Review 2 for Exam 1.

- 5 or 6 problems.
- No multiple choice questions.
- No notes, no books, no calculators.
- Problems similar to homeworks, webwork.
- Exam covers:
 - Linear equations (2.1).
 - Separable equations (2.2).
 - Homogeneous equations (2.2).
 - Modeling (2.3).
 - Non-linear equations (2.4).
 - Bernoulli equation (2.4).
 - Exact equations (2.6).
 - Exact equations with integrating factors (2.6).

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$\left(x^{3}e^{y}+\frac{x}{y}\right)y'+(2x^{2}e^{y}+1)=0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$\left(x^{3}e^{y} + \frac{x}{y}\right)y' + (2x^{2}e^{y} + 1) = 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Solution: We first verify if the equation is not exact.

$$N = \left(x^3 e^y + \frac{x}{y}\right)$$

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$\left(x^{3}e^{y} + \frac{x}{y}\right)y' + (2x^{2}e^{y} + 1) = 0.$$

Solution: We first verify if the equation is not exact.

$$N = \left(x^3 e^y + \frac{x}{y}\right) \quad \Rightarrow \quad \partial_x N = 3x^2 e^y + \frac{1}{y}$$

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$\left(x^{3}e^{y} + \frac{x}{y}\right)y' + (2x^{2}e^{y} + 1) = 0.$$

Solution: We first verify if the equation is not exact.

$$N = \left(x^3 e^y + \frac{x}{y}\right) \quad \Rightarrow \quad \partial_x N = 3x^2 e^y + \frac{1}{y}.$$
$$M = \left(2x^2 e^y + 1\right) = 0$$

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$\left(x^{3}e^{y} + \frac{x}{y}\right)y' + (2x^{2}e^{y} + 1) = 0.$$

Solution: We first verify if the equation is not exact.

$$N = \left(x^3 e^y + \frac{x}{y}\right) \quad \Rightarrow \quad \partial_x N = 3x^2 e^y + \frac{1}{y}.$$
$$M = \left(2x^2 e^y + 1\right) = 0 \quad \Rightarrow \quad \partial_y M = 2x^2 e^y.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$\left(x^{3}e^{y} + \frac{x}{y}\right)y' + (2x^{2}e^{y} + 1) = 0.$$

Solution: We first verify if the equation is not exact.

$$N = \left(x^3 e^y + \frac{x}{y}\right) \quad \Rightarrow \quad \partial_x N = 3x^2 e^y + \frac{1}{y}.$$
$$M = \left(2x^2 e^y + 1\right) = 0 \quad \Rightarrow \quad \partial_y M = 2x^2 e^y.$$

So the equation is not exact.

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$\left(x^{3}e^{y}+\frac{x}{y}\right)y'+(2x^{2}e^{y}+1)=0.$$

Solution: We first verify if the equation is not exact.

$$N = \left(x^3 e^y + \frac{x}{y}\right) \Rightarrow \partial_x N = 3x^2 e^y + \frac{1}{y}.$$

$$M = (2x^2e^y + 1) = 0 \quad \Rightarrow \quad \partial_y M = 2x^2e^y.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

So the equation is not exact. We now compute

$$\frac{\partial_y M - \partial_x N}{N}$$

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$\left(x^{3}e^{y} + \frac{x}{y}\right)y' + (2x^{2}e^{y} + 1) = 0.$$

Solution: We first verify if the equation is not exact.

$$N = \left(x^3 e^y + \frac{x}{y}\right) \quad \Rightarrow \quad \partial_x N = 3x^2 e^y + \frac{1}{y}.$$
$$M = \left(2x^2 e^y + 1\right) = 0 \quad \Rightarrow \quad \partial_y M = 2x^2 e^y.$$

So the equation is not exact. We now compute

$$\frac{\partial_{y}M - \partial_{x}N}{N} = \frac{2x^{2}e^{y} - \left(3x^{2}e^{y} + \frac{1}{y}\right)}{\left(x^{3}e^{y} + \frac{x}{y}\right)}$$

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$\left(x^{3}e^{y}+\frac{x}{y}\right)y'+(2x^{2}e^{y}+1)=0.$$

Solution: We first verify if the equation is not exact.

$$N = \left(x^3 e^y + \frac{x}{y}\right) \quad \Rightarrow \quad \partial_x N = 3x^2 e^y + \frac{1}{y}.$$
$$M = \left(2x^2 e^y + 1\right) = 0 \quad \Rightarrow \quad \partial_y M = 2x^2 e^y.$$

So the equation is not exact. We now compute

$$\frac{\partial_{y}M - \partial_{x}N}{N} = \frac{2x^{2}e^{y} - \left(3x^{2}e^{y} + \frac{1}{y}\right)}{\left(x^{3}e^{y} + \frac{x}{y}\right)} = \frac{-x^{2}e^{y} - \frac{1}{y}}{x\left(x^{2}e^{y} + \frac{1}{y}\right)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$\left(x^{3}e^{y} + \frac{x}{y}\right)y' + (2x^{2}e^{y} + 1) = 0.$$

Solution: We first verify if the equation is not exact.

$$N = \left(x^3 e^y + \frac{x}{y}\right) \quad \Rightarrow \quad \partial_x N = 3x^2 e^y + \frac{1}{y}.$$
$$M = \left(2x^2 e^y + 1\right) = 0 \quad \Rightarrow \quad \partial_y M = 2x^2 e^y.$$

So the equation is not exact. We now compute

$$\frac{\partial_{y}M - \partial_{x}N}{N} = \frac{2x^{2}e^{y} - \left(3x^{2}e^{y} + \frac{1}{y}\right)}{\left(x^{3}e^{y} + \frac{x}{y}\right)} = \frac{-x^{2}e^{y} - \frac{1}{y}}{x\left(x^{2}e^{y} + \frac{1}{y}\right)} = -\frac{1}{x}.$$

◆ロト ◆母 ト ◆ 臣 ト ◆ 臣 ト ○ 臣 - の へ ()

Example

Find the integrating factor that converts the equation below into an exact equation, where

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

$$\left(x^{3}e^{y} + \frac{x}{y}\right)y' + (2x^{2}e^{y} + 1) = 0.$$

Solution: Recall: $\frac{\partial_{y}M - \partial_{x}N}{N} = -\frac{1}{x}.$

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$\left(x^{3}e^{y} + \frac{x}{y}\right)y' + (2x^{2}e^{y} + 1) = 0.$$

Solution: Recall: $\frac{\partial_y}{\partial y}$

$$\frac{M - \partial_x N}{N} = -\frac{1}{x}$$
. Therefore,

$$\frac{\mu'(x)}{\mu(x)} = -\frac{1}{x}$$

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$\left(x^{3}e^{y} + \frac{x}{y}\right)y' + (2x^{2}e^{y} + 1) = 0.$$

Solution: Recall: -

$$rac{\partial_y M - \partial_x N}{N} = -rac{1}{x}.$$
 Therefore,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

$$rac{\mu'(x)}{\mu(x)} = -rac{1}{x} \quad \Rightarrow \quad \ln(\mu) = -\ln(x)$$

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$\left(x^{3}e^{y} + \frac{x}{y}\right)y' + (2x^{2}e^{y} + 1) = 0.$$

Solution: Recall: $\frac{\partial_y M}{\partial_y M}$

$$\frac{\partial -\partial_x N}{\partial N} = -\frac{1}{x}$$
. Therefore,

$$\frac{\mu'(x)}{\mu(x)} = -\frac{1}{x} \quad \Rightarrow \quad \ln(\mu) = -\ln(x) = \ln\left(\frac{1}{x}\right)$$

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$\left(x^{3}e^{y}+\frac{x}{y}\right)y'+(2x^{2}e^{y}+1)=0.$$

Solution: Recall: $\frac{\partial_y h}{\partial_y}$

$$\frac{M-\partial_x N}{N}=-rac{1}{x}.$$
 Therefore,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

$$\frac{\mu'(x)}{\mu(x)} = -\frac{1}{x} \quad \Rightarrow \quad \ln(\mu) = -\ln(x) = \ln\left(\frac{1}{x}\right) \quad \Rightarrow \quad \mu(x) = \frac{1}{x}.$$

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$\left(x^{3}e^{y} + \frac{x}{y}\right)y' + (2x^{2}e^{y} + 1) = 0.$$

Solution: Recall: $\frac{\partial_{y}M - \partial_{x}N}{N} = -\frac{1}{x}$. Therefore,
 $\frac{\mu'(x)}{\mu(x)} = -\frac{1}{x} \quad \Rightarrow \quad \ln(\mu) = -\ln(x) = \ln\left(\frac{1}{x}\right) \quad \Rightarrow \quad \mu(x) = \frac{1}{x}$

٠

▲□▶▲□▶▲□▶▲□▶ □ のQ@

So the equation $\left(x^2e^y + \frac{1}{y}\right)y' + \left(2xe^y + \frac{1}{x}\right) = 0$ is exact.

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$\left(x^{3}e^{y} + \frac{x}{y}\right)y' + (2x^{2}e^{y} + 1) = 0.$$

Solution: Recall: $\frac{\partial_{y}M - \partial_{x}N}{N} = -\frac{1}{x}$. Therefore,

$$\frac{\mu'(x)}{\mu(x)} = -\frac{1}{x} \quad \Rightarrow \quad \ln(\mu) = -\ln(x) = \ln\left(\frac{1}{x}\right) \quad \Rightarrow \quad \mu(x) = \frac{1}{x}.$$

So the equation $\left(x^2e^y + \frac{1}{y}\right)y' + \left(2xe^y + \frac{1}{x}\right) = 0$ is exact. Indeed,

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\tilde{N} = \left(x^2 e^y + \frac{1}{y}\right)$$

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$\left(x^{3}e^{y} + \frac{x}{y}\right)y' + (2x^{2}e^{y} + 1) = 0.$$

Solution: Recall: $\frac{\partial_{y}M - \partial_{x}N}{N} = -\frac{1}{x}$. Therefore,

$$\frac{\mu'(x)}{\mu(x)} = -\frac{1}{x} \quad \Rightarrow \quad \ln(\mu) = -\ln(x) = \ln\left(\frac{1}{x}\right) \quad \Rightarrow \quad \mu(x) = \frac{1}{x}.$$

So the equation $\left(x^2e^y + \frac{1}{y}\right)y' + \left(2xe^y + \frac{1}{x}\right) = 0$ is exact. Indeed,

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\tilde{N} = \left(x^2 e^y + \frac{1}{y}\right) \quad \Rightarrow \quad \partial_x \tilde{N} = 2x e^y,$$

Example

S

Find the integrating factor that converts the equation below into an exact equation, where

$$\left(x^3 e^y + \frac{x}{y}\right) y' + (2x^2 e^y + 1) = 0.$$

olution: Recall: $\frac{\partial_y M - \partial_x N}{N} = -\frac{1}{x}$. Therefore,

$$\frac{\mu'(x)}{\mu(x)} = -\frac{1}{x} \quad \Rightarrow \quad \ln(\mu) = -\ln(x) = \ln\left(\frac{1}{x}\right) \quad \Rightarrow \quad \mu(x) = \frac{1}{x}.$$

So the equation $\left(x^2e^y + \frac{1}{y}\right)y' + \left(2xe^y + \frac{1}{x}\right) = 0$ is exact. Indeed,

$$\begin{split} \tilde{N} &= \left(x^2 e^y + \frac{1}{y} \right) \quad \Rightarrow \quad \partial_x \tilde{N} = 2x e^y, \\ \tilde{M} &= \left(2x e^y + \frac{1}{x} \right) \end{split}$$

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$\left(x^{3}e^{y} + \frac{x}{y}\right)y' + (2x^{2}e^{y} + 1) = 0.$$

Solution: Recall: $\frac{\partial_{y}M - \partial_{x}N}{N} = -\frac{1}{x}$. Therefore,
 $\frac{\mu'(x)}{N} = -\frac{1}{x} \Rightarrow \ln(\mu) = -\ln(x) = \ln\left(\frac{1}{x}\right) \Rightarrow \mu(x) = \frac{1}{x}$

$$\frac{\mu(x)}{\mu(x)} = -\frac{1}{x} \Rightarrow \ln(\mu) = -\ln(x) = \ln(\frac{1}{x}) \Rightarrow \mu(x) = \frac{1}{x}.$$

So the equation $\left(x^2e^y + \frac{1}{y}\right)y' + \left(2xe^y + \frac{1}{x}\right) = 0$ is exact. Indeed,

$$\begin{split} \tilde{N} &= \left(x^2 e^y + \frac{1}{y} \right) \quad \Rightarrow \quad \partial_x \tilde{N} = 2x e^y, \\ \tilde{M} &= \left(2x e^y + \frac{1}{x} \right) \quad \Rightarrow \quad \partial_y \tilde{M} = 2x e^y, \end{split}$$

Example

Find the integrating factor that converts the equation below into an exact equation, where

~

$$\begin{pmatrix} x^3 e^y + \frac{x}{y} \end{pmatrix} y' + (2x^2 e^y + 1) = 0.$$

Solution: Recall: $\frac{\partial_y M - \partial_x N}{N} = -\frac{1}{x}$. Therefore,
 $\frac{\mu'(x)}{\mu(x)} = -\frac{1}{x} \quad \Rightarrow \quad \ln(\mu) = -\ln(x) = \ln\left(\frac{1}{x}\right) \quad \Rightarrow \quad \mu(x) = \frac{1}{x}.$

So the equation $\left(x^2e^y+\frac{1}{y}\right)y'+\left(2xe^y+\frac{1}{x}\right)=0$ is exact. Indeed,

$$\begin{split} \tilde{N} &= \left(x^2 e^y + \frac{1}{y} \right) \quad \Rightarrow \quad \partial_x \tilde{N} = 2x e^y, \\ \tilde{M} &= \left(2x e^y + \frac{1}{x} \right) \quad \Rightarrow \quad \partial_y \tilde{M} = 2x e^y, \end{split} \ \ \Rightarrow \quad \partial_x \tilde{N} = \partial_y \tilde{M}. \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Example

Find every solution y of the equation

$$\left(x^2e^y+\frac{1}{y}\right)y'+\left(2x\,e^y+\frac{1}{x}\right)=0.$$

(ロ)、

Example

Find every solution y of the equation

$$\left(x^2e^y+\frac{1}{y}\right)y'+\left(2x\,e^y+\frac{1}{x}\right)=0.$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Solution: The equation is exact.

