The integrating factor method (Sect. 2.1).

- Overview of differential equations.
- Linear Ordinary Differential Equations.
- The integrating factor method.
- Constant coefficients.
- The Initial Value Problem.
- Variable coefficients.

Read:

- The direction field. Example 2 in Section 1.1 in the Textbook.
- See direction field plotters in Internet. For example, see: http://math.rice.edu/ dfield/dfpp.html
This link is given in our class webpage.

Overview of differential equations.

Definition

A differential equation is an equation, where the unknown is a function, and both the function and its derivative appear in the equation.

Overview of differential equations.

Definition

A differential equation is an equation, where the unknown is a function, and both the function and its derivative appear in the equation.

Remark: There are two main types of differential equations:

Overview of differential equations.

Definition

A differential equation is an equation, where the unknown is a function, and both the function and its derivative appear in the equation.

Remark: There are two main types of differential equations:

- Ordinary Differential Equations (ODE): Derivatives with respect to only one variable appear in the equation.

Overview of differential equations.

Definition

A differential equation is an equation, where the unknown is a function, and both the function and its derivative appear in the equation.

Remark: There are two main types of differential equations:

- Ordinary Differential Equations (ODE): Derivatives with respect to only one variable appear in the equation.

Example:
Newton's second law of motion: ma=F.

Overview of differential equations.

Definition

A differential equation is an equation, where the unknown is a function, and both the function and its derivative appear in the equation.

Remark: There are two main types of differential equations:

- Ordinary Differential Equations (ODE): Derivatives with respect to only one variable appear in the equation.
Example:
Newton's second law of motion: ma=F.
- Partial differential Equations (PDE): Partial derivatives of two or more variables appear in the equation.

Overview of differential equations.

Definition

A differential equation is an equation, where the unknown is a function, and both the function and its derivative appear in the equation.

Remark: There are two main types of differential equations:

- Ordinary Differential Equations (ODE): Derivatives with respect to only one variable appear in the equation.
Example:
Newton's second law of motion: $m \mathbf{a}=\mathbf{F}$.
- Partial differential Equations (PDE): Partial derivatives of two or more variables appear in the equation.
Example:
The wave equation for sound propagation in air.

Overview of differential equations.

Example

Newton's second law of motion is an ODE: The unknown is $\mathbf{x}(t)$, the particle position as function of time t and the equation is

$$
\frac{d^{2}}{d t^{2}} \mathbf{x}(t)=\frac{1}{m} \mathbf{F}(t, \mathbf{x}(t))
$$

with m the particle mass and \mathbf{F} the force acting on the particle.

Overview of differential equations.

Example

Newton's second law of motion is an ODE: The unknown is $\mathbf{x}(t)$, the particle position as function of time t and the equation is

$$
\frac{d^{2}}{d t^{2}} \mathbf{x}(t)=\frac{1}{m} \mathbf{F}(t, \mathbf{x}(t))
$$

with m the particle mass and \mathbf{F} the force acting on the particle.

Example

The wave equation is a PDE: The unknown is $u(t, x)$, a function that depends on two variables, and the equation is

$$
\frac{\partial^{2}}{\partial t^{2}} u(t, x)=v^{2} \frac{\partial^{2}}{\partial x^{2}} u(t, x)
$$

with v the wave speed. Sound propagation in air is described by a wave equation, where u represents the air pressure.

Overview of differential equations.

Remark: Differential equations are a central part in a physical description of nature:

Overview of differential equations.

Remark: Differential equations are a central part in a physical description of nature:

- Classical Mechanics:

Overview of differential equations.

Remark: Differential equations are a central part in a physical description of nature:

- Classical Mechanics:
- Newton's second law of motion. (ODE)

Overview of differential equations.

Remark: Differential equations are a central part in a physical description of nature:

- Classical Mechanics:
- Newton's second law of motion. (ODE)
- Lagrange's equations. (ODE)

Overview of differential equations.

Remark: Differential equations are a central part in a physical description of nature:

- Classical Mechanics:
- Newton's second law of motion. (ODE)
- Lagrange's equations. (ODE)
- Electromagnetism:

Overview of differential equations.

Remark: Differential equations are a central part in a physical description of nature:

- Classical Mechanics:
- Newton's second law of motion. (ODE)
- Lagrange's equations. (ODE)
- Electromagnetism:
- Maxwell's equations. (PDE)

Overview of differential equations.

Remark: Differential equations are a central part in a physical description of nature:

- Classical Mechanics:
- Newton's second law of motion. (ODE)
- Lagrange's equations. (ODE)
- Electromagnetism:
- Maxwell's equations. (PDE)
- Quantum Mechanics:

Overview of differential equations.

Remark: Differential equations are a central part in a physical description of nature:

- Classical Mechanics:
- Newton's second law of motion. (ODE)
- Lagrange's equations. (ODE)
- Electromagnetism:
- Maxwell's equations. (PDE)
- Quantum Mechanics:
- Schrödinger's equation. (PDE)

Overview of differential equations.

Remark: Differential equations are a central part in a physical description of nature:

- Classical Mechanics:
- Newton's second law of motion. (ODE)
- Lagrange's equations. (ODE)
- Electromagnetism:
- Maxwell's equations. (PDE)
- Quantum Mechanics:
- Schrödinger's equation. (PDE)
- General Relativity:

Overview of differential equations.

Remark: Differential equations are a central part in a physical description of nature:

- Classical Mechanics:
- Newton's second law of motion. (ODE)
- Lagrange's equations. (ODE)
- Electromagnetism:
- Maxwell's equations. (PDE)
- Quantum Mechanics:
- Schrödinger's equation. (PDE)
- General Relativity:
- Einstein equation. (PDE)

Overview of differential equations.

Remark: Differential equations are a central part in a physical description of nature:

- Classical Mechanics:
- Newton's second law of motion. (ODE)
- Lagrange's equations. (ODE)
- Electromagnetism:
- Maxwell's equations. (PDE)
- Quantum Mechanics:
- Schrödinger's equation. (PDE)
- General Relativity:
- Einstein equation. (PDE)
- Quantum Electrodynamics:

Overview of differential equations.

Remark: Differential equations are a central part in a physical description of nature:

- Classical Mechanics:
- Newton's second law of motion. (ODE)
- Lagrange's equations. (ODE)
- Electromagnetism:
- Maxwell's equations. (PDE)
- Quantum Mechanics:
- Schrödinger's equation. (PDE)
- General Relativity:
- Einstein equation. (PDE)
- Quantum Electrodynamics:
- The equations of QED. (PDE).

The integrating factor method (Sect. 2.1).

- Overview of differential equations.
- Linear Ordinary Differential Equations.
- The integrating factor method.
- Constant coefficients.
- The Initial Value Problem.
- Variable coefficients.

Linear Ordinary Differential Equations

Remark: Given a function $y: \mathbb{R} \rightarrow \mathbb{R}$, we use the notation

$$
y^{\prime}(t)=\frac{d y}{d t}(t)
$$

Linear Ordinary Differential Equations

Remark: Given a function $y: \mathbb{R} \rightarrow \mathbb{R}$, we use the notation

$$
y^{\prime}(t)=\frac{d y}{d t}(t)
$$

Definition

Given a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, a first order $O D E$ in the unknown function $y: \mathbb{R} \rightarrow \mathbb{R}$ is the equation

$$
y^{\prime}(t)=f(t, y(t))
$$

Linear Ordinary Differential Equations

Remark: Given a function $y: \mathbb{R} \rightarrow \mathbb{R}$, we use the notation

$$
y^{\prime}(t)=\frac{d y}{d t}(t)
$$

Definition

Given a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, a first order $O D E$ in the unknown function $y: \mathbb{R} \rightarrow \mathbb{R}$ is the equation

$$
y^{\prime}(t)=f(t, y(t))
$$

The first order ODE above is called linear iff there exist functions $a, b: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(t, y)=-a(t) y+b(t)$. That is, f is linear on its argument y, hence a first order linear ODE is given by

$$
y^{\prime}(t)=-a(t) y(t)+b(t)
$$

Linear Ordinary Differential Equations

Example

A first order linear ODE is given by

$$
y^{\prime}(t)=-2 y(t)+3
$$

Linear Ordinary Differential Equations

Example

A first order linear ODE is given by

$$
y^{\prime}(t)=-2 y(t)+3
$$

In this case function $a(t)=-2$ and $b(t)=3$. Since these function do not depend on t, the equation above is called of constant coefficients.

Linear Ordinary Differential Equations

Example

A first order linear ODE is given by

$$
y^{\prime}(t)=-2 y(t)+3
$$

In this case function $a(t)=-2$ and $b(t)=3$. Since these function do not depend on t, the equation above is called of constant coefficients.

Example

A first order linear ODE is given by

$$
y^{\prime}(t)=-\frac{2}{t} y(t)+4 t
$$

Linear Ordinary Differential Equations

Example

A first order linear ODE is given by

$$
y^{\prime}(t)=-2 y(t)+3
$$

In this case function $a(t)=-2$ and $b(t)=3$. Since these function do not depend on t, the equation above is called of constant coefficients.

Example

A first order linear ODE is given by

$$
y^{\prime}(t)=-\frac{2}{t} y(t)+4 t
$$

In this case function $a(t)=-2 / t$ and $b(t)=4 t$. Since these functions depend on t, the equation above is called of variable coefficients.

The integrating factor method (Sect. 2.1).

- Overview of differential equations.
- Linear Ordinary Differential Equations.
- The integrating factor method.
- Constant coefficients.
- The Initial Value Problem.
- Variable coefficients.

The integrating factor method.

Remark: Solutions to first order linear ODE can be obtained using the integrating factor method.

The integrating factor method.

Remark: Solutions to first order linear ODE can be obtained using the integrating factor method.

Theorem (Constant coefficients)
Given constants $a, b \in \mathbb{R}$ with $a \neq 0$, the linear differential equation

$$
y^{\prime}(t)=-a y(t)+b
$$

has infinitely many solutions, one for each value of $c \in \mathbb{R}$, given by

$$
y(t)=c e^{-a t}+\frac{b}{a}
$$

The integrating factor method.

Proof: Multiply the differential equation $y^{\prime}(t)+a y(t)=b$ by a non-zero function μ, that is,

$$
\mu(t)\left(y^{\prime}+a y\right)=\mu(t) b
$$

The integrating factor method.

Proof: Multiply the differential equation $y^{\prime}(t)+a y(t)=b$ by a non-zero function μ, that is,

$$
\mu(t)\left(y^{\prime}+a y\right)=\mu(t) b
$$

Key idea: The non-zero function μ is called an integrating factor iff holds

$$
\mu\left(y^{\prime}+a y\right)=(\mu y)^{\prime}
$$

The integrating factor method.

Proof: Multiply the differential equation $y^{\prime}(t)+a y(t)=b$ by a non-zero function μ, that is,

$$
\mu(t)\left(y^{\prime}+a y\right)=\mu(t) b
$$

Key idea: The non-zero function μ is called an integrating factor iff holds

$$
\mu\left(y^{\prime}+a y\right)=(\mu y)^{\prime}
$$

Not every function μ satisfies the equation above.

The integrating factor method.

Proof: Multiply the differential equation $y^{\prime}(t)+a y(t)=b$ by a non-zero function μ, that is,

$$
\mu(t)\left(y^{\prime}+a y\right)=\mu(t) b
$$

Key idea: The non-zero function μ is called an integrating factor iff holds

$$
\mu\left(y^{\prime}+a y\right)=(\mu y)^{\prime}
$$

Not every function μ satisfies the equation above. Let us find what are the solutions μ of the equation above.

The integrating factor method.

Proof: Multiply the differential equation $y^{\prime}(t)+a y(t)=b$ by a non-zero function μ, that is,

$$
\mu(t)\left(y^{\prime}+a y\right)=\mu(t) b
$$

Key idea: The non-zero function μ is called an integrating factor iff holds

$$
\mu\left(y^{\prime}+a y\right)=(\mu y)^{\prime}
$$

Not every function μ satisfies the equation above. Let us find what are the solutions μ of the equation above. Notice that

$$
\mu\left(y^{\prime}+a y\right)=(\mu y)^{\prime}
$$

The integrating factor method.

Proof: Multiply the differential equation $y^{\prime}(t)+a y(t)=b$ by a non-zero function μ, that is,

$$
\mu(t)\left(y^{\prime}+a y\right)=\mu(t) b
$$

Key idea: The non-zero function μ is called an integrating factor iff holds

$$
\mu\left(y^{\prime}+a y\right)=(\mu y)^{\prime}
$$

Not every function μ satisfies the equation above. Let us find what are the solutions μ of the equation above. Notice that

$$
\mu\left(y^{\prime}+a y\right)=(\mu y)^{\prime} \quad \Leftrightarrow \quad \mu y^{\prime}+\mu a y=\mu^{\prime} y+\mu y^{\prime}
$$

The integrating factor method.

Proof: Multiply the differential equation $y^{\prime}(t)+a y(t)=b$ by a non-zero function μ, that is,

$$
\mu(t)\left(y^{\prime}+a y\right)=\mu(t) b
$$

Key idea: The non-zero function μ is called an integrating factor iff holds

$$
\mu\left(y^{\prime}+a y\right)=(\mu y)^{\prime}
$$

Not every function μ satisfies the equation above. Let us find what are the solutions μ of the equation above. Notice that

$$
\begin{aligned}
& \mu\left(y^{\prime}+a y\right)=(\mu y)^{\prime} \Leftrightarrow \mu y^{\prime}+\mu a y=\mu^{\prime} y+\mu y^{\prime} \\
& \quad \text { ay } \mu=\mu^{\prime} y
\end{aligned}
$$

The integrating factor method.

Proof: Multiply the differential equation $y^{\prime}(t)+a y(t)=b$ by a non-zero function μ, that is,

$$
\mu(t)\left(y^{\prime}+a y\right)=\mu(t) b
$$

Key idea: The non-zero function μ is called an integrating factor iff holds

$$
\mu\left(y^{\prime}+a y\right)=(\mu y)^{\prime}
$$

Not every function μ satisfies the equation above. Let us find what are the solutions μ of the equation above. Notice that

$$
\begin{aligned}
& \mu\left(y^{\prime}+a y\right)=(\mu y)^{\prime} \quad \Leftrightarrow \quad \mu y^{\prime}+\mu a y=\mu^{\prime} y+\mu y^{\prime} \\
& \text { ay } \mu=\mu^{\prime} y \quad \Leftrightarrow \quad a \mu=\mu^{\prime}
\end{aligned}
$$

The integrating factor method.

Proof: Multiply the differential equation $y^{\prime}(t)+a y(t)=b$ by a non-zero function μ, that is,

$$
\mu(t)\left(y^{\prime}+a y\right)=\mu(t) b
$$

Key idea: The non-zero function μ is called an integrating factor iff holds

$$
\mu\left(y^{\prime}+a y\right)=(\mu y)^{\prime}
$$

Not every function μ satisfies the equation above. Let us find what are the solutions μ of the equation above. Notice that

$$
\begin{gathered}
\mu\left(y^{\prime}+a y\right)=(\mu y)^{\prime} \quad \Leftrightarrow \quad \mu y^{\prime}+\mu a y=\mu^{\prime} y+\mu y^{\prime} \\
a y \mu=\mu^{\prime} y \quad \Leftrightarrow \quad a \mu=\mu^{\prime} \quad \Leftrightarrow \quad \frac{\mu^{\prime}(t)}{\mu(t)}=a .
\end{gathered}
$$

The integrating factor method.

Proof: Recall: $\frac{\mu^{\prime}(t)}{\mu(t)}=a$.

The integrating factor method.

Proof: Recall: $\frac{\mu^{\prime}(t)}{\mu(t)}=a$. Therefore,

$$
[\ln (\mu(t))]^{\prime}=a
$$

The integrating factor method.

Proof: Recall: $\frac{\mu^{\prime}(t)}{\mu(t)}=a$. Therefore,

$$
[\ln (\mu(t))]^{\prime}=a \quad \Leftrightarrow \quad \ln (\mu(t))=a t+c_{0}
$$

The integrating factor method.

Proof: Recall: $\frac{\mu^{\prime}(t)}{\mu(t)}=a$. Therefore,

$$
\begin{aligned}
& {[\ln (\mu(t))]^{\prime}=a \quad \Leftrightarrow \quad \ln (\mu(t))=a t+c_{0}} \\
& \mu(t)=e^{a t+c_{0}}
\end{aligned}
$$

The integrating factor method.

Proof: Recall: $\frac{\mu^{\prime}(t)}{\mu(t)}=a$. Therefore,

$$
\begin{gathered}
{[\ln (\mu(t))]^{\prime}=a \quad \Leftrightarrow \quad \ln (\mu(t))=a t+c_{0}} \\
\mu(t)=e^{a t+c_{0}} \quad \Leftrightarrow \quad \mu(t)=e^{a t} e^{c_{0}} .
\end{gathered}
$$

The integrating factor method.

Proof: Recall: $\frac{\mu^{\prime}(t)}{\mu(t)}=a$. Therefore,

$$
\begin{gathered}
{[\ln (\mu(t))]^{\prime}=a \quad \Leftrightarrow \quad \ln (\mu(t))=a t+c_{0}} \\
\mu(t)=e^{a t+c_{0}} \quad \Leftrightarrow \quad \mu(t)=e^{a t} e^{c_{0}}
\end{gathered}
$$

Choosing the solution with $c_{0}=0$ we obtain $\mu(t)=e^{a t}$.

The integrating factor method.

Proof: Recall: $\frac{\mu^{\prime}(t)}{\mu(t)}=a$. Therefore,

$$
\begin{gathered}
{[\ln (\mu(t))]^{\prime}=a \quad \Leftrightarrow \quad \ln (\mu(t))=a t+c_{0}} \\
\mu(t)=e^{a t+c_{0}} \quad \Leftrightarrow \quad \mu(t)=e^{a t} e^{c_{0}} .
\end{gathered}
$$

Choosing the solution with $c_{0}=0$ we obtain $\mu(t)=e^{a t}$. For that function μ holds that $\mu\left(y^{\prime}+a y\right)=(\mu y)^{\prime}$.

The integrating factor method.

