 4y}\right) \left(\frac{1}{x}\right) \left(\frac{1}{x}\right)
\]
Review 2 for Exam 1.

Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: If we solve the problem using that the equation is homogeneous, it is more complicated than the previous calculation. We just start the calculation to see the difficulty:

$$y' = -\frac{(2x + 3y)}{(3x + 4y)} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} = -\frac{2 + 3\left(\frac{y}{x}\right)}{3 + 4\left(\frac{y}{x}\right)}.$$
Review 2 for Exam 1.

Example

Find every solution \(y \) to the equation \(y' = -\frac{2x + 3y}{3x + 4y} \).

Solution: If we solve the problem using that the equation is homogeneous, it is more complicated than the previous calculation. We just start the calculation to see the difficulty:

\[
y' = -\frac{(2x + 3y)}{(3x + 4y)} \left(\frac{1}{x}\right) = -\frac{2 + 3\left(\frac{y}{x}\right)}{3 + 4\left(\frac{y}{x}\right)}.
\]

The change \(v = y/x \) implies \(y = xv \) and \(y' = v + xv' \).
Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: If we solve the problem using that the equation is homogeneous, it is more complicated than the previous calculation. We just start the calculation to see the difficulty:

$$y' = -\left(\frac{2x + 3y}{3x + 4y}\right) \left(\frac{1}{x}\right) = -\frac{2 + 3\left(\frac{y}{x}\right)}{3 + 4\left(\frac{y}{x}\right)}.$$

The change $v = y/x$ implies $y = xv$ and $y' = v + xv'$. Hence

$$v + xv' = \frac{2 + 3v}{3 + 4v}.$$
Review 2 for Exam 1.

Example

Find every solution \(y \) to the equation \(y' = -\frac{2x + 3y}{3x + 4y} \).

Solution: If we solve the problem using that the equation is homogeneous, it is more complicated than the previous calculation. We just start the calculation to see the difficulty:

\[
y' = - \frac{(2x + 3y)}{(3x + 4y)} \left(\frac{1}{x} \right) = - \frac{2 + 3 \left(\frac{y}{x} \right)}{3 + 4 \left(\frac{y}{x} \right)}.
\]

The change \(v = y/x \) implies \(y = xv \) and \(y' = v + x \cdot v' \). Hence

\[
v + x \cdot v' = \frac{2 + 3v}{3 + 4v} \quad \Rightarrow \quad x \cdot v' = \frac{2 + 3v}{3 + 4v} - v
\]
Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: If we solve the problem using that the equation is homogeneous, it is more complicated than the previous calculation. We just start the calculation to see the difficulty:

$$y' = -\frac{(2x + 3y)}{(3x + 4y)} \left(\frac{1}{x}\right) = -\frac{2 + 3\left(\frac{y}{x}\right)}{3 + 4\left(\frac{y}{x}\right)}.$$

The change $v = y/x$ implies $y = xv$ and $y' = v + x v'$. Hence

$$v + x v' = \frac{2 + 3v}{3 + 4v} \quad \Rightarrow \quad x v' = \frac{2 + 3v}{3 + 4v} - v = \frac{2 + 3v - 3v + 4v^2}{3 + 4v}.$$
Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: If we solve the problem using that the equation is homogeneous, it is more complicated than the previous calculation. We just start the calculation to see the difficulty:

$$y' = -\frac{(2x + 3y)}{(3x + 4y)} \left(\frac{1}{x}\right) = -\frac{2 + 3\left(\frac{y}{x}\right)}{3 + 4\left(\frac{y}{x}\right)}.$$

The change $v = y/x$ implies $y = xv$ and $y' = v + xv'$. Hence

$$v + xv' = \frac{2 + 3v}{3 + 4v} \quad \Rightarrow \quad xv' = \frac{2 + 3v}{3 + 4v} - v = \frac{2 + 3v - 3v + 4v^2}{3 + 4v}.$$

We conclude that v satisfies $\frac{3 + 4v}{2 - 4v^2} v' = \frac{1}{x}$.

Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: Recall: \[
\frac{3 + 4v}{2 - 4v^2} v' = \frac{1}{x}.
\]
Review 2 for Exam 1.

Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: Recall: $\frac{3 + 4v}{2 - 4v^2} v' = \frac{1}{x}$.

This equation is complicated to integrate.

$$\int \frac{3 v'}{2 - 4v^2} \, dx + \int \frac{4v v'}{2 - 4v^2} \, dx = \int \frac{1}{x} \, dx + c$$
Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: Recall: $\frac{3 + 4v}{2 - 4v^2} v' = \frac{1}{x}$.

This equation is complicated to integrate.

$$\int \frac{3 v'}{2 - 4v^2} \, dx + \int \frac{4v v'}{2 - 4v^2} \, dx = \int \frac{1}{x} \, dx + c = \ln(x) + c.$$
Example

Find every solution \(y \) to the equation \(y' = -\frac{2x + 3y}{3x + 4y} \).

Solution: Recall: \(\frac{3 + 4v}{2 - 4v^2} v' = \frac{1}{x} \).

This equation is complicated to integrate.

\[
\int \frac{3 v'}{2 - 4v^2} \, dx + \int \frac{4v v'}{2 - 4v^2} \, dx = \int \frac{1}{x} \, dx + c = \ln(x) + c.
\]

The usual substitution \(u = v(x) \) implies \(du = v' \, dx \),
Review 2 for Exam 1.

Example

Find every solution \(y \) to the equation \(y' = -\frac{2x + 3y}{3x + 4y} \).

Solution: Recall: \(\frac{3 + 4v}{2 - 4v^2} \frac{v'}{v^2} = \frac{1}{x} \).

This equation is complicated to integrate.

\[
\int \frac{3 v'}{2 - 4v^2} \, dx + \int \frac{4v v'}{2 - 4v^2} \, dx = \int \frac{1}{x} \, dx + c = \ln(x) + c.
\]

The usual substitution \(u = v(x) \) implies \(du = v' \, dx \), so

\[
\int \frac{3 \, du}{2 - 4u^2} + \int \frac{4u \, du}{2 - 4u^2} = \ln(x) + c.
\]
Review 2 for Exam 1.

Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: Recall: $\frac{3 + 4v}{2 - 4v^2} v' = \frac{1}{x}$.

This equation is complicated to integrate.

$$\int \frac{3 v'}{2 - 4v^2} \, dx + \int \frac{4v v'}{2 - 4v^2} \, dx = \int \frac{1}{x} \, dx + c = \ln(x) + c.$$

The usual substitution $u = v(x)$ implies $du = v' \, dx$, so

$$\int \frac{3 \, du}{2 - 4u^2} + \int \frac{4u \, du}{2 - 4u^2} = \ln(x) + c.$$

The first integral on the left-hand side requires integration tables.
Review 2 for Exam 1.

Example

Find every solution \(y \) to the equation \(y' = -\frac{2x + 3y}{3x + 4y} \).

Solution: Recall: \(\frac{3 + 4v}{2 - 4v^2} v' = \frac{1}{x} \).

This equation is complicated to integrate.

\[
\int \frac{3 v'}{2 - 4v^2} \, dx + \int \frac{4v v'}{2 - 4v^2} \, dx = \int \frac{1}{x} \, dx + c = \ln(x) + c.
\]

The usual substitution \(u = v(x) \) implies \(du = v' \, dx \), so

\[
\int \frac{3 \, du}{2 - 4u^2} + \int \frac{4u \, du}{2 - 4u^2} = \ln(x) + c.
\]

The first integral on the left-hand side requires integration tables. This is why the exact method is simpler to use in this case. \(\blacktriangle \)
Second order linear homogeneous ODE (Sect. 3.3).

- Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.
- Characteristic polynomial with complex roots.
 - Two main sets of fundamental solutions.
 - A real-valued fundamental and general solutions.
- Application: The RLC circuit.
Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.

Definition
Any two solutions y_1, y_2 of the homogeneous equation

$$y'' + a_1(t)y' + a_0(t)y = 0,$$

are called *fundamental solutions* iff the functions y_1, y_2 are linearly independent, that is, iff $W_{y_1y_2} \neq 0$.