Example

Find every solution y of the equation

$$\left(x^2e^y+\frac{1}{y}\right)y'+\left(2x\,e^y+\frac{1}{x}\right)=0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Solution: The equation is exact. We need to find the potential function $\psi.$

Example

Find every solution y of the equation

$$\left(x^2 e^y + \frac{1}{y}\right) y' + \left(2x e^y + \frac{1}{x}\right) = 0.$$

Solution: The equation is exact. We need to find the potential function ψ .

$$\partial_y \psi = N, \qquad \partial_x \psi = M.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Find every solution y of the equation

$$\left(x^2 e^y + \frac{1}{y}\right) y' + \left(2x e^y + \frac{1}{x}\right) = 0.$$

Solution: The equation is exact. We need to find the potential function ψ .

$$\partial_{\mathbf{y}}\psi = \mathbf{N}, \qquad \partial_{\mathbf{x}}\psi = \mathbf{M}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

From the first equation we get:

$$\partial_y \psi = x^2 e^y + \frac{1}{y}$$

Example

Find every solution y of the equation

$$\left(x^2 e^y + \frac{1}{y}\right) y' + \left(2x e^y + \frac{1}{x}\right) = 0.$$

Solution: The equation is exact. We need to find the potential function ψ .

$$\partial_{\mathbf{y}}\psi = \mathbf{N}, \qquad \partial_{\mathbf{x}}\psi = \mathbf{M}.$$

From the first equation we get:

$$\partial_y \psi = x^2 e^y + \frac{1}{y} \quad \Rightarrow \quad \psi = x^2 e^y + \ln(y) + g(x).$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Find every solution y of the equation

$$\left(x^2 e^y + \frac{1}{y}\right) y' + \left(2x e^y + \frac{1}{x}\right) = 0.$$

Solution: The equation is exact. We need to find the potential function ψ .

$$\partial_{\mathbf{y}}\psi = \mathbf{N}, \qquad \partial_{\mathbf{x}}\psi = \mathbf{M}.$$

From the first equation we get:

$$\partial_y \psi = x^2 e^y + \frac{1}{y} \quad \Rightarrow \quad \psi = x^2 e^y + \ln(y) + g(x).$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Introduce the expression for ψ in the equation $\partial_x \psi = M$,

Example

Find every solution y of the equation

$$\left(x^2 e^y + \frac{1}{y}\right) y' + \left(2x e^y + \frac{1}{x}\right) = 0.$$

Solution: The equation is exact. We need to find the potential function ψ .

$$\partial_{\mathbf{y}}\psi = \mathbf{N}, \qquad \partial_{\mathbf{x}}\psi = \mathbf{M}.$$

From the first equation we get:

$$\partial_y \psi = x^2 e^y + \frac{1}{y} \quad \Rightarrow \quad \psi = x^2 e^y + \ln(y) + g(x).$$

Introduce the expression for ψ in the equation $\partial_x \psi = M$, that is,

$$2xe^y + g'(x) = \partial_x \psi$$

Example

Find every solution y of the equation

$$\left(x^2 e^y + \frac{1}{y}\right) y' + \left(2x e^y + \frac{1}{x}\right) = 0.$$

Solution: The equation is exact. We need to find the potential function ψ .

$$\partial_{\mathbf{y}}\psi = \mathbf{N}, \qquad \partial_{\mathbf{x}}\psi = \mathbf{M}.$$

From the first equation we get:

$$\partial_y \psi = x^2 e^y + \frac{1}{y} \quad \Rightarrow \quad \psi = x^2 e^y + \ln(y) + g(x).$$

Introduce the expression for ψ in the equation $\partial_x \psi = M$, that is,

$$2xe^{y} + g'(x) = \partial_{x}\psi = M$$

Example

Find every solution y of the equation

$$\left(x^2 e^y + \frac{1}{y}\right) y' + \left(2x e^y + \frac{1}{x}\right) = 0.$$

Solution: The equation is exact. We need to find the potential function ψ .

$$\partial_{\mathbf{y}}\psi = \mathbf{N}, \qquad \partial_{\mathbf{x}}\psi = \mathbf{M}.$$

From the first equation we get:

$$\partial_y \psi = x^2 e^y + \frac{1}{y} \quad \Rightarrow \quad \psi = x^2 e^y + \ln(y) + g(x).$$

Introduce the expression for ψ in the equation $\partial_x \psi = M$, that is,

$$2xe^{y} + g'(x) = \partial_{x}\psi = M = 2xe^{y} + \frac{1}{x}$$

Example

Find every solution y of the equation

$$\left(x^2 e^y + \frac{1}{y}\right) y' + \left(2x e^y + \frac{1}{x}\right) = 0.$$

Solution: The equation is exact. We need to find the potential function ψ .

$$\partial_{\mathbf{y}}\psi=\mathbf{N},\qquad\partial_{\mathbf{x}}\psi=\mathbf{M}.$$

From the first equation we get:

$$\partial_y \psi = x^2 e^y + \frac{1}{y} \quad \Rightarrow \quad \psi = x^2 e^y + \ln(y) + g(x).$$

Introduce the expression for ψ in the equation $\partial_x \psi = M$, that is,

$$2xe^{y} + g'(x) = \partial_{x}\psi = M = 2xe^{y} + \frac{1}{x} \quad \Rightarrow \quad g'(x) = \frac{1}{x}.$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

Example

Find every solution y of the equation

$$\left(x^2e^y+\frac{1}{y}\right)y'+\left(2x\,e^y+\frac{1}{x}\right)=0.$$
 Solution: Recall: $g'(x)=\frac{1}{x}.$

(ロ)、

Example

Find every solution y of the equation

$$\left(x^2 e^y + \frac{1}{y}\right) y' + \left(2x e^y + \frac{1}{x}\right) = 0.$$

Solution: Recall: $g'(x) = \frac{1}{x}$. Therefore $g(x) = \ln(x)$.

Example

Find every solution y of the equation

$$\left(x^2 e^y + \frac{1}{y}\right) y' + \left(2x e^y + \frac{1}{x}\right) = 0.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Solution: Recall: $g'(x) = \frac{1}{x}$. Therefore $g(x) = \ln(x)$.

The potential function is $\psi = x^2 e^y + \ln(y) + \ln(x)$.

Review 2 Exam 1.

Example

Find every solution y of the equation

$$\left(x^{2}e^{y}+\frac{1}{y}\right)y'+\left(2x\,e^{y}+\frac{1}{x}\right)=0.$$

Solution: Recall: $g'(x) = \frac{1}{x}$. Therefore $g(x) = \ln(x)$.

The potential function is $\psi = x^2 e^y + \ln(y) + \ln(x)$.

The solution y satisfies $x^2 e^{y(x)} + \ln(y(x)) + \ln(x) = c$.

- ロ ト - 4 回 ト - 4 □ - 4

Review 2 Exam 1.

Example

Find every solution y of the equation

$$\left(x^{2}e^{y}+\frac{1}{y}\right)y'+\left(2x\,e^{y}+\frac{1}{x}\right)=0.$$

Solution: Recall: $g'(x) = \frac{1}{x}$. Therefore $g(x) = \ln(x)$.

The potential function is $\psi = x^2 e^y + \ln(y) + \ln(x)$.

The solution y satisfies $x^2 e^{y(x)} + \ln(y(x)) + \ln(x) = c$.

Verification: Compute the implicit derivative in the equation above, and you should get the original differential equation.

$$2xe^{y} + x^{2}e^{y}y' + \frac{1}{y}y' + \frac{1}{x} = 0.$$

Example

Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \qquad y(0) = 4.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \qquad y(0) = 4.$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Solution: The equation is: Not linear.

Example

Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \qquad y(0) = 4.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Solution: The equation is: Not linear. It is a Bernoulli equation:

Example

Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \qquad y(0) = 4.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solution: The equation is: Not linear. It is a Bernoulli equation: $y' - 4x y = 4x y^n$, with n = 1/2.

Example

Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \qquad y(0) = 4.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Solution: The equation is: Not linear. It is a Bernoulli equation: $y' - 4x y = 4x y^n$, with n = 1/2. It is separable: $\frac{y'}{y + \sqrt{y}} = 4x$.

Example

Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \qquad y(0) = 4.$$

Solution: The equation is: Not linear. It is a Bernoulli equation: $y' - 4x y = 4x y^n$, with n = 1/2. It is separable: $\frac{y'}{y + \sqrt{y}} = 4x$. The equation is not homogeneous.

Example

Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \qquad y(0) = 4.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Solution: The equation is: Not linear. It is a Bernoulli equation: $y' - 4x y = 4x y^n$, with n = 1/2. It is separable: $\frac{y'}{y + \sqrt{y}} = 4x$.

The equation is not homogeneous. It is not exact.

Example

Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \qquad y(0) = 4.$$

Solution: The equation is: Not linear. It is a Bernoulli equation: $y' - 4x y = 4x y^n$, with n = 1/2. It is separable: $\frac{y'}{y + \sqrt{y}} = 4x$.

The equation is not homogeneous. It is not exact.

Although the equation is both separable and Bernoulli, it is not simple to integrate using the separable equation method.

Example

Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \qquad y(0) = 4.$$

Solution: The equation is: Not linear. It is a Bernoulli equation: $y' - 4x y = 4x y^n$, with n = 1/2. It is separable: $\frac{y'}{y + \sqrt{y}} = 4x$.

The equation is not homogeneous. It is not exact.

Although the equation is both separable and Bernoulli, it is not simple to integrate using the separable equation method. Indeed

$$\int \frac{y'}{y + \sqrt{y}} \, dt = \int 4x \, dx + c$$

Example

Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \qquad y(0) = 4.$$

Solution: The equation is: Not linear. It is a Bernoulli equation: $y' - 4x y = 4x y^n$, with n = 1/2. It is separable: $\frac{y'}{y + \sqrt{y}} = 4x$.

The equation is not homogeneous. It is not exact.

Although the equation is both separable and Bernoulli, it is not simple to integrate using the separable equation method. Indeed

$$\int \frac{y'}{y + \sqrt{y}} \, dt = \int 4x \, dx + c \quad \Rightarrow \quad \int \frac{dy}{y + \sqrt{y}} = 2x^2 + c.$$

Example

Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \qquad y(0) = 4.$$

Solution: The equation is: Not linear. It is a Bernoulli equation: $y' - 4x y = 4x y^n$, with n = 1/2. It is separable: $\frac{y'}{y + \sqrt{y}} = 4x$.

The equation is not homogeneous. It is not exact.

Although the equation is both separable and Bernoulli, it is not simple to integrate using the separable equation method. Indeed

$$\int \frac{y'}{y + \sqrt{y}} \, dt = \int 4x \, dx + c \quad \Rightarrow \quad \int \frac{dy}{y + \sqrt{y}} = 2x^2 + c.$$

The integral on the left-hand side requires an integration table.

Example

Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \qquad y(0) = 4.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Solution: We find solutions using the Bernoulli method.

Example

Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \qquad y(0) = 4.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Solution: We find solutions using the Bernoulli method.

$$y' - 4x y = 4x y^{1/2}$$

Example

Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \qquad y(0) = 4.$$

Solution: We find solutions using the Bernoulli method.

$$y' - 4x y = 4x y^{1/2} \quad \Rightarrow \quad \frac{y'}{y^{1/2}} - 4x y^{1/2} = 4x.$$

Example

Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \qquad y(0) = 4.$$

Solution: We find solutions using the Bernoulli method.

$$y' - 4x y = 4x y^{1/2} \quad \Rightarrow \quad \frac{y'}{y^{1/2}} - 4x y^{1/2} = 4x.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Change the unknowns: $v = 1/y^{n-1}$, with n = 1/2.

