
Review 2 for Exam 1.

I 5 or 6 problems.

I No multiple choice questions.

I No notes, no books, no calculators.

I Problems similar to homeworks, webwork.
I Exam covers:

I Linear equations (2.1).
I Separable equations (2.2).
I Homogeneous equations (2.2).
I Modeling (2.3).
I Non-linear equations (2.4).
I Bernoulli equation (2.4).
I Exact equations (2.6).
I Exact equations with integrating factors (2.6).



Review 2 Exam 1.

Example

Find the integrating factor that converts the equation below into
an exact equation, where(

x3ey +
x

y

)
y ′ + (2x2ey + 1) = 0.

Solution: We first verify if the equation is not exact.

N =
(
x3ey +

x

y

)
⇒ ∂xN = 3x2ey +

1

y
.

M = (2x2ey + 1) = 0 ⇒ ∂yM = 2x2ey .

So the equation is not exact. We now compute

∂yM − ∂xN

N
=

2x2ey −
(
3x2ey +

1

y

)
(
x3ey +

x

y

) =

−x2ey − 1

y

x
(
x2ey +

1

y

) = −1

x
.
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µ′(x)

µ(x)
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x
⇒ ln(µ) = − ln(x) = ln

(1

x

)
⇒ µ(x) =

1

x
.
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(
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y
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(
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(
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(
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 ⇒ ∂x Ñ = ∂yM̃.
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Example

Find every solution of the initial value problem

y ′ = 4x(y +
√

y), y(0) = 4.

Solution: The equation is: Not linear.
It is a Bernoulli equation: y ′ − 4x y = 4x yn, with n = 1/2.

It is separable:
y ′

y +
√

y
= 4x .

The equation is not homogeneous. It is not exact.

Although the equation is both separable and Bernoulli, it is not
simple to integrate using the separable equation method. Indeed∫

y ′

y +
√

y
dt =

∫
4x dx + c ⇒

∫
dy

y +
√

y
= 2x2 + c .

The integral on the left-hand side requires an integration table.
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Solution: We find solutions using the Bernoulli method.

y ′ − 4x y = 4x y1/2 ⇒ y ′

y1/2
− 4x y1/2 = 4x .

Change the unknowns: v = 1/yn−1, with n = 1/2. That is,

v =
1

y−1/2
⇒ v = y1/2, ⇒ v ′ =

1

2

y ′

y1/2
.

2v ′ − 4xv = 4x ⇒ v ′ − 2xv = 2x .

The coefficient function is a(x) = −2x , so A(x) = −x2, and the
integrating factor is µ(x) = e−x2
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.
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v =
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v = −e−x2

+ c .

We conclude that v = c ex2 − 1. The initial condition for y implies
the initial condition for v , that is, v(x) =

√
y(x) implies v(0) = 2.

2 = v(0) = c − 1 ⇒ c = 3 ⇒ v(x) = 3ex2 − 1.

We finally find y = v2, that is, y(x) = (3ex2 − 1)2. C
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Review 2 for Exam 1.
Example

Find every solution y to the equation y ′ = −2x + 3y

3x + 4y
.

Solution: The equation is not linear, not Bernoulli, not separable.
It is homogeneous. (Multiply numerator and denominator on the
right hand side by (1/x).)
Is it exact? (3x + 4y) y ′ + (2x + 3y) = 0 implies ∂xN = 3 = ∂yM.
So the equation is exact.

We choose here the exact equation method. (Finding the potential
function is sometimes simpler that solving homogeneous Eqs.)

We need to find the potential function ψ:

∂yψ = N ⇒ ψ = 3xy + 2y2 + g(x).

∂xψ = M ⇒ 3y + g ′(x) = 2x + 3y ⇒ g(x) = x2.

We conclude: ψ(x , y) = 3xy + 2y2 + x2, and ψ(x , y(x)) = c . C
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So the equation is exact.

We choose here the exact equation method. (Finding the potential
function is sometimes simpler that solving homogeneous Eqs.)

We need to find the potential function ψ:

∂yψ = N ⇒ ψ = 3xy + 2y2 + g(x).

∂xψ = M ⇒ 3y + g ′(x) = 2x + 3y ⇒ g(x) = x2.

We conclude: ψ(x , y) = 3xy + 2y2 + x2, and ψ(x , y(x)) = c . C
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3x + 4y
.

Solution: If we solve the problem using that the equation is
homogeneous, it is more complicated than the previous calculation.
We just start the calculation to see the difficulty:

y ′ = −(2x + 3y)

(3x + 4y)

(1

x

)
(1

x

) = −
2 + 3

(y

x

)
3 + 4

(y

x

) .
The change v = y/x implies y = xv and y ′ = v + x v ′. Hence

v +x v ′ =
2 + 3v

3 + 4v
⇒ x v ′ =

2 + 3v

3 + 4v
−v =

2 + 3v − 3v + 4v2

3 + 4v
.