Remark: Fundamental solutions are not unique.

Definition Given any two fundamental solutions y_1, y_2, and arbitrary constants c_1, c_2, the function

$$y(t) = c_1 y_1(t) + c_2 y_2(t)$$

is called the *general solution* of the differential equation above.
Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.

Definition
Any two solutions y_1, y_2 of the homogeneous equation

$$y'' + a_1(t)y' + a_0(t)y = 0,$$

are called *fundamental solutions* iff the functions y_1, y_2 are linearly independent, that is, iff $W_{y_1y_2} \neq 0$.

Remark: Fundamental solutions are not unique.
Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).

Definition

Any two solutions \(y_1, y_2 \) of the homogeneous equation

\[
y'' + a_1(t) y' + a_0(t) y = 0,
\]

are called *fundamental solutions* iff the functions \(y_1, y_2 \) are linearly independent, that is, iff \(W_{y_1y_2} \neq 0 \).

Remark: Fundamental solutions are not unique.

Definition

Given any two fundamental solutions \(y_1, y_2 \), and arbitrary constants \(c_1, c_2 \), the function

\[
y(t) = c_1 y_1(t) + c_2 y_2(t)
\]

is called the *general solution* of the differential equation above.
Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).

Theorem (Constant coefficients)

Given real constants \(a_1, a_0 \), consider the homogeneous, linear differential equation on the unknown \(y : \mathbb{R} \to \mathbb{R} \) given by

\[
y'' + a_1 y' + a_0 y = 0. \tag{1}
\]

Let \(r_+, r_- \) be the roots of the characteristic polynomial \(p(r) = r^2 + a_1 r + a_0 \), and let \(c_0, c_1 \) be arbitrary constants. Then, any solution of Eq. (1) belongs to only one of the following cases:

(a) If \(r_+ \neq r_- \), the general solution is \(y(t) = c_1 e^{r_+ t} + c_2 e^{r_- t} \).

(b) If \(r_+ = r_- \in \mathbb{R} \), the general solution is \(y(t) = (c_1 + c_2 t) e^{r_+ t} \).

Furthermore, given real constants \(t_0, y_1 \) and \(y_2 \), there is a unique solution to the initial value problem given by Eq. (1) and the initial conditions

\[
y(t_0) = y_1, \quad y'(t_0) = y_2.
\]
Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).

Example

Find the general solution of the equation \(y'' - y' - 6y = 0 \).

Solution:

Since solutions have the form \(e^{rt} \), we need to find the roots of the characteristic polynomial \(p(r) = r^2 - r - 6 \), that is,

\[
 r \pm = \frac{1 \pm \sqrt{1 + 24}}{2} = \frac{1 \pm 5}{2}.
\]

\(r^+ \) and \(r^- \) are real-valued.

A fundamental solution set is formed by \(y_1(t) = e^{3t} \), \(y_2(t) = e^{-2t} \).

The general solution of the differential equations is an arbitrary linear combination of the fundamental solutions, that is, \(y(t) = c_1 e^{3t} + c_2 e^{-2t} \), \(c_1, c_2 \in \mathbb{R} \).

\(\triangleright \)

Remark: Since \(c_1, c_2 \in \mathbb{R} \), then \(y \) is real-valued.
Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).

Example
Find the general solution of the equation \(y'' - y' - 6y = 0 \).

Solution: Since solutions have the form \(e^{rt} \), we need to find the roots of the characteristic polynomial \(p(r) = r^2 - r - 6 \),
Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).

Example
Find the general solution of the equation \(y'' - y' - 6y = 0 \).

Solution: Since solutions have the form \(e^{rt} \), we need to find the roots of the characteristic polynomial \(p(r) = r^2 - r - 6 \), that is,

\[
 r_{\pm} = \frac{1}{2} \left(1 \pm \sqrt{1 + 24} \right)
\]
Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.

Example
Find the general solution of the equation $y'' - y' - 6y = 0$.

Solution: Since solutions have the form e^{rt}, we need to find the roots of the characteristic polynomial $p(r) = r^2 - r - 6$, that is,

$$r_{\pm} = \frac{1}{2} (1 \pm \sqrt{1 + 24}) = \frac{1}{2} (1 \pm 5)$$
Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.

Example
Find the general solution of the equation $y'' - y' - 6y = 0$.

Solution: Since solutions have the form e^{rt}, we need to find the roots of the characteristic polynomial $p(r) = r^2 - r - 6$, that is,

$$
r_{\pm} = \frac{1}{2} (1 \pm \sqrt{1 + 24}) = \frac{1}{2} (1 \pm 5) \quad \Rightarrow \quad r_+ = 3, \quad r_- = -2.
$$
Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).

Example
Find the general solution of the equation \(y'' - y' - 6y = 0 \).

Solution: Since solutions have the form \(e^{rt} \), we need to find the roots of the characteristic polynomial \(p(r) = r^2 - r - 6 \), that is,

\[
r_{\pm} = \frac{1}{2} \left(1 \pm \sqrt{1 + 24} \right) = \frac{1}{2} (1 \pm 5) \quad \Rightarrow \quad r_+ = 3, \quad r_- = -2.
\]

So, \(r_{\pm} \) are real-valued.
Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.

Example
Find the general solution of the equation $y'' - y' - 6y = 0$.

Solution: Since solutions have the form e^{rt}, we need to find the roots of the characteristic polynomial $p(r) = r^2 - r - 6$, that is,

$$r_{\pm} = \frac{1}{2} \left(1 \pm \sqrt{1 + 24} \right) = \frac{1}{2} (1 \pm 5) \quad \Rightarrow \quad r_+ = 3, \quad r_- = -2.$$

So, r_{\pm} are real-valued. A fundamental solution set is formed by

$$y_1(t) = e^{3t}, \quad y_2(t) = e^{-2t}.$$
Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).

Example
Find the general solution of the equation \(y'' - y' - 6y = 0 \).

Solution: Since solutions have the form \(e^{rt} \), we need to find the roots of the characteristic polynomial \(p(r) = r^2 - r - 6 \), that is,

\[
 r_{\pm} = \frac{1}{2} (1 \pm \sqrt{1 + 24}) = \frac{1}{2} (1 \pm 5) \Rightarrow r_+ = 3, \quad r_- = -2.
\]

So, \(r_{\pm} \) are real-valued. A fundamental solution set is formed by

\[
 y_1(t) = e^{3t}, \quad y_2(t) = e^{-2t}.
\]

The general solution of the differential equations is an arbitrary linear combination of the fundamental solutions,
Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).

Example
Find the general solution of the equation \(y'' - y' - 6y = 0 \).

Solution: Since solutions have the form \(e^{rt} \), we need to find the roots of the characteristic polynomial \(p(r) = r^2 - r - 6 \), that is,

\[
r_{\pm} = \frac{1}{2} (1 \pm \sqrt{1 + 24}) = \frac{1}{2} (1 \pm 5) \quad \Rightarrow \quad r_+ = 3, \quad r_- = -2.
\]

So, \(r_{\pm} \) are real-valued. A fundamental solution set is formed by

\[
y_1(t) = e^{3t}, \quad y_2(t) = e^{-2t}.
\]

The general solution of the differential equations is an arbitrary linear combination of the fundamental solutions, that is,

\[
y(t) = c_1 e^{3t} + c_2 e^{-2t}, \quad c_1, c_2 \in \mathbb{R}.
\]
Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).

Example
Find the general solution of the equation \(y'' - y' - 6y = 0 \).

Solution: Since solutions have the form \(e^{rt} \), we need to find the roots of the characteristic polynomial \(p(r) = r^2 - r - 6 \), that is,

\[
\begin{align*}
 r_\pm &= \frac{1}{2} (1 \pm \sqrt{1 + 24}) = \frac{1}{2} (1 \pm 5) \quad \Rightarrow \quad r_+ = 3, \quad r_- = -2.
\end{align*}
\]

So, \(r_\pm \) are real-valued. A fundamental solution set is formed by

\[
 y_1(t) = e^{3t}, \quad y_2(t) = e^{-2t}.
\]

The general solution of the differential equations is an arbitrary linear combination of the fundamental solutions, that is,

\[
 y(t) = c_1 e^{3t} + c_2 e^{-2t}, \quad c_1, c_2 \in \mathbb{R}. \quad \triangleleft
\]

Remark: Since \(c_1, c_2 \in \mathbb{R} \), then \(y \) is real-valued.
Second order linear homogeneous ODE.

- Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).
- Characteristic polynomial with complex roots.
 - Two main sets of fundamental solutions.
 - A real-valued fundamental and general solutions.
- Application: The RLC circuit.
Two main sets of fundamental solutions.

Theorem (Complex roots)

If the constants $a_1, a_0 \in \mathbb{R}$ satisfy that $a_1^2 - 4a_0 < 0$, then the characteristic polynomial $p(r) = r^2 + a_1r + a_0$ of the equation

$$y'' + a_1 y' + a_0 y = 0$$

(2)

has complex roots $r_+ = \alpha + i\beta$ and $r_- = \alpha - i\beta$, where

$$\alpha = -\frac{a_1}{2}, \quad \beta = \frac{1}{2} \sqrt{4a_0 - a_1^2}.$$

Furthermore, a fundamental set of solutions to Eq. (2) is

$$\tilde{y}_1(t) = e^{(\alpha+i\beta)t}, \quad \tilde{y}_2(t) = e^{(\alpha-i\beta)t},$$

while another fundamental set of solutions to Eq. (2) is

$$y_1(t) = e^{\alpha t} \cos(\beta t), \quad y_2(t) = e^{\alpha t} \sin(\beta t).$$
Two main sets of fundamental solutions.

Example
Find the general solution of the equation $y'' - 2y' + 6y = 0$.

Solution:
We first find the roots of the characteristic polynomial,
$r^2 - 2r + 6 = 0
\Rightarrow r = \frac{1 \pm i\sqrt{5}}{2}$.

A fundamental solution set is
$\tilde{y}_1(t) = e^{(1+i \sqrt{5})t}$,
$\tilde{y}_2(t) = e^{(1-i \sqrt{5})t}$.

These are complex-valued functions.

The general solution is
$y(t) = \tilde{c}_1 e^{(1+i \sqrt{5})t} + \tilde{c}_2 e^{(1-i \sqrt{5})t}$,
$\tilde{c}_1, \tilde{c}_2 \in \mathbb{C}$.

\triangle
Two main sets of fundamental solutions.

Example
Find the general solution of the equation \(y'' - 2y' + 6y = 0 \).

Solution: We first find the roots of the characteristic polynomial,

\[
r^2 - 2r + 6 = 0
\]

A fundamental solution set is

\[
\tilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \quad \tilde{y}_2(t) = e^{(1-i\sqrt{5})t}.
\]

These are complex-valued functions. The general solution is

\[
y(t) = \tilde{c}_1 e^{(1+i\sqrt{5})t} + \tilde{c}_2 e^{(1-i\sqrt{5})t}, \quad \tilde{c}_1, \tilde{c}_2 \in \mathbb{C}.
\]

\[
\triangleq
\]
Two main sets of fundamental solutions.

Example
Find the general solution of the equation \(y'' - 2y' + 6y = 0 \).

Solution: We first find the roots of the characteristic polynomial,

\[
r^2 - 2r + 6 = 0 \quad \Rightarrow \quad r = \frac{1}{2} (2 \pm \sqrt{4 - 24})
\]
Two main sets of fundamental solutions.

Example
Find the general solution of the equation \(y'' - 2y' + 6y = 0 \).

Solution: We first find the roots of the characteristic polynomial,

\[
r^2 - 2r + 6 = 0 \quad \Rightarrow \quad r_{\pm} = \frac{1}{2}(2 \pm \sqrt{4 - 24}) \quad \Rightarrow \quad r_{\pm} = 1 \pm i\sqrt{5}.
\]
Two main sets of fundamental solutions.

Example
Find the general solution of the equation $y'' - 2y' + 6y = 0$.

Solution: We first find the roots of the characteristic polynomial,

$$r^2 - 2r + 6 = 0 \quad \Rightarrow \quad r_{\pm} = \frac{1}{2} \left(2 \pm \sqrt{4 - 24} \right) \quad \Rightarrow \quad r_{\pm} = 1 \pm i\sqrt{5}.$$

A fundamental solution set is

$$\tilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \quad \tilde{y}_2(t) = e^{(1-i\sqrt{5})t}.$$
Two main sets of fundamental solutions.

Example
Find the general solution of the equation \(y'' - 2y' + 6y = 0 \).

Solution: We first find the roots of the characteristic polynomial,

\[
r^2 - 2r + 6 = 0 \implies r_\pm = \frac{1}{2} (2 \pm \sqrt{4 - 24}) \implies r_\pm = 1 \pm i\sqrt{5}.
\]

A fundamental solution set is

\[
\tilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \quad \tilde{y}_2(t) = e^{(1-i\sqrt{5})t}.
\]

These are complex-valued functions.
Two main sets of fundamental solutions.

Example
Find the general solution of the equation \(y'' - 2y' + 6y = 0 \).

Solution: We first find the roots of the characteristic polynomial,
\[
r^2 - 2r + 6 = 0 \quad \Rightarrow \quad r_{\pm} = \frac{1}{2} (2 \pm \sqrt{4 - 24}) \quad \Rightarrow \quad r_{\pm} = 1 \pm i\sqrt{5}.
\]
A fundamental solution set is
\[
\tilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \quad \tilde{y}_2(t) = e^{(1-i\sqrt{5})t}.
\]
These are complex-valued functions. The general solution is
\[
y(t) = \tilde{c}_1 e^{(1+i\sqrt{5})t} + \tilde{c}_2 e^{(1-i\sqrt{5})t}, \quad \tilde{c}_1, \tilde{c}_2 \in \mathbb{C}.
\]
Two main sets of fundamental solutions.

Remark:

- The solutions found above include real-valued and complex-valued solutions.
Two main sets of fundamental solutions.

Remark:

- The solutions found above include real-valued and complex-valued solutions.
- Since the differential equation is real-valued, it is usually important in applications to obtain the most general real-valued solution. (See RLC circuit below.)
Two main sets of fundamental solutions.

Remark:

- The solutions found above include real-valued and complex-valued solutions.
- Since the differential equation is real-valued, it is usually important in applications to obtain the most general real-valued solution. (See RLC circuit below.)
- In the expression above it is difficult to take apart real-valued solutions from complex-valued solutions.
Two main sets of fundamental solutions.

Remark:

- The solutions found above include real-valued and complex-valued solutions.
- Since the differential equation is real-valued, it is usually important in applications to obtain the most general real-valued solution. (See RLC circuit below.)
- In the expression above it is difficult to take apart real-valued solutions from complex-valued solutions.
- In other words: It is not simple to see what values of \tilde{c}_1 and \tilde{c}_2 make the general solution above to be real-valued.
Two main sets of fundamental solutions.

Remark:

- The solutions found above include real-valued and complex-valued solutions.
- Since the differential equation is real-valued, it is usually important in applications to obtain the most general real-valued solution. (See RLC circuit below.)
- In the expression above it is difficult to take apart real-valued solutions from complex-valued solutions.
- In other words: It is not simple to see what values of \tilde{c}_1 and \tilde{c}_2 make the general solution above to be real-valued.
- One way to find the real-valued general solution is to find real-valued fundamental solutions.
Second order linear homogeneous ODE.

- Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).
- Characteristic polynomial with complex roots.
 - Two main sets of fundamental solutions.
 - A real-valued fundamental and general solutions.
- Application: The RLC circuit.
A real-valued fundamental and general solutions.

Example
Find the real-valued general solution of the equation
\[y'' - 2y' + 6y = 0. \]
A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

\[y'' - 2y' + 6y = 0. \]

Solution: Recall: \(y(t) = \tilde{c}_1 e^{(1+i\sqrt{5})t} + \tilde{c}_2 e^{(1-i\sqrt{5})t}, \tilde{c}_1, \tilde{c}_2 \in \mathbb{C}. \)
A real-valued fundamental and general solutions.