Example

Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \qquad y(0) = 4.$$

Solution: We find solutions using the Bernoulli method.

$$y' - 4x y = 4x y^{1/2} \quad \Rightarrow \quad \frac{y'}{y^{1/2}} - 4x y^{1/2} = 4x.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Change the unknowns: $v = 1/y^{n-1}$, with n = 1/2. That is,

$$v = \frac{1}{y^{-1/2}}$$

Example

Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \qquad y(0) = 4.$$

Solution: We find solutions using the Bernoulli method.

$$y' - 4x y = 4x y^{1/2} \quad \Rightarrow \quad \frac{y'}{y^{1/2}} - 4x y^{1/2} = 4x.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Change the unknowns: $v = 1/y^{n-1}$, with n = 1/2. That is,

$$v = rac{1}{y^{-1/2}} \quad \Rightarrow \quad v = y^{1/2},$$

Example

Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \qquad y(0) = 4.$$

Solution: We find solutions using the Bernoulli method.

$$y' - 4x y = 4x y^{1/2} \quad \Rightarrow \quad \frac{y'}{y^{1/2}} - 4x y^{1/2} = 4x.$$

Change the unknowns: $v = 1/y^{n-1}$, with n = 1/2. That is,

$$\mathbf{v} = rac{1}{y^{-1/2}} \quad \Rightarrow \quad \mathbf{v} = y^{1/2}, \quad \Rightarrow \quad \mathbf{v}' = rac{1}{2} \, rac{y'}{y^{1/2}}.$$

Example

Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \qquad y(0) = 4.$$

Solution: We find solutions using the Bernoulli method.

$$y' - 4x y = 4x y^{1/2} \quad \Rightarrow \quad \frac{y'}{y^{1/2}} - 4x y^{1/2} = 4x.$$

Change the unknowns: $v = 1/y^{n-1}$, with n = 1/2. That is,

$$v = rac{1}{y^{-1/2}} \quad \Rightarrow \quad v = y^{1/2}, \quad \Rightarrow \quad v' = rac{1}{2} \, rac{y'}{y^{1/2}}.$$

$$2v'-4xv=4x$$

Example

Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \qquad y(0) = 4.$$

Solution: We find solutions using the Bernoulli method.

$$y' - 4x y = 4x y^{1/2} \quad \Rightarrow \quad \frac{y'}{y^{1/2}} - 4x y^{1/2} = 4x.$$

Change the unknowns: $v = 1/y^{n-1}$, with n = 1/2. That is,

$$v = rac{1}{y^{-1/2}} \quad \Rightarrow \quad v = y^{1/2}, \quad \Rightarrow \quad v' = rac{1}{2} \, rac{y'}{y^{1/2}}.$$

$$2v'-4xv=4x \quad \Rightarrow \quad v'-2xv=2x.$$

Example

Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \qquad y(0) = 4.$$

Solution: We find solutions using the Bernoulli method.

$$y' - 4x y = 4x y^{1/2} \quad \Rightarrow \quad \frac{y'}{y^{1/2}} - 4x y^{1/2} = 4x.$$

Change the unknowns: $v = 1/y^{n-1}$, with n = 1/2. That is,

$$v = rac{1}{y^{-1/2}} \quad \Rightarrow \quad v = y^{1/2}, \quad \Rightarrow \quad v' = rac{1}{2} \, rac{y'}{y^{1/2}}.$$

$$2v'-4xv=4x \quad \Rightarrow \quad v'-2xv=2x.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The coefficient function is a(x) = -2x,

Example

Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \qquad y(0) = 4.$$

Solution: We find solutions using the Bernoulli method.

$$y' - 4x y = 4x y^{1/2} \quad \Rightarrow \quad \frac{y'}{y^{1/2}} - 4x y^{1/2} = 4x.$$

Change the unknowns: $v = 1/y^{n-1}$, with n = 1/2. That is,

$$v = rac{1}{y^{-1/2}} \quad \Rightarrow \quad v = y^{1/2}, \quad \Rightarrow \quad v' = rac{1}{2} \, rac{y'}{y^{1/2}}.$$

$$2v'-4xv=4x \quad \Rightarrow \quad v'-2xv=2x.$$

The coefficient function is a(x) = -2x, so $A(x) = -x^2$,

Example

Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \qquad y(0) = 4.$$

Solution: We find solutions using the Bernoulli method.

$$y' - 4x y = 4x y^{1/2} \quad \Rightarrow \quad \frac{y'}{y^{1/2}} - 4x y^{1/2} = 4x.$$

Change the unknowns: $v = 1/y^{n-1}$, with n = 1/2. That is,

$$\mathbf{v} = rac{1}{y^{-1/2}} \quad \Rightarrow \quad \mathbf{v} = y^{1/2}, \quad \Rightarrow \quad \mathbf{v}' = rac{1}{2} \, rac{y'}{y^{1/2}}.$$

$$2v'-4xv=4x \quad \Rightarrow \quad v'-2xv=2x.$$

The coefficient function is a(x) = -2x, so $A(x) = -x^2$, and the integrating factor is $\mu(x) = e^{-x^2}$.

Example

Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \qquad y(0) = 4.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Solution: Recall: v' - 2xv = 2x and $\mu(x) = e^{-x^2}$.

Example

Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \qquad y(0) = 4.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Solution: Recall: v' - 2xv = 2x and $\mu(x) = e^{-x^2}$.

$$e^{-x^2}v' - 2xe^{-x^2}v = 2x e^{-x^2}$$

Example

Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \qquad y(0) = 4.$$

Solution: Recall: v' - 2xv = 2x and $\mu(x) = e^{-x^2}$.

$$e^{-x^2}v' - 2xe^{-x^2}v = 2x e^{-x^2} \Rightarrow (e^{-x^2}v)' = 2xe^{-x^2}.$$

Example

Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \qquad y(0) = 4.$$

Solution: Recall: v' - 2xv = 2x and $\mu(x) = e^{-x^2}$.

$$e^{-x^2}v' - 2xe^{-x^2}v = 2x e^{-x^2} \Rightarrow (e^{-x^2}v)' = 2xe^{-x^2}$$

 $e^{-x^2}v = \int 2xe^{-x^2}dx + c$

Example

Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \qquad y(0) = 4.$$

Solution: Recall: v' - 2xv = 2x and $\mu(x) = e^{-x^2}$.

$$e^{-x^2}v' - 2xe^{-x^2}v = 2x e^{-x^2} \Rightarrow (e^{-x^2}v)' = 2xe^{-x^2}.$$

 $e^{-x^2}v = \int 2xe^{-x^2}dx + c \Rightarrow e^{-x^2}v = -e^{-x^2} + c.$

Example

Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \qquad y(0) = 4.$$

Solution: Recall: v' - 2xv = 2x and $\mu(x) = e^{-x^2}$.

$$e^{-x^2}v' - 2xe^{-x^2}v = 2x e^{-x^2} \Rightarrow (e^{-x^2}v)' = 2xe^{-x^2}.$$

 $e^{-x^2}v = \int 2xe^{-x^2}dx + c \Rightarrow e^{-x^2}v = -e^{-x^2} + c.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

We conclude that $v = c e^{x^2} - 1$.

Example

Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \qquad y(0) = 4.$$

Solution: Recall: v' - 2xv = 2x and $\mu(x) = e^{-x^2}$.

$$e^{-x^2}v' - 2xe^{-x^2}v = 2x e^{-x^2} \Rightarrow (e^{-x^2}v)' = 2xe^{-x^2}.$$

 $e^{-x^2}v = \int 2xe^{-x^2}dx + c \Rightarrow e^{-x^2}v = -e^{-x^2} + c.$

We conclude that $v = c e^{x^2} - 1$. The initial condition for y implies the initial condition for v,

Example

Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \qquad y(0) = 4.$$

Solution: Recall: v' - 2xv = 2x and $\mu(x) = e^{-x^2}$.

$$e^{-x^2}v' - 2xe^{-x^2}v = 2x e^{-x^2} \Rightarrow (e^{-x^2}v)' = 2xe^{-x^2}.$$

 $e^{-x^2}v = \int 2xe^{-x^2}dx + c \Rightarrow e^{-x^2}v = -e^{-x^2} + c.$

We conclude that $v = c e^{x^2} - 1$. The initial condition for y implies the initial condition for v, that is, $v(x) = \sqrt{y(x)}$ implies v(0) = 2.

Example

Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \qquad y(0) = 4.$$

Solution: Recall: v' - 2xv = 2x and $\mu(x) = e^{-x^2}$.

$$e^{-x^2}v' - 2xe^{-x^2}v = 2x e^{-x^2} \Rightarrow (e^{-x^2}v)' = 2xe^{-x^2}.$$

 $e^{-x^2}v = \int 2xe^{-x^2}dx + c \Rightarrow e^{-x^2}v = -e^{-x^2} + c.$

We conclude that $v = c e^{x^2} - 1$. The initial condition for y implies the initial condition for v, that is, $v(x) = \sqrt{y(x)}$ implies v(0) = 2.

$$2 = v(0)$$

Example

Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \qquad y(0) = 4.$$

Solution: Recall: v' - 2xv = 2x and $\mu(x) = e^{-x^2}$.

$$e^{-x^2}v' - 2xe^{-x^2}v = 2x e^{-x^2} \Rightarrow (e^{-x^2}v)' = 2xe^{-x^2}.$$

 $e^{-x^2}v = \int 2xe^{-x^2}dx + c \Rightarrow e^{-x^2}v = -e^{-x^2} + c.$

We conclude that $v = c e^{x^2} - 1$. The initial condition for y implies the initial condition for v, that is, $v(x) = \sqrt{y(x)}$ implies v(0) = 2.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$2=v(0)=c-1$$

Example

Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \qquad y(0) = 4.$$

Solution: Recall: v' - 2xv = 2x and $\mu(x) = e^{-x^2}$.

$$e^{-x^2}v' - 2xe^{-x^2}v = 2x e^{-x^2} \Rightarrow (e^{-x^2}v)' = 2xe^{-x^2}.$$

 $e^{-x^2}v = \int 2xe^{-x^2}dx + c \Rightarrow e^{-x^2}v = -e^{-x^2} + c.$

We conclude that $v = c e^{x^2} - 1$. The initial condition for y implies the initial condition for v, that is, $v(x) = \sqrt{y(x)}$ implies v(0) = 2.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$2 = v(0) = c - 1 \quad \Rightarrow \quad c = 3$$

Example

Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \qquad y(0) = 4.$$

Solution: Recall: v' - 2xv = 2x and $\mu(x) = e^{-x^2}$.

$$e^{-x^2}v' - 2xe^{-x^2}v = 2x e^{-x^2} \Rightarrow (e^{-x^2}v)' = 2xe^{-x^2}.$$

 $e^{-x^2}v = \int 2xe^{-x^2}dx + c \Rightarrow e^{-x^2}v = -e^{-x^2} + c.$

We conclude that $v = c e^{x^2} - 1$. The initial condition for y implies the initial condition for v, that is, $v(x) = \sqrt{y(x)}$ implies v(0) = 2.

$$2 = v(0) = c - 1 \quad \Rightarrow \quad c = 3 \quad \Rightarrow \quad v(x) = 3e^{x^2} - 1.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \qquad y(0) = 4.$$

Solution: Recall: v' - 2xv = 2x and $\mu(x) = e^{-x^2}$.

$$e^{-x^2}v' - 2xe^{-x^2}v = 2x e^{-x^2} \Rightarrow (e^{-x^2}v)' = 2xe^{-x^2}.$$

 $e^{-x^2}v = \int 2xe^{-x^2}dx + c \Rightarrow e^{-x^2}v = -e^{-x^2} + c.$

We conclude that $v = c e^{x^2} - 1$. The initial condition for y implies the initial condition for v, that is, $v(x) = \sqrt{y(x)}$ implies v(0) = 2.

$$2 = v(0) = c - 1 \quad \Rightarrow \quad c = 3 \quad \Rightarrow \quad v(x) = 3e^{x^2} - 1.$$

We finally find $y = v^2$,

Example

Find every solution of the initial value problem

$$y' = 4x(y + \sqrt{y}), \qquad y(0) = 4.$$

Solution: Recall: v' - 2xv = 2x and $\mu(x) = e^{-x^2}$.

$$e^{-x^2}v' - 2xe^{-x^2}v = 2x e^{-x^2} \Rightarrow (e^{-x^2}v)' = 2xe^{-x^2}.$$

 $e^{-x^2}v = \int 2xe^{-x^2}dx + c \Rightarrow e^{-x^2}v = -e^{-x^2} + c.$

We conclude that $v = c e^{x^2} - 1$. The initial condition for y implies the initial condition for v, that is, $v(x) = \sqrt{y(x)}$ implies v(0) = 2.

$$2 = v(0) = c - 1 \quad \Rightarrow \quad c = 3 \quad \Rightarrow \quad v(x) = 3e^{x^2} - 1.$$

We finally find $y = v^2$, that is, $y(x) = (3e^{x^2} - 1)^2$.

Example

Find the domain of the function y solution of the IVP

$$y'=-\frac{2t}{y}, \qquad y(1)=2.$$

Example

Find the domain of the function y solution of the IVP

$$y'=-\frac{2t}{y}, \qquad y(1)=2.$$

Solution: We first need to find the solution y.

Example

Find the domain of the function y solution of the IVP

$$y'=-\frac{2t}{y}, \qquad y(1)=2.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solution: We first need to find the solution y. The equation is separable.

Example

Find the domain of the function y solution of the IVP

$$y'=-\frac{2t}{y}, \qquad y(1)=2.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solution: We first need to find the solution *y*. The equation is separable.

y y' = -2t

Example

Find the domain of the function y solution of the IVP

$$y'=-\frac{2t}{y}, \qquad y(1)=2.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solution: We first need to find the solution *y*. The equation is separable.

$$y y' = -2t \quad \Rightarrow \quad \int y y' dt = \int -2t dt + c$$

Example

Find the domain of the function y solution of the IVP

$$y'=-\frac{2t}{y}, \qquad y(1)=2.$$

Solution: We first need to find the solution y. The equation is separable.

$$y y' = -2t \quad \Rightarrow \quad \int y y' dt = \int -2t dt + c \quad \Rightarrow \quad \frac{y^2}{2} = -t^2 + c$$

Example

Find the domain of the function y solution of the IVP

$$y'=-\frac{2t}{y}, \qquad y(1)=2.$$

Solution: We first need to find the solution y. The equation is separable.

$$y y' = -2t \quad \Rightarrow \quad \int y y' dt = \int -2t dt + c \quad \Rightarrow \quad \frac{y^2}{2} = -t^2 + c$$
$$\frac{4}{2} = \frac{y^2(1)}{2} = -1 + c$$

Example

Find the domain of the function y solution of the IVP

$$y'=-\frac{2t}{y}, \qquad y(1)=2.$$

Solution: We first need to find the solution *y*. The equation is separable.

$$y y' = -2t \quad \Rightarrow \quad \int y y' dt = \int -2t dt + c \quad \Rightarrow \quad \frac{y^2}{2} = -t^2 + c$$
$$\frac{4}{2} = \frac{y^2(1)}{2} = -1 + c \quad \Rightarrow \quad c = 3$$

Example

Find the domain of the function y solution of the IVP

$$y'=-\frac{2t}{y}, \qquad y(1)=2.$$

Solution: We first need to find the solution *y*. The equation is separable.

$$y y' = -2t \quad \Rightarrow \quad \int y y' dt = \int -2t dt + c \quad \Rightarrow \quad \frac{y^2}{2} = -t^2 + c$$
$$\frac{4}{2} = \frac{y^2(1)}{2} = -1 + c \quad \Rightarrow \quad c = 3 \quad \Rightarrow \quad y(t) = \sqrt{2(3 - t^2)}.$$

Example

Find the domain of the function y solution of the IVP

$$y'=-\frac{2t}{y}, \qquad y(1)=2.$$

Solution: We first need to find the solution *y*. The equation is separable.

$$y y' = -2t \quad \Rightarrow \quad \int y y' dt = \int -2t dt + c \quad \Rightarrow \quad \frac{y^2}{2} = -t^2 + c$$
$$\frac{4}{2} = \frac{y^2(1)}{2} = -1 + c \quad \Rightarrow \quad c = 3 \quad \Rightarrow \quad y(t) = \sqrt{2(3 - t^2)}.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The domain of the solution y is $D = (-\sqrt{3}, \sqrt{3})$.

