Review 2 for Exam 1.

- 5 or 6 problems.
- No multiple choice questions.
- No notes, no books, no calculators.
- Problems similar to homeworks, webwork.
- Exam covers:
- Linear equations (2.1).
- Separable equations (2.2).
- Homogeneous equations (2.2).
- Modeling (2.3).
- Non-linear equations (2.4).
- Bernoulli equation (2.4).
- Exact equations (2.6).
- Exact equations with integrating factors (2.6).

Review 2 Exam 1.

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$
\left(x^{3} e^{y}+\frac{x}{y}\right) y^{\prime}+\left(2 x^{2} e^{y}+1\right)=0
$$

Review 2 Exam 1.

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$
\left(x^{3} e^{y}+\frac{x}{y}\right) y^{\prime}+\left(2 x^{2} e^{y}+1\right)=0
$$

Solution: We first verify if the equation is not exact.

$$
N=\left(x^{3} e^{y}+\frac{x}{y}\right)
$$

Review 2 Exam 1.

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$
\left(x^{3} e^{y}+\frac{x}{y}\right) y^{\prime}+\left(2 x^{2} e^{y}+1\right)=0
$$

Solution: We first verify if the equation is not exact.

$$
N=\left(x^{3} e^{y}+\frac{x}{y}\right) \quad \Rightarrow \quad \partial_{x} N=3 x^{2} e^{y}+\frac{1}{y}
$$

Review 2 Exam 1.

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$
\left(x^{3} e^{y}+\frac{x}{y}\right) y^{\prime}+\left(2 x^{2} e^{y}+1\right)=0
$$

Solution: We first verify if the equation is not exact.

$$
\begin{aligned}
& N=\left(x^{3} e^{y}+\frac{x}{y}\right) \quad \Rightarrow \quad \partial_{x} N=3 x^{2} e^{y}+\frac{1}{y} \\
& M=\left(2 x^{2} e^{y}+1\right)=0
\end{aligned}
$$

Review 2 Exam 1.

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$
\left(x^{3} e^{y}+\frac{x}{y}\right) y^{\prime}+\left(2 x^{2} e^{y}+1\right)=0
$$

Solution: We first verify if the equation is not exact.

$$
\begin{aligned}
& N=\left(x^{3} e^{y}+\frac{x}{y}\right) \quad \Rightarrow \quad \partial_{x} N=3 x^{2} e^{y}+\frac{1}{y} \\
& M=\left(2 x^{2} e^{y}+1\right)=0 \quad \Rightarrow \quad \partial_{y} M=2 x^{2} e^{y}
\end{aligned}
$$

Review 2 Exam 1.

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$
\left(x^{3} e^{y}+\frac{x}{y}\right) y^{\prime}+\left(2 x^{2} e^{y}+1\right)=0
$$

Solution: We first verify if the equation is not exact.

$$
\begin{aligned}
& N=\left(x^{3} e^{y}+\frac{x}{y}\right) \quad \Rightarrow \quad \partial_{x} N=3 x^{2} e^{y}+\frac{1}{y} \\
& M=\left(2 x^{2} e^{y}+1\right)=0 \quad \Rightarrow \quad \partial_{y} M=2 x^{2} e^{y}
\end{aligned}
$$

So the equation is not exact.

Review 2 Exam 1.

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$
\left(x^{3} e^{y}+\frac{x}{y}\right) y^{\prime}+\left(2 x^{2} e^{y}+1\right)=0
$$

Solution: We first verify if the equation is not exact.

$$
\begin{aligned}
& N=\left(x^{3} e^{y}+\frac{x}{y}\right) \quad \Rightarrow \quad \partial_{x} N=3 x^{2} e^{y}+\frac{1}{y} \\
& M=\left(2 x^{2} e^{y}+1\right)=0 \quad \Rightarrow \quad \partial_{y} M=2 x^{2} e^{y} .
\end{aligned}
$$

So the equation is not exact. We now compute

$$
\frac{\partial_{y} M-\partial_{x} N}{N}
$$

Review 2 Exam 1.

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$
\left(x^{3} e^{y}+\frac{x}{y}\right) y^{\prime}+\left(2 x^{2} e^{y}+1\right)=0
$$

Solution: We first verify if the equation is not exact.

$$
\begin{aligned}
& N=\left(x^{3} e^{y}+\frac{x}{y}\right) \quad \Rightarrow \quad \partial_{x} N=3 x^{2} e^{y}+\frac{1}{y} \\
& M=\left(2 x^{2} e^{y}+1\right)=0 \quad \Rightarrow \quad \partial_{y} M=2 x^{2} e^{y}
\end{aligned}
$$

So the equation is not exact. We now compute

$$
\frac{\partial_{y} M-\partial_{x} N}{N}=\frac{2 x^{2} e^{y}-\left(3 x^{2} e^{y}+\frac{1}{y}\right)}{\left(x^{3} e^{y}+\frac{x}{y}\right)}
$$

Review 2 Exam 1.

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$
\left(x^{3} e^{y}+\frac{x}{y}\right) y^{\prime}+\left(2 x^{2} e^{y}+1\right)=0
$$

Solution: We first verify if the equation is not exact.

$$
\begin{aligned}
& N=\left(x^{3} e^{y}+\frac{x}{y}\right) \quad \Rightarrow \quad \partial_{x} N=3 x^{2} e^{y}+\frac{1}{y} \\
& M=\left(2 x^{2} e^{y}+1\right)=0 \quad \Rightarrow \quad \partial_{y} M=2 x^{2} e^{y}
\end{aligned}
$$

So the equation is not exact. We now compute

$$
\frac{\partial_{y} M-\partial_{x} N}{N}=\frac{2 x^{2} e^{y}-\left(3 x^{2} e^{y}+\frac{1}{y}\right)}{\left(x^{3} e^{y}+\frac{x}{y}\right)}=\frac{-x^{2} e^{y}-\frac{1}{y}}{x\left(x^{2} e^{y}+\frac{1}{y}\right)}
$$

Review 2 Exam 1.

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$
\left(x^{3} e^{y}+\frac{x}{y}\right) y^{\prime}+\left(2 x^{2} e^{y}+1\right)=0
$$

Solution: We first verify if the equation is not exact.

$$
\begin{aligned}
& N=\left(x^{3} e^{y}+\frac{x}{y}\right) \quad \Rightarrow \quad \partial_{x} N=3 x^{2} e^{y}+\frac{1}{y} \\
& M=\left(2 x^{2} e^{y}+1\right)=0 \quad \Rightarrow \quad \partial_{y} M=2 x^{2} e^{y} .
\end{aligned}
$$

So the equation is not exact. We now compute

$$
\frac{\partial_{y} M-\partial_{x} N}{N}=\frac{2 x^{2} e^{y}-\left(3 x^{2} e^{y}+\frac{1}{y}\right)}{\left(x^{3} e^{y}+\frac{x}{y}\right)}=\frac{-x^{2} e^{y}-\frac{1}{y}}{x\left(x^{2} e^{y}+\frac{1}{y}\right)}=-\frac{1}{x}
$$

Review 2 Exam 1.

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$
\left(x^{3} e^{y}+\frac{x}{y}\right) y^{\prime}+\left(2 x^{2} e^{y}+1\right)=0
$$

Solution: Recall: $\frac{\partial_{y} M-\partial_{x} N}{N}=-\frac{1}{x}$.

Review 2 Exam 1.

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$
\left(x^{3} e^{y}+\frac{x}{y}\right) y^{\prime}+\left(2 x^{2} e^{y}+1\right)=0
$$

Solution: Recall: $\frac{\partial_{y} M-\partial_{x} N}{N}=-\frac{1}{x}$. Therefore,

$$
\frac{\mu^{\prime}(x)}{\mu(x)}=-\frac{1}{x}
$$

Review 2 Exam 1.

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$
\left(x^{3} e^{y}+\frac{x}{y}\right) y^{\prime}+\left(2 x^{2} e^{y}+1\right)=0
$$

Solution: Recall: $\frac{\partial_{y} M-\partial_{x} N}{N}=-\frac{1}{x}$. Therefore,

$$
\frac{\mu^{\prime}(x)}{\mu(x)}=-\frac{1}{x} \quad \Rightarrow \quad \ln (\mu)=-\ln (x)
$$

Review 2 Exam 1.

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$
\left(x^{3} e^{y}+\frac{x}{y}\right) y^{\prime}+\left(2 x^{2} e^{y}+1\right)=0
$$

Solution: Recall: $\frac{\partial_{y} M-\partial_{x} N}{N}=-\frac{1}{x}$. Therefore,

$$
\frac{\mu^{\prime}(x)}{\mu(x)}=-\frac{1}{x} \quad \Rightarrow \quad \ln (\mu)=-\ln (x)=\ln \left(\frac{1}{x}\right)
$$

Review 2 Exam 1.

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$
\left(x^{3} e^{y}+\frac{x}{y}\right) y^{\prime}+\left(2 x^{2} e^{y}+1\right)=0
$$

Solution: Recall: $\frac{\partial_{y} M-\partial_{x} N}{N}=-\frac{1}{x}$. Therefore,

$$
\frac{\mu^{\prime}(x)}{\mu(x)}=-\frac{1}{x} \Rightarrow \ln (\mu)=-\ln (x)=\ln \left(\frac{1}{x}\right) \quad \Rightarrow \quad \mu(x)=\frac{1}{x}
$$

Review 2 Exam 1.

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$
\left(x^{3} e^{y}+\frac{x}{y}\right) y^{\prime}+\left(2 x^{2} e^{y}+1\right)=0
$$

Solution: Recall: $\frac{\partial_{y} M-\partial_{x} N}{N}=-\frac{1}{x}$. Therefore,
$\frac{\mu^{\prime}(x)}{\mu(x)}=-\frac{1}{x} \quad \Rightarrow \quad \ln (\mu)=-\ln (x)=\ln \left(\frac{1}{x}\right) \quad \Rightarrow \quad \mu(x)=\frac{1}{x}$.
So the equation $\left(x^{2} e^{y}+\frac{1}{y}\right) y^{\prime}+\left(2 x e^{y}+\frac{1}{x}\right)=0$ is exact.

Review 2 Exam 1.

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$
\left(x^{3} e^{y}+\frac{x}{y}\right) y^{\prime}+\left(2 x^{2} e^{y}+1\right)=0
$$

Solution: Recall: $\frac{\partial_{y} M-\partial_{x} N}{N}=-\frac{1}{x}$. Therefore,

$$
\frac{\mu^{\prime}(x)}{\mu(x)}=-\frac{1}{x} \Rightarrow \ln (\mu)=-\ln (x)=\ln \left(\frac{1}{x}\right) \quad \Rightarrow \quad \mu(x)=\frac{1}{x}
$$

So the equation $\left(x^{2} e^{y}+\frac{1}{y}\right) y^{\prime}+\left(2 x e^{y}+\frac{1}{x}\right)=0$ is exact. Indeed,

$$
\tilde{N}=\left(x^{2} e^{y}+\frac{1}{y}\right)
$$

Review 2 Exam 1.

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$
\left(x^{3} e^{y}+\frac{x}{y}\right) y^{\prime}+\left(2 x^{2} e^{y}+1\right)=0
$$

Solution: Recall: $\frac{\partial_{y} M-\partial_{x} N}{N}=-\frac{1}{x}$. Therefore,

$$
\frac{\mu^{\prime}(x)}{\mu(x)}=-\frac{1}{x} \Rightarrow \ln (\mu)=-\ln (x)=\ln \left(\frac{1}{x}\right) \quad \Rightarrow \quad \mu(x)=\frac{1}{x}
$$

So the equation $\left(x^{2} e^{y}+\frac{1}{y}\right) y^{\prime}+\left(2 x e^{y}+\frac{1}{x}\right)=0$ is exact. Indeed,

$$
\tilde{N}=\left(x^{2} e^{y}+\frac{1}{y}\right) \quad \Rightarrow \quad \partial_{x} \tilde{N}=2 x e^{y}
$$

Review 2 Exam 1.

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$
\left(x^{3} e^{y}+\frac{x}{y}\right) y^{\prime}+\left(2 x^{2} e^{y}+1\right)=0
$$

Solution: Recall: $\frac{\partial_{y} M-\partial_{x} N}{N}=-\frac{1}{x}$. Therefore,

$$
\frac{\mu^{\prime}(x)}{\mu(x)}=-\frac{1}{x} \Rightarrow \ln (\mu)=-\ln (x)=\ln \left(\frac{1}{x}\right) \quad \Rightarrow \quad \mu(x)=\frac{1}{x}
$$

So the equation $\left(x^{2} e^{y}+\frac{1}{y}\right) y^{\prime}+\left(2 x e^{y}+\frac{1}{x}\right)=0$ is exact. Indeed,

$$
\begin{aligned}
\tilde{N} & =\left(x^{2} e^{y}+\frac{1}{y}\right) \quad \Rightarrow \quad \partial_{x} \tilde{N}=2 x e^{y} \\
\tilde{M} & =\left(2 x e^{y}+\frac{1}{x}\right)
\end{aligned}
$$

Review 2 Exam 1.

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$
\left(x^{3} e^{y}+\frac{x}{y}\right) y^{\prime}+\left(2 x^{2} e^{y}+1\right)=0
$$

Solution: Recall: $\frac{\partial_{y} M-\partial_{x} N}{N}=-\frac{1}{x}$. Therefore,

$$
\frac{\mu^{\prime}(x)}{\mu(x)}=-\frac{1}{x} \Rightarrow \ln (\mu)=-\ln (x)=\ln \left(\frac{1}{x}\right) \quad \Rightarrow \quad \mu(x)=\frac{1}{x}
$$

So the equation $\left(x^{2} e^{y}+\frac{1}{y}\right) y^{\prime}+\left(2 x e^{y}+\frac{1}{x}\right)=0$ is exact. Indeed,

$$
\begin{aligned}
& \tilde{N}=\left(x^{2} e^{y}+\frac{1}{y}\right) \quad \Rightarrow \quad \partial_{x} \tilde{N}=2 x e^{y} \\
& \tilde{M}=\left(2 x e^{y}+\frac{1}{x}\right) \quad \Rightarrow \quad \partial_{y} \tilde{M}=2 x e^{y}
\end{aligned}
$$

Review 2 Exam 1.

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$
\left(x^{3} e^{y}+\frac{x}{y}\right) y^{\prime}+\left(2 x^{2} e^{y}+1\right)=0
$$

Solution: Recall: $\frac{\partial_{y} M-\partial_{x} N}{N}=-\frac{1}{x}$. Therefore,

$$
\frac{\mu^{\prime}(x)}{\mu(x)}=-\frac{1}{x} \Rightarrow \ln (\mu)=-\ln (x)=\ln \left(\frac{1}{x}\right) \quad \Rightarrow \quad \mu(x)=\frac{1}{x}
$$

So the equation $\left(x^{2} e^{y}+\frac{1}{y}\right) y^{\prime}+\left(2 x e^{y}+\frac{1}{x}\right)=0$ is exact. Indeed,

$$
\left.\begin{array}{l}
\tilde{N}=\left(x^{2} e^{y}+\frac{1}{y}\right) \quad \Rightarrow \quad \partial_{x} \tilde{N}=2 x e^{y}, \\
\tilde{M}=\left(2 x e^{y}+\frac{1}{x}\right) \quad \Rightarrow \quad \partial_{y} \tilde{M}=2 x e^{y},
\end{array}\right\} \quad \Rightarrow \quad \partial_{x} \tilde{N}=\partial_{y} \tilde{M}
$$

_

Review 2 Exam 1.