Example
Find the real-valued general solution of the equation
\[y'' - 2y' + 6y = 0. \]

Solution: Recall: \(y(t) = \tilde{c}_1 e^{(1+i\sqrt{5})t} + \tilde{c}_2 e^{(1-i\sqrt{5})t}, \tilde{c}_1, \tilde{c}_2 \in \mathbb{C}. \)

The Theorem above says that a real-valued fundamental set is
\[y_1(t) = e^t \cos(\sqrt{5} \ t), \quad y_2(t) = e^t \sin(\sqrt{5} \ t). \]
A real-valued fundamental and general solutions.

Example
Find the real-valued general solution of the equation

$$y'' - 2y' + 6y = 0.$$

Solution: Recall: \(y(t) = \tilde{c}_1 e^{(1+i\sqrt{5})t} + \tilde{c}_2 e^{(1-i\sqrt{5})t} \), \(\tilde{c}_1, \tilde{c}_2 \in \mathbb{C} \).

The Theorem above says that a real-valued fundamental set is

\[y_1(t) = e^t \cos(\sqrt{5} t), \quad y_2(t) = e^t \sin(\sqrt{5} t). \]

Hence, the complex-valued general solution can also be written as

\[y(t) = \left[c_1 \cos(\sqrt{5} t) + c_2 \sin(\sqrt{5} t) \right] e^t, \quad c_1, c_2 \in \mathbb{C}. \]
A real-valued fundamental and general solutions.

Example
Find the real-valued general solution of the equation
\[y'' - 2y' + 6y = 0. \]

Solution: Recall: \(y(t) = \tilde{c}_1 e^{(1+i\sqrt{5})t} + \tilde{c}_2 e^{(1-i\sqrt{5})t}, \tilde{c}_1, \tilde{c}_2 \in \mathbb{C}. \)

The Theorem above says that a real-valued fundamental set is
\[y_1(t) = e^t \cos(\sqrt{5}t), \quad y_2(t) = e^t \sin(\sqrt{5}t). \]

Hence, the complex-valued general solution can also be written as
\[y(t) = [c_1 \cos(\sqrt{5}t) + c_2 \sin(\sqrt{5}t)] e^t, \quad c_1, c_2 \in \mathbb{C}. \]

The real-valued general solution is simple to obtain:
\[y(t) = [c_1 \cos(\sqrt{5}t) + c_2 \sin(\sqrt{5}t)] e^t, \quad c_1, c_2 \in \mathbb{R}. \]
A real-valued fundamental and general solutions.

Example
Find the real-valued general solution of the equation
\[y'' - 2y' + 6y = 0. \]

Solution: Recall: \(y(t) = \tilde{c}_1 e^{(1+i\sqrt{5})t} + \tilde{c}_2 e^{(1-i\sqrt{5})t}, \tilde{c}_1, \tilde{c}_2 \in \mathbb{C}. \)

The Theorem above says that a real-valued fundamental set is
\[y_1(t) = e^t \cos(\sqrt{5} t), \quad y_2(t) = e^t \sin(\sqrt{5} t). \]

Hence, the complex-valued general solution can also be written as
\[y(t) = [c_1 \cos(\sqrt{5} t) + c_2 \sin(\sqrt{5} t)] e^t, \quad c_1, c_2 \in \mathbb{C}. \]

The real-valued general solution is simple to obtain:
\[y(t) = [c_1 \cos(\sqrt{5} t) + c_2 \sin(\sqrt{5} t)] e^t, \quad c_1, c_2 \in \mathbb{R}. \]

We just restricted the coefficients \(c_1, c_2 \) to be real-valued. \(\triangleq \)
A real-valued fundamental and general solutions.

Example
Show that $y_1(t) = e^t \cos(\sqrt{5} t)$ and $y_2(t) = e^t \sin(\sqrt{5} t)$ are fundamental solutions to the equation $y'' - 2y' + 6y = 0$.
A real-valued fundamental and general solutions.

Example
Show that \(y_1(t) = e^t \cos(\sqrt{5} \, t) \) and \(y_2(t) = e^t \sin(\sqrt{5} \, t) \) are fundamental solutions to the equation \(y'' - 2y' + 6y = 0 \).

Solution: We start with the complex-valued fundamental solutions,

\[
\tilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \quad \tilde{y}_2(t) = e^{(1-i\sqrt{5})t}.
\]
A real-valued fundamental and general solutions.

Example
Show that \(y_1(t) = e^t \cos(\sqrt{5} t) \) and \(y_2(t) = e^t \sin(\sqrt{5} t) \) are fundamental solutions to the equation \(y'' - 2y' + 6y = 0 \).

Solution: We start with the complex-valued fundamental solutions,

\[
\tilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \quad \tilde{y}_2(t) = e^{(1-i\sqrt{5})t}.
\]

Any linear combination of these functions is solution of the differential equation.
A real-valued fundamental and general solutions.

Example
Show that \(y_1(t) = e^t \cos(\sqrt{5}t) \) and \(y_2(t) = e^t \sin(\sqrt{5}t) \) are fundamental solutions to the equation \(y'' - 2y' + 6y = 0 \).

Solution: We start with the complex-valued fundamental solutions,
\[
\tilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \quad \tilde{y}_2(t) = e^{(1-i\sqrt{5})t}.
\]

Any linear combination of these functions is solution of the differential equation. In particular,
\[
y_1(t) = \frac{1}{2} [\tilde{y}_1(t) + \tilde{y}_2(t)], \quad y_2(t) = \frac{1}{2i} [\tilde{y}_1(t) - \tilde{y}_2(t)].
\]
A real-valued fundamental and general solutions.

Example
Show that \(y_1(t) = e^t \cos(\sqrt{5} t) \) and \(y_2(t) = e^t \sin(\sqrt{5} t) \) are fundamental solutions to the equation \(y'' - 2y' + 6y = 0 \).

Solution: We start with the complex-valued fundamental solutions,
\[
\tilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \quad \tilde{y}_2(t) = e^{(1-i\sqrt{5})t}.
\]
Any linear combination of these functions is solution of the differential equation. In particular,
\[
y_1(t) = \frac{1}{2} \left[\tilde{y}_1(t) + \tilde{y}_2(t) \right], \quad y_2(t) = \frac{1}{2i} \left[\tilde{y}_1(t) - \tilde{y}_2(t) \right].
\]
Now, recalling \(e^{(1\pm i\sqrt{5})t} = e^t e^{\pm i\sqrt{5}t} \)
A real-valued fundamental and general solutions.

Example
Show that $y_1(t) = e^t \cos(\sqrt{5} \, t)$ and $y_2(t) = e^t \sin(\sqrt{5} \, t)$ are fundamental solutions to the equation $y'' - 2y' + 6y = 0$.

Solution: We start with the complex-valued fundamental solutions,

$$\tilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \quad \tilde{y}_2(t) = e^{(1-i\sqrt{5})t}.$$

Any linear combination of these functions is solution of the differential equation. In particular,

$$y_1(t) = \frac{1}{2} [\tilde{y}_1(t) + \tilde{y}_2(t)], \quad y_2(t) = \frac{1}{2i} [\tilde{y}_1(t) - \tilde{y}_2(t)].$$

Now, recalling $e^{(1\pm i\sqrt{5})t} = e^t e^{\pm i\sqrt{5} \, t}$

$$y_1(t) = \frac{1}{2} [e^t e^{i\sqrt{5}t} + e^t e^{-i\sqrt{5}t}], \quad y_2(t) = \frac{1}{2i} [e^t e^{i\sqrt{5}t} - e^t e^{-i\sqrt{5}t}],$$
A real-valued fundamental and general solutions.

Example
Show that $y_1(t) = e^t \cos(\sqrt{5} t)$ and $y_2(t) = e^t \sin(\sqrt{5} t)$ are fundamental solutions to the equation $y'' - 2y' + 6y = 0$.