Example

Find the domain of the function y solution of the IVP

$$y'=-\frac{2t}{y}, \qquad y(1)=2.$$

Solution: We first need to find the solution *y*. The equation is separable.

$$y y' = -2t \quad \Rightarrow \quad \int y y' dt = \int -2t dt + c \quad \Rightarrow \quad \frac{y^2}{2} = -t^2 + c$$
$$\frac{4}{2} = \frac{y^2(1)}{2} = -1 + c \quad \Rightarrow \quad c = 3 \quad \Rightarrow \quad y(t) = \sqrt{2(3 - t^2)}.$$

The domain of the solution y is $D = (-\sqrt{3}, \sqrt{3})$.

The points $\pm\sqrt{3}$ do not belong to the domain of y, since y' and the differential equation are not defined there.

Example

Find the domain of the function y solution of the IVP

$$y'=-\frac{2t}{y}, \qquad y(t_0)=y_0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Find the domain of the function y solution of the IVP

$$y'=-\frac{2t}{y}, \qquad y(t_0)=y_0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Solution: The solution y is given as above, $\frac{y^2}{2} = -t^2 + c$.

Example

Find the domain of the function y solution of the IVP

$$y'=-\frac{2t}{y}, \qquad y(t_0)=y_0.$$

◆□▶ <□▶ < □▶ < □▶ < □▶ = - のへで</p>

Solution: The solution y is given as above, $\frac{y^2}{2} = -t^2 + c$. The initial condition implies

$$\frac{y_0^2}{2} = \frac{y^2(t_0)}{2}$$

Example

Find the domain of the function y solution of the IVP

$$y'=-\frac{2t}{y}, \qquad y(t_0)=y_0$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Solution: The solution y is given as above, $\frac{y^2}{2} = -t^2 + c$. The initial condition implies

$$\frac{y_0^2}{2} = \frac{y^2(t_0)}{2} = -t_0^2 + c$$

Example

Find the domain of the function y solution of the IVP

$$y'=-\frac{2t}{y}, \qquad y(t_0)=y_0.$$

◆□▶ <□▶ < □▶ < □▶ < □▶ = - のへで</p>

Solution: The solution y is given as above, $\frac{y^2}{2} = -t^2 + c$. The initial condition implies

$$\frac{y_0^2}{2} = \frac{y^2(t_0)}{2} = -t_0^2 + c \implies c = \frac{y_0^2}{2} + t_0^2$$

Example

Find the domain of the function y solution of the IVP

$$y'=-\frac{2t}{y}, \qquad y(t_0)=y_0$$

Solution: The solution y is given as above, $\frac{y^2}{2} = -t^2 + c$. The initial condition implies

$$rac{y_0^2}{2} = rac{y^2(t_0)}{2} = -t_0^2 + c \; \Rightarrow \; c = rac{y_0^2}{2} + t_0^2 \; \Rightarrow \; rac{y^2}{2} = -t^2 + t_0^2 + rac{y_0^2}{2}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Example

Find the domain of the function y solution of the IVP

$$y'=-\frac{2t}{y}, \qquad y(t_0)=y_0$$

Solution: The solution y is given as above, $\frac{y^2}{2} = -t^2 + c$. The initial condition implies

$$\frac{y_0^2}{2} = \frac{y^2(t_0)}{2} = -t_0^2 + c \implies c = \frac{y_0^2}{2} + t_0^2 \implies \frac{y^2}{2} = -t^2 + t_0^2 + \frac{y_0^2}{2}.$$

The solution to the IVP is $y(t) = \sqrt{2(t_0^2 - t^2) + y_0^2}.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Example

Find the domain of the function y solution of the IVP

$$y'=-\frac{2t}{y}, \qquad y(t_0)=y_0$$

Solution: The solution y is given as above, $\frac{y^2}{2} = -t^2 + c$. The initial condition implies

$$\frac{y_0^2}{2} = \frac{y^2(t_0)}{2} = -t_0^2 + c \implies c = \frac{y_0^2}{2} + t_0^2 \implies \frac{y^2}{2} = -t^2 + t_0^2 + \frac{y_0^2}{2}.$$

The solution to the IVP is $y(t) = \sqrt{2(t_0^2 - t^2) + y_0^2}.$

The domain of the solution depends on the initial condition t_0 , y_0 :

Example

Find the domain of the function y solution of the IVP

$$y'=-\frac{2t}{y}, \qquad y(t_0)=y_0$$

Solution: The solution y is given as above, $\frac{y^2}{2} = -t^2 + c$. The initial condition implies

$$\frac{y_0^2}{2} = \frac{y^2(t_0)}{2} = -t_0^2 + c \implies c = \frac{y_0^2}{2} + t_0^2 \implies \frac{y^2}{2} = -t^2 + t_0^2 + \frac{y_0^2}{2}.$$

The solution to the IVP is $y(t) = \sqrt{2(t_0^2 - t^2) + y_0^2}.$

The domain of the solution depends on the initial condition t_0 , y_0 :

$$D = \left(-\sqrt{t_0^2 + \frac{y_0^2}{2}}, +\sqrt{t_0^2 + \frac{y_0^2}{2}}\right).$$

Example

Find every solution y to the equation $y' = -\frac{2x+3y}{3x+4y}$.

Example

Find every solution y to the equation $y' = -\frac{2x+3y}{3x+4y}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Solution: The equation is not linear,

Example

Find every solution y to the equation $y' = -\frac{2x+3y}{3x+4y}$.

(ロ)、(型)、(E)、(E)、 E、 のQの

Solution: The equation is not linear, not Bernoulli,

Example

Find every solution y to the equation $y' = -\frac{2x+3y}{3x+4y}$.

Solution: The equation is not linear, not Bernoulli, not separable.

(ロ)、(型)、(E)、(E)、 E、 のQの

Example

Find every solution y to the equation
$$y' = -\frac{2x+3y}{3x+4y}$$
.

Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by (1/x).)

Example

Find every solution y to the equation
$$y' = -\frac{2x+3y}{3x+4y}$$
.

Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by (1/x).) Is it exact? (3x + 4y)y' + (2x + 3y) = 0 implies $\partial_x N = 3 = \partial_y M$. So the equation is exact.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find every solution y to the equation
$$y' = -\frac{2x+3y}{3x+4y}$$
.

Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by (1/x).) Is it exact? (3x + 4y)y' + (2x + 3y) = 0 implies $\partial_x N = 3 = \partial_y M$. So the equation is exact.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We choose here the exact equation method.

Example

Find every solution y to the equation
$$y' = -\frac{2x+3y}{3x+4y}$$
.

Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by (1/x).) Is it exact? (3x + 4y)y' + (2x + 3y) = 0 implies $\partial_x N = 3 = \partial_y M$. So the equation is exact.

We choose here the exact equation method. (Finding the potential function is sometimes simpler that solving homogeneous Eqs.)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find every solution y to the equation
$$y' = -\frac{2x+3y}{3x+4y}$$
.

Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by (1/x).) Is it exact? (3x + 4y)y' + (2x + 3y) = 0 implies $\partial_x N = 3 = \partial_y M$. So the equation is exact.

We choose here the exact equation method. (Finding the potential function is sometimes simpler that solving homogeneous Eqs.)

We need to find the potential function $\psi :$

Example

Find every solution y to the equation
$$y' = -\frac{2x+3y}{3x+4y}$$
.

Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by (1/x).) Is it exact? (3x + 4y)y' + (2x + 3y) = 0 implies $\partial_x N = 3 = \partial_y M$. So the equation is exact.

We choose here the exact equation method. (Finding the potential function is sometimes simpler that solving homogeneous Eqs.)

We need to find the potential function ψ :

$$\partial_y\psi=\textit{N}$$

Example

Find every solution y to the equation
$$y' = -\frac{2x+3y}{3x+4y}$$
.

Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by (1/x).) Is it exact? (3x + 4y)y' + (2x + 3y) = 0 implies $\partial_x N = 3 = \partial_y M$. So the equation is exact.

We choose here the exact equation method. (Finding the potential function is sometimes simpler that solving homogeneous Eqs.)

We need to find the potential function ψ :

$$\partial_y \psi = N \quad \Rightarrow \quad \psi = 3xy + 2y^2 + g(x).$$

Example

Find every solution y to the equation
$$y' = -\frac{2x + 3y}{3x + 4y}$$
.

Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by (1/x).) Is it exact? (3x + 4y)y' + (2x + 3y) = 0 implies $\partial_x N = 3 = \partial_y M$. So the equation is exact.

We choose here the exact equation method. (Finding the potential function is sometimes simpler that solving homogeneous Eqs.)

We need to find the potential function ψ :

$$\partial_y \psi = N \quad \Rightarrow \quad \psi = 3xy + 2y^2 + g(x).$$

 $\partial_x \psi = M$

Example

Find every solution y to the equation
$$y' = -\frac{2x + 3y}{3x + 4y}$$
.

Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by (1/x).) Is it exact? (3x + 4y)y' + (2x + 3y) = 0 implies $\partial_x N = 3 = \partial_y M$. So the equation is exact.

We choose here the exact equation method. (Finding the potential function is sometimes simpler that solving homogeneous Eqs.)

We need to find the potential function ψ :

$$\partial_y \psi = N \quad \Rightarrow \quad \psi = 3xy + 2y^2 + g(x).$$

 $\partial_x \psi = M \quad \Rightarrow \quad 3y + g'(x) = 2x + 3y$

・ロト・西ト・ヨト・ヨー シック

Example

Find every solution y to the equation
$$y' = -\frac{2x+3y}{3x+4y}$$
.

Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by (1/x).) Is it exact? (3x + 4y)y' + (2x + 3y) = 0 implies $\partial_x N = 3 = \partial_y M$. So the equation is exact.

We choose here the exact equation method. (Finding the potential function is sometimes simpler that solving homogeneous Eqs.)

We need to find the potential function ψ :

$$\partial_y \psi = N \quad \Rightarrow \quad \psi = 3xy + 2y^2 + g(x).$$

$$\partial_x \psi = M \quad \Rightarrow \quad 3y + g'(x) = 2x + 3y \quad \Rightarrow \quad g(x) = x^2.$$

Example

Find every solution y to the equation
$$y' = -\frac{2x+3y}{3x+4y}$$
.

Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by (1/x).) Is it exact? (3x + 4y)y' + (2x + 3y) = 0 implies $\partial_x N = 3 = \partial_y M$. So the equation is exact.

We choose here the exact equation method. (Finding the potential function is sometimes simpler that solving homogeneous Eqs.)

We need to find the potential function ψ :

$$\partial_y \psi = N \quad \Rightarrow \quad \psi = 3xy + 2y^2 + g(x).$$

 $\partial_x \psi = M \quad \Rightarrow \quad 3y + g'(x) = 2x + 3y \quad \Rightarrow \quad g(x) = x^2.$

We conclude: $\psi(x, y) = 3xy + 2y^2 + x^2$,

・ロト・(部・・モー・(中・・日・)

Example

Find every solution y to the equation
$$y' = -\frac{2x+3y}{3x+4y}$$
.

Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by (1/x).) Is it exact? (3x + 4y)y' + (2x + 3y) = 0 implies $\partial_x N = 3 = \partial_y M$. So the equation is exact.

We choose here the exact equation method. (Finding the potential function is sometimes simpler that solving homogeneous Eqs.)

We need to find the potential function ψ :

$$\partial_y \psi = N \quad \Rightarrow \quad \psi = 3xy + 2y^2 + g(x).$$

$$\partial_x \psi = M \quad \Rightarrow \quad 3y + g'(x) = 2x + 3y \quad \Rightarrow \quad g(x) = x^2.$$

We conclude: $\psi(x, y) = 3xy + 2y^2 + x^2$, and $\psi(x, y(x)) = c$. \triangleleft

Example

Find every solution y to the equation $y' = -\frac{2x+3y}{3x+4y}$.

Example

Find every solution y to the equation $y' = -\frac{2x + 3y}{3x + 4y}$.

Solution: If we solve the problem using that the equation is homogeneous, it is more complicated than the previous calculation.

(ロ)、(型)、(E)、(E)、 E、 のQの

Example

Find every solution y to the equation $y' = -\frac{2x+3y}{3x+4y}$.

Solution: If we solve the problem using that the equation is homogeneous, it is more complicated than the previous calculation. We just start the calculation to see the difficulty:

Example

Find every solution y to the equation $y' = -\frac{2x+3y}{3x+4y}$.