Proof: Recall: $\frac{\mu^{\prime}(t)}{\mu(t)}=a$. Therefore,

$$
\begin{gathered}
{[\ln (\mu(t))]^{\prime}=a \quad \Leftrightarrow \quad \ln (\mu(t))=a t+c_{0}} \\
\mu(t)=e^{a t+c_{0}} \quad \Leftrightarrow \quad \mu(t)=e^{a t} e^{c_{0}} .
\end{gathered}
$$

Choosing the solution with $c_{0}=0$ we obtain $\mu(t)=e^{a t}$. For that function μ holds that $\mu\left(y^{\prime}+a y\right)=(\mu y)^{\prime}$. Therefore, multiplying the ODE $y^{\prime}+a y=b$ by $\mu=e^{a t}$ we get

$$
(\mu y)^{\prime}=b \mu
$$

The integrating factor method.

Proof: Recall: $\frac{\mu^{\prime}(t)}{\mu(t)}=a$. Therefore,

$$
\begin{gathered}
{[\ln (\mu(t))]^{\prime}=a \quad \Leftrightarrow \quad \ln (\mu(t))=a t+c_{0}} \\
\mu(t)=e^{a t+c_{0}} \quad \Leftrightarrow \quad \mu(t)=e^{a t} e^{c_{0}} .
\end{gathered}
$$

Choosing the solution with $c_{0}=0$ we obtain $\mu(t)=e^{a t}$. For that function μ holds that $\mu\left(y^{\prime}+a y\right)=(\mu y)^{\prime}$. Therefore, multiplying the ODE $y^{\prime}+a y=b$ by $\mu=e^{a t}$ we get

$$
(\mu y)^{\prime}=b \mu \quad \Leftrightarrow \quad\left(e^{a t} y\right)^{\prime}=b e^{a t}
$$

The integrating factor method.

Proof: Recall: $\frac{\mu^{\prime}(t)}{\mu(t)}=a$. Therefore,

$$
\begin{gathered}
{[\ln (\mu(t))]^{\prime}=a \quad \Leftrightarrow \quad \ln (\mu(t))=a t+c_{0}} \\
\mu(t)=e^{a t+c_{0}} \quad \Leftrightarrow \quad \mu(t)=e^{a t} e^{c_{0}} .
\end{gathered}
$$

Choosing the solution with $c_{0}=0$ we obtain $\mu(t)=e^{a t}$. For that function μ holds that $\mu\left(y^{\prime}+a y\right)=(\mu y)^{\prime}$. Therefore, multiplying the ODE $y^{\prime}+a y=b$ by $\mu=e^{a t}$ we get

$$
(\mu y)^{\prime}=b \mu \quad \Leftrightarrow \quad\left(e^{a t} y\right)^{\prime}=b e^{a t} \quad \Leftrightarrow \quad e^{a t} y=\int b e^{a t} d t+c
$$

The integrating factor method.

Proof: Recall: $\frac{\mu^{\prime}(t)}{\mu(t)}=a$. Therefore,

$$
\begin{gathered}
{[\ln (\mu(t))]^{\prime}=a \quad \Leftrightarrow \quad \ln (\mu(t))=a t+c_{0}} \\
\mu(t)=e^{a t+c_{0}} \quad \Leftrightarrow \quad \mu(t)=e^{a t} e^{c_{0}} .
\end{gathered}
$$

Choosing the solution with $c_{0}=0$ we obtain $\mu(t)=e^{a t}$. For that function μ holds that $\mu\left(y^{\prime}+a y\right)=(\mu y)^{\prime}$. Therefore, multiplying the ODE $y^{\prime}+a y=b$ by $\mu=e^{a t}$ we get

$$
\begin{aligned}
(\mu y)^{\prime}=b \mu & \Leftrightarrow \quad\left(e^{a t} y\right)^{\prime}=b e^{a t} \quad \Leftrightarrow \quad e^{a t} y=\int b e^{a t} d t+c \\
y(t) e^{a t}= & \frac{b}{a} e^{a t}+c
\end{aligned}
$$

The integrating factor method.

Proof: Recall: $\frac{\mu^{\prime}(t)}{\mu(t)}=a$. Therefore,

$$
\begin{gathered}
{[\ln (\mu(t))]^{\prime}=a \quad \Leftrightarrow \quad \ln (\mu(t))=a t+c_{0}} \\
\mu(t)=e^{a t+c_{0}} \quad \Leftrightarrow \quad \mu(t)=e^{a t} e^{c_{0}} .
\end{gathered}
$$

Choosing the solution with $c_{0}=0$ we obtain $\mu(t)=e^{a t}$. For that function μ holds that $\mu\left(y^{\prime}+a y\right)=(\mu y)^{\prime}$. Therefore, multiplying the ODE $y^{\prime}+a y=b$ by $\mu=e^{a t}$ we get

$$
\begin{gathered}
(\mu y)^{\prime}=b \mu \quad \Leftrightarrow \quad\left(e^{a t} y\right)^{\prime}=b e^{a t} \quad \Leftrightarrow \quad e^{a t} y=\int b e^{a t} d t+c \\
y(t) e^{a t}=\frac{b}{a} e^{a t}+c \quad \Leftrightarrow \quad y(t)=c e^{-a t}+\frac{b}{a}
\end{gathered}
$$

The integrating factor method.

Example

Find all functions y solution of the $\operatorname{ODE} y^{\prime}=2 y+3$.

The integrating factor method.

Example

Find all functions y solution of the ODE $y^{\prime}=2 y+3$.
Solution: The ODE is $y^{\prime}=-a y+b$ with $a=-2$ and $b=3$.

The integrating factor method.

Example

Find all functions y solution of the ODE $y^{\prime}=2 y+3$.
Solution: The ODE is $y^{\prime}=-a y+b$ with $a=-2$ and $b=3$.
The functions $y(t)=c e^{-a t}+\frac{b}{a}$, with $c \in \mathbb{R}$, are solutions.

The integrating factor method.

Example

Find all functions y solution of the $\operatorname{ODE} y^{\prime}=2 y+3$.
Solution: The ODE is $y^{\prime}=-a y+b$ with $a=-2$ and $b=3$.
The functions $y(t)=c e^{-a t}+\frac{b}{a}$, with $c \in \mathbb{R}$, are solutions.
We conclude that the ODE has infinitely many solutions, given by

$$
y(t)=c e^{2 t}-\frac{3}{2}, \quad c \in \mathbb{R} .
$$

The integrating factor method.

Example

Find all functions y solution of the ODE $y^{\prime}=2 y+3$.
Solution: The ODE is $y^{\prime}=-a y+b$ with $a=-2$ and $b=3$.
The functions $y(t)=c e^{-a t}+\frac{b}{a}$, with $c \in \mathbb{R}$, are solutions.
We conclude that the ODE has infinitely many solutions, given by

$$
y(t)=c e^{2 t}-\frac{3}{2}, \quad c \in \mathbb{R} .
$$

Since we did one integration, it is reasonable that the solution contains a constant of integration, $c \in \mathbb{R}$.

The integrating factor method.

Example

Find all functions y solution of the ODE $y^{\prime}=2 y+3$.
Solution: The ODE is $y^{\prime}=-a y+b$ with $a=-2$ and $b=3$.
The functions $y(t)=c e^{-a t}+\frac{b}{a}$, with $c \in \mathbb{R}$, are solutions.
We conclude that the ODE has infinitely many solutions, given by

$$
y(t)=c e^{2 t}-\frac{3}{2}, \quad c \in \mathbb{R} .
$$

Since we did one integration, it is reasonable that the solution contains a
 constant of integration, $c \in \mathbb{R}$.

The integrating factor method.

Example

Find all functions y solution of the ODE $y^{\prime}=2 y+3$.
Solution: The ODE is $y^{\prime}=-a y+b$ with $a=-2$ and $b=3$.
The functions $y(t)=c e^{-a t}+\frac{b}{a}$, with $c \in \mathbb{R}$, are solutions.
We conclude that the ODE has infinitely many solutions, given by

$$
y(t)=c e^{2 t}-\frac{3}{2}, \quad c \in \mathbb{R} .
$$

Since we did one integration, it is reasonable that the solution contains a
 constant of integration, $c \in \mathbb{R}$.

Verification: $c e^{2 t}=y+(3 / 2)$, so $2 c e^{2 t}=y^{\prime}$, therefore we conclude that y satisfies the ODE $y^{\prime}=2 y+3$.

The integrating factor method (Sect. 2.1).

- Overview of differential equations.
- Linear Ordinary Differential Equations.
- The integrating factor method.
- Constant coefficients.
- The Initial Value Problem.
- Variable coefficients.

The Initial Value Problem.

Definition

The Initial Value Problem (IVP) for a linear ODE is the following: Given functions $a, b: \mathbb{R} \rightarrow \mathbb{R}$ and constants $t_{0}, y_{0} \in R$, find a solution $y: \mathbb{R} \rightarrow \mathbb{R}$ of the problem

$$
y^{\prime}=a(t) y+b(t), \quad y\left(t_{0}\right)=y_{0} .
$$

The Initial Value Problem.

Definition

The Initial Value Problem (IVP) for a linear ODE is the following: Given functions $a, b: \mathbb{R} \rightarrow \mathbb{R}$ and constants $t_{0}, y_{0} \in R$, find a solution $y: \mathbb{R} \rightarrow \mathbb{R}$ of the problem

$$
y^{\prime}=a(t) y+b(t), \quad y\left(t_{0}\right)=y_{0} .
$$

Remark: The initial condition selects one solution of the ODE.

The Initial Value Problem.

Definition

The Initial Value Problem (IVP) for a linear ODE is the following: Given functions $a, b: \mathbb{R} \rightarrow \mathbb{R}$ and constants $t_{0}, y_{0} \in R$, find a solution $y: \mathbb{R} \rightarrow \mathbb{R}$ of the problem

$$
y^{\prime}=a(t) y+b(t), \quad y\left(t_{0}\right)=y_{0} .
$$

Remark: The initial condition selects one solution of the ODE.
Theorem (Constant coefficients)
Given constants $a, b, t_{0}, y_{0} \in \mathbb{R}$, with $a \neq 0$, the initial value problem

$$
y^{\prime}=-a y+b, \quad y\left(t_{0}\right)=y_{0}
$$

has the unique solution

$$
y(t)=\left(y_{0}-\frac{b}{a}\right) e^{-a\left(t-t_{0}\right)}+\frac{b}{a} .
$$

The Initial Value Problem.

Example

Find the solution to the initial value problem

$$
y^{\prime}=2 y+3, \quad y(0)=1 .
$$

The Initial Value Problem.

Example

Find the solution to the initial value problem

$$
y^{\prime}=2 y+3, \quad y(0)=1
$$

Solution: Every solution of the ODE above is given by

$$
y(t)=c e^{2 t}-\frac{3}{2}, \quad c \in \mathbb{R}
$$

The Initial Value Problem.

Example

Find the solution to the initial value problem

$$
y^{\prime}=2 y+3, \quad y(0)=1
$$

Solution: Every solution of the ODE above is given by

$$
y(t)=c e^{2 t}-\frac{3}{2}, \quad c \in \mathbb{R}
$$

The initial condition $y(0)=1$ selects only one solution:

$$
1=y(0)
$$

The Initial Value Problem.

Example

Find the solution to the initial value problem

$$
y^{\prime}=2 y+3, \quad y(0)=1
$$

Solution: Every solution of the ODE above is given by

$$
y(t)=c e^{2 t}-\frac{3}{2}, \quad c \in \mathbb{R}
$$

The initial condition $y(0)=1$ selects only one solution:

$$
1=y(0)=c-\frac{3}{2}
$$

The Initial Value Problem.

Example

Find the solution to the initial value problem

$$
y^{\prime}=2 y+3, \quad y(0)=1
$$

Solution: Every solution of the ODE above is given by

$$
y(t)=c e^{2 t}-\frac{3}{2}, \quad c \in \mathbb{R}
$$

The initial condition $y(0)=1$ selects only one solution:

$$
1=y(0)=c-\frac{3}{2} \Rightarrow c=\frac{5}{2} .
$$

The Initial Value Problem.

Example

Find the solution to the initial value problem

$$
y^{\prime}=2 y+3, \quad y(0)=1
$$

Solution: Every solution of the ODE above is given by

$$
y(t)=c e^{2 t}-\frac{3}{2}, \quad c \in \mathbb{R}
$$

The initial condition $y(0)=1$ selects only one solution:

$$
1=y(0)=c-\frac{3}{2} \Rightarrow c=\frac{5}{2} .
$$

We conclude that $y(t)=\frac{5}{2} e^{2 t}-\frac{3}{2}$.

The integrating factor method (Sect. 2.1).

- Overview of differential equations.
- Linear Ordinary Differential Equations.
- The integrating factor method.
- Constant coefficients.
- The Initial Value Problem.
- Variable coefficients.

The integrating factor method.

Theorem (Variable coefficients)
Given continuous functions $a, b: \mathbb{R} \rightarrow \mathbb{R}$ and given constants $t_{0}, y_{0} \in \mathbb{R}$, the IVP

$$
y^{\prime}=-a(t) y+b(t) \quad y\left(t_{0}\right)=y_{0}
$$

has the unique solution

$$
y(t)=\frac{1}{\mu(t)}\left[y_{0}+\int_{t_{0}}^{t} \mu(s) b(s) d s\right]
$$

where the integrating factor function is given by

$$
\mu(t)=e^{A(t)}, \quad A(t)=\int_{t_{0}}^{t} a(s) d s
$$

Remark: See the proof in the Lecture Notes.

The integrating factor method.

Example

Find the solution y to the IVP

$$
t y^{\prime}+2 y=4 t^{2}, \quad y(1)=2
$$

The integrating factor method.

Example

Find the solution y to the IVP

$$
t y^{\prime}+2 y=4 t^{2}, \quad y(1)=2
$$

Solution: We first express the ODE as in the Theorem above,

$$
y^{\prime}=-\frac{2}{t} y+4 t
$$

The integrating factor method.

Example

Find the solution y to the IVP

$$
t y^{\prime}+2 y=4 t^{2}, \quad y(1)=2
$$

Solution: We first express the ODE as in the Theorem above,

$$
y^{\prime}=-\frac{2}{t} y+4 t
$$

Therefore, $a(t)=\frac{2}{t}$ and $b(t)=4 t$, and also $t_{0}=1$ and $y_{0}=2$.

The integrating factor method.

Example

Find the solution y to the IVP

$$
t y^{\prime}+2 y=4 t^{2}, \quad y(1)=2
$$

Solution: We first express the ODE as in the Theorem above,

$$
y^{\prime}=-\frac{2}{t} y+4 t
$$

Therefore, $a(t)=\frac{2}{t}$ and $b(t)=4 t$, and also $t_{0}=1$ and $y_{0}=2$.
We first compute the integrating factor function $\mu=e^{A(t)}$,

The integrating factor method.

Example

Find the solution y to the IVP

$$
t y^{\prime}+2 y=4 t^{2}, \quad y(1)=2
$$

Solution: We first express the ODE as in the Theorem above,

$$
y^{\prime}=-\frac{2}{t} y+4 t
$$

Therefore, $a(t)=\frac{2}{t}$ and $b(t)=4 t$, and also $t_{0}=1$ and $y_{0}=2$.
We first compute the integrating factor function $\mu=e^{A(t)}$, where

$$
A(t)=\int_{t_{0}}^{t} a(s) d s
$$

The integrating factor method.

Example

Find the solution y to the IVP

$$
t y^{\prime}+2 y=4 t^{2}, \quad y(1)=2
$$

Solution: We first express the ODE as in the Theorem above,

$$
y^{\prime}=-\frac{2}{t} y+4 t
$$

Therefore, $a(t)=\frac{2}{t}$ and $b(t)=4 t$, and also $t_{0}=1$ and $y_{0}=2$.
We first compute the integrating factor function $\mu=e^{A(t)}$, where

$$
A(t)=\int_{t_{0}}^{t} a(s) d s=\int_{1}^{t} \frac{2}{s} d s
$$

The integrating factor method.

Example

Find the solution y to the IVP

$$
t y^{\prime}+2 y=4 t^{2}, \quad y(1)=2
$$

Solution: We first express the ODE as in the Theorem above,

$$
y^{\prime}=-\frac{2}{t} y+4 t
$$

Therefore, $a(t)=\frac{2}{t}$ and $b(t)=4 t$, and also $t_{0}=1$ and $y_{0}=2$.
We first compute the integrating factor function $\mu=e^{A(t)}$, where

$$
A(t)=\int_{t_{0}}^{t} a(s) d s=\int_{1}^{t} \frac{2}{s} d s=2[\ln (t)-\ln (1)]
$$

The integrating factor method.

Example

Find the solution y to the IVP

$$
t y^{\prime}+2 y=4 t^{2}, \quad y(1)=2
$$

Solution: We first express the ODE as in the Theorem above,

$$
y^{\prime}=-\frac{2}{t} y+4 t
$$

Therefore, $a(t)=\frac{2}{t}$ and $b(t)=4 t$, and also $t_{0}=1$ and $y_{0}=2$.
We first compute the integrating factor function $\mu=e^{A(t)}$, where

$$
\begin{aligned}
& A(t)=\int_{t_{0}}^{t} a(s) d s=\int_{1}^{t} \frac{2}{s} d s=2[\ln (t)-\ln (1)] \\
& A(t)=2 \ln (t)
\end{aligned}
$$

The integrating factor method.

Example

Find the solution y to the IVP

$$
t y^{\prime}+2 y=4 t^{2}, \quad y(1)=2
$$

Solution: We first express the ODE as in the Theorem above,

$$
y^{\prime}=-\frac{2}{t} y+4 t
$$

Therefore, $a(t)=\frac{2}{t}$ and $b(t)=4 t$, and also $t_{0}=1$ and $y_{0}=2$.
We first compute the integrating factor function $\mu=e^{A(t)}$, where

$$
\begin{gathered}
A(t)=\int_{t_{0}}^{t} a(s) d s=\int_{1}^{t} \frac{2}{s} d s=2[\ln (t)-\ln (1)] \\
A(t)=2 \ln (t)=\ln \left(t^{2}\right)
\end{gathered}
$$

The integrating factor method.