Solution: $y_1 = \frac{e^t}{2} [e^{i\sqrt{5}t} + e^{-i\sqrt{5}t}]$, $y_2 = \frac{e^t}{2i} [e^{i\sqrt{5}t} - e^{-i\sqrt{5}t}]$.
A real-valued fundamental and general solutions.

Example

Show that $y_1(t) = e^t \cos(\sqrt{5} t)$ and $y_2(t) = e^t \sin(\sqrt{5} t)$ are fundamental solutions to the equation $y'' - 2y' + 6y = 0$.

Solution: $y_1 = \frac{e^t}{2} [e^{i\sqrt{5}t} + e^{-i\sqrt{5}t}]$, $y_2 = \frac{e^t}{2i} [e^{i\sqrt{5}t} - e^{-i\sqrt{5}t}]$.

The Euler formula and its complex-conjugate formula

$$e^{i\sqrt{5}t} = \left[\cos(\sqrt{5} t) + i \sin(\sqrt{5} t) \right],$$
A real-valued fundamental and general solutions.

Example
Show that \(y_1(t) = e^t \cos(\sqrt{5} t) \) and \(y_2(t) = e^t \sin(\sqrt{5} t) \) are fundamental solutions to the equation \(y'' - 2y' + 6y = 0 \).

Solution: \(y_1 = \frac{e^t}{2} [e^{i\sqrt{5}t} + e^{-i\sqrt{5}t}] \), \(y_2 = \frac{e^t}{2i} [e^{i\sqrt{5}t} - e^{-i\sqrt{5}t}] \).

The Euler formula and its complex-conjugate formula

\[e^{i\sqrt{5}t} = [\cos(\sqrt{5} t) + i \sin(\sqrt{5} t)] , \]

\[e^{-i\sqrt{5}t} = [\cos(\sqrt{5} t) - i \sin(\sqrt{5} t)] , \]
A real-valued fundamental and general solutions.

Example
Show that $y_1(t) = e^t \cos(\sqrt{5} t)$ and $y_2(t) = e^t \sin(\sqrt{5} t)$ are fundamental solutions to the equation $y'' - 2y' + 6y = 0$.

Solution: $y_1 = \frac{e^t}{2} [e^{i\sqrt{5}t} + e^{-i\sqrt{5}t}]$, $y_2 = \frac{e^t}{2i} [e^{i\sqrt{5}t} - e^{-i\sqrt{5}t}]$.

The Euler formula and its complex-conjugate formula
$$e^{i\sqrt{5}t} = [\cos(\sqrt{5} t) + i \sin(\sqrt{5} t)],$$
$$e^{-i\sqrt{5}t} = [\cos(\sqrt{5} t) - i \sin(\sqrt{5} t)],$$
imply the inverse relations
$$e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} = 2 \cos(\sqrt{5}t),$$
A real-valued fundamental and general solutions.

Example
Show that $y_1(t) = e^t \cos(\sqrt{5} t)$ and $y_2(t) = e^t \sin(\sqrt{5} t)$ are fundamental solutions to the equation $y'' - 2y' + 6y = 0$.

Solution: $y_1 = \frac{e^t}{2} [e^{i\sqrt{5}t} + e^{-i\sqrt{5}t}]$, $y_2 = \frac{e^t}{2i} [e^{i\sqrt{5}t} - e^{-i\sqrt{5}t}]$.

The Euler formula and its complex-conjugate formula

$$e^{i\sqrt{5}t} = [\cos(\sqrt{5} t) + i \sin(\sqrt{5} t)],$$

$$e^{-i\sqrt{5}t} = [\cos(\sqrt{5} t) - i \sin(\sqrt{5} t)],$$

imply the inverse relations

$$e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} = 2 \cos(\sqrt{5}t), \quad e^{i\sqrt{5}t} - e^{-i\sqrt{5}t} = 2i \sin(\sqrt{5}t).$$
A real-valued fundamental and general solutions.

Example

Show that \(y_1(t) = e^t \cos(\sqrt{5} \, t) \) and \(y_2(t) = e^t \sin(\sqrt{5} \, t) \) are fundamental solutions to the equation \(y'' - 2y' + 6y = 0 \).

Solution: \(y_1 = \frac{e^t}{2} [e^{i\sqrt{5}t} + e^{-i\sqrt{5}t}] \), \(y_2 = \frac{e^t}{2i} [e^{i\sqrt{5}t} - e^{-i\sqrt{5}t}] \).

The Euler formula and its complex-conjugate formula

\[
e^{i\sqrt{5}t} = [\cos(\sqrt{5} \, t) + i \sin(\sqrt{5} \, t)],
\]

\[
e^{-i\sqrt{5}t} = [\cos(\sqrt{5} \, t) - i \sin(\sqrt{5} \, t)],
\]

imply the inverse relations

\[
e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} = 2 \cos(\sqrt{5} \, t),
\]

\[
e^{i\sqrt{5}t} - e^{-i\sqrt{5}t} = 2i \sin(\sqrt{5} \, t).
\]

So functions \(y_1 \) and \(y_2 \) can be written as

\[
y_1(t) = e^t \cos(\sqrt{5} \, t),
\]
Example

Show that \(y_1(t) = e^t \cos(\sqrt{5} t) \) and \(y_2(t) = e^t \sin(\sqrt{5} t) \) are fundamental solutions to the equation \(y'' - 2y' + 6y = 0 \).

Solution: \(y_1 = \frac{e^t}{2} [e^{i\sqrt{5}t} + e^{-i\sqrt{5}t}] \), \(y_2 = \frac{e^t}{2i} [e^{i\sqrt{5}t} - e^{-i\sqrt{5}t}] \).

The Euler formula and its complex-conjugate formula

\[e^{i\sqrt{5}t} = [\cos(\sqrt{5} t) + i \sin(\sqrt{5} t)] , \]

\[e^{-i\sqrt{5}t} = [\cos(\sqrt{5} t) - i \sin(\sqrt{5} t)] , \]

imply the inverse relations

\[e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} = 2 \cos(\sqrt{5} t) , \quad e^{i\sqrt{5}t} - e^{-i\sqrt{5}t} = 2i \sin(\sqrt{5} t) . \]

So functions \(y_1 \) and \(y_2 \) can be written as

\[y_1(t) = e^t \cos(\sqrt{5} t) , \quad y_2(t) = e^t \sin(\sqrt{5} t) . \]
Example
Show that \(y_1(t) = e^t \cos(\sqrt{5} t) \) and \(y_2(t) = e^t \sin(\sqrt{5} t) \) are fundamental solutions to the equation \(y'' - 2y' + 6y = 0 \).

Solution: \(y_1(t) = e^t \cos(\sqrt{5} t), \ y_2(t) = e^t \sin(\sqrt{5} t) \).
A real-valued fundamental and general solutions.

Example
Show that \(y_1(t) = e^t \cos(\sqrt{5} t) \) and \(y_2(t) = e^t \sin(\sqrt{5} t) \) are fundamental solutions to the equation \(y'' - 2y' + 6y = 0 \).

Solution: \(y_1(t) = e^t \cos(\sqrt{5} t) \), \(y_2(t) = e^t \sin(\sqrt{5} t) \).

Summary:
- These functions are solutions of the differential equation.
Example
Show that $y_1(t) = e^t \cos(\sqrt{5} t)$ and $y_2(t) = e^t \sin(\sqrt{5} t)$ are fundamental solutions to the equation $y'' - 2y' + 6y = 0$.

Solution: $y_1(t) = e^t \cos(\sqrt{5} t)$, $y_2(t) = e^t \sin(\sqrt{5} t)$.

Summary:
- These functions are solutions of the differential equation.
- They are not proportional to each other, Hence li.
A real-valued fundamental and general solutions.

Example
Show that $y_1(t) = e^t \cos(\sqrt{5} \, t)$ and $y_2(t) = e^t \sin(\sqrt{5} \, t)$ are fundamental solutions to the equation $y'' - 2y' + 6y = 0$.

Solution: $y_1(t) = e^t \cos(\sqrt{5} \, t), \; y_2(t) = e^t \sin(\sqrt{5} \, t)$.