We conclude that v satisfies
3 + 4v

2− 4v2
v ′ =

1

x
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x
.

This equation is complicated to integrate.∫
3 v ′

2− 4v2
dx +
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4v v ′

2− 4v2
dx =

∫
1

x
dx + c = ln(x) + c .

The usual substitution u = v(x) implies du = v ′ dx , so∫
3 du

2− 4u2
+

∫
4u du

2− 4u2
= ln(x) + c .

The first integral on the left-hand side requires integration tables.

This is why the exact method is simpler to use in this case. C
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Second order linear homogeneous ODE (Sect. 3.3).

I Review: On solutions of y ′′ + a1 y ′ + a0 y = 0.
I Characteristic polynomial with complex roots.

I Two main sets of fundamental solutions.
I A real-valued fundamental and general solutions.

I Application: The RLC circuit.



Review: On solutions of y ′′ + a1 y
′ + a0 y = 0.

Definition
Any two solutions y1, y2 of the homogeneous equation

y ′′ + a1(t)y
′ + a0(t)y = 0,

are called fundamental solutions iff the functions y1, y2 are linearly
independent, that is, iff Wy1y2 6= 0.

Remark: Fundamental solutions are not unique.

Definition
Given any two fundamental solutions y1, y2, and arbitrary constants
c1, c2, the function

y(t) = c1 y1(t) + c2 y2(t)

is called the general solution of the differential equation above.
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Review: On solutions of y ′′ + a1 y
′ + a0 y = 0.

Theorem (Constant coefficients)

Given real constants a1, a0, consider the homogeneous, linear
differential equation on the unknown y : R → R given by

y ′′ + a1 y ′ + a0 y = 0. (1)

Let r+, r− be the roots of the characteristic polynomial
p(r) = r2 + a1r + a0, and let c0, c1 be arbitrary constants. Then,
any solution of Eq. (1) belongs to only one of the following cases:

(a) If r+ 6= r−, the general solution is y(t) = c1e
r+t + c2e

r−t .

(b) If r+ = r− ∈ R, the general solution is y(t) = (c1 + c2t)e
r+t .

Furthermore, given real constants t0, y1 and y2, there is a unique
solution to the initial value problem given by Eq. (1) and the initial
conditions

y(t0) = y1, y ′(t0) = y2.



Review: On solutions of y ′′ + a1 y
′ + a0 y = 0.

Example

Find the general solution of the equation y ′′ − y ′ − 6y = 0.

Solution: Since solutions have the form ert , we need to find the
roots of the characteristic polynomial p(r) = r2 − r − 6, that is,

r± =
1

2

(
1±

√
1 + 24

)
=

1

2
(1± 5) ⇒ r+ = 3, r− = −2.

So, r± are real-valued. A fundamental solution set is formed by

y1(t) = e3t , y2(t) = e−2t .

The general solution of the differential equations is an arbitrary
linear combination of the fundamental solutions, that is,

y(t) = c1 e3t + c2 e−2t , c1, c2 ∈ R. C

Remark: Since c1, c2 ∈ R, then y is real-valued.
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Second order linear homogeneous ODE.

I Review: On solutions of y ′′ + a1 y ′ + a0 y = 0.
I Characteristic polynomial with complex roots.

I Two main sets of fundamental solutions.
I A real-valued fundamental and general solutions.

I Application: The RLC circuit.



Two main sets of fundamental solutions.

Theorem (Complex roots)

If the constants a1, a0 ∈ R satisfy that a2
1 − 4a0 < 0, then the

characteristic polynomial p(r) = r2 + a1r + a0 of the equation

y ′′ + a1 y ′ + a0 y = 0 (2)

has complex roots r+ = α+ iβ and r− = α− iβ, where

α = −a1

2
, β =

1

2

√
4a0 − a2

1 .

Furthermore, a fundamental set of solutions to Eq. (2) is

ỹ1(t) = e(α+iβ)t , ỹ2(t) = e(α−iβ)t ,

while another fundamental set of solutions to Eq. (2) is

y1(t) = eαt cos(βt), y2(t) = eαt sin(βt).



Two main sets of fundamental solutions.

Example

Find the general solution of the equation y ′′ − 2y ′ + 6y = 0.

Solution: We first find the roots of the characteristic polynomial,

r2−2r +6 = 0 ⇒ r± =
1

2

(
2±
√

4− 24
)

⇒ r± = 1± i
√

5.

A fundamental solution set is

ỹ1(t) = e(1+i
√

5) t , ỹ2(t) = e(1−i
√

5) t .