Example
Find every solution y of the equation

$$
\left(x^{2} e^{y}+\frac{1}{y}\right) y^{\prime}+\left(2 x e^{y}+\frac{1}{x}\right)=0
$$

Review 2 Exam 1.

Example

Find every solution y of the equation

$$
\left(x^{2} e^{y}+\frac{1}{y}\right) y^{\prime}+\left(2 x e^{y}+\frac{1}{x}\right)=0
$$

Solution: The equation is exact.

Review 2 Exam 1.

Example

Find every solution y of the equation

$$
\left(x^{2} e^{y}+\frac{1}{y}\right) y^{\prime}+\left(2 x e^{y}+\frac{1}{x}\right)=0
$$

Solution: The equation is exact. We need to find the potential function ψ.

Review 2 Exam 1.

Example

Find every solution y of the equation

$$
\left(x^{2} e^{y}+\frac{1}{y}\right) y^{\prime}+\left(2 x e^{y}+\frac{1}{x}\right)=0
$$

Solution: The equation is exact. We need to find the potential function ψ.

$$
\partial_{y} \psi=N, \quad \partial_{x} \psi=M
$$

Review 2 Exam 1.

Example

Find every solution y of the equation

$$
\left(x^{2} e^{y}+\frac{1}{y}\right) y^{\prime}+\left(2 x e^{y}+\frac{1}{x}\right)=0
$$

Solution: The equation is exact. We need to find the potential function ψ.

$$
\partial_{y} \psi=N, \quad \partial_{x} \psi=M
$$

From the first equation we get:

$$
\partial_{y} \psi=x^{2} e^{y}+\frac{1}{y}
$$

Review 2 Exam 1.

Example

Find every solution y of the equation

$$
\left(x^{2} e^{y}+\frac{1}{y}\right) y^{\prime}+\left(2 x e^{y}+\frac{1}{x}\right)=0
$$

Solution: The equation is exact. We need to find the potential function ψ.

$$
\partial_{y} \psi=N, \quad \partial_{x} \psi=M
$$

From the first equation we get:

$$
\partial_{y} \psi=x^{2} e^{y}+\frac{1}{y} \quad \Rightarrow \quad \psi=x^{2} e^{y}+\ln (y)+g(x)
$$

Review 2 Exam 1.

Example

Find every solution y of the equation

$$
\left(x^{2} e^{y}+\frac{1}{y}\right) y^{\prime}+\left(2 x e^{y}+\frac{1}{x}\right)=0
$$

Solution: The equation is exact. We need to find the potential function ψ.

$$
\partial_{y} \psi=N, \quad \partial_{x} \psi=M
$$

From the first equation we get:

$$
\partial_{y} \psi=x^{2} e^{y}+\frac{1}{y} \quad \Rightarrow \quad \psi=x^{2} e^{y}+\ln (y)+g(x)
$$

Introduce the expression for ψ in the equation $\partial_{x} \psi=M$,

Review 2 Exam 1.

Example

Find every solution y of the equation

$$
\left(x^{2} e^{y}+\frac{1}{y}\right) y^{\prime}+\left(2 x e^{y}+\frac{1}{x}\right)=0
$$

Solution: The equation is exact. We need to find the potential function ψ.

$$
\partial_{y} \psi=N, \quad \partial_{x} \psi=M
$$

From the first equation we get:

$$
\partial_{y} \psi=x^{2} e^{y}+\frac{1}{y} \quad \Rightarrow \quad \psi=x^{2} e^{y}+\ln (y)+g(x)
$$

Introduce the expression for ψ in the equation $\partial_{\chi} \psi=M$, that is,

$$
2 x e^{y}+g^{\prime}(x)=\partial_{x} \psi
$$

Review 2 Exam 1.

Example

Find every solution y of the equation

$$
\left(x^{2} e^{y}+\frac{1}{y}\right) y^{\prime}+\left(2 x e^{y}+\frac{1}{x}\right)=0
$$

Solution: The equation is exact. We need to find the potential function ψ.

$$
\partial_{y} \psi=N, \quad \partial_{x} \psi=M
$$

From the first equation we get:

$$
\partial_{y} \psi=x^{2} e^{y}+\frac{1}{y} \quad \Rightarrow \quad \psi=x^{2} e^{y}+\ln (y)+g(x)
$$

Introduce the expression for ψ in the equation $\partial_{\chi} \psi=M$, that is,

$$
2 x e^{y}+g^{\prime}(x)=\partial_{x} \psi=M
$$

Review 2 Exam 1.

Example

Find every solution y of the equation

$$
\left(x^{2} e^{y}+\frac{1}{y}\right) y^{\prime}+\left(2 x e^{y}+\frac{1}{x}\right)=0
$$

Solution: The equation is exact. We need to find the potential function ψ.

$$
\partial_{y} \psi=N, \quad \partial_{x} \psi=M
$$

From the first equation we get:

$$
\partial_{y} \psi=x^{2} e^{y}+\frac{1}{y} \quad \Rightarrow \quad \psi=x^{2} e^{y}+\ln (y)+g(x)
$$

Introduce the expression for ψ in the equation $\partial_{\chi} \psi=M$, that is,

$$
2 x e^{y}+g^{\prime}(x)=\partial_{x} \psi=M=2 x e^{y}+\frac{1}{x}
$$

Review 2 Exam 1.

Example

Find every solution y of the equation

$$
\left(x^{2} e^{y}+\frac{1}{y}\right) y^{\prime}+\left(2 x e^{y}+\frac{1}{x}\right)=0
$$

Solution: The equation is exact. We need to find the potential function ψ.

$$
\partial_{y} \psi=N, \quad \partial_{x} \psi=M
$$

From the first equation we get:

$$
\partial_{y} \psi=x^{2} e^{y}+\frac{1}{y} \quad \Rightarrow \quad \psi=x^{2} e^{y}+\ln (y)+g(x)
$$

Introduce the expression for ψ in the equation $\partial_{\chi} \psi=M$, that is,

$$
2 x e^{y}+g^{\prime}(x)=\partial_{x} \psi=M=2 x e^{y}+\frac{1}{x} \quad \Rightarrow \quad g^{\prime}(x)=\frac{1}{x}
$$

Review 2 Exam 1.

Example

Find every solution y of the equation

$$
\left(x^{2} e^{y}+\frac{1}{y}\right) y^{\prime}+\left(2 x e^{y}+\frac{1}{x}\right)=0 .
$$

Solution: Recall: $g^{\prime}(x)=\frac{1}{x}$.

Review 2 Exam 1.

Example

Find every solution y of the equation

$$
\left(x^{2} e^{y}+\frac{1}{y}\right) y^{\prime}+\left(2 x e^{y}+\frac{1}{x}\right)=0
$$

Solution: Recall: $g^{\prime}(x)=\frac{1}{x}$. Therefore $g(x)=\ln (x)$.

Review 2 Exam 1.

Example

Find every solution y of the equation

$$
\left(x^{2} e^{y}+\frac{1}{y}\right) y^{\prime}+\left(2 x e^{y}+\frac{1}{x}\right)=0
$$

Solution: Recall: $g^{\prime}(x)=\frac{1}{x}$. Therefore $g(x)=\ln (x)$.
The potential function is $\psi=x^{2} e^{y}+\ln (y)+\ln (x)$.

Review 2 Exam 1.

Example

Find every solution y of the equation

$$
\left(x^{2} e^{y}+\frac{1}{y}\right) y^{\prime}+\left(2 x e^{y}+\frac{1}{x}\right)=0
$$

Solution: Recall: $g^{\prime}(x)=\frac{1}{x}$. Therefore $g(x)=\ln (x)$.
The potential function is $\psi=x^{2} e^{y}+\ln (y)+\ln (x)$.
The solution y satisfies $x^{2} e^{y(x)}+\ln (y(x))+\ln (x)=c$.

Review 2 Exam 1.

Example

Find every solution y of the equation

$$
\left(x^{2} e^{y}+\frac{1}{y}\right) y^{\prime}+\left(2 x e^{y}+\frac{1}{x}\right)=0
$$

Solution: Recall: $g^{\prime}(x)=\frac{1}{x}$. Therefore $g(x)=\ln (x)$.
The potential function is $\psi=x^{2} e^{y}+\ln (y)+\ln (x)$.
The solution y satisfies $x^{2} e^{y(x)}+\ln (y(x))+\ln (x)=c$.
Verification: Compute the implicit derivative in the equation above, and you should get the original differential equation.

$$
2 x e^{y}+x^{2} e^{y} y^{\prime}+\frac{1}{y} y^{\prime}+\frac{1}{x}=0
$$

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: The equation is: Not linear.

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: The equation is: Not linear. It is a Bernoulli equation:

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: The equation is: Not linear.
It is a Bernoulli equation: $y^{\prime}-4 x y=4 x y^{n}$, with $n=1 / 2$.

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: The equation is: Not linear.
It is a Bernoulli equation: $y^{\prime}-4 x y=4 x y^{n}$, with $n=1 / 2$.
It is separable: $\frac{y^{\prime}}{y+\sqrt{y}}=4 x$.

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: The equation is: Not linear.
It is a Bernoulli equation: $y^{\prime}-4 x y=4 x y^{n}$, with $n=1 / 2$.
It is separable: $\frac{y^{\prime}}{y+\sqrt{y}}=4 x$.
The equation is not homogeneous.

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: The equation is: Not linear.
It is a Bernoulli equation: $y^{\prime}-4 x y=4 x y^{n}$, with $n=1 / 2$.
It is separable: $\frac{y^{\prime}}{y+\sqrt{y}}=4 x$.
The equation is not homogeneous. It is not exact.

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: The equation is: Not linear.
It is a Bernoulli equation: $y^{\prime}-4 x y=4 x y^{n}$, with $n=1 / 2$.
It is separable: $\frac{y^{\prime}}{y+\sqrt{y}}=4 x$.
The equation is not homogeneous. It is not exact.
Although the equation is both separable and Bernoulli, it is not simple to integrate using the separable equation method.

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: The equation is: Not linear.
It is a Bernoulli equation: $y^{\prime}-4 x y=4 x y^{n}$, with $n=1 / 2$.
It is separable: $\frac{y^{\prime}}{y+\sqrt{y}}=4 x$.
The equation is not homogeneous. It is not exact.
Although the equation is both separable and Bernoulli, it is not simple to integrate using the separable equation method. Indeed

$$
\int \frac{y^{\prime}}{y+\sqrt{y}} d t=\int 4 x d x+c
$$

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: The equation is: Not linear.
It is a Bernoulli equation: $y^{\prime}-4 x y=4 x y^{n}$, with $n=1 / 2$.
It is separable: $\frac{y^{\prime}}{y+\sqrt{y}}=4 x$.
The equation is not homogeneous. It is not exact.
Although the equation is both separable and Bernoulli, it is not simple to integrate using the separable equation method. Indeed

$$
\int \frac{y^{\prime}}{y+\sqrt{y}} d t=\int 4 x d x+c \Rightarrow \int \frac{d y}{y+\sqrt{y}}=2 x^{2}+c
$$

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: The equation is: Not linear.
It is a Bernoulli equation: $y^{\prime}-4 x y=4 x y^{n}$, with $n=1 / 2$.
It is separable: $\frac{y^{\prime}}{y+\sqrt{y}}=4 x$.
The equation is not homogeneous. It is not exact.
Although the equation is both separable and Bernoulli, it is not simple to integrate using the separable equation method. Indeed

$$
\int \frac{y^{\prime}}{y+\sqrt{y}} d t=\int 4 x d x+c \Rightarrow \int \frac{d y}{y+\sqrt{y}}=2 x^{2}+c
$$

The integral on the left-hand side requires an integration table.

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: We find solutions using the Bernoulli method.

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: We find solutions using the Bernoulli method.

$$
y^{\prime}-4 x y=4 x y^{1 / 2}
$$

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: We find solutions using the Bernoulli method.

$$
y^{\prime}-4 x y=4 x y^{1 / 2} \quad \Rightarrow \quad \frac{y^{\prime}}{y^{1 / 2}}-4 x y^{1 / 2}=4 x
$$

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: We find solutions using the Bernoulli method.

$$
y^{\prime}-4 x y=4 x y^{1 / 2} \Rightarrow \frac{y^{\prime}}{y^{1 / 2}}-4 x y^{1 / 2}=4 x
$$

Change the unknowns: $v=1 / y^{n-1}$, with $n=1 / 2$.