Summary:
- These functions are solutions of the differential equation.
- They are not proportional to each other, Hence li.
- Therefore, y_1, y_2 form a fundamental set.
A real-valued fundamental and general solutions.

Example

Show that \(y_1(t) = e^t \cos(\sqrt{5} t) \) and \(y_2(t) = e^t \sin(\sqrt{5} t) \) are fundamental solutions to the equation \(y'' - 2y' + 6y = 0 \).

Solution: \(y_1(t) = e^t \cos(\sqrt{5} t), \ y_2(t) = e^t \sin(\sqrt{5} t) \).

Summary:

- These functions are solutions of the differential equation.
- They are not proportional to each other, Hence li.
- Therefore, \(y_1, y_2 \) form a fundamental set.
- The general solution of the equation is

\[
y(t) = [c_1 \cos(\sqrt{5}t) + c_2 \sin(\sqrt{5}t)] \ e^t.
\]
A real-valued fundamental and general solutions.

Example
Show that $y_1(t) = e^t \cos(\sqrt{5} t)$ and $y_2(t) = e^t \sin(\sqrt{5} t)$ are fundamental solutions to the equation $y'' - 2y' + 6y = 0$.

Solution: $y_1(t) = e^t \cos(\sqrt{5} t), \ y_2(t) = e^t \sin(\sqrt{5} t)$.

Summary:
- These functions are solutions of the differential equation.
- They are not proportional to each other, Hence li.
- Therefore, y_1, y_2 form a fundamental set.
- The general solution of the equation is

$$y(t) = [c_1 \cos(\sqrt{5}t) + c_2 \sin(\sqrt{5}t)] e^t.$$

- y is real-valued for $c_1, c_2 \in \mathbb{R}$.
A real-valued fundamental and general solutions.

Example
Show that $y_1(t) = e^t \cos(\sqrt{5} t)$ and $y_2(t) = e^t \sin(\sqrt{5} t)$ are fundamental solutions to the equation $y'' - 2y' + 6y = 0$.

Solution: $y_1(t) = e^t \cos(\sqrt{5} t), \quad y_2(t) = e^t \sin(\sqrt{5} t)$.

Summary:
- These functions are solutions of the differential equation.
- They are not proportional to each other, Hence li.
- Therefore, y_1, y_2 form a fundamental set.
- The general solution of the equation is
 \[y(t) = [c_1 \cos(\sqrt{5} t) + c_2 \sin(\sqrt{5} t)] e^t. \]
- y is real-valued for $c_1, c_2 \in \mathbb{R}$.
- y is complex-valued for $c_1, c_2 \in \mathbb{C}$.
A real-valued fundamental and general solutions.

Remark:

- The proof of the Theorem follow exactly the same ideas given in the example above.

\[y_1(t) = e^{\alpha t} \cos(\beta t), \quad y_2(t) = e^{\alpha t} \sin(\beta t). \]
A real-valued fundamental and general solutions.

Remark:

- The proof of the Theorem follow exactly the same ideas given in the example above.
- One has to replace the roots of the characteristic polynomial
 \[
 1 + i\sqrt{5} \quad \rightarrow \quad \alpha + i\beta, \quad 1 - i\sqrt{5} \quad \rightarrow \quad \alpha - i\beta.
 \]
A real-valued fundamental and general solutions.

Remark:

- The proof of the Theorem follow exactly the same ideas given in the example above.
- One has to replace the roots of the characteristic polynomial
 \[1 + i\sqrt{5} \rightarrow \alpha + i\beta, \quad 1 - i\sqrt{5} \rightarrow \alpha - i\beta. \]
- The real-valued fundamental solutions are
 \[y_1(t) = e^{\alpha t} \cos(\beta t), \quad y_2(t) = e^{\alpha t} \sin(\beta t). \]
A real-valued fundamental and general solutions.

Example
Find real-valued fundamental solutions to the equation
\[y'' + 2y' + 6y = 0. \]
A real-valued fundamental and general solutions.

Example
Find real-valued fundamental solutions to the equation

\[y'' + 2y' + 6y = 0. \]

Solution:
The roots of the characteristic polynomial \(p(r) = r^2 + 2r + 6 \)
A real-valued fundamental and general solutions.

Example
Find real-valued fundamental solutions to the equation

\[y'' + 2y' + 6y = 0. \]

Solution:
The roots of the characteristic polynomial \(p(r) = r^2 + 2r + 6 \) are

\[r_{\pm} = \frac{1}{2} \left[-2 \pm \sqrt{4 - 24} \right] \]
Example
Find real-valued fundamental solutions to the equation

\[y'' + 2y' + 6y = 0. \]

Solution:
The roots of the characteristic polynomial \(p(r) = r^2 + 2r + 6 \) are

\[r_{\pm} = \frac{1}{2} \left[-2 \pm \sqrt{4 - 24} \right] = \frac{1}{2} \left[-2 \pm \sqrt{-20} \right] \]
A real-valued fundamental and general solutions.

Example
Find real-valued fundamental solutions to the equation

$$y'' + 2y' + 6y = 0.$$

Solution:
The roots of the characteristic polynomial $p(r) = r^2 + 2r + 6$ are

$$r_{\pm} = \frac{1}{2} \left[-2 \pm \sqrt{4 - 24} \right] = \frac{1}{2} \left[-2 \pm \sqrt{-20} \right] \Rightarrow r_{\pm} = -1 \pm i\sqrt{5}.$$
A real-valued fundamental and general solutions.

Example
Find real-valued fundamental solutions to the equation
\[y'' + 2y' + 6y = 0. \]

Solution:
The roots of the characteristic polynomial \(p(r) = r^2 + 2r + 6 \) are
\[
 r_{\pm} = \frac{1}{2} \left[-2 \pm \sqrt{4 - 24} \right] = \frac{1}{2} \left[-2 \pm \sqrt{-20} \right] \Rightarrow r_{\pm} = -1 \pm i\sqrt{5}.
\]
These are complex-valued roots,
A real-valued fundamental and general solutions.

Example
Find real-valued fundamental solutions to the equation

\[y'' + 2 y' + 6 y = 0. \]

Solution:
The roots of the characteristic polynomial \(p(r) = r^2 + 2r + 6 \) are

\[r_{\pm} = \frac{1}{2} \left[-2 \pm \sqrt{4 - 24} \right] = \frac{1}{2} \left[-2 \pm \sqrt{-20} \right] \Rightarrow r_{\pm} = -1 \pm i\sqrt{5}. \]

These are complex-valued roots, with

\[\alpha = -1, \quad \beta = \sqrt{5}. \]
A real-valued fundamental and general solutions.

Example
Find real-valued fundamental solutions to the equation
\[y'' + 2y' + 6y = 0. \]

Solution:
The roots of the characteristic polynomial \(p(r) = r^2 + 2r + 6 \) are
\[r_{\pm} = \frac{1}{2} [-2 \pm \sqrt{4 - 24}] = \frac{1}{2} [-2 \pm \sqrt{-20}] \Rightarrow r_{\pm} = -1 \pm i\sqrt{5}. \]

These are complex-valued roots, with
\[\alpha = -1, \quad \beta = \sqrt{5}. \]

Real-valued fundamental solutions are
\[y_1(t) = e^{-t} \cos(\sqrt{5} t), \quad y_2(t) = e^{-t} \sin(\sqrt{5} t). \]
A real-valued fundamental and general solutions.

Example
Find real-valued fundamental solutions to the equation
\[y'' + 2y' + 6y = 0. \]
Solution: \(y_1(t) = e^{-t} \cos(\sqrt{5}t), \ y_2(t) = e^{-t} \sin(\sqrt{5}t). \)

Differential equations like the one in this example describe physical processes related to damped oscillations. For example pendulums with friction.
A real-valued fundamental and general solutions.

Example
Find the real-valued general solution of \(y'' + 5y = 0 \).

\[
\text{Solution: The characteristic polynomial is } p(r) = r^2 + 5.
\]

Its roots are \(r = \pm \sqrt{5}i \). This is the case \(\alpha = 0 \), and \(\beta = \sqrt{5} \).