Example

Find the solution y to the IVP

$$
t y^{\prime}+2 y=4 t^{2}, \quad y(1)=2
$$

Solution: We first express the ODE as in the Theorem above,

$$
y^{\prime}=-\frac{2}{t} y+4 t
$$

Therefore, $a(t)=\frac{2}{t}$ and $b(t)=4 t$, and also $t_{0}=1$ and $y_{0}=2$.
We first compute the integrating factor function $\mu=e^{A(t)}$, where

$$
\begin{gathered}
A(t)=\int_{t_{0}}^{t} a(s) d s=\int_{1}^{t} \frac{2}{s} d s=2[\ln (t)-\ln (1)] \\
A(t)=2 \ln (t)=\ln \left(t^{2}\right) \quad \Rightarrow \quad e^{A(t)}=t^{2}
\end{gathered}
$$

The integrating factor method.

Example

Find the solution y to the IVP

$$
t y^{\prime}+2 y=4 t^{2}, \quad y(1)=2
$$

Solution: We first express the ODE as in the Theorem above,

$$
y^{\prime}=-\frac{2}{t} y+4 t
$$

Therefore, $a(t)=\frac{2}{t}$ and $b(t)=4 t$, and also $t_{0}=1$ and $y_{0}=2$.
We first compute the integrating factor function $\mu=e^{A(t)}$, where

$$
\begin{gathered}
A(t)=\int_{t_{0}}^{t} a(s) d s=\int_{1}^{t} \frac{2}{s} d s=2[\ln (t)-\ln (1)] \\
A(t)=2 \ln (t)=\ln \left(t^{2}\right) \quad \Rightarrow \quad e^{A(t)}=t^{2}
\end{gathered}
$$

We conclude that $\mu(t)=t^{2}$.

The integrating factor method.

Example

Find the solution y to the IVP

$$
t y^{\prime}+2 y=4 t^{2}, \quad y(1)=2
$$

Solution: The integrating factor is $\mu(t)=t^{2}$.

The integrating factor method.

Example

Find the solution y to the IVP

$$
t y^{\prime}+2 y=4 t^{2}, \quad y(1)=2
$$

Solution: The integrating factor is $\mu(t)=t^{2}$. Hence,

$$
t^{2}\left(y^{\prime}+\frac{2}{t} y\right)=t^{2}(4 t)
$$

The integrating factor method.

Example

Find the solution y to the IVP

$$
t y^{\prime}+2 y=4 t^{2}, \quad y(1)=2
$$

Solution: The integrating factor is $\mu(t)=t^{2}$. Hence,

$$
t^{2}\left(y^{\prime}+\frac{2}{t} y\right)=t^{2}(4 t) \quad \Leftrightarrow \quad t^{2} y^{\prime}+2 t y=4 t^{3}
$$

The integrating factor method.

Example

Find the solution y to the IVP

$$
t y^{\prime}+2 y=4 t^{2}, \quad y(1)=2
$$

Solution: The integrating factor is $\mu(t)=t^{2}$. Hence,

$$
\begin{aligned}
& t^{2}\left(y^{\prime}+\frac{2}{t} y\right)=t^{2}(4 t) \quad \Leftrightarrow \quad t^{2} y^{\prime}+2 t y=4 t^{3} \\
& \left(t^{2} y\right)^{\prime}=4 t^{3}
\end{aligned}
$$

The integrating factor method.

Example

Find the solution y to the IVP

$$
t y^{\prime}+2 y=4 t^{2}, \quad y(1)=2
$$

Solution: The integrating factor is $\mu(t)=t^{2}$. Hence,

$$
\begin{aligned}
& t^{2}\left(y^{\prime}+\frac{2}{t} y\right)=t^{2}(4 t) \quad \Leftrightarrow \quad t^{2} y^{\prime}+2 t y=4 t^{3} \\
& \left(t^{2} y\right)^{\prime}=4 t^{3} \quad \Leftrightarrow \quad t^{2} y=t^{4}+c
\end{aligned}
$$

The integrating factor method.

Example

Find the solution y to the IVP

$$
t y^{\prime}+2 y=4 t^{2}, \quad y(1)=2
$$

Solution: The integrating factor is $\mu(t)=t^{2}$. Hence,

$$
\begin{gathered}
t^{2}\left(y^{\prime}+\frac{2}{t} y\right)=t^{2}(4 t) \quad \Leftrightarrow \quad t^{2} y^{\prime}+2 t y=4 t^{3} \\
\left(t^{2} y\right)^{\prime}=4 t^{3} \quad \Leftrightarrow \quad t^{2} y=t^{4}+c \quad \Leftrightarrow \quad y=t^{2}+\frac{c}{t^{2}} .
\end{gathered}
$$

The integrating factor method.

Example

Find the solution y to the IVP

$$
t y^{\prime}+2 y=4 t^{2}, \quad y(1)=2
$$

Solution: The integrating factor is $\mu(t)=t^{2}$. Hence,

$$
\begin{gathered}
t^{2}\left(y^{\prime}+\frac{2}{t} y\right)=t^{2}(4 t) \quad \Leftrightarrow \quad t^{2} y^{\prime}+2 t y=4 t^{3} \\
\left(t^{2} y\right)^{\prime}=4 t^{3} \quad \Leftrightarrow \quad t^{2} y=t^{4}+c \quad \Leftrightarrow \quad y=t^{2}+\frac{c}{t^{2}} .
\end{gathered}
$$

The initial condition implies $2=y(1)$

The integrating factor method.

Example

Find the solution y to the IVP

$$
t y^{\prime}+2 y=4 t^{2}, \quad y(1)=2
$$

Solution: The integrating factor is $\mu(t)=t^{2}$. Hence,

$$
\begin{gathered}
t^{2}\left(y^{\prime}+\frac{2}{t} y\right)=t^{2}(4 t) \quad \Leftrightarrow \quad t^{2} y^{\prime}+2 t y=4 t^{3} \\
\left(t^{2} y\right)^{\prime}=4 t^{3} \quad \Leftrightarrow \quad t^{2} y=t^{4}+c \quad \Leftrightarrow \quad y=t^{2}+\frac{c}{t^{2}} .
\end{gathered}
$$

The initial condition implies $2=y(1)=1+c$,

The integrating factor method.

Example

Find the solution y to the IVP

$$
t y^{\prime}+2 y=4 t^{2}, \quad y(1)=2
$$

Solution: The integrating factor is $\mu(t)=t^{2}$. Hence,

$$
\begin{gathered}
t^{2}\left(y^{\prime}+\frac{2}{t} y\right)=t^{2}(4 t) \quad \Leftrightarrow \quad t^{2} y^{\prime}+2 t y=4 t^{3} \\
\left(t^{2} y\right)^{\prime}=4 t^{3} \quad \Leftrightarrow \quad t^{2} y=t^{4}+c \quad \Leftrightarrow \quad y=t^{2}+\frac{c}{t^{2}} .
\end{gathered}
$$

The initial condition implies $2=y(1)=1+c$, that is, $c=1$.

The integrating factor method.

Example

Find the solution y to the IVP

$$
t y^{\prime}+2 y=4 t^{2}, \quad y(1)=2
$$

Solution: The integrating factor is $\mu(t)=t^{2}$. Hence,

$$
\begin{gathered}
t^{2}\left(y^{\prime}+\frac{2}{t} y\right)=t^{2}(4 t) \quad \Leftrightarrow \quad t^{2} y^{\prime}+2 t y=4 t^{3} \\
\left(t^{2} y\right)^{\prime}=4 t^{3} \quad \Leftrightarrow \quad t^{2} y=t^{4}+c \quad \Leftrightarrow \quad y=t^{2}+\frac{c}{t^{2}} .
\end{gathered}
$$

The initial condition implies $2=y(1)=1+c$, that is, $c=1$.
We conclude that $y(t)=t^{2}+\frac{1}{t^{2}}$.

Separable differential equations (Sect. 2.2).

- Separable ODE.
- Solutions to separable ODE.
- Explicit and implicit solutions.
- Homogeneous equations.

Separable ODE.

Definition
Given functions $h, g: \mathbb{R} \rightarrow \mathbb{R}$, a first order ODE on the unknown function $y: \mathbb{R} \rightarrow \mathbb{R}$ is called separable iff the ODE has the form

$$
h(y) y^{\prime}(t)=g(t)
$$

Separable ODE.

Definition
Given functions $h, g: \mathbb{R} \rightarrow \mathbb{R}$, a first order ODE on the unknown function $y: \mathbb{R} \rightarrow \mathbb{R}$ is called separable iff the ODE has the form

$$
h(y) y^{\prime}(t)=g(t)
$$

Remark:
A differential equation $y^{\prime}(t)=f(t, y(t))$ is separable iff

Separable ODE.

Definition
Given functions $h, g: \mathbb{R} \rightarrow \mathbb{R}$, a first order ODE on the unknown function $y: \mathbb{R} \rightarrow \mathbb{R}$ is called separable iff the ODE has the form

$$
h(y) y^{\prime}(t)=g(t)
$$

Remark:
A differential equation $y^{\prime}(t)=f(t, y(t))$ is separable iff

$$
y^{\prime}=\frac{g(t)}{h(y)}
$$

Separable ODE.

Definition
Given functions $h, g: \mathbb{R} \rightarrow \mathbb{R}$, a first order ODE on the unknown function $y: \mathbb{R} \rightarrow \mathbb{R}$ is called separable iff the ODE has the form

$$
h(y) y^{\prime}(t)=g(t)
$$

Remark:
A differential equation $y^{\prime}(t)=f(t, y(t))$ is separable iff

$$
y^{\prime}=\frac{g(t)}{h(y)} \quad \Leftrightarrow \quad f(t, y)=\frac{g(t)}{h(y)}
$$

Separable ODE.

Definition

Given functions $h, g: \mathbb{R} \rightarrow \mathbb{R}$, a first order ODE on the unknown function $y: \mathbb{R} \rightarrow \mathbb{R}$ is called separable iff the ODE has the form

$$
h(y) y^{\prime}(t)=g(t)
$$

Remark:
A differential equation $y^{\prime}(t)=f(t, y(t))$ is separable iff

$$
y^{\prime}=\frac{g(t)}{h(y)} \quad \Leftrightarrow \quad f(t, y)=\frac{g(t)}{h(y)}
$$

Notation:
In lecture: $t, y(t)$ and $h(y) y^{\prime}(t)=g(t)$.

Separable ODE.

Definition

Given functions $h, g: \mathbb{R} \rightarrow \mathbb{R}$, a first order ODE on the unknown function $y: \mathbb{R} \rightarrow \mathbb{R}$ is called separable iff the ODE has the form

$$
h(y) y^{\prime}(t)=g(t)
$$

Remark:
A differential equation $y^{\prime}(t)=f(t, y(t))$ is separable iff

$$
y^{\prime}=\frac{g(t)}{h(y)} \quad \Leftrightarrow \quad f(t, y)=\frac{g(t)}{h(y)}
$$

Notation:
In lecture: $t, y(t)$ and $h(y) y^{\prime}(t)=g(t)$.
In textbook: $x, y(x)$ and $M(x)+N(y) y^{\prime}(x)=0$.

Separable ODE.

Definition

Given functions $h, g: \mathbb{R} \rightarrow \mathbb{R}$, a first order ODE on the unknown function $y: \mathbb{R} \rightarrow \mathbb{R}$ is called separable iff the ODE has the form

$$
h(y) y^{\prime}(t)=g(t)
$$

Remark:
A differential equation $y^{\prime}(t)=f(t, y(t))$ is separable iff

$$
y^{\prime}=\frac{g(t)}{h(y)} \quad \Leftrightarrow \quad f(t, y)=\frac{g(t)}{h(y)}
$$

Notation:
In lecture: $t, y(t)$ and $h(y) y^{\prime}(t)=g(t)$.
In textbook: $x, y(x)$ and $M(x)+N(y) y^{\prime}(x)=0$.
Therefore: $h(y)=N(y)$

Separable ODE.

Definition

Given functions $h, g: \mathbb{R} \rightarrow \mathbb{R}$, a first order ODE on the unknown function $y: \mathbb{R} \rightarrow \mathbb{R}$ is called separable iff the ODE has the form

$$
h(y) y^{\prime}(t)=g(t)
$$

Remark:
A differential equation $y^{\prime}(t)=f(t, y(t))$ is separable iff

$$
y^{\prime}=\frac{g(t)}{h(y)} \quad \Leftrightarrow \quad f(t, y)=\frac{g(t)}{h(y)}
$$

Notation:
In lecture: $t, y(t)$ and $h(y) y^{\prime}(t)=g(t)$.
In textbook: $x, y(x)$ and $M(x)+N(y) y^{\prime}(x)=0$.
Therefore: $h(y)=N(y)$ and $g(t)=-M(t)$.

Separable ODE.

Example

Determine whether the differential equation below is separable,

$$
y^{\prime}(t)=\frac{t^{2}}{1-y^{2}(t)}
$$

Separable ODE.

Example

Determine whether the differential equation below is separable,

$$
y^{\prime}(t)=\frac{t^{2}}{1-y^{2}(t)}
$$

Solution: The differential equation is separable,

Separable ODE.

Example

Determine whether the differential equation below is separable,

$$
y^{\prime}(t)=\frac{t^{2}}{1-y^{2}(t)}
$$

Solution: The differential equation is separable, since it is equivalent to

$$
\left(1-y^{2}\right) y^{\prime}(t)=t^{2}
$$

Separable ODE.

Example

Determine whether the differential equation below is separable,

$$
y^{\prime}(t)=\frac{t^{2}}{1-y^{2}(t)}
$$

Solution: The differential equation is separable, since it is equivalent to

$$
\left(1-y^{2}\right) y^{\prime}(t)=t^{2} \quad \Rightarrow \quad\left\{\begin{array}{l}
g(t)=t^{2} \\
h(y)=1-y^{2}
\end{array}\right.
$$

Separable ODE.

Example

Determine whether the differential equation below is separable,

$$
y^{\prime}(t)=\frac{t^{2}}{1-y^{2}(t)}
$$

Solution: The differential equation is separable, since it is equivalent to

$$
\left(1-y^{2}\right) y^{\prime}(t)=t^{2} \Rightarrow\left\{\begin{array}{l}
g(t)=t^{2} \\
h(y)=1-y^{2}
\end{array}\right.
$$

Remark: The functions g and h are not uniquely defined.

Separable ODE.

Example

Determine whether the differential equation below is separable,

$$
y^{\prime}(t)=\frac{t^{2}}{1-y^{2}(t)}
$$

Solution: The differential equation is separable, since it is equivalent to

$$
\left(1-y^{2}\right) y^{\prime}(t)=t^{2} \Rightarrow\left\{\begin{array}{l}
g(t)=t^{2} \\
h(y)=1-y^{2}
\end{array}\right.
$$

Remark: The functions g and h are not uniquely defined. Another choice here is:

$$
g(t)=c t^{2}, \quad h(y)=c\left(1-y^{2}\right), \quad c \in \mathbb{R} .
$$

Separable ODE.

Example

Determine whether The differential equation below is separable,

$$
y^{\prime}(t)+y^{2}(t) \cos (2 t)=0
$$

Separable ODE.

Example

Determine whether The differential equation below is separable,

$$
y^{\prime}(t)+y^{2}(t) \cos (2 t)=0
$$

Solution: The differential equation is separable,

Separable ODE.

Example

Determine whether The differential equation below is separable,

$$
y^{\prime}(t)+y^{2}(t) \cos (2 t)=0
$$

Solution: The differential equation is separable, since it is equivalent to

$$
\frac{1}{y^{2}} y^{\prime}(t)=-\cos (2 t)
$$

Separable ODE.

Example

Determine whether The differential equation below is separable,

$$
y^{\prime}(t)+y^{2}(t) \cos (2 t)=0
$$

Solution: The differential equation is separable, since it is equivalent to

$$
\frac{1}{y^{2}} y^{\prime}(t)=-\cos (2 t) \quad \Rightarrow \quad\left\{\begin{array}{l}
g(t)=-\cos (2 t) \\
h(y)=\frac{1}{y^{2}}
\end{array}\right.
$$

Separable ODE.

Example

Determine whether The differential equation below is separable,

$$
y^{\prime}(t)+y^{2}(t) \cos (2 t)=0
$$

Solution: The differential equation is separable, since it is equivalent to

$$
\frac{1}{y^{2}} y^{\prime}(t)=-\cos (2 t) \quad \Rightarrow \quad\left\{\begin{array}{l}
g(t)=-\cos (2 t) \\
h(y)=\frac{1}{y^{2}}
\end{array}\right.
$$

Remark: The functions g and h are not uniquely defined.

Separable ODE.

Example

Determine whether The differential equation below is separable,

$$
y^{\prime}(t)+y^{2}(t) \cos (2 t)=0
$$

Solution: The differential equation is separable, since it is equivalent to

$$
\frac{1}{y^{2}} y^{\prime}(t)=-\cos (2 t) \Rightarrow\left\{\begin{array}{l}
g(t)=-\cos (2 t) \\
h(y)=\frac{1}{y^{2}}
\end{array}\right.
$$

Remark: The functions g and h are not uniquely defined. Another choice here is:

$$
g(t)=\cos (2 t), \quad h(y)=-\frac{1}{y^{2}}
$$

Separable ODE.

Remark: Not every first order ODE is separable.

Separable ODE.

Remark: Not every first order ODE is separable.

Example

- The differential equation $y^{\prime}(t)=e^{y(t)}+\cos (t)$ is not separable.

Separable ODE.

Remark: Not every first order ODE is separable.

Example

- The differential equation $y^{\prime}(t)=e^{y(t)}+\cos (t)$ is not separable.
- The linear differential equation $y^{\prime}(t)=-\frac{2}{t} y(t)+4 t$ is not separable.

Separable ODE.

Remark: Not every first order ODE is separable.

Example

- The differential equation $y^{\prime}(t)=e^{y(t)}+\cos (t)$ is not separable.
- The linear differential equation $y^{\prime}(t)=-\frac{2}{t} y(t)+4 t$ is not separable.
- The linear differential equation $y^{\prime}(t)=-a(t) y(t)+b(t)$, with $b(t)$ non-constant, is not separable.