Solution: If we solve the problem using that the equation is homogeneous, it is more complicated than the previous calculation. We just start the calculation to see the difficulty:

$$y' = -\frac{(2x+3y)}{(3x+4y)} \frac{\left(\frac{1}{x}\right)}{\left(\frac{1}{x}\right)}$$

Example

Find every solution y to the equation $y' = -\frac{2x+3y}{3x+4y}$.

Solution: If we solve the problem using that the equation is homogeneous, it is more complicated than the previous calculation. We just start the calculation to see the difficulty:

$$y' = -\frac{(2x+3y)}{(3x+4y)}\frac{\left(\frac{1}{x}\right)}{\left(\frac{1}{x}\right)} = -\frac{2+3\left(\frac{y}{x}\right)}{3+4\left(\frac{y}{x}\right)}.$$

Example

Find every solution y to the equation $y' = -\frac{2x+3y}{3x+4y}$.

Solution: If we solve the problem using that the equation is homogeneous, it is more complicated than the previous calculation. We just start the calculation to see the difficulty:

$$y' = -\frac{(2x+3y)}{(3x+4y)}\frac{\left(\frac{1}{x}\right)}{\left(\frac{1}{x}\right)} = -\frac{2+3\left(\frac{y}{x}\right)}{3+4\left(\frac{y}{x}\right)}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The change v = y/x implies y = xv and y' = v + xv'.

Example

Find every solution y to the equation $y' = -\frac{2x+3y}{3x+4y}$.

Solution: If we solve the problem using that the equation is homogeneous, it is more complicated than the previous calculation. We just start the calculation to see the difficulty:

$$y' = -\frac{(2x+3y)}{(3x+4y)}\frac{\left(\frac{1}{x}\right)}{\left(\frac{1}{x}\right)} = -\frac{2+3\left(\frac{y}{x}\right)}{3+4\left(\frac{y}{x}\right)}.$$

The change v = y/x implies y = xv and y' = v + xv'. Hence

$$v + x v' = \frac{2 + 3v}{3 + 4v}$$

Example

Find every solution y to the equation $y' = -\frac{2x+3y}{3x+4y}$.

Solution: If we solve the problem using that the equation is homogeneous, it is more complicated than the previous calculation. We just start the calculation to see the difficulty:

$$y' = -\frac{(2x+3y)}{(3x+4y)}\frac{\left(\frac{1}{x}\right)}{\left(\frac{1}{x}\right)} = -\frac{2+3\left(\frac{y}{x}\right)}{3+4\left(\frac{y}{x}\right)}.$$

The change v = y/x implies y = xv and y' = v + xv'. Hence

$$v + x v' = \frac{2+3v}{3+4v} \quad \Rightarrow \quad x v' = \frac{2+3v}{3+4v} - v$$

・ロト・西ト・ヨト・ヨー シック

Example

Find every solution y to the equation $y' = -\frac{2x+3y}{3x+4y}$.

Solution: If we solve the problem using that the equation is homogeneous, it is more complicated than the previous calculation. We just start the calculation to see the difficulty:

$$y' = -\frac{(2x+3y)}{(3x+4y)}\frac{\left(\frac{1}{x}\right)}{\left(\frac{1}{x}\right)} = -\frac{2+3\left(\frac{y}{x}\right)}{3+4\left(\frac{y}{x}\right)}.$$

The change v = y/x implies y = xv and y' = v + xv'. Hence

$$v + x v' = \frac{2 + 3v}{3 + 4v} \quad \Rightarrow \quad x v' = \frac{2 + 3v}{3 + 4v} - v = \frac{2 + 3v - 3v + 4v^2}{3 + 4v}$$

・ロ・・ 「日・ ・日・ ・日・ ・ 日・

Example

Find every solution y to the equation $y' = -\frac{2x+3y}{3x+4y}$.

Solution: If we solve the problem using that the equation is homogeneous, it is more complicated than the previous calculation. We just start the calculation to see the difficulty:

$$y' = -\frac{(2x+3y)}{(3x+4y)}\frac{\left(\frac{1}{x}\right)}{\left(\frac{1}{x}\right)} = -\frac{2+3\left(\frac{y}{x}\right)}{3+4\left(\frac{y}{x}\right)}.$$

The change v = y/x implies y = xv and y' = v + xv'. Hence

$$v + x v' = \frac{2 + 3v}{3 + 4v} \quad \Rightarrow \quad x v' = \frac{2 + 3v}{3 + 4v} - v = \frac{2 + 3v - 3v + 4v^2}{3 + 4v}$$

We conclude that v satisfies $\frac{3+4v}{2-4v^2}v' = \frac{1}{v}$.

Example

Find every solution y to the equation $y' = -\frac{2x+3y}{3x+4y}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Solution: Recall: $\frac{3+4v}{2-4v^2}v' = \frac{1}{x}$.

Example

Find every solution y to the equation $y' = -\frac{2x+3y}{3x+4y}$.

Solution: Recall: $\frac{3+4v}{2-4v^2}v'=\frac{1}{x}$.

This equation is complicated to integrate.

$$\int \frac{3v'}{2-4v^2} \, dx + \int \frac{4v \, v'}{2-4v^2} \, dx = \int \frac{1}{x} \, dx + c$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find every solution y to the equation $y' = -\frac{2x+3y}{3x+4y}$.

Solution: Recall: $\frac{3+4v}{2-4v^2}v'=\frac{1}{x}$.

This equation is complicated to integrate.

$$\int \frac{3v'}{2-4v^2} \, dx + \int \frac{4v\,v'}{2-4v^2} \, dx = \int \frac{1}{x} \, dx + c = \ln(x) + c.$$

Example

Find every solution y to the equation $y' = -\frac{2x+3y}{3x+4y}$.

Solution: Recall:
$$\frac{3+4v}{2-4v^2}v'=\frac{1}{x}$$
.

This equation is complicated to integrate.

$$\int \frac{3v'}{2-4v^2} \, dx + \int \frac{4v \, v'}{2-4v^2} \, dx = \int \frac{1}{x} \, dx + c = \ln(x) + c.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The usual substitution u = v(x) implies du = v' dx,

Example

Find every solution y to the equation $y' = -\frac{2x+3y}{3x+4y}$.

Solution: Recall: $\frac{3+4v}{2-4v^2}v'=\frac{1}{x}$.

This equation is complicated to integrate.

$$\int \frac{3v'}{2-4v^2} \, dx + \int \frac{4v \, v'}{2-4v^2} \, dx = \int \frac{1}{x} \, dx + c = \ln(x) + c.$$

The usual substitution u = v(x) implies du = v' dx, so

$$\int \frac{3\,du}{2-4u^2} + \int \frac{4u\,du}{2-4u^2} = \ln(x) + c.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Find every solution y to the equation $y' = -\frac{2x+3y}{3x+4y}$.

Solution: Recall:
$$\frac{3+4v}{2-4v^2}v'=\frac{1}{x}$$
.

This equation is complicated to integrate.

$$\int \frac{3v'}{2-4v^2} \, dx + \int \frac{4v \, v'}{2-4v^2} \, dx = \int \frac{1}{x} \, dx + c = \ln(x) + c.$$

The usual substitution u = v(x) implies du = v' dx, so

$$\int \frac{3\,du}{2-4u^2} + \int \frac{4u\,du}{2-4u^2} = \ln(x) + c.$$

The first integral on the left-hand side requires integration tables.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Example

Find every solution y to the equation $y' = -\frac{2x+3y}{3x+4y}$.

Solution: Recall:
$$\frac{3+4v}{2-4v^2}v'=\frac{1}{x}$$
.

This equation is complicated to integrate.

$$\int \frac{3v'}{2-4v^2} \, dx + \int \frac{4v \, v'}{2-4v^2} \, dx = \int \frac{1}{x} \, dx + c = \ln(x) + c.$$

The usual substitution u = v(x) implies du = v' dx, so

$$\int \frac{3\,du}{2-4u^2} + \int \frac{4u\,du}{2-4u^2} = \ln(x) + c.$$

The first integral on the left-hand side requires integration tables. This is why the exact method is simpler to use in this case. $\ensuremath{\lhd}$

Second order linear homogeneous ODE (Sect. 3.3).

- Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.
- Characteristic polynomial with complex roots.
 - Two main sets of fundamental solutions.
 - A real-valued fundamental and general solutions.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ □ ● のへで

• Application: The RLC circuit.

Definition

Any two solutions y_1 , y_2 of the homogeneous equation

 $y'' + a_1(t)y' + a_0(t)y = 0,$

are called *fundamental solutions* iff the functions y_1 , y_2 are linearly independent, that is, iff $W_{y_1y_2} \neq 0$.

Definition

Any two solutions y_1 , y_2 of the homogeneous equation

 $y'' + a_1(t)y' + a_0(t)y = 0,$

are called *fundamental solutions* iff the functions y_1 , y_2 are linearly independent, that is, iff $W_{y_1y_2} \neq 0$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark: Fundamental solutions are not unique.

Definition

Any two solutions y_1 , y_2 of the homogeneous equation

 $y'' + a_1(t)y' + a_0(t)y = 0,$

are called *fundamental solutions* iff the functions y_1 , y_2 are linearly independent, that is, iff $W_{y_1y_2} \neq 0$.

Remark: Fundamental solutions are not unique.

Definition

Given any two fundamental solutions y_1 , y_2 , and arbitrary constants c_1 , c_2 , the function

$$y(t) = c_1 y_1(t) + c_2 y_2(t)$$

is called the *general solution* of the differential equation above.

Theorem (Constant coefficients)

Given real constants a_1 , a_0 , consider the homogeneous, linear differential equation on the unknown $y : \mathbb{R} \to \mathbb{R}$ given by

$$y'' + a_1 y' + a_0 y = 0. (1)$$

Let r_+ , r_- be the roots of the characteristic polynomial $p(r) = r^2 + a_1 r + a_0$, and let c_0 , c_1 be arbitrary constants. Then, any solution of Eq. (1) belongs to only one of the following cases: (a) If $r_+ \neq r_-$, the general solution is $y(t) = c_1 e^{r_+ t} + c_2 e^{r_- t}$. (b) If $r_+ = r_- \in \mathbb{R}$, the general solution is $y(t) = (c_1 + c_2 t)e^{r_+ t}$. Furthermore, given real constants t_0 , y_1 and y_2 , there is a unique solution to the initial value problem given by Eq. (1) and the initial conditions

$$y(t_0) = y_1, \qquad y'(t_0) = y_2.$$

Example

Find the general solution of the equation y'' - y' - 6y = 0.

(ロ)、(型)、(E)、(E)、 E、 の(の)

Example

Find the general solution of the equation y'' - y' - 6y = 0.

Solution: Since solutions have the form e^{rt} , we need to find the roots of the characteristic polynomial $p(r) = r^2 - r - 6$,

Example

Find the general solution of the equation y'' - y' - 6y = 0.

Solution: Since solutions have the form e^{rt} , we need to find the roots of the characteristic polynomial $p(r) = r^2 - r - 6$, that is,

$$r_{\pm} = \frac{1}{2} \left(1 \pm \sqrt{1+24} \right)$$

Example

Find the general solution of the equation y'' - y' - 6y = 0.

Solution: Since solutions have the form e^{rt} , we need to find the roots of the characteristic polynomial $p(r) = r^2 - r - 6$, that is,

$$r_{\pm} = rac{1}{2} \left(1 \pm \sqrt{1+24}
ight) = rac{1}{2} (1 \pm 5)$$

Example

Find the general solution of the equation y'' - y' - 6y = 0.

Solution: Since solutions have the form e^{rt} , we need to find the roots of the characteristic polynomial $p(r) = r^2 - r - 6$, that is,

$$r_{\pm} = rac{1}{2} \left(1 \pm \sqrt{1+24}
ight) = rac{1}{2} (1 \pm 5) \quad \Rightarrow \quad r_{+} = 3, \quad r_{-} = -2.$$

Example

Find the general solution of the equation y'' - y' - 6y = 0.

Solution: Since solutions have the form e^{rt} , we need to find the roots of the characteristic polynomial $p(r) = r^2 - r - 6$, that is,

$$r_{\pm} = rac{1}{2} \left(1 \pm \sqrt{1+24} \right) = rac{1}{2} (1 \pm 5) \quad \Rightarrow \quad r_{+} = 3, \quad r_{-} = -2.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

So, r_{\pm} are real-valued.

Example

Find the general solution of the equation y'' - y' - 6y = 0.

Solution: Since solutions have the form e^{rt} , we need to find the roots of the characteristic polynomial $p(r) = r^2 - r - 6$, that is,

$$r_{\pm} = rac{1}{2} \left(1 \pm \sqrt{1+24} \right) = rac{1}{2} (1 \pm 5) \quad \Rightarrow \quad r_{+} = 3, \quad r_{-} = -2.$$

So, r_{\pm} are real-valued. A fundamental solution set is formed by

$$y_1(t) = e^{3t}, \qquad y_2(t) = e^{-2t}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find the general solution of the equation y'' - y' - 6y = 0.

Solution: Since solutions have the form e^{rt} , we need to find the roots of the characteristic polynomial $p(r) = r^2 - r - 6$, that is,

$$r_{\pm} = rac{1}{2} \left(1 \pm \sqrt{1+24} \right) = rac{1}{2} (1 \pm 5) \quad \Rightarrow \quad r_{+} = 3, \quad r_{-} = -2.$$

So, r_{\pm} are real-valued. A fundamental solution set is formed by

$$y_1(t) = e^{3t}, \qquad y_2(t) = e^{-2t}.$$

The general solution of the differential equations is an arbitrary linear combination of the fundamental solutions,

Example

Find the general solution of the equation y'' - y' - 6y = 0.