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: We find solutions using the Bernoulli method.

$$
y^{\prime}-4 x y=4 x y^{1 / 2} \quad \Rightarrow \quad \frac{y^{\prime}}{y^{1 / 2}}-4 x y^{1 / 2}=4 x
$$

Change the unknowns: $v=1 / y^{n-1}$, with $n=1 / 2$. That is,

$$
v=\frac{1}{y^{-1 / 2}}
$$

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: We find solutions using the Bernoulli method.

$$
y^{\prime}-4 x y=4 x y^{1 / 2} \quad \Rightarrow \quad \frac{y^{\prime}}{y^{1 / 2}}-4 x y^{1 / 2}=4 x
$$

Change the unknowns: $v=1 / y^{n-1}$, with $n=1 / 2$. That is,

$$
v=\frac{1}{y^{-1 / 2}} \Rightarrow \quad v=y^{1 / 2}
$$

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: We find solutions using the Bernoulli method.

$$
y^{\prime}-4 x y=4 x y^{1 / 2} \quad \Rightarrow \quad \frac{y^{\prime}}{y^{1 / 2}}-4 x y^{1 / 2}=4 x
$$

Change the unknowns: $v=1 / y^{n-1}$, with $n=1 / 2$. That is,

$$
v=\frac{1}{y^{-1 / 2}} \Rightarrow \quad v=y^{1 / 2}, \quad \Rightarrow \quad v^{\prime}=\frac{1}{2} \frac{y^{\prime}}{y^{1 / 2}}
$$

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: We find solutions using the Bernoulli method.

$$
y^{\prime}-4 x y=4 x y^{1 / 2} \Rightarrow \frac{y^{\prime}}{y^{1 / 2}}-4 x y^{1 / 2}=4 x
$$

Change the unknowns: $v=1 / y^{n-1}$, with $n=1 / 2$. That is,

$$
\begin{aligned}
v= & \frac{1}{y^{-1 / 2}} \Rightarrow v=y^{1 / 2}, \Rightarrow v^{\prime}=\frac{1}{2} \frac{y^{\prime}}{y^{1 / 2}} . \\
& 2 v^{\prime}-4 x v=4 x
\end{aligned}
$$

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: We find solutions using the Bernoulli method.

$$
y^{\prime}-4 x y=4 x y^{1 / 2} \quad \Rightarrow \quad \frac{y^{\prime}}{y^{1 / 2}}-4 x y^{1 / 2}=4 x
$$

Change the unknowns: $v=1 / y^{n-1}$, with $n=1 / 2$. That is,

$$
\begin{gathered}
v=\frac{1}{y^{-1 / 2}} \Rightarrow v=y^{1 / 2}, \quad \Rightarrow \quad v^{\prime}=\frac{1}{2} \frac{y^{\prime}}{y^{1 / 2}} . \\
2 v^{\prime}-4 x v=4 x \quad \Rightarrow \quad v^{\prime}-2 x v=2 x .
\end{gathered}
$$

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: We find solutions using the Bernoulli method.

$$
y^{\prime}-4 x y=4 x y^{1 / 2} \quad \Rightarrow \quad \frac{y^{\prime}}{y^{1 / 2}}-4 x y^{1 / 2}=4 x
$$

Change the unknowns: $v=1 / y^{n-1}$, with $n=1 / 2$. That is,

$$
\begin{gathered}
v=\frac{1}{y^{-1 / 2}} \Rightarrow v=y^{1 / 2}, \quad \Rightarrow \quad v^{\prime}=\frac{1}{2} \frac{y^{\prime}}{y^{1 / 2}} \\
2 v^{\prime}-4 x v=4 x \quad \Rightarrow \quad v^{\prime}-2 x v=2 x .
\end{gathered}
$$

The coefficient function is $a(x)=-2 x$,

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: We find solutions using the Bernoulli method.

$$
y^{\prime}-4 x y=4 x y^{1 / 2} \quad \Rightarrow \quad \frac{y^{\prime}}{y^{1 / 2}}-4 x y^{1 / 2}=4 x
$$

Change the unknowns: $v=1 / y^{n-1}$, with $n=1 / 2$. That is,

$$
\begin{gathered}
v=\frac{1}{y^{-1 / 2}} \Rightarrow v=y^{1 / 2}, \quad \Rightarrow \quad v^{\prime}=\frac{1}{2} \frac{y^{\prime}}{y^{1 / 2}} \\
2 v^{\prime}-4 x v=4 x \quad \Rightarrow \quad v^{\prime}-2 x v=2 x .
\end{gathered}
$$

The coefficient function is $a(x)=-2 x$, so $A(x)=-x^{2}$,

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: We find solutions using the Bernoulli method.

$$
y^{\prime}-4 x y=4 x y^{1 / 2} \quad \Rightarrow \quad \frac{y^{\prime}}{y^{1 / 2}}-4 x y^{1 / 2}=4 x
$$

Change the unknowns: $v=1 / y^{n-1}$, with $n=1 / 2$. That is,

$$
\begin{gathered}
v=\frac{1}{y^{-1 / 2}} \Rightarrow v=y^{1 / 2}, \quad \Rightarrow \quad v^{\prime}=\frac{1}{2} \frac{y^{\prime}}{y^{1 / 2}} \\
2 v^{\prime}-4 x v=4 x \quad \Rightarrow \quad v^{\prime}-2 x v=2 x .
\end{gathered}
$$

The coefficient function is $a(x)=-2 x$, so $A(x)=-x^{2}$, and the integrating factor is $\mu(x)=e^{-x^{2}}$.

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: Recall: $v^{\prime}-2 x v=2 x$ and $\mu(x)=e^{-x^{2}}$.

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: Recall: $v^{\prime}-2 x v=2 x$ and $\mu(x)=e^{-x^{2}}$.

$$
e^{-x^{2}} v^{\prime}-2 x e^{-x^{2}} v=2 x e^{-x^{2}}
$$

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4 .
$$

Solution: Recall: $v^{\prime}-2 x v=2 x$ and $\mu(x)=e^{-x^{2}}$.

$$
e^{-x^{2}} v^{\prime}-2 x e^{-x^{2}} v=2 x e^{-x^{2}} \quad \Rightarrow \quad\left(e^{-x^{2}} v\right)^{\prime}=2 x e^{-x^{2}}
$$

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4 .
$$

Solution: Recall: $v^{\prime}-2 x v=2 x$ and $\mu(x)=e^{-x^{2}}$.

$$
\begin{aligned}
& e^{-x^{2}} v^{\prime}-2 x e^{-x^{2}} v=2 x e^{-x^{2}} \quad \Rightarrow \quad\left(e^{-x^{2}} v\right)^{\prime}=2 x e^{-x^{2}} \\
& e^{-x^{2}} v=\int 2 x e^{-x^{2}} d x+c
\end{aligned}
$$

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: Recall: $v^{\prime}-2 x v=2 x$ and $\mu(x)=e^{-x^{2}}$.

$$
\begin{aligned}
& e^{-x^{2}} v^{\prime}-2 x e^{-x^{2}} v=2 x e^{-x^{2}} \quad \Rightarrow \quad\left(e^{-x^{2}} v\right)^{\prime}=2 x e^{-x^{2}} \\
& e^{-x^{2}} v=\int 2 x e^{-x^{2}} d x+c \quad \Rightarrow \quad e^{-x^{2}} v=-e^{-x^{2}}+c
\end{aligned}
$$

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: Recall: $v^{\prime}-2 x v=2 x$ and $\mu(x)=e^{-x^{2}}$.

$$
\begin{aligned}
& e^{-x^{2}} v^{\prime}-2 x e^{-x^{2}} v=2 x e^{-x^{2}} \quad \Rightarrow \quad\left(e^{-x^{2}} v\right)^{\prime}=2 x e^{-x^{2}} \\
& e^{-x^{2}} v=\int 2 x e^{-x^{2}} d x+c \quad \Rightarrow \quad e^{-x^{2}} v=-e^{-x^{2}}+c
\end{aligned}
$$

We conclude that $v=c e^{x^{2}}-1$.

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: Recall: $v^{\prime}-2 x v=2 x$ and $\mu(x)=e^{-x^{2}}$.

$$
\begin{aligned}
& e^{-x^{2}} v^{\prime}-2 x e^{-x^{2}} v=2 x e^{-x^{2}} \quad \Rightarrow \quad\left(e^{-x^{2}} v\right)^{\prime}=2 x e^{-x^{2}} \\
& e^{-x^{2}} v=\int 2 x e^{-x^{2}} d x+c \quad \Rightarrow \quad e^{-x^{2}} v=-e^{-x^{2}}+c
\end{aligned}
$$

We conclude that $v=c e^{x^{2}}-1$. The initial condition for y implies the initial condition for v,

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: Recall: $v^{\prime}-2 x v=2 x$ and $\mu(x)=e^{-x^{2}}$.

$$
\begin{aligned}
& e^{-x^{2}} v^{\prime}-2 x e^{-x^{2}} v=2 x e^{-x^{2}} \quad \Rightarrow \quad\left(e^{-x^{2}} v\right)^{\prime}=2 x e^{-x^{2}} \\
& e^{-x^{2}} v=\int 2 x e^{-x^{2}} d x+c \quad \Rightarrow \quad e^{-x^{2}} v=-e^{-x^{2}}+c
\end{aligned}
$$

We conclude that $v=c e^{x^{2}}-1$. The initial condition for y implies the initial condition for v, that is, $v(x)=\sqrt{y(x)}$ implies $v(0)=2$.

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: Recall: $v^{\prime}-2 x v=2 x$ and $\mu(x)=e^{-x^{2}}$.

$$
\begin{aligned}
& e^{-x^{2}} v^{\prime}-2 x e^{-x^{2}} v=2 x e^{-x^{2}} \quad \Rightarrow \quad\left(e^{-x^{2}} v\right)^{\prime}=2 x e^{-x^{2}} \\
& e^{-x^{2}} v=\int 2 x e^{-x^{2}} d x+c \quad \Rightarrow \quad e^{-x^{2}} v=-e^{-x^{2}}+c
\end{aligned}
$$

We conclude that $v=c e^{x^{2}}-1$. The initial condition for y implies the initial condition for v, that is, $v(x)=\sqrt{y(x)}$ implies $v(0)=2$.

$$
2=v(0)
$$

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: Recall: $v^{\prime}-2 x v=2 x$ and $\mu(x)=e^{-x^{2}}$.

$$
\begin{aligned}
& e^{-x^{2}} v^{\prime}-2 x e^{-x^{2}} v=2 x e^{-x^{2}} \quad \Rightarrow \quad\left(e^{-x^{2}} v\right)^{\prime}=2 x e^{-x^{2}} \\
& e^{-x^{2}} v=\int 2 x e^{-x^{2}} d x+c \quad \Rightarrow \quad e^{-x^{2}} v=-e^{-x^{2}}+c
\end{aligned}
$$

We conclude that $v=c e^{x^{2}}-1$. The initial condition for y implies the initial condition for v, that is, $v(x)=\sqrt{y(x)}$ implies $v(0)=2$.

$$
2=v(0)=c-1
$$

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: Recall: $v^{\prime}-2 x v=2 x$ and $\mu(x)=e^{-x^{2}}$.

$$
\begin{aligned}
& e^{-x^{2}} v^{\prime}-2 x e^{-x^{2}} v=2 x e^{-x^{2}} \quad \Rightarrow \quad\left(e^{-x^{2}} v\right)^{\prime}=2 x e^{-x^{2}} \\
& e^{-x^{2}} v=\int 2 x e^{-x^{2}} d x+c \quad \Rightarrow \quad e^{-x^{2}} v=-e^{-x^{2}}+c
\end{aligned}
$$

We conclude that $v=c e^{x^{2}}-1$. The initial condition for y implies the initial condition for v, that is, $v(x)=\sqrt{y(x)}$ implies $v(0)=2$.

$$
2=v(0)=c-1 \Rightarrow c=3
$$

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: Recall: $v^{\prime}-2 x v=2 x$ and $\mu(x)=e^{-x^{2}}$.

$$
\begin{aligned}
& e^{-x^{2}} v^{\prime}-2 x e^{-x^{2}} v=2 x e^{-x^{2}} \quad \Rightarrow \quad\left(e^{-x^{2}} v\right)^{\prime}=2 x e^{-x^{2}} \\
& e^{-x^{2}} v=\int 2 x e^{-x^{2}} d x+c \quad \Rightarrow \quad e^{-x^{2}} v=-e^{-x^{2}}+c
\end{aligned}
$$

We conclude that $v=c e^{x^{2}}-1$. The initial condition for y implies the initial condition for v, that is, $v(x)=\sqrt{y(x)}$ implies $v(0)=2$.

$$
2=v(0)=c-1 \Rightarrow c=3 \Rightarrow v(x)=3 e^{x^{2}}-1
$$

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: Recall: $v^{\prime}-2 x v=2 x$ and $\mu(x)=e^{-x^{2}}$.

$$
\begin{aligned}
& e^{-x^{2}} v^{\prime}-2 x e^{-x^{2}} v=2 x e^{-x^{2}} \quad \Rightarrow \quad\left(e^{-x^{2}} v\right)^{\prime}=2 x e^{-x^{2}} \\
& e^{-x^{2}} v=\int 2 x e^{-x^{2}} d x+c \quad \Rightarrow \quad e^{-x^{2}} v=-e^{-x^{2}}+c
\end{aligned}
$$

We conclude that $v=c e^{x^{2}}-1$. The initial condition for y implies the initial condition for v, that is, $v(x)=\sqrt{y(x)}$ implies $v(0)=2$.

$$
2=v(0)=c-1 \Rightarrow c=3 \Rightarrow v(x)=3 e^{x^{2}}-1
$$

We finally find $y=v^{2}$,

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: Recall: $v^{\prime}-2 x v=2 x$ and $\mu(x)=e^{-x^{2}}$.

$$
\begin{aligned}
& e^{-x^{2}} v^{\prime}-2 x e^{-x^{2}} v=2 x e^{-x^{2}} \quad \Rightarrow \quad\left(e^{-x^{2}} v\right)^{\prime}=2 x e^{-x^{2}} \\
& e^{-x^{2}} v=\int 2 x e^{-x^{2}} d x+c \quad \Rightarrow \quad e^{-x^{2}} v=-e^{-x^{2}}+c
\end{aligned}
$$

We conclude that $v=c e^{x^{2}}-1$. The initial condition for y implies the initial condition for v, that is, $v(x)=\sqrt{y(x)}$ implies $v(0)=2$.

$$
2=v(0)=c-1 \Rightarrow c=3 \Rightarrow v(x)=3 e^{x^{2}}-1
$$

We finally find $y=v^{2}$, that is, $y(x)=\left(3 e^{x^{2}}-1\right)^{2}$.

Review 2 for Exam 1.

Example

Find the domain of the function y solution of the IVP

$$
y^{\prime}=-\frac{2 t}{y}, \quad y(1)=2
$$

Review 2 for Exam 1.

Example
Find the domain of the function y solution of the IVP

$$
y^{\prime}=-\frac{2 t}{y}, \quad y(1)=2
$$

Solution: We first need to find the solution y.

Review 2 for Exam 1.

Example

Find the domain of the function y solution of the IVP

$$
y^{\prime}=-\frac{2 t}{y}, \quad y(1)=2
$$

Solution: We first need to find the solution y. The equation is separable.

Review 2 for Exam 1.

Example

Find the domain of the function y solution of the IVP

$$
y^{\prime}=-\frac{2 t}{y}, \quad y(1)=2
$$

Solution: We first need to find the solution y. The equation is separable.
$y y^{\prime}=-2 t$

Review 2 for Exam 1.

Example

Find the domain of the function y solution of the IVP

$$
y^{\prime}=-\frac{2 t}{y}, \quad y(1)=2
$$

Solution: We first need to find the solution y. The equation is separable.
$y y^{\prime}=-2 t \quad \Rightarrow \quad \int y y^{\prime} d t=\int-2 t d t+c$

Review 2 for Exam 1.

Example

Find the domain of the function y solution of the IVP

$$
y^{\prime}=-\frac{2 t}{y}, \quad y(1)=2
$$

Solution: We first need to find the solution y.
The equation is separable.

$$
y y^{\prime}=-2 t \quad \Rightarrow \quad \int y y^{\prime} d t=\int-2 t d t+c \quad \Rightarrow \quad \frac{y^{2}}{2}=-t^{2}+c
$$

Review 2 for Exam 1.

Example

Find the domain of the function y solution of the IVP

$$
y^{\prime}=-\frac{2 t}{y}, \quad y(1)=2
$$

Solution: We first need to find the solution y. The equation is separable.

$$
\begin{aligned}
y y^{\prime}=-2 t & \Rightarrow \int y y^{\prime} d t=\int-2 t d t+c \quad \Rightarrow \quad \frac{y^{2}}{2}=-t^{2}+c \\
\frac{4}{2}=\frac{y^{2}(1)}{2} & =-1+c
\end{aligned}
$$

Review 2 for Exam 1.