Real-valued fundamental solutions are \(y_1(t) = \cos(\sqrt{5}t) \), \(y_2(t) = \sin(\sqrt{5}t) \).

The real-valued general solution is \(y(t) = c_1 \cos(\sqrt{5}t) + c_2 \sin(\sqrt{5}t) \), with \(c_1, c_2 \in \mathbb{R} \).

\[\text{ Remark: Equations like the one in this example describe oscillatory physical processes without dissipation.}\]
A real-valued fundamental and general solutions.

Example
Find the real-valued general solution of \(y'' + 5y = 0 \).

Solution: The characteristic polynomial is \(p(r) = r^2 + 5 \).
A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of \(y'' + 5y = 0 \).

Solution: The characteristic polynomial is \(p(r) = r^2 + 5 \).

Its roots are \(r_{\pm} = \pm \sqrt{5}i \). This is the case \(\alpha = 0 \), and \(\beta = \sqrt{5} \).
A real-valued fundamental and general solutions.

Example
Find the real-valued general solution of $y'' + 5y = 0$.

Solution: The characteristic polynomial is $p(r) = r^2 + 5$.
Its roots are $r_{\pm} = \pm \sqrt{5} i$. This is the case $\alpha = 0$, and $\beta = \sqrt{5}$.
Real-valued fundamental solutions are

$$y_1(t) = \cos(\sqrt{5} t), \quad y_2(t) = \sin(\sqrt{5} t).$$
A real-valued fundamental and general solutions.

Example
Find the real-valued general solution of $y'' + 5y = 0$.

Solution: The characteristic polynomial is $p(r) = r^2 + 5$. Its roots are $r_\pm = \pm \sqrt{5}i$. This is the case $\alpha = 0$, and $\beta = \sqrt{5}$. Real-valued fundamental solutions are

$$y_1(t) = \cos(\sqrt{5} t), \quad y_2(t) = \sin(\sqrt{5} t).$$

The real-valued general solution is

$$y(t) = c_1 \cos(\sqrt{5} t) + c_2 \sin(\sqrt{5} t), \quad c_1, c_2 \in \mathbb{R}.$$
A real-valued fundamental and general solutions.

Example
Find the real-valued general solution of $y'' + 5y = 0$.

Solution: The characteristic polynomial is $p(r) = r^2 + 5$.
Its roots are $r_{\pm} = \pm \sqrt{5} i$. This is the case $\alpha = 0$, and $\beta = \sqrt{5}$.
Real-valued fundamental solutions are

$$y_1(t) = \cos(\sqrt{5} t), \quad y_2(t) = \sin(\sqrt{5} t).$$

The real-valued general solution is

$$y(t) = c_1 \cos(\sqrt{5} t) + c_2 \sin(\sqrt{5} t), \quad c_1, c_2 \in \mathbb{R}.$$

Remark: Equations like the one in this example describe oscillatory physical processes without dissipation.
Second order linear homogeneous ODE.

- Review: On solutions of \(y'' + a_1 y' + a_0 y = 0 \).
- Characteristic polynomial with complex roots.
 - Two main sets of fundamental solutions.
 - A real-valued fundamental and general solutions.
- Application: The RLC circuit.
Application: The RLC circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

\[\frac{d}{dt} I(t) + R I(t) + \frac{1}{C} \int_0^t I(s) \, ds = 0. \]

Derivate both sides above:
\[\frac{d^2}{dt^2} I(t) + \frac{2R}{L} I'(t) + \frac{1}{LC} I(t) = 0. \]

Divide by L:
\[I''(t) + 2 \left(\frac{R}{L} \right)^2 I'(t) + \frac{1}{LC} I(t) = 0. \]

Introduce $\alpha = \frac{R}{L}$ and $\omega = \frac{1}{\sqrt{LC}}$, then
\[I''(t) + 2 \alpha I'(t) + \omega^2 I(t) = 0. \]
Application: The RLC circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

The electric current flowing in such circuit satisfies:

$$LI'(t) + RI(t) + \frac{1}{C} \int_{t_0}^{t} I(s) \, ds = 0.$$
Application: The RLC circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

The electric current flowing in such circuit satisfies:

$$L I'(t) + R I(t) + \frac{1}{C} \int_{t_0}^{t} I(s) \, ds = 0.$$

Derivate both sides above: $L I''(t) + R I'(t) + \frac{1}{C} I(t) = 0$.
Application: The RLC circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

The electric current flowing in such circuit satisfies:

$$L I'(t) + R I(t) + \frac{1}{C} \int_{t_0}^{t} I(s) \, ds = 0.$$

Derivate both sides above:

$$L I''(t) + R I'(t) + \frac{1}{C} I(t) = 0.$$

Divide by L:

$$I''(t) + 2 \left(\frac{R}{2L} \right) I'(t) + \frac{1}{LC} I(t) = 0.$$
Application: The RLC circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

The electric current flowing in such circuit satisfies:

$$L I'(t) + R I(t) + \frac{1}{C} \int_{t_0}^{t} I(s) \, ds = 0.$$

Derivate both sides above:

$$L I''(t) + R I'(t) + \frac{1}{C} I(t) = 0.$$

Divide by L:

$$I''(t) + 2\left(\frac{R}{2L}\right) I'(t) + \frac{1}{LC} I(t) = 0.$$

Introduce $\alpha = \frac{R}{2L}$ and $\omega = \frac{1}{\sqrt{LC}}$,

$I(t)$: electric current.
Application: The RLC circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

The electric current flowing in such circuit satisfies:

$$L I'(t) + R I(t) + \frac{1}{C} \int_{t_0}^{t} I(s) \, ds = 0.$$

Derivate both sides above:

$$L I''(t) + R I'(t) + \frac{1}{C} I(t) = 0.$$

Divide by L:

$$I''(t) + 2 \left(\frac{R}{2L} \right) I'(t) + \frac{1}{LC} I(t) = 0.$$

Introduce $\alpha = \frac{R}{2L}$ and $\omega = \frac{1}{\sqrt{LC}}$, then

$$I'' + 2\alpha I' + \omega^2 I = 0.$$
Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.
Application: The RLC circuit.

Example

Find real-valued fundamental solutions to \(l'' + 2\alpha l' + \omega^2 l = 0 \), where \(\alpha = R/(2L) \), \(\omega^2 = 1/(LC) \), in the cases (a) (b) below.

Solution: The characteristic polynomial is \(p(r) = r^2 + 2\alpha r + \omega^2 \).
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r) = r^2 + 2\alpha r + \omega^2$. The roots are:

$$r_{\pm} = \frac{1}{2} [-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2}]$$
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to \(l'' + 2\alpha l' + \omega^2 l = 0 \), where \(\alpha = R/(2L) \), \(\omega^2 = 1/(LC) \), in the cases (a) (b) below.

Solution: The characteristic polynomial is \(p(r) = r^2 + 2\alpha r + \omega^2 \). The roots are:

\[
 r_{\pm} = \frac{1}{2} [-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2}] \quad \Rightarrow \quad r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}.
\]
Example
Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r) = r^2 + 2\alpha r + \omega^2$. The roots are:

$$r_\pm = \frac{1}{2} [-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2}] \Rightarrow r_\pm = -\alpha \pm \sqrt{\alpha^2 - \omega^2}.$$

Case (a) $R = 0$.

Remark: When the circuit has no resistance, the current oscillates without dissipation.
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to \(l'' + 2\alpha l' + \omega^2 l = 0 \), where \(\alpha = R/(2L) \), \(\omega^2 = 1/(LC) \), in the cases (a) (b) below.

Solution: The characteristic polynomial is \(p(r) = r^2 + 2\alpha r + \omega^2 \). The roots are:

\[
r_{\pm} = \frac{1}{2} \left[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2} \right] \quad \Rightarrow \quad r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}.
\]

Case (a) \(R = 0 \). This implies \(\alpha = 0 \),
Example
Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r) = r^2 + 2\alpha r + \omega^2$. The roots are:

$$r_{\pm} = \frac{1}{2}[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2}] \implies r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}.$$

Case (a) $R = 0$. This implies $\alpha = 0$, so $r_{\pm} = \pm i\omega$.