Solution: Since solutions have the form e^{rt} , we need to find the roots of the characteristic polynomial $p(r) = r^2 - r - 6$, that is,

$$r_{\pm} = rac{1}{2} \left(1 \pm \sqrt{1+24} \right) = rac{1}{2} (1 \pm 5) \quad \Rightarrow \quad r_{+} = 3, \quad r_{-} = -2.$$

So, r_{\pm} are real-valued. A fundamental solution set is formed by

$$y_1(t) = e^{3t}, \qquad y_2(t) = e^{-2t}.$$

The general solution of the differential equations is an arbitrary linear combination of the fundamental solutions, that is,

$$y(t) = c_1 e^{3t} + c_2 e^{-2t}, \qquad c_1, c_2 \in \mathbb{R}.$$

Example

Find the general solution of the equation y'' - y' - 6y = 0.

Solution: Since solutions have the form e^{rt} , we need to find the roots of the characteristic polynomial $p(r) = r^2 - r - 6$, that is,

$$r_{\pm} = rac{1}{2} \left(1 \pm \sqrt{1+24} \right) = rac{1}{2} (1 \pm 5) \quad \Rightarrow \quad r_{+} = 3, \quad r_{-} = -2.$$

So, r_{\pm} are real-valued. A fundamental solution set is formed by

$$y_1(t) = e^{3t}, \qquad y_2(t) = e^{-2t}.$$

The general solution of the differential equations is an arbitrary linear combination of the fundamental solutions, that is,

$$y(t) = c_1 e^{3t} + c_2 e^{-2t}, \qquad c_1, c_2 \in \mathbb{R}.$$

 \triangleleft

Remark: Since $c_1, c_2 \in \mathbb{R}$, then y is real-valued.

Second order linear homogeneous ODE.

- Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.
- Characteristic polynomial with complex roots.
 - Two main sets of fundamental solutions.
 - A real-valued fundamental and general solutions.

• Application: The RLC circuit.

Theorem (Complex roots)

If the constants a_1 , $a_0 \in \mathbb{R}$ satisfy that $a_1^2 - 4a_0 < 0$, then the characteristic polynomial $p(r) = r^2 + a_1r + a_0$ of the equation

$$y'' + a_1 y' + a_0 y = 0$$
 (2)

(日) (同) (三) (三) (三) (○) (○)

has complex roots $r_+ = \alpha + i\beta$ and $r_- = \alpha - i\beta$, where

$$\alpha = -\frac{a_1}{2}, \qquad \beta = \frac{1}{2}\sqrt{4a_0 - a_1^2}.$$

Furthermore, a fundamental set of solutions to Eq. (2) is

$$\tilde{y}_1(t) = e^{(\alpha+i\beta)t}, \qquad \tilde{y}_2(t) = e^{(\alpha-i\beta)t},$$

while another fundamental set of solutions to Eq. (2) is

$$y_1(t) = e^{\alpha t} \cos(\beta t), \qquad y_2(t) = e^{\alpha t} \sin(\beta t).$$

Example

Find the general solution of the equation y'' - 2y' + 6y = 0.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Find the general solution of the equation y'' - 2y' + 6y = 0.

Solution: We first find the roots of the characteristic polynomial,

- ロ ト - 4 回 ト - 4 □ - 4

 $r^2 - 2r + 6 = 0$

Example

Find the general solution of the equation y'' - 2y' + 6y = 0.

Solution: We first find the roots of the characteristic polynomial,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

$$r^2 - 2r + 6 = 0 \quad \Rightarrow \quad r_{\pm} = \frac{1}{2} \left(2 \pm \sqrt{4 - 24} \right)$$

Example

Find the general solution of the equation y'' - 2y' + 6y = 0.

Solution: We first find the roots of the characteristic polynomial,

$$r^2-2r+6=0$$
 \Rightarrow $r_{\pm}=rac{1}{2}\left(2\pm\sqrt{4-24}
ight)$ \Rightarrow $r_{\pm}=1\pm i\sqrt{5}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Find the general solution of the equation y'' - 2y' + 6y = 0.

Solution: We first find the roots of the characteristic polynomial,

$$r^2-2r+6=0$$
 \Rightarrow $r_{\pm}=rac{1}{2}\left(2\pm\sqrt{4-24}
ight)$ \Rightarrow $r_{\pm}=1\pm i\sqrt{5}.$

A fundamental solution set is

$$\tilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \qquad \tilde{y}_2(t) = e^{(1-i\sqrt{5})t}.$$

- ロ ト - 4 回 ト - 4 □ - 4

Example

Find the general solution of the equation y'' - 2y' + 6y = 0.

Solution: We first find the roots of the characteristic polynomial,

$$r^2-2r+6=0$$
 \Rightarrow $r_{\pm}=rac{1}{2}\left(2\pm\sqrt{4-24}
ight)$ \Rightarrow $r_{\pm}=1\pm i\sqrt{5}.$

A fundamental solution set is

$$ilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \qquad ilde{y}_2(t) = e^{(1-i\sqrt{5})t}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

These are complex-valued functions.

Example

Find the general solution of the equation y'' - 2y' + 6y = 0.

Solution: We first find the roots of the characteristic polynomial,

$$r^2-2r+6=0$$
 \Rightarrow $r_{\pm}=rac{1}{2}\left(2\pm\sqrt{4-24}
ight)$ \Rightarrow $r_{\pm}=1\pm i\sqrt{5}.$

A fundamental solution set is

$$ilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \qquad ilde{y}_2(t) = e^{(1-i\sqrt{5})t}.$$

These are complex-valued functions. The general solution is

$$y(t) = ilde{c}_1 e^{(1+i\sqrt{5})t} + ilde{c}_2 e^{(1-i\sqrt{5})t}, \qquad ilde{c}_1, ilde{c}_2 \in \mathbb{C}.$$

Remark:

 The solutions found above include real-valued and complex-valued solutions.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Remark:

- The solutions found above include real-valued and complex-valued solutions.
- Since the differential equation is real-valued, it is usually important in applications to obtain the most general real-valued solution. (See RLC circuit below.)

Remark:

- The solutions found above include real-valued and complex-valued solutions.
- Since the differential equation is real-valued, it is usually important in applications to obtain the most general real-valued solution. (See RLC circuit below.)
- In the expression above it is difficult to take apart real-valued solutions from complex-valued solutions.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark:

- The solutions found above include real-valued and complex-valued solutions.
- Since the differential equation is real-valued, it is usually important in applications to obtain the most general real-valued solution. (See RLC circuit below.)
- In the expression above it is difficult to take apart real-valued solutions from complex-valued solutions.
- In other words: It is not simple to see what values of *c*₁ and *c*₂ make the general solution above to be real-valued.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark:

- The solutions found above include real-valued and complex-valued solutions.
- Since the differential equation is real-valued, it is usually important in applications to obtain the most general real-valued solution. (See RLC circuit below.)
- In the expression above it is difficult to take apart real-valued solutions from complex-valued solutions.
- In other words: It is not simple to see what values of c
 ₁ and c
 ₂ make the general solution above to be real-valued.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

One way to find the real-valued general solution is to find real-valued fundamental solutions.

Second order linear homogeneous ODE.

- Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.
- Characteristic polynomial with complex roots.
 - Two main sets of fundamental solutions.
 - A real-valued fundamental and general solutions.

► Application: The RLC circuit.

Example

Find the real-valued general solution of the equation

$$y^{\prime\prime}-2y^{\prime}+6y=0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Find the real-valued general solution of the equation

$$y^{\prime\prime}-2y^{\prime}+6y=0.$$

- ロ ト - 4 回 ト - 4 □ - 4

Solution: Recall: $y(t) = \tilde{c}_1 e^{(1+i\sqrt{5})t} + \tilde{c}_2 e^{(1-i\sqrt{5})t}$, $\tilde{c}_1, \tilde{c}_2 \in \mathbb{C}$.

Example

Find the real-valued general solution of the equation

$$y^{\prime\prime}-2y^{\prime}+6y=0.$$

Solution: Recall: $y(t) = \tilde{c}_1 e^{(1+i\sqrt{5})t} + \tilde{c}_2 e^{(1-i\sqrt{5})t}$, $\tilde{c}_1, \tilde{c}_2 \in \mathbb{C}$.

The Theorem above says that a real-valued fundamental set is

$$y_1(t) = e^t \cos(\sqrt{5} t), \qquad y_2(t) = e^t \sin(\sqrt{5} t).$$

- ロ ト - 4 回 ト - 4 □ - 4

Example

Find the real-valued general solution of the equation

$$y^{\prime\prime}-2y^{\prime}+6y=0.$$

Solution: Recall: $y(t) = \tilde{c}_1 e^{(1+i\sqrt{5})t} + \tilde{c}_2 e^{(1-i\sqrt{5})t}$, $\tilde{c}_1, \tilde{c}_2 \in \mathbb{C}$. The Theorem above says that a real-valued fundamental set is $y_1(t) = e^t \cos(\sqrt{5}t), \qquad y_2(t) = e^t \sin(\sqrt{5}t).$

Hence, the complex-valued general solution can also be written as

$$y(t) = \left[c_1\cos(\sqrt{5} t) + c_2\sin(\sqrt{5} t)\right]e^t, \qquad c_1, c_2 \in \mathbb{C}.$$

Example

Find the real-valued general solution of the equation

$$y^{\prime\prime}-2y^{\prime}+6y=0.$$

Solution: Recall: $y(t) = \tilde{c}_1 e^{(1+i\sqrt{5})t} + \tilde{c}_2 e^{(1-i\sqrt{5})t}$, $\tilde{c}_1, \tilde{c}_2 \in \mathbb{C}$. The Theorem above says that a real-valued fundamental set is $y_1(t) = e^t \cos(\sqrt{5}t), \qquad y_2(t) = e^t \sin(\sqrt{5}t).$

Hence, the complex-valued general solution can also be written as

$$y(t) = \left[c_1 \cos(\sqrt{5} t) + c_2 \sin(\sqrt{5} t)\right] e^t, \qquad c_1, c_2 \in \mathbb{C}.$$

The real-valued general solution is simple to obtain:

$$y(t) = \left[c_1\cos(\sqrt{5} t) + c_2\sin(\sqrt{5} t)\right]e^t, \qquad c_1, c_2 \in \mathbb{R}.$$

Example

Find the real-valued general solution of the equation

$$y^{\prime\prime}-2y^{\prime}+6y=0.$$

Solution: Recall: $y(t) = \tilde{c}_1 e^{(1+i\sqrt{5})t} + \tilde{c}_2 e^{(1-i\sqrt{5})t}$, $\tilde{c}_1, \tilde{c}_2 \in \mathbb{C}$. The Theorem above says that a real-valued fundamental set is $y_t(t) = e^t \cos(\sqrt{5}t)$ $y_0(t) = e^t \sin(\sqrt{5}t)$

$$y_1(r) = r_1(r) + r_2(r)$$

Hence, the complex-valued general solution can also be written as

$$y(t) = \left[c_1 \cos(\sqrt{5} t) + c_2 \sin(\sqrt{5} t)\right] e^t, \qquad c_1, c_2 \in \mathbb{C}.$$

The real-valued general solution is simple to obtain:

$$y(t) = \left[c_1 \cos(\sqrt{5} t) + c_2 \sin(\sqrt{5} t)\right] e^t, \qquad c_1, c_2 \in \mathbb{R}.$$

We just restricted the coefficients c_1 , c_2 to be real-valued.

(日) (同) (三) (三) (三) (○) (○)

Example

Show that $y_1(t) = e^t \cos(\sqrt{5}t)$ and $y_2(t) = e^t \sin(\sqrt{5}t)$ are fundamental solutions to the equation y'' - 2y' + 6y = 0.

・ロト・日本・モート モー うへで

Example

Show that $y_1(t) = e^t \cos(\sqrt{5}t)$ and $y_2(t) = e^t \sin(\sqrt{5}t)$ are fundamental solutions to the equation y'' - 2y' + 6y = 0.

Solution: We start with the complex-valued fundamental solutions,

$$ilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \qquad ilde{y}_2(t) = e^{(1-i\sqrt{5})t}.$$

- ロ ト - 4 回 ト - 4 □ - 4

Example

Show that $y_1(t) = e^t \cos(\sqrt{5}t)$ and $y_2(t) = e^t \sin(\sqrt{5}t)$ are fundamental solutions to the equation y'' - 2y' + 6y = 0.

Solution: We start with the complex-valued fundamental solutions,

$$ilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \qquad ilde{y}_2(t) = e^{(1-i\sqrt{5})t}.$$

Any linear combination of these functions is solution of the differential equation.

Example

Show that $y_1(t) = e^t \cos(\sqrt{5}t)$ and $y_2(t) = e^t \sin(\sqrt{5}t)$ are fundamental solutions to the equation y'' - 2y' + 6y = 0.

Solution: We start with the complex-valued fundamental solutions,

$$ilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \qquad ilde{y}_2(t) = e^{(1-i\sqrt{5})t}.$$

Any linear combination of these functions is solution of the differential equation. In particular,

$$y_1(t) = rac{1}{2}ig[ilde{y}_1(t) + ilde{y}_2(t)ig], \quad y_2(t) = rac{1}{2i}ig[ilde{y}_1(t) - ilde{y}_2(t)ig].$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Show that $y_1(t) = e^t \cos(\sqrt{5}t)$ and $y_2(t) = e^t \sin(\sqrt{5}t)$ are fundamental solutions to the equation y'' - 2y' + 6y = 0.

