Review Exam 3.

- Sections 6.1-6.6, 7.1-7.6, 7.8.
- 5 problems.
- 50 minutes.
- Laplace Transform table included.

Exam: November 12, 2008. Problem 4.

Example

Find the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$, where $A=\left[\begin{array}{cc}-3 & \sqrt{2} \\ \sqrt{2} & -2\end{array}\right]$.
Solution: Eigenvalues of A :

$$
\begin{gathered}
p(\lambda)=\left|\begin{array}{cc}
(-3-\lambda) & \sqrt{2} \\
\sqrt{2} & (-2-\lambda)
\end{array}\right|=(\lambda+2)(\lambda+3)-2=0 \\
\lambda^{2}+5 \lambda+4=0 \quad \Rightarrow \quad \lambda_{ \pm}=\frac{1}{2}[-5 \pm \sqrt{25-16}]=\frac{1}{2}[-5 \pm 3]
\end{gathered}
$$

Hence $\lambda_{+}=-1, \lambda_{-}=-4$. Eigenvector for λ_{+}.

$$
(A+I)=\left[\begin{array}{cc}
-2 & \sqrt{2} \\
\sqrt{2} & -1
\end{array}\right] \rightarrow\left[\begin{array}{cc}
2 & -\sqrt{2} \\
2 & -\sqrt{2}
\end{array}\right] \rightarrow\left[\begin{array}{cc}
2 & -\sqrt{2} \\
0 & 0
\end{array}\right]
$$

$2 v_{1}=\sqrt{2} v_{2}$. Choosing $v_{1}=\sqrt{2}$ and $v_{2}=2$, we get $\mathbf{v}^{(+)}=\left[\begin{array}{c}\sqrt{2} \\ 2\end{array}\right]$.

Exam: November 12, 2008. Problem 4.

Example

Find the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$, where $A=\left[\begin{array}{cc}-3 & \sqrt{2} \\ \sqrt{2} & -2\end{array}\right]$.
Solution: Recall: $\lambda_{+}=-1, \quad \lambda_{-}=-4$, and $\mathbf{v}^{(+)}=\left[\begin{array}{c}\sqrt{2} \\ 2\end{array}\right]$. Eigenvector for λ_{-}.

$$
(A+4 I)=\left[\begin{array}{cc}
1 & \sqrt{2} \\
\sqrt{2} & 2
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & \sqrt{2} \\
1 & \sqrt{2}
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & \sqrt{2} \\
0 & 0
\end{array}\right]
$$

$v_{1}=-\sqrt{2} v_{2}$. Choosing $v_{1}=-\sqrt{2}$ and $v_{2}=1$, so, $\mathbf{v}^{(-)}=\left[\begin{array}{c}-\sqrt{2} \\ 1\end{array}\right]$.
Fundamental solutions: $\mathbf{x}^{(+)}=\left[\begin{array}{c}\sqrt{2} \\ 2\end{array}\right] e^{-t}, \quad \mathbf{x}^{(-)}=\left[\begin{array}{c}-\sqrt{2} \\ 1\end{array}\right] e^{-4 t}$.
General solution: $\mathbf{x}=c_{1}\left[\begin{array}{c}\sqrt{2} \\ 2\end{array}\right] e^{-t}+c_{2}\left[\begin{array}{c}-\sqrt{2} \\ 1\end{array}\right] e^{-4 t}$.

Exam: November 12, 2008. Problem 4.

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$
\mathbf{x}^{(+)}=\left[\begin{array}{c}
\sqrt{2} \\
2
\end{array}\right] e^{-t}, \quad \mathbf{x}^{(-)}=\left[\begin{array}{c}
-\sqrt{2} \\
1
\end{array}\right] e^{-4 t}
$$

Solution:

We start plotting the vectors

$$
\begin{gathered}
\mathbf{v}^{(+)}=\left[\begin{array}{c}
\sqrt{2} \\
2
\end{array}\right] \\
\mathbf{v}^{(-)}=\left[\begin{array}{c}
-\sqrt{2} \\
1
\end{array}\right] .
\end{gathered}
$$

Exam: November 12, 2008. Problem 4.