Example

Find the domain of the function y solution of the IVP

$$
y^{\prime}=-\frac{2 t}{y}, \quad y(1)=2
$$

Solution: We first need to find the solution y. The equation is separable.

$$
\begin{aligned}
y y^{\prime}=-2 t \quad & \Rightarrow \quad \int y y^{\prime} d t=\int-2 t d t+c \quad \Rightarrow \quad \frac{y^{2}}{2}=-t^{2}+c \\
\frac{4}{2} & =\frac{y^{2}(1)}{2}=-1+c \quad \Rightarrow \quad c=3
\end{aligned}
$$

Review 2 for Exam 1.

Example

Find the domain of the function y solution of the IVP

$$
y^{\prime}=-\frac{2 t}{y}, \quad y(1)=2
$$

Solution: We first need to find the solution y.
The equation is separable.

$$
\begin{aligned}
y y^{\prime}=-2 t & \Rightarrow \quad \int y y^{\prime} d t=\int-2 t d t+c \quad \Rightarrow \quad \frac{y^{2}}{2}=-t^{2}+c \\
\frac{4}{2} & =\frac{y^{2}(1)}{2}
\end{aligned}=-1+c \Rightarrow c=3 \quad \Rightarrow \quad y(t)=\sqrt{2\left(3-t^{2}\right)} .
$$

Review 2 for Exam 1.

Example
Find the domain of the function y solution of the IVP

$$
y^{\prime}=-\frac{2 t}{y}, \quad y(1)=2
$$

Solution: We first need to find the solution y.
The equation is separable.

$$
\begin{gathered}
y y^{\prime}=-2 t \Rightarrow \int y y^{\prime} d t=\int-2 t d t+c \Rightarrow \frac{y^{2}}{2}=-t^{2}+c \\
\frac{4}{2}=\frac{y^{2}(1)}{2}=-1+c \Rightarrow c=3 \Rightarrow y(t)=\sqrt{2\left(3-t^{2}\right)} .
\end{gathered}
$$

The domain of the solution y is $D=(-\sqrt{3}, \sqrt{3})$.

Review 2 for Exam 1.

Example

Find the domain of the function y solution of the IVP

$$
y^{\prime}=-\frac{2 t}{y}, \quad y(1)=2
$$

Solution: We first need to find the solution y.
The equation is separable.

$$
\begin{gathered}
y y^{\prime}=-2 t \Rightarrow \int y y^{\prime} d t=\int-2 t d t+c \Rightarrow \frac{y^{2}}{2}=-t^{2}+c \\
\frac{4}{2}=\frac{y^{2}(1)}{2}=-1+c \Rightarrow c=3 \Rightarrow y(t)=\sqrt{2\left(3-t^{2}\right)} .
\end{gathered}
$$

The domain of the solution y is $D=(-\sqrt{3}, \sqrt{3})$.
The points $\pm \sqrt{3}$ do not belong to the domain of y, since y^{\prime} and the differential equation are not defined there.

Review 2 for Exam 1.

Example

Find the domain of the function y solution of the IVP

$$
y^{\prime}=-\frac{2 t}{y}, \quad y\left(t_{0}\right)=y_{0}
$$

Review 2 for Exam 1.

Example

Find the domain of the function y solution of the IVP

$$
y^{\prime}=-\frac{2 t}{y}, \quad y\left(t_{0}\right)=y_{0}
$$

Solution: The solution y is given as above, $\frac{y^{2}}{2}=-t^{2}+c$.

Review 2 for Exam 1.

Example

Find the domain of the function y solution of the IVP

$$
y^{\prime}=-\frac{2 t}{y}, \quad y\left(t_{0}\right)=y_{0}
$$

Solution: The solution y is given as above, $\frac{y^{2}}{2}=-t^{2}+c$. The initial condition implies

$$
\frac{y_{0}^{2}}{2}=\frac{y^{2}\left(t_{0}\right)}{2}
$$

Review 2 for Exam 1.

Example

Find the domain of the function y solution of the IVP

$$
y^{\prime}=-\frac{2 t}{y}, \quad y\left(t_{0}\right)=y_{0}
$$

Solution: The solution y is given as above, $\frac{y^{2}}{2}=-t^{2}+c$. The initial condition implies

$$
\frac{y_{0}^{2}}{2}=\frac{y^{2}\left(t_{0}\right)}{2}=-t_{0}^{2}+c
$$

Review 2 for Exam 1.

Example

Find the domain of the function y solution of the IVP

$$
y^{\prime}=-\frac{2 t}{y}, \quad y\left(t_{0}\right)=y_{0}
$$

Solution: The solution y is given as above, $\frac{y^{2}}{2}=-t^{2}+c$. The initial condition implies

$$
\frac{y_{0}^{2}}{2}=\frac{y^{2}\left(t_{0}\right)}{2}=-t_{0}^{2}+c \Rightarrow c=\frac{y_{0}^{2}}{2}+t_{0}^{2}
$$

Review 2 for Exam 1.

Example

Find the domain of the function y solution of the IVP

$$
y^{\prime}=-\frac{2 t}{y}, \quad y\left(t_{0}\right)=y_{0}
$$

Solution: The solution y is given as above, $\frac{y^{2}}{2}=-t^{2}+c$. The initial condition implies

$$
\frac{y_{0}^{2}}{2}=\frac{y^{2}\left(t_{0}\right)}{2}=-t_{0}^{2}+c \Rightarrow c=\frac{y_{0}^{2}}{2}+t_{0}^{2} \Rightarrow \frac{y^{2}}{2}=-t^{2}+t_{0}^{2}+\frac{y_{0}^{2}}{2} .
$$

Review 2 for Exam 1.

Example

Find the domain of the function y solution of the IVP

$$
y^{\prime}=-\frac{2 t}{y}, \quad y\left(t_{0}\right)=y_{0}
$$

Solution: The solution y is given as above, $\frac{y^{2}}{2}=-t^{2}+c$. The initial condition implies

$$
\frac{y_{0}^{2}}{2}=\frac{y^{2}\left(t_{0}\right)}{2}=-t_{0}^{2}+c \Rightarrow c=\frac{y_{0}^{2}}{2}+t_{0}^{2} \Rightarrow \frac{y^{2}}{2}=-t^{2}+t_{0}^{2}+\frac{y_{0}^{2}}{2} .
$$

The solution to the IVP is $y(t)=\sqrt{2\left(t_{0}^{2}-t^{2}\right)+y_{0}^{2}}$.

Review 2 for Exam 1.

Example

Find the domain of the function y solution of the IVP

$$
y^{\prime}=-\frac{2 t}{y}, \quad y\left(t_{0}\right)=y_{0}
$$

Solution: The solution y is given as above, $\frac{y^{2}}{2}=-t^{2}+c$.
The initial condition implies

$$
\frac{y_{0}^{2}}{2}=\frac{y^{2}\left(t_{0}\right)}{2}=-t_{0}^{2}+c \Rightarrow c=\frac{y_{0}^{2}}{2}+t_{0}^{2} \Rightarrow \frac{y^{2}}{2}=-t^{2}+t_{0}^{2}+\frac{y_{0}^{2}}{2} .
$$

The solution to the IVP is $y(t)=\sqrt{2\left(t_{0}^{2}-t^{2}\right)+y_{0}^{2}}$.
The domain of the solution depends on the initial condition t_{0}, y_{0} :

Review 2 for Exam 1.

Example

Find the domain of the function y solution of the IVP

$$
y^{\prime}=-\frac{2 t}{y}, \quad y\left(t_{0}\right)=y_{0}
$$

Solution: The solution y is given as above, $\frac{y^{2}}{2}=-t^{2}+c$.
The initial condition implies

$$
\frac{y_{0}^{2}}{2}=\frac{y^{2}\left(t_{0}\right)}{2}=-t_{0}^{2}+c \Rightarrow c=\frac{y_{0}^{2}}{2}+t_{0}^{2} \Rightarrow \frac{y^{2}}{2}=-t^{2}+t_{0}^{2}+\frac{y_{0}^{2}}{2} .
$$

The solution to the IVP is $y(t)=\sqrt{2\left(t_{0}^{2}-t^{2}\right)+y_{0}^{2}}$.
The domain of the solution depends on the initial condition t_{0}, y_{0} :

$$
D=\left(-\sqrt{t_{0}^{2}+\frac{y_{0}^{2}}{2}},+\sqrt{t_{0}^{2}+\frac{y_{0}^{2}}{2}}\right) .
$$

Review 2 for Exam 1.

Example
Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.

Review 2 for Exam 1.

Example
Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.
Solution: The equation is not linear,

Review 2 for Exam 1.

Example

Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.
Solution: The equation is not linear, not Bernoulli,

Review 2 for Exam 1.

Example

Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.
Solution: The equation is not linear, not Bernoulli, not separable.

Review 2 for Exam 1.

Example

Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.
Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by $(1 / x)$.)

Review 2 for Exam 1.

Example

Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.
Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by $(1 / x)$.)
Is it exact? $(3 x+4 y) y^{\prime}+(2 x+3 y)=0$ implies $\partial_{x} N=3=\partial_{y} M$. So the equation is exact.

Review 2 for Exam 1.

Example

Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.
Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by $(1 / x)$.)
Is it exact? $(3 x+4 y) y^{\prime}+(2 x+3 y)=0$ implies $\partial_{x} N=3=\partial_{y} M$. So the equation is exact.

We choose here the exact equation method.

Review 2 for Exam 1.

Example

Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.
Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by $(1 / x)$.)
Is it exact? $(3 x+4 y) y^{\prime}+(2 x+3 y)=0$ implies $\partial_{x} N=3=\partial_{y} M$. So the equation is exact.

We choose here the exact equation method. (Finding the potential function is sometimes simpler that solving homogeneous Eqs.)

Review 2 for Exam 1.

Example

Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.
Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by $(1 / x)$.)
Is it exact? $(3 x+4 y) y^{\prime}+(2 x+3 y)=0$ implies $\partial_{x} N=3=\partial_{y} M$. So the equation is exact.

We choose here the exact equation method. (Finding the potential function is sometimes simpler that solving homogeneous Eqs.)

We need to find the potential function ψ :

Review 2 for Exam 1.

Example

Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.
Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by $(1 / x)$.)
Is it exact? $(3 x+4 y) y^{\prime}+(2 x+3 y)=0$ implies $\partial_{x} N=3=\partial_{y} M$. So the equation is exact.

We choose here the exact equation method. (Finding the potential function is sometimes simpler that solving homogeneous Eqs.)

We need to find the potential function ψ :

$$
\partial_{y} \psi=N
$$

Review 2 for Exam 1.

Example

Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.
Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by $(1 / x)$.)
Is it exact? $(3 x+4 y) y^{\prime}+(2 x+3 y)=0$ implies $\partial_{x} N=3=\partial_{y} M$. So the equation is exact.

We choose here the exact equation method. (Finding the potential function is sometimes simpler that solving homogeneous Eqs.)

We need to find the potential function ψ :

$$
\partial_{y} \psi=N \quad \Rightarrow \quad \psi=3 x y+2 y^{2}+g(x)
$$

Review 2 for Exam 1.

Example

Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.
Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by $(1 / x)$.)
Is it exact? $(3 x+4 y) y^{\prime}+(2 x+3 y)=0$ implies $\partial_{x} N=3=\partial_{y} M$. So the equation is exact.

We choose here the exact equation method. (Finding the potential function is sometimes simpler that solving homogeneous Eqs.)

We need to find the potential function ψ :

$$
\begin{aligned}
& \quad \partial_{y} \psi=N \quad \Rightarrow \quad \psi=3 x y+2 y^{2}+g(x) . \\
& \partial_{x} \psi=M
\end{aligned}
$$

Review 2 for Exam 1.

Example

Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.
Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by $(1 / x)$.)
Is it exact? $(3 x+4 y) y^{\prime}+(2 x+3 y)=0$ implies $\partial_{x} N=3=\partial_{y} M$. So the equation is exact.

We choose here the exact equation method. (Finding the potential function is sometimes simpler that solving homogeneous Eqs.)

We need to find the potential function ψ :

$$
\begin{aligned}
\partial_{y} \psi=N \quad \Rightarrow \quad \psi=3 x y+2 y^{2}+g(x) \\
\partial_{x} \psi=M \quad \Rightarrow \quad 3 y+g^{\prime}(x)=2 x+3 y
\end{aligned}
$$

Review 2 for Exam 1.

Example

Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.
Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by $(1 / x)$.)
Is it exact? $(3 x+4 y) y^{\prime}+(2 x+3 y)=0$ implies $\partial_{x} N=3=\partial_{y} M$. So the equation is exact.

We choose here the exact equation method. (Finding the potential function is sometimes simpler that solving homogeneous Eqs.)

We need to find the potential function ψ :

$$
\begin{gathered}
\partial_{y} \psi=N \quad \Rightarrow \quad \psi=3 x y+2 y^{2}+g(x) . \\
\partial_{x} \psi=M \Rightarrow 3 y+g^{\prime}(x)=2 x+3 y \quad \Rightarrow \quad g(x)=x^{2} .
\end{gathered}
$$

Review 2 for Exam 1.

Example

Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.
Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by $(1 / x)$.)
Is it exact? $(3 x+4 y) y^{\prime}+(2 x+3 y)=0$ implies $\partial_{x} N=3=\partial_{y} M$. So the equation is exact.

We choose here the exact equation method. (Finding the potential function is sometimes simpler that solving homogeneous Eqs.)

We need to find the potential function ψ :

$$
\begin{gathered}
\partial_{y} \psi=N \quad \Rightarrow \quad \psi=3 x y+2 y^{2}+g(x) . \\
\partial_{x} \psi=M \Rightarrow 3 y+g^{\prime}(x)=2 x+3 y \quad \Rightarrow \quad g(x)=x^{2} .
\end{gathered}
$$

We conclude: $\psi(x, y)=3 x y+2 y^{2}+x^{2}$,

Review 2 for Exam 1.

Example

Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.
Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by $(1 / x)$.)
Is it exact? $(3 x+4 y) y^{\prime}+(2 x+3 y)=0$ implies $\partial_{x} N=3=\partial_{y} M$. So the equation is exact.

We choose here the exact equation method. (Finding the potential function is sometimes simpler that solving homogeneous Eqs.)

We need to find the potential function ψ :

$$
\begin{gathered}
\partial_{y} \psi=N \quad \Rightarrow \quad \psi=3 x y+2 y^{2}+g(x) . \\
\partial_{x} \psi=M \Rightarrow 3 y+g^{\prime}(x)=2 x+3 y \quad \Rightarrow \quad g(x)=x^{2} .
\end{gathered}
$$

We conclude: $\psi(x, y)=3 x y+2 y^{2}+x^{2}$, and $\psi(x, y(x))=c . \quad \triangleleft$

Review 2 for Exam 1.

Example
Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.

Review 2 for Exam 1.

Example
Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.
Solution: If we solve the problem using that the equation is homogeneous, it is more complicated than the previous calculation.

Review 2 for Exam 1.