Separable differential equations (Sect. 2.2).

- Separable ODE.
- Solutions to separable ODE.
- Explicit and implicit solutions.
- Homogeneous equations.

Solutions to separable ODE.

Theorem (Separable equations)
If the functions $g, h: \mathbb{R} \rightarrow \mathbb{R}$ are continuous, with $h \neq 0$ and with primitives G and H, respectively; that is,

$$
G^{\prime}(t)=g(t), \quad H^{\prime}(u)=h(u)
$$

then, the separable $O D E$

$$
h(y) y^{\prime}=g(t)
$$

has infinitely many solutions $y: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the algebraic equation

$$
H(y(t))=G(t)+c,
$$

where $c \in \mathbb{R}$ is arbitrary.

Solutions to separable ODE.

Theorem (Separable equations)
If the functions $g, h: \mathbb{R} \rightarrow \mathbb{R}$ are continuous, with $h \neq 0$ and with primitives G and H, respectively; that is,

$$
G^{\prime}(t)=g(t), \quad H^{\prime}(u)=h(u)
$$

then, the separable $O D E$

$$
h(y) y^{\prime}=g(t)
$$

has infinitely many solutions $y: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the algebraic equation

$$
H(y(t))=G(t)+c,
$$

where $c \in \mathbb{R}$ is arbitrary.

Remark: Given functions g, h, find their primitives G, H.

Solutions to separable ODE.

Example
Find all solutions $y: \mathbb{R} \rightarrow \mathbb{R}$ to the ODE $y^{\prime}(t)=\frac{t^{2}}{1-y^{2}(t)}$.

Solutions to separable ODE.

Example
Find all solutions $y: \mathbb{R} \rightarrow \mathbb{R}$ to the ODE $y^{\prime}(t)=\frac{t^{2}}{1-y^{2}(t)}$.
Solution: The equation is equivalent to $\left(1-y^{2}\right) y^{\prime}(t)=t^{2}$.

Solutions to separable ODE.

Example

Find all solutions $y: \mathbb{R} \rightarrow \mathbb{R}$ to the $\operatorname{ODE} \quad y^{\prime}(t)=\frac{t^{2}}{1-y^{2}(t)}$.
Solution: The equation is equivalent to $\left(1-y^{2}\right) y^{\prime}(t)=t^{2}$.
Therefore, the functions g, h are given by

$$
g(t)=t^{2}, \quad h(u)=1-u^{2} .
$$

Solutions to separable ODE.

Example
Find all solutions $y: \mathbb{R} \rightarrow \mathbb{R}$ to the ODE $y^{\prime}(t)=\frac{t^{2}}{1-y^{2}(t)}$.
Solution: The equation is equivalent to $\left(1-y^{2}\right) y^{\prime}(t)=t^{2}$. Therefore, the functions g, h are given by

$$
g(t)=t^{2}, \quad h(u)=1-u^{2} .
$$

Their primitive functions, G and H, respectively,

Solutions to separable ODE.

Example
Find all solutions $y: \mathbb{R} \rightarrow \mathbb{R}$ to the ODE $y^{\prime}(t)=\frac{t^{2}}{1-y^{2}(t)}$.
Solution: The equation is equivalent to $\left(1-y^{2}\right) y^{\prime}(t)=t^{2}$.
Therefore, the functions g, h are given by

$$
g(t)=t^{2}, \quad h(u)=1-u^{2} .
$$

Their primitive functions, G and H, respectively, are given by

$$
g(t)=t^{2} \quad \Rightarrow \quad G(t)=\frac{t^{3}}{3}
$$

Solutions to separable ODE.

Example
Find all solutions $y: \mathbb{R} \rightarrow \mathbb{R}$ to the ODE $y^{\prime}(t)=\frac{t^{2}}{1-y^{2}(t)}$.
Solution: The equation is equivalent to $\left(1-y^{2}\right) y^{\prime}(t)=t^{2}$.
Therefore, the functions g, h are given by

$$
g(t)=t^{2}, \quad h(u)=1-u^{2} .
$$

Their primitive functions, G and H, respectively, are given by

$$
\begin{aligned}
g(t)=t^{2} & \Rightarrow \quad G(t)=\frac{t^{3}}{3}, \\
h(u)=1-u^{2} & \Rightarrow \quad H(u)=u-\frac{u^{3}}{3} .
\end{aligned}
$$

Solutions to separable ODE.

Example
Find all solutions $y: \mathbb{R} \rightarrow \mathbb{R}$ to the ODE $y^{\prime}(t)=\frac{t^{2}}{1-y^{2}(t)}$.
Solution: The equation is equivalent to $\left(1-y^{2}\right) y^{\prime}(t)=t^{2}$.
Therefore, the functions g, h are given by

$$
g(t)=t^{2}, \quad h(u)=1-u^{2} .
$$

Their primitive functions, G and H, respectively, are given by

$$
\begin{aligned}
g(t)=t^{2} & \Rightarrow \quad G(t)=\frac{t^{3}}{3}, \\
h(u)=1-u^{2} & \Rightarrow H(u)=u-\frac{u^{3}}{3} .
\end{aligned}
$$

Then, the Theorem above implies that the solution y satisfies the algebraic equation

$$
y(t)-\frac{y^{3}(t)}{3}=\frac{t^{3}}{3}+c, \quad c \in \mathbb{R}
$$

Solutions to separable ODE.

Remarks:

- The equation $y(t)-\frac{y^{3}(t)}{3}=\frac{t^{3}}{3}+c$ is algebraic in y, since there is no y^{\prime} in the equation.

Solutions to separable ODE.

Remarks:

- The equation $y(t)-\frac{y^{3}(t)}{3}=\frac{t^{3}}{3}+c$ is algebraic in y, since there is no y^{\prime} in the equation.
- Every function y satisfying the algebraic equation

$$
y(t)-\frac{y^{3}(t)}{3}=\frac{t^{3}}{3}+c
$$

is a solution of the differential equation above.

Solutions to separable ODE.

Remarks:

- The equation $y(t)-\frac{y^{3}(t)}{3}=\frac{t^{3}}{3}+c$ is algebraic in y, since there is no y^{\prime} in the equation.
- Every function y satisfying the algebraic equation

$$
y(t)-\frac{y^{3}(t)}{3}=\frac{t^{3}}{3}+c
$$

is a solution of the differential equation above.

- We now verify the previous statement:

Solutions to separable ODE.

Remarks:

- The equation $y(t)-\frac{y^{3}(t)}{3}=\frac{t^{3}}{3}+c$ is algebraic in y, since there is no y^{\prime} in the equation.
- Every function y satisfying the algebraic equation

$$
y(t)-\frac{y^{3}(t)}{3}=\frac{t^{3}}{3}+c
$$

is a solution of the differential equation above.

- We now verify the previous statement: Differentiate on both sides with respect to t,

Solutions to separable ODE.

Remarks:

- The equation $y(t)-\frac{y^{3}(t)}{3}=\frac{t^{3}}{3}+c$ is algebraic in y, since there is no y^{\prime} in the equation.
- Every function y satisfying the algebraic equation

$$
y(t)-\frac{y^{3}(t)}{3}=\frac{t^{3}}{3}+c
$$

is a solution of the differential equation above.

- We now verify the previous statement: Differentiate on both sides with respect to t, that is,

$$
y^{\prime}(t)-3\left(\frac{y^{2}(t)}{3}\right) y^{\prime}(t)=3 \frac{t^{2}}{3}
$$

Solutions to separable ODE.

Remarks:

- The equation $y(t)-\frac{y^{3}(t)}{3}=\frac{t^{3}}{3}+c$ is algebraic in y, since there is no y^{\prime} in the equation.
- Every function y satisfying the algebraic equation

$$
y(t)-\frac{y^{3}(t)}{3}=\frac{t^{3}}{3}+c
$$

is a solution of the differential equation above.

- We now verify the previous statement: Differentiate on both sides with respect to t, that is,

$$
y^{\prime}(t)-3\left(\frac{y^{2}(t)}{3}\right) y^{\prime}(t)=3 \frac{t^{2}}{3} \quad \Rightarrow \quad\left(1-y^{2}\right) y^{\prime}=t^{2}
$$

Separable differential equations (Sect. 2.2).

- Separable ODE.
- Solutions to separable ODE.
- Explicit and implicit solutions.
- Homogeneous equations.

Explicit and implicit solutions.

Remark:
The solution $y(t)-\frac{y^{3}(t)}{3}=\frac{t^{3}}{3}+c$ is given in implicit form.

Explicit and implicit solutions.

Remark:
The solution $y(t)-\frac{y^{3}(t)}{3}=\frac{t^{3}}{3}+c$ is given in implicit form.

Definition

Assume the notation in the Theorem above. The solution y of a separable ODE is given in implicit form iff function y is specified by

$$
H(y(t))=G(t)+c,
$$

Explicit and implicit solutions.

Remark:
The solution $y(t)-\frac{y^{3}(t)}{3}=\frac{t^{3}}{3}+c$ is given in implicit form.

Definition

Assume the notation in the Theorem above. The solution y of a separable ODE is given in implicit form iff function y is specified by

$$
H(y(t))=G(t)+c,
$$

The solution y of a separable ODE is given in explicit form iff function H is invertible and y is specified by

$$
y(t)=H^{-1}(G(t)+c)
$$

Explicit and implicit solutions.

Example

Use the main idea in the proof of the Theorem above to find the solution of the IVP

$$
y^{\prime}(t)+y^{2}(t) \cos (2 t)=0, \quad y(0)=1
$$

Explicit and implicit solutions.

Example

Use the main idea in the proof of the Theorem above to find the solution of the IVP

$$
y^{\prime}(t)+y^{2}(t) \cos (2 t)=0, \quad y(0)=1
$$

Solution: The differential equation is separable,

Explicit and implicit solutions.

Example

Use the main idea in the proof of the Theorem above to find the solution of the IVP

$$
y^{\prime}(t)+y^{2}(t) \cos (2 t)=0, \quad y(0)=1
$$

Solution: The differential equation is separable, with

$$
g(t)=-\cos (2 t), \quad h(y)=\frac{1}{y^{2}}
$$

Explicit and implicit solutions.

Example

Use the main idea in the proof of the Theorem above to find the solution of the IVP

$$
y^{\prime}(t)+y^{2}(t) \cos (2 t)=0, \quad y(0)=1
$$

Solution: The differential equation is separable, with

$$
g(t)=-\cos (2 t), \quad h(y)=\frac{1}{y^{2}}
$$

The main idea in the proof of the Theorem above is this: integrate on both sides of the equation,

$$
\frac{y^{\prime}(t)}{y^{2}(t)}=-\cos (2 t)
$$

Explicit and implicit solutions.

Example

Use the main idea in the proof of the Theorem above to find the solution of the IVP

$$
y^{\prime}(t)+y^{2}(t) \cos (2 t)=0, \quad y(0)=1
$$

Solution: The differential equation is separable, with

$$
g(t)=-\cos (2 t), \quad h(y)=\frac{1}{y^{2}}
$$

The main idea in the proof of the Theorem above is this: integrate on both sides of the equation,

$$
\frac{y^{\prime}(t)}{y^{2}(t)}=-\cos (2 t) \quad \Leftrightarrow \quad \int \frac{y^{\prime}(t)}{y^{2}(t)} d t=-\int \cos (2 t) d t+c
$$

Explicit and implicit solutions.

Example

Use the main idea in the proof of the Theorem above to find the solution of the IVP

$$
y^{\prime}(t)+y^{2}(t) \cos (2 t)=0, \quad y(0)=1
$$

Solution: The differential equation is separable, with

$$
g(t)=-\cos (2 t), \quad h(y)=\frac{1}{y^{2}}
$$

The main idea in the proof of the Theorem above is this: integrate on both sides of the equation,

$$
\frac{y^{\prime}(t)}{y^{2}(t)}=-\cos (2 t) \quad \Leftrightarrow \quad \int \frac{y^{\prime}(t)}{y^{2}(t)} d t=-\int \cos (2 t) d t+c
$$

The substitution $u=y(t), d u=y^{\prime}(t) d t$,

Explicit and implicit solutions.

Example

Use the main idea in the proof of the Theorem above to find the solution of the IVP

$$
y^{\prime}(t)+y^{2}(t) \cos (2 t)=0, \quad y(0)=1
$$

Solution: The differential equation is separable, with

$$
g(t)=-\cos (2 t), \quad h(y)=\frac{1}{y^{2}}
$$

The main idea in the proof of the Theorem above is this: integrate on both sides of the equation,

$$
\frac{y^{\prime}(t)}{y^{2}(t)}=-\cos (2 t) \quad \Leftrightarrow \quad \int \frac{y^{\prime}(t)}{y^{2}(t)} d t=-\int \cos (2 t) d t+c
$$

The substitution $u=y(t), d u=y^{\prime}(t) d t$, implies that

$$
\int \frac{d u}{u^{2}}=-\int \cos (2 t) d t+c
$$

Explicit and implicit solutions.

Example

Use the main idea in the proof of the Theorem above to find the solution of the IVP

$$
y^{\prime}(t)+y^{2}(t) \cos (2 t)=0, \quad y(0)=1
$$

Solution: The differential equation is separable, with

$$
g(t)=-\cos (2 t), \quad h(y)=\frac{1}{y^{2}}
$$

The main idea in the proof of the Theorem above is this: integrate on both sides of the equation,

$$
\frac{y^{\prime}(t)}{y^{2}(t)}=-\cos (2 t) \quad \Leftrightarrow \quad \int \frac{y^{\prime}(t)}{y^{2}(t)} d t=-\int \cos (2 t) d t+c
$$

The substitution $u=y(t), d u=y^{\prime}(t) d t$, implies that

$$
\int \frac{d u}{u^{2}}=-\int \cos (2 t) d t+c \quad \Leftrightarrow \quad-\frac{1}{u}=-\frac{1}{2} \sin (2 t)+c
$$

Explicit and implicit solutions.

Example

Use the main idea in the proof of the Theorem above to find the solution of the IVP

$$
y^{\prime}(t)+y^{2}(t) \cos (2 t)=0, \quad y(0)=1
$$

Solution: Recall: $-\frac{1}{u}=-\frac{1}{2} \sin (2 t)+c$.

Explicit and implicit solutions.

Example

Use the main idea in the proof of the Theorem above to find the solution of the IVP

$$
y^{\prime}(t)+y^{2}(t) \cos (2 t)=0, \quad y(0)=1
$$

Solution: Recall: $-\frac{1}{u}=-\frac{1}{2} \sin (2 t)+c$.
Substitute the unknown function y back in the equation above,

Explicit and implicit solutions.

Example

Use the main idea in the proof of the Theorem above to find the solution of the IVP

$$
y^{\prime}(t)+y^{2}(t) \cos (2 t)=0, \quad y(0)=1
$$

Solution: Recall: $-\frac{1}{u}=-\frac{1}{2} \sin (2 t)+c$.
Substitute the unknown function y back in the equation above,

$$
-\frac{1}{y(t)}=-\frac{1}{2} \sin (2 t)+c . \quad \text { (Implicit form.) }
$$

Explicit and implicit solutions.

Example

Use the main idea in the proof of the Theorem above to find the solution of the IVP

$$
y^{\prime}(t)+y^{2}(t) \cos (2 t)=0, \quad y(0)=1
$$

Solution: Recall: $-\frac{1}{u}=-\frac{1}{2} \sin (2 t)+c$.
Substitute the unknown function y back in the equation above,

$$
\begin{aligned}
-\frac{1}{y(t)} & =-\frac{1}{2} \sin (2 t)+c . \quad \text { (Implicit form.) } \\
y(t) & =\frac{2}{\sin (2 t)-2 c} . \quad \text { (Explicit form.) }
\end{aligned}
$$

Explicit and implicit solutions.

Example

Use the main idea in the proof of the Theorem above to find the solution of the IVP

$$
y^{\prime}(t)+y^{2}(t) \cos (2 t)=0, \quad y(0)=1
$$

Solution: Recall: $-\frac{1}{u}=-\frac{1}{2} \sin (2 t)+c$.
Substitute the unknown function y back in the equation above,

$$
\begin{aligned}
-\frac{1}{y(t)} & =-\frac{1}{2} \sin (2 t)+c . \quad \text { (Implicit form.) } \\
y(t) & =\frac{2}{\sin (2 t)-2 c} . \quad \text { (Explicit form.) }
\end{aligned}
$$

The initial condition implies that $1=y(0)$

Explicit and implicit solutions.

Example

Use the main idea in the proof of the Theorem above to find the solution of the IVP

$$
y^{\prime}(t)+y^{2}(t) \cos (2 t)=0, \quad y(0)=1
$$

Solution: Recall: $-\frac{1}{u}=-\frac{1}{2} \sin (2 t)+c$.
Substitute the unknown function y back in the equation above,

$$
\begin{aligned}
-\frac{1}{y(t)} & =-\frac{1}{2} \sin (2 t)+c . \quad \text { (Implicit form.) } \\
y(t) & =\frac{2}{\sin (2 t)-2 c} . \quad \text { (Explicit form.) }
\end{aligned}
$$

The initial condition implies that $1=y(0)=\frac{2}{0-2 c}$,

Explicit and implicit solutions.

Example

Use the main idea in the proof of the Theorem above to find the solution of the IVP

$$
y^{\prime}(t)+y^{2}(t) \cos (2 t)=0, \quad y(0)=1
$$

Solution: Recall: $-\frac{1}{u}=-\frac{1}{2} \sin (2 t)+c$.
Substitute the unknown function y back in the equation above,

$$
\begin{aligned}
-\frac{1}{y(t)} & =-\frac{1}{2} \sin (2 t)+c . \quad \text { (Implicit form.) } \\
y(t) & =\frac{2}{\sin (2 t)-2 c} . \quad \text { (Explicit form.) }
\end{aligned}
$$

The initial condition implies that $1=y(0)=\frac{2}{0-2 c}$, so $c=-1$.

Explicit and implicit solutions.