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$
\mathbf{x}^{(+)}=\left[\begin{array}{c}
\sqrt{2} \\
2
\end{array}\right] e^{-t}, \quad \mathbf{x}^{(-)}=\left[\begin{array}{c}
-\sqrt{2} \\
1
\end{array}\right] e^{-4 t} .
$$

Solution:

We plot the solutions

$$
\begin{array}{ll}
\mathbf{x}^{(+)}, & -\mathbf{x}^{(+)}, \\
\mathbf{x}^{(-)}, & -\mathbf{x}^{(-)}
\end{array}
$$

Exam: November 12, 2008. Problem 4.

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$
\mathbf{x}^{(+)}=\left[\begin{array}{c}
\sqrt{2} \\
2
\end{array}\right] e^{-t}, \quad \mathbf{x}^{(-)}=\left[\begin{array}{c}
-\sqrt{2} \\
1
\end{array}\right] e^{-4 t} .
$$

Solution:
Recall: $\lambda_{-}<\lambda_{+}<0$. We plot the solutions

$$
\mathbf{x}=\mathbf{x}^{(+)}+\mathbf{x}^{(-)},
$$

that is,

$$
\mathbf{x}=\mathbf{v}^{(+)} e^{-t}+\mathbf{v}^{(-)} e^{-4 t}
$$

Exam: November 12, 2008. Problem 4.

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$
\mathbf{x}^{(+)}=\left[\begin{array}{c}
\sqrt{2} \\
2
\end{array}\right] e^{-t}, \quad \mathbf{x}^{(-)}=\left[\begin{array}{c}
-\sqrt{2} \\
1
\end{array}\right] e^{-4 t} .
$$

Solution:

We plot the solutions

$$
\mathbf{x}=c_{1} \mathbf{x}^{(+)}+c_{2} \mathbf{x}^{(-)},
$$

for different values of c_{1} and c_{2}.

Exam: November 12, 2008. Variation of Problem 4.

Example

Let $\lambda_{+}=4, \quad \lambda_{-}=1, \mathbf{v}^{(+)}=\left[\begin{array}{c}\sqrt{2} \\ 2\end{array}\right]$, and $\mathbf{v}^{(-)}=\left[\begin{array}{c}-\sqrt{2} \\ 1\end{array}\right]$.
Plot the phase portrait of several linear combinations of the fundamental solutions $\mathbf{x}^{(+)}=v^{(+)} e^{\lambda_{+} t}, \mathbf{x}^{(-)}=v^{(-)} e^{\lambda_{-} t}$,

Solution:
Here $\lambda_{+}>\lambda_{-}>0$. We plot the solutions

$$
\begin{array}{ll}
\mathbf{x}^{(+)}, & -\mathbf{x}^{(+)}, \\
\mathbf{x}^{(-)}, & -\mathbf{x}^{(-)} .
\end{array}
$$

Exam: November 12, 2008. Variation of Problem 4.

Example

Let $\quad \lambda_{+}=4, \quad \lambda_{-}=1, \quad \mathbf{v}^{(+)}=\left[\begin{array}{c}\sqrt{2} \\ 2\end{array}\right]$, and $\mathbf{v}^{(-)}=\left[\begin{array}{c}-\sqrt{2} \\ 1\end{array}\right]$.
Plot the phase portrait of several linear combinations of the fundamental solutions $\mathbf{x}^{(+)}=v^{(+)} e^{\lambda_{+} t}, \mathbf{x}^{(-)}=v^{(-)} e^{\lambda_{-} t}$,

Solution:

Recall: $\lambda_{+}>\lambda_{-}>0$. We
plot the solutions

$$
\mathbf{x}=\mathbf{x}^{(+)}+\mathbf{x}^{(-)},
$$

that is,

$$
\mathbf{x}=\mathbf{v}^{(+)} e^{4 t}+\mathbf{v}^{(-)} e^{t}
$$

Exam: November 12, 2008. Variation of Problem 4.

Example

Let $\quad \lambda_{+}=4, \quad \lambda_{-}=1, \quad \mathbf{v}^{(+)}=\left[\begin{array}{c}\sqrt{2} \\ 2\end{array}\right]$, and $\quad \mathbf{v}^{(-)}=\left[\begin{array}{c}-\sqrt{2} \\ 1\end{array}\right]$.
Plot the phase portrait of several linear combinations of the fundamental solutions $\mathbf{x}^{(+)}=v^{(+)} e^{\lambda_{+} t}, \mathbf{x}^{(-)}=v^{(-)} e^{\lambda_{-} t}$,

Solution:

Recall: $\lambda_{+}>\lambda_{-}>0$. We plot the solutions

$$
\mathbf{x}=c_{1} \mathbf{x}^{(+)}+c_{2} \mathbf{x}^{(-)}
$$

for different values of c_{1} and c_{2}.