These are complex-valued functions. The general solution is

y(t) = c̃1 e(1+i
√

5) t + c̃2 e(1−i
√

5) t , c̃1, c̃2 ∈ C. C
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Two main sets of fundamental solutions.

Remark:

I The solutions found above include real-valued and
complex-valued solutions.

I Since the differential equation is real-valued, it is usually
important in applications to obtain the most general
real-valued solution. (See RLC circuit below.)

I In the expression above it is difficult to take apart real-valued
solutions from complex-valued solutions.

I In other words: It is not simple to see what values of c̃1 and c̃2

make the general solution above to be real-valued.

I One way to find the real-valued general solution is to find
real-valued fundamental solutions.
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A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

y ′′ − 2y ′ + 6y = 0.

Solution: Recall: y(t) = c̃1e
(1+i

√
5) t + c̃2e

(1−i
√

5) t , c̃1, c̃2 ∈ C.

The Theorem above says that a real-valued fundamental set is

y1(t) = et cos(
√

5 t), y2(t) = et sin(
√

5 t).

Hence, the complex-valued general solution can also be written as

y(t) =
[
c1 cos(

√
5 t) + c2 sin(

√
5 t)

]
et , c1, c2 ∈ C.

The real-valued general solution is simple to obtain:

y(t) =
[
c1 cos(

√
5 t) + c2 sin(

√
5 t)

]
et , c1, c2 ∈ R.

We just restricted the coefficients c1, c2 to be real-valued. C
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5) t , ỹ2(t) = e(1−i
√

5) t .

Any linear combination of these functions is solution of the
differential equation. In particular,

y1(t) =
1

2

[
ỹ1(t) + ỹ2(t)
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A real-valued fundamental and general solutions.

Remark:

I The proof of the Theorem follow exactly the same ideas given
in the example above.

I One has to replace the roots of the characteristic polynomial

1 + i
√

5 → α+ iβ, 1− i
√

5 → α− iβ.

I The real-valued fundamental solutions are

y1(t) = eαt cos(βt), y2(t) = eαt sin(βt).
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Example

Find real-valued fundamental solutions to the equation

y ′′ + 2 y ′ + 6 y = 0.

Solution:
The roots of the characteristic polynomial p(r) = r2 + 2r + 6 are

r± =
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2

[
−2±

√
4− 24

]
=

1

2

[
−2±

√
−20

]
⇒ r± = −1± i

√
5.

These are complex-valued roots, with

α = −1, β =
√

5.

Real-valued fundamental solutions are

y1(t) = e−t cos(
√

5 t), y2(t) = e−t sin(
√

5 t). C
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Differential equations like the one
in this example describe physical
processes related to damped
oscillations. For example
pendulums with friction.



A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of y ′′ + 5 y = 0.
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5.
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5 t), y2(t) = sin(
√

5 t).

The real-valued general solution is

y(t) = c1 cos(
√

5 t) + c2 sin(
√

5 t), c1, c2 ∈ R. C

Remark: Equations like the one in this example describe
oscillatory physical processes without dissipation.
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Second order linear homogeneous ODE.

I Review: On solutions of y ′′ + a1 y ′ + a0 y = 0.
I Characteristic polynomial with complex roots.

I Two main sets of fundamental solutions.
I A real-valued fundamental and general solutions.

I Application: The RLC circuit.



Application: The RLC circuit.

Consider an electric circuit with
resistance R, non-zero capacitor
C , and non-zero inductance L, as
in the figure. I (t) : electric current.

R C L

The electric current flowing in such circuit satisfies:

L I ′(t) + R I (t) +
1

C

∫ t

t0

I (s) ds = 0.

Derivate both sides above: L I ′′(t) + R I ′(t) +
1

C
I (t) = 0.

Divide by L: I ′′(t) + 2
( R

2L

)
I ′(t) +

1

LC
I (t) = 0.

Introduce α =
R

2L
and ω =

1√
LC

, then I ′′ + 2α I ′ + ω2 I = 0.
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Application: The RLC circuit.

Example

Find real-valued fundamental solutions to I ′′ + 2α I ′ + ω2 I = 0,
where α = R/(2L), ω2 = 1/(LC ), in the cases (a) (b) below.

Solution: The characteristic polynomial is p(r) = r2 + 2αr + ω2.
The roots are:

r± =
1

2

[
−2α±

√
4α2 − 4ω2

]
⇒ r± = −α±

√
α2 − ω2.

Case (a) R = 0. This implies α = 0, so r± = ±iω. Therefore,

I1(t) = cos(ωt), I2(t) = sin(ωt).

Remark: When the circuit has no resistance, the current oscillates
without dissipation.
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1
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