Example

Use the main idea in the proof of the Theorem above to find the solution of the IVP

$$
y^{\prime}(t)+y^{2}(t) \cos (2 t)=0, \quad y(0)=1
$$

Solution: Recall: $-\frac{1}{u}=-\frac{1}{2} \sin (2 t)+c$.
Substitute the unknown function y back in the equation above,

$$
\begin{aligned}
-\frac{1}{y(t)} & =-\frac{1}{2} \sin (2 t)+c . \quad \text { (Implicit form.) } \\
y(t) & =\frac{2}{\sin (2 t)-2 c} . \quad \text { (Explicit form.) }
\end{aligned}
$$

The initial condition implies that $1=y(0)=\frac{2}{0-2 c}$, so $c=-1$.
We conclude that $y(t)=\frac{2}{\sin (2 t)+2}$.

Separable differential equations (Sect. 2.2).

- Separable ODE.
- Solutions to separable ODE.
- Explicit and implicit solutions.
- Homogeneous equations.

Homogeneous equations.

Definition

The first order ODE $y^{\prime}(t)=f(t, y(t))$ is called homogeneous iff for every numbers $c, t, u \in \mathbb{R}$ the function f satisfies

$$
f(c t, c u)=f(t, u)
$$

Homogeneous equations.

Definition

The first order ODE $y^{\prime}(t)=f(t, y(t))$ is called homogeneous iff for every numbers $c, t, u \in \mathbb{R}$ the function f satisfies

$$
f(c t, c u)=f(t, u)
$$

Remark:

- The function f is invariant under the change of scale of its arguments.

Homogeneous equations.

Definition

The first order ODE $y^{\prime}(t)=f(t, y(t))$ is called homogeneous iff for every numbers $c, t, u \in \mathbb{R}$ the function f satisfies

$$
f(c t, c u)=f(t, u)
$$

Remark:

- The function f is invariant under the change of scale of its arguments.
- If $f(t, u)$ has the property above, it must depend only on u / t.

Homogeneous equations.

Definition

The first order ODE $y^{\prime}(t)=f(t, y(t))$ is called homogeneous iff for every numbers $c, t, u \in \mathbb{R}$ the function f satisfies

$$
f(c t, c u)=f(t, u)
$$

Remark:

- The function f is invariant under the change of scale of its arguments.
- If $f(t, u)$ has the property above, it must depend only on u / t.
- So, there exists $F: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(t, u)=F\left(\frac{u}{t}\right)$.

Homogeneous equations.

Definition

The first order ODE $y^{\prime}(t)=f(t, y(t))$ is called homogeneous iff for every numbers $c, t, u \in \mathbb{R}$ the function f satisfies

$$
f(c t, c u)=f(t, u)
$$

Remark:

- The function f is invariant under the change of scale of its arguments.
- If $f(t, u)$ has the property above, it must depend only on u / t.
- So, there exists $F: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(t, u)=F\left(\frac{u}{t}\right)$.
- Therefore, a first order ODE is homogeneous iff it has the form

$$
y^{\prime}(t)=F\left(\frac{y(t)}{t}\right)
$$

Homogeneous equations.

Example

Show that the equation below is homogeneous,

$$
(t-y) y^{\prime}-2 y+3 t+\frac{y^{2}}{t}=0
$$

Homogeneous equations.

Example

Show that the equation below is homogeneous,

$$
(t-y) y^{\prime}-2 y+3 t+\frac{y^{2}}{t}=0
$$

Solution: Rewrite the equation in the standard form

$$
(t-y) y^{\prime}=2 y-3 t-\frac{y^{2}}{t}
$$

Homogeneous equations.

Example

Show that the equation below is homogeneous,

$$
(t-y) y^{\prime}-2 y+3 t+\frac{y^{2}}{t}=0
$$

Solution: Rewrite the equation in the standard form

$$
(t-y) y^{\prime}=2 y-3 t-\frac{y^{2}}{t} \quad \Rightarrow \quad y^{\prime}=\frac{\left(2 y-3 t-\frac{y^{2}}{t}\right)}{(t-y)}
$$

Homogeneous equations.

Example

Show that the equation below is homogeneous,

$$
(t-y) y^{\prime}-2 y+3 t+\frac{y^{2}}{t}=0
$$

Solution: Rewrite the equation in the standard form

$$
(t-y) y^{\prime}=2 y-3 t-\frac{y^{2}}{t} \quad \Rightarrow \quad y^{\prime}=\frac{\left(2 y-3 t-\frac{y^{2}}{t}\right)}{(t-y)}
$$

Divide numerator and denominator by t.

Homogeneous equations.

Example

Show that the equation below is homogeneous,

$$
(t-y) y^{\prime}-2 y+3 t+\frac{y^{2}}{t}=0
$$

Solution: Rewrite the equation in the standard form

$$
(t-y) y^{\prime}=2 y-3 t-\frac{y^{2}}{t} \quad \Rightarrow \quad y^{\prime}=\frac{\left(2 y-3 t-\frac{y^{2}}{t}\right)}{(t-y)}
$$

Divide numerator and denominator by t. We get,

$$
y^{\prime}=\frac{\left(2 y-3 t-\frac{y^{2}}{t}\right)}{(t-y)} \frac{\left(\frac{1}{t}\right)}{\left(\frac{1}{t}\right)}
$$

Homogeneous equations.

Example

Show that the equation below is homogeneous,

$$
(t-y) y^{\prime}-2 y+3 t+\frac{y^{2}}{t}=0
$$

Solution: Rewrite the equation in the standard form

$$
(t-y) y^{\prime}=2 y-3 t-\frac{y^{2}}{t} \quad \Rightarrow \quad y^{\prime}=\frac{\left(2 y-3 t-\frac{y^{2}}{t}\right)}{(t-y)}
$$

Divide numerator and denominator by t. We get,

$$
y^{\prime}=\frac{\left(2 y-3 t-\frac{y^{2}}{t}\right)}{(t-y)} \frac{\left(\frac{1}{t}\right)}{\left(\frac{1}{t}\right)} \Rightarrow y^{\prime}=\frac{2\left(\frac{y}{t}\right)-3-\left(\frac{y}{t}\right)^{2}}{\left[1-\left(\frac{y}{t}\right)\right]} .
$$

Homogeneous equations.

Example

Show that the equation below is homogeneous,

$$
(t-y) y^{\prime}-2 y+3 t+\frac{y^{2}}{t}=0
$$

Solution: Recall: $y^{\prime}=\frac{2\left(\frac{y}{t}\right)-3-\left(\frac{y}{t}\right)^{2}}{\left[1-\left(\frac{y}{t}\right)\right]}$.

Homogeneous equations.

Example

Show that the equation below is homogeneous,

$$
(t-y) y^{\prime}-2 y+3 t+\frac{y^{2}}{t}=0
$$

Solution: Recall: $y^{\prime}=\frac{2\left(\frac{y}{t}\right)-3-\left(\frac{y}{t}\right)^{2}}{\left[1-\left(\frac{y}{t}\right)\right]}$.
We conclude that the ODE is homogeneous, because the right-hand side of the equation above depends only on y / t.

Homogeneous equations.

Example

Show that the equation below is homogeneous,

$$
(t-y) y^{\prime}-2 y+3 t+\frac{y^{2}}{t}=0
$$

Solution: Recall: $y^{\prime}=\frac{2\left(\frac{y}{t}\right)-3-\left(\frac{y}{t}\right)^{2}}{\left[1-\left(\frac{y}{t}\right)\right]}$.
We conclude that the ODE is homogeneous, because the right-hand side of the equation above depends only on y / t.

Indeed, in our case:

$$
f(t, y)=\frac{2 y-3 t-\left(y^{2} / t\right)}{t-y}
$$

Homogeneous equations.

Example

Show that the equation below is homogeneous,

$$
(t-y) y^{\prime}-2 y+3 t+\frac{y^{2}}{t}=0
$$

Solution: Recall: $y^{\prime}=\frac{2\left(\frac{y}{t}\right)-3-\left(\frac{y}{t}\right)^{2}}{\left[1-\left(\frac{y}{t}\right)\right]}$.
We conclude that the ODE is homogeneous, because the right-hand side of the equation above depends only on y / t.

Indeed, in our case:

$$
f(t, y)=\frac{2 y-3 t-\left(y^{2} / t\right)}{t-y}, \quad F(x)=\frac{2 x-3-x^{2}}{1-x}
$$

Homogeneous equations.

Example

Show that the equation below is homogeneous,

$$
(t-y) y^{\prime}-2 y+3 t+\frac{y^{2}}{t}=0
$$

Solution: Recall: $y^{\prime}=\frac{2\left(\frac{y}{t}\right)-3-\left(\frac{y}{t}\right)^{2}}{\left[1-\left(\frac{y}{t}\right)\right]}$.
We conclude that the ODE is homogeneous, because the right-hand side of the equation above depends only on y / t.

Indeed, in our case:

$$
f(t, y)=\frac{2 y-3 t-\left(y^{2} / t\right)}{t-y}, \quad F(x)=\frac{2 x-3-x^{2}}{1-x}
$$

and $f(t, y)=F(y / t)$.

Homogeneous equations.

Example

Determine whether the equation below is homogeneous,

$$
y^{\prime}=\frac{t^{2}}{1-y^{3}}
$$

Homogeneous equations.

Example

Determine whether the equation below is homogeneous,

$$
y^{\prime}=\frac{t^{2}}{1-y^{3}}
$$

Solution:
Divide numerator and denominator by t^{3},

Homogeneous equations.

Example

Determine whether the equation below is homogeneous,

$$
y^{\prime}=\frac{t^{2}}{1-y^{3}}
$$

Solution:
Divide numerator and denominator by t^{3}, we obtain

$$
y^{\prime}=\frac{t^{2}}{\left(1-y^{3}\right)} \frac{\left(\frac{1}{t^{3}}\right)}{\left(\frac{1}{t^{3}}\right)}
$$

Homogeneous equations.

Example

Determine whether the equation below is homogeneous,

$$
y^{\prime}=\frac{t^{2}}{1-y^{3}}
$$

Solution:
Divide numerator and denominator by t^{3}, we obtain

$$
y^{\prime}=\frac{t^{2}}{\left(1-y^{3}\right)} \frac{\left(\frac{1}{t^{3}}\right)}{\left(\frac{1}{t^{3}}\right)} \Rightarrow y^{\prime}=\frac{\left(\frac{1}{t}\right)}{\left(\frac{1}{t^{3}}\right)-\left(\frac{y}{t}\right)^{3}}
$$

We conclude that the differential equation is not homogeneous. \triangleleft

Homogeneous equations.

Theorem
If the differential equation $y^{\prime}(t)=f(t, y(t))$ is homogeneous, then the differential equation for the unknown $v(t)=\frac{y(t)}{t}$ is separable.

Homogeneous equations.

Theorem
If the differential equation $y^{\prime}(t)=f(t, y(t))$ is homogeneous, then the differential equation for the unknown $v(t)=\frac{y(t)}{t}$ is separable.

Remark: Homogeneous equations can be transformed into separable equations.

Homogeneous equations.

Theorem
If the differential equation $y^{\prime}(t)=f(t, y(t))$ is homogeneous, then the differential equation for the unknown $v(t)=\frac{y(t)}{t}$ is separable.

Remark: Homogeneous equations can be transformed into separable equations.

Proof: If $y^{\prime}=f(t, y)$ is homogeneous, then it can be written as $y^{\prime}=F(y / t)$ for some function F.

Homogeneous equations.

Theorem
If the differential equation $y^{\prime}(t)=f(t, y(t))$ is homogeneous, then the differential equation for the unknown $v(t)=\frac{y(t)}{t}$ is separable.

Remark: Homogeneous equations can be transformed into separable equations.

Proof: If $y^{\prime}=f(t, y)$ is homogeneous, then it can be written as $y^{\prime}=F(y / t)$ for some function F. Introduce $v=y / t$.

Homogeneous equations.

Theorem
If the differential equation $y^{\prime}(t)=f(t, y(t))$ is homogeneous, then the differential equation for the unknown $v(t)=\frac{y(t)}{t}$ is separable.

Remark: Homogeneous equations can be transformed into separable equations.

Proof: If $y^{\prime}=f(t, y)$ is homogeneous, then it can be written as $y^{\prime}=F(y / t)$ for some function F. Introduce $v=y / t$. This means,

$$
y(t)=t v(t)
$$

Homogeneous equations.

Theorem
If the differential equation $y^{\prime}(t)=f(t, y(t))$ is homogeneous, then the differential equation for the unknown $v(t)=\frac{y(t)}{t}$ is separable.

Remark: Homogeneous equations can be transformed into separable equations.

Proof: If $y^{\prime}=f(t, y)$ is homogeneous, then it can be written as $y^{\prime}=F(y / t)$ for some function F. Introduce $v=y / t$. This means,

$$
y(t)=t v(t) \quad \Rightarrow \quad y^{\prime}(t)=v(t)+t v^{\prime}(t)
$$

Homogeneous equations.

Theorem

If the differential equation $y^{\prime}(t)=f(t, y(t))$ is homogeneous, then the differential equation for the unknown $v(t)=\frac{y(t)}{t}$ is separable.

Remark: Homogeneous equations can be transformed into separable equations.

Proof: If $y^{\prime}=f(t, y)$ is homogeneous, then it can be written as $y^{\prime}=F(y / t)$ for some function F. Introduce $v=y / t$. This means,

$$
y(t)=t v(t) \quad \Rightarrow \quad y^{\prime}(t)=v(t)+t v^{\prime}(t)
$$

Introducing all this into the ODE we get

$$
v+t v^{\prime}=F(v)
$$

Homogeneous equations.

Theorem

If the differential equation $y^{\prime}(t)=f(t, y(t))$ is homogeneous, then the differential equation for the unknown $v(t)=\frac{y(t)}{t}$ is separable.

Remark: Homogeneous equations can be transformed into separable equations.

Proof: If $y^{\prime}=f(t, y)$ is homogeneous, then it can be written as $y^{\prime}=F(y / t)$ for some function F. Introduce $v=y / t$. This means,

$$
y(t)=t v(t) \quad \Rightarrow \quad y^{\prime}(t)=v(t)+t v^{\prime}(t)
$$

Introducing all this into the ODE we get

$$
v+t v^{\prime}=F(v) \quad \Rightarrow \quad v^{\prime}=\frac{(F(v)-v)}{t}
$$

This last equation is separable.

Homogeneous equations.

Example

Find all solutions y of the ODE $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.

Homogeneous equations.

Example

Find all solutions y of the ODE $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: The equation is homogeneous, since

$$
y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y} \frac{\left(\frac{1}{t^{2}}\right)}{\left(\frac{1}{t^{2}}\right)}
$$

Homogeneous equations.

Example

Find all solutions y of the ODE $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: The equation is homogeneous, since

$$
y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y} \frac{\left(\frac{1}{t^{2}}\right)}{\left(\frac{1}{t^{2}}\right)} \Rightarrow y^{\prime}=\frac{1+3\left(\frac{y}{t}\right)^{2}}{2\left(\frac{y}{t}\right)}
$$

Homogeneous equations.

Example

Find all solutions y of the ODE $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: The equation is homogeneous, since

$$
y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y} \frac{\left(\frac{1}{t^{2}}\right)}{\left(\frac{1}{t^{2}}\right)} \Rightarrow y^{\prime}=\frac{1+3\left(\frac{y}{t}\right)^{2}}{2\left(\frac{y}{t}\right)}
$$

Therefore, we introduce the change of unknown $v=y / t$,

Homogeneous equations.

Example

Find all solutions y of the ODE $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: The equation is homogeneous, since

$$
y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y} \frac{\left(\frac{1}{t^{2}}\right)}{\left(\frac{1}{t^{2}}\right)} \Rightarrow y^{\prime}=\frac{1+3\left(\frac{y}{t}\right)^{2}}{2\left(\frac{y}{t}\right)}
$$

Therefore, we introduce the change of unknown $v=y / t$, so $y=t v$ and $y^{\prime}=v+t v^{\prime}$.

Homogeneous equations.

Example

Find all solutions y of the ODE $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: The equation is homogeneous, since

$$
y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y} \frac{\left(\frac{1}{t^{2}}\right)}{\left(\frac{1}{t^{2}}\right)} \Rightarrow y^{\prime}=\frac{1+3\left(\frac{y}{t}\right)^{2}}{2\left(\frac{y}{t}\right)}
$$

Therefore, we introduce the change of unknown $v=y / t$, so $y=t v$ and $y^{\prime}=v+t v^{\prime}$. Hence

$$
v+t v^{\prime}=\frac{1+3 v^{2}}{2 v}
$$

Homogeneous equations.

Example

Find all solutions y of the ODE $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: The equation is homogeneous, since

$$
y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y} \frac{\left(\frac{1}{t^{2}}\right)}{\left(\frac{1}{t^{2}}\right)} \Rightarrow y^{\prime}=\frac{1+3\left(\frac{y}{t}\right)^{2}}{2\left(\frac{y}{t}\right)}
$$

Therefore, we introduce the change of unknown $v=y / t$, so $y=t v$ and $y^{\prime}=v+t v^{\prime}$. Hence

$$
v+t v^{\prime}=\frac{1+3 v^{2}}{2 v} \Rightarrow t v^{\prime}=\frac{1+3 v^{2}}{2 v}-v
$$

Homogeneous equations.

Example

Find all solutions y of the ODE $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: The equation is homogeneous, since

$$
y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y} \frac{\left(\frac{1}{t^{2}}\right)}{\left(\frac{1}{t^{2}}\right)} \Rightarrow y^{\prime}=\frac{1+3\left(\frac{y}{t}\right)^{2}}{2\left(\frac{y}{t}\right)}
$$

Therefore, we introduce the change of unknown $v=y / t$, so $y=t v$ and $y^{\prime}=v+t v^{\prime}$. Hence

$$
v+t v^{\prime}=\frac{1+3 v^{2}}{2 v} \Rightarrow t v^{\prime}=\frac{1+3 v^{2}}{2 v}-v=\frac{1+3 v^{2}-2 v^{2}}{2 v}
$$

Homogeneous equations.