Example
Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.
Solution: If we solve the problem using that the equation is homogeneous, it is more complicated than the previous calculation. We just start the calculation to see the difficulty:

Review 2 for Exam 1.

Example
Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.
Solution: If we solve the problem using that the equation is homogeneous, it is more complicated than the previous calculation.
We just start the calculation to see the difficulty:

$$
y^{\prime}=-\frac{(2 x+3 y)}{(3 x+4 y)} \frac{\left(\frac{1}{x}\right)}{\left(\frac{1}{x}\right)}
$$

Review 2 for Exam 1.

Example
Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.
Solution: If we solve the problem using that the equation is homogeneous, it is more complicated than the previous calculation. We just start the calculation to see the difficulty:

$$
y^{\prime}=-\frac{(2 x+3 y)}{(3 x+4 y)} \frac{\left(\frac{1}{x}\right)}{\left(\frac{1}{x}\right)}=-\frac{2+3\left(\frac{y}{x}\right)}{3+4\left(\frac{y}{x}\right)} .
$$

Review 2 for Exam 1.

Example

Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.
Solution: If we solve the problem using that the equation is homogeneous, it is more complicated than the previous calculation. We just start the calculation to see the difficulty:

$$
y^{\prime}=-\frac{(2 x+3 y)}{(3 x+4 y)} \frac{\left(\frac{1}{x}\right)}{\left(\frac{1}{x}\right)}=-\frac{2+3\left(\frac{y}{x}\right)}{3+4\left(\frac{y}{x}\right)} .
$$

The change $v=y / x$ implies $y=x v$ and $y^{\prime}=v+x v^{\prime}$.

Review 2 for Exam 1.

Example
Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.
Solution: If we solve the problem using that the equation is homogeneous, it is more complicated than the previous calculation. We just start the calculation to see the difficulty:

$$
y^{\prime}=-\frac{(2 x+3 y)}{(3 x+4 y)} \frac{\left(\frac{1}{x}\right)}{\left(\frac{1}{x}\right)}=-\frac{2+3\left(\frac{y}{x}\right)}{3+4\left(\frac{y}{x}\right)} .
$$

The change $v=y / x$ implies $y=x v$ and $y^{\prime}=v+x v^{\prime}$. Hence
$v+x v^{\prime}=\frac{2+3 v}{3+4 v}$

Review 2 for Exam 1.

Example
Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.
Solution: If we solve the problem using that the equation is homogeneous, it is more complicated than the previous calculation. We just start the calculation to see the difficulty:

$$
y^{\prime}=-\frac{(2 x+3 y)}{(3 x+4 y)} \frac{\left(\frac{1}{x}\right)}{\left(\frac{1}{x}\right)}=-\frac{2+3\left(\frac{y}{x}\right)}{3+4\left(\frac{y}{x}\right)}
$$

The change $v=y / x$ implies $y=x v$ and $y^{\prime}=v+x v^{\prime}$. Hence
$v+x v^{\prime}=\frac{2+3 v}{3+4 v} \quad \Rightarrow \quad x v^{\prime}=\frac{2+3 v}{3+4 v}-v$

Review 2 for Exam 1.

Example
Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.
Solution: If we solve the problem using that the equation is homogeneous, it is more complicated than the previous calculation.
We just start the calculation to see the difficulty:

$$
y^{\prime}=-\frac{(2 x+3 y)}{(3 x+4 y)} \frac{\left(\frac{1}{x}\right)}{\left(\frac{1}{x}\right)}=-\frac{2+3\left(\frac{y}{x}\right)}{3+4\left(\frac{y}{x}\right)}
$$

The change $v=y / x$ implies $y=x v$ and $y^{\prime}=v+x v^{\prime}$. Hence
$v+x v^{\prime}=\frac{2+3 v}{3+4 v} \quad \Rightarrow \quad x v^{\prime}=\frac{2+3 v}{3+4 v}-v=\frac{2+3 v-3 v+4 v^{2}}{3+4 v}$.

Review 2 for Exam 1.

Example
Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.
Solution: If we solve the problem using that the equation is homogeneous, it is more complicated than the previous calculation. We just start the calculation to see the difficulty:

$$
y^{\prime}=-\frac{(2 x+3 y)}{(3 x+4 y)} \frac{\left(\frac{1}{x}\right)}{\left(\frac{1}{x}\right)}=-\frac{2+3\left(\frac{y}{x}\right)}{3+4\left(\frac{y}{x}\right)}
$$

The change $v=y / x$ implies $y=x v$ and $y^{\prime}=v+x v^{\prime}$. Hence
$v+x v^{\prime}=\frac{2+3 v}{3+4 v} \Rightarrow x v^{\prime}=\frac{2+3 v}{3+4 v}-v=\frac{2+3 v-3 v+4 v^{2}}{3+4 v}$.
We conclude that v satisfies $\frac{3+4 v}{2-4 v^{2}} v^{\prime}=\frac{1}{x}$.

Review 2 for Exam 1.

Example

Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.
Solution: Recall: $\frac{3+4 v}{2-4 v^{2}} v^{\prime}=\frac{1}{x}$.

Review 2 for Exam 1.

Example

Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.
Solution: Recall: $\frac{3+4 v}{2-4 v^{2}} v^{\prime}=\frac{1}{x}$.
This equation is complicated to integrate.

$$
\int \frac{3 v^{\prime}}{2-4 v^{2}} d x+\int \frac{4 v v^{\prime}}{2-4 v^{2}} d x=\int \frac{1}{x} d x+c
$$

Review 2 for Exam 1.

Example

Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.
Solution: Recall: $\frac{3+4 v}{2-4 v^{2}} v^{\prime}=\frac{1}{x}$.
This equation is complicated to integrate.

$$
\int \frac{3 v^{\prime}}{2-4 v^{2}} d x+\int \frac{4 v v^{\prime}}{2-4 v^{2}} d x=\int \frac{1}{x} d x+c=\ln (x)+c
$$

Review 2 for Exam 1.

Example

Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.
Solution: Recall: $\frac{3+4 v}{2-4 v^{2}} v^{\prime}=\frac{1}{x}$.
This equation is complicated to integrate.

$$
\int \frac{3 v^{\prime}}{2-4 v^{2}} d x+\int \frac{4 v v^{\prime}}{2-4 v^{2}} d x=\int \frac{1}{x} d x+c=\ln (x)+c
$$

The usual substitution $u=v(x)$ implies $d u=v^{\prime} d x$,

Review 2 for Exam 1.

Example

Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.
Solution: Recall: $\frac{3+4 v}{2-4 v^{2}} v^{\prime}=\frac{1}{x}$.
This equation is complicated to integrate.

$$
\int \frac{3 v^{\prime}}{2-4 v^{2}} d x+\int \frac{4 v v^{\prime}}{2-4 v^{2}} d x=\int \frac{1}{x} d x+c=\ln (x)+c
$$

The usual substitution $u=v(x)$ implies $d u=v^{\prime} d x$, so

$$
\int \frac{3 d u}{2-4 u^{2}}+\int \frac{4 u d u}{2-4 u^{2}}=\ln (x)+c
$$

Review 2 for Exam 1.

Example

Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.
Solution: Recall: $\frac{3+4 v}{2-4 v^{2}} v^{\prime}=\frac{1}{x}$.
This equation is complicated to integrate.

$$
\int \frac{3 v^{\prime}}{2-4 v^{2}} d x+\int \frac{4 v v^{\prime}}{2-4 v^{2}} d x=\int \frac{1}{x} d x+c=\ln (x)+c
$$

The usual substitution $u=v(x)$ implies $d u=v^{\prime} d x$, so

$$
\int \frac{3 d u}{2-4 u^{2}}+\int \frac{4 u d u}{2-4 u^{2}}=\ln (x)+c
$$

The first integral on the left-hand side requires integration tables.

Review 2 for Exam 1.

Example

Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.
Solution: Recall: $\frac{3+4 v}{2-4 v^{2}} v^{\prime}=\frac{1}{x}$.
This equation is complicated to integrate.

$$
\int \frac{3 v^{\prime}}{2-4 v^{2}} d x+\int \frac{4 v v^{\prime}}{2-4 v^{2}} d x=\int \frac{1}{x} d x+c=\ln (x)+c
$$

The usual substitution $u=v(x)$ implies $d u=v^{\prime} d x$, so

$$
\int \frac{3 d u}{2-4 u^{2}}+\int \frac{4 u d u}{2-4 u^{2}}=\ln (x)+c
$$

The first integral on the left-hand side requires integration tables.
This is why the exact method is simpler to use in this case.

Second order linear homogeneous ODE (Sect. 3.3).

- Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.
- Characteristic polynomial with complex roots.
- Two main sets of fundamental solutions.
- A real-valued fundamental and general solutions.
- Application: The RLC circuit.

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Definition

Any two solutions y_{1}, y_{2} of the homogeneous equation

$$
y^{\prime \prime}+a_{1}(t) y^{\prime}+a_{0}(t) y=0
$$

are called fundamental solutions iff the functions y_{1}, y_{2} are linearly independent, that is, iff $W_{y_{1} y_{2}} \neq 0$.

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Definition

Any two solutions y_{1}, y_{2} of the homogeneous equation

$$
y^{\prime \prime}+a_{1}(t) y^{\prime}+a_{0}(t) y=0
$$

are called fundamental solutions iff the functions y_{1}, y_{2} are linearly independent, that is, iff $W_{y_{1} y_{2}} \neq 0$.

Remark: Fundamental solutions are not unique.

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Definition

Any two solutions y_{1}, y_{2} of the homogeneous equation

$$
y^{\prime \prime}+a_{1}(t) y^{\prime}+a_{0}(t) y=0
$$

are called fundamental solutions iff the functions y_{1}, y_{2} are linearly independent, that is, iff $W_{y_{1} y_{2}} \neq 0$.

Remark: Fundamental solutions are not unique.

Definition

Given any two fundamental solutions y_{1}, y_{2}, and arbitrary constants c_{1}, c_{2}, the function

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

is called the general solution of the differential equation above.

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Theorem (Constant coefficients)

Given real constants a_{1}, a_{0}, consider the homogeneous, linear differential equation on the unknown $y: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0 \tag{1}
\end{equation*}
$$

Let r_{+}, r_{-}be the roots of the characteristic polynomial $p(r)=r^{2}+a_{1} r+a_{0}$, and let c_{0}, c_{1} be arbitrary constants. Then, any solution of Eq. (1) belongs to only one of the following cases:
(a) If $r_{+} \neq r_{-}$, the general solution is $y(t)=c_{1} e^{r_{+} t}+c_{2} e^{r_{-} t}$.
(b) If $r_{+}=r_{-} \in \mathbb{R}$, the general solution is $y(t)=\left(c_{1}+c_{2} t\right) e^{r_{+} t}$.

Furthermore, given real constants t_{0}, y_{1} and y_{2}, there is a unique solution to the initial value problem given by Eq. (1) and the initial conditions

$$
y\left(t_{0}\right)=y_{1}, \quad y^{\prime}\left(t_{0}\right)=y_{2}
$$

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Example
Find the general solution of the equation $y^{\prime \prime}-y^{\prime}-6 y=0$.

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Example

Find the general solution of the equation $y^{\prime \prime}-y^{\prime}-6 y=0$.
Solution: Since solutions have the form $e^{r t}$, we need to find the roots of the characteristic polynomial $p(r)=r^{2}-r-6$,

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Example

Find the general solution of the equation $y^{\prime \prime}-y^{\prime}-6 y=0$.
Solution: Since solutions have the form $e^{r t}$, we need to find the roots of the characteristic polynomial $p(r)=r^{2}-r-6$, that is,

$$
r_{ \pm}=\frac{1}{2}(1 \pm \sqrt{1+24})
$$

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Example

Find the general solution of the equation $y^{\prime \prime}-y^{\prime}-6 y=0$.
Solution: Since solutions have the form $e^{r t}$, we need to find the roots of the characteristic polynomial $p(r)=r^{2}-r-6$, that is,

$$
r_{ \pm}=\frac{1}{2}(1 \pm \sqrt{1+24})=\frac{1}{2}(1 \pm 5)
$$

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Example

Find the general solution of the equation $y^{\prime \prime}-y^{\prime}-6 y=0$.
Solution: Since solutions have the form $e^{r t}$, we need to find the roots of the characteristic polynomial $p(r)=r^{2}-r-6$, that is,

$$
r_{ \pm}=\frac{1}{2}(1 \pm \sqrt{1+24})=\frac{1}{2}(1 \pm 5) \quad \Rightarrow \quad r_{+}=3, \quad r_{-}=-2 .
$$

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Example

Find the general solution of the equation $y^{\prime \prime}-y^{\prime}-6 y=0$.
Solution: Since solutions have the form $e^{r t}$, we need to find the roots of the characteristic polynomial $p(r)=r^{2}-r-6$, that is,

$$
r_{ \pm}=\frac{1}{2}(1 \pm \sqrt{1+24})=\frac{1}{2}(1 \pm 5) \quad \Rightarrow \quad r_{+}=3, \quad r_{-}=-2 .
$$

So, $r_{ \pm}$are real-valued.

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Example

Find the general solution of the equation $y^{\prime \prime}-y^{\prime}-6 y=0$.
Solution: Since solutions have the form $e^{r t}$, we need to find the roots of the characteristic polynomial $p(r)=r^{2}-r-6$, that is,

$$
r_{ \pm}=\frac{1}{2}(1 \pm \sqrt{1+24})=\frac{1}{2}(1 \pm 5) \quad \Rightarrow \quad r_{+}=3, \quad r_{-}=-2 .
$$

So, $r_{ \pm}$are real-valued. A fundamental solution set is formed by

$$
y_{1}(t)=e^{3 t}, \quad y_{2}(t)=e^{-2 t} .
$$

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Example

Find the general solution of the equation $y^{\prime \prime}-y^{\prime}-6 y=0$.
Solution: Since solutions have the form $e^{r t}$, we need to find the roots of the characteristic polynomial $p(r)=r^{2}-r-6$, that is,

$$
r_{ \pm}=\frac{1}{2}(1 \pm \sqrt{1+24})=\frac{1}{2}(1 \pm 5) \quad \Rightarrow \quad r_{+}=3, \quad r_{-}=-2 .
$$

So, $r_{ \pm}$are real-valued. A fundamental solution set is formed by

$$
y_{1}(t)=e^{3 t}, \quad y_{2}(t)=e^{-2 t} .
$$

The general solution of the differential equations is an arbitrary linear combination of the fundamental solutions,

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Example

Find the general solution of the equation $y^{\prime \prime}-y^{\prime}-6 y=0$.
Solution: Since solutions have the form $e^{r t}$, we need to find the roots of the characteristic polynomial $p(r)=r^{2}-r-6$, that is,

$$
r_{ \pm}=\frac{1}{2}(1 \pm \sqrt{1+24})=\frac{1}{2}(1 \pm 5) \quad \Rightarrow \quad r_{+}=3, \quad r_{-}=-2 .
$$

So, $r_{ \pm}$are real-valued. A fundamental solution set is formed by

$$
y_{1}(t)=e^{3 t}, \quad y_{2}(t)=e^{-2 t} .
$$

The general solution of the differential equations is an arbitrary linear combination of the fundamental solutions, that is,

$$
y(t)=c_{1} e^{3 t}+c_{2} e^{-2 t}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Example

Find the general solution of the equation $y^{\prime \prime}-y^{\prime}-6 y=0$.
Solution: Since solutions have the form $e^{r t}$, we need to find the roots of the characteristic polynomial $p(r)=r^{2}-r-6$, that is,

$$
r_{ \pm}=\frac{1}{2}(1 \pm \sqrt{1+24})=\frac{1}{2}(1 \pm 5) \quad \Rightarrow \quad r_{+}=3, \quad r_{-}=-2 .
$$

So, $r_{ \pm}$are real-valued. A fundamental solution set is formed by

$$
y_{1}(t)=e^{3 t}, \quad y_{2}(t)=e^{-2 t} .
$$

The general solution of the differential equations is an arbitrary linear combination of the fundamental solutions, that is,

$$
y(t)=c_{1} e^{3 t}+c_{2} e^{-2 t}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

Remark: Since $c_{1}, c_{2} \in \mathbb{R}$, then y is real-valued.