Solution: We start with the complex-valued fundamental solutions,

$$ilde{y}_1(t) = e^{(1+i\sqrt{5})\,t}, \qquad ilde{y}_2(t) = e^{(1-i\sqrt{5})\,t}.$$

Any linear combination of these functions is solution of the differential equation. In particular,

$$y_1(t) = rac{1}{2}ig[ilde y_1(t) + ilde y_2(t)ig], \quad y_2(t) = rac{1}{2i}ig[ilde y_1(t) - ilde y_2(t)ig].$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Now, recalling $e^{(1\pm i\sqrt{5})t} = e^t e^{\pm i\sqrt{5}t}$

Example

Show that $y_1(t) = e^t \cos(\sqrt{5}t)$ and $y_2(t) = e^t \sin(\sqrt{5}t)$ are fundamental solutions to the equation y'' - 2y' + 6y = 0.

Solution: We start with the complex-valued fundamental solutions,

$$ilde{y}_1(t) = e^{(1+i\sqrt{5})\,t}, \qquad ilde{y}_2(t) = e^{(1-i\sqrt{5})\,t}.$$

Any linear combination of these functions is solution of the differential equation. In particular,

$$y_1(t) = rac{1}{2} ig[ilde y_1(t) + ilde y_2(t) ig], \quad y_2(t) = rac{1}{2i} ig[ilde y_1(t) - ilde y_2(t) ig].$$

Now, recalling $e^{(1\pm i\sqrt{5})t} = e^t e^{\pm i\sqrt{5}t}$

$$y_1(t) = \frac{1}{2} \left[e^t e^{i\sqrt{5}t} + e^t e^{-i\sqrt{5}t} \right], \quad y_2(t) = \frac{1}{2i} \left[e^t e^{i\sqrt{5}t} - e^t e^{-i\sqrt{5}t} \right],$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Show that $y_1(t) = e^t \cos(\sqrt{5}t)$ and $y_2(t) = e^t \sin(\sqrt{5}t)$ are fundamental solutions to the equation y'' - 2y' + 6y = 0.

Solution:
$$y_1 = \frac{e^t}{2} \left[e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} \right], \ y_2 = \frac{e^t}{2i} \left[e^{i\sqrt{5}t} - e^{-i\sqrt{5}t} \right].$$

・ロト・日本・モート モー うへで

Example

Show that $y_1(t) = e^t \cos(\sqrt{5}t)$ and $y_2(t) = e^t \sin(\sqrt{5}t)$ are fundamental solutions to the equation y'' - 2y' + 6y = 0.

Solution:
$$y_1 = \frac{e^t}{2} \left[e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} \right], \quad y_2 = \frac{e^t}{2i} \left[e^{i\sqrt{5}t} - e^{-i\sqrt{5}t} \right].$$

The Euler formula and its complex-conjugate formula

$$e^{i\sqrt{5}t} = \big[\cos(\sqrt{5}t) + i\sin(\sqrt{5}t)\big],$$

Example

Show that $y_1(t) = e^t \cos(\sqrt{5}t)$ and $y_2(t) = e^t \sin(\sqrt{5}t)$ are fundamental solutions to the equation y'' - 2y' + 6y = 0.

Solution:
$$y_1 = \frac{e^t}{2} \left[e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} \right], \quad y_2 = \frac{e^t}{2i} \left[e^{i\sqrt{5}t} - e^{-i\sqrt{5}t} \right].$$

The Euler formula and its complex-conjugate formula

$$e^{i\sqrt{5}t} = \left[\cos(\sqrt{5}t) + i\sin(\sqrt{5}t)\right],$$

$$e^{-i\sqrt{5}t} = \left[\cos(\sqrt{5}t) - i\sin(\sqrt{5}t)\right],$$

Example

Show that $y_1(t) = e^t \cos(\sqrt{5}t)$ and $y_2(t) = e^t \sin(\sqrt{5}t)$ are fundamental solutions to the equation y'' - 2y' + 6y = 0.

Solution:
$$y_1 = \frac{e^t}{2} \left[e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} \right], \quad y_2 = \frac{e^t}{2i} \left[e^{i\sqrt{5}t} - e^{-i\sqrt{5}t} \right].$$

The Euler formula and its complex-conjugate formula

$$e^{i\sqrt{5}t} = \left[\cos(\sqrt{5}t) + i\sin(\sqrt{5}t)\right],$$
$$e^{-i\sqrt{5}t} = \left[\cos(\sqrt{5}t) - i\sin(\sqrt{5}t)\right],$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

inply the inverse relations

$$e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} = 2\cos(\sqrt{5}t),$$

Example

Show that $y_1(t) = e^t \cos(\sqrt{5}t)$ and $y_2(t) = e^t \sin(\sqrt{5}t)$ are fundamental solutions to the equation y'' - 2y' + 6y = 0.

Solution:
$$y_1 = \frac{e^t}{2} \left[e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} \right], \quad y_2 = \frac{e^t}{2i} \left[e^{i\sqrt{5}t} - e^{-i\sqrt{5}t} \right].$$

The Euler formula and its complex-conjugate formula

$$e^{i\sqrt{5}t} = \left[\cos(\sqrt{5}t) + i\sin(\sqrt{5}t)\right],$$

$$e^{-i\sqrt{5}t} = \left[\cos(\sqrt{5}t) - i\sin(\sqrt{5}t)\right],$$

imply the inverse relations

$$e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} = 2\cos(\sqrt{5}t), \quad e^{i\sqrt{5}t} - e^{-i\sqrt{5}t} = 2i\sin(\sqrt{5}t).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Show that $y_1(t) = e^t \cos(\sqrt{5}t)$ and $y_2(t) = e^t \sin(\sqrt{5}t)$ are fundamental solutions to the equation y'' - 2y' + 6y = 0.

Solution:
$$y_1 = \frac{e^t}{2} \left[e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} \right], \quad y_2 = \frac{e^t}{2i} \left[e^{i\sqrt{5}t} - e^{-i\sqrt{5}t} \right].$$

The Euler formula and its complex-conjugate formula

$$e^{i\sqrt{5}t} = \left[\cos(\sqrt{5}t) + i\sin(\sqrt{5}t)\right],$$

$$e^{-i\sqrt{5}t} = \left[\cos(\sqrt{5}t) - i\sin(\sqrt{5}t)\right],$$

imply the inverse relations

$$e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} = 2\cos(\sqrt{5}t), \quad e^{i\sqrt{5}t} - e^{-i\sqrt{5}t} = 2i\sin(\sqrt{5}t).$$

So functions y_1 and y_2 can be written as

$$y_1(t) = e^t \cos(\sqrt{5} t),$$

Example

Show that $y_1(t) = e^t \cos(\sqrt{5}t)$ and $y_2(t) = e^t \sin(\sqrt{5}t)$ are fundamental solutions to the equation y'' - 2y' + 6y = 0.

Solution:
$$y_1 = \frac{e^t}{2} \left[e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} \right], \quad y_2 = \frac{e^t}{2i} \left[e^{i\sqrt{5}t} - e^{-i\sqrt{5}t} \right].$$

The Euler formula and its complex-conjugate formula

$$e^{i\sqrt{5}t} = \left[\cos(\sqrt{5}t) + i\sin(\sqrt{5}t)\right],$$

$$e^{-i\sqrt{5}t} = \left[\cos(\sqrt{5}t) - i\sin(\sqrt{5}t)\right],$$

imply the inverse relations

$$e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} = 2\cos(\sqrt{5}t), \quad e^{i\sqrt{5}t} - e^{-i\sqrt{5}t} = 2i\sin(\sqrt{5}t).$$

So functions y_1 and y_2 can be written as

$$y_1(t) = e^t \cos(\sqrt{5} t), \qquad y_2(t) = e^t \sin(\sqrt{5} t).$$

Example

Show that $y_1(t) = e^t \cos(\sqrt{5}t)$ and $y_2(t) = e^t \sin(\sqrt{5}t)$ are fundamental solutions to the equation y'' - 2y' + 6y = 0.

Solution: $y_1(t) = e^t \cos(\sqrt{5} t), \ y_2(t) = e^t \sin(\sqrt{5} t).$

Example

Show that $y_1(t) = e^t \cos(\sqrt{5}t)$ and $y_2(t) = e^t \sin(\sqrt{5}t)$ are fundamental solutions to the equation y'' - 2y' + 6y = 0.

Solution: $y_1(t) = e^t \cos(\sqrt{5} t), \ y_2(t) = e^t \sin(\sqrt{5} t).$

Summary:

• These functions are solutions of the differential equation.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Show that $y_1(t) = e^t \cos(\sqrt{5}t)$ and $y_2(t) = e^t \sin(\sqrt{5}t)$ are fundamental solutions to the equation y'' - 2y' + 6y = 0.

Solution: $y_1(t) = e^t \cos(\sqrt{5} t), \ y_2(t) = e^t \sin(\sqrt{5} t).$

Summary:

• These functions are solutions of the differential equation.

They are not proportional to each other, Hence li.

Example

Show that $y_1(t) = e^t \cos(\sqrt{5}t)$ and $y_2(t) = e^t \sin(\sqrt{5}t)$ are fundamental solutions to the equation y'' - 2y' + 6y = 0.

Solution: $y_1(t) = e^t \cos(\sqrt{5} t), \ y_2(t) = e^t \sin(\sqrt{5} t).$

Summary:

• These functions are solutions of the differential equation.

- They are not proportional to each other, Hence li.
- Therefore, y_1 , y_2 form a fundamental set.

Example

Show that $y_1(t) = e^t \cos(\sqrt{5}t)$ and $y_2(t) = e^t \sin(\sqrt{5}t)$ are fundamental solutions to the equation y'' - 2y' + 6y = 0.

Solution: $y_1(t) = e^t \cos(\sqrt{5} t), \ y_2(t) = e^t \sin(\sqrt{5} t).$

Summary:

- These functions are solutions of the differential equation.
- They are not proportional to each other, Hence li.
- Therefore, y_1 , y_2 form a fundamental set.
- The general solution of the equation is

 $y(t) = \left[c_1 \cos(\sqrt{5}t) + c_2 \sin(\sqrt{5}t)\right] e^t.$

Example

Show that $y_1(t) = e^t \cos(\sqrt{5}t)$ and $y_2(t) = e^t \sin(\sqrt{5}t)$ are fundamental solutions to the equation y'' - 2y' + 6y = 0.

Solution: $y_1(t) = e^t \cos(\sqrt{5} t), \ y_2(t) = e^t \sin(\sqrt{5} t).$

Summary:

- These functions are solutions of the differential equation.
- They are not proportional to each other, Hence li.
- Therefore, y_1 , y_2 form a fundamental set.
- The general solution of the equation is

$$y(t) = \left[c_1 \cos(\sqrt{5}t) + c_2 \sin(\sqrt{5}t)\right] e^t.$$

• y is real-valued for
$$c_1$$
, $c_2 \in \mathbb{R}$.

Example

Show that $y_1(t) = e^t \cos(\sqrt{5}t)$ and $y_2(t) = e^t \sin(\sqrt{5}t)$ are fundamental solutions to the equation y'' - 2y' + 6y = 0.

Solution: $y_1(t) = e^t \cos(\sqrt{5} t), \ y_2(t) = e^t \sin(\sqrt{5} t).$

Summary:

- These functions are solutions of the differential equation.
- They are not proportional to each other, Hence li.
- Therefore, y_1 , y_2 form a fundamental set.
- The general solution of the equation is

$$y(t) = \left[c_1 \cos(\sqrt{5}t) + c_2 \sin(\sqrt{5}t)\right] e^t.$$

• *y* is real-valued for
$$c_1$$
, $c_2 \in \mathbb{R}$.

• y is complex-valued for c_1 , $c_2 \in \mathbb{C}$.

Remark:

The proof of the Theorem follow exactly the same ideas given in the example above.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Remark:

- The proof of the Theorem follow exactly the same ideas given in the example above.
- > One has to replace the roots of the characteristic polynomial

$$1+i\sqrt{5} \rightarrow \alpha+i\beta, \quad 1-i\sqrt{5} \rightarrow \alpha-i\beta.$$

Remark:

- The proof of the Theorem follow exactly the same ideas given in the example above.
- One has to replace the roots of the characteristic polynomial

$$1+i\sqrt{5} \rightarrow \alpha+i\beta, \quad 1-i\sqrt{5} \rightarrow \alpha-i\beta.$$

The real-valued fundamental solutions are

 $y_1(t) = e^{\alpha t} \cos(\beta t), \qquad y_2(t) = e^{\alpha t} \sin(\beta t).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Find real-valued fundamental solutions to the equation

$$y'' + 2y' + 6y = 0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Find real-valued fundamental solutions to the equation

$$y'' + 2y' + 6y = 0.$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Solution:

The roots of the characteristic polynomial $p(r) = r^2 + 2r + 6$

Example

Find real-valued fundamental solutions to the equation

$$y'' + 2y' + 6y = 0.$$

Solution:

The roots of the characteristic polynomial $p(r) = r^2 + 2r + 6$ are

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$r_{\pm} = \frac{1}{2} \bigl[-2 \pm \sqrt{4-24} \bigr]$$

Example

Find real-valued fundamental solutions to the equation

$$y'' + 2\,y' + 6\,y = 0.$$

Solution:

The roots of the characteristic polynomial $p(r) = r^2 + 2r + 6$ are

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$r_{\pm} = \frac{1}{2} \left[-2 \pm \sqrt{4 - 24} \right] = \frac{1}{2} \left[-2 \pm \sqrt{-20} \right]$$

Example

Find real-valued fundamental solutions to the equation

$$y'' + 2y' + 6y = 0.$$

Solution:

The roots of the characteristic polynomial $p(r) = r^2 + 2r + 6$ are

$$r_{\pm} = \frac{1}{2} \left[-2 \pm \sqrt{4 - 24} \right] = \frac{1}{2} \left[-2 \pm \sqrt{-20} \right] \implies r_{\pm} = -1 \pm i\sqrt{5}.$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example