Example

Find all solutions y of the ODE $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: The equation is homogeneous, since

$$
y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y} \frac{\left(\frac{1}{t^{2}}\right)}{\left(\frac{1}{t^{2}}\right)} \Rightarrow y^{\prime}=\frac{1+3\left(\frac{y}{t}\right)^{2}}{2\left(\frac{y}{t}\right)}
$$

Therefore, we introduce the change of unknown $v=y / t$, so $y=t v$ and $y^{\prime}=v+t v^{\prime}$. Hence

$$
v+t v^{\prime}=\frac{1+3 v^{2}}{2 v} \Rightarrow t v^{\prime}=\frac{1+3 v^{2}}{2 v}-v=\frac{1+3 v^{2}-2 v^{2}}{2 v}
$$

We obtain the separable equation $v^{\prime}=\frac{1}{t}\left(\frac{1+v^{2}}{2 v}\right)$.

Homogeneous equations.

Example
Find all solutions y of the ODE $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: Recall: $v^{\prime}=\frac{1}{t}\left(\frac{1+v^{2}}{2 v}\right)$.

Homogeneous equations.

Example

Find all solutions y of the ODE $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: Recall: $v^{\prime}=\frac{1}{t}\left(\frac{1+v^{2}}{2 v}\right)$. We rewrite and integrate it,

$$
\frac{2 v}{1+v^{2}} v^{\prime}=\frac{1}{t}
$$

Homogeneous equations.

Example

Find all solutions y of the ODE $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: Recall: $v^{\prime}=\frac{1}{t}\left(\frac{1+v^{2}}{2 v}\right)$. We rewrite and integrate it,

$$
\frac{2 v}{1+v^{2}} v^{\prime}=\frac{1}{t} \quad \Rightarrow \quad \int \frac{2 v}{1+v^{2}} v^{\prime} d t=\int \frac{1}{t} d t+c_{0}
$$

Homogeneous equations.

Example

Find all solutions y of the ODE $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: Recall: $v^{\prime}=\frac{1}{t}\left(\frac{1+v^{2}}{2 v}\right)$. We rewrite and integrate it,

$$
\frac{2 v}{1+v^{2}} v^{\prime}=\frac{1}{t} \quad \Rightarrow \quad \int \frac{2 v}{1+v^{2}} v^{\prime} d t=\int \frac{1}{t} d t+c_{0}
$$

The substitution $u=1+v^{2}(t)$ implies $d u=2 v(t) v^{\prime}(t) d t$,

Homogeneous equations.

Example

Find all solutions y of the ODE $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: Recall: $v^{\prime}=\frac{1}{t}\left(\frac{1+v^{2}}{2 v}\right)$. We rewrite and integrate it,

$$
\frac{2 v}{1+v^{2}} v^{\prime}=\frac{1}{t} \quad \Rightarrow \quad \int \frac{2 v}{1+v^{2}} v^{\prime} d t=\int \frac{1}{t} d t+c_{0}
$$

The substitution $u=1+v^{2}(t)$ implies $d u=2 v(t) v^{\prime}(t) d t$, so
$\int \frac{d u}{u}=\int \frac{d t}{t}+c_{0}$

Homogeneous equations.

Example

Find all solutions y of the ODE $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: Recall: $v^{\prime}=\frac{1}{t}\left(\frac{1+v^{2}}{2 v}\right)$. We rewrite and integrate it,

$$
\frac{2 v}{1+v^{2}} v^{\prime}=\frac{1}{t} \quad \Rightarrow \quad \int \frac{2 v}{1+v^{2}} v^{\prime} d t=\int \frac{1}{t} d t+c_{0}
$$

The substitution $u=1+v^{2}(t)$ implies $d u=2 v(t) v^{\prime}(t) d t$, so
$\int \frac{d u}{u}=\int \frac{d t}{t}+c_{0} \Rightarrow \ln (u)=\ln (t)+c_{0}$

Homogeneous equations.

Example

Find all solutions y of the ODE $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: Recall: $v^{\prime}=\frac{1}{t}\left(\frac{1+v^{2}}{2 v}\right)$. We rewrite and integrate it,

$$
\frac{2 v}{1+v^{2}} v^{\prime}=\frac{1}{t} \quad \Rightarrow \quad \int \frac{2 v}{1+v^{2}} v^{\prime} d t=\int \frac{1}{t} d t+c_{0}
$$

The substitution $u=1+v^{2}(t)$ implies $d u=2 v(t) v^{\prime}(t) d t$, so

$$
\int \frac{d u}{u}=\int \frac{d t}{t}+c_{0} \Rightarrow \ln (u)=\ln (t)+c_{0} \quad \Rightarrow \quad u=e^{\ln (t)+c_{0}}
$$

Homogeneous equations.

Example

Find all solutions y of the ODE $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: Recall: $v^{\prime}=\frac{1}{t}\left(\frac{1+v^{2}}{2 v}\right)$. We rewrite and integrate it,

$$
\frac{2 v}{1+v^{2}} v^{\prime}=\frac{1}{t} \quad \Rightarrow \quad \int \frac{2 v}{1+v^{2}} v^{\prime} d t=\int \frac{1}{t} d t+c_{0}
$$

The substitution $u=1+v^{2}(t)$ implies $d u=2 v(t) v^{\prime}(t) d t$, so
$\int \frac{d u}{u}=\int \frac{d t}{t}+c_{0} \Rightarrow \ln (u)=\ln (t)+c_{0} \quad \Rightarrow \quad u=e^{\ln (t)+c_{0}}$.
But $u=e^{\ln (t)} e^{c_{0}}$,

Homogeneous equations.

Example

Find all solutions y of the ODE $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: Recall: $v^{\prime}=\frac{1}{t}\left(\frac{1+v^{2}}{2 v}\right)$. We rewrite and integrate it,

$$
\frac{2 v}{1+v^{2}} v^{\prime}=\frac{1}{t} \quad \Rightarrow \quad \int \frac{2 v}{1+v^{2}} v^{\prime} d t=\int \frac{1}{t} d t+c_{0}
$$

The substitution $u=1+v^{2}(t)$ implies $d u=2 v(t) v^{\prime}(t) d t$, so
$\int \frac{d u}{u}=\int \frac{d t}{t}+c_{0} \Rightarrow \ln (u)=\ln (t)+c_{0} \quad \Rightarrow \quad u=e^{\ln (t)+c_{0}}$.
But $u=e^{\ln (t)} e^{c_{0}}$, so denoting $c_{1}=e^{c_{0}}$, then $u=c_{1} t$.

Homogeneous equations.

Example

Find all solutions y of the ODE $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: Recall: $v^{\prime}=\frac{1}{t}\left(\frac{1+v^{2}}{2 v}\right)$. We rewrite and integrate it,

$$
\frac{2 v}{1+v^{2}} v^{\prime}=\frac{1}{t} \quad \Rightarrow \quad \int \frac{2 v}{1+v^{2}} v^{\prime} d t=\int \frac{1}{t} d t+c_{0}
$$

The substitution $u=1+v^{2}(t)$ implies $d u=2 v(t) v^{\prime}(t) d t$, so
$\int \frac{d u}{u}=\int \frac{d t}{t}+c_{0} \Rightarrow \ln (u)=\ln (t)+c_{0} \quad \Rightarrow \quad u=e^{\ln (t)+c_{0}}$.
But $u=e^{\ln (t)} e^{c_{0}}$, so denoting $c_{1}=e^{c_{0}}$, then $u=c_{1} t$. Hence
$1+v^{2}=c_{1} t$

Homogeneous equations.

Example

Find all solutions y of the ODE $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: Recall: $v^{\prime}=\frac{1}{t}\left(\frac{1+v^{2}}{2 v}\right)$. We rewrite and integrate it,

$$
\frac{2 v}{1+v^{2}} v^{\prime}=\frac{1}{t} \quad \Rightarrow \quad \int \frac{2 v}{1+v^{2}} v^{\prime} d t=\int \frac{1}{t} d t+c_{0}
$$

The substitution $u=1+v^{2}(t)$ implies $d u=2 v(t) v^{\prime}(t) d t$, so
$\int \frac{d u}{u}=\int \frac{d t}{t}+c_{0} \Rightarrow \ln (u)=\ln (t)+c_{0} \quad \Rightarrow \quad u=e^{\ln (t)+c_{0}}$.
But $u=e^{\ln (t)} e^{c_{0}}$, so denoting $c_{1}=e^{c_{0}}$, then $u=c_{1} t$. Hence
$1+v^{2}=c_{1} t \quad \Rightarrow \quad 1+\left(\frac{y}{t}\right)^{2}=c_{1} t$

Homogeneous equations.

Example

Find all solutions y of the ODE $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: Recall: $v^{\prime}=\frac{1}{t}\left(\frac{1+v^{2}}{2 v}\right)$. We rewrite and integrate it,

$$
\frac{2 v}{1+v^{2}} v^{\prime}=\frac{1}{t} \quad \Rightarrow \quad \int \frac{2 v}{1+v^{2}} v^{\prime} d t=\int \frac{1}{t} d t+c_{0}
$$

The substitution $u=1+v^{2}(t)$ implies $d u=2 v(t) v^{\prime}(t) d t$, so
$\int \frac{d u}{u}=\int \frac{d t}{t}+c_{0} \Rightarrow \ln (u)=\ln (t)+c_{0} \quad \Rightarrow \quad u=e^{\ln (t)+c_{0}}$.
But $u=e^{\ln (t)} e^{c_{0}}$, so denoting $c_{1}=e^{c_{0}}$, then $u=c_{1} t$. Hence $1+v^{2}=c_{1} t \quad \Rightarrow \quad 1+\left(\frac{y}{t}\right)^{2}=c_{1} t \quad \Rightarrow \quad y(t)= \pm t \sqrt{c_{1} t-1}$.

Modeling with first order equations (Sect. 2.3).

- The mathematical modeling of natural processes.
- Main example: Salt in a water tank.
- The experimental device.
- The main equations.
- Analysis of the mathematical model.
- Predictions for particular situations.

The mathematical modeling of natural processes.

Remarks:

- Physics describes natural processes with mathematical constructions, called physical theories.

The mathematical modeling of natural processes.

Remarks:

- Physics describes natural processes with mathematical constructions, called physical theories.
- More often than not these physical theories contain differential equations.

The mathematical modeling of natural processes.

Remarks:

- Physics describes natural processes with mathematical constructions, called physical theories.
- More often than not these physical theories contain differential equations.
- Natural processes are described through solutions of differential equations.

The mathematical modeling of natural processes.

Remarks:

- Physics describes natural processes with mathematical constructions, called physical theories.
- More often than not these physical theories contain differential equations.
- Natural processes are described through solutions of differential equations.
- Usually a physical theory, constructed to describe all known natural processes, predicts yet unknown natural processes.

The mathematical modeling of natural processes.

Remarks:

- Physics describes natural processes with mathematical constructions, called physical theories.
- More often than not these physical theories contain differential equations.
- Natural processes are described through solutions of differential equations.
- Usually a physical theory, constructed to describe all known natural processes, predicts yet unknown natural processes.
- If the prediction is verified by an experiment or observation, one says that we have unveiled a secret from nature.

Salt in a water tank.

Problem: Study the mass conservation law.

Salt in a water tank.

Problem: Study the mass conservation law.

Particular situation: Salt concentration in water.

Salt in a water tank.

Problem: Study the mass conservation law.
Particular situation: Salt concentration in water.

Main ideas of the test:

- Assuming the mass of salt and water is conserved, we construct a mathematical model for the salt concentration in water.

Salt in a water tank.

Problem: Study the mass conservation law.
Particular situation: Salt concentration in water.

Main ideas of the test:

- Assuming the mass of salt and water is conserved, we construct a mathematical model for the salt concentration in water.
- We study the predictions of this mathematical description.

Salt in a water tank.

Problem: Study the mass conservation law.
Particular situation: Salt concentration in water.

Main ideas of the test:

- Assuming the mass of salt and water is conserved, we construct a mathematical model for the salt concentration in water.
- We study the predictions of this mathematical description.
- If the description agrees with the observation of the natural process, then we conclude that the conservation of mass law holds for salt in water.

Modeling with first order equations (Sect. 2.3).

- The mathematical modeling of natural processes.
- Main example: Salt in a water tank.
- The experimental device.
- The main equations.
- Analysis of the mathematical model.
- Predictions for particular situations.

The experimental device.

The experimental device.

Definitions:

- $r_{i}(t), r_{o}(t)$: Rates in and out of water entering and leaving the tank at the time t.

The experimental device.

Definitions:

- $r_{i}(t), r_{o}(t)$: Rates in and out of water entering and leaving the tank at the time t.
- $q_{i}(t), q_{o}(t)$: Salt concentration of the water entering and leaving the tank at the time t.

The experimental device.

Definitions:

- $r_{i}(t), r_{o}(t)$: Rates in and out of water entering and leaving the tank at the time t.
- $q_{i}(t), q_{o}(t)$: Salt concentration of the water entering and leaving the tank at the time t.
- $V(t)$: Water volume in the tank at the time t.

The experimental device.

Definitions:

- $r_{i}(t), r_{o}(t)$: Rates in and out of water entering and leaving the tank at the time t.
- $q_{i}(t), q_{o}(t)$: Salt concentration of the water entering and leaving the tank at the time t.
- $V(t)$: Water volume in the tank at the time t.
- $Q(t)$: Salt mass in the tank at the time t.

The experimental device.

Definitions:

- $r_{i}(t), r_{o}(t)$: Rates in and out of water entering and leaving the tank at the time t.
- $q_{i}(t), q_{o}(t)$: Salt concentration of the water entering and leaving the tank at the time t.
- $V(t)$: Water volume in the tank at the time t.
- $Q(t)$: Salt mass in the tank at the time t.

Units:

$$
\left[r_{i}(t)\right]=\left[r_{0}(t)\right]=\frac{\text { Volume }}{\text { Time }},
$$

The experimental device.

Definitions:

- $r_{i}(t), r_{o}(t)$: Rates in and out of water entering and leaving the tank at the time t.
- $q_{i}(t), q_{o}(t)$: Salt concentration of the water entering and leaving the tank at the time t.
- $V(t)$: Water volume in the tank at the time t.
- $Q(t)$: Salt mass in the tank at the time t.

Units:

$$
\left[r_{i}(t)\right]=\left[r_{0}(t)\right]=\frac{\text { Volume }}{\text { Time }}, \quad\left[q_{i}(t)\right]=\left[q_{o}(t)\right]=\frac{\text { Mass }}{\text { Volume }}
$$

The experimental device.

Definitions:

- $r_{i}(t), r_{o}(t)$: Rates in and out of water entering and leaving the tank at the time t.
- $q_{i}(t), q_{o}(t)$: Salt concentration of the water entering and leaving the tank at the time t.
- $V(t)$: Water volume in the tank at the time t.
- $Q(t)$: Salt mass in the tank at the time t.

Units:

$$
\begin{gathered}
{\left[r_{i}(t)\right]=\left[r_{o}(t)\right]=\frac{\text { Volume }}{\text { Time }}, \quad\left[q_{i}(t)\right]=\left[q_{o}(t)\right]=\frac{\text { Mass }}{\text { Volume }} .} \\
{[V(t)]=\text { Volume }}
\end{gathered}
$$

The experimental device.

Definitions:

- $r_{i}(t), r_{o}(t)$: Rates in and out of water entering and leaving the tank at the time t.
- $q_{i}(t), q_{o}(t)$: Salt concentration of the water entering and leaving the tank at the time t.
- $V(t)$: Water volume in the tank at the time t.
- $Q(t)$: Salt mass in the tank at the time t.

Units:

$$
\begin{gathered}
{\left[r_{i}(t)\right]=\left[r_{o}(t)\right]=\frac{\text { Volume }}{\text { Time }}, \quad\left[q_{i}(t)\right]=\left[q_{o}(t)\right]=\frac{\text { Mass }}{\text { Volume }} .} \\
{[V(t)]=\text { Volume }, \quad[Q(t)]=\text { Mass. }}
\end{gathered}
$$

Modeling with first order equations (Sect. 2.3).

- The mathematical modeling of natural processes.
- Main example: Salt in a water tank.
- The experimental device.
- The main equations.
- Analysis of the mathematical model.
- Predictions for particular situations.

The main equations.

Remark: The mass conservation provides the main equations of the mathematical description for salt in water.

The main equations.

Remark: The mass conservation provides the main equations of the mathematical description for salt in water.

Main equations:

$$
\begin{equation*}
\frac{d}{d t} V(t)=r_{i}(t)-r_{o}(t) \tag{1}
\end{equation*}
$$

Volume conservation,

The main equations.

Remark: The mass conservation provides the main equations of the mathematical description for salt in water.

Main equations:

$$
\begin{array}{ll}
\frac{d}{d t} V(t)=r_{i}(t)-r_{o}(t), & \text { Volume conservation, } \\
\frac{d}{d t} Q(t)=r_{i}(t) q_{i}(t)-r_{o}(t) q_{o}(t), & \text { Mass conservation, } \tag{2}
\end{array}
$$

The main equations.

Remark: The mass conservation provides the main equations of the mathematical description for salt in water.

Main equations:

$$
\begin{array}{cc}
\frac{d}{d t} V(t)=r_{i}(t)-r_{o}(t), & \text { Volume conservation, } \\
\frac{d}{d t} Q(t)=r_{i}(t) q_{i}(t)-r_{o}(t) q_{o}(t), \quad \text { Mass conservation, } \\
q_{o}(t)=\frac{Q(t)}{V(t)}, \quad \text { Instantaneously mixed, } \tag{3}
\end{array}
$$

The main equations.

Remark: The mass conservation provides the main equations of the mathematical description for salt in water.

Main equations:

$$
\begin{align*}
\frac{d}{d t} V(t) & =r_{i}(t)-r_{0}(t), \tag{1}\\
\frac{d}{d t} Q(t) & =r_{i}(t) q_{i}(t)-r_{0}(t) q_{0}(t), \tag{2}\\
q_{0}(t)=\frac{Q(t)}{V(t)}, & \text { Mass conservation, } \tag{3}\\
r_{i}, r_{0}: & \text { Instantaneously mixed, } \tag{4}\\
& \text { Constants. }
\end{align*}
$$

The main equations.