Second order linear homogeneous ODE.

- Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.
- Characteristic polynomial with complex roots.
- Two main sets of fundamental solutions.
- A real-valued fundamental and general solutions.
- Application: The RLC circuit.

Two main sets of fundamental solutions.

Theorem (Complex roots)
If the constants $a_{1}, a_{0} \in \mathbb{R}$ satisfy that $a_{1}^{2}-4 a_{0}<0$, then the characteristic polynomial $p(r)=r^{2}+a_{1} r+a_{0}$ of the equation

$$
\begin{equation*}
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0 \tag{2}
\end{equation*}
$$

has complex roots $r_{+}=\alpha+i \beta$ and $r_{-}=\alpha-i \beta$, where

$$
\alpha=-\frac{a_{1}}{2}, \quad \beta=\frac{1}{2} \sqrt{4 a_{0}-a_{1}^{2}} .
$$

Furthermore, a fundamental set of solutions to Eq. (2) is

$$
\tilde{y}_{1}(t)=e^{(\alpha+i \beta) t}, \quad \tilde{y}_{2}(t)=e^{(\alpha-i \beta) t}
$$

while another fundamental set of solutions to Eq. (2) is

$$
y_{1}(t)=e^{\alpha t} \cos (\beta t), \quad y_{2}(t)=e^{\alpha t} \sin (\beta t)
$$

Two main sets of fundamental solutions.

Example

Find the general solution of the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.

Two main sets of fundamental solutions.

Example

Find the general solution of the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.
Solution: We first find the roots of the characteristic polynomial,
$r^{2}-2 r+6=0$

Two main sets of fundamental solutions.

Example

Find the general solution of the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.
Solution: We first find the roots of the characteristic polynomial,
$r^{2}-2 r+6=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}(2 \pm \sqrt{4-24})$

Two main sets of fundamental solutions.

Example

Find the general solution of the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.
Solution: We first find the roots of the characteristic polynomial,
$r^{2}-2 r+6=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}(2 \pm \sqrt{4-24}) \quad \Rightarrow \quad r_{ \pm}=1 \pm i \sqrt{5}$.

Two main sets of fundamental solutions.

Example

Find the general solution of the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.
Solution: We first find the roots of the characteristic polynomial,
$r^{2}-2 r+6=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}(2 \pm \sqrt{4-24}) \quad \Rightarrow \quad r_{ \pm}=1 \pm i \sqrt{5}$.
A fundamental solution set is

$$
\tilde{y}_{1}(t)=e^{(1+i \sqrt{5}) t}, \quad \tilde{y}_{2}(t)=e^{(1-i \sqrt{5}) t}
$$

Two main sets of fundamental solutions.

Example

Find the general solution of the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.
Solution: We first find the roots of the characteristic polynomial,
$r^{2}-2 r+6=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}(2 \pm \sqrt{4-24}) \quad \Rightarrow \quad r_{ \pm}=1 \pm i \sqrt{5}$.
A fundamental solution set is

$$
\tilde{y}_{1}(t)=e^{(1+i \sqrt{5}) t}, \quad \tilde{y}_{2}(t)=e^{(1-i \sqrt{5}) t}
$$

These are complex-valued functions.

Two main sets of fundamental solutions.

Example

Find the general solution of the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.
Solution: We first find the roots of the characteristic polynomial,
$r^{2}-2 r+6=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}(2 \pm \sqrt{4-24}) \quad \Rightarrow \quad r_{ \pm}=1 \pm i \sqrt{5}$.
A fundamental solution set is

$$
\tilde{y}_{1}(t)=e^{(1+i \sqrt{5}) t}, \quad \tilde{y}_{2}(t)=e^{(1-i \sqrt{5}) t}
$$

These are complex-valued functions. The general solution is

$$
y(t)=\tilde{c}_{1} e^{(1+i \sqrt{5}) t}+\tilde{c}_{2} e^{(1-i \sqrt{5}) t}, \quad \tilde{c}_{1}, \tilde{c}_{2} \in \mathbb{C}
$$

Two main sets of fundamental solutions.

Remark:

- The solutions found above include real-valued and complex-valued solutions.

Remark:

- The solutions found above include real-valued and complex-valued solutions.
- Since the differential equation is real-valued, it is usually important in applications to obtain the most general real-valued solution. (See RLC circuit below.)

Two main sets of fundamental solutions.

Remark:

- The solutions found above include real-valued and complex-valued solutions.
- Since the differential equation is real-valued, it is usually important in applications to obtain the most general real-valued solution. (See RLC circuit below.)
- In the expression above it is difficult to take apart real-valued solutions from complex-valued solutions.

Two main sets of fundamental solutions.

Remark:

- The solutions found above include real-valued and complex-valued solutions.
- Since the differential equation is real-valued, it is usually important in applications to obtain the most general real-valued solution. (See RLC circuit below.)
- In the expression above it is difficult to take apart real-valued solutions from complex-valued solutions.
- In other words: It is not simple to see what values of \tilde{c}_{1} and \tilde{c}_{2} make the general solution above to be real-valued.

Two main sets of fundamental solutions.

Remark:

- The solutions found above include real-valued and complex-valued solutions.
- Since the differential equation is real-valued, it is usually important in applications to obtain the most general real-valued solution. (See RLC circuit below.)
- In the expression above it is difficult to take apart real-valued solutions from complex-valued solutions.
- In other words: It is not simple to see what values of \tilde{c}_{1} and \tilde{c}_{2} make the general solution above to be real-valued.
- One way to find the real-valued general solution is to find real-valued fundamental solutions.

Second order linear homogeneous ODE.

- Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.
- Characteristic polynomial with complex roots.
- Two main sets of fundamental solutions.
- A real-valued fundamental and general solutions.
- Application: The RLC circuit.

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

$$
y^{\prime \prime}-2 y^{\prime}+6 y=0
$$

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

$$
y^{\prime \prime}-2 y^{\prime}+6 y=0
$$

Solution: Recall: $y(t)=\tilde{c}_{1} e^{(1+i \sqrt{5}) t}+\tilde{c}_{2} e^{(1-i \sqrt{5}) t}, \tilde{c}_{1}, \tilde{c}_{2} \in \mathbb{C}$.

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

$$
y^{\prime \prime}-2 y^{\prime}+6 y=0
$$

Solution: Recall: $y(t)=\tilde{c}_{1} e^{(1+i \sqrt{5}) t}+\tilde{c}_{2} e^{(1-i \sqrt{5}) t}, \tilde{c}_{1}, \tilde{c}_{2} \in \mathbb{C}$.
The Theorem above says that a real-valued fundamental set is

$$
y_{1}(t)=e^{t} \cos (\sqrt{5} t), \quad y_{2}(t)=e^{t} \sin (\sqrt{5} t)
$$

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

$$
y^{\prime \prime}-2 y^{\prime}+6 y=0 .
$$

Solution: Recall: $y(t)=\tilde{c}_{1} e^{(1+i \sqrt{5}) t}+\tilde{c}_{2} e^{(1-i \sqrt{5}) t}, \tilde{c}_{1}, \tilde{c}_{2} \in \mathbb{C}$.
The Theorem above says that a real-valued fundamental set is

$$
y_{1}(t)=e^{t} \cos (\sqrt{5} t), \quad y_{2}(t)=e^{t} \sin (\sqrt{5} t) .
$$

Hence, the complex-valued general solution can also be written as

$$
y(t)=\left[c_{1} \cos (\sqrt{5} t)+c_{2} \sin (\sqrt{5} t)\right] e^{t}, \quad c_{1}, c_{2} \in \mathbb{C} .
$$

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

$$
y^{\prime \prime}-2 y^{\prime}+6 y=0
$$

Solution: Recall: $y(t)=\tilde{c}_{1} e^{(1+i \sqrt{5}) t}+\tilde{c}_{2} e^{(1-i \sqrt{5}) t}, \tilde{c}_{1}, \tilde{c}_{2} \in \mathbb{C}$.
The Theorem above says that a real-valued fundamental set is

$$
y_{1}(t)=e^{t} \cos (\sqrt{5} t), \quad y_{2}(t)=e^{t} \sin (\sqrt{5} t)
$$

Hence, the complex-valued general solution can also be written as

$$
y(t)=\left[c_{1} \cos (\sqrt{5} t)+c_{2} \sin (\sqrt{5} t)\right] e^{t}, \quad c_{1}, c_{2} \in \mathbb{C}
$$

The real-valued general solution is simple to obtain:

$$
y(t)=\left[c_{1} \cos (\sqrt{5} t)+c_{2} \sin (\sqrt{5} t)\right] e^{t}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

$$
y^{\prime \prime}-2 y^{\prime}+6 y=0
$$

Solution: Recall: $y(t)=\tilde{c}_{1} e^{(1+i \sqrt{5}) t}+\tilde{c}_{2} e^{(1-i \sqrt{5}) t}, \tilde{c}_{1}, \tilde{c}_{2} \in \mathbb{C}$.
The Theorem above says that a real-valued fundamental set is

$$
y_{1}(t)=e^{t} \cos (\sqrt{5} t), \quad y_{2}(t)=e^{t} \sin (\sqrt{5} t)
$$

Hence, the complex-valued general solution can also be written as

$$
y(t)=\left[c_{1} \cos (\sqrt{5} t)+c_{2} \sin (\sqrt{5} t)\right] e^{t}, \quad c_{1}, c_{2} \in \mathbb{C}
$$

The real-valued general solution is simple to obtain:

$$
y(t)=\left[c_{1} \cos (\sqrt{5} t)+c_{2} \sin (\sqrt{5} t)\right] e^{t}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

We just restricted the coefficients c_{1}, c_{2} to be real-valued.

A real-valued fundamental and general solutions.

Example

Show that $y_{1}(t)=e^{t} \cos (\sqrt{5} t)$ and $y_{2}(t)=e^{t} \sin (\sqrt{5} t)$ are fundamental solutions to the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.

A real-valued fundamental and general solutions.

Example

Show that $y_{1}(t)=e^{t} \cos (\sqrt{5} t)$ and $y_{2}(t)=e^{t} \sin (\sqrt{5} t)$ are fundamental solutions to the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.

Solution: We start with the complex-valued fundamental solutions,

$$
\tilde{y}_{1}(t)=e^{(1+i \sqrt{5}) t}, \quad \tilde{y}_{2}(t)=e^{(1-i \sqrt{5}) t}
$$

A real-valued fundamental and general solutions.

Example

Show that $y_{1}(t)=e^{t} \cos (\sqrt{5} t)$ and $y_{2}(t)=e^{t} \sin (\sqrt{5} t)$ are fundamental solutions to the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.

Solution: We start with the complex-valued fundamental solutions,

$$
\tilde{y}_{1}(t)=e^{(1+i \sqrt{5}) t}, \quad \tilde{y}_{2}(t)=e^{(1-i \sqrt{5}) t}
$$

Any linear combination of these functions is solution of the differential equation.

A real-valued fundamental and general solutions.

Example

Show that $y_{1}(t)=e^{t} \cos (\sqrt{5} t)$ and $y_{2}(t)=e^{t} \sin (\sqrt{5} t)$ are fundamental solutions to the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.

Solution: We start with the complex-valued fundamental solutions,

$$
\tilde{y}_{1}(t)=e^{(1+i \sqrt{5}) t}, \quad \tilde{y}_{2}(t)=e^{(1-i \sqrt{5}) t}
$$

Any linear combination of these functions is solution of the differential equation. In particular,

$$
y_{1}(t)=\frac{1}{2}\left[\tilde{y}_{1}(t)+\tilde{y}_{2}(t)\right], \quad y_{2}(t)=\frac{1}{2 i}\left[\tilde{y}_{1}(t)-\tilde{y}_{2}(t)\right] .
$$

A real-valued fundamental and general solutions.

Example

Show that $y_{1}(t)=e^{t} \cos (\sqrt{5} t)$ and $y_{2}(t)=e^{t} \sin (\sqrt{5} t)$ are fundamental solutions to the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.

Solution: We start with the complex-valued fundamental solutions,

$$
\tilde{y}_{1}(t)=e^{(1+i \sqrt{5}) t}, \quad \tilde{y}_{2}(t)=e^{(1-i \sqrt{5}) t}
$$

Any linear combination of these functions is solution of the differential equation. In particular,

$$
y_{1}(t)=\frac{1}{2}\left[\tilde{y}_{1}(t)+\tilde{y}_{2}(t)\right], \quad y_{2}(t)=\frac{1}{2 i}\left[\tilde{y}_{1}(t)-\tilde{y}_{2}(t)\right] .
$$

Now, recalling $e^{(1 \pm i \sqrt{5}) t}=e^{t} e^{ \pm i \sqrt{5} t}$

A real-valued fundamental and general solutions.

Example

Show that $y_{1}(t)=e^{t} \cos (\sqrt{5} t)$ and $y_{2}(t)=e^{t} \sin (\sqrt{5} t)$ are fundamental solutions to the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.

Solution: We start with the complex-valued fundamental solutions,

$$
\tilde{y}_{1}(t)=e^{(1+i \sqrt{5}) t}, \quad \tilde{y}_{2}(t)=e^{(1-i \sqrt{5}) t}
$$

Any linear combination of these functions is solution of the differential equation. In particular,

$$
y_{1}(t)=\frac{1}{2}\left[\tilde{y}_{1}(t)+\tilde{y}_{2}(t)\right], \quad y_{2}(t)=\frac{1}{2 i}\left[\tilde{y}_{1}(t)-\tilde{y}_{2}(t)\right] .
$$

Now, recalling $e^{(1 \pm i \sqrt{5}) t}=e^{t} e^{ \pm i \sqrt{5} t}$
$y_{1}(t)=\frac{1}{2}\left[e^{t} e^{i \sqrt{5} t}+e^{t} e^{-i \sqrt{5} t}\right], \quad y_{2}(t)=\frac{1}{2 i}\left[e^{t} e^{i \sqrt{5} t}-e^{t} e^{-i \sqrt{5} t}\right]$,

A real-valued fundamental and general solutions.

