
The integrating factor method (Sect. 2.1).

I Overview of differential equations.

I Linear Ordinary Differential Equations.
I The integrating factor method.

I Constant coefficients.
I The Initial Value Problem.
I Variable coefficients.

Read:

I The direction field. Example 2 in Section 1.1 in the Textbook.

I See direction field plotters in Internet. For example, see:
http://math.rice.edu/̃ dfield/dfpp.html
This link is given in our class webpage.



Overview of differential equations.

Definition
A differential equation is an equation, where the unknown is a
function, and both the function and its derivative appear in the
equation.

Remark: There are two main types of differential equations:

I Ordinary Differential Equations (ODE): Derivatives with
respect to only one variable appear in the equation.

Example:
Newton’s second law of motion: m a = F.

I Partial differential Equations (PDE): Partial derivatives of two
or more variables appear in the equation.

Example:
The wave equation for sound propagation in air.
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Overview of differential equations.

Example

Newton’s second law of motion is an ODE: The unknown is x(t),
the particle position as function of time t and the equation is

d2

dt2
x(t) =

1

m
F(t, x(t)),

with m the particle mass and F the force acting on the particle.

Example

The wave equation is a PDE: The unknown is u(t, x), a function
that depends on two variables, and the equation is

∂2

∂t2
u(t, x) = v2 ∂2

∂x2
u(t, x),

with v the wave speed. Sound propagation in air is described by a
wave equation, where u represents the air pressure.
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Overview of differential equations.

Remark: Differential equations are a central part in a physical
description of nature:

I Classical Mechanics:
I Newton’s second law of motion. (ODE)
I Lagrange’s equations. (ODE)

I Electromagnetism:
I Maxwell’s equations. (PDE)

I Quantum Mechanics:
I Schrödinger’s equation. (PDE)

I General Relativity:
I Einstein equation. (PDE)

I Quantum Electrodynamics:
I The equations of QED. (PDE).
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Linear Ordinary Differential Equations

Remark: Given a function y : R→ R, we use the notation

y ′(t) =
dy

dt
(t).

Definition
Given a function f : R2 → R, a first order ODE in the unknown
function y : R→ R is the equation

y ′(t) = f (t, y(t)).

The first order ODE above is called linear iff there exist functions
a, b : R→ R such that f (t, y) = −a(t) y + b(t). That is, f is
linear on its argument y , hence a first order linear ODE is given by

y ′(t) = −a(t) y(t) + b(t).
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Linear Ordinary Differential Equations

Example

A first order linear ODE is given by

y ′(t) = −2 y(t) + 3.

In this case function a(t) = −2 and b(t) = 3. Since these function
do not depend on t, the equation above is called of constant
coefficients.

Example

A first order linear ODE is given by

y ′(t) = −2

t
y(t) + 4t.

In this case function a(t) = −2/t and b(t) = 4t. Since these
functions depend on t, the equation above is called of variable
coefficients.
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The integrating factor method.

Remark: Solutions to first order linear ODE can be obtained using
the integrating factor method.

Theorem (Constant coefficients)

Given constants a, b ∈ R with a 6= 0, the linear differential equation

y ′(t) = −a y(t) + b

has infinitely many solutions, one for each value of c ∈ R, given by

y(t) = c e−at +
b

a
.
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The integrating factor method.

Proof: Multiply the differential equation y ′(t) + a y(t) = b by a
non-zero function µ, that is,

µ(t)
(
y ′ + ay

)
= µ(t) b.

Key idea: The non-zero function µ is called an integrating factor
iff holds

µ
(
y ′ + ay

)
=

(
µ y

)′
.

Not every function µ satisfies the equation above. Let us find what
are the solutions µ of the equation above. Notice that

µ
(
y ′ + ay

)
=

(
µ y

)′ ⇔ µ y ′ + µay = µ′ y + µ y ′

ayµ = µ′ y ⇔ aµ = µ′ ⇔ µ′(t)

µ(t)
= a.
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The integrating factor method.

Proof: Recall:
µ′(t)

µ(t)
= a.

Therefore,

[
ln

(
µ(t)

)]′
= a ⇔ ln

(
µ(t)

)
= at + c0,

µ(t) = eat+c0 ⇔ µ(t) = eat ec0 .

Choosing the solution with c0 = 0 we obtain µ(t) = eat .
For that function µ holds that µ

(
y ′ + ay

)
=

(
µ y

)′
. Therefore,

multiplying the ODE y ′ + ay = b by µ = eat we get

(µy)′ = bµ ⇔
(
eaty

)′
= beat ⇔ eaty =

∫
beat dt + c

y(t) eat =
b

a
eat + c ⇔ y(t) = c e−at +

b

a
.
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The integrating factor method.

Example

Find all functions y solution of the ODE y ′ = 2y + 3.

Solution: The ODE is y ′ = −ay + b with a = −2 and b = 3.

The functions y(t) = ce−at +
b

a
, with c ∈ R, are solutions.

We conclude that the ODE has
infinitely many solutions, given by

y(t) = c e2t − 3

2
, c ∈ R.

Since we did one integration, it is
reasonable that the solution contains a
constant of integration, c ∈ R.

0

y

t

−3/2
c = 0

c < 0

c > 0

Verification: c e2t = y + (3/2), so 2c e2t = y ′, therefore we
conclude that y satisfies the ODE y ′ = 2y + 3. C
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The integrating factor method (Sect. 2.1).

I Overview of differential equations.

I Linear Ordinary Differential Equations.
I The integrating factor method.

I Constant coefficients.
I The Initial Value Problem.
I Variable coefficients.



The Initial Value Problem.

Definition
The Initial Value Problem (IVP) for a linear ODE is the following:
Given functions a, b : R→ R and constants t0, y0 ∈ R, find a
solution y : R→ R of the problem

y ′ = a(t) y + b(t), y(t0) = y0.

Remark: The initial condition selects one solution of the ODE.

Theorem (Constant coefficients)

Given constants a, b, t0, y0 ∈ R, with a 6= 0, the initial value
problem

y ′ = −ay + b, y(t0) = y0

has the unique solution

y(t) =
(
y0 −

b

a

)
e−a(t−t0) +

b

a
.
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The Initial Value Problem.

Example

Find the solution to the initial value problem

y ′ = 2y + 3, y(0) = 1.

Solution: Every solution of the ODE above is given by

y(t) = c e2t − 3

2
, c ∈ R.

The initial condition y(0) = 1 selects only one solution:

1 = y(0) = c − 3

2
⇒ c =

5

2
.

We conclude that y(t) =
5

2
e2t − 3

2
. C
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The integrating factor method.

Theorem (Variable coefficients)

Given continuous functions a, b : R→ R and given constants
t0, y0 ∈ R, the IVP

y ′ = −a(t)y + b(t) y(t0) = y0

has the unique solution

y(t) =
1

µ(t)

[
y0 +

∫ t

t0

µ(s)b(s)ds
]
,

where the integrating factor function is given by

µ(t) = eA(t), A(t) =

∫ t

t0

a(s)ds.

Remark: See the proof in the Lecture Notes.



The integrating factor method.

Example

Find the solution y to the IVP

t y ′ + 2y = 4t2, y(1) = 2.

Solution: We first express the ODE as in the Theorem above,

y ′ = −2

t
y + 4t.

Therefore, a(t) =
2

t
and b(t) = 4t, and also t0 = 1 and y0 = 2.

We first compute the integrating factor function µ = eA(t), where

A(t) =

∫ t

t0

a(s) ds =

∫ t

1

2

s
ds = 2

[
ln(t)− ln(1)

]
A(t) = 2 ln(t) = ln(t2) ⇒ eA(t) = t2.

We conclude that µ(t) = t2.
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Solution: The integrating factor is µ(t) = t2.

Hence,

t2
(
y ′ +

2

t
y
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= t2(4t) ⇔ t2 y ′ + 2t y = 4t3

(
t2y

)′
= 4t3 ⇔ t2y = t4 + c ⇔ y = t2 +

c

t2
.

The initial condition implies 2 = y(1) = 1 + c , that is, c = 1.

We conclude that y(t) = t2 +
1

t2
. C
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(
t2y

)′
= 4t3

⇔ t2y = t4 + c ⇔ y = t2 +
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.

The initial condition implies 2 = y(1) = 1 + c , that is, c = 1.

We conclude that y(t) = t2 +
1

t2
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Separable differential equations (Sect. 2.2).

I Separable ODE.

I Solutions to separable ODE.

I Explicit and implicit solutions.

I Homogeneous equations.



Separable ODE.

Definition
Given functions h, g : R→ R, a first order ODE on the unknown
function y : R→ R is called separable iff the ODE has the form

h(y) y ′(t) = g(t).

Remark:
A differential equation y ′(t) = f (t, y(t)) is separable iff

y ′ =
g(t)

h(y)
⇔ f (t, y) =

g(t)

h(y)
.

Notation:
In lecture: t, y(t) and h(y) y ′(t) = g(t).

In textbook: x , y(x) and M(x) + N(y) y ′(x) = 0.

Therefore: h(y) = N(y) and g(t) = −M(t).
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Separable ODE.

Example

Determine whether the differential equation below is separable,

y ′(t) =
t2

1− y2(t)
.

Solution: The differential equation is separable, since it is
equivalent to(

1− y2
)
y ′(t) = t2 ⇒

{
g(t) = t2,

h(y) = 1− y2.

C

Remark: The functions g and h are not uniquely defined.
Another choice here is:

g(t) = c t2, h(y) = c (1− y2), c ∈ R.
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Separable ODE.

Example

Determine whether The differential equation below is separable,

y ′(t) + y2(t) cos(2t) = 0

Solution: The differential equation is separable, since it is
equivalent to

1

y2
y ′(t) = − cos(2t) ⇒


g(t) = − cos(2t),

h(y) =
1

y2
.

C

Remark: The functions g and h are not uniquely defined.
Another choice here is:

g(t) = cos(2t), h(y) = − 1

y2
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Separable ODE.

Remark: Not every first order ODE is separable.

Example

I The differential equation y ′(t) = ey(t) + cos(t) is not
separable.

I The linear differential equation y ′(t) = −2

t
y(t) + 4t is not

separable.

I The linear differential equation y ′(t) = −a(t) y(t) + b(t),
with b(t) non-constant, is not separable.
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Separable differential equations (Sect. 2.2).

I Separable ODE.

I Solutions to separable ODE.

I Explicit and implicit solutions.

I Homogeneous equations.



Solutions to separable ODE.

Theorem (Separable equations)

If the functions g , h : R→ R are continuous, with h 6= 0 and with
primitives G and H, respectively; that is,

G ′(t) = g(t), H ′(u) = h(u),

then, the separable ODE

h(y) y ′ = g(t)

has infinitely many solutions y : R→ R satisfying the algebraic
equation

H(y(t)) = G (t) + c ,

where c ∈ R is arbitrary.

Remark: Given functions g , h, find their primitives G ,H.
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Solutions to separable ODE.

Example

Find all solutions y : R→ R to the ODE y ′(t) =
t2

1− y2(t)
.

Solution: The equation is equivalent to
(
1− y2

)
y ′(t) = t2.

Therefore, the functions g , h are given by

g(t) = t2, h(u) = 1− u2.

Their primitive functions, G and H, respectively, are given by

g(t) = t2 ⇒ G (t) =
t3

3
,

h(u) = 1− u2 ⇒ H(u) = u − u3

3
.

Then, the Theorem above implies that the solution y satisfies the
algebraic equation

y(t)− y3(t)

3
=

t3

3
+ c , c ∈ R. C
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Solutions to separable ODE.

Remarks:

I The equation y(t)− y3(t)

3
=

t3

3
+ c is algebraic in y , since

there is no y ′ in the equation.

I Every function y satisfying the algebraic equation

y(t)− y3(t)

3
=

t3

3
+ c ,

is a solution of the differential equation above.

I We now verify the previous statement: Differentiate on both
sides with respect to t, that is,

y ′(t)− 3
(y2(t)

3

)
y ′(t) = 3

t2

3
⇒ (1− y2) y ′ = t2.
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I We now verify the previous statement:

Differentiate on both
sides with respect to t, that is,

y ′(t)− 3
(y2(t)

3

)
y ′(t) = 3

t2

3
⇒ (1− y2) y ′ = t2.
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Separable differential equations (Sect. 2.2).

I Separable ODE.

I Solutions to separable ODE.

I Explicit and implicit solutions.

I Homogeneous equations.



Explicit and implicit solutions.

Remark:

The solution y(t)− y3(t)

3
=

t3

3
+ c is given in implicit form.

Definition
Assume the notation in the Theorem above. The solution y of a
separable ODE is given in implicit form iff function y is specified by

H
(
y(t)

)
= G (t) + c ,

The solution y of a separable ODE is given in explicit form iff
function H is invertible and y is specified by

y(t) = H−1
(
G (t) + c

)
.
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Explicit and implicit solutions.
Example

Use the main idea in the proof of the Theorem above to find the
solution of the IVP

y ′(t) + y2(t) cos(2t) = 0, y(0) = 1.

Solution: The differential equation is separable, with

g(t) = − cos(2t), h(y) =
1

y2
.

The main idea in the proof of the Theorem above is this: integrate
on both sides of the equation,

y ′(t)

y2(t)
= − cos(2t) ⇔

∫
y ′(t)

y2(t)
dt = −

∫
cos(2t) dt + c .

The substitution u = y(t), du = y ′(t) dt, implies that∫
du

u2
= −

∫
cos(2t) dt + c ⇔ −1

u
= −1

2
sin(2t) + c .
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Separable differential equations (Sect. 2.2).

I Separable ODE.

I Solutions to separable ODE.

I Explicit and implicit solutions.

I Homogeneous equations.



Homogeneous equations.

Definition
The first order ODE y ′(t) = f

(
t, y(t)

)
is called homogeneous iff

for every numbers c , t, u ∈ R the function f satisfies

f (ct, cu) = f (t, u).

Remark:

I The function f is invariant under the change of scale of its
arguments.

I If f (t, u) has the property above, it must depend only on u/t.

I So, there exists F : R→ R such that f (t, u) = F
(u

t

)
.

I Therefore, a first order ODE is homogeneous iff it has the form

y ′(t) = F
(y(t)

t

)
.
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Homogeneous equations.

Example

Show that the equation below is homogeneous,

(t − y) y ′ − 2y + 3t +
y2

t
= 0.

Solution: Rewrite the equation in the standard form

(t − y) y ′ = 2y − 3t − y2

t
⇒ y ′ =

(
2y − 3t − y2

t

)
(t − y)

.

Divide numerator and denominator by t. We get,

y ′ =

(
2y − 3t − y2

t

)
(t − y)

(1

t

)
(1

t

) ⇒ y ′ =
2
(y

t

)
− 3−

(y

t

)2

[
1−

(y

t

)] .
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(y
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We conclude that the ODE is homogeneous, because the
right-hand side of the equation above depends only on y/t.

Indeed, in our case:

f (t, y) =
2y − 3t − (y2/t)

t − y
, F (x) =

2x − 3− x2

1− x
,

and f (t, y) = F (y/t). C
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Homogeneous equations.

Theorem
If the differential equation y ′(t) = f

(
t, y(t)

)
is homogeneous, then

the differential equation for the unknown v(t) =
y(t)

t
is separable.

Remark: Homogeneous equations can be transformed into
separable equations.

Proof: If y ′ = f (t, y) is homogeneous, then it can be written as
y ′ = F (y/t) for some function F . Introduce v = y/t. This means,

y(t) = t v(t) ⇒ y ′(t) = v(t) + t v ′(t).

Introducing all this into the ODE we get

v + t v ′ = F (v) ⇒ v ′ =

(
F (v)− v

)
t

.

This last equation is separable.
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Homogeneous equations.

Example

Find all solutions y of the ODE y ′ =
t2 + 3y2

2ty
.

Solution: The equation is homogeneous, since

y ′ =
t2 + 3y2

2ty
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) ⇒ y ′ =
1 + 3

(y

t

)2

2
(y

t
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Therefore, we introduce the change of unknown v = y/t, so
y = t v and y ′ = v + t v ′. Hence

v + t v ′ =
1 + 3v2

2v
⇒ t v ′ =

1 + 3v2

2v
− v =

1 + 3v2 − 2v2

2v

We obtain the separable equation v ′ =
1

t

(1 + v2

2v

)
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We rewrite and integrate it,

2v

1 + v2
v ′ =

1

t
⇒

∫
2v

1 + v2
v ′ dt =

∫
1

t
dt + c0.

The substitution u = 1 + v2(t) implies du = 2v(t) v ′(t) dt, so∫
du

u
=

∫
dt

t
+ c0 ⇒ ln(u) = ln(t)+ c0 ⇒ u = e ln(t)+c0 .

But u = e ln(t)ec0 , so denoting c1 = ec0 , then u = c1t. Hence

1 + v2 = c1t ⇒ 1 +
(y

t

)2
= c1t ⇒ y(t) = ±t

√
c1t − 1.
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2ty
.
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I The mathematical modeling of natural processes.
I Main example: Salt in a water tank.

I The experimental device.
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The mathematical modeling of natural processes.

Remarks:

I Physics describes natural processes with mathematical
constructions, called physical theories.

I More often than not these physical theories contain
differential equations.

I Natural processes are described through solutions of
differential equations.

I Usually a physical theory, constructed to describe all known
natural processes, predicts yet unknown natural processes.

I If the prediction is verified by an experiment or observation,
one says that we have unveiled a secret from nature.
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Salt in a water tank.

Problem: Study the mass conservation law.

Particular situation: Salt concentration in water.

Main ideas of the test:

I Assuming the mass of salt and water is conserved, we
construct a mathematical model for the salt concentration in
water.

I We study the predictions of this mathematical description.

I If the description agrees with the observation of the natural
process, then we conclude that the conservation of mass law
holds for salt in water.
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The experimental device.
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The experimental device.

Definitions:

I ri (t), ro(t): Rates in and out of water entering and leaving
the tank at the time t.

I qi (t), qo(t): Salt concentration of the water entering and
leaving the tank at the time t.

I V (t): Water volume in the tank at the time t.

I Q(t): Salt mass in the tank at the time t.

Units:[
ri (t)

]
=

[
ro(t)

]
=

Volume

Time
,

[
qi (t)

]
=

[
qo(t)

]
=

Mass

Volume
.

[
V (t)

]
= Volume,

[
Q(t)

]
= Mass.
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I The mathematical modeling of natural processes.
I Main example: Salt in a water tank.
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The main equations.

Remark: The mass conservation provides the main equations of
the mathematical description for salt in water.

Main equations:

d

dt
V (t) = ri (t)− ro(t), Volume conservation, (1)

d

dt
Q(t) = ri (t) qi (t)− ro(t) qo(t), Mass conservation, (2)

qo(t) =
Q(t)

V (t)
, Instantaneously mixed, (3)

ri , ro : Constants. (4)
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The main equations.

Remarks: [dV

dt

]
=

Volume

Time
=

[
ri − ro

]
,

[dQ
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]
=
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Time
=
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Analysis of the mathematical model.

Eqs. (4) and (1) imply

V (t) = (ri − ro) t + V0, (5)

where V (0) = V0 is the initial volume of water in the tank.

Eqs. (3) and (2) imply

d

dt
Q(t) = ri qi (t)− ro

Q(t)

V (t)
. (6)

Eqs. (5) and (6) imply

d

dt
Q(t) = ri qi (t)−

ro
(ri − ro) t + V0

Q(t). (7)
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Analysis of the mathematical model.

Recall:
d

dt
Q(t) = ri qi (t)−

ro
(ri − ro) t + V0

Q(t).

Notation: a(t) =
ro

(ri − ro) t + V0
, and b(t) = ri qi (t).

The main equation of the description is given by

Q ′(t) = −a(t) Q(t) + b(t).

Linear ODE for Q. Solution: Integrating factor method.

Q(t) =
1

µ(t)

[
Q0 +

∫ t

0
µ(s) b(s) ds

]
with Q(0) = Q0, where µ(t) = eA(t) and A(t) =

∫ t

0
a(s) ds.
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Predictions for particular situations.

Example

Assume that ri = ro = r and qi are constants.
If r , qi , Q0 and V0 are given, find Q(t).

Solution: Always holds Q ′(t) = −a(t) Q(t) + b(t).
In this case:

a(t) =
ro

(ri − ro) t + V0
⇒ a(t) =

r

V0
= a0,

b(t) = ri qi (t) ⇒ b(t) = rqi = b0.

We need to solve the IVP:

Q ′(t) = −a0 Q(t) + b0, Q(0) = Q0.
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Predictions for particular situations.

Example

Assume that ri = ro = r and qi are constants.
If r = 2 liters/min, qi = 0, V0 = 200 liters, Q0/V0 = 1 grams/liter,
find t1 such that q(t1) = Q(t1)/V (t1) is 1% the initial value.

Solution: This problem is a particular case qi = 0 of the previous
Example. Since Q(t) =

(
Q0 − qiV0

)
e−rt/V0 + qiV0, we get

Q(t) = Q0 e−rt/V0 .

Since V (t) = (ri − ro) t + V0 and ri = ro , we obtain V (t) = V0.

So q(t) = Q(t)/V (t) is given by q(t) =
Q0

V0
e−rt/V0 . Therefore,

1

100

Q0

V0
= q(t1) =

Q0

V0
e−rt1/V0 ⇒ e−rt1/V0 =

1

100
.



Predictions for particular situations.

Example

Assume that ri = ro = r and qi are constants.
If r = 2 liters/min, qi = 0, V0 = 200 liters, Q0/V0 = 1 grams/liter,
find t1 such that q(t1) = Q(t1)/V (t1) is 1% the initial value.

Solution: This problem is a particular case qi = 0 of the previous
Example.

Since Q(t) =
(
Q0 − qiV0

)
e−rt/V0 + qiV0, we get

Q(t) = Q0 e−rt/V0 .

Since V (t) = (ri − ro) t + V0 and ri = ro , we obtain V (t) = V0.

So q(t) = Q(t)/V (t) is given by q(t) =
Q0

V0
e−rt/V0 . Therefore,

1

100

Q0

V0
= q(t1) =

Q0

V0
e−rt1/V0 ⇒ e−rt1/V0 =

1

100
.



Predictions for particular situations.

Example

Assume that ri = ro = r and qi are constants.
If r = 2 liters/min, qi = 0, V0 = 200 liters, Q0/V0 = 1 grams/liter,
find t1 such that q(t1) = Q(t1)/V (t1) is 1% the initial value.

Solution: This problem is a particular case qi = 0 of the previous
Example. Since Q(t) =

(
Q0 − qiV0

)
e−rt/V0 + qiV0,

we get

Q(t) = Q0 e−rt/V0 .

Since V (t) = (ri − ro) t + V0 and ri = ro , we obtain V (t) = V0.

So q(t) = Q(t)/V (t) is given by q(t) =
Q0

V0
e−rt/V0 . Therefore,

1

100

Q0

V0
= q(t1) =

Q0

V0
e−rt1/V0 ⇒ e−rt1/V0 =

1

100
.



Predictions for particular situations.

Example

Assume that ri = ro = r and qi are constants.
If r = 2 liters/min, qi = 0, V0 = 200 liters, Q0/V0 = 1 grams/liter,
find t1 such that q(t1) = Q(t1)/V (t1) is 1% the initial value.

Solution: This problem is a particular case qi = 0 of the previous
Example. Since Q(t) =

(
Q0 − qiV0

)
e−rt/V0 + qiV0, we get

Q(t) = Q0 e−rt/V0 .

Since V (t) = (ri − ro) t + V0 and ri = ro , we obtain V (t) = V0.

So q(t) = Q(t)/V (t) is given by q(t) =
Q0

V0
e−rt/V0 . Therefore,

1

100

Q0

V0
= q(t1) =

Q0

V0
e−rt1/V0 ⇒ e−rt1/V0 =

1

100
.



Predictions for particular situations.

Example

Assume that ri = ro = r and qi are constants.
If r = 2 liters/min, qi = 0, V0 = 200 liters, Q0/V0 = 1 grams/liter,
find t1 such that q(t1) = Q(t1)/V (t1) is 1% the initial value.

Solution: This problem is a particular case qi = 0 of the previous
Example. Since Q(t) =

(
Q0 − qiV0

)
e−rt/V0 + qiV0, we get

Q(t) = Q0 e−rt/V0 .

Since V (t) = (ri − ro) t + V0

and ri = ro , we obtain V (t) = V0.

So q(t) = Q(t)/V (t) is given by q(t) =
Q0

V0
e−rt/V0 . Therefore,

1

100

Q0

V0
= q(t1) =

Q0

V0
e−rt1/V0 ⇒ e−rt1/V0 =

1

100
.



Predictions for particular situations.

Example

Assume that ri = ro = r and qi are constants.
If r = 2 liters/min, qi = 0, V0 = 200 liters, Q0/V0 = 1 grams/liter,
find t1 such that q(t1) = Q(t1)/V (t1) is 1% the initial value.

Solution: This problem is a particular case qi = 0 of the previous
Example. Since Q(t) =

(
Q0 − qiV0

)
e−rt/V0 + qiV0, we get

Q(t) = Q0 e−rt/V0 .

Since V (t) = (ri − ro) t + V0 and ri = ro ,

we obtain V (t) = V0.

So q(t) = Q(t)/V (t) is given by q(t) =
Q0

V0
e−rt/V0 . Therefore,

1

100

Q0

V0
= q(t1) =

Q0

V0
e−rt1/V0 ⇒ e−rt1/V0 =

1

100
.



Predictions for particular situations.

Example

Assume that ri = ro = r and qi are constants.
If r = 2 liters/min, qi = 0, V0 = 200 liters, Q0/V0 = 1 grams/liter,
find t1 such that q(t1) = Q(t1)/V (t1) is 1% the initial value.

Solution: This problem is a particular case qi = 0 of the previous
Example. Since Q(t) =

(
Q0 − qiV0

)
e−rt/V0 + qiV0, we get

Q(t) = Q0 e−rt/V0 .

Since V (t) = (ri − ro) t + V0 and ri = ro , we obtain V (t) = V0.

So q(t) = Q(t)/V (t) is given by q(t) =
Q0

V0
e−rt/V0 . Therefore,

1

100

Q0

V0
= q(t1) =

Q0

V0
e−rt1/V0 ⇒ e−rt1/V0 =

1

100
.



Predictions for particular situations.

Example

Assume that ri = ro = r and qi are constants.
If r = 2 liters/min, qi = 0, V0 = 200 liters, Q0/V0 = 1 grams/liter,
find t1 such that q(t1) = Q(t1)/V (t1) is 1% the initial value.

Solution: This problem is a particular case qi = 0 of the previous
Example. Since Q(t) =

(
Q0 − qiV0

)
e−rt/V0 + qiV0, we get

Q(t) = Q0 e−rt/V0 .