Remarks:

$$
\begin{gathered}
{\left[\frac{d V}{d t}\right]=\frac{\text { Volume }}{\text { Time }}=\left[r_{i}-r_{0}\right],} \\
{\left[\frac{d Q}{d t}\right]=\frac{\text { Mass }}{\text { Time }}=\left[r_{i} q_{i}-r_{0} q_{o}\right],} \\
{\left[r_{i} q_{i}-r_{0} q_{0}\right]=\frac{\text { Volume }}{\text { Time }} \frac{\text { Mass }}{\text { Volume }}=\frac{\text { Mass }}{\text { Time }} .}
\end{gathered}
$$

Modeling with first order equations (Sect. 2.3).

- The mathematical modeling of natural processes.
- Main example: Salt in a water tank.
- The experimental device.
- The main equations.
- Analysis of the mathematical model.
- Predictions for particular situations.

Analysis of the mathematical model.

Eqs. (4) and (1) imply

$$
\begin{equation*}
V(t)=\left(r_{i}-r_{o}\right) t+V_{0} \tag{5}
\end{equation*}
$$

where $V(0)=V_{0}$ is the initial volume of water in the tank.

Analysis of the mathematical model.

Eqs. (4) and (1) imply

$$
\begin{equation*}
V(t)=\left(r_{i}-r_{o}\right) t+V_{0} \tag{5}
\end{equation*}
$$

where $V(0)=V_{0}$ is the initial volume of water in the tank.
Eqs. (3) and (2) imply

$$
\begin{equation*}
\frac{d}{d t} Q(t)=r_{i} q_{i}(t)-r_{o} \frac{Q(t)}{V(t)} . \tag{6}
\end{equation*}
$$

Analysis of the mathematical model.

Eqs. (4) and (1) imply

$$
\begin{equation*}
V(t)=\left(r_{i}-r_{o}\right) t+V_{0} \tag{5}
\end{equation*}
$$

where $V(0)=V_{0}$ is the initial volume of water in the tank.
Eqs. (3) and (2) imply

$$
\begin{equation*}
\frac{d}{d t} Q(t)=r_{i} q_{i}(t)-r_{o} \frac{Q(t)}{V(t)} . \tag{6}
\end{equation*}
$$

Eqs. (5) and (6) imply

$$
\begin{equation*}
\frac{d}{d t} Q(t)=r_{i} q_{i}(t)-\frac{r_{o}}{\left(r_{i}-r_{o}\right) t+V_{0}} Q(t) . \tag{7}
\end{equation*}
$$

Analysis of the mathematical model.

Recall: $\frac{d}{d t} Q(t)=r_{i} q_{i}(t)-\frac{r_{o}}{\left(r_{i}-r_{o}\right) t+V_{0}} Q(t)$.

Analysis of the mathematical model.

Recall: $\frac{d}{d t} Q(t)=r_{i} q_{i}(t)-\frac{r_{o}}{\left(r_{i}-r_{o}\right) t+V_{0}} Q(t)$.
Notation: $a(t)=\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}}$,

Analysis of the mathematical model.

Recall: $\frac{d}{d t} Q(t)=r_{i} q_{i}(t)-\frac{r_{0}}{\left(r_{i}-r_{o}\right) t+V_{0}} Q(t)$.
Notation: $a(t)=\frac{r_{o}}{\left(r_{i}-r_{o}\right) t+V_{0}}$, and $b(t)=r_{i} q_{i}(t)$.

Analysis of the mathematical model.

Recall: $\frac{d}{d t} Q(t)=r_{i} q_{i}(t)-\frac{r_{o}}{\left(r_{i}-r_{o}\right) t+V_{0}} Q(t)$.
Notation: $a(t)=\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}}$, and $b(t)=r_{i} q_{i}(t)$.
The main equation of the description is given by

$$
Q^{\prime}(t)=-a(t) Q(t)+b(t)
$$

Analysis of the mathematical model.

Recall: $\frac{d}{d t} Q(t)=r_{i} q_{i}(t)-\frac{r_{o}}{\left(r_{i}-r_{o}\right) t+V_{0}} Q(t)$.
Notation: $a(t)=\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}}$, and $b(t)=r_{i} q_{i}(t)$.
The main equation of the description is given by

$$
Q^{\prime}(t)=-a(t) Q(t)+b(t)
$$

Linear ODE for Q.

Analysis of the mathematical model.

Recall: $\frac{d}{d t} Q(t)=r_{i} q_{i}(t)-\frac{r_{o}}{\left(r_{i}-r_{o}\right) t+V_{0}} Q(t)$.
Notation: $a(t)=\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}}$, and $b(t)=r_{i} q_{i}(t)$.
The main equation of the description is given by

$$
Q^{\prime}(t)=-a(t) Q(t)+b(t)
$$

Linear ODE for Q. Solution: Integrating factor method.

Analysis of the mathematical model.

Recall: $\frac{d}{d t} Q(t)=r_{i} q_{i}(t)-\frac{r_{o}}{\left(r_{i}-r_{o}\right) t+V_{0}} Q(t)$.
Notation: $a(t)=\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}}$, and $b(t)=r_{i} q_{i}(t)$.
The main equation of the description is given by

$$
Q^{\prime}(t)=-a(t) Q(t)+b(t)
$$

Linear ODE for Q. Solution: Integrating factor method.

$$
Q(t)=\frac{1}{\mu(t)}\left[Q_{0}+\int_{0}^{t} \mu(s) b(s) d s\right]
$$

Analysis of the mathematical model.

Recall: $\frac{d}{d t} Q(t)=r_{i} q_{i}(t)-\frac{r_{o}}{\left(r_{i}-r_{o}\right) t+V_{0}} Q(t)$.
Notation: $a(t)=\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}}$, and $b(t)=r_{i} q_{i}(t)$.
The main equation of the description is given by

$$
Q^{\prime}(t)=-a(t) Q(t)+b(t)
$$

Linear ODE for Q. Solution: Integrating factor method.

$$
Q(t)=\frac{1}{\mu(t)}\left[Q_{0}+\int_{0}^{t} \mu(s) b(s) d s\right]
$$

with $Q(0)=Q_{0}$,

Analysis of the mathematical model.

Recall: $\frac{d}{d t} Q(t)=r_{i} q_{i}(t)-\frac{r_{o}}{\left(r_{i}-r_{o}\right) t+V_{0}} Q(t)$.
Notation: $a(t)=\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}}$, and $b(t)=r_{i} q_{i}(t)$.
The main equation of the description is given by

$$
Q^{\prime}(t)=-a(t) Q(t)+b(t)
$$

Linear ODE for Q. Solution: Integrating factor method.

$$
Q(t)=\frac{1}{\mu(t)}\left[Q_{0}+\int_{0}^{t} \mu(s) b(s) d s\right]
$$

with $Q(0)=Q_{0}$, where $\mu(t)=e^{A(t)}$

Analysis of the mathematical model.

Recall: $\frac{d}{d t} Q(t)=r_{i} q_{i}(t)-\frac{r_{o}}{\left(r_{i}-r_{o}\right) t+V_{0}} Q(t)$.
Notation: $a(t)=\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}}$, and $b(t)=r_{i} q_{i}(t)$.
The main equation of the description is given by

$$
Q^{\prime}(t)=-a(t) Q(t)+b(t)
$$

Linear ODE for Q. Solution: Integrating factor method.

$$
Q(t)=\frac{1}{\mu(t)}\left[Q_{0}+\int_{0}^{t} \mu(s) b(s) d s\right]
$$

with $Q(0)=Q_{0}$, where $\mu(t)=e^{A(t)}$ and $A(t)=\int_{0}^{t} a(s) d s$.

Modeling with first order equations (Sect. 2.3).

- The mathematical modeling of natural processes.
- Main example: Salt in a water tank.
- The experimental device.
- The main equations.
- Analysis of the mathematical model.
- Predictions for particular situations.

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Always holds $Q^{\prime}(t)=-a(t) Q(t)+b(t)$.

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Always holds $Q^{\prime}(t)=-a(t) Q(t)+b(t)$. In this case:

$$
a(t)=\frac{r_{o}}{\left(r_{i}-r_{o}\right) t+V_{0}}
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Always holds $Q^{\prime}(t)=-a(t) Q(t)+b(t)$. In this case:

$$
a(t)=\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}} \quad \Rightarrow \quad a(t)=\frac{r}{V_{0}}=a_{0}
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Always holds $Q^{\prime}(t)=-a(t) Q(t)+b(t)$. In this case:

$$
\begin{gathered}
a(t)=\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}} \Rightarrow a(t)=\frac{r}{V_{0}}=a_{0} \\
b(t)=r_{i} q_{i}(t)
\end{gathered}
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Always holds $Q^{\prime}(t)=-a(t) Q(t)+b(t)$. In this case:

$$
\begin{gathered}
a(t)=\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}} \Rightarrow a(t)=\frac{r}{V_{0}}=a_{0} \\
b(t)=r_{i} q_{i}(t) \Rightarrow b(t)=r q_{i}=b_{0} .
\end{gathered}
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Always holds $Q^{\prime}(t)=-a(t) Q(t)+b(t)$.
In this case:

$$
\begin{gathered}
a(t)=\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}} \Rightarrow a(t)=\frac{r}{V_{0}}=a_{0} \\
b(t)=r_{i} q_{i}(t) \Rightarrow b(t)=r q_{i}=b_{0} .
\end{gathered}
$$

We need to solve the IVP:

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Always holds $Q^{\prime}(t)=-a(t) Q(t)+b(t)$.
In this case:

$$
\begin{gathered}
a(t)=\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}} \Rightarrow a(t)=\frac{r}{V_{0}}=a_{0} \\
b(t)=r_{i} q_{i}(t) \Rightarrow b(t)=r q_{i}=b_{0} .
\end{gathered}
$$

We need to solve the IVP:

$$
Q^{\prime}(t)=-a_{0} Q(t)+b_{0}, \quad Q(0)=Q_{0}
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Recall the IVP: $Q^{\prime}(t)=-a_{0} Q(t)+b_{0}, \quad Q(0)=Q_{0}$.

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants. If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.

Solution: Recall the IVP: $Q^{\prime}(t)=-a_{0} Q(t)+b_{0}, \quad Q(0)=Q_{0}$.
Integrating factor method:

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants. If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.

Solution: Recall the IVP: $Q^{\prime}(t)=-a_{0} Q(t)+b_{0}, \quad Q(0)=Q_{0}$.
Integrating factor method:

$$
A(t)=a_{0} t
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants. If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.

Solution: Recall the IVP: $Q^{\prime}(t)=-a_{0} Q(t)+b_{0}, \quad Q(0)=Q_{0}$.
Integrating factor method:

$$
A(t)=a_{0} t, \quad \mu(t)=e^{a_{0} t}
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants. If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.

Solution: Recall the IVP: $Q^{\prime}(t)=-a_{0} Q(t)+b_{0}, \quad Q(0)=Q_{0}$.
Integrating factor method:

$$
A(t)=a_{0} t, \quad \mu(t)=e^{a_{0} t}, \quad Q(t)=\frac{1}{\mu(t)}\left[Q_{0}+\int_{0}^{t} \mu(s) b_{0} d s\right] .
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants. If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.

Solution: Recall the IVP: $Q^{\prime}(t)=-a_{0} Q(t)+b_{0}, \quad Q(0)=Q_{0}$.
Integrating factor method:

$$
\begin{aligned}
& A(t)=a_{0} t, \quad \mu(t)=e^{a_{0} t}, \quad Q(t)=\frac{1}{\mu(t)}\left[Q_{0}+\int_{0}^{t} \mu(s) b_{0} d s\right] \\
& \int_{0}^{t} \mu(s) b_{0} d s=\frac{b_{0}}{a_{0}}\left(e^{a_{0} t}-1\right)
\end{aligned}
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants. If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.

Solution: Recall the IVP: $Q^{\prime}(t)=-a_{0} Q(t)+b_{0}, \quad Q(0)=Q_{0}$.
Integrating factor method:

$$
\begin{gathered}
A(t)=a_{0} t, \quad \mu(t)=e^{a_{0} t}, \quad Q(t)=\frac{1}{\mu(t)}\left[Q_{0}+\int_{0}^{t} \mu(s) b_{0} d s\right] \\
\int_{0}^{t} \mu(s) b_{0} d s=\frac{b_{0}}{a_{0}}\left(e^{a_{0} t}-1\right) \Rightarrow Q(t)=e^{-a_{0} t}\left[Q_{0}+\frac{b_{0}}{a_{0}}\left(e^{a_{0} t}-1\right)\right]
\end{gathered}
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Recall the IVP: $Q^{\prime}(t)=-a_{0} Q(t)+b_{0}, \quad Q(0)=Q_{0}$.
Integrating factor method:

$$
\begin{aligned}
& A(t)=a_{0} t, \quad \mu(t)=e^{a_{0} t}, \quad Q(t)=\frac{1}{\mu(t)}\left[Q_{0}+\int_{0}^{t} \mu(s) b_{0} d s\right] \\
& \int_{0}^{t} \mu(s) b_{0} d s=\frac{b_{0}}{a_{0}}\left(e^{a_{0} t}-1\right) \Rightarrow Q(t)=e^{-a_{0} t}\left[Q_{0}+\frac{b_{0}}{a_{0}}\left(e^{a_{0} t}-1\right)\right] \\
& \text { So: } Q(t)=\left(Q_{0}-\frac{b_{0}}{a_{0}}\right) e^{-a_{0} t}+\frac{b_{0}}{a_{0}}
\end{aligned}
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Recall the IVP: $Q^{\prime}(t)=-a_{0} Q(t)+b_{0}, \quad Q(0)=Q_{0}$.
Integrating factor method:

$$
\begin{aligned}
& A(t)=a_{0} t, \quad \mu(t)=e^{a_{0} t}, \quad Q(t)=\frac{1}{\mu(t)}\left[Q_{0}+\int_{0}^{t} \mu(s) b_{0} d s\right] \\
& \int_{0}^{t} \mu(s) b_{0} d s=\frac{b_{0}}{a_{0}}\left(e^{a_{0} t}-1\right) \Rightarrow Q(t)=e^{-a_{0} t}\left[Q_{0}+\frac{b_{0}}{a_{0}}\left(e^{a_{0} t}-1\right)\right] . \\
& \text { So: } Q(t)=\left(Q_{0}-\frac{b_{0}}{a_{0}}\right) e^{-a_{0} t}+\frac{b_{0}}{a_{0}} . \text { But } \frac{b_{0}}{a_{0}}=r q_{i} \frac{V_{0}}{r}
\end{aligned}
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Recall the IVP: $Q^{\prime}(t)=-a_{0} Q(t)+b_{0}, \quad Q(0)=Q_{0}$.
Integrating factor method:

$$
\begin{aligned}
& A(t)=a_{0} t, \quad \mu(t)=e^{a_{0} t}, \quad Q(t)=\frac{1}{\mu(t)}\left[Q_{0}+\int_{0}^{t} \mu(s) b_{0} d s\right] \\
& \int_{0}^{t} \mu(s) b_{0} d s=\frac{b_{0}}{a_{0}}\left(e^{a_{0} t}-1\right) \Rightarrow Q(t)=e^{-a_{0} t}\left[Q_{0}+\frac{b_{0}}{a_{0}}\left(e^{a_{0} t}-1\right)\right] . \\
& \text { So: } Q(t)=\left(Q_{0}-\frac{b_{0}}{a_{0}}\right) e^{-a_{0} t}+\frac{b_{0}}{a_{0}} . \text { But } \frac{b_{0}}{a_{0}}=r q_{i} \frac{V_{0}}{r}=q_{i} V_{0} .
\end{aligned}
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Recall the IVP: $Q^{\prime}(t)=-a_{0} Q(t)+b_{0}, \quad Q(0)=Q_{0}$. Integrating factor method:

$$
\begin{aligned}
& A(t)=a_{0} t, \quad \mu(t)=e^{a_{0} t}, \quad Q(t)=\frac{1}{\mu(t)}\left[Q_{0}+\int_{0}^{t} \mu(s) b_{0} d s\right] . \\
& \int_{0}^{t} \mu(s) b_{0} d s=\frac{b_{0}}{a_{0}}\left(e^{a_{0} t}-1\right) \Rightarrow Q(t)=e^{-a_{0} t}\left[Q_{0}+\frac{b_{0}}{a_{0}}\left(e^{a_{0} t}-1\right)\right] . \\
& \text { So: } Q(t)=\left(Q_{0}-\frac{b_{0}}{a_{0}}\right) e^{-a_{0} t}+\frac{b_{0}}{a_{0}} . \text { But } \frac{b_{0}}{a_{0}}=r q_{i} \frac{V_{0}}{r}=q_{i} V_{0} .
\end{aligned}
$$

We conclude: $Q(t)=\left(Q_{0}-q_{i} V_{0}\right) e^{-r t / V_{0}}+q_{i} V_{0}$.

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Recall: $Q(t)=\left(Q_{0}-q_{i} V_{0}\right) e^{-r t / V_{0}}+q_{i} V_{0}$.

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Recall: $Q(t)=\left(Q_{0}-q_{i} V_{0}\right) e^{-r t / V_{0}}+q_{i} V_{0}$.
Particular cases:

- $\frac{Q_{0}}{V_{0}}>q_{i} ;$
- $\frac{Q_{0}}{V_{0}}=q_{i}$, so $Q(t)=Q_{0}$;
- $\frac{Q_{0}}{V_{0}}<q_{i}$.

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Recall: $Q(t)=\left(Q_{0}-q_{i} V_{0}\right) e^{-r t / V_{0}}+q_{i} V_{0}$.
Particular cases:

- $\frac{Q_{0}}{V_{0}}>q_{i} ;$
- $\frac{Q_{0}}{V_{0}}=q_{i}$, so $Q(t)=Q_{0}$;
- $\frac{Q_{0}}{V_{0}}<q_{i}$.

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants.
If $r=2$ liters $/ \mathrm{min}, q_{i}=0, V_{0}=200$ liters, $Q_{0} / V_{0}=1$ grams $/$ liter, find t_{1} such that $q\left(t_{1}\right)=Q\left(t_{1}\right) / V\left(t_{1}\right)$ is 1% the initial value.