Remark: When the circuit has no resistance, the current oscillates without dissipation.
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r) = r^2 + 2\alpha r + \omega^2$. The roots are:

$$r_\pm = \frac{1}{2}[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2}] \Rightarrow r_\pm = -\alpha \pm \sqrt{\alpha^2 - \omega^2}.$$

Case (a) $R = 0$. This implies $\alpha = 0$, so $r_\pm = \pm i\omega$. Therefore,

$$l_1(t) = \cos(\omega t),$$
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to $l'' + 2\alpha l' + \omega^2 l = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r) = r^2 + 2\alpha r + \omega^2$. The roots are:

$$r_{\pm} = \frac{1}{2} \left[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2} \right] \Rightarrow r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}.$$

Case (a) $R = 0$. This implies $\alpha = 0$, so $r_{\pm} = \pm i\omega$. Therefore,

$$l_1(t) = \cos(\omega t), \quad l_2(t) = \sin(\omega t).$$

Remark: When the circuit has no resistance, the current oscillates without dissipation.
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to \(I'' + 2\alpha I' + \omega^2 I = 0 \), where \(\alpha = R/(2L) \), \(\omega^2 = 1/(LC) \), in the cases (a) (b) below.

Solution: The characteristic polynomial is \(p(r) = r^2 + 2\alpha r + \omega^2 \). The roots are:
\[
r_{\pm} = \frac{1}{2} \left[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2}\right] \quad \Rightarrow \quad r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}.
\]

Case (a) \(R = 0 \). This implies \(\alpha = 0 \), so \(r_{\pm} = \pm i\omega \). Therefore,
\[
I_1(t) = \cos(\omega t), \quad I_2(t) = \sin(\omega t).
\]

Remark: When the circuit has no resistance, the current oscillates without dissipation.
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to \(I'' + 2\alpha I' + \omega^2 I = 0 \), where \(\alpha = R/(2L) \), \(\omega^2 = 1/(LC) \), in the cases (a) (b) below.

Solution: Recall: \(r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2} \).
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to \(l'' + 2\alpha l' + \omega^2 l = 0 \), where \(\alpha = R/(2L) \), \(\omega^2 = 1/(LC) \), in the cases (a) (b) below.

Solution: Recall: \(r_\pm = -\alpha \pm \sqrt{\alpha^2 - \omega^2} \).

Case (b) \(R < \sqrt{4L/C} \).
Example

Find real-valued fundamental solutions to \(l'' + 2\alpha l' + \omega^2 l = 0 \), where \(\alpha = R/(2L) \), \(\omega^2 = 1/(LC) \), in the cases (a) (b) below.

Solution: Recall: \(r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2} \).

Case (b) \(R < \sqrt{4L/C} \). This implies

\[
R^2 < \frac{4L}{C}
\]
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to \(I'' + 2\alpha I' + \omega^2 I = 0 \), where \(\alpha = R/(2L) \), \(\omega^2 = 1/(LC) \), in the cases (a) (b) below.

Solution: Recall: \(r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2} \).

Case (b) \(R < \sqrt{4L/C} \). This implies

\[
R^2 < \frac{4L}{C} \iff \frac{R^2}{4L^2} < \frac{1}{LC}
\]
Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: Recall: $r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Case (b) $R < \sqrt{4L/C}$. This implies

$$R^2 < \frac{4L}{C} \iff \frac{R^2}{4L^2} < \frac{1}{LC} \iff \alpha^2 < \omega^2.$$
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to \(l'' + 2\alpha l' + \omega^2 l = 0 \), where \(\alpha = R/(2L) \), \(\omega^2 = 1/(LC) \), in the cases (a) (b) below.

Solution: Recall: \(r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2} \).

Case (b) \(R < \sqrt{4L/C} \). This implies

\[
R^2 < \frac{4L}{C} \iff \frac{R^2}{4L^2} < \frac{1}{LC} \iff \alpha^2 < \omega^2.
\]

Therefore, \(r_{\pm} = -\alpha \pm i\sqrt{\omega^2 - \alpha^2} \).
Application: The RLC circuit.

Example

Find real-valued fundamental solutions to \(i'' + 2\alpha i' + \omega^2 i = 0 \), where \(\alpha = R/(2L) \), \(\omega^2 = 1/(LC) \), in the cases (a) (b) below.

Solution: Recall: \(r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2} \).

Case (b) \(R < \sqrt{4L/C} \). This implies

\[
R^2 < \frac{4L}{C} \iff \frac{R}{2L} < \frac{1}{LC} \iff \alpha^2 < \omega^2.
\]

Therefore, \(r_{\pm} = -\alpha \pm i\sqrt{\omega^2 - \alpha^2} \). The fundamental solutions are

\[
l_1(t) = e^{-\alpha t} \cos(\sqrt{\omega^2 - \alpha^2} t),
\]

\[
l_2(t) = e^{-\alpha t} \sin(\sqrt{\omega^2 - \alpha^2} t).
\]

The resistance \(R \) damps the current oscillations.
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: Recall: $r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Case (b) $R < \sqrt{4L/C}$. This implies

$$R^2 < \frac{4L}{C} \iff \frac{R^2}{4L^2} < \frac{1}{LC} \iff \alpha^2 < \omega^2.$$

Therefore, $r_{\pm} = -\alpha \pm i\sqrt{\omega^2 - \alpha^2}$. The fundamental solutions are

$$l_1(t) = e^{-\alpha t} \cos(\sqrt{\omega^2 - \alpha^2} t), \quad l_2(t) = e^{-\alpha t} \sin(\sqrt{\omega^2 - \alpha^2} t).$$
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: Recall: $r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Case (b) $R < \sqrt{4L/C}$. This implies

$$R^2 < \frac{4L}{C} \iff \frac{R^2}{4L^2} < \frac{1}{LC} \iff \alpha^2 < \omega^2.$$

Therefore, $r_{\pm} = -\alpha \pm i\sqrt{\omega^2 - \alpha^2}$. The fundamental solutions are

$$I_1(t) = e^{-\alpha t} \cos\left(\sqrt{\omega^2 - \alpha^2} \ t\right), \quad I_2(t) = e^{-\alpha t} \sin\left(\sqrt{\omega^2 - \alpha^2} \ t\right).$$

R C L

I (t) : electric current.
Application: The RLC circuit.

Example
Find real-valued fundamental solutions to \(l'' + 2\alpha l' + \omega^2 l = 0 \), where \(\alpha = R/(2L) \), \(\omega^2 = 1/(LC) \), in the cases (a) (b) below.

Solution: Recall: \(r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2} \).

Case (b) \(R < \sqrt{4L/C} \). This implies
\[
R^2 < \frac{4L}{C} \quad \iff \quad \frac{R^2}{4L^2} < \frac{1}{LC} \quad \iff \quad \alpha^2 < \omega^2.
\]
Therefore, \(r_{\pm} = -\alpha \pm i\sqrt{\omega^2 - \alpha^2} \). The fundamental solutions are
\[
l_1(t) = e^{-\alpha t} \cos(\sqrt{\omega^2 - \alpha^2} t), \quad l_2(t) = e^{-\alpha t} \sin(\sqrt{\omega^2 - \alpha^2} t).
\]
Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: Recall: $r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Case (b) $R < \sqrt{4L/C}$. This implies

$$R^2 < \frac{4L}{C} \Leftrightarrow \frac{R^2}{4L^2} < \frac{1}{LC} \Leftrightarrow \alpha^2 < \omega^2.$$

Therefore, $r_{\pm} = -\alpha \pm i\sqrt{\omega^2 - \alpha^2}$. The fundamental solutions are

$$I_1(t) = e^{-\alpha t} \cos(\sqrt{\omega^2 - \alpha^2} t), \quad I_2(t) = e^{-\alpha t} \sin(\sqrt{\omega^2 - \alpha^2} t).$$

The resistance R damps the current oscillations.