Find real-valued fundamental solutions to the equation

$$y'' + 2y' + 6y = 0.$$

Solution:

The roots of the characteristic polynomial $p(r) = r^2 + 2r + 6$ are

$$r_{\pm} = \frac{1}{2} \left[-2 \pm \sqrt{4 - 24} \right] = \frac{1}{2} \left[-2 \pm \sqrt{-20} \right] \Rightarrow r_{\pm} = -1 \pm i\sqrt{5}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

These are complex-valued roots,

Example

Find real-valued fundamental solutions to the equation

$$y'' + 2y' + 6y = 0.$$

Solution:

The roots of the characteristic polynomial $p(r) = r^2 + 2r + 6$ are

$$r_{\pm} = \frac{1}{2} \left[-2 \pm \sqrt{4 - 24} \right] = \frac{1}{2} \left[-2 \pm \sqrt{-20} \right] \implies r_{\pm} = -1 \pm i\sqrt{5}.$$

These are complex-valued roots, with

$$\alpha = -1, \qquad \beta = \sqrt{5}.$$

- ロ ト - 4 回 ト - 4 □ - 4

Example

Find real-valued fundamental solutions to the equation

$$y'' + 2y' + 6y = 0.$$

Solution:

The roots of the characteristic polynomial $p(r) = r^2 + 2r + 6$ are

$$r_{\pm} = \frac{1}{2} \left[-2 \pm \sqrt{4 - 24} \right] = \frac{1}{2} \left[-2 \pm \sqrt{-20} \right] \implies r_{\pm} = -1 \pm i\sqrt{5}.$$

These are complex-valued roots, with

$$\alpha = -1, \qquad \beta = \sqrt{5}.$$

Real-valued fundamental solutions are

$$y_1(t) = e^{-t} \cos(\sqrt{5} t), \qquad y_2(t) = e^{-t} \sin(\sqrt{5} t).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find real-valued fundamental solutions to the equation

$$y'' + 2y' + 6y = 0.$$

Solution: $y_1(t) = e^{-t} \cos(\sqrt{5}t), \ y_2(t) = e^{-t} \sin(\sqrt{5}t).$

Differential equations like the one in this example describe physical processes related to damped oscillations. For example pendulums with friction.

・ロト・西ト・山田・山田・山下

Example

Find the real-valued general solution of y'' + 5y = 0.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Find the real-valued general solution of y'' + 5y = 0.

Solution: The characteristic polynomial is $p(r) = r^2 + 5$.

・ロト・日本・モート モー うへで

Example

Find the real-valued general solution of y'' + 5y = 0.

Solution: The characteristic polynomial is $p(r) = r^2 + 5$.

Its roots are $r_{\pm} = \pm \sqrt{5} i$. This is the case $\alpha = 0$, and $\beta = \sqrt{5}$.

Example

Find the real-valued general solution of y'' + 5y = 0.

Solution: The characteristic polynomial is $p(r) = r^2 + 5$.

Its roots are $r_{\pm} = \pm \sqrt{5} i$. This is the case $\alpha = 0$, and $\beta = \sqrt{5}$.

Real-valued fundamental solutions are

$$y_1(t) = \cos(\sqrt{5} t), \qquad y_2(t) = \sin(\sqrt{5} t).$$

Example

Find the real-valued general solution of y'' + 5y = 0.

Solution: The characteristic polynomial is $p(r) = r^2 + 5$. Its roots are $r_{\pm} = \pm \sqrt{5} i$. This is the case $\alpha = 0$, and $\beta = \sqrt{5}$.

Real-valued fundamental solutions are

$$y_1(t) = \cos(\sqrt{5} t), \qquad y_2(t) = \sin(\sqrt{5} t).$$

The real-valued general solution is

$$y(t) = c_1 \cos(\sqrt{5} t) + c_2 \sin(\sqrt{5} t), \qquad c_1, c_2 \in \mathbb{R}.$$

Example

Find the real-valued general solution of y'' + 5y = 0.

Solution: The characteristic polynomial is $p(r) = r^2 + 5$.

Its roots are $r_{\pm} = \pm \sqrt{5} i$. This is the case $\alpha = 0$, and $\beta = \sqrt{5}$.

Real-valued fundamental solutions are

$$y_1(t) = \cos(\sqrt{5} t), \qquad y_2(t) = \sin(\sqrt{5} t).$$

The real-valued general solution is

 $y(t) = c_1 \cos(\sqrt{5} t) + c_2 \sin(\sqrt{5} t), \qquad c_1, c_2 \in \mathbb{R}.$

Remark: Equations like the one in this example describe oscillatory physical processes without dissipation.

Second order linear homogeneous ODE.

- Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.
- Characteristic polynomial with complex roots.
 - Two main sets of fundamental solutions.
 - ► A real-valued fundamental and general solutions.

• Application: The RLC circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

I (t) : electric current.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

The electric current flowing in such circuit satisfies:

$$L I'(t) + R I(t) + \frac{1}{C} \int_{t_0}^t I(s) ds = 0.$$

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

The electric current flowing in such circuit satisfies:

$$L I'(t) + R I(t) + \frac{1}{C} \int_{t_0}^t I(s) ds = 0.$$

Derivate both sides above: $LI''(t) + RI'(t) + \frac{1}{C}I(t) = 0.$

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

The electric current flowing in such circuit satisfies:

$$L I'(t) + R I(t) + \frac{1}{C} \int_{t_0}^t I(s) ds = 0.$$

Derivate both sides above: $LI''(t) + RI'(t) + \frac{1}{C}I(t) = 0.$

Divide by L: $I''(t) + 2\left(\frac{R}{2L}\right)I'(t) + \frac{1}{LC}I(t) = 0.$

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

The electric current flowing in such circuit satisfies:

$$L I'(t) + R I(t) + \frac{1}{C} \int_{t_0}^t I(s) ds = 0.$$

Derivate both sides above: $LI''(t) + RI'(t) + \frac{1}{C}I(t) = 0.$

Divide by L:
$$I''(t) + 2\left(\frac{R}{2L}\right)I'(t) + \frac{1}{LC}I(t) = 0.$$

Introduce $\alpha = \frac{R}{2L}$ and $\omega = \frac{1}{\sqrt{LC}}$,

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

The electric current flowing in such circuit satisfies:

$$L I'(t) + R I(t) + \frac{1}{C} \int_{t_0}^t I(s) ds = 0.$$

Derivate both sides above: $LI''(t) + RI'(t) + \frac{1}{C}I(t) = 0.$

Divide by L:
$$I''(t) + 2\left(\frac{R}{2L}\right)I'(t) + \frac{1}{LC}I(t) = 0.$$

Introduce $\alpha = \frac{R}{2L}$ and $\omega = \frac{1}{\sqrt{LC}}$, then $I'' + 2\alpha I' + \omega^2 I = 0$.

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r) = r^2 + 2\alpha r + \omega^2$.

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r) = r^2 + 2\alpha r + \omega^2$. The roots are:

$$r_{\pm} = \frac{1}{2} \left[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2} \right]$$

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r) = r^2 + 2\alpha r + \omega^2$. The roots are:

$$r_{\pm} = \frac{1}{2} \left[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2} \right] \quad \Rightarrow \quad r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}.$$

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r) = r^2 + 2\alpha r + \omega^2$. The roots are:

$$r_{\pm} = \frac{1}{2} \left[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2} \right] \quad \Rightarrow \quad r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}.$$

Case (a) R = 0.

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r) = r^2 + 2\alpha r + \omega^2$. The roots are:

$$r_{\pm} = \frac{1}{2} \left[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2} \right] \quad \Rightarrow \quad r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}.$$

Case (a) R = 0. This implies $\alpha = 0$,

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r) = r^2 + 2\alpha r + \omega^2$. The roots are:

$$r_{\pm} = \frac{1}{2} \left[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2} \right] \quad \Rightarrow \quad r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}.$$

Case (a) R = 0. This implies $\alpha = 0$, so $r_{\pm} = \pm i\omega$.

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r) = r^2 + 2\alpha r + \omega^2$. The roots are:

$$r_{\pm} = \frac{1}{2} \left[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2} \right] \quad \Rightarrow \quad r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}.$$

Case (a) R=0. This implies lpha=0, so $r_{\pm}=\pm i\omega.$ Therefore, $I_1(t)=\cos(\omega t),$

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r) = r^2 + 2\alpha r + \omega^2$. The roots are:

$$r_{\pm} = \frac{1}{2} \left[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2} \right] \quad \Rightarrow \quad r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}.$$

Case (a) R = 0. This implies $\alpha = 0$, so $r_{\pm} = \pm i\omega$. Therefore,

$$I_1(t) = \cos(\omega t), \qquad I_2(t) = \sin(\omega t).$$

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r) = r^2 + 2\alpha r + \omega^2$. The roots are:

$$r_{\pm} = \frac{1}{2} \left[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2} \right] \quad \Rightarrow \quad r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}.$$

Case (a) R = 0. This implies $\alpha = 0$, so $r_{\pm} = \pm i\omega$. Therefore,

$$I_1(t) = \cos(\omega t), \qquad I_2(t) = \sin(\omega t).$$

Remark: When the circuit has no resistance, the current oscillates without dissipation.

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Solution: Recall: $r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Solution: Recall: $r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Case (b) $R < \sqrt{4L/C}$.

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Solution: Recall: $r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Case (b) $R < \sqrt{4L/C}$. This implies

$$R^2 < \frac{4L}{C}$$

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Solution: Recall: $r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Case (b) $R < \sqrt{4L/C}$. This implies

$$R^2 < \frac{4L}{C} \quad \Leftrightarrow \quad \frac{R^2}{4L^2} < \frac{1}{LC}$$

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: Recall: $r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Case (b) $R < \sqrt{4L/C}$. This implies

$$R^2 < \frac{4L}{C} \quad \Leftrightarrow \quad \frac{R^2}{4L^2} < \frac{1}{LC} \quad \Leftrightarrow \quad \alpha^2 < \omega^2.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: Recall: $r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Case (b) $R < \sqrt{4L/C}$. This implies

$$R^2 < \frac{4L}{C} \quad \Leftrightarrow \quad \frac{R^2}{4L^2} < \frac{1}{LC} \quad \Leftrightarrow \quad \alpha^2 < \omega^2$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Therefore, $r_{\pm} = -\alpha \pm i\sqrt{\omega^2 - \alpha^2}$.

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: Recall: $r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Case (b) $R < \sqrt{4L/C}$. This implies

$$R^2 < \frac{4L}{C} \quad \Leftrightarrow \quad \frac{R^2}{4L^2} < \frac{1}{LC} \quad \Leftrightarrow \quad \alpha^2 < \omega^2.$$

Therefore, $r_{\pm} = -\alpha \pm i\sqrt{\omega^2 - \alpha^2}$. The fundamental solutions are

$$I_1(t) = e^{-\alpha t} \cos(\sqrt{\omega^2 - \alpha^2} t),$$

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: Recall: $r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Case (b) $R < \sqrt{4L/C}$. This implies

$$R^2 < \frac{4L}{C} \quad \Leftrightarrow \quad \frac{R^2}{4L^2} < \frac{1}{LC} \quad \Leftrightarrow \quad \alpha^2 < \omega^2.$$

Therefore, $r_{\pm} = -\alpha \pm i\sqrt{\omega^2 - \alpha^2}$. The fundamental solutions are

$$I_1(t) = e^{-\alpha t} \cos\left(\sqrt{\omega^2 - \alpha^2} t\right), \quad I_2(t) = e^{-\alpha t} \sin\left(\sqrt{\omega^2 - \alpha^2} t\right).$$

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: Recall: $r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Case (b) $R < \sqrt{4L/C}$. This implies

$$R^2 < \frac{4L}{C} \quad \Leftrightarrow \quad \frac{R^2}{4L^2} < \frac{1}{LC} \quad \Leftrightarrow \quad \alpha^2 < \omega^2.$$

Therefore, $r_{\pm} = -\alpha \pm i \sqrt{\omega^2 - \alpha^2}$. The fundamental solutions are

$$I_1(t) = e^{-\alpha t} \cos(\sqrt{\omega^2 - \alpha^2} t), \quad I_2(t) = e^{-\alpha t} \sin(\sqrt{\omega^2 - \alpha^2} t).$$

I (t) : electric current.

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: Recall: $r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Case (b) $R < \sqrt{4L/C}$. This implies

$$R^2 < \frac{4L}{C} \quad \Leftrightarrow \quad \frac{R^2}{4L^2} < \frac{1}{LC} \quad \Leftrightarrow \quad \alpha^2 < \omega^2.$$

Therefore, $r_{\pm} = -\alpha \pm i \sqrt{\omega^2 - \alpha^2}$. The fundamental solutions are

$$I_1(t) = e^{-\alpha t} \cos\left(\sqrt{\omega^2 - \alpha^2} t\right), \quad I_2(t) = e^{-\alpha t} \sin\left(\sqrt{\omega^2 - \alpha^2} t\right).$$

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: Recall: $r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Case (b) $R < \sqrt{4L/C}$. This implies

$$R^2 < \frac{4L}{C} \quad \Leftrightarrow \quad \frac{R^2}{4L^2} < \frac{1}{LC} \quad \Leftrightarrow \quad \alpha^2 < \omega^2.$$

Therefore, $r_{\pm} = -\alpha \pm i\sqrt{\omega^2 - \alpha^2}$. The fundamental solutions are

$$I_1(t) = e^{-\alpha t} \cos\left(\sqrt{\omega^2 - \alpha^2} t\right), \quad I_2(t) = e^{-\alpha t} \sin\left(\sqrt{\omega^2 - \alpha^2} t\right).$$

The resistance R damps the current oscillations.