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If $r=2$ liters $/ \mathrm{min}, q_{i}=0, V_{0}=200$ liters, $Q_{0} / V_{0}=1$ grams $/$ liter, find t_{1} such that $q\left(t_{1}\right)=Q\left(t_{1}\right) / V\left(t_{1}\right)$ is 1% the initial value.

Solution: This problem is a particular case $q_{i}=0$ of the previous Example.

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If $r=2$ liters $/ \mathrm{min}, q_{i}=0, V_{0}=200$ liters, $Q_{0} / V_{0}=1$ grams $/$ liter, find t_{1} such that $q\left(t_{1}\right)=Q\left(t_{1}\right) / V\left(t_{1}\right)$ is 1% the initial value.

Solution: This problem is a particular case $q_{i}=0$ of the previous Example. Since $Q(t)=\left(Q_{0}-q_{i} V_{0}\right) e^{-r t / V_{0}}+q_{i} V_{0}$,

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If $r=2$ liters $/ \mathrm{min}, q_{i}=0, V_{0}=200$ liters, $Q_{0} / V_{0}=1$ grams $/$ liter, find t_{1} such that $q\left(t_{1}\right)=Q\left(t_{1}\right) / V\left(t_{1}\right)$ is 1% the initial value.

Solution: This problem is a particular case $q_{i}=0$ of the previous Example. Since $Q(t)=\left(Q_{0}-q_{i} V_{0}\right) e^{-r t / V_{0}}+q_{i} V_{0}$, we get

$$
Q(t)=Q_{0} e^{-r t / V_{0}}
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants.
If $r=2$ liters $/ \mathrm{min}, q_{i}=0, V_{0}=200$ liters, $Q_{0} / V_{0}=1$ grams $/$ liter, find t_{1} such that $q\left(t_{1}\right)=Q\left(t_{1}\right) / V\left(t_{1}\right)$ is 1% the initial value.

Solution: This problem is a particular case $q_{i}=0$ of the previous Example. Since $Q(t)=\left(Q_{0}-q_{i} V_{0}\right) e^{-r t / V_{0}}+q_{i} V_{0}$, we get

$$
Q(t)=Q_{0} e^{-r t / V_{0}}
$$

Since $V(t)=\left(r_{i}-r_{0}\right) t+V_{0}$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants.
If $r=2$ liters $/ \mathrm{min}, q_{i}=0, V_{0}=200$ liters, $Q_{0} / V_{0}=1$ grams $/$ liter, find t_{1} such that $q\left(t_{1}\right)=Q\left(t_{1}\right) / V\left(t_{1}\right)$ is 1% the initial value.

Solution: This problem is a particular case $q_{i}=0$ of the previous Example. Since $Q(t)=\left(Q_{0}-q_{i} V_{0}\right) e^{-r t / V_{0}}+q_{i} V_{0}$, we get

$$
Q(t)=Q_{0} e^{-r t / V_{0}}
$$

Since $V(t)=\left(r_{i}-r_{0}\right) t+V_{0}$ and $r_{i}=r_{0}$,

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants.
If $r=2$ liters $/ \mathrm{min}, q_{i}=0, V_{0}=200$ liters, $Q_{0} / V_{0}=1$ grams $/$ liter, find t_{1} such that $q\left(t_{1}\right)=Q\left(t_{1}\right) / V\left(t_{1}\right)$ is 1% the initial value.

Solution: This problem is a particular case $q_{i}=0$ of the previous Example. Since $Q(t)=\left(Q_{0}-q_{i} V_{0}\right) e^{-r t / V_{0}}+q_{i} V_{0}$, we get

$$
Q(t)=Q_{0} e^{-r t / V_{0}}
$$

Since $V(t)=\left(r_{i}-r_{0}\right) t+V_{0}$ and $r_{i}=r_{0}$, we obtain $V(t)=V_{0}$.

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants.
If $r=2$ liters $/ \mathrm{min}, q_{i}=0, V_{0}=200$ liters, $Q_{0} / V_{0}=1$ grams $/$ liter, find t_{1} such that $q\left(t_{1}\right)=Q\left(t_{1}\right) / V\left(t_{1}\right)$ is 1% the initial value.

Solution: This problem is a particular case $q_{i}=0$ of the previous Example. Since $Q(t)=\left(Q_{0}-q_{i} V_{0}\right) e^{-r t / V_{0}}+q_{i} V_{0}$, we get

$$
Q(t)=Q_{0} e^{-r t / V_{0}}
$$

Since $V(t)=\left(r_{i}-r_{0}\right) t+V_{0}$ and $r_{i}=r_{0}$, we obtain $V(t)=V_{0}$.
So $q(t)=Q(t) / V(t)$ is given by $q(t)=\frac{Q_{0}}{V_{0}} e^{-r t / V_{0}}$.

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants.
If $r=2$ liters $/ \mathrm{min}, q_{i}=0, V_{0}=200$ liters, $Q_{0} / V_{0}=1$ grams $/ l i t e r$, find t_{1} such that $q\left(t_{1}\right)=Q\left(t_{1}\right) / V\left(t_{1}\right)$ is 1% the initial value.

Solution: This problem is a particular case $q_{i}=0$ of the previous Example. Since $Q(t)=\left(Q_{0}-q_{i} V_{0}\right) e^{-r t / V_{0}}+q_{i} V_{0}$, we get

$$
Q(t)=Q_{0} e^{-r t / V_{0}}
$$

Since $V(t)=\left(r_{i}-r_{0}\right) t+V_{0}$ and $r_{i}=r_{0}$, we obtain $V(t)=V_{0}$.
So $q(t)=Q(t) / V(t)$ is given by $q(t)=\frac{Q_{0}}{V_{0}} e^{-r t / V_{0}}$. Therefore,

$$
\frac{1}{100} \frac{Q_{0}}{V_{0}}=q\left(t_{1}\right)
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants.
If $r=2$ liters $/ \mathrm{min}, q_{i}=0, V_{0}=200$ liters, $Q_{0} / V_{0}=1$ grams $/ l i t e r$, find t_{1} such that $q\left(t_{1}\right)=Q\left(t_{1}\right) / V\left(t_{1}\right)$ is 1% the initial value.

Solution: This problem is a particular case $q_{i}=0$ of the previous Example. Since $Q(t)=\left(Q_{0}-q_{i} V_{0}\right) e^{-r t / V_{0}}+q_{i} V_{0}$, we get

$$
Q(t)=Q_{0} e^{-r t / V_{0}}
$$

Since $V(t)=\left(r_{i}-r_{0}\right) t+V_{0}$ and $r_{i}=r_{0}$, we obtain $V(t)=V_{0}$.
So $q(t)=Q(t) / V(t)$ is given by $q(t)=\frac{Q_{0}}{V_{0}} e^{-r t / V_{0}}$. Therefore,

$$
\frac{1}{100} \frac{Q_{0}}{V_{0}}=q\left(t_{1}\right)=\frac{Q_{0}}{V_{0}} e^{-r t_{1} / V_{0}}
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If $r=2$ liters $/ \mathrm{min}, q_{i}=0, V_{0}=200$ liters, $Q_{0} / V_{0}=1$ grams $/ l i t e r$, find t_{1} such that $q\left(t_{1}\right)=Q\left(t_{1}\right) / V\left(t_{1}\right)$ is 1% the initial value.

Solution: This problem is a particular case $q_{i}=0$ of the previous Example. Since $Q(t)=\left(Q_{0}-q_{i} V_{0}\right) e^{-r t / V_{0}}+q_{i} V_{0}$, we get

$$
Q(t)=Q_{0} e^{-r t / V_{0}}
$$

Since $V(t)=\left(r_{i}-r_{0}\right) t+V_{0}$ and $r_{i}=r_{0}$, we obtain $V(t)=V_{0}$.
So $q(t)=Q(t) / V(t)$ is given by $q(t)=\frac{Q_{0}}{V_{0}} e^{-r t / V_{0}}$. Therefore,

$$
\frac{1}{100} \frac{Q_{0}}{V_{0}}=q\left(t_{1}\right)=\frac{Q_{0}}{V_{0}} e^{-r t_{1} / V_{0}} \quad \Rightarrow \quad e^{-r t_{1} / V_{0}}=\frac{1}{100} .
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If $r=2$ liters $/ \mathrm{min}, q_{i}=0, V_{0}=200$ liters, $Q_{0} / V_{0}=1$ grams $/ l i t e r$, find t_{1} such that $q\left(t_{1}\right)=Q\left(t_{1}\right) / V\left(t_{1}\right)$ is 1% the initial value.

Solution: Recall: $e^{-r t_{1} / V_{0}}=\frac{1}{100}$.

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If $r=2$ liters $/ \mathrm{min}, q_{i}=0, V_{0}=200$ liters, $Q_{0} / V_{0}=1$ grams/liter, find t_{1} such that $q\left(t_{1}\right)=Q\left(t_{1}\right) / V\left(t_{1}\right)$ is 1% the initial value.

Solution: Recall: $e^{-r t_{1} / V_{0}}=\frac{1}{100}$. Then,

$$
-\frac{r}{V_{0}} t_{1}=\ln \left(\frac{1}{100}\right)
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If $r=2$ liters $/ \mathrm{min}, q_{i}=0, V_{0}=200$ liters, $Q_{0} / V_{0}=1$ grams/liter, find t_{1} such that $q\left(t_{1}\right)=Q\left(t_{1}\right) / V\left(t_{1}\right)$ is 1% the initial value.

Solution: Recall: $e^{-r t_{1} / V_{0}}=\frac{1}{100}$. Then,

$$
-\frac{r}{V_{0}} t_{1}=\ln \left(\frac{1}{100}\right)=-\ln (100)
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If $r=2$ liters $/ \mathrm{min}, q_{i}=0, V_{0}=200$ liters, $Q_{0} / V_{0}=1$ grams $/$ liter, find t_{1} such that $q\left(t_{1}\right)=Q\left(t_{1}\right) / V\left(t_{1}\right)$ is 1% the initial value.

Solution: Recall: $e^{-r t_{1} / V_{0}}=\frac{1}{100}$. Then,

$$
-\frac{r}{V_{0}} t_{1}=\ln \left(\frac{1}{100}\right)=-\ln (100) \quad \Rightarrow \quad \frac{r}{V_{0}} t_{1}=\ln (100)
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If $r=2$ liters $/ \mathrm{min}, q_{i}=0, V_{0}=200$ liters, $Q_{0} / V_{0}=1$ grams $/$ liter, find t_{1} such that $q\left(t_{1}\right)=Q\left(t_{1}\right) / V\left(t_{1}\right)$ is 1% the initial value.

Solution: Recall: $e^{-r t_{1} / V_{0}}=\frac{1}{100}$. Then,

$$
-\frac{r}{V_{0}} t_{1}=\ln \left(\frac{1}{100}\right)=-\ln (100) \quad \Rightarrow \quad \frac{r}{V_{0}} t_{1}=\ln (100)
$$

We conclude that $t_{1}=\frac{V_{0}}{r} \ln (100)$.

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If $r=2$ liters $/ \mathrm{min}, q_{i}=0, V_{0}=200$ liters, $Q_{0} / V_{0}=1$ grams $/$ liter, find t_{1} such that $q\left(t_{1}\right)=Q\left(t_{1}\right) / V\left(t_{1}\right)$ is 1% the initial value.

Solution: Recall: $e^{-r t_{1} / V_{0}}=\frac{1}{100}$. Then,

$$
-\frac{r}{V_{0}} t_{1}=\ln \left(\frac{1}{100}\right)=-\ln (100) \quad \Rightarrow \quad \frac{r}{V_{0}} t_{1}=\ln (100)
$$

We conclude that $t_{1}=\frac{V_{0}}{r} \ln (100)$.
In this case: $t_{1}=100 \ln (100)$.

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ are constants. If $r=5 \times 10^{6} \mathrm{gal} / \mathrm{year}$, $q_{i}(t)=2+\sin (2 t)$ grams $/$ gal, $V_{0}=10^{6}$ gal, $Q_{0}=0$, find $Q(t)$.

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ are constants. If $r=5 \times 10^{6} \mathrm{gal} / \mathrm{year}$, $q_{i}(t)=2+\sin (2 t)$ grams $/$ gal, $V_{0}=10^{6}$ gal, $Q_{0}=0$, find $Q(t)$.

Solution: Recall: $Q^{\prime}(t)=-a(t) Q(t)+b(t)$.

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ are constants. If $r=5 \times 10^{6} \mathrm{gal} / \mathrm{year}$, $q_{i}(t)=2+\sin (2 t)$ grams $/ \mathrm{gal}, V_{0}=10^{6}$ gal, $Q_{0}=0$, find $Q(t)$.

Solution: Recall: $Q^{\prime}(t)=-a(t) Q(t)+b(t)$. In this case:

$$
a(t)=\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}}
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ are constants. If $r=5 \times 10^{6} \mathrm{gal} / \mathrm{year}$, $q_{i}(t)=2+\sin (2 t)$ grams $/ \mathrm{gal}, V_{0}=10^{6}$ gal, $Q_{0}=0$, find $Q(t)$.

Solution: Recall: $Q^{\prime}(t)=-a(t) Q(t)+b(t)$. In this case:

$$
a(t)=\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}} \Rightarrow a(t)=\frac{r}{V_{0}}=a_{0},
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ are constants. If $r=5 \times 10^{6} \mathrm{gal} / \mathrm{year}$, $q_{i}(t)=2+\sin (2 t)$ grams $/ \mathrm{gal}, V_{0}=10^{6}$ gal, $Q_{0}=0$, find $Q(t)$.

Solution: Recall: $Q^{\prime}(t)=-a(t) Q(t)+b(t)$. In this case:

$$
\begin{aligned}
& a(t)=\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}} \Rightarrow a(t)=\frac{r}{V_{0}}=a_{0}, \\
& b(t)=r_{i} q_{i}(t)
\end{aligned}
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ are constants. If $r=5 \times 10^{6} \mathrm{gal} / \mathrm{year}$, $q_{i}(t)=2+\sin (2 t)$ grams $/ \mathrm{gal}, V_{0}=10^{6}$ gal, $Q_{0}=0$, find $Q(t)$.

Solution: Recall: $Q^{\prime}(t)=-a(t) Q(t)+b(t)$. In this case:

$$
\begin{gathered}
a(t)=\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}} \Rightarrow a(t)=\frac{r}{V_{0}}=a_{0}, \\
b(t)=r_{i} q_{i}(t) \Rightarrow b(t)=r[2+\sin (2 t)] .
\end{gathered}
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ are constants. If $r=5 \times 10^{6} \mathrm{gal} / \mathrm{year}$, $q_{i}(t)=2+\sin (2 t)$ grams $/ \mathrm{gal}, V_{0}=10^{6}$ gal, $Q_{0}=0$, find $Q(t)$.

Solution: Recall: $Q^{\prime}(t)=-a(t) Q(t)+b(t)$. In this case:

$$
\begin{gathered}
a(t)=\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}} \Rightarrow a(t)=\frac{r}{V_{0}}=a_{0}, \\
b(t)=r_{i} q_{i}(t) \Rightarrow b(t)=r[2+\sin (2 t)] .
\end{gathered}
$$

We need to solve the IVP: $Q^{\prime}(t)=-a_{0} Q(t)+b(t), Q(0)=0$.

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ are constants. If $r=5 \times 10^{6} \mathrm{gal} / \mathrm{year}$, $q_{i}(t)=2+\sin (2 t)$ grams $/$ gal, $V_{0}=10^{6}$ gal, $Q_{0}=0$, find $Q(t)$.

Solution: Recall: $Q^{\prime}(t)=-a(t) Q(t)+b(t)$. In this case:

$$
\begin{gathered}
a(t)=\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}} \Rightarrow a(t)=\frac{r}{V_{0}}=a_{0}, \\
b(t)=r_{i} q_{i}(t) \Rightarrow b(t)=r[2+\sin (2 t)] .
\end{gathered}
$$

We need to solve the IVP: $Q^{\prime}(t)=-a_{0} Q(t)+b(t), Q(0)=0$.

$$
Q(t)=\frac{1}{\mu(t)} \int_{0}^{t} \mu(s) b(s) d s
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ are constants. If $r=5 \times 10^{6} \mathrm{gal} / \mathrm{year}$, $q_{i}(t)=2+\sin (2 t)$ grams $/$ gal, $V_{0}=10^{6}$ gal, $Q_{0}=0$, find $Q(t)$.

Solution: Recall: $Q^{\prime}(t)=-a(t) Q(t)+b(t)$. In this case:

$$
\begin{gathered}
a(t)=\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}} \Rightarrow a(t)=\frac{r}{V_{0}}=a_{0}, \\
b(t)=r_{i} q_{i}(t) \Rightarrow b(t)=r[2+\sin (2 t)] .
\end{gathered}
$$

We need to solve the IVP: $Q^{\prime}(t)=-a_{0} Q(t)+b(t), Q(0)=0$.

$$
Q(t)=\frac{1}{\mu(t)} \int_{0}^{t} \mu(s) b(s) d s, \quad \mu(t)=e^{a_{0} t}
$$

Predictions for particular situations.

Example
Assume that $r_{i}=r_{o}=r$ are constants. If $r=5 \times 10^{6} \mathrm{gal} / \mathrm{year}$, $q_{i}(t)=2+\sin (2 t)$ grams $/ \mathrm{gal}, V_{0}=10^{6} \mathrm{gal}, Q_{0}=0$, find $Q(t)$.

Solution: Recall: $Q^{\prime}(t)=-a(t) Q(t)+b(t)$. In this case:

$$
\begin{gathered}
a(t)=\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}} \Rightarrow a(t)=\frac{r}{V_{0}}=a_{0}, \\
b(t)=r_{i} q_{i}(t) \Rightarrow b(t)=r[2+\sin (2 t)] .
\end{gathered}
$$

We need to solve the IVP: $Q^{\prime}(t)=-a_{0} Q(t)+b(t), Q(0)=0$.

$$
Q(t)=\frac{1}{\mu(t)} \int_{0}^{t} \mu(s) b(s) d s, \quad \mu(t)=e^{a_{0} t}
$$

We conclude: $Q(t)=r e^{-r t / V_{0}} \int_{0}^{t} e^{r s / V_{0}}[2+\sin (2 s)] d s$.