Example

Show that $y_{1}(t)=e^{t} \cos (\sqrt{5} t)$ and $y_{2}(t)=e^{t} \sin (\sqrt{5} t)$ are fundamental solutions to the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.

Solution: $y_{1}=\frac{e^{t}}{2}\left[e^{i \sqrt{5} t}+e^{-i \sqrt{5} t}\right], \quad y_{2}=\frac{e^{t}}{2 i}\left[e^{i \sqrt{5} t}-e^{-i \sqrt{5} t}\right]$.

A real-valued fundamental and general solutions.

Example

Show that $y_{1}(t)=e^{t} \cos (\sqrt{5} t)$ and $y_{2}(t)=e^{t} \sin (\sqrt{5} t)$ are fundamental solutions to the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.

Solution: $y_{1}=\frac{e^{t}}{2}\left[e^{i \sqrt{5} t}+e^{-i \sqrt{5} t}\right], \quad y_{2}=\frac{e^{t}}{2 i}\left[e^{i \sqrt{5} t}-e^{-i \sqrt{5} t}\right]$.
The Euler formula and its complex-conjugate formula

$$
e^{i \sqrt{5} t}=[\cos (\sqrt{5} t)+i \sin (\sqrt{5} t)]
$$

A real-valued fundamental and general solutions.

Example

Show that $y_{1}(t)=e^{t} \cos (\sqrt{5} t)$ and $y_{2}(t)=e^{t} \sin (\sqrt{5} t)$ are fundamental solutions to the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.
Solution: $y_{1}=\frac{e^{t}}{2}\left[e^{i \sqrt{5} t}+e^{-i \sqrt{5} t}\right], \quad y_{2}=\frac{e^{t}}{2 i}\left[e^{i \sqrt{5} t}-e^{-i \sqrt{5} t}\right]$.
The Euler formula and its complex-conjugate formula

$$
\begin{gathered}
e^{i \sqrt{5} t}=[\cos (\sqrt{5} t)+i \sin (\sqrt{5} t)] \\
e^{-i \sqrt{5} t}=[\cos (\sqrt{5} t)-i \sin (\sqrt{5} t)]
\end{gathered}
$$

A real-valued fundamental and general solutions.

Example

Show that $y_{1}(t)=e^{t} \cos (\sqrt{5} t)$ and $y_{2}(t)=e^{t} \sin (\sqrt{5} t)$ are fundamental solutions to the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.
Solution: $y_{1}=\frac{e^{t}}{2}\left[e^{i \sqrt{5} t}+e^{-i \sqrt{5} t}\right], \quad y_{2}=\frac{e^{t}}{2 i}\left[e^{i \sqrt{5} t}-e^{-i \sqrt{5} t}\right]$.
The Euler formula and its complex-conjugate formula

$$
\begin{aligned}
e^{i \sqrt{5} t} & =[\cos (\sqrt{5} t)+i \sin (\sqrt{5} t)] \\
e^{-i \sqrt{5} t} & =[\cos (\sqrt{5} t)-i \sin (\sqrt{5} t)]
\end{aligned}
$$

imply the inverse relations

$$
e^{i \sqrt{5} t}+e^{-i \sqrt{5} t}=2 \cos (\sqrt{5} t)
$$

A real-valued fundamental and general solutions.

Example

Show that $y_{1}(t)=e^{t} \cos (\sqrt{5} t)$ and $y_{2}(t)=e^{t} \sin (\sqrt{5} t)$ are fundamental solutions to the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.
Solution: $y_{1}=\frac{e^{t}}{2}\left[e^{i \sqrt{5} t}+e^{-i \sqrt{5} t}\right], \quad y_{2}=\frac{e^{t}}{2 i}\left[e^{i \sqrt{5} t}-e^{-i \sqrt{5} t}\right]$.
The Euler formula and its complex-conjugate formula

$$
\begin{gathered}
e^{i \sqrt{5} t}=[\cos (\sqrt{5} t)+i \sin (\sqrt{5} t)] \\
e^{-i \sqrt{5} t}=[\cos (\sqrt{5} t)-i \sin (\sqrt{5} t)]
\end{gathered}
$$

imply the inverse relations

$$
e^{i \sqrt{5} t}+e^{-i \sqrt{5} t}=2 \cos (\sqrt{5} t), \quad e^{i \sqrt{5} t}-e^{-i \sqrt{5} t}=2 i \sin (\sqrt{5} t)
$$

A real-valued fundamental and general solutions.

Example

Show that $y_{1}(t)=e^{t} \cos (\sqrt{5} t)$ and $y_{2}(t)=e^{t} \sin (\sqrt{5} t)$ are fundamental solutions to the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.
Solution: $y_{1}=\frac{e^{t}}{2}\left[e^{i \sqrt{5} t}+e^{-i \sqrt{5} t}\right], \quad y_{2}=\frac{e^{t}}{2 i}\left[e^{i \sqrt{5} t}-e^{-i \sqrt{5} t}\right]$.
The Euler formula and its complex-conjugate formula

$$
\begin{aligned}
e^{i \sqrt{5} t} & =[\cos (\sqrt{5} t)+i \sin (\sqrt{5} t)] \\
e^{-i \sqrt{5} t} & =[\cos (\sqrt{5} t)-i \sin (\sqrt{5} t)]
\end{aligned}
$$

imply the inverse relations

$$
e^{i \sqrt{5} t}+e^{-i \sqrt{5} t}=2 \cos (\sqrt{5} t), \quad e^{i \sqrt{5} t}-e^{-i \sqrt{5} t}=2 i \sin (\sqrt{5} t)
$$

So functions y_{1} and y_{2} can be written as

$$
y_{1}(t)=e^{t} \cos (\sqrt{5} t)
$$

A real-valued fundamental and general solutions.

Example

Show that $y_{1}(t)=e^{t} \cos (\sqrt{5} t)$ and $y_{2}(t)=e^{t} \sin (\sqrt{5} t)$ are fundamental solutions to the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.
Solution: $y_{1}=\frac{e^{t}}{2}\left[e^{i \sqrt{5} t}+e^{-i \sqrt{5} t}\right], \quad y_{2}=\frac{e^{t}}{2 i}\left[e^{i \sqrt{5} t}-e^{-i \sqrt{5} t}\right]$.
The Euler formula and its complex-conjugate formula

$$
\begin{aligned}
e^{i \sqrt{5} t} & =[\cos (\sqrt{5} t)+i \sin (\sqrt{5} t)] \\
e^{-i \sqrt{5} t} & =[\cos (\sqrt{5} t)-i \sin (\sqrt{5} t)]
\end{aligned}
$$

imply the inverse relations

$$
e^{i \sqrt{5} t}+e^{-i \sqrt{5} t}=2 \cos (\sqrt{5} t), \quad e^{i \sqrt{5} t}-e^{-i \sqrt{5} t}=2 i \sin (\sqrt{5} t)
$$

So functions y_{1} and y_{2} can be written as

$$
y_{1}(t)=e^{t} \cos (\sqrt{5} t), \quad y_{2}(t)=e^{t} \sin (\sqrt{5} t)
$$

A real-valued fundamental and general solutions.

Example

Show that $y_{1}(t)=e^{t} \cos (\sqrt{5} t)$ and $y_{2}(t)=e^{t} \sin (\sqrt{5} t)$ are fundamental solutions to the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.

Solution: $y_{1}(t)=e^{t} \cos (\sqrt{5} t), \quad y_{2}(t)=e^{t} \sin (\sqrt{5} t)$.

A real-valued fundamental and general solutions.

Example

Show that $y_{1}(t)=e^{t} \cos (\sqrt{5} t)$ and $y_{2}(t)=e^{t} \sin (\sqrt{5} t)$ are fundamental solutions to the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.

Solution: $y_{1}(t)=e^{t} \cos (\sqrt{5} t), \quad y_{2}(t)=e^{t} \sin (\sqrt{5} t)$.
Summary:

- These functions are solutions of the differential equation.

A real-valued fundamental and general solutions.

Example

Show that $y_{1}(t)=e^{t} \cos (\sqrt{5} t)$ and $y_{2}(t)=e^{t} \sin (\sqrt{5} t)$ are fundamental solutions to the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.

Solution: $y_{1}(t)=e^{t} \cos (\sqrt{5} t), \quad y_{2}(t)=e^{t} \sin (\sqrt{5} t)$.
Summary:

- These functions are solutions of the differential equation.
- They are not proportional to each other, Hence li.

A real-valued fundamental and general solutions.

Example

Show that $y_{1}(t)=e^{t} \cos (\sqrt{5} t)$ and $y_{2}(t)=e^{t} \sin (\sqrt{5} t)$ are fundamental solutions to the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.

Solution: $y_{1}(t)=e^{t} \cos (\sqrt{5} t), \quad y_{2}(t)=e^{t} \sin (\sqrt{5} t)$.
Summary:

- These functions are solutions of the differential equation.
- They are not proportional to each other, Hence li.
- Therefore, y_{1}, y_{2} form a fundamental set.

A real-valued fundamental and general solutions.

Example

Show that $y_{1}(t)=e^{t} \cos (\sqrt{5} t)$ and $y_{2}(t)=e^{t} \sin (\sqrt{5} t)$ are fundamental solutions to the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.

Solution: $y_{1}(t)=e^{t} \cos (\sqrt{5} t), \quad y_{2}(t)=e^{t} \sin (\sqrt{5} t)$.
Summary:

- These functions are solutions of the differential equation.
- They are not proportional to each other, Hence li.
- Therefore, y_{1}, y_{2} form a fundamental set.
- The general solution of the equation is

$$
y(t)=\left[c_{1} \cos (\sqrt{5} t)+c_{2} \sin (\sqrt{5} t)\right] e^{t}
$$

A real-valued fundamental and general solutions.

Example

Show that $y_{1}(t)=e^{t} \cos (\sqrt{5} t)$ and $y_{2}(t)=e^{t} \sin (\sqrt{5} t)$ are fundamental solutions to the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.

Solution: $y_{1}(t)=e^{t} \cos (\sqrt{5} t), \quad y_{2}(t)=e^{t} \sin (\sqrt{5} t)$.
Summary:

- These functions are solutions of the differential equation.
- They are not proportional to each other, Hence li.
- Therefore, y_{1}, y_{2} form a fundamental set.
- The general solution of the equation is

$$
y(t)=\left[c_{1} \cos (\sqrt{5} t)+c_{2} \sin (\sqrt{5} t)\right] e^{t}
$$

- y is real-valued for $c_{1}, c_{2} \in \mathbb{R}$.

A real-valued fundamental and general solutions.

Example

Show that $y_{1}(t)=e^{t} \cos (\sqrt{5} t)$ and $y_{2}(t)=e^{t} \sin (\sqrt{5} t)$ are fundamental solutions to the equation $y^{\prime \prime}-2 y^{\prime}+6 y=0$.

Solution: $y_{1}(t)=e^{t} \cos (\sqrt{5} t), \quad y_{2}(t)=e^{t} \sin (\sqrt{5} t)$.
Summary:

- These functions are solutions of the differential equation.
- They are not proportional to each other, Hence li.
- Therefore, y_{1}, y_{2} form a fundamental set.
- The general solution of the equation is

$$
y(t)=\left[c_{1} \cos (\sqrt{5} t)+c_{2} \sin (\sqrt{5} t)\right] e^{t}
$$

- y is real-valued for $c_{1}, c_{2} \in \mathbb{R}$.
- y is complex-valued for $c_{1}, c_{2} \in \mathbb{C}$.

A real-valued fundamental and general solutions.

Remark:

- The proof of the Theorem follow exactly the same ideas given in the example above.

A real-valued fundamental and general solutions.

Remark:

- The proof of the Theorem follow exactly the same ideas given in the example above.
- One has to replace the roots of the characteristic polynomial

$$
1+i \sqrt{5} \quad \rightarrow \quad \alpha+i \beta, \quad 1-i \sqrt{5} \quad \rightarrow \quad \alpha-i \beta
$$

A real-valued fundamental and general solutions.

Remark:

- The proof of the Theorem follow exactly the same ideas given in the example above.
- One has to replace the roots of the characteristic polynomial

$$
1+i \sqrt{5} \quad \rightarrow \quad \alpha+i \beta, \quad 1-i \sqrt{5} \quad \rightarrow \quad \alpha-i \beta
$$

- The real-valued fundamental solutions are

$$
y_{1}(t)=e^{\alpha t} \cos (\beta t), \quad y_{2}(t)=e^{\alpha t} \sin (\beta t)
$$

A real-valued fundamental and general solutions.

Example

Find real-valued fundamental solutions to the equation

$$
y^{\prime \prime}+2 y^{\prime}+6 y=0
$$

A real-valued fundamental and general solutions.

Example

Find real-valued fundamental solutions to the equation

$$
y^{\prime \prime}+2 y^{\prime}+6 y=0
$$

Solution:
The roots of the characteristic polynomial $p(r)=r^{2}+2 r+6$

A real-valued fundamental and general solutions.

Example

Find real-valued fundamental solutions to the equation

$$
y^{\prime \prime}+2 y^{\prime}+6 y=0
$$

Solution:
The roots of the characteristic polynomial $p(r)=r^{2}+2 r+6$ are

$$
r_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4-24}]
$$

A real-valued fundamental and general solutions.

Example

Find real-valued fundamental solutions to the equation

$$
y^{\prime \prime}+2 y^{\prime}+6 y=0
$$

Solution:
The roots of the characteristic polynomial $p(r)=r^{2}+2 r+6$ are

$$
r_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4-24}]=\frac{1}{2}[-2 \pm \sqrt{-20}]
$$

A real-valued fundamental and general solutions.

Example

Find real-valued fundamental solutions to the equation

$$
y^{\prime \prime}+2 y^{\prime}+6 y=0
$$

Solution:
The roots of the characteristic polynomial $p(r)=r^{2}+2 r+6$ are

$$
r_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4-24}]=\frac{1}{2}[-2 \pm \sqrt{-20}] \Rightarrow r_{ \pm}=-1 \pm i \sqrt{5} .
$$

A real-valued fundamental and general solutions.

Example

Find real-valued fundamental solutions to the equation

$$
y^{\prime \prime}+2 y^{\prime}+6 y=0
$$

Solution:
The roots of the characteristic polynomial $p(r)=r^{2}+2 r+6$ are

$$
r_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4-24}]=\frac{1}{2}[-2 \pm \sqrt{-20}] \Rightarrow r_{ \pm}=-1 \pm i \sqrt{5} .
$$

These are complex-valued roots,

A real-valued fundamental and general solutions.