Exam: November 12, 2008. Variation of Problem 4.

Example

Let $\quad \lambda_{+}=4, \quad \lambda_{-}=-1, \quad \mathbf{v}^{(+)}=\left[\begin{array}{c}\sqrt{2} \\ 2\end{array}\right], \quad$ and $\quad \mathbf{v}^{(-)}=\left[\begin{array}{c}-\sqrt{2} \\ 1\end{array}\right]$.
Plot the phase portrait of several linear combinations of the fundamental solutions $\mathbf{x}^{(+)}=v^{(+)} e^{\lambda_{+} t}, \mathbf{x}^{(-)}=v^{(-)} e^{\lambda_{-} t}$,

Solution:

Here $\lambda_{+}>0>\lambda_{-}$. We plot the solutions

$$
\begin{array}{ll}
\mathbf{x}^{(+)}, & -\mathbf{x}^{(+)}, \\
\mathbf{x}^{(-)}, & -\mathbf{x}^{(-)} .
\end{array}
$$

Exam: November 12, 2008. Variation of Problem 4.

Example

$$
\text { Let } \lambda_{+}=4, \quad \lambda_{-}=-1, \quad \mathbf{v}^{(+)}=\left[\begin{array}{c}
\sqrt{2} \\
2
\end{array}\right], \quad \text { and } \quad \mathbf{v}^{(-)}=\left[\begin{array}{c}
-\sqrt{2} \\
1
\end{array}\right] .
$$

Plot the phase portrait of several linear combinations of the fundamental solutions $\mathbf{x}^{(+)}=v^{(+)} e^{\lambda_{+} t}, \mathbf{x}^{(-)}=v^{(-)} e^{\lambda_{-} t}$,

Solution:

Recall: $\lambda_{+}>0>\lambda_{-}$. We plot the solutions

$$
\mathbf{x}=\mathbf{x}^{(+)}+\mathbf{x}^{(-)},
$$

that is,

$$
\mathbf{x}=\mathbf{v}^{(+)} e^{4 t}+\mathbf{v}^{(-)} e^{-t}
$$

Exam: November 12, 2008. Variation of Problem 4.

Example

Let $\lambda_{+}=4, \quad \lambda_{-}=-1, \quad \mathbf{v}^{(+)}=\left[\begin{array}{c}\sqrt{2} \\ 2\end{array}\right]$, and $\mathbf{v}^{(-)}=\left[\begin{array}{c}-\sqrt{2} \\ 1\end{array}\right]$.
Plot the phase portrait of several linear combinations of the fundamental solutions $\mathbf{x}^{(+)}=v^{(+)} e^{\lambda_{+} t}, \mathbf{x}^{(-)}=v^{(-)} e^{\lambda_{-} t}$,

Solution:
Recall: $\lambda_{+}>0>\lambda_{-}$. We plot the solutions

$$
\mathbf{x}=c_{1} \mathbf{x}^{(+)}+c_{2} \mathbf{x}^{(-)},
$$

for different values of c_{1} and c_{2}.

Extra problem.

Example

Find \mathbf{x} solution of the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad A=\left[\begin{array}{ll}
-3 & 4 \\
-1 & 1
\end{array}\right] .
$$

Solution: Eigenvalues of A :

$$
\begin{aligned}
& p(\lambda)=\left|\begin{array}{cc}
(-3-\lambda) & 4 \\
-1 & (1-\lambda)
\end{array}\right|=(\lambda-1)(\lambda+3)+4=0 \\
& \lambda^{2}+2 \lambda+1=0 \quad \Rightarrow \quad \lambda_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4-4}]=-1
\end{aligned}
$$

Hence $\lambda_{+}=\lambda_{-}=-1$. Eigenvector for $\lambda_{ \pm}$.

$$
(A+I)=\left[\begin{array}{ll}
-2 & 4 \\
-1 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & -2 \\
1 & -2
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right]
$$

$v_{1}=2 v_{2}$. Choosing $v_{1}=2$ and $v_{2}=1$, we get $\mathbf{v}^{(+)}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.