Since V (t) = (ri − ro) t + V0 and ri = ro , we obtain V (t) = V0.

So q(t) = Q(t)/V (t) is given by q(t) =
Q0

V0
e−rt/V0 .

Therefore,

1

100

Q0

V0
= q(t1) =

Q0

V0
e−rt1/V0 ⇒ e−rt1/V0 =

1

100
.



Predictions for particular situations.

Example

Assume that ri = ro = r and qi are constants.
If r = 2 liters/min, qi = 0, V0 = 200 liters, Q0/V0 = 1 grams/liter,
find t1 such that q(t1) = Q(t1)/V (t1) is 1% the initial value.

Solution: This problem is a particular case qi = 0 of the previous
Example. Since Q(t) =

(
Q0 − qiV0

)
e−rt/V0 + qiV0, we get

Q(t) = Q0 e−rt/V0 .

Since V (t) = (ri − ro) t + V0 and ri = ro , we obtain V (t) = V0.

So q(t) = Q(t)/V (t) is given by q(t) =
Q0

V0
e−rt/V0 . Therefore,

1

100

Q0

V0
= q(t1)

=
Q0

V0
e−rt1/V0 ⇒ e−rt1/V0 =

1

100
.



Predictions for particular situations.

Example

Assume that ri = ro = r and qi are constants.
If r = 2 liters/min, qi = 0, V0 = 200 liters, Q0/V0 = 1 grams/liter,
find t1 such that q(t1) = Q(t1)/V (t1) is 1% the initial value.

Solution: This problem is a particular case qi = 0 of the previous
Example. Since Q(t) =

(
Q0 − qiV0

)
e−rt/V0 + qiV0, we get

Q(t) = Q0 e−rt/V0 .

Since V (t) = (ri − ro) t + V0 and ri = ro , we obtain V (t) = V0.

So q(t) = Q(t)/V (t) is given by q(t) =
Q0

V0
e−rt/V0 . Therefore,

1

100

Q0

V0
= q(t1) =

Q0

V0
e−rt1/V0

⇒ e−rt1/V0 =
1

100
.



Predictions for particular situations.

Example

Assume that ri = ro = r and qi are constants.
If r = 2 liters/min, qi = 0, V0 = 200 liters, Q0/V0 = 1 grams/liter,
find t1 such that q(t1) = Q(t1)/V (t1) is 1% the initial value.

Solution: This problem is a particular case qi = 0 of the previous
Example. Since Q(t) =

(
Q0 − qiV0

)
e−rt/V0 + qiV0, we get

Q(t) = Q0 e−rt/V0 .

Since V (t) = (ri − ro) t + V0 and ri = ro , we obtain V (t) = V0.

So q(t) = Q(t)/V (t) is given by q(t) =
Q0

V0
e−rt/V0 . Therefore,
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V0
e−rt1/V0 ⇒ e−rt1/V0 =

1

100
.
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We conclude that t1 =
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ln(100).

In this case: t1 = 100 ln(100). C
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Predictions for particular situations.

Example

Assume that ri = ro = r are constants. If r = 5x106 gal/year,
qi (t) = 2 + sin(2t) grams/gal, V0 = 106 gal, Q0 = 0, find Q(t).

Solution: Recall: Q ′(t) = −a(t) Q(t) + b(t). In this case:

a(t) =
ro

(ri − ro) t + V0
⇒ a(t) =

r

V0
= a0,

b(t) = ri qi (t) ⇒ b(t) = r
[
2 + sin(2t)

]
.

We need to solve the IVP: Q ′(t) = −a0 Q(t) + b(t), Q(0) = 0.

Q(t) =
1

µ(t)

∫ t

0
µ(s) b(s) ds, µ(t) = ea0t ,

We conclude: Q(t) = re−rt/V0

∫ t

0
ers/V0

[
2 + sin(2s)

]
ds.
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