Example

Find real-valued fundamental solutions to the equation

$$
y^{\prime \prime}+2 y^{\prime}+6 y=0
$$

Solution:
The roots of the characteristic polynomial $p(r)=r^{2}+2 r+6$ are

$$
r_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4-24}]=\frac{1}{2}[-2 \pm \sqrt{-20}] \Rightarrow r_{ \pm}=-1 \pm i \sqrt{5} .
$$

These are complex-valued roots, with

$$
\alpha=-1, \quad \beta=\sqrt{5}
$$

A real-valued fundamental and general solutions.

Example

Find real-valued fundamental solutions to the equation

$$
y^{\prime \prime}+2 y^{\prime}+6 y=0
$$

Solution:
The roots of the characteristic polynomial $p(r)=r^{2}+2 r+6$ are

$$
r_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4-24}]=\frac{1}{2}[-2 \pm \sqrt{-20}] \Rightarrow r_{ \pm}=-1 \pm i \sqrt{5} .
$$

These are complex-valued roots, with

$$
\alpha=-1, \quad \beta=\sqrt{5}
$$

Real-valued fundamental solutions are

$$
y_{1}(t)=e^{-t} \cos (\sqrt{5} t), \quad y_{2}(t)=e^{-t} \sin (\sqrt{5} t)
$$

A real-valued fundamental and general solutions.

Example

Find real-valued fundamental solutions to the equation

$$
y^{\prime \prime}+2 y^{\prime}+6 y=0
$$

Solution: $y_{1}(t)=e^{-t} \cos (\sqrt{5} t), \quad y_{2}(t)=e^{-t} \sin (\sqrt{5} t)$.

Differential equations like the one in this example describe physical processes related to damped oscillations. For example pendulums with friction.

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of $y^{\prime \prime}+5 y=0$.

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of $y^{\prime \prime}+5 y=0$.
Solution: The characteristic polynomial is $p(r)=r^{2}+5$.

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of $y^{\prime \prime}+5 y=0$.
Solution: The characteristic polynomial is $p(r)=r^{2}+5$. Its roots are $r_{ \pm}= \pm \sqrt{5} i$. This is the case $\alpha=0$, and $\beta=\sqrt{5}$.

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of $y^{\prime \prime}+5 y=0$.
Solution: The characteristic polynomial is $p(r)=r^{2}+5$. Its roots are $r_{ \pm}= \pm \sqrt{5} i$. This is the case $\alpha=0$, and $\beta=\sqrt{5}$.

Real-valued fundamental solutions are

$$
y_{1}(t)=\cos (\sqrt{5} t), \quad y_{2}(t)=\sin (\sqrt{5} t)
$$

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of $y^{\prime \prime}+5 y=0$.
Solution: The characteristic polynomial is $p(r)=r^{2}+5$. Its roots are $r_{ \pm}= \pm \sqrt{5} i$. This is the case $\alpha=0$, and $\beta=\sqrt{5}$.

Real-valued fundamental solutions are

$$
y_{1}(t)=\cos (\sqrt{5} t), \quad y_{2}(t)=\sin (\sqrt{5} t)
$$

The real-valued general solution is

$$
y(t)=c_{1} \cos (\sqrt{5} t)+c_{2} \sin (\sqrt{5} t), \quad c_{1}, c_{2} \in \mathbb{R}
$$

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of $y^{\prime \prime}+5 y=0$.
Solution: The characteristic polynomial is $p(r)=r^{2}+5$. Its roots are $r_{ \pm}= \pm \sqrt{5} i$. This is the case $\alpha=0$, and $\beta=\sqrt{5}$.

Real-valued fundamental solutions are

$$
y_{1}(t)=\cos (\sqrt{5} t), \quad y_{2}(t)=\sin (\sqrt{5} t)
$$

The real-valued general solution is

$$
y(t)=c_{1} \cos (\sqrt{5} t)+c_{2} \sin (\sqrt{5} t), \quad c_{1}, c_{2} \in \mathbb{R}
$$

Remark: Equations like the one in this example describe oscillatory physical processes without dissipation.

Second order linear homogeneous ODE.

- Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.
- Characteristic polynomial with complex roots.
- Two main sets of fundamental solutions.
- A real-valued fundamental and general solutions.
- Application: The RLC circuit.

Application: The RLC circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

Application: The RLC circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

$I(t):$ electric current.

The electric current flowing in such circuit satisfies:

$$
L I^{\prime}(t)+R I(t)+\frac{1}{C} \int_{t_{0}}^{t} I(s) d s=0
$$

Application: The RLC circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

$I(t)$: electric current.

The electric current flowing in such circuit satisfies:

$$
L I^{\prime}(t)+R I(t)+\frac{1}{C} \int_{t_{0}}^{t} I(s) d s=0
$$

Derivate both sides above: $L I^{\prime \prime}(t)+R I^{\prime}(t)+\frac{1}{C} I(t)=0$.

Application: The RLC circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

$I(t)$: electric current.

The electric current flowing in such circuit satisfies:

$$
L I^{\prime}(t)+R I(t)+\frac{1}{C} \int_{t_{0}}^{t} I(s) d s=0
$$

Derivate both sides above: $L I^{\prime \prime}(t)+R I^{\prime}(t)+\frac{1}{C} I(t)=0$.
Divide by $L: \quad I^{\prime \prime}(t)+2\left(\frac{R}{2 L}\right) I^{\prime}(t)+\frac{1}{L C} I(t)=0$.

Application: The RLC circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

$I(t):$ electric current.

The electric current flowing in such circuit satisfies:

$$
L I^{\prime}(t)+R I(t)+\frac{1}{C} \int_{t_{0}}^{t} I(s) d s=0
$$

Derivate both sides above: $L I^{\prime \prime}(t)+R I^{\prime}(t)+\frac{1}{C} I(t)=0$.
Divide by $L: \quad I^{\prime \prime}(t)+2\left(\frac{R}{2 L}\right) I^{\prime}(t)+\frac{1}{L C} I(t)=0$.
Introduce $\alpha=\frac{R}{2 L}$ and $\omega=\frac{1}{\sqrt{L C}}$,

Application: The RLC circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

$I(t):$ electric current.

The electric current flowing in such circuit satisfies:

$$
L I^{\prime}(t)+R I(t)+\frac{1}{C} \int_{t_{0}}^{t} I(s) d s=0
$$

Derivate both sides above: $L I^{\prime \prime}(t)+R I^{\prime}(t)+\frac{1}{C} I(t)=0$.
Divide by $L: \quad I^{\prime \prime}(t)+2\left(\frac{R}{2 L}\right) I^{\prime}(t)+\frac{1}{L C} I(t)=0$.
Introduce $\alpha=\frac{R}{2 L}$ and $\omega=\frac{1}{\sqrt{L C}}$, then $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$.

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r)=r^{2}+2 \alpha r+\omega^{2}$.

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r)=r^{2}+2 \alpha r+\omega^{2}$. The roots are:

$$
r_{ \pm}=\frac{1}{2}\left[-2 \alpha \pm \sqrt{4 \alpha^{2}-4 \omega^{2}}\right]
$$

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r)=r^{2}+2 \alpha r+\omega^{2}$. The roots are:

$$
r_{ \pm}=\frac{1}{2}\left[-2 \alpha \pm \sqrt{4 \alpha^{2}-4 \omega^{2}}\right] \quad \Rightarrow \quad r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}
$$

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r)=r^{2}+2 \alpha r+\omega^{2}$. The roots are:

$$
r_{ \pm}=\frac{1}{2}\left[-2 \alpha \pm \sqrt{4 \alpha^{2}-4 \omega^{2}}\right] \quad \Rightarrow \quad r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}
$$

Case (a) $R=0$.

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r)=r^{2}+2 \alpha r+\omega^{2}$. The roots are:

$$
r_{ \pm}=\frac{1}{2}\left[-2 \alpha \pm \sqrt{4 \alpha^{2}-4 \omega^{2}}\right] \quad \Rightarrow \quad r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}
$$

Case (a) $R=0$. This implies $\alpha=0$,

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r)=r^{2}+2 \alpha r+\omega^{2}$. The roots are:

$$
r_{ \pm}=\frac{1}{2}\left[-2 \alpha \pm \sqrt{4 \alpha^{2}-4 \omega^{2}}\right] \quad \Rightarrow \quad r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}
$$

Case (a) $R=0$. This implies $\alpha=0$, so $r_{ \pm}= \pm i \omega$.

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r)=r^{2}+2 \alpha r+\omega^{2}$. The roots are:

$$
r_{ \pm}=\frac{1}{2}\left[-2 \alpha \pm \sqrt{4 \alpha^{2}-4 \omega^{2}}\right] \quad \Rightarrow \quad r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}
$$

Case (a) $R=0$. This implies $\alpha=0$, so $r_{ \pm}= \pm i \omega$. Therefore,

$$
I_{1}(t)=\cos (\omega t)
$$

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r)=r^{2}+2 \alpha r+\omega^{2}$. The roots are:

$$
r_{ \pm}=\frac{1}{2}\left[-2 \alpha \pm \sqrt{4 \alpha^{2}-4 \omega^{2}}\right] \quad \Rightarrow \quad r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}
$$

Case (a) $R=0$. This implies $\alpha=0$, so $r_{ \pm}= \pm i \omega$. Therefore,

$$
I_{1}(t)=\cos (\omega t), \quad I_{2}(t)=\sin (\omega t)
$$

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r)=r^{2}+2 \alpha r+\omega^{2}$. The roots are:

$$
r_{ \pm}=\frac{1}{2}\left[-2 \alpha \pm \sqrt{4 \alpha^{2}-4 \omega^{2}}\right] \quad \Rightarrow \quad r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}
$$

Case (a) $R=0$. This implies $\alpha=0$, so $r_{ \pm}= \pm i \omega$. Therefore,

$$
I_{1}(t)=\cos (\omega t), \quad I_{2}(t)=\sin (\omega t)
$$

Remark: When the circuit has no resistance, the current oscillates without dissipation.

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: Recall: $r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}$.

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: Recall: $r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}$.
Case (b) $R<\sqrt{4 L / C}$.

Application: The RLC circuit.

Example
Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: Recall: $r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}$.
Case (b) $R<\sqrt{4 L / C}$. This implies

$$
R^{2}<\frac{4 L}{C}
$$

Application: The RLC circuit.

Example
Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: Recall: $r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}$.
Case (b) $R<\sqrt{4 L / C}$. This implies

$$
R^{2}<\frac{4 L}{C} \quad \Leftrightarrow \quad \frac{R^{2}}{4 L^{2}}<\frac{1}{L C}
$$

Application: The RLC circuit.

Example
Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: Recall: $r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}$.
Case (b) $R<\sqrt{4 L / C}$. This implies

$$
R^{2}<\frac{4 L}{C} \quad \Leftrightarrow \quad \frac{R^{2}}{4 L^{2}}<\frac{1}{L C} \quad \Leftrightarrow \quad \alpha^{2}<\omega^{2} .
$$

Application: The RLC circuit.

Example
Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: Recall: $r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}$.
Case (b) $R<\sqrt{4 L / C}$. This implies

$$
R^{2}<\frac{4 L}{C} \quad \Leftrightarrow \quad \frac{R^{2}}{4 L^{2}}<\frac{1}{L C} \quad \Leftrightarrow \quad \alpha^{2}<\omega^{2} .
$$

Therefore, $r_{ \pm}=-\alpha \pm i \sqrt{\omega^{2}-\alpha^{2}}$.

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: Recall: $r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}$.
Case (b) $R<\sqrt{4 L / C}$. This implies

$$
R^{2}<\frac{4 L}{C} \quad \Leftrightarrow \quad \frac{R^{2}}{4 L^{2}}<\frac{1}{L C} \quad \Leftrightarrow \quad \alpha^{2}<\omega^{2} .
$$

Therefore, $r_{ \pm}=-\alpha \pm i \sqrt{\omega^{2}-\alpha^{2}}$. The fundamental solutions are

$$
I_{1}(t)=e^{-\alpha t} \cos \left(\sqrt{\omega^{2}-\alpha^{2}} t\right)
$$

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: Recall: $r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}$.
Case (b) $R<\sqrt{4 L / C}$. This implies

$$
R^{2}<\frac{4 L}{C} \Leftrightarrow \frac{R^{2}}{4 L^{2}}<\frac{1}{L C} \quad \Leftrightarrow \quad \alpha^{2}<\omega^{2} .
$$

Therefore, $r_{ \pm}=-\alpha \pm i \sqrt{\omega^{2}-\alpha^{2}}$. The fundamental solutions are

$$
I_{1}(t)=e^{-\alpha t} \cos \left(\sqrt{\omega^{2}-\alpha^{2}} t\right), \quad I_{2}(t)=e^{-\alpha t} \sin \left(\sqrt{\omega^{2}-\alpha^{2}} t\right)
$$

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: Recall: $r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}$.
Case (b) $R<\sqrt{4 L / C}$. This implies

$$
R^{2}<\frac{4 L}{C} \Leftrightarrow \frac{R^{2}}{4 L^{2}}<\frac{1}{L C} \quad \Leftrightarrow \quad \alpha^{2}<\omega^{2} .
$$

Therefore, $r_{ \pm}=-\alpha \pm i \sqrt{\omega^{2}-\alpha^{2}}$. The fundamental solutions are

$$
I_{1}(t)=e^{-\alpha t} \cos \left(\sqrt{\omega^{2}-\alpha^{2}} t\right), \quad I_{2}(t)=e^{-\alpha t} \sin \left(\sqrt{\omega^{2}-\alpha^{2}} t\right)
$$

I (t$)$: electric current.

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: Recall: $r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}$.
Case (b) $R<\sqrt{4 L / C}$. This implies

$$
R^{2}<\frac{4 L}{C} \Leftrightarrow \frac{R^{2}}{4 L^{2}}<\frac{1}{L C} \quad \Leftrightarrow \quad \alpha^{2}<\omega^{2} .
$$

Therefore, $r_{ \pm}=-\alpha \pm i \sqrt{\omega^{2}-\alpha^{2}}$. The fundamental solutions are

$$
I_{1}(t)=e^{-\alpha t} \cos \left(\sqrt{\omega^{2}-\alpha^{2}} t\right), \quad I_{2}(t)=e^{-\alpha t} \sin \left(\sqrt{\omega^{2}-\alpha^{2}} t\right)
$$

I (t$)$: electric current.

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: Recall: $r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}$.
Case (b) $R<\sqrt{4 L / C}$. This implies

$$
R^{2}<\frac{4 L}{C} \quad \Leftrightarrow \quad \frac{R^{2}}{4 L^{2}}<\frac{1}{L C} \quad \Leftrightarrow \quad \alpha^{2}<\omega^{2} .
$$

Therefore, $r_{ \pm}=-\alpha \pm i \sqrt{\omega^{2}-\alpha^{2}}$. The fundamental solutions are

$$
I_{1}(t)=e^{-\alpha t} \cos \left(\sqrt{\omega^{2}-\alpha^{2}} t\right), \quad I_{2}(t)=e^{-\alpha t} \sin \left(\sqrt{\omega^{2}-\alpha^{2}} t\right)
$$

I (t) : electric current.

The resistance R damps the current oscillations.