Extra problem.

Example

Find x solution of the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad A=\left[\begin{array}{ll}
-3 & 4 \\
-1 & 1
\end{array}\right] .
$$

Solution: Recall: $\lambda_{ \pm}=-1$, and $\mathbf{v}^{(+)}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.
Find \mathbf{w} solution of $(A+I) \mathbf{w}=\mathbf{v}$.

$$
\left[\begin{array}{ll}
-2 & 4 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{ll|l}
-2 & 4 & 2 \\
-1 & 2 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
1 & -2 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

Hence $w_{1}=2 w_{2}-1$, that is, $\mathbf{w}=\left[\begin{array}{l}2 \\ 1\end{array}\right] w_{2}+\left[\begin{array}{c}-1 \\ 0\end{array}\right]$.
Choose $w_{2}=0$, so $w=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$.

Extra problem.

Example

Find \mathbf{x} solution of the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad A=\left[\begin{array}{ll}
-3 & 4 \\
-1 & 1
\end{array}\right] .
$$

Solution: Recall: $\lambda_{ \pm}=-1, \quad \mathbf{v}^{(+)}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$.
Fundamental sol: $\mathbf{x}^{(1)}=\left[\begin{array}{l}2 \\ 1\end{array}\right] e^{-t}, \mathbf{x}^{(2)}=\left(\left[\begin{array}{l}2 \\ 1\end{array}\right] t+\left[\begin{array}{c}-1 \\ 0\end{array}\right]\right) e^{-t}$.
General sol: $\mathbf{x}=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right] e^{-t}+c_{2}\left(\left[\begin{array}{l}2 \\ 1\end{array}\right] t+\left[\begin{array}{c}-1 \\ 0\end{array}\right]\right) e^{-t}$.

Extra problem.

Example

Find x solution of the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad A=\left[\begin{array}{ll}
-3 & 4 \\
-1 & 1
\end{array}\right] .
$$

Solution: Recall: $\mathbf{x}=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right] e^{-t}+c_{2}\left(\left[\begin{array}{l}2 \\ 1\end{array}\right] t+\left[\begin{array}{c}-1 \\ 0\end{array}\right]\right) e^{-t}$.
Initial condition: $\left[\begin{array}{l}1 \\ 3\end{array}\right]=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{c}-1 \\ 0\end{array}\right]$,
that is, $\left[\begin{array}{cc}2 & -1 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}1 \\ 3\end{array}\right]$, also, $\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{cc}0 & 1 \\ -1 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 3\end{array}\right]=\left[\begin{array}{l}3 \\ 5\end{array}\right]$.
The solution is $\mathbf{x}=3\left[\begin{array}{l}2 \\ 1\end{array}\right] e^{-t}+5\left(\left[\begin{array}{l}2 \\ 1\end{array}\right] t+\left[\begin{array}{c}-1 \\ 0\end{array}\right]\right) e^{-t}$.

Extra problem.

Example

Let $\lambda=-1$ with $\mathbf{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$.
Plot $\pm \mathbf{x}^{(1)}= \pm \mathbf{v} e^{-t}$ and $\pm \mathbf{x}^{(2)}= \pm(\mathbf{v} t+\mathbf{w}) e^{-t}$.
Solution:

Extra problem.

Example

Let $\lambda=1$ with $\mathbf{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$.
Plot $\pm \mathbf{x}^{(1)}= \pm \mathbf{v} e^{t}$ and $\pm \mathbf{x}^{(2)}= \pm(\mathbf{v} t+\mathbf{w}) e^{t}$.
Solution:

Extra problem.

Example

Given any vectors \mathbf{a} and \mathbf{b}, sketch qualitative phase portraits of

$$
\mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}, \mathbf{x}^{(2)}=[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t}
$$

for the cases $\alpha=0$, and $\alpha>0$, where $\beta>0$.
Solution:

Extra problem.

Example

Given any vectors \mathbf{a} and \mathbf{b}, sketch qualitative phase portraits of

$$
\mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}, \mathbf{x}^{(2)}=[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t} .
$$

for the cases $\alpha=0$, and $\alpha<0$, where $\beta>0$.
Solution:

